ArticlePDF AvailableLiterature Review

Dietary acid load, blood pressure, fasting blood sugar and biomarkers of insulin resistance among adults: Findings from an updated systematic review and meta‐analysis

Wiley
International Journal of Clinical Practice
Authors:

Abstract

Objectives: There are no clear summarized report of the association between dietary acid load components including potential renal acid load (PRAL) and net-endogenous acid production (NEAP) with cardio-metabolic risk factors. In the current meta-analysis, we aimed to systematically review and summarize the eligible observational studies evaluating the association between PRAL and NEAP with blood pressure and hypertension and markers of glucose hemostasis among adults. Design and setting: In a systematic search from PubMed, SCOPUS, Web of Sciences and Cochrane electronic databases up to May 2019, relevant studies were included in the literature review. Observational studies evaluating the association between PRAL and NEAP with the SBP, DBP, fasting blood glucose, insulin, HOMA-IR, HbA1 C, HOMA-β and QUICKI and also prevalence or odds of hypertension, hyperglycemia and diabetes were included. Results: Total number of studies included in the 14 separate meta-analyses were as follows: Mean (SD) of SBP (PRAL, n=12; NEAP, n=6), mean (SD) of DBP (PRAL, n=8; NEAP, n=3), mean (SD) of FBS (PRAL, n=12; NEAP, n=5), mean (SD) of HbA1 C (PRAL, n=6; NEAP, n=4), mean (SD) of HOMA-IR (PRAL, n=7), mean (SD) of insulin (PRAL, n=7; NEAP, n=2); OR of T2 DM (PRAL, n =8; NEAP; n =6), HTN prevalence (PRAL, n=9; NEAP, n=9), T2 DM prevalence (PRAL, n=7; NEAP, n=6). According to our results, being in the highest PRAL categories was associated with higher SBP (WMD = 0.98; CI: 0.51, 1.45; P <0.001), DBP (WMD=0.61; CI: 0.089, 1.135; P=0.022), insulin (WMD=-0.235, CI: 0.070, 0.400; P = 0.005), higher odds of diabetes (OR= 1.19; CI: 1.092, 1.311; P <0.001), higher prevalence of T2 DM (13% and 11 % in highest versus lowest category). While, being in the highest category of NEAP was only associated with higher odds of diabetes (OR=1.22; CI: 1.14, 1.31, P <0.001). In subgroup analysis for finding the possible source of heterogeneity, the continent, dietary assessment tool, sample size and gender were the potent sources of heterogeneity. No association between PRAL and NEAP with HbA1 C, HOMA-IR was reported. Conclusions: In the current meta-analysis, we found potent negative effects of high dietary acid load particularly higher PRAL scores cardio-metabolic risk factors. Therefore, lower acidogenic food ingredients in the diets are suggested for prevention of cardiovascular risk factors and diabetes.
Int J Clin Pract. 2020;74:e13471. wileyonlinelibrary.com/journal/ijcp  
|
 1 of 16
https://doi.org/10.1111/ijcp.13471
© 2019 John Wiley & Sons Ltd
Received:31Octob er2019 
|
Revised:7D ecember2019 
|
Accepted:24December2019
DOI:10.1111/ijcp.13471

Dietary acid load, blood pressure, fasting blood sugar and
biomarkers of insulin resistance among adults: Findings from
an updated systematic review and meta-analysis
Parvin Dehghan1| Mahdieh Abbasalizad Farhangi2
1DrugAp pliedRe searchCenter,Tabriz
UniversityofMe dicalS cience s,Tabriz,Ir an
2ResearchCenterforEviden ceBased
Medicine,Heal thManagementan dSafet y
Promoti onResearchInstitute,Tabriz
UniversityofMe dicalS cience s,Tabriz,Ir an
Correspondence
MahdiehAbbas alizadFarhangi ,Attar
Neyshabouri,DaneshgahBlv,Tabriz,Iran.
Email:abbasalizad_m@yahoo.com
Funding information
TabrizUniver sityofM edica lSciences,
Grant/AwardNumber:IR.TBZMED.VCR.
