ArticlePDF Available

On 2-absorbing primary submodules of modules over commutative ring with unity

Authors:

Abstract

In this paper, we introduce the concept of a 2-absorbing primary submodule over a commutative ring with nonzero identity which is a generalization of primary submodule. Let M be an R-module and N be a proper submodule of M. Then N is said to be a 2-absorbing primary submodule of M if whenever a,b∈R, m∈M and abm∈N, then am∈N or bm∈N or ab∈√(N:RM) . We have given an example and proved number of results concerning 2-absorbing primary submodules. We have also proved the 2-absorbing primary avoidance theorem for submodules.
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
Asian-European Journal of Mathematics
Vol. 8, No. 4 (2015) 1550064 (12 pages)
c
World Scientific Publishing Company
DOI: 10.1142/S1793557115500643
On 2-absorbing primary submodules of modules
over commutative ring with unity
Manish Kant Dubey
SAG, DRDO, Metcalf House, Delhi 110054, India
kantmanish@yahoo.com
Pakhi Aggarwal
Department of Mathematics
University of Delhi, Delhi 110007, India
scarlet2k 81@yahoo.com
CommunicatedbyV.S.Ngayen
Received October 7, 2014
Revised June 8, 2015
Published September 28, 2015
In this paper, we introduce the concept of a 2-absorbing primary submodule over a
commutative ring with nonzero identity which is a generalization of primary submodule.
Let Mbe an R-module and Nbe a proper submodule of M. Then Nis said to be a
2-absorbing primary submodule of Mif whenever a, b R,mMand abm N,
then am Nor bm Nor ab p(N:RM).Wehavegivenanexampleandproved
number of results concerning 2-absorbing primary submodules. We have also proved the
2-absorbing primary avoidance theorem for submodules.
Keywords: 2-absorbing primary submodules; 2-absorbing submodules; 2-absorbing pri-
mary avoidance theorem.
AMS Subject Classification: 13A15
1. Introduction
The prime ideal in ring theory plays crucial role in algebra. The concept of 2-
absorbing ideal which is a generalization of prime ideal of a commutative ring was
introduced in [6] and later studied in [2]. Several authors in [8,9,15] have extended
the notion of 2-absorbing ideal to 2-absorbing submodule which is a generalization
of prime submodule of an R-module M.Badawiet al. in [7] have introduced the
concept of 2-absorbing primary ideal which is a generalization of primary ideal in
a commutative ring and studied several properties. In this paper, we have intro-
duced the concept of a 2-absorbing primary submodules and proved many results.
1550064-1
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
M. K. Dubey &P. Aggarwal
Throughout the paper Ris considered as a commutative ring with a nonzero identity
and module Mis unital.
An ideal Iof Ris said to be proper if I=R. A nonzero proper ideal Iof R
is said to be a 2-absorbing ideal of Rif abc Ifor any a, b, c R,thenab Ior
ac Ior bc I. AproperidealIof Ris said to be a 2-absorbing primary ideal
of Rif whenever a, b, c Rwith abc I, then ab Ior ac Ior bc I,
where I={rR:thereexistsnNwith rnI}denotes the radical of I.
Let Nbe a submodule of M.Then(N:RM)orsimply(N:M) denotes the ideal
{rR:rM N}.A proper submodule Nof an R-module Mis said to be a prime
submodule if for aR,mM, and am N,thenmNor a(N:RM).A
proper submodule Nof Mis said to be a 2-absorbing submodule of Mif whenever
a, b R,mMwith abm N,thenab (N:RM)oram Nor bm N. The
annihilator of Mdenoted by annR(M)is(0:
RM).An R-module Mis called a
multiplication module if every submodule Nof Mhas the form IM for some ideal I
of R. It is easy to see that, since I(N:RM)thenN=IM (N:RM)MN,
so that N=(N:RM)M[18]. For a submodule Nof M, if N=IM for some ideal
Iof R,thenwesaythatIis a presentation ideal of N. Clearly, every submodule of
Mhas a presentation ideal if and only if Mis a multiplication module. Let Nand
Kbe submodules of a multiplication R-module Mwith N=I1Mand K=I2M
for some ideals I1and I2of R. The product of Nand Kdenoted by NK is defined
by NK =I1I2M. By [1], the product of Nand Kis independent of presentations
of Nand K. Also, the term ab, for a, b Mrepresents the product of Ra and Rb.
Clearly, NK is a submodule of Mand NK NK. A submodule Nof Mis called
pure Nif aN =NaM for every aR. A module Mis said to be cancellative
module if whenever rm =rn for elements m, n Mand rR,thenm=n. Let
Nbe a proper submodule of a nonzero R-module M. Then the M-radical of N,
denoted by M-rad N, is defined to be the intersection of all prime submodules of
Mcontaining N. Itisshownin[18, Theorem 2.12] that if Nis a proper submodule
of a multiplication R-module M, then M-rad N=(N:M)M.
The paper is organized as follows. In Sec. 2, we introduce the notion of 2-
absorbing primary submodules and give some characterizations of the same. The
properties of 2-absorbing primary submodule are also studied in some specific
domain. In Sec. 3, we give the 2-absorbing primary avoidance theorem for sub-
modules.
2. 2-Absorbing Primary Submodules
In this section, we define 2-absorbing primary submodule which is illustrated with
an example and proved several results related to the same.
Definition 2.1. Let Mbe an R-module and Nbe a proper submodule of M. Then
Nis said to be a 2-absorbing primary submodule of Mif whenever a, b Rand
mMwith abm N,thenab (N:RM)oram Nor bm N.
1550064-2
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
On 2-absorbing primary submodules
It is easy to see that prime, primary, 2-absorbing submodules and 2-absorbing
primary submodules are entirely different concepts. Every 2-absorbing submodule
is a 2-absorbing primary submodule but converse need not be true which are illus-
trated as follows.
Example 2.2. Consider R=Zand an R-module M=Z16 ={0,1,2,...,15}.
