• Home
  • UNSW Sydney
  • School of Biological, Earth and Environmental Sciences (BEES)
  • Martin J Van Kranendonk
Martin J Van Kranendonk

Martin J Van Kranendonk
UNSW Sydney | UNSW · School of Biological, Earth and Environmental Sciences (BEES)

BSc (Honours 1984, U. Toronto), MSc (1987, U. Toronto), PhD (1992, Queens U.)

About

310
Publications
125,350
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,792
Citations
Additional affiliations
January 2012 - present
UNSW Sydney
Position
  • Professor of Geology
December 2006 - December 2012
Geological Survey of Western Australia
Position
  • Specialist - Precambrian Geoscience
March 1997 - December 2006
Geological Survey of Western Australia
Position
  • Senior Geologist
Education
October 1987 - May 1992
Queen's University
Field of study
  • Geology

Publications

Publications (310)
Article
Full-text available
This study explores the paleobiological significance of pyritic stromatolites from the 3.48 billion-year-old Dresser Formation, Pilbara Craton, by combining paleoenvironmental analyses with observations from well-preserved stromatolites in newly obtained drill cores. These structures exhibit stratiform and columnar to domal shapes with wavy to wrin...
Article
Full-text available
The great oxidation event (GOE), ~2.4 billion years ago, caused fundamental changes to the chemistry of Earth's surface environments. However, the effect of these changes on the biosphere is unknown, due to a worldwide lack of well-preserved fossils from this time. Here, we investigate exceptionally preserved, large spherical aggregate (SA) microfo...
Article
Full-text available
Terrestrial hot springs harbor diverse microbial communities whose compositions are shaped by the wide-ranging physico-chemistries of individual springs. The effect of enormous physico-chemical differences on bacterial and archaeal distributions and population structures is little understood. We therefore analysed the prevalence and relative abunda...
Article
Calcites hosted in the interpillow void spaces of extremely well preserved, 3.47–3.12 Ga pillow lavas of the Archean Pilbara Craton, Australia, provide new geochemical insights into the composition of Archean seawater and its interaction with basaltic crust. We present a comprehensive dataset of major and trace elements, radiogenic 147Sm-143Nd, 87R...
Article
Full-text available
Fossil organic matter (OM) in Paleoarchean rocks is an invaluable tracer of ancient life, yet it is often contentious due to low preservation potentials of its original organic molecular characteristics under generally high metamorphic grades. This study reports on exceptionally preserved OM within black smoker-type sulfide mineralizations from the...
Article
Full-text available
Voluminous hydrothermal circulation in the ~3.48 Ga Dresser caldera produced zoned alteration haloes around major fluid pathways. Specifically, in the North Star Basalt (the footwall) hydrothermal alteration decreases with increasing distance from the margins of hydrothermal silica±barite veins, changing from argillic (i.e., kaolinite-quartz) to ph...
Article
Active hot springs are dynamic geobiologically active environments. Heat- and element-enriched fluids form hot spring sinter deposits that are inhabited by microbial and macroscopic eukaryotic communities, but it is unclear how variable heat, fluid circulation, and mineralization within hot spring systems affect the preservation of organic matter i...
Article
In the early 1970s, Vic McGregor and Stephen Moorbath demonstrated that the Isua supracrustal belt (Greenland) and its surrounding orthogneisses formed in the Eoarchean (Moorbath et al., 1972, 1973). Fifty years later, these rocks are a key resource globally for understanding the Eoarchean Earth. This is because there is an extensive area (∼200 km²...
Article
Gas chromatography–mass spectrometry was applied to samples collected from an exceptionally well-preserved Late Jurassic (∼150 Ma) sinter complex of the Claudia palaeo-geothermal field, Deseado Massif geological province, Argentinean Patagonia, which, despite its age, has never been deeply buried. Results indicate that the distal sinter apron has a...
