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This  paper  provides  a comparison  study  on  the  basic  data-driven  methods  for  process  monitoring  and
fault  diagnosis  (PM–FD).  Based  on the  review  of  these  methods  and  their  recent  developments,  the  orig-
inal  ideas,  implementation  conditions,  off-line  design  and  on-line  computation  algorithms  as  well  as
computation  complexity  are  discussed  in  detail.  In order  to  further  compare  their  performance  from  the
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application  viewpoint,  an  industrial  benchmark  of Tennessee  Eastman  (TE)  process  is utilized  to illus-
trate the  efficiencies  of all the  discussed  methods.  The  study  results  are  dedicated  to  provide  a reference
for  achieving  successful  PM–FD  on large  scale  industrial  processes.  Some  important  remarks  are  finally
concluded  in  this  paper.

© 2012 Elsevier Ltd. All rights reserved.

ennessee Eastman process

. Introduction

PM–FD has been an active research field in the control com-
unity during the past several decades. Based on an available

rocess model, a PM–FD system can be successfully designed
y a large number of standard methods [2,8,16,40].  Parallel to
he research of model-based PM–FD techniques, the so-called
ata-driven PM–FD methods are currently receiving considerably

ncreasing attention both in application and in research domains.
ifferent from model-based approaches, in which the quantitative
odel is known a priori, the data-driven PM–FD methods are only

ependent on the measured process variables. Thanks to imple-
entation of advanced computer and information technologies,
assive amount of measurement data is available, which can be

tilized to extract the useful information about current state of
he process and support the decision making unit to apply better
ontrol and optimization schemes [26]. With their simple forms
nd less requirements on the design and engineering efforts, the
ata-driven PM–FD methods become more popular in many indus-

ry sectors, especially for large-scale industry applications [6,44].
ecent surveys given by [9,41,42,46,49,50] provide the reader with

 comprehensive overview on the basic and advanced data-driven
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PM–FD schemes. Notice that although data-driven approaches are
much simpler than model-based PM–FD techniques, it is still mean-
ingless to directly apply the data-driven approaches on the huge
amount of process data, for instance, for a large-scale industrial
process including more than thousands of process measurements.
In this case, preprocessing is first applied to extract information.
Preprocessing includes correlation tests followed by dimension
reduction and selection of the variables that explain a significant
part of observed process variation. Based on it, efficient data-driven
methods can be further selected for PM–FD purpose.

In our recent industrial and research projects dealing with
application of data-driven methods for PM–FD, we  have noticed
that different approaches may  show (considerably) different per-
formances even for the same application. Although a number of
methods were developed in literature and claimed superior per-
formance on numerous applications, the systematic study and
comparison of basic properties have not yet received sufficient
attention. These observations motivate us to review the basic data-
driven PM–FD methods to understand their original ideas, basic
assumptions, implementation conditions as well as limitations. The
basic data-driven methods, principle component analysis (PCA),
partial least squares (PLS), independent component analysis (ICA),
fisher discriminant analysis (FDA), subspace aided approach (SAP)
as well as their recent developments, have been considered in this
paper. Our aim is to evaluate the applicability and capacity of these

methods in the application of industrial processes. For this purpose,
all the discussed data-driven PM–FD methods will be applied to an
industrial benchmark of Tennessee Eastman (TE) process to illus-
trate their efficiencies. The contribution of this work is to provide

dx.doi.org/10.1016/j.jprocont.2012.06.009
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
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 reference for further PM–FD study on large-scale industrial pro-
esses. The concluding remarks on application of the basic PM–FD
ethods are also summarized in this paper.
The rest of this paper is organized as follows. Section 2 reviews

he basic data-driven PM–FD methods as well as their recent devel-
pments. A brief comparison on basic assumption, computation
omplexity and critical design parameters is also presented. Section

 provides an introduction on the TE process. Based on it, all the
iscussed methods will be tested and the obtained comparison
esults are further discussed in Section 4. Finally, the conclusions
re presented in the last section.

. Basic data-driven PM–FD methods

In this section, we would like to review the basic data-driven
M–FD methods as well as their recent developments in the form
f off-line design and on-line calculation algorithms. A brief com-
arison among these methods is also presented.

.1. Principal component analysis

PCA is a dimensionality reduction technique that preserves the
ignificant variability information in the original data set. Since
980s, PCA has been successfully applied in numerous areas includ-

ng data compression, image processing, feature extraction, pattern
ecognition and process monitoring [24,27]. Due to its simplicity
nd efficiency in processing huge amount of process data, PCA is
ecognized as a powerful data-driven PM–FD tool and widely used
n practice [10,25,41,42,49].

Consider a process with m measurement signals, which are
enoted by a column observation vector, the off-line design proce-
ure of standard PCA approach for fault detection purpose can be
riefly formulated as:

Step 1: Collect N samples for each measurement and normal-
ize them to zero mean and unit variance, denoted as ZT =
[ z1 · · · zN ] ∈ Rm×N with the ith normalized observation vector
zi ∈ Rm, i = 1, . . .,  N.
Step 2: Perform singular value decomposition (SVD) on the covari-
ance matrix:

1
N − 1

ZT Z=P�PT , � = diag(�1, . . . , �m), �1 ≥ · · · ≥ �m > 0.

(1)

Step 3: Determine the number of principal components (PCs) l, by
a certain criteria in [48], and divide P, � into

� =
[

�pc 0

0 �res

]
, �pc = diag(�1, . . . , �l),

�res = diag(�l+1, . . . , �m),

P = [ Ppc Pres ], Ppc ∈ Rm×l, Pres ∈ Rm×(m−l).

Step 4: Set thresholds for SPE (squared prediction error) [25] and
T2 statistic [47] for a given significant level ˛:

Jth,SPE = �1

(
c˛

√
2�2h2

0 + 1 + �2h0 (h0 − 1)
)1/h0

, (2)

�1 �2

1

Jth,T2 = l(N2 − 1)
N(N − l)

F˛(l, N − l) (3)
ntrol 22 (2012) 1567– 1581

where c˛ is the confidence interval that corresponds to the 1 − ˛
percentile of the normal distribution and can be directly checked
from standard tables of the error function,

�i =
m∑

j=l+1

(�j)
2, i = 1, 2, 3, h0 = 1 − 2�1�3

3�2
2

.