Take a submodule N={0,8}of M.Then(N:M)={aR:aM N}=
{0,8,16,...}and (N:M)={aR:anMN}={0,2,4,8,...}.Now, 2.2.2
Nbut 2.2/Nand 2.2/(N:M).Therefore, Nis not a 2-absorbing submodule
of Mbut it is a 2-absorbing primary submodule of M,as2.2(N:M).
Example 2.3. Consider a submodule N=6Zof a Z-module Z. Then 6Zis a
2-absorbing primary submodule. But it is not a primary submodule as 2.3Nbut
neither 2 Nnor 3 (N:Z).
We state the following theorems which are frequently used in the paper.
Theorem 2.4 ([7, Theorem 2.2]). If Iis a 2-absorbing primary ideal of R, then
Iis a 2-absorbing ideal of R.
Theorem 2.5 ([7, Theorem 2.3]). Suppose that Iis a 2-absorbing primary ideal
of R. Then one of the following statements must hold.
(i) I=Pis a prime ideal,
(ii) I=P1P2,where P1and P2are the only distinct prime ideals of Rthat are
minimal over I.
Theorem 2.6. Let Nbe a 2-absorbing primary submodule of an R-module M.
Then (N:M)is a 2-absorbing primary ideal of R.
Proof. Let abc (N:M)forsomea, b, c R.Letab /(N:M)andbc /
(N:M). This implies ab /(N:M)andbc /(N:M).So, there exist m1,m
2
Msuch that abm1/Nand bcm2/Nbut ac(bm1+bm2)N. Since Nis a
2-absorbing primary submodule, then we have either ac (N:M)ora(bm1+
bm2)Nor c(bm1+bm2)N. If ac (N:M), then we are done. If a(bm1+
bm2)N, then abm2/N.Considerabcm2N.SinceNis a 2-absorbing primary
submodule and abm2/N,bcm2/N, therefore ac (N:M).Similarly, if
c(bm1+bm2)N,thenwehavecbm1/N. Consider abcm1N. Since Nis a 2-
absorbing primary submodule and abm1/N,bcm1/N, therefore ac (N:M).
This implies, in each case, (N:M) is a 2-absorbing primary ideal of R.
But the converse of the above theorem is not true. If (N:M) is 2-absorbing
primary ideal, then Nmay not be 2-absorbing primary. Let us consider the Z-
module M=Z×Zand N=(0,6)Zbe the submodule of M.Then(N:M)=0
but Nis not a 2-absorbing primary module. As, for r1=2,r2=3and
1550064-3
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
M. K. Dubey &P. Aggarwal
m=(0,1) Mwe have 2.3.(0,1) Nbut neither 2.(0,1) Nnor 3.(0,1) N
also 2.3/(N:M).
Theorem 2.7. Let Nbe a 2-absorbing primary submodule of an R-module M.
Then (N:M)is a 2-absorbing ideal of R.
Proof. Let Nbe a 2-absorbing primary submodule of an R-module M. Then, by
Theorem 2.6,(N:M) is a 2-absorbing primary ideal of R. Thus, by [7,Theo-
rem 2.2], we have (N:M) is a 2-absorbing ideal of R.
Theorem 2.8. Let Mbe a faithful multiplication R-module. If Nis a 2-absorbing
primary submodule of M, then M-rad Nis a 2-absorbing primary submodule of M.
Proof. Suppose Nis a 2-absorbing primary submodule of M. Then using Theo-
rem 2.7,(N:M) is a 2-absorbing ideal of R. Again, by Theorem 2.5,(N:M)=
por (N:M)=pqwhere p, q are distinct prime ideals of R.Consider,
(N:M)=p.ThenM-rad N=(N:M)M=pM, since Mis a multiplication
module. Since pis a prime ideal, pM is a prime submodule of Mby [18, Corol-
lary 2.11]. Hence M-rad Nis a 2-absorbing submodule of Mwhich shows that it is
a 2-absorbing primary submodule of M. Again, consider when (N:M)=pq,
where p, q are distinct prime ideals over Rthat are minimal over (N:M). Then,
we have M-rad N=(N:M)M=(p+annM)M(q+annM)M=pM qM,
where pM, qM are prime submodules of M,by[18, Corollary 2.11, 1.7]. Conse-
quently, M-rad Nis a 2-absorbing submodule of Mwhich shows that M-rad Nis
a 2-absorbing primary submodule of M.
Theorem 2.9. Let Nbe a 2-absorbing primary submodule of an R-module Mand
Kbe a submodule of M. Then NKis a 2-absorbing primary submodule of K.
Proof. Clearly, NKis a proper submodule of K. Let rsx NKwhere r, s R
and xK. Since rsx Nand Nis a 2-absorbing primary submodule of M,rx N
or sx Nor rs (N:M). If rx Nor sx N,thenrx NKor sx NK.
If rs (N:M),then (rs)nMNfor some positive integer n. In particular,
(rs)nKNwhich implies (rs)nKNK. Thus rs (NK:K).Hence
NKis a 2-absorbing primary submodule of K.
Theorem 2.10. Let M1and M2be R-modules. Let M=M1M2and N
M1M2.ThenN=QM2is a 2-absorbing primary submodule of Mif and only
if Qis a 2-absorbing primary submodule of M1.
Proof. Let Qbe a submodule of M1such that N=QM2is a 2-absorbing primary
submodule of M.ToproveQis a 2-absorbing primary submodule of M1.Let
rsm Qwhere r, s Rand mM1and rm /Q,sm /Q.Thenrs(m, 0) QM2
but (rm, 0) /QM2and (sm, 0) /QM2.As QM2is a 2-absorbing primary
1550064-4
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
On 2-absorbing primary submodules
submodule of M, therefore rs (QM2:M1M2)or(rs)n(M1M2)
(QM2) for some positive integer n.Thus(rs)nM1Q. Hence Qis a 2-absorbing
primary submodule of M1.Conversely,letQbe a 2-absorbing primary submodule
of M1. Assume that rs(a, b)QM2where r, s Rand (a, b)M. Suppose
that r(a, b)/QM2and s(a, b)/QM2.This implies ra /Qand sa /Q.