Conference Paper
Full-text available
Phosphorus is an element that is intimately linked to life and the origin of life. In our rock record, deposits of phosphate-bearing minerals can record life processes through their chemistry and also the physical evidence of life as fossils. Earth processes that recycle and change rocks through time (e.g., mountain building) can erase evidence of...
Article
Full-text available
Biological activity at deep-sea hydrothermal chimneys is driven by chemotrophic microorganisms that metabolize chemicals from the venting high-temperature fluids. Understanding taphonomy and microbial microtextures in such environments is a necessity for micropaleontological and palaeoecological research. This study examines fossilized microorganis...
Article
In recent years, there has been a rapid development of the computer-aided interpretation of seismic data to reduce the otherwise intensive manual labor. A variety of seed detection algorithms for horizon and fault identification are integrated into popular seismic software packages. Recently, there has been an increasing focus on using neural netwo...
Article
The chemical and isotopic compositions of Precambrian Fe-rich chemical sedimentary rocks have figured prominently in discussions on the Fe biogeochemical cycle and redox conditions in the early Earth. Broad trends of decreasing δ⁵⁶Fe values for Eoarchean to Paleoproterozoic iron formations (IFs) and jaspilites (hematite-chert) with decreasing age r...
Article
Full-text available
Dynamic sedimentary processes are a key parameter for establishing the habitability of planetary surface environments on Earth and beyond and thus critical for reconstructing the early evolution of life on our planet. This paper presents a sedimentary section from the ca 3.48 Ga Dresser Formation (Pilbara Craton, Western Australia) that contains hi...
Article
Full-text available
The encapsulation of genetic polymers inside lipid bilayer compartments (vesicles) is a vital step in the emergence of cell-based life. However, even though acidic conditions promote many reactions required for generating prebiotic building blocks, prebiotically relevant lipids tend to form denser aggregates at acidic pHs rather than prebiotically...
Article
Full-text available
Metal ions strongly affect the self-assembly and stability of membranes composed of prebiotically relevant amphiphiles (protoamphiphiles). Therefore, evaluating the behavior of such amphiphiles in the presence of ions is a crucial step towards assessing their potential as model protocell compartments. We have recently reported vesicle formation by...
Article
It is 50 years since the landmark paper where Black et al. (1971) presented whole-rock Pb-Pb and Rb-Sr isotopic evidence for some rocks in Greenland surviving from Earth’s first billion years; the ≥ 3700 Ma Amîtsoq gneisses. This overturned ideas prevalent at that time that the young Earth was far too violent for such ancient rocks to survive. In t...
Preprint
Full-text available
The encapsulation of genetic polymers inside lipid bilayer compartments is a vital step in the emergence of cell-based life. However, even though acidic conditions promote many reactions required for generating prebiotic building blocks, prebiotically-relevant lipids tend to form denser aggregates at acidic pHs rather than prebiotically useful vesi...
Preprint
Full-text available
The encapsulation of genetic polymers inside lipid bilayer compartments is a vital step in the emergence of cell-based life. However, even though acidic conditions promote many reactions required for generating prebiotic building blocks, prebiotically-relevant lipids tend to form denser aggregates at acidic pHs rather than prebiotically useful vesi...
Article
Full-text available
The Apex chert unit (~3.46 Ga, Pilbara Craton, Australia) constitutes one of the oldest sedimentary units on Earth in which putative carbonaceous microfossils have been reported. The source of carbonaceous matter (CM) in this unit, however, is hotly debated. Hydrothermal fluids have circulated through the underlying crust and up into the bedded uni...
Article
Hydrothermal fluids played a key role in establishing the environmental conditions in which ancient stromatolites grew within the North Pole Chert of the ~3.48 Ga Dresser Formation (Pilbara Craton, Western Australia). However, there has been uncertainty as to the physicochemical conditions of the hydrothermal system in relation to (i) the distribut...