An alternative threshold for SPE can be found in [38] by utilizing
the results from [3].

The on-line computation consists of

• Step 1: Normalization of the new measurement sample.
• Step 2: On-line computation of SPE and T2 statistic

SPE = zT PresP
T
resz, (4)

T2 = zT Ppc�−1
pc PT

pcz. (5)

• Step 3: Fault detection logic according to the following logic

SPE ≤ Jth,SPE and T2 ≤ Jth,T2 ⇒ fault free, otherwise faulty.

2.2. Partial least squares

Besides PCA, PLS is another powerful statistical tool and widely
used for model building, fault detection and diagnosis purposes
[29,30,53]. The basic PLS algorithm, which is implemented with
the so-called nonlinear iterative partial least squares algorithm
(NIPALS), can be found in [7,19,20]. Suppose that the process under
consideration has measurement vector x ∈ Rm and a product qual-
ity vector under monitoring y ∈ Ra, the off-line design procedure of
applying standard PLS approach for PM–FD is formulated as fol-
lows:

• Step 1: Collect N samples of x and y and normalize them to zero
mean and unit variance, denoted as XT = [ x1 · · · xN ] ∈ Rm×N

and YT = [ y1 · · · yN ] ∈ Ra×N .
• Step 2: Perform following iterative computations � times (k = 1,

. . .,  �):

(w∗
k, q∗

k) = arg max
‖wk‖=1,‖qk‖=1

wT
k XT

k Yqk, X1 = X,

tk = Xkw∗
k, pk = XT

k
tk

‖tk‖2
, Xk+1 = Xk − tkpT

k ,

r1 = w∗
1, rk =

k−1∏
j=1

(Im×m − w∗
j pT

j )w∗
k, k > 1

where � is the so-called number of latent variables (LVs) and
determined by some certain criteria, e.g. cross validation [54].

• Step 3: Store pk, tk, qk, rk into P, T, Q, R. The correlation model given
by standard PLS algorithm is

X = TPT + E,

Y = TQ T + F = XM + F, M = RQ T .
(6)
• Step 4: Set thresholds for the SPE and T2 statistic under a given
significant level ˛

Jth,SPE = g�2
˛(h), (7)
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Jth,T2 = �(N2 − 1)
N(N − �)

F˛(�, N − �) (8)

where g = S/2� and h = 2�2/S, � and S are respectively the sample
mean and variance of SPE statistic [38].

he on-line computation for PM–FD consists of

Step 1: Normalization of the new measurement sample.
Step 2: On-line computation of SPE and T2 statistic

SPE = ‖(Im×m − PRT )x‖2, (9)

T2 = xT R

(
TT T

N − 1

)−1

RT x. (10)

Step 3: Fault detection according to the following logic

T2 > Jth,T2 ⇒ faulty in x, which is related to y

SPE > Jth,SPE ⇒ faulty in x, which is unrelated to y

T2 ≤ Jth,T2 and SPE ≤ Jth,SPE ⇒ fault free in x.

.3. Independent component analysis

ICA is a multivariate statistical tool for extracting the hidden
tatistically independent components (ICs) from the observed data
nd originally proposed to solve the signal processing as well as
lind source separation problems [17,22,34].  Recently, ICA was
pplied in the research filed of PM–FD, especially for the process
easurement with non-Gaussian distribution [28,32,33,57].  Con-

ider a process with m measurement signals, which are denoted by
 column observation vector x ∈ Rm, the off-line design procedure of
tandard ICA-based fault detection can be briefly summarized as
ollows:

Step 1: Collect N samples for each measurement and center
them to zero mean, which can be written as XT = [ x1 · · · xN ] ∈
Rm×N . Calculate ZT = QXT = [ z1 · · · zN ] ∈ Rm×N with Q =
�−1/2PT ∈ Rm×m, where � is a diagonal matrix with eigenvalues
of covariance matrix E(xxT ) ≈ 1/(N − 1)XT X , P ∈ Rm×m denotes
the related eigenvectors.
Step 2: Perform following iterative computations m times (k = 1,
. . .,  m):

bk = arg max
∀bk,E(yyT )=I

(J(y)), (11)

J(y) ≈ [E{G(y)} − E{G(v)}]2, y = bT
k z (12)

where J(y) is the so-called non-Gaussian measurement func-
tion, v is a Gaussian variable with zero mean and unit variance,
G is a non-quadratic function [21,23]. Store all bk into B =
[ b1 · · · bm ] ∈ Rm×m and calculate demixing matrix W = BTQ.
Step 3: Determine the number of ICs, d, by a certain criterion as
listed in [33] with the associated demixing matrix Wd ∈ Rd×m

and the residual parts in W denoted as We ∈ R(m−d)×m. Construct
following test statistics:

2 T T
I = x Wd Wdx, (13)

I2
e = xT WT

e Wex, (14)

SPE = eT e. (15)
ntrol 22 (2012) 1567– 1581 1569

• Step 4: Set thresholds JI2 , JI2
e

and JSPE for indices (13)–(15) by kernel

density estimation (KDE) [36,45].

The on-line computation for PM–FD consists of

• Step 1: Center the mean of the new measurement sample.
• Step 2: On-line computation of I2, I2

e and SPE indices (13)–(15).
• Step 3: Fault detection according to the following

SPE ≤ Jth,SPE and I2 ≤ Jth,I2 and I2
e ≤ Jth,I2

e
⇒

fault free, otherwise faulty.

2.4. Fisher discriminant analysis

FDA is a dimensionality reduction technique and has been well
studied in the fields of multivariate statistic and pattern classifi-
cation [14,37]. Due to its ability to discriminate among classes of
data, FDA is recognized as an efficient tool for fault classification
[4,5,18]. In addition, by defining an additional class of data, which
represents normal operating conditions, FDA can also be applied
for fault detection purpose [6].  Consider a process with p different
operating situations, which can be denoted by p classes of data sets
collected from the process, the off-line design procedure of FDA for
PM–FD can be briefly formulated as:

• Step 1: Collect all the p classes of data and stack them into Z ∈
RN×m, where N =

∑p
j=1nj (nj is the number of observations in the

jth class), m is the number of measurement signals. Normalize all
the p classes of data and finally we  have Zj ∈ Rnj×m, j = 1, . . .,  p.

