DataPDF Available

SCC-LuFe2O4-2010

Authors:

Figures

Content may be subject to copyright.
Solid State Communications 150 (2010) 341–345
Contents lists available at ScienceDirect
Solid State Communications
journal homepage: www.elsevier.com/locate/ssc
Complex magnetic phases in LuFe2O4
M.H. Phan a, N.A. Frey a,d, M. Angst b,c, J. de Groot b, B.C. Sales c, D.G. Mandrus c, H. Srikanth a,
aDepartment of Physics, University of South Florida, Tampa, FL 33620, United States
bInstitut für Festkörperforschung, JCNS, and JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
cMaterials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
dDepartment of Chemistry, Brown University, Providence, RI 02912, United States
article info
Article history:
Received 9 August 2009
Received in revised form
11 November 2009
Accepted 18 November 2009
by J. Fontcuberta
Available online 26 November 2009
Keywords:
A. Magnetic oxide
D. Cluster glass
D. Magnetocaloric effect
E. Magnetic susceptibility
abstract
DC magnetization and AC susceptibility measurements on LuFe2O4single crystals reveal a ferrimagnetic
transition at 240 K followed by additional magnetic transitions at 225 K and 170 K, separating cluster glass
phases, and a kinetically arrested state below 55 K. The origin of giant magnetic coercivity is attributed
to the collective freezing of ferrimagnetic clusters and enhanced domain wall pinning associated with a
structural transition at 170 K. Magnetocaloric effect measurements provide additional vital information
about the multiple magnetic transitions and the glassy states. Our results lead to the emergence of a
complex magnetic phase diagram in LuFe2O4.
©2009 Elsevier Ltd. All rights reserved.
1. Introduction
LuFe2O4is a complex oxide of great current interest, as
ferroelectricity in this material arises from charge ordering, and
it also exhibits multiferroic behavior [1–3]. A clear understanding
of the magnetic phase diagram has remained elusive, primarily
due to the complexity of the system [4–9]. Notably, the giant
magnetic coercivity (10 T at 4.2 K) and anomalous change
in thermoremanent magnetization (TRM) were first reported
20 years ago [4,5], but their origin was not determined. In an
attempt to explain the giant coercivity, Wu et al. [8] have recently
argued that, in addition to undergoing a ferrimagnetic transition
at Tc240 K, the LuFe2O4system enters a glassy state at 80 K.
They have attributed the coercivity enhancement below this
temperature to the collective freezing of nanoscale pancake-like
ferrimagnetic domains with large uniaxial magnetic anisotropy
that were also imaged using magnetic force microscopy. While
their discussion of glassy behavior and its impact on coercivity was
Corresponding address: Department of Physics, University of South Florida, PHY
114 4202 East Fowler Ave, Tampa, FL 33620, United States. Tel.: +1 813 974 2467;
fax: +1 813 974 5813.
E-mail address: sharihar@cas.usf.edu (H. Srikanth).
restricted to the low-temperature (80 K) AC susceptibility peak
that shows frequency dependence, their data (Fig. 1(a), (b) in [8])
also clearly displays frequency dependence at 225 K, indicative
of glassy behavior, but this was not elaborated on. Meanwhile,
recent studies by our group [9] and by Wang et al. [10] have
confirmed that the LuFe2O4system undergoes a glass transition
at 225 K in addition to the ferrimagnetic transition at 240 K.
We also observed an additional glass transition at 170 K, possibly
similar to the glass transition feature at 80 K reported by Wu
et al. [8]. These varied observations clearly indicate the complex
magnetic nature of LuFe2O4and thus demand further studies to
understand the overall glass dynamics, magnetic phase diagram,
onset of increase in coercivity just below 225 K [5,8] and the
anomalous change in TRM [4,5] in this material.