As Qis a 2-absorbing primary submodule of M1, therefore (rs)nM1Q. Thus
(rs)nMQM2.Hence QM2is a 2-absorbing primary submodule of M.
For rR, we define (N:Mr)tobe(N:Mr)={mM:rm N}.Clearly,
(N:Mr) is a submodule of Mcontaining N. It is well known that a submodule
Nof Mis said to be irreducible if it cannot be expressed as the intersection of
two submodules of M. We now give the following characterization of 2-absorbing
primary submodule when Nis an irreducible.
Theorem 2.11. Let Mbe an R-module and Na proper submodule of Mand
(N:M)is a 2-absorbing ideal of R. If Nis an irreducible submodule of M, then
Nis a 2-absorbing primary submodule of Mif and only if (N:Mr)=(N:Mr2)
for all rR\(N:M).
Proof. Let Nbe a 2-absorbing primary submodule of M. Assume that r
R\(N:M).Then we have to show that (N:Mr)=(N:Mr2).It is clear
that (N:Mr)(N:Mr2).For the reverse inclusion, let m(N:Mr2), so
r2mN. This implies that either rm Nor r2(N:M), since Nis a 2-
absorbing primary submodule of M.Ifrm N,thenm(N:Mr) and hence
(N:Mr2)(N:Mr), we are done. Again, if r2(N:M), then r(N:M)
and we get a contradiction. Thus (N:Mr)=(N:Mr2).
Conversely, let r1,r
2Rand mMsuch that r1r2mNbut r1r2/
(N:M).Then,wehavetoshowthatr1mNor r2mN. On contrary,
we assume that r1m/Nand r2m/N. We first claim that r1/(N:M)
and r2/(N:M) because if r1(N:M)andr2(N:M)implythat
r1r2((N:M))2(N:M), which is a contradiction. Therefore we may
assume that either (N:Mr1)=(N:Mr2
1)or(N:Mr2)=(N:Mr2
2).Suppose
(N:Mr1)=(N:Mr2
1).Clearly, N(N+Rr1m)(N+Rr2m).Let
n(N+Rr1m)(N+Rr2m).Then n=n1+s1r1m=n2+s2r2mwhere n1,
n2Nand s1,s
2R.Nowr1n=r1n1+s1r2
1m=r1n2+r1r2s2mand
s2r1r2m, r1n1,r
1n2N, so s1r2
1mNimplies s1m(N:Mr2
1) but (N:M
r1)=(N:Mr2
1).Therefore s1r1mNand so nN. Hence (N+Rr1m)(N+
Rr2m)N.Consequently,(N+Rr1m)(N+Rr2m)=N, a contradiction because
Nis an irreducible submodule. Hence Nis a 2-absorbing primary submodule
of M.
Theorem 2.12. Let Nbe a 2-absorbing primary submodule of an R-module M.
Then (N:Mr)is a 2-absorbing primary submodule of Mcontaining Nfor any
rR\(N:M).
1550064-5
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
M. K. Dubey &P. Aggarwal
Proof. Suppose rR\(N:M).For any s, t Rand mMsuch that stm
(N:Mr).This implies strm N. Since Nis a 2-absorbing primary submodule of
M, then either trm Nor srm Nor st (N:M).Thus sm (N:Mr)
or tm (N:Mr)or(st)nMN. The first two cases show that (N:Mr)is
a 2-absorbing primary submodule of M. Further, (st)nMNimplies (st)nM
(N:Mr) which implies st ((N:Mr):M). Thus (N:Mr) is a 2-absorbing
primary submodule of M.
We now study the properties of 2-absorbing primary submodules using associate
ideal (N:Rm), defined as (N:m)={rR:rm N}where mM.
Theorem 2.13. If Nis a 2-absorbing primary submodule of an R-module M,
then (N:m)=Rif mNor (N:m)is a 2-absorbing primary ideal containing
(N:M)if m/N.
Proof. If mN, then nothing to prove. Suppose m/Nand abc (N:m)for
some a, b, c R. This implies abcm N.AsNis a 2-absorbing primary submodule
of M, then we have either am Nor bcm Nor abc (N:M). The first
two terms am Nor bcm Nimply ab (N:m)orbc (N:m)andwe
are done. If abc (N:M)and(N:M) is 2-absorbing ideal of R, then either
ab (N:m)orbc (N:m)orca (N:m). Thus, in each case, we have
(N:m) is a 2-absorbing primary ideal of R. Clearly (N:M)(N:m).
Theorem 2.14. Let Mbe a n R-module and Nbe a proper submodule of Msuch
that (N:M)is a prime ideal of R.ThenNis a 2-absorbing primary submodule of
Mif and only if for any m1,m
2Mif (N:m1)\((N:m2)(N:M)),then
N=(N+Rm1)(N+Rm2).
Proof. Suppose Nis a 2-absorbing primary submodule of M. Let ab (N:
m1)\((N:m2)(N:M)) where a, b R. Then abm1Nand abm2/N
and ab /(N:M).Clearly, N(N+Rm1)(N+Rm2).For reverse inclu-
sion, let n(N+Rm1)(N+Rm2). Then n=n1+r1m1=n2+r2m2,where
n1,n
2Nand r1,r
2R. Now, abn =abn1+abr1m1=abn2+abr2m2and
abr1m1,abn
1,abn
2N, so abr2m2N.SinceNis a 2-absorbing primary sub-
module of Mand abm2/N, therefore either r2m2Nor abr2(N:M).Con-
sider the case, abr2(N:M) implies (ab)m(r2)m(N:M) for some positive
integer m. Since (N:M)isprimeandab /(N:M) implies (ab)m/(N:M).
Therefore r2m(N:M)givesr2(N:M)andsor2m2N.Inboththe
cases, we have n=n2+r2m2N.So,(N+Rm1)(N+Rm2)N. Hence
N=(N+Rm1)(N+Rm2).