• Step 2: Calculate the within-class-scatter matrix Sw and between-
class-scatter matrix Sb:

Sw =
p∑

j=1

Sj, Sj = 1
nj

ZT
j Zj, (16)

Sb =
p∑

j=1

(�j − �)(�j − �)T (17)

where � ∈ Rm and �j ∈ Rm denote the mean vectors of stacked
matrix Z and the original jth class of data, respectively.

• Step 3: Solve the following generalized eigenvalue problem

Sbwk = �kSwwk. (18)

In case of inversable Sw (18) is equivalent to solve

S−1
w Sbwk = �kwk. (19)

Since rank(Sb) ≤ p − 1, there exist maximal p − 1 eigenvectors
related to non-zero eigenvalues. Denote a as the number of
non-zero eigenvalues, store the related eigenvectors in Wa =
[ w1 · · · wa ] ∈ Rm×a.

• Step 4: Set threshold for T2 statistic under a given significant level
 ̨ for the jth class:

Jj
th,T2 = a(N2 − 1)

N(N − a)
F˛(a, N − a) (20)

where a ≤ a is the largest integer such that WT
a

SjWa is a full rank

matrix with Wa = [ w1 · · · wa ] ∈ Rm×a.

The on-line computation consists of
• Step 1: Normalization of the new measurement sample.
• Step 2: On-line computation of T2 statistic for the jth class

T2
j = zT Wa(WT

a
SjWa)−1WT

a
z. (21)
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Step 3: Fault classification (detection) according to the following
logic

T2
j < Jj

th,T2 ⇒ data (fault) belongs to the j − th class.

The threshold calculation (20) is based on the assumption that
he measurement signals follow multivariate Gaussian distribu-
ion.

.5. Subspace aided approach

Based on the well established model-based fault detection and
solation (FDI) techniques, a large number of standard methods
an be utilized for PM–FD purpose if a process model is avail-
ble. The subspace identification methods (SIMs) are powerful
ools for identifying the state space process model directly from
rocess data [15,39,51].  From the application viewpoint, the pro-
edure from the rough process data to the final implementation of

 model based PM–FD system consists of three steps: (a) (com-
lete) system identification, (b) PM–FD system design, and (c)
n-line implementation of the PM–FD system. Recently, Ding et al.
11] proposed a subspace aided approach (SAP), which offers an
fficient way for data-driven design of observer-based PM–FD sys-
em without identification of the complete process model. More
mportantly, this approach can deal with PM–FD issue in dynamic
ystems [12], in which the applications of the aforementioned
ata-driven methods are considerably limited due to a wide oper-
ting range of measurement signals. Suppose that the process
nder consideration has input vector u ∈ Rm and output vector

 ∈ Ra, the off-line design procedure of SAP for PM–FD can be briefly
ormulated as:

Step 1: Arrange the input and output training data into block
Hankel matrices

Z =
[

Y

U

]
, Y =

⎡
⎢⎣

Y (k)
...

Y (k  + s)

⎤
⎥⎦ , U =

⎡
⎢⎣

U (k)
...

U (k  + s)

⎤
⎥⎦ ,

Y(j) = [ y(j) · · · y(j + N) ], U(j) = [ u(j) · · · u(j + N) ]

where s and N are integers such that N 
 s ≥ n.
Step 2: Do SVD on (1/N)ZZT

1
N

ZZT = Uz

[
�XU 0

0  ��

]
UT

z , Uz = [ Uz,XU Uz,res ]

where �XU includes all the singular values, which correspond to
the influence of the data set U on the process variables, hence are
significant larger than the singular values in ��. UT

z,res spans the
parity space [52].
Step 3: Select m vectors from UT

z,res and denote them as
[ ˛si

ˇsi ] ∈ UT
z,res, i = 1, . . . , m. The ith diagnostic observer

(DO) can be constructed as follows:
zi(k + 1) = Azi
zi(k) + Bzi

u(k) + Lzi
y(k)

ri(k) = gzi
y(k) − czi

zi(k) − dzi
u(k)

(22)
ntrol 22 (2012) 1567– 1581

where

Azi
=

⎡
⎢⎢⎢⎣

0 0 · · · 0

1 0 ·  · · 0
...

. . .
. . .

...

0 ·  · · 1 0

⎤
⎥⎥⎥⎦ ∈ Rs×s, Lzi

= −

⎡
⎢⎢⎢⎢⎢⎣

˛si,0

˛si,1

...

˛si,s−1

⎤
⎥⎥⎥⎥⎥⎦ ,

˛si
= [ ˛si,0 · · · ˛si,s ], ˇsi

= [ ˇsi,0 · · · ˇsi,s ] ∈ R(s+1)m,

Bzi
= [ ˇT

si,0
ˇT

si,1
· · · ˇT

si,s−1 ], dzi
= ˇT

si,s
,

gzi
= ˛si,s, czi

= [ 0 · · · 0 1 ] ∈ Rs

• In case of Gaussian distributed noise, set the threshold as

Jth = �2
˛(m). (23)

Otherwise, KDE technique can be utilized for threshold calcula-
tion.

The on-line computation consists of

• Step 1: On-line computation of T2 statistic

T2 = rT (k)�−1
r r(k) (24)

where rT (k) = [ r1(k) · · · rm(k) ], �r denotes the variance of r(k)
that can be determined by ��.

• Step 2: Fault detection according to the following

T2 < Jth ⇒ fault free, otherwise faulty.

2.6. A comparison on basic data-driven methods

The basic assumption for applying standard PCA for PM–FD is
that the measurement signals follow multivariate Gaussian distri-
bution. Based on generalized likelihood ratio (GLR) test on process
measurement [1],  a modified statistic was proposed in [10] which
delivers an optimal fault detection under given confidence level.
The issues related to fault isolation and identification have also been
discussed therein. To deal with autocorrelation of process vari-
able, the so-called dynamic PCA (DPCA) has been proposed in [31].
Suppose that the observations on the time interval [k − N, k] are
available, the data matrix can be formed in the following manner,

Zk(h) =

⎡
⎢⎢⎢⎣

zT
k

(h)

...

zT
k+h−N

(h)