Article
Full-text available
Abstract Background Terrestrial hot spring settings span a broad spectrum of physicochemistries. Physicochemical parameters, such as pH and temperature, are key factors influencing differences in microbial composition across diverse geothermal areas. Nonetheless, analysis of hot spring pools from the Taupo Volcanic Zone (TVZ), New Zealand, revealed...
Article
Interpretations of the structural/tectonic evolution of the Barberton Greenstone Belt (BGB) and its surrounding granitoid rocks remain controversial, with proponents for both horizontal thrust-accretion (plate tectonic) and partial convective overturn (vertical tectonic) models. Here, an area of complex folds that was used to support the operation...
Conference Paper
Full-text available
Approximately 2.4 billion years ago during the Great Oxidation Event (GOE), following a series of glaciations, a microbialite reef complex was deposited within the Turee Creek Group (TCG) in Western Australia. This reef is unique because it is well-preserved and contains an abundance of diverse types of both microbial and more cryptic life. The wor...
Article
Significance Geological processes like mantle convection or plate tectonics are an essential factor controlling Earth’s habitability. Our study provides insights into timescales of convective homogenization of Earth’s early mantle, employing the novel tool of high-precision ¹⁸² W isotope measurements to rocks from the Pilbara Craton in Australia, t...
Article
Full-text available
For decades, deep sea hydrothermal vents have been a preferred setting for the Origin of Life, but “The Water Problem” as relates to polymerization of organic molecules, together with a propensity to dilute critical prebiotic elements as well as a number of other crucial factors, suggests that a terrestrial hot spring field with the capacity for we...
Chapter
The ancient rocks of the Pilbara region of Western Australia have been an important analog site for the study of possible inhabited environments in the search for life on early Mars for over four decades. Here, we review the evidence for Paleo- to Neoarchean life and the habitats that it occupied in the Pilbara Craton and unconformably overlying Fo...
Article
Full-text available
The Apex chert unit (~3.46 Ga, Pilbara Craton, Australia) constitutes one of the oldest sedimentary units on Earth in which putative carbonaceous microfossils have been reported. The source of carbonaceous matter (CM) in this unit, however, is hotly debated. Hydrothermal fluids have circulated through the underlying crust and up into the bedded uni...
Article
Recent discoveries of geyserite and siliceous sinter with textural biosignatures in the ∼3.5 Ga Dresser Formation of the Pilbara Craton, Western Australia, extended the record of inhabited subaerial hot springs on Earth by ∼3 billion years, back to the time when siliceous sinter deposits are known to have formed on Mars (e.g., at Columbia Hills, Gu...
Article
Full-text available
Inferences on the early evolution of the Earth’s mantle can be deduced from long-lived radiogenic isotope systems such as 176Lu-176Hf and 147Sm-143Nd, for which both parent and daughter elements largely remain immobile at low metamorphic grades. However, it remains ambiguous when and to what extent mantle-crust differentiation processes had started...
Article
Hyperspectral and micro X-ray fluorescence (mXRF) imagery were used to derive maps of mineralogy and elemental chemistry from a sample of a siliceous hot spring deposit, or sinter, collected from a landslide breccia deposit at the base of the Paeroa fault, which bounds the eastern Taupo Rift at Te Kopia, Taupo Volcanic Zone, New Zealand. The sample...
Article
The lower chert unit of the 3.48 Ga Dresser Formation (Pilbara Craton, Western Australia) hosts Earth’s oldest convincing evidence of life in the form of stromatolites in a depositional setting that has been interpreted as either a shallow marine lagoon, an active volcanic caldera, or a basin deposited during regional extension. Understanding the e...
Article
The shallow marine and subaerial sedimentary and hydrothermal rocks of the ~3.48 billion‐year‐old Dresser Formation are host to some of Earth's oldest stromatolites and microbial remains. This study reports on texturally distinctive, spherulitic barite micro‐mineralization that occur in association with primary, autochthonous organic matter within...
Article
Full-text available
Hot spring environments are commonly dominated by silica sinters that precipitate by the rapid cooling of silica-saturated fluids and the activity of microbial communities. However, the potential for preservation of organic traces of life in silica sinters back through time is not well understood. This is important for the exploration of early life...