Conversely, suppose r1r2mNwhere r1,r
2R, m Mand r1m/Nand
r1r2/(N:M). Then, we have to show that r2mN. Now, we have r1(N:
r2m)\(N:m)(N:M). Put m1=r2m, m2=m, in given assumption we have
1550064-6
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
On 2-absorbing primary submodules
N=(N+Rr2m)(N+Rm).This gives r2m(N+Rm)(N+Rr2m)=N.
Therefore, Nis a 2-absorbing primary submodule of M.
Theorem 2.15. Let Nbe a 2-absorbing primary submodule of Mand mM\N.
Then (N:m)is a prime ideal of Ror there exists an element aRsuch that
(N:anm)is a prime ideal for some positive integer n.
Proof. Let Nbe a 2-absorbing primary submodule of M.Then(N:M)isa
2-absorbing ideal of R.Since(N:M) is a 2-absorbing ideal of R, therefore by
Theorem 2.5,wehaveeither(N:M)=por (N:M)=pq,wherepand
qare distinct prime ideals of R. Suppose (N:M)=p.Thenp=(N:M)
(N:m). We show that (N:m) is a prime ideal of R.Letrs (N:m)for
some r, s R.Then(rs)n(N:m) implies rnsnmN. As Nis 2-absorbing
primary submodule of M, then either rnmNor snmNor rs (N:M).If
rnmNor snmN,thenr(N:m)ors(N:m). If rs (N:M),
then rs p.Sincepis prime ideal of R, then either rp(N:m)orsp
(N:m).Therefore, (N:m) is a prime ideal of R.
Again, consider (N:M)=pq.Ifp(N:m), then by previous
argument, we have (N:m) is a prime ideal of R.Ifp(N:Rm)then
there exists aRsuch that apbut a/(N:m)oranm/N. Also,
pq pq pq=(N:M)(N:m).Thus pq (N:M), which
implies anqn(N:m)andsoq(N:anm).Again, on similar manner, we can
easily show that (N:anm) is a prime ideal of R.
Theorem 2.16. Let Nbe an arbitrary submodule of an R-module Mand
N1,N
2,...,N
nbe 2-absorbing primary submodules of M.Suppose(Nj:M)
(Ni:m)for all mM\Niwith i=jand 1in. If NNifor al l i, then
there exists an element aNsuch that a/∈∪Ni;hence NNi.
Proof. Since NNi,thereexistsmiNsuch that mi/Nifor all 1 in.
Since each Niis a 2-absorbing primary submodule of M,byTheorem2.15,wehave
either (Ni:mi) is a prime ideal or there exists piRsuch that (Ni:pitimi)
is a prime ideal of R.Let
(Ni:mi) be a prime ideal. Then, by given assumption
there exist rj(Nj:M)andrj/(Ni:mi). Thus rjnj(Nj:M)andrjnj/
(Ni:mi). Let xi=r1r2...r
i1ri+1 ...r
n=j=irj.Then xi(Nj:M)and
xi/(Ni:mi). If li=max(n1,n
2,...,n
i1,n
i+1,...,n
n),then ai=mixiliNj
for all j=i.Butai/Nibecause if aiNi,thenmixiliNi, this implies
xi(Ni:mi), a contradiction. Let a=a1+a2+···+an.Then ai=a
j=iaj.Since j=iajNi, therefore a/Niotherwise we would have aiNi,
a contradiction. So a/∈∪Ni.Therefore aNand a/∈∪Ni. Consider the case
when (Ni:pitimi) is a prime ideal of Rfor some piR. Then there is sj
(Nj:M)andsj/(Ni:pitimi),which implies sjnj
(Nj:M)andsjnj
/
(Ni:pitimi),Let yi=s1s2...s
i1si+1 ...s
n=j=isj.Then yi(Nj:M) but
1550064-7
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
M. K. Dubey &P. Aggarwal
yi/(Ni:mi).If ki=max(n
1,n
2,...,n
i1,n
i+1,...,n
n),then bi=pitimiyiki
Njfor all j=i.Butbi/Nibecause, if biNi,thenpitimiyikiNithis
implies yiki(Ni:pitimi), a contradiction. Let b=b1+b2+···+bn.Then
bi=bj=ibj.Sincej=ibjNi, therefore b/Niotherwise we would have
biNi, a contradiction. So b/∈∪Ni. Hence Nn
i=1 Ni.
Further, we show that if Nis a 2-absorbing primary submodule of M,and
IJL Nfor some ideals I,J of Rand a submodule Lof M,thenIJ (N:M)
or IL Nor JL N. But first we require the following lemma.
Lemma 2.17. Let Nbe a 2-absorbing primary submodule of Mover a ring R.
Suppose that abL Nand ab /N:Mfor some elements a, b Rand some
submodule Lof M, then aL Nor bL N.
Proof. Suppose that abL Nand ab /N:Mfor some a, b Rand some
submodule Lof M. Suppose aL Nand bL N. Then for some l1,l
2L,
al1/Nand bl2/N. Since abl1Nand al1/N,ab /(N:M), therefore
bl1N,asNis a 2-absorbing primary submodule of M. Similarly, abl2N
implies al2Nbecause bl2/Nand ab /(N:M). Consider ab(l1+l2)N,we
have either a(l1+l2)Nor b(l1+l2)N. If a(l1+l2)N,thenal2Nimplies
al1N, a contradiction. Similarly, if b(l1+l2)N,thenbl1Nimplies bl2N,
a contradiction. Thus, either aL Nor bL N.
Theorem 2.18. Let Lbe a submodule of an R-module M.ThenNis a 2-absorbing
primary submodule of Mif whenever IJL Nfor some ideals I,J of Rand a
submodule Lof M, then IJ (N:M)or IL Nor JL N.