REC.1398.140
Abstract
Objectives: Thereisnoclearsummarisedreportoftheassociationbetweendietary
acidloadcomponentsincludingpotentialrenalacidload(PRAL)andnet-endogenous
acidproduction(NEAP)withcardiometabolicriskfactors.Inthecurrentmeta-analy-
sis,weaimedtosystematicallyreviewandsummarisetheeligibleobservationalstud-
ies evaluatin g the association bet ween PRAL and NE AP with blood pre ssure and
hypertensionandmarkersofglucosehaemostasisamongadults.
Inasystematicsearch from PubMed,SCOPUS,WebofSciences
andCochraneelectronicdatabasesuptoMay2019,relevantstudieswereincludedin
theliteraturereview.ObservationalstudiesevaluatingtheassociationbetweenPRAL
andNEAPwiththesystolicbloodpressure(SBP),diastolicbloodpressure(DBP),fasting
bloodglucose,insulin,homeostaticmodelassessmentofinsulinresistance(HOMA-IR),
haemoglobinA1C(HbA1C),HOMA-βandquantit at iveinsulincheckindex(QU ICKI)and
alsoprevalenceoroddsofhypertension,hyperglycaemiaanddiabeteswereincluded.
Results: Totalnumberofstudiesincludedinthe14separatemeta-analyseswereas
follows: Mean(SD)of SBP (PR AL,n = 12; NEAP,n = 6), mean (SD) of DBP(PRAL,
n=8;NEAP,n=3),mean(SD)ofFBS(PRAL,n=12;NEAP,n=5),mean(SD)ofHbA1C
(PRAL,n=6;NEAP,n=4),mean(SD)ofHOMA-IR(PRAL,n=7),mean(SD)ofinsulin
(PRAL,n=7;NEAP,n=2);ORoftype2diabetesmellitus(T2DM)(PRAL,n=8;NEAP;
n=6),HTNprevalence(PRAL,n=9; NEAP,n=9),T2DM prevalence(PRAL,n= 7;
NEAP,n=6).Accordingtoourresults,beinginthehighestPRALcategorieswasas-
sociatedwithhigherSBP(WMD=0.98;CI:0.51,1.45;P<.001),DBP(WMD=0.61;
CI:0.089,1.135;P=.022),insulin(WMD=−0.235,CI:0.070,0.40 0;P=.005),higher
oddsofdiabetes(OR=1.19;CI:1.092,1.311;P<.001),higherprevalenceofT2DM
(13%and11%inhighestvslowestcategory).While,beinginthehighestcategoryof
NEAP was onlyassociated withhigher odds of diabetes(OR=1.22; CI: 1.14,1.31,
P<.001).Insubgroupanalysis forfindingthepossiblesourceofheterogeneity,the
continent,dietar yassessmenttool,samplesizeandgenderwerethepotentsources
ofheterogeneity.NoassociationbetweenPR AL and NEAPwithHbA1C,HOMA-IR
was reported.