In this communication, we present systematic DC magnetiza-
tion, AC susceptibility, and magnetocaloric effect (MCE) measure-
ments on LuFe2O4single crystals. Our results indicate that LuFe2O4
undergoes a paramagnetic to ferrimagnetic transition at 240 K,
followed by a re-entrant glass transition below 225 K and an ad-
ditional first-order magnetic transition around 170 K, the last two
of which both exhibit cluster glass characteristics [9]. The collec-
tive freezing of ferrimagnetic clusters below 225 K leads to the
onset of increase in coercivity with further enhancement of the
0038-1098/$ see front matter ©2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ssc.2009.11.030
342 M.H. Phan et al. / Solid State Communications 150 (2010) 341–345
Fig. 1. Temperature dependence of field-cooled (FC) and zero-field-cooled
(ZFC) magnetization. Insets (a) and (b) show the χ0(T)and χ00(T)curves for
representative frequencies (f=10 Hz–10 kHz) in the two temperature ranges
around 225 K and 170 K, respectively. Inset (c) shows the best fit of Tf(ω) data
extracted from AC susceptibility measurements [χ0(T)] to the glass model Eq. (1) for
the case of the peak at 225 K. Inset (d) shows the χ00(T)curves at a fixed frequency
of 500 Hz for the cases Hdc =0 and 0.5 kOe.
coercivity below 170 K attributed to enhanced domain wall pin-
ning associated with the structural transition [11–13]. The forma-
tion of a kinetically arrested glassy state below 55 K is confirmed
by MCE experiments. A comprehensive magnetic phase diagram
is presented that also consistently accounts for many observations
from other groups that were not fully understood.
2. Experimental
The LuFe2O4single crystals were grown at ORNL by a floating
zone technique, and details are described in [11]. The temperature
dependences of the zero-field-cooled (ZFC) and field-cooled (FC)
magnetization were measured on warming using a Physical
Property Measurement System (PPMS) from Quantum Design in
the temperature range 5–300 K at applied fields up to 70 kOe.
The PPMS was also used for AC susceptibility measurements,
performed upon warming up from 5 K. All the reported magnetic
measurements were performed with the field along the c-axis
of the LuFe2O4crystal. For the purpose of comparison and
consistency, the results featured in this paper are on crystals grown
that show magnetization curves of qualitatively similar shapes to
that commonly observed by other groups [4–8]. However, it should
be noted that the neutron and X-ray scattering studies reported
in [11–13] were on LuFe2O4crystals that exhibited magnetization
curves with sharper features at the characteristic transitions (240 K
and 170 K). Sensitivity to sample growth conditions is well known
in this system, although the presence of two magnetic transitions
has now been confirmed by different groups, including us [4,10,
11].
3. Results and discussion
Fig. 1 shows the ZFC and FC magnetization curves taken at
100 Oe applied field. The onset from the paramagnetic (PM) to
the ferrimagnetic (FM) state occurs around 240 K, followed by a
sharp peak in the ZFC curve at 225 K and a broader one around
170 K. Distinct changes in slopes at these temperatures are also
observed in the FC curve. The two-peak feature was also reported
by other groups [4,6,7], but the glassy nature of these peaks was
not ascertained clearly. In the present study, the systematically
collected AC susceptibility data show that the peaks at 225 K and
170 K are strongly frequency dependent (see insets (a) and (b) of
Fig. 1). This indicates that LuFe2O4undergoes glass transitions at
these temperatures, in addition to the PM–FM transition at TC
240 K, where χ0(T)rapidly decreases to zero and is frequency
independent (see inset (a) of Fig. 1). While the χ0(T)(or χ00(T))