Proof. Let Nbe a 2-absorbing primary submodule of Mand let IJL Nfor
some ideals I,J of Rand a submodule Lof M. Suppose IJ (N:M), then we
show that either IL Nor JL N. On contrary, we assume that IL Nand
JL N. Then there exist a1I,b1Jsuch that a1LNand b1LN.Since
a1b1LNand Nis a 2-absorbing primary submodule, a1b1(N:M).Next,
we have IJ (N:M), therefore for some aIand bJ,ab /(N:M).Since
abL Nand ab /(N:M),therefore aL Nor bL N(by Lemma 2.17).
Now, we have the following three cases:
Case I: Suppose aL Nbut bL N. Since a1bL Nand bL Nand a1L
N, then by Lemma 2.17,wehavea1b(N:M).Now, (a+a1)bL Nand
aL Nbut a1LN, therefore (a+a1)LN. Again, since (a+a1)bL Nand
bL N,then(a+a1)LNimplies (a+a1)b(N:M)byTheorem2.17.
Since (a+a1)b(N:M)anda1b(N:M),we have ab (N:M),a
contradiction.
Case II: Suppose bL Nbut aL N. Since ab1LNbut aL Nand
b1LN, then by Lemma 2.17,ab1(N:M).Again, let a(b+b1)LNbut
1550064-8
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
On 2-absorbing primary submodules
bL Land b1LNgives (b+b1)LN. Since aL Nand (b+b1)LN, we
have a(b+b1)(N:M) (using Lemma 2.17). Since a(b+b1)(N:M)and
ab1(N:M),we have ab (N:M),a contradiction.
Case III: Suppose aL Nand bL N. Since bL Nand b1LNimply
(b+b1)LN. Since a1(b+b1)LNand (b+b1)LNand a1LN, then
using Lemma 2.17,wegeta1(b+b1)(N:M). Since a1b1(N:M), a1b
(N:M).Again, aL Nand a1LNimply (a+a1)LN. Since (a+
a1)b1LNand (a+a1)LNand b1LN, then by Lemma 2.17,wehave
(a+a1)b1(N:M). Since a1b1(N:M)and(a+a1)b1(N:M),
then ab1(N:M).Since (a+a1)(b+b1)LNand (a+a1)LNand
(b+b1)LN, then again by Lemma 2.17,wehave(a+a1)(b+b1)(N:M).
Since ab1,a
1b, a1b1(N:M),we have ab (N:M), a contradiction. Hence
IL LN or JL N.
Proposition 2.19. Let Mand Mbe R-modules and f:M→ Mbe an epimor-
phism. Then,the following statements hold.
(i) If Nis a 2-absorbing primary submodule of Msuch that ker fN, then f(N)
is a 2-absorbing primary submodule of M.
(ii) If Nis a 2-absorbing primary submodule of Msuch that f(M)N,then
f1(N)is a 2-absorbing primary submodule of M.
Proof. (i) Let a, b Rand yMsuch that aby f(N). Then there exists nN
such that aby =f(n).Since fis an epimorphism therefore for some mMwe
have f(m)=y.Thusabf(m)=f(n). This implies f(abm n)=0whichgives
abm nker fN.Soabm N.SinceNis a 2-absorbing primary submodule
of M,am Nor bm Nor ab (N:M). This gives ay f(N)orby f(N)
or ab (f(N):M). Therefore f(N) is a 2-absorbing primary submodule of M.
(ii) The proof is trivial.
Theorem 2.20. Let Nbe a submodule of an R-module Mand let Kbe any s ub-
module of Mcontained in N. Then N
Kis a 2-absorbing primary submodule of M
Kif
and only if Nis a 2-absorbing primary submodule of M.
Proof. Let Nbe a 2-absorbing primary subsemimodule of M. Consider an epimor-
phism f:N→ N
K.Then(byTheorem2.19(i)) N
Kis a 2-absorbing primary submod-
ule of M
K.Conversely,letabm Nfor a, b Rand mM.Then(abm +K)N
K
which implies ab(m+K)N
K.Since N
Kis a 2-absorbing primary submodule, either
a(m+K)N
Kor b(m+K)N
Kor ab N
K:M
K. This implies, either am Nor
bm Nor ab N:M. Hence Nis a 2-absorbing primary submodule.
Theorem 2.21. Let Mbe a cancel lat ive R-module and Nbe proper submodule of
M.ThenNis a pure submodule of Mif and only if Nis a 2-absorbing primary
submodule of Mwith (N:M)={0}.
1550064-9
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
M. K. Dubey &P. Aggarwal
Proof. Suppose that Nis a pure submodule of Mand abm Nsuch that ab ∈
(N:M)wherea, b Rand mM.Thenabm abM N=abN ,soabm =abn
for some nN. This implies bm =bn N(as Mis a cancellative module). Thus N
is a 2-absorbing primary submodule of M. Next, suppose that a(N:M)with
a=0.SinceN=M, then there exists xM\Nsuch that anxanMN=anN
for some natural number n.So,thereexistsyNsuch that anx=any, therefore
x=yN, a contradiction. Thus (N:M)={0}.Conversely, assume that Nis
a 2-absorbing primary submodule of Mwith N:M={0}.Let abz abM N
implies abz N,wherezMand a, b R. We may assume that ab /N:M.
Since Nis a 2-absorbing primary submodule of M, then we have either az Nor
bz N.Ifbz N,thenwehaveabz abN . Therefore abM NabN. Similarly,
we can prove the case for az N,thatis,abM NabN. Now, abN abM N.
Hence abM N=abN and consequently Nis a pure submodule of M.
Theorem 2.22. Let Rbe a commutative ring and Mbe a multiplication R-module.
If Mis a Dedekind module and Nis a 2-absorbing primary submodule of M, then
N=Knor N=K1nK2mwhere K, K1,K
2are maximal modules and n, m are
positive integers.
Proof. Suppose Mis a Dedekind module. Then Ris a Dedekind domain by [14,
Theorem 3.5]. For any 2-absorbing primary submodule N,wehave(N:M)isa2-
absorbing primary ideal of R.Using[7, Theorem 2.11], we have either (N:M)=In
or (N:M)=I1nI2m,whereI,I1,I
2are maximal ideals of R.By[18, Theorem 2.5],
if Iis a maximal ideal of R,thenIM is a maximal module of M. This implies
N=(IM )nor N=(I1M)n(I2M)m.