2 of 16 
|
   DEHGHAN AND ABB ASALI ZAD FARH ANGI
|
Metabolicriskfactorsincludingraisedbloodpressure,hyperglycae-
mia and insulin resistance are the most important leading causes of
numerousnon-communicablediseases(NCDs)includingcardiovas-
culardisease(CVD),t ype2diabetesmellitus(T2DM)andmetabolic
syndrome,killingmorethan41millionpeopleeachyearequivalent
to 71% of deaths globally.1Thediseasesarearesultofthecombi-
nation ofgenetic,environmentalandbehaviouralrisk factors;diet
is an important changeable risk factor anddietar y modifications
could substantially reduce the disease occurrence and mortality.2
Acid-base balanceistightlyregulatedinhumanand evenitsminor
changeswouldleadtodeleteriouseffectsincludingchronickidney
disease an d its progres sion, impaire d bone homoeos tasis and in-
sulin resistance.3Recently,theroleofdiet-relatedlow-levelmeta-
bolic acidosis in the pathogenesis of metabolic disorders including
metabo lic syndrome, di abetes and CVDs h as been suggest ed by
numerousresearcheshighlightingthetriggeringeffectsofWestern
dietary pattern.4 -7 Several potential underlying mechanisms for the
association between dietary acid load and metabolic disorders have
also been suggested; it has been mentioned that the association of
the higher dietar y acid load with hypertension and insulin resist-
anceisaresultofexcessiveurinar yexecrationofcalciumandmag-
nesium,increasedcortisolandreducedurinarycitrateexcretions.5,6
Reducedinsulinsensitivity,8 insulin secretion9 and reduced insulin
binding to its receptors because of impaired acid-base balance10
are also several otherpossiblesuggested mechanisms. A dietrich
inacidogenicfoodsincludingmeat,fish,cheeseandlowinalkaline
foods including fruits and vegetables are the potential cause of en-
dogenous acid production and elevated dietary acid load.11Infact,
dietisresponsibleformorethan10-folddif ferenceinendogenous
acid production in different individuals.4 The diet-induced acid
loadisestimatedaccordingtopotentialrenalacidload(PR AL)and
net-endogenous acid production (NE AP) according to information
aboutingestedprotein,potassium,calcium,phosphorousandmag-
nesium.12ThePRALcalculationisbasedontheformulafirstsug-
gested by Remer et al13asfol low s:PRAL (m Eq/d )= 0.4 8 88×pr otein
intake (g/d)+ 0.0366 × phosphorus(mg/d) − 0.0205 × potassium
(mg/d) − 0.0125 × cal cium (mg/d) − 0.0263 × mag nesium (mg/d).
While NE AP is calcu lated based o n the Frasset to et al sugge sted
formula14as:EstimatedNEAP(mEq/d)=(54.5×proteinintake
[g/d] ÷ potas sium intake [mEq/d]) − 10.2. The se calculation s are
validated according to the estimated equivalent s in the 24 hours
urine measurement.13,14 Numerous studies are available reporting
the assoc iation betwee n metabolic risk f actors with di etary acid
load as eitherPRAL or NE AP or both of them.7,12,15-20 Theresults
of these studies are inconsistence; several reported the positive as-
sociationbetween metabolicriskfactors5,6, 21 while others not.4,22
Accordingtoourliteraturereview,onlyonemeta-analysiswascar-
ried out evaluating the association bet ween dietary acid load and
riskofT2DMwithliteraturereviewuptoSeptember2017.23While
no study is available summarising the association between dietary
acidload components(eg PR AL orNEAP) withmetabolicrisk fac-
tors. Th erefore, in the cu rrent meta-anal ysis we summarise d the
results of observational studies evaluated the association between
PRAL ofNEAPwithsystolicanddiastolicblood pressure(SBPand
DBP),serumglucose,insulin,HbA1C, markersof insulinresistance
including homoeostatic model assessment of insulin resistance
(HOMA-IR),hypertension(HTN),hyperglyc aemia,prevalenceofdi-
abet es ,hype r te nsionan do ddsofdiab et esinanupd at edsys te mat ic
reviewandmeta-analysis.
|
The Preferred Reporting Items for Systematic Reviews and Meta-
Analyses(PRISMA)was used forwriting this repor t.24Thecompleted
Conclusions: In the current meta-analysis, we found potent negative effects of
highdietary acidload particularly higherPRALscores cardiometabolic risk factors.
Therefore, loweracidogenicfoodingredientsinthedietsaresuggestedforthepre-
ventionofcardiovascularriskfactorsanddiabetes.
Review criteria
The PubMed, SCOPUS , Web of Sciences and Cochrane
electronic databases were systematically searched from
theirinceptionuptoMay2019identifyallstudiesexamin-
ing the associations between dietary acid load and it s com-
ponentswithcardiometabolicriskfactorsincluding blood
pressure,markersofglucosehomoeostasisandriskoftype
2diabetes mellitus (T2DM).Key termsforinsearch strat-
egy are listed in the Material and Methods section.
Message for the clinic
• The current work evaluated the association between
dietar y acid load, blo od pressure, fas ting blood suga r
and biomarkers of insulin resistanceamong adults ina
systematicreviewandmeta-analysis.
• Higher dietary acidloadwasassociatedwith increased
ris kofcardiometab olicriskf actorsincludingb lo od pr es-
sure,bloodglucose,insulinandhigherriskofT2DM.