⎤
⎥⎥⎥⎦ , zT

i (h) = [ zT
i

· · · zT
i−h ]

where i = k − N, . . .,  k. The remaining procedures for off-line design
and on-line computation are identical with standard PCA. Notice
that the PCA and DPCA are standard approaches in the framework
of multivariate statistical process monitoring scheme, in which the
normalization procedure plays a central role to construct test statis-
tics for fault detection purpose. Although the data matrix of DPCA

also contains time delayed vectors, the normalization procedure
cannot deal with the wide operating regions of process variables.
From the fault detection point of view, PCA and DPCA are not dif-
ferent as generalized likelihood ratio test with normalized process
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easurement. On the other hand, the basic idea of SAP is to con-
truct a parity space based residual generator directly from process
ata. From the fault detection point of view, instead of normaliza-
ion procedure in PCA and DPCA, subspace aided approach uses
ingular value decomposition to remove the deterministic influ-
nce in order to construct residual signal or test statistic for process
onitoring.
The original idea behind the PLS is to identify the correlation

odel (6) by utilizing covariance information cov(x, y) and based
n it, to predict y using the (online) observation x. On the assump-
ion that x and y follow multivariate Gaussian distribution, fault
etection can be achieved through suitable test statistics based on

ˆ = PRT x and the residual x̃ = (Im×m − PRT )x, see (7)–(10). Since PLS
elated approach is aiming to detect the faults in process variables
hat are mostly related to product quality variable, the quality vari-
ble will not be directly used in on-line implementation as shown
n (9) and (10). Although the PLS-based PM–FD technique works
n many applications, it has been proven in [35] that standard PLS
erforms an oblique decomposition on measurement space thus

ˆ may contain variations orthogonal to y that are not useful for
rediction, while residual x̃ may  have large variations that ham-
er overall efficacy of the process monitoring scheme. To solve this
roblem, Zhou et al. [58] proposed the so-called total projection
o latent structure (TPLS) approach, which is based on the results
f standard PLS algorithm and makes further decomposition on
ertain subspaces. An alternative modified approach (MPLS) was
ecently proposed in [56], which firstly estimates the correlation
odel in the least-square sense and based on it, further performs

n orthogonal decomposition on measurement space. The modified
pproach does not only deliver a better PM–FD performance but
lso requires less computation in comparison with all the existing
LS-based PM–FD approaches.

Compared with all the other methods, the calculation involved
n ICA is more complicated. The basic assumption of ICA is the

easurement signal can be described as a linear combination of
on-Gaussian variables, i.e. ICs. Based on it, the process measure-
ent x follows non-Gaussian distribution and the thresholds for

13)–(15) cannot be determined by F-distribution or �2 test. Thus,
DE technique, which provides a non-parametric way  of estimat-

ng the probability density function, is widely utilized in literature
o set appropriate thresholds for PM–FD purpose. The recently pro-
osed modified ICA (MICA) algorithm offers a unique solution of ICs
nd also reduces the computation load compared with the standard
pproach [32].

Table 1 offers a brief comparison among all the discussed
ata-driven methods, in which the basic assumption on data, com-
utation complexity and critical design parameters are mainly
aken into consideration. One basic assumption for successful
mplementation of PCA, PLS and FDA related approaches is that
he process data follow multivariate Gaussian distribution. In addi-

ion, FDA is comparable with PCA and the data sets should be
ell documented in order to offer detailed information about
ormal operating condition and complete faulty cases. Since ICA
ssumes that the process measurement is a linear combination

able 1
 brief comparison among basic data-driven methods.

Method Assumption on data Comp

PCA Multivariate Gaussian distribution Low: 1
DPCA  Same as PCA Mediu
FDA  Same as PCA, well documented data sets Mediu
PLS  Same as PCA, clear input–output relationship Mediu
TPLS Same as PLS Mediu
MPLS  Same as PLS Low: 2
ICA/MICA Measurement is a linear combination of ICs High: 

SAP  Clear input–output relationship Mediu
ntrol 22 (2012) 1567– 1581 1571

of ICs (non-Gaussian) and thus does not follow Gaussian distri-
bution. The basic PCA, PLS, ICA and FDA related methods are
mainly used for the applications in the steady state, while SAP is
suitable to cope with PM–FD issue in dynamic processes. More-
over, SAP does not have any special assumption on the process
data. The �2 test and KDE can be used for threshold compu-
tation in case of Gaussian and non-Gaussian distributed noise,
respectively.

A brief computation complexity analysis is also listed in Table 1,
in which ICA related algorithms are the most complicated to solve
iterative constraint optimization problems (11) and (12). Except
ICA/MICA, the computation burden of the other methods mainly
come from performing SVD on covariance or correlation matrices
with different dimensions. SAP and DPLS have higher computa-
tion cost than standard PCA, since SVD is implemented on higher
dimensional Hankel matrices. The core of FDA is to solve a gener-
alized eigenvalue decomposition (EVD) problem, which is a little
more complex compared with standard PCA. In addition, MPLS has
a comparable computation cost as PCA and seems simpler than PLS
and TPLS. Consider that the SAP does not need the normalization
step, PCA, MPLS and SAP have relatively lower computational cost
over all the methods.

It is worth mentioning that the numbers of PCs, ICs and LVs are
important design parameters in PCA, ICA and PLS related meth-
ods to achieve successful PM–FD. The leave-N-out cross validation
based PRESS statistic [48,55] is mostly referred in the literature
for selecting the numbers of PCs and LVs. Although there is no
standard criterion to calculate the number of ICs, some methods
are suggested in [32,33]. In [32], the authors suggested to set the
number of ICs as the same as the number of PCs for a fair com-
parison purpose. For SAP, the number of s can be determined
according to the criteria utilized in [11]. The further discussion
about the influences of design parameters on PM–FD perfor-
mance will be presented based on the simulation results of TE
process.