peak at 225 K is quite sharp, the one at 170 K is somewhat
broad, but the frequency dispersion is clearly visible from the
χ00(T)data (see inset (b) of Fig. 1). For the LuFe2O4single crystals
studied by Wu et al. [8], the χ00(T)curve showed a sharp peak at
225 K and a broad peak at 80 K.
To quantitatively probe the glass dynamics in LuFe2O4, we have
fitted the AC susceptibility data to a glass model expressed as [14]
τmax
τ0
=TfTg
Tgzv
,(1)
where τmax is the maximum relaxation time, τ0is the microscopic
flipping time of the fluctuating spins, Tfis the freezing tempera-
ture, Tgis the spin glass transition temperature, zis the dynamical
exponent, and vis the usual critical exponent for the correlation
length. The scaling of the AC susceptibility is plotted in inset (c) of
Fig. 1 for the case of the peak at 225 K, and the best fit to Eq. (1)
yields Tg224.6 K,zv2.85 and τ09.18 ×108s. A
similar procedure using the χ00(T)data for the case of the peak at
170 K yields Tg137.5 K,zv3.12 and τ09.8×106s
(note that instead of the χ0(T)data the χ00(T)data are used to fit
the glass model because the peaks are much more visible and de-
termined precisely, although the peak temperature (Tf0) for χ00(T)
is lower than that (170 K) for χ0(T)or MZFC (T)). In both these
cases, the obtained values of τ0are much larger than typical val-
ues for a conventional spin-glass system (τ01013 s) [13] but
in good agreement with values found in cluster glass (CG) systems
(τ0106–1012 s) [15,16]. This quantitative analysis indicates
that the magnetism in the LuFe2O4system can be viewed as arising
from an assembly of clusters. The difference in τ0for the two cases
at 225 K (τ09.18×108s) and 170 K (τ09.8×106s) sug-
gests a considerable difference in the size and distribution of clus-
ters at these temperatures. Since a structural transition at 170 K
has also been noted in the LuFe2O4system [11–13], it can be argued
that the structural transition directly affects the cluster size and
distribution, leading to segregation of charge and thus creating an
inhomogeneous magnetic structure (frustrated magnetism) at low
temperatures. As T <170 K, restructuring of ferrimagnetic clus-
ters/domains would take place, resulting in enhanced wall number
and increased pinning due to the new magnetic structure. Such a
scenario has been reported in the literature for the case of doped
manganites [17,18] and may be a general property of a larger class
of correlated magnetic oxides. To verify this, we conducted AC sus-
ceptibility measurements at different applied DC magnetic fields
and found that as the DC magnetic field (Hdc )was applied (below
2 T), the peak of χ00(T)at 225 K exhibited a significant shift to
lower temperature, whereas the one at 170 K was largely un-
affected relative to the case of Hdc =0 (see, for example, inset
(d) of Fig. 1). Based on these signatures, we attribute the feature at
170 K (seen in both MZFC (T)and χ00(T)curves) to enhanced do-
main wall pinning due to the influence of a structural distortion at
this temperature. This also explains the dynamic response of the
spins decreasing (or the flipping time of the fluctuating spins in-
creasing) for the case at 170 K (τ09.8×106s) when com-
pared with that at 225 K (τ09.18 ×108s). Applying large
DC magnetic fields (>2 T) leads to a complete suppression of the
cluster glass transitions [19].
While the origin of the enhanced coercivity just below 225 K in
LuFe2O4was unclear in previous studies [5,8], our measurements
and quantitative analysis of the AC susceptibility clearly indicate
M.H. Phan et al. / Solid State Communications 150 (2010) 341–345 343
Fig. 2. (a) Temperature dependence of coercive field (Hc); (b)–(d) Arrott plots of magnetization curves for the three characteristic temperature ranges.