• Dietar yacidloadcouldbeassumedasaprognosticdiet-
relatedriskfactorforcardiovascularanddiabetesrisk.
    
|
 3 of 16
DEHGHA N AND ABBA SALIZ AD FARHAN GI
PRISMA checklist is provided in the Supporting Information (Table
S1). The 12-item PRISMA ex tension check list was used to writ e the
Abstract.25
|
Wep er f or medas ys temat ic se arc hu si ng Pu bMe d,SCOPUS, Web
of Sciences and Cochrane ele ctronic databases to the s tudies
evaluated the association bet ween dietary acid load and hyper-
tension an d markers of gluco se homoeos tasis includ ing fasting
serumglucose,insulin,HOMA-IR,HOMA-β,HbA1C,quantitative
in s uli n che c k ind e x(Q U I CKI) andh y per g l ycae m i aup toM a y20 19.
Nolanguagerestrictionwasapplied.Moreover,hand-searching
fromreferencelistsof all relevantpapers, previousreviewsand
meta-analyses wasperformed tocoverall relevantpublications.
Strateg yofsearchwascreatedusingacombinationoftheMeSH
(Medical Subject Headings) terms from the PubMed database
and free te xt words were used. Fo r each electro nic database,
search strategy was adopted.The PICO (patient s, intervention,
comparatorand outcome) for studies' selection is presented in
Table1.ThePICOisoneofthemostwidelyusedmodelsoffor-
mulating and structuring clinical questions in connection with
evidence syntheses. The Cochrane Handbook for Systematic
Reviews spe cifies using PICO as a m odel for developin g a re-
view ques tion, thus ensu ring that the relev ant component s of
the question are well defined.26 ,27Theprotocolofthecurrent
study has beenregistered in PROSPERO withtheidentification
numberofCRD42019122272.Moreover,thestudyprotocolhas
alsob eenr eg is te redb yt heet hics comm it te eo fTab rizU ni ve rs it y
of Medical Sciences (Registration number: IR .TBZMED.VCR.
REC.1398 .140).
|
included studies
Oursearchobtained658 potentiallyrelevantarticlesfromPubMed,
SCOPUS, Web of Sciences and Cochrane electronic databases.
Accordingly,156manuscriptswere remained forfulltextscreening
after re moving duplicate s and excluded accord ing to title and ab-
strac t reading. Totally, 124 manus cripts were excl uded becaus e of
theirirrelevantsubject,inappropriatedesign,reviewsincludingmeta-
analysis orsystematic reviews, conferences and seminars, notrele-
vantagegroups,notevaluatingthestudiedparametersorthetarget
association between them or have a design other than observational
designs.Accordingly32manuscriptswereincludedinthesystematic
review.Figure1presentstheflowchar tofthestudywhileandTable
S2representsthedetailsofexcludedstudiesaf terscreening.
|
Inthecurrentsystematicreviewandmet a-analysis,obse rvationalstud-
ieswiththedesignofcross-sectional,case-controlorcohortevaluating
the assoc iation betwe en dietar y acid load and hyp ertension , systolic
anddiastolicbloodpressure,serumorplasma glucose,insulin, HbA1C,
HOMA-I R, HOM A-β,Q UICKI were in cluded. Accor ding to our set of
parameters, we conducted 14 meta-analyses. Meta-analysisincluded
thestudies evaluatedtheoddsratio(OR), relativerisk(RR),prevalence
ormean±SDoftar ge tv ariab le in th eh ighes tv sl ow es tdiet ary acidloa d
categori es. For the sea rch purpos e, we used MESH (M edical Su bject
Heading) and non-MESH keywords including the following: (‘dietary
acid load’ OR ‘dietar y acid-based load’) AND (‘glucose’ OR ‘fasting
serum glucose’OR ‘fasting bloodglucose’OR‘fastingbloodsugar’ OR
‘bloodsugar’OR‘insulin’OR‘insulinresistance’OR‘homeostaticmodel
assessmentofinsulinresistance’OR‘HOMA-IR’OR‘quantit ativeinsulin
checksensitivity’OR‘QUICKI’OR‘insulinsensitivity’OR‘hypertension’
OR ‘systoli c blood pre ssure’ OR ‘diastol ic blood pre ssure’ OR ‘cardi o-
vascularriskfactors’OR‘cardiometabolicriskfactors’OR‘HbA1C’OR
‘glycosylat ed hemoglobin’ OR ‘hyp erglycemia’ OR ‘obesit y’ OR ‘BMI’
OR‘lipidprofile’(TableS3).Thereviewedliteratureswereinsertedinto
the EndNot e software (ve rsion X8, for Wi ndows, Thoms on Reuters).