3. TE benchmark process

In this section, we  would like to briefly introduce an industrial
benchmark of TE process. Based on the well-established bench-
mark process, all the discussed methods will be further applied
to demonstrate their efficiencies. TE process model is a realistic
simulation program of a chemical plant which is widely accepted
as a benchmark for control and monitoring studies. The pro-
cess is described in [13] and the FORTRAN code of the process
is available over internet. Fig. 1 shows the flow diagram of the
process with five major units, i.e. reactor, condenser, compres-
sor, separator and stripper. The process has two products from
four reactants. Additionally, an inert and a by-product are also
present making a total of 8 components denoted as A, B, C, D,

E, F, G and H. The process allows total 52 measurements out of
which 41 are of process variables and 11 are manipulated vari-
ables, see Tables 13 and 14 in Appendix A. Downs and Fogel [13]
initially defined 20 process faults and an additional valve fault

utation complexity Parameter

 SVD on m × m matrix No. of PCs
m: 1 SVD on hm × hm matrix No. of PCs, h
m: generalized EVD on m × m matrix no
m: � times SVD on m × m matrix No. of LVs
m: cost of PLS + 2 SVD on m × m +1 SVD on  ̨ ×  ̨ matrix No. of LVs

 SVD on m × m matrix no
cost of PCA + iterative constraint optimization problems No. of ICs
m: 1 SVD on s(  ̨ + m)  × s(  ̨ + m) matrix No. of s
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as further introduced in [6],  see Table 2. As no prior knowl-
dge about the mathematical model of TE process is available,
he PM–FD system shall be designed only based on the process
ata.

able 2
escriptions of process faults in TE process.

Fault number Process variable Type

IDV(1) A/C feed ratio, B composition
constant

Step

IDV(2) B composition, A/C ration
constant

Step

IDV(3) D feed temperature Step
IDV(4) Reactor cooling water inlet

temperature
Step

IDV(5) Condenser cooling water inlet
temperature

Step

IDV(6) A feed loss Step
IDV(7) C header pressure loss-reduced

availability
Step

IDV(8) A, B, and C feed composition Random variation
IDV(9) D feed temperature Random variation
IDV(10) C feed temperature Random variation
IDV(11) Reactor cooling water inlet

temperature
Random variation

IDV(12) Condenser cooling water inlet
temperature

Random variation

IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16) Unknown Unknown
IDV(17) Unknown Unknown
IDV(18) Unknown Unknown
IDV(19) Unknown Unknown
IDV(20) Unknown Unknown
IDV(21) The valve fixed at steady state

position
Constant position

able 3
esign parameter selection.

Approaches PCA DPCA ICA MICA PLS TPLS SAP

Design parameters PCs = 9 PCs = 17 ICs = 9 ICs = 9 LVs = 6 LVs = 6 s = 13
astman process.

The data sets given in [6] are widely accepted for PM–FD study,
in which 22 training sets (including normal operation condition)
were collected to record the process measurements for 24 opera-
tion hours. Correspondingly, 22 generated (on-line) test data sets
were generated including 48 h plant operation time, in which the
faults were introduced after 8 simulation hours. By considering the
time constants of the process in closed loop, the sampling time
was selected as 3 min. These data sets can be downloaded from
http://brahms.scs.uiuc.edu.

According to the original TE code, a Simulink code provided
by the Ricker [43] is available to simulate the plant’s closed-loop
behavior. Based on the simulator, the operation modes, measure-
ment noise, sampling time and magnitudes of the faults can be
easily modified and thus its generated data sets can be more help-
ful for PM–FD comparison study. Note that the control structure
utilized in [43] is different from the one in [6],  which may  lead
some differences in later simulation study. In our analysis, the
base operating mode of TE process is considered to be identical
with the case in [6].  The simulator can be downloaded from
http://depts.washington.edu/control/LARRY/TE/download.html.

4. Comparison study based on TE

All the discussed data-driven PM–FD methods, including PCA,
DPCA, PLS, TPLS, MPLS, FDA, ICA, MICA and SAP, will be applied to
TE process for a comparison study. Two generally used indices, i.e.
fault detection rate (FDR) and false alarm rate (FAR), are mainly
considered here for evaluating PM–FD performance [6,32,58].

FDR = No. of samples (J > Jth|f /= 0)
total samples (f /= 0)

× 100

FAR = No.  of samples (J > Jth|f = 0)
total samples (f = 0)

× 100

Since the faults in TE as well as other industrial processes

may  occur in any measurement subspaces, which are generally
unknown in practice, a reasonable fault detection logic is based
on joint use of the related test statistics, i.e. if one of the test statis-
tics exceeds threshold, a successful fault detection is achieved. The

http://brahms.scs.uiuc.edu
http://depts.washington.edu/control/LARRY/TE/download.html
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Fig. 2. Process monitoring using P

ata sets given in [6] and simulators offered by [43] are utilized in
ur study in order to achieve convincing results.

.1. Study on the data sets given in [6]

In this simulation, 22 process measurements (XMEAS(1–22)),
1 manipulated variables (XMV(1–11)) are included for FDA, PCA
nd ICA related methods. For PLS and SAP, the indicator for compo-
ent G (XMEAS(35)) is treated as product quality variable (output
ariable) and other 33 process variables (input variables).

The cross validation based PRESS statistic [48,55] is firstly
pplied to select the number of PCs and LVs: 9 and 17 PCs
re selected for PCA and DPCA, respectively. 9 ICs are selected
or ICA and MICA according to [32]. For PLS and TPLS, the
umber of LVs is selected as 6 based on the cross validation
esult given by [58]. In addition, s is equal to 13 according to
he criteria in [11]. The selected parameters are summarized

n Table 3.

Table 4 offers a detailed FDRs by utilizing all the methods on
E process, in which the red color denotes the highest FDR related
o a certain type of fault. In the first block of Table 4, i.e. IDV(1–2),
PCA, FDA, SAP in case of IDV(16).

IDV(4–8), IDV(12–14) and IDV(17–18), all the methods offer high
FDRs except PCA/DPCA and PLS in IDV(5). For the second block,
i.e. IDV(10–11), IDV(16) and IDV(19–21), the SAP, MPLS and DPCA,
provide superior fault detection performance over all the other
methods. For IDV(3), IDV(9) and IDV(15), all methods give low FDRs
thus cannot detect the faults successfully. Moreover, Table 5 shows
the FARs by applying all the methods in fault free case, from which
SAP and ICA related methods give significant better results, while
TPLS shows the highest FAR.

Since indicator for component G (XMEAS(35)) is treated as
product quality variable, the process faults IDV(3–4), IDV(9,11),
IDV(14–15) and IDV(19) have almost no influence on product
quality while other faults cause significant variations on quality
variable, i.e. with higher severities. The detailed process monitor-
ing figures of two  typical faults, i.e. IDV(16) and IDV(19)), have been
given in Figs. 2–7 to show the original time trends of each method
in order to give insightful features.
In case of IDV(16), the detailed process monitoring figures by
using PCA, DPCA, FDA and SAP are shown in Fig. 2, from which
it can be clearly seen that the FDA and the SAP are more sensi-
tive than the PCA and DPCA methods. Similarly, the ICA and MICA



1574 S. Yin et al. / Journal of Process Control 22 (2012) 1567– 1581

100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000
I2

100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
I2
e

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350
SP E

Samples

(a) ICA

100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

1200
T 2

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300
SP E

Samples

(b) MICA

Fig. 3. Process monitoring using ICA, MICA in case of IDV(16).