Theorem 2.23. Suppose Sis a multiplicatively closed subset of Rand S1Mis
themoduleoffractionofM. Then the following statements hold.
(i) If Nis a 2-absorbing primary submodule of Msuch that (N:M)S=,then
S1Nis a 2-absorbing primary submodule of S1M.
(ii) If S1Nis a 2-absorbing primary submodule of S1Msuch that Z(M/N)
S=,then Nis a 2-absorbing primary submodule of M.
Proof. (i) Assume that a, b R,s, t, l S,mMand a
s
b
t
m
lS1Nwhich
implies µabm Nfor some µS. Since Nis a 2-absorbing primary submodule of
M,µam Nor µbm Nor ab (N:M).Hence a
s
m
lS1Nor b
t
m
lS1N
or a
s
b
tS1N:M=(S1N:S1M).So, S1Nis a 2-absorbing primary
submodule of S1M.
(ii) Let a, b Rand mMbe such that abm N. Then abm
1S1N.
Since S1Nis a 2-absorbing primary submodule of S1M,either am
1S1Nor
bm
1S1Nor ab
1S1N:S1RS1M. Therefore, there exists sSsuch that
sam Nor sbm N. This implies am Nor bm N,sinceSZ(M/N)=.
Now, consider the case when ab
1S1N:S1RS1M=S1N:M, then there
1550064-10
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
On 2-absorbing primary submodules
exists µSsuch that (µab)nMNimplies ab (N:M). Hence Nis a
2-absorbing primary submodule of M.
3. 2-Absorbing Primary Avoidance Theorem for Submodules
In this section, we study 2-absorbing primary avoidance theorem for submodules
which is a generalization of primary submodules. We first define an efficient covering
of submodules: let N, N1,N
2,...,N
nbe submodules of an R-module M. An efficient
covering of Nis a covering NN1N2...Nnin which no Nk(where 1 kn)
satisfies NNk.In other words, a covering NN1N2···∪Nnis efficient if
no Nkis superfluous. To proceed further, we require the following lemma.
Lemma 3.1 ([11, Lemma 2.1]). Let N=N1···∪Nnbe an efficient union of
submodules of an R-module Mfor n>1.Then j=kNj=n
j=1 Nkfor all k.
Theorem 3.2. Let NN1N2N3∪···∪Nnbe an efficient covering consisting
of submodules of an R-module M.If(Nj:M)(Nk:m)where mM\Nk
for every j=k, then no Nkis a 2-absorbing primary submodule.
Proof. Since N⊆∪Niand Nhas an efficient covering, then NNk,sothere
exists an element mkN\Nk.It is clear that N=(NN1)(NN2)···
(NNn) is an efficient union. By Lemma 3.1,wehavej=k(NNj)(NNk).
Suppose Nkis a 2-absorbing primary submodule. Then, using Theorem 2.15,we
have either (Nk:mk) is a prime ideal or there exists aRsuch that Nk:anmk
is a prime ideal. First, suppose (Nk:mk) is a prime ideal. By the given hypothesis
(Nj:M)(Nk:mk)forj=k. So, there exists sj(Nj:M) but sj/
(Nk:mk), where j=k. This implies sjnj(Nj:M) but sjnj/(Nk:mk)where
j=kand njZ+.Let s=j=ksj.Thens(Nj:M) but s/(Nk:mk)
where j=k. Therefore, sm(Nj:M) for all j=kbut sm/(Nk:mk), where
m=max(n1,n
2,...,n
k1,n
k+1,...,n
n).Thus smmkj=k(NNj)\(NNk),
since smmk(NNk) implies sm(Nk:mk), a contradiction. So, no Nkis a
2-absorbing primary submodule of M. Now, consider the case when Nk:anmkis
a prime ideal, where nis positive integer and aR. Clearly, sj(Nj:M) but
sj/(Nk:anmk), where j=k. Therefore, smanmkj=k(NNj)\(NNk),
since smanmk(NNk) implies sm(Nk:anmk), a contradiction. So, no Nkis
2-absorbing primary submodule of M.
Theorem 3.3 (2-Absorbing Primary Avoidance Theorem for Submod-
ules). Let N, N1,...,N
n(n2) be submodules of Msuch that at most two of
N1,N
2,...,N
nare not 2-absorbing primary submodules. If NN1N2∪···∪Nn
and (Nj:M)(Nk:m),where mM\Nkfor every j=k, then NNifor
some 1in.
Proof. If n= 2, then it is obvious. Now, take n>2andNNifor all 1 in.
Then NN1N2···Nnis an efficient covering. Using Theorem 3.2,noNi
1550064-11
2nd Reading
October 30, 2015 13:17 WSPC/246-AEJM 1550064
M. K. Dubey &P. Aggarwal
is a 2-absorbing primary submodule, which is a contradiction. Hence NNifor
some 1 in.
References
1. R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math.
Sci. 27 (2003) 1715–1724.
2. D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm.
Algebra 39 (2011) 1646–1672.
3. S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamkang J. Math.
38(3) (2007) 247–252.
4. S. E. Atani and U. Tekir, On the primary avoidance theorem for modules over com-
mutative rings, Int. J. Pure Appl. Math. 31(2) (2006) 203–207.
5. A. Azizi, Weakly prime submodules and prime submodules, Glasgow Math. J. 48
(2006) 343–346.
6. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75
(2007) 417–429.
7. A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative
rings, Bull. Korean Math. Soc. 51(4) (2014) 1163–1173.
8. A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai
J. Math. 9(3) (2011) 577–584.
9. A. Y. Darani and F. Soheilnia, On n-absorbing submodules, Math. Commun. 17
(2012) 547–557.
10. M. K. Dubey and P. Aggarwal, On 2-absorbing submodules over commutative rings,
Lobachevskii J. Math. 36(1) (2015) 58–64.