that LuFe2O4undergoes a re-entrant cluster glass transition at
225 K and the collective freezing of ferrimagnetic clusters results
in large values of coercivity below this temperature (below Tf,
see Fig. 2(a)). This observation is consistent with the fact that
coercivity is often enhanced in the cluster glass state in amorphous
alloys [20] below their freezing temperatures. As stated earlier,
further enhancement of the coercivity below 170 K is attributed
to enhanced domain wall pinning due to the occurrence of the
structural transition (below Tf0; see Fig. 2(a)). The enhancement
of coercivity due to the magnetic/structural transition has also
been reported in (CaSr)2FeReO6double perovskites [21]. Recently,
Park et al. [22] have proposed through magnetic force microscopy
(MFM) images and transmission electron microscopy (TEM)
studies that enhanced pinning arises from the magnetoelectric
coupling to charge-ordered superlattice domain boundaries, and
this could probably lead to the enhanced coercivity at low
temperatures in LuFe2O4single crystals [8]. However, to clarify
whether the enhanced pinning originates from the structural
transition or the magnetoelectric coupling or both, further careful
studies of the low-temperature structural transition and the
coupling between charge order and magnetism in single crystals
grown by various groups are needed.
To get a somewhat different perspective of the magnetic phase
transitions in LuFe2O4, the measured data of the MHisotherms
were converted into H/Mversus M2plots (the so-called Arrott
plots) that are shown in Fig. 2(b)–(d). We recall that in an
Arrott plot, where H/Mis plotted against M2, the curvature is
expected to change at a specific temperature, where the magnetic
ordering transition takes place. In the present case, there exist
three characteristic temperature ranges over which the shapes of
Arrott plots change sharply. Like the H/M(T)plots, the Arrott plots
indicate a ferrimagnetic transition at Tc240 K. However, they do
not yield straight lines above and below Tc(see Fig. 2(b)), indicating
that the LuFe2O4system is not in a pure ferrimagnetic state with
3D magnetic ordering but rather this may be a signature of a quasi-
2D magnetic order, which is not unreasonable given the layered
structure of LuFe2O4. A notable change in the curvature is seen
at temperatures below 225 K and 170 K, which are associated
with the onset of the glassy behavior and its modification due
to the structural transition, respectively. A further change in the
curvature is seen in Fig. 2(d) for T55 K, with a note that,
in this temperature range, the magnetization becomes almost
unchanged as Hdc exceeds a critical value of 4.5 T. This is connected
to the ‘‘kinetic arrest’’ picture of first-order transitions as found in
doped CeFe2[23] and Gd5Ge4[24] and recently also proposed for
LuFe2O4[13].
To gain further insights into the nature of magnetic ordering
and arrested kinetics in LuFe2O4, we studied the magnetocaloric
effect (i.e. the magnetic entropy change) in this material. While
the MCE is generally considered in the community as an ‘applied’
measurement tool to probe magnetic refrigerant materials [25], it
is actually a very useful probe of magnetic phase transitions, as we
demonstrate clearly for this system. The magnetic entropy change
[SM(T)] is calculated from a family of MHisotherms using the
Maxwell relation [25],
SM(T,Hmax)=µ0ZHmax
0M
TH
dH,(2)
where Mis the magnetization, His the magnetic field and Tis the
temperature. From Eq. (1), we note that SM(T)is directly related
to the first derivative of magnetization with respect to tempera-
ture (M/∂T) and so the MCE is expected to be inherently more
sensitive for probing magnetic transitions than conventional mag-
netization and resistivity measurements. A very small change in
Mcan give rise to a more pronounced effect in SM(T)than in
M(T)or R(T). Importantly, the sign of SM, which is determined
by the slope change of the dM/dTcurve, can allow probing the
magnetic transitions further to better understand the nature of
the different phases in a material with a rich and complex HT
magnetic phase diagram [26]. Following the convention in MCE
analysis, the value of SMis positive for materials exhibiting
344 M.H. Phan et al. / Solid State Communications 150 (2010) 341–345
an FM transition, because of the fully magnetically ordered con-
figuration with the application of external magnetic field [25,27].