Table 4
FDRs (%) based on TE data sets given in [6].

SAPMPLSTPLSPLSFDAMICAICADPCAPCAFault
99.8899.88IDV(1) 10 0 99 .88 10 0 99.8899.88 10 0 99 .63

98.75IDV(2) 99 .38 97.8898.8898.8898.6398.7598.2598.25
IDV( 4) 100100100 87 .63 10 0 99 .5 100100 99 .88

43.2533.63IDV(5) 100100100 33 .63 100100100
IDV( 6) 100100100100100100100100100
IDV( 7) 100100100100100100100100 99 .88

98.597.8898.1397.6398.259898IDV(8) 98 .63 95 .88
99.2599.13IDV(12) 99.8899.88 99.6399.2599.75 99.8899.88

95.2595.639595.2595.3895.38IDV(13) 96 .13 94.8895.5
IDV(14 ) 100100100 99 .88 100100100100 97 .63

95.25IDV(17) 97 .25 97.1397.139694.2596.639396.88
90.7590.7589.7590.590.8890.5IDV(18) 91 .88 9191.25

91.139182.6387.1385.8889.257260.5IDV(10) 95 .5
78.88IDV(11) 91 .5 84.7583.2586.1378.6373.3861.6378.88

94.2890.7568.3883.2583.3892.3867.3855.25IDV(16) 94 .88
82.882687.8880.2592.8887.2541.13IDV(19) 94 .25 88 .5
78.3862.7581.888691.3873.7563.38IDV(20) 91 .5 83 .75
66.3859.8852.7570.7556.386152.13IDV(21) 72 .75 38 .63

14.25714.254.512.2512.88IDV(3) 24 ,25 6.3818,75
14.56.258.884.7512.888.38IDV(9) 23.5 0.8812.13
2312.6310.757.7519.7514.13IDV(15) 29 .88 29.523.25

Table 5
FARs (%) based on TE data sets given in [6].

SAPMPLSTPLSPLSFDAMICAICADPCAPCAFreeFault
10.7519.62106.381.632.7510.136.13IDV(0) 1.5
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Fig. 4. Process monitoring usin

ethods shown in Fig. 3 give superior results than PCA and DPCA. In
ddition, the results of PLS related approaches are shown by Fig. 4,
rom which the MPLS and TPLS provide much better fault detection
erformance than the standard one.

For fault IDV(19), which has almost no influence on quality
ariable, the figures of detailed process monitoring are shown in
igs. 5–7,  in which the FDA and SAP also offer better results than
he PCA and DPCA methods. Moreover, MPLS and TPLS offer not
nly higher FDRs but also correct fault diagnosis information about
he properties of the faults. ICA and MICA are better than standard
CA and PLS, however, have not shown further advantages over the
ther methods.

As aforementioned, the selection of design parameters, i.e. num-
ers of PCs, ICs and LVs, may  significantly influence the PM–FD
erformance. Based on this observation, another simulation test is
erformed, in which the design parameters are selected by different

riteria. For standard PCA, 17 PCs are selected according to percent
ariance test [6] including about 90% variation information and the
ame number of ICs is selected for ICA/MICA for a fair comparison.

able 6
election of different design parameters.

Approaches PCA DPCA ICA 

Design parameters PCs = 17 PCs = 40 ICs = 17 
LS (c) TPLS

S, PLS, TPLS in case of IDV(16).

The order of time lag in DPCA is determined as h = 2 and the num-
ber of PCs is 42 which contains 90% of the total variances. For PLS
and TPLS, the number of latent variables is selected as 29 based on
the leave-one-out cross validation test. In SAP, s is changed to 15.
Based on these design parameters as summarized in Table 6, Table 7
offers detailed FDRs of PCA/DPCA, ICA/MICA, PLS/TPLS and SAP
approaches. For convenient comparison purpose, the FDRs given by
FDA and MPLS, which are identical with the ones in Table 4, are also
listed.

According to the FDRs given by Tables 4 and 7, it is obvious that
different design parameters will significantly influence PM–FD per-
formance for PCA, DPCA and PLS approaches, especially in cases
of IDV(5), IDV(16) and IDV(19–21). However, the design param-
eter of SAP has little influence on FDRs. In addition, SAP method
provides the lowest FAR as shown in Tables 5 and 8. Generally
speaking, DPCA and TPLS/MPLS always provide improvements on

FDRs compared with standard PCA and PLS approaches, while ICA
related approach has not shown evident improvements over other
methods.

MICA PLS TPLS SAP

ICs = 17 LVs = 29 LVs = 29 s = 16
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Fig. 5. Process monitoring using PCA, DPCA, FDA, SAP in case of IDV(19).

Table 7
FDRs (%) based on TE data sets given in [6] with different design parameters.

SAPMPLSTPLSPLSFDAMICAICADPCAPCAFault

IDV(1) 100100 99.88 100100100100100 99.63
IDV(2) 99.38 98.598.8898.8898.8898.7598.3898.7599.25
IDV(4) 100100100 93.13 100100100100 99.63

67.7534.75IDV(5) 100100100100100100100
IDV(6) 100100100100100100100100100
IDV(7) 100100100100100100100100100
IDV(8) 98.63 98.598.1397.6397.8898.13 98.6398.63 98.13

99.8899.7599.8899.8899.2599IDV(12) 100 99.8899.88
95.595.6395.3895.6394.8895.389695.75IDV(13) 96.13

IDV(14) 100100100 99.88 100100100100 97.75
96.88IDV(17) 98.13 97.2597.1397.139796.6394.596.88
91.13IDV(18) 92.63 91 91.2591.259190.759090.5