Article
Digitate siliceous hot spring deposits are a form of biomediated sinter that is relatively common in the Taupo Volcanic Zone (TVZ), New Zealand, and elsewhere on Earth. Such deposits have gained prominence recently because of their morphological similarity to opaline silica rocks of likely hot spring origin found by the Spirit rover on Mars and the...
Article
Carbonates and cherts in the 3.35 billion-year-old Strelley Pool Formation (Fm.; Australia) host stromatolites that are among the oldest remnants of life on Earth. However, it is still not entirely clear whether these mineral phases are authigenic precipitates, and whether they represent reliable geochemical archives of early Earth environments. He...
Article
Full-text available
The accretion of volatile-rich material from the outer Solar System represents a crucial prerequisite for Earth to develop oceans and become a habitable planet1,2,3,4. However, the timing of this accretion remains controversial5,6,7,8. It has been proposed that volatile elements were added to Earth by the late accretion of a late veneer consisting...
Article
This study reports in–situ sulfur isotope analyses (³²S, ³³S, ³⁴S and ³⁶S) of pyrite in strongly sulfidized stromatolites from the ~3.48 billion–year–old Dresser Formation, Pilbara Craton, Australia. These data shed light on sulfur reservoirs and sulfide precipitation processes and provide clues for the contribution of sulfur–cycling microbes to su...
Article
Observations from a stromatolite-thrombolite reef complex of the c. 2.4 Ga Turee Creek Group, Western Australia, indicate diversity in stromatolite and microfossil morphology, in addition to the appearance of clotted (thrombolite-like) microbialites (Barlow et al., 2016, Barlow and Van Kranendonk, 2018). Here, we document the diverse morphologies a...
Article
Stromatolites of the ~3.48 billion–year–old Dresser Formation (Pilbara Craton, Western Australia) provide some of the oldest convincing evidence of life on Earth. Here, we augment previous evidence with a detailed investigation of the concentrations and distributions of various transition metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Se, Ag, Sn, Au, Hg, and...
Article
Full-text available
The origin and age of opaline silica deposits discovered by the Spirit rover adjacent to the Home Plate feature in the Columbia Hills of Gusev crater remains debated, in part because of their proximity to sulfur-rich soils. Processes related to fumarolic activity and to hot springs and/or geysers are the leading candidates. Both processes are known...
Article
Stromatolites of the ∼3.5 billion-year-old Dresser Formation (Pilbara Craton, Western Australia) are considered to be some of Earth’s earliest convincing evidence of life. However, uniquely biogenic interpretations based on surface outcrops are precluded by weathering, which has altered primary mineralogy and inhibited the preservation of microbial...
Article
The Eoarchean (>3600 Ma, or millions of years ago) folded and metamorphosed Isua supracrustal belt and the adjacent orthogneiss exposures of Greenland contain rare low deformation lenses that display some uniquely-preserved components of Earth's oldest rock record. These include world's oldest (but contested) stromatolites in dolomitic carbonates,...
Article
The rare preservation of a stratigraphy in the northwest of the Eoarchean Isua supracrustal belt (Greenland) demonstrates the world's earliest-recognised marine transgression. Stratigraphically lowest is the ~3710 Ma Solvang Volcanic Formation of picrites, basalts and basaltic-andesites with arc-like geochemical signatures. Close to its erosional t...
Article
Full-text available
Boron is associated with several Archean stromatolite deposits, including the tourmaline-rich Barberton stromatolites in South Africa and tourmaline-bearing pyritic laminae associated with stromatolites of the 3.48 Ga Dresser Formation in the Pilbara Craton, Australia. Boron is also a critical element in prebiotic organic chemistry, including in th...
Technical Report
This report concerns the controversy about structures that some researchers (Nutman et al.) interpret as relic 3,700 million year old stromatolites in the Isua supracrustal belt (Greenland), whereas others interpret them to be abiogenic features produced solely by deformation and metamorphism.