Meanwhile, negative values of SMare found in AFM ordering
systems due to orientational disorder of the magnetic sublattice
anti-parallel to the applied magnetic field [28,29]. The temperature
dependence of magnetic entropy change for LuFe2O4is presented
in Fig. 3. Clearly, the SM(T)curves show three peaks, which are
associated with the glass transition temperatures (at 225 K and
170 K, respectively (as seen in the ZFC magnetization of Fig. 1)
and the noted temperature (55 K). The small discrepancy in the
temperature peaks seen in the SM(T)curves from those seen in
the MTdata can be attributed to the occurrence of multiple mag-
netic transitions. Franco et al. [30] have recently shown that the
temperature peaks determined from the SM(T)data do not nec-
essarily coincide with those determined from the MTdata, even
for homogeneous systems. In the present study, it is worth noting
that the positive values of SMobtained for LuFe2O4evidently
exclude the dominance of AFM ordering in this material. This is
consistent with our argument that the peak in ZFC magnetization
at 225 K is not due to a Néel-type antiferromagnetic transition
but rather associated with the re-entrant cluster glass transition.
Furthermore, the difference in magnitude between the maximum
SMat the transition temperatures (denoted as Tp1,Tp2and Tp3
in Fig. 3) suggests different mechanisms for magnetic interactions
in LuFe2O4at temperatures below 240 K. It can be seen in inset (a)
of Fig. 3 that the magnitude of the maximum SMfor the case
of peaks Tp1and Tp2varies linearly with the applied magnetic field,
whereas for the case of Tp3it first increases with increasing µ0H
up to 4.5 T and then remains unchanged for µ0H>4.5 T. We at-
tribute the linear change of the maximum SMfor Tp1and Tp2to
the gradual orientation of ferrimagnetic domains/clusters with in-
creasing applied magnetic field. The smaller value of the maximum
SMfor Tp2compared to that for Tp1is the result of increased lo-
cal disorder (enhanced wall pinning) due to the intervening struc-
tural transition at this temperature. By contrast, for the case of Tp3
the constancy of both the maximum SM(see inset (a) of Fig. 3)
and its peak temperature (see inset (b) of Fig. 3) for µ0H>4.5 T
is the result of a glass-like kinetic arrest of the first-order transi-
tion at T<55 K, where the system becomes fully frozen as the
applied magnetic field exceeds a critical value (4.5 T). This ar-
rested state is clearly formed with the assistance of an external
magnetic field (H>4.5 T—the critical magnetic field). This impor-
tant observation allows one to explain the origin of the anomalous
change of TRM at low temperatures observed by Iida et al. [4,5];
the TRM was temperature and magnetic field independent below
60 K (which means that the system enters a kinetically arrested
glassy state at 60 K) and the hysteresis in TRM appeared to occur
between 60 K and 140 K (which agrees well with the presence
of a first-order magnetic transition).
Finally, a magnetic phase diagram which is established from
the magnetic and magnetocaloric data is presented in Fig. 4.
A paramagnetic–ferrimagnetic (PM–FM) transition at 240 K is
followed by a re-entrant cluster glass (CG) transition (namely,
the CG1 state) at 225 K, further by a second CG transition
(namely, the CG2 state) below 170 K, and finally a kinetically
arrested glassy state is entered below 55 K. In fact, the kinetics is
partially arrested at temperatures between 55 K and 65 K (65 K
is considered as the temperature at which the kinetic arrest starts
to occur) and is completely arrested below 55 K. Similar behavior
was also observed, for example, for Gd5Ge4[24]. An important
fact that emerges from this magnetic phase diagram is that the
occurrence of a structural transition around 170 K affects the size
and distribution of ferrimagnetic clusters in the CG1 state, thus
creating a new configuration of ferrimagnetic clusters in the CG2
state and consequently altering the spin dynamics in LuFe2O4.
Fig. 3. Temperature dependence of the magnetic entropy change SM(T)at
different applied magnetic fields. Inset (a) shows the magnetic field dependence
of the maximum magnetic entropy change (STp1
M,STp2
Mand STp3
M)
corresponding to the peaks Tp1,Tp2and Tp3. Inset (b) shows the magnetic field
dependence of the peak temperature at Tp3.