92.7591.3882.6387.1387.638983.2571IDV(10) 95.75
83IDV(11) 97.38 83.8883.2584.6383.3873.3864.579.75

94.3895.2594.7583.2588.3892.2580.1365.75IDV(16) 97.75
47.38IDV(19) 95.25 88.6394.2592.59587.888493.13

9191.3881.888990.8880.8871.5IDV(20) 91.5 86.63
70.564.8752.7570.7555.6363.1358.13IDV(21) 72.75 39.75

10.25IDV(3) 23.25 3.1318,7521,8811.75713.255
9.88IDV(9) 23.25 2.3812.1315.388.386.259.384.88

2212.631210.2525.8817.25IDV(15) 28.5 15.3823.25



S. Yin et al. / Journal of Process Control 22 (2012) 1567– 1581 1577

100 200 300 400 500 600 700 800 900
0

20

40

60

80
I2

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350
I2
e

100 200 300 400 500 600 700 800 900
0

50

100

150
SP E

Samples

(a) ICA

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

400

450
T 2

100 200 300 400 500 600 700 800 900
0

50

100

150
SP E

Samples

(b) MICA

sing IC

4

s
s
s
c
p
i
s
t
n
o
a
v
b
P
f
t

Fig. 6. Process monitoring u

.2. Study on the data sets generated from simulator given in [43]

Although different control strategies are implemented in the
imulator, the similar operation conditions described in the last
ubsection are taken for collecting training and (on-line) test data
ets, in which 21 training data sets (without IDV(21)) with the
orresponding (on-line) test data sets are collected to record the
rocess measurements of 24 and 48 operation hours. To further

nvestigate the ICA approaches, a fault is introduced after 8 h of
imulation time, in the form of increased non-Gaussian noise on
he process variables. Since the uniform-distributed noise is typical
on-Gaussian and widely accepted to investigate the effectiveness
f ICA approach [17,28,32–34], the uniform-distributed signal is
dded on the measurement with the interval related to 0.2 times
ariance of the associated process variable. The cross validation

ased PRESS statistic is firstly applied for selecting the numbers of
Cs, ICs and LVs, which are listed in Table 3. Since the magnitudes of
aults defined in the simulator are very large, the modified magni-
udes, which are less than 25% of original values, are implemented

Table 8
FARs (%) based on TE data sets given in [6] with different desig

MICAICADPCAPCAFreeFault

1.52.6315.136.38IDV(0) 
A, MICA in case of IDV(19).

in the simulation study. For each type of faults, one hundred Monte
Carlo simulations are performed to obtain FDRs of all the discussed
methods.

Tables 9 and 10 summarize the detailed FDRs and FARs. In the
first block of Table 9, all the tested methods give similar FDRs.
The evident difference among FDRs can be found in the second
block of this Table, where SAP offers much better FDRs over all the
other methods. However, the faults listed in the third block are
undetectable by all the given methods. In addition, PCA approach
gives the best FARs listed in Table 10.

Another simulation test is performed with different design
parameters selected by percent variance test, which are listed in
Table 6, and leave-one-out cross validation. The FDRs given by PCA,
ICA/MICA and PLS methods are significantly influenced through
the parameters change, which can be seen from the second block

of Tables 9 and 11.  Similar to observations in the second block of
Table 9, in Table 11 SAP also gives better FDRs in most cases. In
addition, DPCA and TPLS/MPLS are evident to offer better FDRs
than standard PCA and PLS approaches. ICA related approaches

n parameters.

SAPMPLSTPLSPLSFDA

10.7512.137.126.38 1.25
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Fig. 7. Process monitoring using MPLS, PLS, TPLS in case of IDV(19).

Table 9
FDRs (%) based on the simulator given in [43].

SAPMPLSTPLSPLSFDAMICAICADPCAPCAFault
86.1293.9893.7689.27IDV(7) 94 .78 93.9992.7591.2189.88

IDV( 8) 100100100100100100100100100
IDV( 9) 99.9899.9899.9899.9899.9899.9899.9899.9899.98
IDV(10 ) 100100100100100100100100100

94.70IDV(11) 94 .83 99.6499.6499.6599.6894.6494.6494.64
99.93IDV(12) 99.95 99.8899.8899.8899.8899.8899.8899.88
99.72IDV(13) 99 .77 99.6399.6399.6399.6399.6399.6399.63

82.3169.5781.3880.47IDV(1) 83 .35 82.3580.5682.5682.26
51.3346.21IDV(2) 73 .95 65.8863.4056.5650.6866.0359.94

46.00IDV(4) 60 .22 49.4641.1141.9142.1850.3420.9024.82
84.9075.2854.8387.9080.0887.7763.7156.63IDV(6) 96 .86
67.7670.9265.8871.1061.2658.4871.4564.74IDV(17) 83 .11
26.5231.6821.3233.4219.6330.6930.6621.09IDV(18) 56 .86
46.2948.4330.9150.5542.4447.0737.2629.07IDV(20) 61 .26

1.933.341.461.231.501.28IDV(3) 4.26 2.921.79
1.843.101.802.351.571.51IDV(5) 4.20 3.191.80
1.833.222.252.501.391.41IDV(14) 3.95 3.501.58
1.643.171.682.431.581.19IDV(15) 3.74 3.341.53
1.613.131.693.031.691.43IDV(16) 3.74 2.591.56
1.703.211.732.441.371.25IDV(19) 3.92 2.731.76

Table 10
FARs (%) based on the simulator given in [43].

SAPMPLSTPLSPLSFDAMICAICADPCAPCAFreeFault
IDV( 0) 1.26 3.021.743.861.503.131.872.741.53
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Table 11
FDRs (%) based on the simulator given in [43] with different design parameters.

Fault PCA DPCA ICA MICA FDA PL S TPL S MPL S SAP
IDV( 8) 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0
IDV( 9) 99 .98 99 .99 99 .98 99 .98 99 .98 99 .98 99 .98 99 .98 99 .99
IDV(10 ) 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0
IDV(11 ) 95 .65 95 .75 95 .64 95 .64 95 .64 95 .75 95 .64 95 .64 95 .64
IDV(12 ) 99 .89 99 .96 99 .88 99 .88 99 .88 99 .88 99 .88 99 .88 99 .88
IDV(13 ) 99 .63 99 .69 99.75 99 .66 99 .63 99 .63 99 .63 99 .63 99 .63