Article
The ∼3700 Ma and 3800 Ma meta-volcanic and -sedimentary rocks in the Isua supracrustal belt (Greenland) were affected by heterogeneous ductile deformation under amphibolite facies conditions (∼500–650 °C), and variably modified by secondary silica and carbonate mineralisation deposited from diagenetic and metasomatic fluids. Rare low-deformation ar...
Article
Full-text available
Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Strategies for the collection of such samples have ranged from “grab and go” acquisition from the surface, to dust collection in the atmosphere, to scientific selection by geologically capable rovers. As comprehension of the comple...
Article
Full-text available
Executive Summary Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team ( iMOST ). The purpose of the team is to re‐evaluate and update the...
Article
Full-text available
This report requested by the International Mars Exploration Working Group (IMEWG). Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (i...
Article
Full-text available
In the version of this Article originally published, author Magali Ader was wrongly linked to affiliation 3; it should have been affiliation 2. This error has now been corrected in the online versions.
Article
Full-text available
There are many different scientific aspects involved in the challenge of understanding the origin of life (OoL). These include organic geochemistry – how to make RNA and DNA molecules from the simple organic building blocks delivered from space in the form of amino acids and some other compounds. Other aspects involve the study of inorganic geochem...
Article
Phosphatic peloids and pebble-sized microbially-bound sediment clasts have been identified within dolomitic sediment that separates centimetric columnar stromatolites in a 20–150 cm thick horizon from the 2.4–2.2 Ga Turee Creek Group in Western Australia. Petrographic examination of the phosphatic clasts reveals complex internal textures that are d...
Article
Full-text available
The colonization of emergent continental landmass by microbial life was an evolutionary step of paramount importance in Earth history. Here we report direct fossil evidence for life on land 3,220 million years ago (Ma) in the form of terrestrial microbial mats draping fluvial conglomerates and gravelly sandstones of the Moodies Group, South Africa....
Chapter
Bislang vermuteten Forscher den Ursprung des Lebens in der Tiefsee. Neue Erkenntnisse deuten jedoch darauf hin, dass die ersten Einzeller in heißen Quellen vulkanisch aktiver Landschaften entstanden.
Book
Full-text available
Executive Summary: Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re-evaluate and update the...
Article
Eighteen microfossil morphotypes from two distinct facies of black chert from a deep‐water setting of the c. 2.4 Ga Turee Creek Group, Western Australia, are reported here. A primarily in situ, deep‐water benthic community preserved in nodular black chert occurs as a tangled network of a variety of long filamentous microfossils, unicells of one siz...
Article
Full-text available
Crystallography has a long history of providing knowledge and methods for applications in other disciplines. The identification of minerals using X-ray diffraction is one of the most important contributions of crystallography to earth sciences. However, when the crystal itself has been dissolved, replaced or deeply modified during the geological hi...
Data
Results of the nvestigation of crystal pseudomorphs and crystal casts found in a carbonate-chert facies from the 3.48 Ga-old Dresser Formation (Pilbara Craton, Australia), considered to host some of the oldest remnants of life. A combination of X-ray microtomography, energy-dispersive X-ray spectroscopy and crystallographic methods has been used to...
Conference Paper
Full-text available
In searching for life on Mars, and elsewhere throughout our solar system, we seek 'biosignatures'-mineralogical, chemical or morphological features that, on Earth, are indicative of life processes. However, it is difficult to definitively say whether a feature from the early Earth rock record was formed by biological or non-biological processes, le...
Article
Full-text available
The Great Oxidation Event (GOE) has been defined as the time interval when sufficient atmospheric oxygen accumulated to prevent the generation and preservation of mass-independent fractionation of sulphur isotopes (MIF-S) in sedimentary rocks. Existing correlations suggest that the GOE was rapid and globally synchronous. Here we apply sulphur isoto...

Network

Cited By