Consequentlyretrievedcitationsweremerged,duplicationswereelimi-
natedandthereviewprocesshas been facilitated.Titlesandabstracts
ofallar ti cl eshadbeenev al ua te dindepen de nt lybyt wore vi ewers(MAF
and PD). Articles not meeting the eligibility criteria were excluded.
Moreover,thereferencelistsofrelevantreviewar ticlewerealsoevalu-
atedtobe includedasadditionalstudies.Full-tex ts ofrelevant articles
wer er et riev ed ifme etth ee ligibilitycr it er ia,andwe re re -e va lu at ed .A ny
disagreements were discussed and resolved by consensus.
|
The methodological quality assessment of the included papers
wasperformedbya nine-starNewcastle-Ottawascale(NOS)for
ThePICOcriteriausedforthepresentsystematic
review
 Description
Participants General adult population
Exposure
(interventions)
Highestcategor yofdiet aryacidload
representedbyhigherscoresofPRALorNEAP
Comparisons Lowestcategoryofdietar yacidload
representedbylowerscoresofPRALorNEAP
Outcome SBP,DBP,FBS,insulin,HOMA-IR,HOMA-β,
HbA1C,QUICKIandprevalenceoroddsof
hypertension,hyperglycemia,diabetes
Study design Obser vationalstudieswitht hedesignofcross-
sectional,casecontrolorcohort
Abbreviations:DBP,diastolicbloodpressure;FBS,fastingbloodsugar;
HbA1C,haemoglobinA1C;HOMA-IR,homeostaticmodelassessmentof
insulinresistance;NEAP,net-endogenousacidproduction;PICO,patients,
intervention,comparatorandoutcome;PR AL,potentialrenalacidload;
QUICKI,quantitativeinsulincheckindex;SBP,systolicbloodpressure.
4 of 16 
|
   DEHGHAN AND ABB ASALI ZAD FARH ANGI
quality assessm ent of the cross-sectional, case-control and co-
hortstudies.The9-pointNOS scalehas scoringrangesfrom0 to
9and is categorised intoselection, comparability and ascertain-
ingofoutcome.Studieswithequalormorethan8starswerecat-
egorised as high quality.28Moreover,theAgencyforHealthcare
Researc h and Quality (A HRQ) checklis t was used to assess th e
qualityofcross-sectionalstudies.29Therewerenoqualitycriteria
forinclusio nofthestudiesinthecurrentmeta-analysis.Theitems
werescored ‘1’if the answerwas‘ Yes’,and ‘0’ if the answerwas
‘No’or‘Unclear ’.Thefinalqualit yassessmentsscoreswereasfol-
lows: low quality = 0-3; moderate quality = 4-7;high quality ≥8.
The det ails of quality s coring for all of t he included s tudies are
provided inTablesS4andS5forcohortandcross-sec tionalstud-
ies,respectively.
|
Data were co llected ac cording to a st andard dat a extrac tion form
gatheringtheinformationabouttheauthorsname,publicationyear,
geograp hical area , study desi gn, parti cipants age r ange, mean age
andnumberofcaseandcontrolgroup,dietar yassessmenttool,set-
ting,gender,samplesize,informationabouttheadjustmentforpos-
sibleconfounders,themainfindingsandestimatesofassociations.