IDV( 1) 75 .70 75 .30 72 .91 77 .55 80 .36 76 .53 76 .97 76 .42 72 .55
IDV( 2) 50 .72 53 .35 40 .37 68 .37 68 .18 71 .35 77 .63 65 .45 75 .19
IDV( 4) 55 .12 70 .03 49 .03 32 .22 54 .22 43 .03 42 .39 43 .94 72 .48
IDV( 6) 63 .60 72 .81 91 .67 91 .67 92 .93 92 .26 94 .64 91 .20 99 .01
IDV( 7) 87 .35 89 .55 87 .49 84 .74 88 .92 86 .80 87 .14 87 .12 92 .29
IDV(17 ) 67 .65 75 .75 65 .49 67 .97 70 .95 67 .81 68 .51 67 .61 87 .32
IDV(18 ) 24 .95 36 .25 18 .70 21 .69 30 .78 24 .86 25 .93 24 .35 61 .44
IDV(20 ) 38 .20 51 .83 42 .93 40 .24 54 .38 50 .41 51 .60 50 .34 71 .76
IDV( 3) 1.53 2.17 2.72 2.17 3.25 1.53 2.90 1.48 6.03
IDV( 5) 1.57 2.16 1.73 1.77 3.01 1.02 3.33 1.64 4.07
IDV(14 ) 1.67 2.29 1.61 2.22 3.05 1.46 2.90 1.51 5.60
IDV(15 ) 1.60 1.68 1.91 1.88 3.05 1.13 2.34 1.35 3.70
IDV(16 ) 1.84 1.88 2.30 1.84 3.20 1.27 2.63 1.46 4.92
IDV(19 ) 1.50 2.15 2.39 2.07 3.20 1.08 2.87 1.67 4.31

Table 12
FARs (%) based on the simulator given in [43] with different design parameters.
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Appendix A.

See Tables 13 and 14.

Table 13
Process variables.

Block name Variable name Number

Input feed A feed (stream 1) XMEAS(1)
D  feed (stream 2) XMEAS(2)
E  feed (stream 3) XMEAS(3)
A  and C feed XMEAS(4)

Reactor Reactor feed rate XMEAS(6)
Reactor pressure XMEAS(7)
Reactor level XMEAS(8)
Reactor temperature XMEAS(9)

Separator Separator temperature XMEAS(11)
Separator level XMEAS(12)
Separator pressure XMEAS(13)
Separator underflow XMEAS(14)

Stripper Stripper level XMEAS(15)
Stripper pressure XMEAS(16)
Stripper underflow XMEAS(17)
Stripper temperature XMEAS(18)
Stripper steam flow XMEAS(19)

Miscellaneous Recycle flow XMEAS(5)
Fault Free PCA DPCA ICA M
IDV( 0) 1.61 1.78 1.94 2

how better results than standard PCA but have not shown evident
mprovements over other methods. See Table 12.

. Conclusions

In this paper, the basic data-driven PM–FD methods and their
ecent developments were firstly reviewed. The basic issues,
ncluding off-line design and on-line computation algorithms, orig-
nal idea, basic assumption/condition and computation complexity

ere presented in detail. Then, all the discussed methods were
mplemented on an industrial benchmark of TE process to com-
lete a detailed comparison study. As a result, we  would like to
oint out that

Standard PCA, which has not considered the autocorrelation of
process variable, shows relatively lower FDRs compared with
DPCA. Two variants of PLS, i.e. TPLS and MPLS, offer much better
FDRs and more accurate fault diagnosis information compared
with the standard approach. Although the ICA related methods
involve complicated calculation, they only provide significant
improvements compared to standard PCA approach. It is worth of
further discussing whether the ICs, especially compared with the
PCs, could bring additional advantages to the evaluation stage of
PM–FD. Notice that the SAP provides superior FDRs in most cases
due to its ability to deal with dynamic issue in the process with
wide operating range of process variables.
The design parameters in PCA, PLS and ICA related approaches
will (considerably) influence the PM–FD performance. Although
there are some criteria for parameter selection, it has not been
analytically proved that which criterion offers best performance
for PM–FD. Even for the same criterion, e.g. leave-N-out cross-
validation to decide number of LVs, different results can be
obtained according to different values of N. Hence, the methods
like MPLS/TPLS and SAP, which do not have or are influenced little
by such design parameters, have much more advantages in the

application point of view.
In practice, the large scale industrial plants are generally com-
plex dynamic systems and the process measurements will not
strictly follow Gaussian distribution as shown in TE process. On
FDA PL S TPL S MPL S SAP
3.11 1.45 2.55 1.69 5.35

the other hand, it is also hard to give a physical explanation
whether the non-Gaussian distributed process measurements
can be described as a linear combination of the ICs. Although
the process data cannot perfectly fulfill the basic assumptions in
Table 1, most of the tested methods show their abilities for PM–FD
in TE process even with non-Gaussian measurement noise. Espe-
cially, the method like SPA, which has higher FDRs, relatively
lower computation cost and no special assumption on the process
data, will receive more attentions both in practice application and
in academic study.
Purge rate XMEAS(10)
Compressor work XMEAS(20)
Reactor water temperature XMEAS(21)
Separator water temperature XMEAS(22)
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Table 13 (Continued)

Block name Variable name Number

Reactor feed analysis Component A XMEAS(23)
Component B XMEAS(24)
Component C XMEAS(25)
Component D XMEAS(26)
Component E XMEAS(27)
Component F XMEAS(28)

Purge gas analysis Component A XMEAS(29)
Component B XMEAS(30)
Component C XMEAS(31)
Component D XMEAS(32)
Component E XMEAS(33)
Component F XMEAS(34)
Component G XMEAS(35)
Component H XMEAS(36)

Product analysis Component D XMEAS(37)
Component E XMEAS(38)
Component F XMEAS(39)
Component G XMEAS(40)
Component H XMEAS(41)

Table 14
Process manipulated variables.

Variable name Number Base value Units

D feed flow XMV(1) 63.053 kg h−1

E feed flow XMV(2) 53.980 kg h−1

A feed flow XMV(3) 24.644 ks cm h
A  and C feed flow XMV(4) 61.302 ks cm h
Compressor recycle valve XMV(5) 22.210 %
Purge valve XMV(6) 40.064 %
Separator pot liquid flow XMV(7) 38.100 m3 h−1

Stripper liquid product flow XMV(8) 46.534 m3 h−1

Stripper steam valve XMV(9) 47.446 %
Reactor cooling water flow XMV(10) 41.106 m3 h−1

Condenser cooling water flow XMV(11) 18.114 m3 h−1
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