11. C. P. Lu, Unions of prime submodules, Houston J. Math. 23(2) (1997) 203–213.
12. N. McCoy, A note on finite unions of ideals and subgroups, Proc. Amer . Mat h. Soc.
8(1957) 633–637.
13. S. Moradi and A. Azizi, 2-absorbing and n-weakly prime submodules, Miskolc Math.
Note 13(1) (2012) 75–86.
14. A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra 24 (1996)
397–412.
15. Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Colloq. 19(Spec 1)
(2012) 913–920.
16. R. Y. Sharp, Steps in Commutative Algebra, 2nd edn. (Cambridge University Press,
Cambridge, 2000).
17. P. F. Smith, Some remarks on multiplication modules, Arch. Math. 50 (1988) 223–235.
18. P. F. Smith and Z. El-Bast, Multiplication modules, Comm. Algebra 16 (1988) 755–
799.
1550064-12
... For topics related to (weakly) n-absorbing ideals of commutative rings, see [4, 5, 7-9, 11, 12], [15][16][17], [20,30], and [36][37][38]. 4. For topics related to n-absorbing ideals in semirings, see [18,22,32,42,43,57,58], and [61]. 5. For topics related to (weakly) n-absorbing submodules, see [19], [25,28,29], [32][33][34][35], [47,48,51], [53,55,59], and [62]. ...
... 4. For topics related to n-absorbing ideals in semirings, see [18,22,32,42,43,57,58], and [61]. 5. For topics related to (weakly) n-absorbing submodules, see [19], [25,28,29], [32][33][34][35], [47,48,51], [53,55,59], and [62]. ...
Chapter
Full-text available
Let R be a commutative ring with 1 ≠ 0. Recall that a proper ideal I of R is called a 2-absorbing ideal of R if a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. A more general concept than 2-absorbing ideals is the concept of n-absorbing ideals. Let n ≥ 1 be a positive integer. A proper ideal I of R is called an n-absorbing ideal of R if a1, a2, …, an+1 ∈ R and a1a2⋯an+1 ∈ I, then there are n of the ai’s whose product is in I. The concept of n-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of R is a 1-absorbing ideal of R). In this survey article, we collect some old and recent results on n-absorbing ideals of commutative rings.
... The notion of 2-absorbing primary submodules as a generalization of 2-absorbing primary ideals of rings was introduced and studied in [14]. A proper submodule N of M is said to be a 2-absorbing primary submodule of M if whenever a, b ∈ R, m ∈ M , and abm ∈ N , then am ∈ N or bm ∈ N or ab ∈ √ (N : R M ). ...
Article
In this work, we introduce the concept of classical 2-absorbing secondary modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of this class of modules. Let R be a commutative ring with identity. We say that a non-zero submodule N of an R-module M is a classical 2-absorbing secondary submodule of M if whenever a, b ∈ R, K is a submodule of M and abN ⊆ K, then aN ⊆ K or bN ⊆ K or ab ∈ √ Ann R (N). This can be regarded as a dual notion of the 2-absorbing primary submodule.
... In other respects, Badawi advanced further his study on these concepts in 4 and 5 . Several additional investigators examined comprehensively on this theory (see 6,7,8,9 ). ...
Article
In this paper, we study the primary intuitionistic fuzzy ideal, the intuitionistic fuzzy ideal expansion and [Formula: see text]-primary intuitionistic fuzzy ideal which assemble prime intuitionistic fuzzy ideals and primary intuitionistic fuzzy ideals. Some properties of them are investigated. Also, we scrutinize the relationships of [Formula: see text]-primary intuitionistic fuzzy ideal and [Formula: see text]-primary ideal of a commutative ring [Formula: see text]. Moreover, we give a fundamental result about correspondence theorem for [Formula: see text]-primary intuitionistic fuzzy ideals. Further, we introduce 2-absorbing [Formula: see text]-primary intuitionistic fuzzy ideals which are the generalization of 2-absorbing intuitionistic fuzzy ideals and 2-absorbing primary intuitionistic fuzzy ideals. Some properties of them are obtained.
... Recall that a proper sub-module N of an R - module M is a 2-absorbing (resp. weakly 2- absorbing) sub-module of M ( Darani and Soheilnia, 2011) if, whenever Then, many generalizations of 2-absorbing sub-modules were studied such as weakly 2-absorbing, primary 2- absorbing ( Dubey and Aggarwal, 2015), classical 2- absorbing ( Mostafanasab and Tekir, 2015) and almost 2-absorbing ( Ashour, Al-Ashker and Naji, 2016). In this article, we introduce the concept of almost 2-absorbing primary sub-modules as one of the generalizations of 2-absorbing (and weakly 2- absorbing) sub-modules. ...
Article
Full-text available
Abstract Let R be a commutative ring with identity and M be a unitary R-module, In this paper we introduce the concept of almost 2-absorbing primary submodules as a new generalization of 2-absorbing sub-modules. We study some basic properties of almost 2-absorbing primary sub-modules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.
... Recall that a proper sub-module N of an Rmodule M is a 2-absorbing (resp. weakly 2absorbing) sub-module of M ( Darani and Soheilnia, 2011) if, whenever Then, many generalizations of 2-absorbing sub-modules were studied such as weakly 2-absorbing, primary 2absorbing ( Dubey and Aggarwal, 2015), classical 2absorbing ( Mostafanasab and Tekir, 2015) and almost 2-absorbing ( Ashour, Al-Ashker and Naji, 2016). In this article, we introduce the concept of almost 2-absorbing primary sub-modules as one of the generalizations of 2-absorbing (and weakly 2absorbing) sub-modules. ...
Article
Full-text available
Let R be a commutative ring with identity and M be a unitary R-module, In this paper we introduce the concept of almost 2-absorbing primary submodules as a new generalization of 2-absorbing sub-modules. We study some basic properties of almost 2-absorbing primary sub-modules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.