Fig. 4. Magnetic phase diagram. A paramagnetic to ferrimagnetic (PM–FM)
transition at 240 K is followed by a re-entrant cluster glass transition (CG1
state) at 225 K and further by a second CG transition (CG2 state) below 170 K,
partial kinetic arrest below 65 K and complete arrest below 55 K. Square symbols:
data taken from the MFC (T)data measured at different DC magnetic fields; circle
symbols: data from the χ0(T)data measured at different DC magnetic fields;
triangle symbols: data from the χ00(T)data measured at different DC magnetic
fields; tetragonal symbols: data from the MCE data (i.e. Tp3(H)from inset (b) of
Fig. 3).
Acknowledgements
The work at USF was supported by DOE BES Physical Behavior
of Materials Program through grant number DE-FG02-07ER46438.
The research at ORNL was sponsored by the Division of Materials
Sciences and Engineering, Office of Basic Energy Sciences, US
Department of Energy.
References
[1] N. Ikeda, H. Ohsumi, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii,
S. Mori, Y. Horibe, H. Kito, Nature 436 (2005) 1136.
[2] M.A. Subramanian, T. He, J. Chen, N.S. Rogado, T.G. Calvarese, A.W. Sleight, Adv.
Mater. 18 (2006) 1737.
[3] H.J. Xiang, M.-H. Whangbo, Phys. Rev. Lett. 98 (2007) 246403.
[4] J. Iida, Y. Nakagawa, N. Kimizuka, J. Phys. Soc. Japan 55 (1986) 1434.
[5] J. Iida, M. Tanaka, Y. Nakagawa, S. Funahashi, N. Kimizuka, S. Takekawa, J. Phys.
Soc. Japan 62 (1993) 1723.
M.H. Phan et al. / Solid State Communications 150 (2010) 341–345 345
[6] K. Yoshii, N. Ikeda, Y. Matsuo, Y. Horibe, S. Mori, Phys. Rev. B 76 (2007) 024423.
[7] Y. Zhang, H.X. Yang, Y.Q. Guo, C. Ma, H.F. Tian, J.L. Luo, J.Q. Li, Phys. Rev. B 76
(2007) 184105.
[8] W. Wu, V. Kiryukhin, H.-J. Noh, K.-T. Ko, J.-H. Park, W. Ratcliff II, P.A. Sharma,
N. Harrison, Y.J. Choi, Y. Horibe, S. Lee, S. Park, H.T. Yi, C.L. Zhang, S.-W. Cheong,
Phys. Rev. Lett. 101 (2008) 137203.
[9] M.H. Phan, J. Gass, N.A. Frey, H. Srikanth, M. Angst, B.C. Sales, D. Mandrus,
J. Appl. Phys. 105 (2009) 07E308.
[10] F. Wang, J. Kim, Y.J. Kim, Phys. Rev. B. 80 (2009) 024419.
[11] A.D. Christianson, M.D. Lumsden, M. Angst, Z. Yamani, W. Tian, R. Jin,
E.A. Payzant, S.E. Nagler, B.C. Sales, D. Mandrus, Phys. Rev. Lett. 100 (2008)
107601.
[12] M. Angst, R.P. Hermann, A.D. Christianson, M.D. Lumsden, C. Lee, M.-H.
Whangbo, J.-W. Kim, P.J. Ryan, S.E. Nagler, W. Tian, R. Jin, B.C. Sales, D. Mandrus,
Phys. Rev. Lett. 101 (2008) 227601.
[13] X.S. Xu, M. Angst, T.V. Brinzari, R.P. Hermann, J.L. Musfeldt, A.D. Christianson,
D. Mandrus, B.C. Sales, S. McGill, J.-W. Kim, Z. Islam, Phys. Rev. Lett. 101 (2008)
227602.