Flowdiagramofstudyscreeningandselectionprocess
Records identified through
database searching (n = 656)
Additional records from manual
search of references or other
sources (n = 2)
Relevant papers included in the PRAL meta-analyses:
a. OR of diabetes (n = 8)
b. Diabetes prevalence (n = 7)
c. HTN prevalence (n = 9)
d. CVD prevalence (n = 5)
e. Mean (SD) of SBP and DII (n = 12)
f. Mean (SD) of DBP and DII (n = 8)
g. Mean (SD) of FBS and DII (n = 12)
h. Mean (SD) of HbA1C and DII (n = 6)
i. Mean (SD) of Insulin and DII (n = 7)
j. Mean (SD) of HOMA-IR and DII (n = 7)
Relevant papers included in the NEAP meta-
analyses:
k. OR of diabetes (n = 6)
l. Diabetes prevalence (n = 6)
m. HTN prevalence (n = 9)
n. CVD prevalence (n = 5)
o. Mean (SD) of SBP and DII (n = 3)
p. Mean (SD) of DBP and DII (n = 3)
q. Mean (SD) of FBS and DII (n = 5)
r. Mean (SD) of HbA1C and DII (n = 4)
s. Mean (SD) of Insulin and DII (n = 2)
Records full text screened
(n = 156)
Articles retrieved for detailed
assessment (n = 32)
Records excluded for the following
reasons:
1. Irrelevant (73 studies)
2. Not evaluating the target study
parameters (13studies)
3. Not evaluated the target relationships
(20 studies)
3. Pregnant women or children (five
studies)
4. Other designs (e.g. RCT, animal
studies) (three studies)
5. Review (10 studies)
Duplicate removal (n = 494)
    
|
 5 of 16
DEHGHA N AND ABBA SALIZ AD FARHAN GI
|
Inthecurrent meta-analysis,threemeta-analysis approaches were
used: the association between odds of diabetes and dietary acid
load wasanalysed by estimating the ORs and 95% confidence in-
tervals(CIs)bycalculating the Ln of ORsand its standarderror of
mean (s.e.) as the effect size of the meta-analysis.Pooled OR (and
95%CI)wasestimatedusingaweightedrandomeffect model(the
DerSimonian-Laird approach). The comparison of the continu-
ous varia bles includ ing SBP,DB P, FBS, insuli n, HOMA-IR , HbA1C,
QUICKI,HOMA-β between highest vs lowest category of dietary
acid load as the reference group was performed by measuring the
unsta ndardised mea n differences a s the effect si ze calculated by
pooled estimateofweightedmeandifference( WMD)with95%CI,
andthefixedeffectsandrandomeffectsmodels.Theprevalenceof
diabetes and HTNinhighestvslowestdietar yacidloadcategories
was performed by re-calculating the proportions of interest from
therelevantnumeratoranddenominator.Theoverallproportionsof
interestwerederivedusingmeta-analysistechniquesby metaprop
command i n the STATAa nd presente d along with 95% CIs cal cu-
latedusinganormalapproximation.Cochran'sQtestandI-squared
testwereusedtoidentifybetween-studyheterogeneity;I2 ˂25% ,
noheterogeneity;I2=25%-50%,moderateheterogeneity;I2>50%
large heterogeneity.30Theheterogeneitywasconsideredsignificant
ife it he rtheQstatistichadP<.1 orI2>50% .S ensitivity an al ysiswas
usedtoexplore the extenttowhichinferencesmightdependon a
particular study or a number of publications. Subgroup analysis was
performedtoidentifypossiblesourcesofheterogeneity,ifrequired.
Begg's Funnel plot swereassessedto evaluatethepublicationbias
followed by the Egger's regression asymmetry test andBegg's ad-
justed rank correlationfor formal statistical assessment ofFunnel
plot asym metry. The dat a were analysed u sing STATA version 13
(S TATACor p),and P-valueslessthan.05we reconsideredass t atis ti-
cally significant.
|
|

hypertension associations
Table 2 presents the summary of systematically reviewed stud-
ies evalua ted the associat ion betwee n dietary a cid load (eg PRA L
or NEAP), blood pressure and hypertension prevalence. Totally,
20 studies repor ted the association between HTN, blood pres-
sureand PRALorNEAP among the systematically reviewedlitera-
ture.4,5,7,12,1 5,18,19,22 ,31-42InthestudybyAkteretal18 evaluating the
associationbetweendietaryacidloadandprevalenceofHTNinthe
FurukawaNutritionandHealthStudytheoddsofHTNinsubjectsin
thehighesttertileofPR ALandNE APwas31%and40%morethan
individ uals in lowest ter tile (PR AL; OR: 1.31; CI: 1. 01-1.70 ; NEAP
OR:1.4 0;CI:1.08-1.82)among2028workingJapanesepopulation.