Article
In this paper, we extend the notion of 2-nil ideal introduced by Yetkin Celikel in [24] to 2-nil submodule which is a subclass of 2-absorbing primary submodules. Let M be an R-module and N be a proper submodule of M. We say that N is a 2-nil submodule of M if whenever a,b ∈ R, m ∈ M and abm ∈ N, then ab ∈ Nil(M) or am ∈ N or bm ∈ N. We study the properties of this concept and establish several characterizations. We also investigate the 2-nil ideals of amalgamation. The obtained results yield new original families of examples of 2-nil ideals.
Article
Full-text available
In this paper, we prove some important results of 2-absorbing ideals in a commutative ring with 1 ≠ 0. The conceptof n-weakly prime ideal in a commutative ring with 1 ≠ 0 is introduced and prove number of results concerning to n-weakly prime ideals in commutative rings.
Article
Full-text available
In this paper, we study the concepts of 2-absorbing submodules and weakly 2-absorbing submodules over commutative ring with non-zero identity which are generalizations of prime submodules. Further, we characterized 2-absorbing submodules with flat submodules.
Article
Full-text available
Let R be a commutative ring with 1≠0. In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever a,b,c∈R and abc∈I, then ab∈I or ac∈I or bc∈I. A number of results concerning 2-absorbing primary ideals and examples of 2-absorbing primary ideals are given.
Article
Full-text available
Let R be a commutative ring with non-zero identity. We define a proper submodule N of an R-module M to be weakly prime if 0≠rm∈N (r∈R, m∈M) implies m∈N or rM⊆N. A number of results concerning weakly prime submodules are given. For example, we give three other characterizations of weakly prime submodules.
Article
Full-text available
Let R be a commutative ring with identity and M an R-module. In this paper we prove the following theorem: Let M be an R-module, N 1 ,⋯,N n be submodules of M, and N is a submodule of M such that N⊆N 1 ∪N 2 ∪⋯∪N n . Assume at most two of the N k ’s are not primary submodule and (N j :M)⫋(N k :M) for every j≠k. Then N⊆N k for some k.
Article
Full-text available
All rings are commutative with identity, and all modules are unital. The purpose of this article is to investigate n-absorbing submodules. For this reason we introduce the concept of n-absorbing submodules generalizing n-absorbing ideals of rings. Let M be an R-module. A proper submodule N of M is called an n-absorbing submodule if when-ever a1··· an m ∈ N for a1,..., an ∈ R and m ∈ M, then either a1··· an ∈ (N:R M) or there are n - 1 of ai's whose product with m is in N. We study the basic properties of n-absorbing submodules and then we study n-absorbing submodules of some classes of modules (e.g. Dedekind modules, Prüfer modules, etc.) over commutative rings.
Article
Full-text available
Let R be a commutative ring with a nonzero identity and let M be a unitary R-module. We introduce the concepts of 2-absorbing and weakly 2-absorbing submodules of M and give some basic properties of these classes of submodules. Indeed these are generalizations of prime and weak prime sub- modules. A proper submodule N of M is called a 2-absorbing (resp. weakly 2-absorbing) submodule of M if whenever a, b ∈ R, m ∈ M and abm ∈ N (resp. 0 6≠ abm ∈ N), then ab ∈ (N:R M) or am ∈ N or bm ∈ N. It is shown that the intersection of each distinct pair of prime (resp. weak prime) submodules of M is 2-absorbing (resp. weakly 2-absorbing). We will also show that if R is a commutative ring, M a cyclic R-module and N a 2-absorbing submodule of M, then either (1) M - radN = P is a prime submodule of M such that P2 ⊆ N or (2) M - radN = P1 ∩ P2, P1P2 ⊆ N and (M - radN)2 ⊆ N where P1, P2 are the only distinct minimal prime submodules of N.
Article
A proper submodule P of a module M over a ring R is said to be prime if re ∈ P for r ∈ R and e ∈ M implies that either e ∈ P or r ∈ P :R M. In this paper we investigate the following two topics which are related to unions of prime submodules: i) The Prime Avoidance Theorem for modules and ii) S-closed subsets of modules.
Article
Let R be a commutative ring with identity, and let n>1 be an integer. A proper submodule N of an R-module M will be called 2-absorbing [resp. n-weakly prime], if r,s∈R and x∈M with rsx∈N [resp. rsx∈N∖(N:M) n-1 N] implies that rs∈(N:M) or rx∈N, or sx∈N. These concepts are generalizations of the notions of 2-absorbing ideals and weakly prime submodules, which have been studied in [A. Azizi, Glasg. Math. J. 48, 343–346 (2006; Zbl 1097.13016)], [A. Azizi, Vietnam J. Math. 36, 315–325 (2008; Zbl 1161.13005)], [A. Badawi, Bull. Aust. Math. Soc. 75, 417–429 (2007; Zbl 1120.13004)] and [M. Behboodi and H. Koohy, Vietnam J. Math. 32, 185–195 (2004; Zbl 1077.16009)]. We will study 2-absorbing and n-weakly prime submodules in this paper. Among other results, it is proved that if (N:M) n-1 N≠(N:M) 2 N; then N is 2-absorbing if and only if it is n-weakly prime.
Article
In this paper, we introduce the concept of 2-absorbing submodules as a generalization of 2-absorbing ideals. Let R be a commutative ring and M an R-module. A proper submodule N of M is called 2-absorbing if whenever a, b ∈ R, m ∈ M and abm ∈ N, then am ∈ N or bm ∈ N or ab ∈ N:RM. Let N be a 2-absorbing submodule of M. It is shown that N:RM is a 2-absorbing ideal of R and either AssR(M/N) is a totally ordered set or AssR(M/N) is the union of two totally ordered sets. Furthermore, it is shown that if M is a finitely generated multiplication module over a Noetherian ring R, and AssR(M/N) a totally ordered set, then N is 2-absorbing whenever N:RM is a 2-absorbing ideal of R. Also, the 2-absorbing avoidance theorem is proved.