[14] A.P. Young (Ed.), Spin Glasses and Random Fields, in: Series on Directions in
Condensed Matter Physics, vol. 12, World Scientific, Singapore, 1998.
[15] S. Mukherjee, R. Ranganathan, P.S. Anilkumar, P.A. Joy, Phys. Rev. B 54 (1996)
9267.
[16] D.N.H. Nam, K. Jonason, P. Nordblad, N.V. Khiem, N.X. Phuc, Phys. Rev. B 59
(1999) 4189.
[17] T. Shibata, B. Bunker, J.F. Mitchell, P. Schiffer, Phys. Rev. Lett. 88 (2002)
207205.
[18] K. Mukherjee, A. Banerjee, Phys. Rev. B 77 (2008) 024430.
[19] As the DC magnetic field increases, the χ (T)peaks at 225 K and 170 K
decrease and finally disappear at Hdc 1.5 T and 2 T, respectively.
[20] T. Miyazaki, I. Okamoto, Y. Ando, M. Takahashi, J. Phys. F 18 (1988) 1601.
[21] J.M. De Teresa, D. Serrate, J. Blasco, M.R. Ibarra, L. Morellon, Phys. Rev. B 69
(2004) 144401.
[22] S. Park, Y. Horibe, Y.J. Choi, C.L. Zhang, S.-W. Cheong, W. Wu, Phys. Rev. B 79
(2009) 180401.
[23] M.K. Chattopadhyay, S.B. Roy, P. Chaddah, Phys. Rev. B 72 (2005) 180401.
[24] J.D. Moore, G.K. Perkins, K. Morrison, L. Ghivelder, M.K. Chattopadhyay,
S.B. Roy, P. Chaddah, K.A. Gschneidner, V.K. Pecharsky, L.F. Cohen, J. Phys.:
Condens. Matter 20 (2008) 465212.
[25] M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308 (2007) 325.
[26] A. Biswas, T. Samanta, S. Banerjee, I. Das, Appl. Phys. Lett. 92 (2008) 012502.
[27] M.H. Phan, G.T. Woods, A. Chaturvedi, S. Stefanoski, G.S. Nolas, H. Srikanth,
Appl. Phys. Lett. 93 (2008) 252505.
[28] P. Sande, L.E. Hueso, D.R. Miguens, J. Rivas, F. Rivadulla, M.A. Lopez-Quintela,
Appl. Phys. Lett. 79 (2001) 2040.
[29] M.S. Reis, V.S. Amaral, J.P. Araujo, P.B. Tavares, A.M. Gomes, I.S. Oliveira, Phys.
Rev. B 71 (2005) 144413.
[30] V. Franco, A. Conde, M.D. Kuzmin, J.M. Romero-Enrique, J. Appl. Phys. 105
(2009) 07A917.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In this work, we report the magnetocaloric effect (∣ΔSM∣), around the charge/orbital ordering transition in the mixed valent manganite Nd0.5Sr0.5MnO3. The magnitude of ∣ΔSM∣ around this first-order transition is around three times larger than that obtained around the second-order transition (ferromagnetic-metallic-to-paramagnetic-insulator) in the same compound. Actually, the magnetocaloric response around the charge-order transition is comparable to pure Gd, the rare earth with the highest magnetocaloric effect. The possibility of an easy tuning of the charge-order transition temperatures in doped manganites opens a way of investigation materials usable in magnetic refrigerators. © 2001 American Institute of Physics.
Article
Full-text available
X-ray absorption fine structure measurements of the Sr and La K edges of the solid solution La(1-x)SrxMnO3 reveal a consistent deviation from a random distribution of Sr at the La/Sr sites for x less than or similar to 0.3. Local structural disorder on the cation sublattice in the low-x samples is also observed to differ in the vicinity of the La-rich and Sr-rich clusters. The local clustering and structural disorder establish an intrinsic chemical as well as structural inhomogeneity on the nanometer scale, which may provide a mechanism for the nucleation of magnetoelectronic phase separation.
Article
Full-text available
The nature of the charge order in the charge frustrated compound LuFe(2)O(4) and its effect on magnetocapacitance were examined on the basis of first-principles electronic structure calculations and Monte Carlo simulations of electrostatic energy. Our work shows that two different types of charge order of almost equal stability (i.e., square root of 3 x square root of 3 and chain types) occur in the Fe(2)O(4) layers of LuFe(2)O(4), and that the ground state of LuFe(2)O(4) has a ferrielectric arrangement of the Fe(2)O(4) layers with square root of 3 x square root of 3 charge order. The giant magnetocapacitance effect of LuFe(2)O(4) at room temperature is accounted for in terms of charge fluctuations arising from the interconversion between the two types of charge order, that becomes hindered by an applied magnetic field.
Article
Full-text available
We present single crystal neutron diffraction measurements on multiferroic ${\mathrm{LuFe}}_{2}{\mathrm{O}}_{4}$. Magnetic reflections are observed below transitions at 240 and 175 K indicating that the magnetic interactions in ${\mathrm{LuFe}}_{2}{\mathrm{O}}_{4}$ are three-dimensional in character. The magnetic structure is refined as a ferrimagnetic spin configuration below the 240 K transition. Below 175 K a significant broadening of the magnetic peaks is observed along with the buildup of a diffuse component to the magnetic scattering.
Article
Experiments on the random field Ising model, D.B. Belanger beyond the Sherrington-Kirkpatrick model, C. de Dominicis non-equilibrium dynamics, J. Kurchan the vortex glass, D.J. Bishop and P. Gammel vulcanization of rubber, A. Zippelius and P. Goldbart quadrupolar spin glasses, K. Binder theory of the random field Ising model, T. Nattermann quantum spin glasses, R. Bhatt protein folding, H. Orland et al simulations of spin glasses, G. Parisi spin glasses without disorder and the similarities between glasses and spin glasses, M. Mezard and J.P. Bouchaud dynamics of lines in disordered media, P. Le Doussal experiments of spin glass systems, P. Norblad nose from spin fluctuations in spin glasses, M. Weissman.
Article
We investigated the series of temperature and field-driven transitions in LuFe2O4 by optical and Mössbauer spectroscopies, magnetization, and x-ray scattering in order to understand the interplay between charge, structure, and magnetism in this multiferroic material. We demonstrate that charge fluctuation has an onset well below the charge ordering transition, supporting the "order by fluctuation" mechanism for the development of charge order superstructure. Bragg splitting and large magneto-optical contrast suggest a low-temperature monoclinic distortion that can be driven by both temperature and magnetic field.
Article
We have studied quasi-two-dimensional multiferroic LuFe2O4 with strong charge-spin-lattice coupling, in which low-temperature coercivity approaches an extraordinary value of 9 T in single crystals. The enhancement of the coercivity is connected to the collective freezing of nanoscale pancakelike ferrimagnetic domains with large uniaxial magnetic anisotropy ("Ising pancakes"). Our results suggest that collective freezing in low-dimensional magnets with large uniaxial anisotropy provides an effective mechanism to achieve enhanced coercivity. This observation may help identify novel approaches for synthesis of magnets with enhanced properties.
  • J Iida
  • Y Nakagawa
  • N Kimizuka
J. Iida, Y. Nakagawa, N. Kimizuka, J. Phys. Soc. Japan 55 (1986) 1434.
  • N Ikeda
  • H Ohsumi
  • K Ishii
  • T Inami
  • K Kakurai
  • Y Murakami
  • K Yoshii
  • S Mori
  • Y Horibe
  • H Kito
N. Ikeda, H. Ohsumi, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito, Nature 436 (2005) 1136.
  • M H Phan
  • S C Yu
M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308 (2007) 325.