Several other studies also reported similar results of higher preva-
le n c e o f H T N 1 2,3 4, 41o r h i g h erS B P a n d D BPv a l u e s i nhig h e s t vslowe s t
PRALorNEAPgroupings.1 2, 18 ,3 9,4 0 Only one study reported inverse
associationbetween HTN prevalence among NEAP quartiles4 and
several other studies found no difference.7,15,19,22,31-33,35-38,42Inthe
data anal ysis of Rotterd am study by Eng berink et al ,33 SBP in the
highest tertile of PRAL was significantly higher than the lowest.
While,nosignificantdifferencein themeanvalues ofDBPwas ob-
served.InthestudybyKiefte-deJong34higherprevalenceof HTN
inhighestvslowestquintileofNEAPamongNHS,NHS-IIandHPFS
cohorts was reported.
|

markers of glycaemic status and risk of diabetes
associations
The summa ry of the studi es' character istics evaluate d the asso-
ciation between PR AL, NEAP and markers of glucose homoeo-
stasis, insulin resistance and the prevalence of T2DM are also
presente d in Table 2. The associa tion betwee n dietary ac id load
and glyca emic markers, ins ulin resistanc e and the prevalenc e of
diabetes or the odds of diabetes has been reported in 22 stud-
ies.4,6,7,12,15 ,17-22,31-35,37- 42I nt h e s t ud y b yA k t e r et a l P R A La n d N E AP
scores werepositively associated withHOMA-IR values (P-trend:
.045 and . 03, respec tively). NEAP w as also positive ly associated
withHOMA-β values (P-trend:.03).NoassociationbetweenPRAL,
NEAP and FBS orHbA1Cwasreported.6 Similar results indicating
higher HOMA-IRandHbA1Cvalues,18,32 higher insulin concentra-
tions17 and higher odds of insulin resistance39 in top categories of
PRALorNEAPvslowestcategorieshasalsobeenreportedinfour
ot her s tud i es. Int h es t u dyb yA k t er,6no ass o cia t io n bet w eenPR AL ,
NEAP and FBSorHbA1Cwasrepor ted.Similarfindingswerealso
observed in several other studies.7,12,17,22,31,35,37,39,40,42Akteretal6
repor tedthatmeninthehighestquartilesofPRALhad61%higher
odds of developing diabetes compared with the lowest quartile;
while no ass ociation wa s observe d among women . Moreover, no
associationwasreportedamongNEAP scoresandoddsofT2DM.
Similarly,inthestudybyFagherazzi,15hazardratio(HR)forthein-
cidence ofT2DM according to the PR AL and NEAP categories in
the E3N-EPICcohortstudy wasOR: 1.56;CI: 1.29,1.90 and OR:
1.57;CI :1.30,1.89,respectively(P<.001).Inapopulation-based
study by Gæde et al17inDenmark,womeninthefifthquintileof
PRAL were morelikelytodevelop diabetesafter 15 years follow-
up(OR=1.10;CI:0.98,1.25;P=.02).Whilenoassociationamong
men was reported. Similar findings of the higher prevalence of
diabetes or higher odds of diabetes were reported in two other
studies.37, 41InthestudybyKiefte-deJong,34theoddsofT2DMin
highestquintil eofNEAPandPRALwerehighercomparedwitht he
lowest in NHS and NHSIIcohortswhile in the HPFS study these
associations were not significant. Other reports found no associa-
tions bet ween odds or prev alence of T2DM and PR AL or NEAP
6 of 16 
|
   DEHGHAN AND ABB ASALI ZAD FARH ANGI
Characteristicsofstudiesincludedinthesystematicreviewowingtoreporttheassociationbetweendiet aryacidload,hypertension,bloodpressure,markersofglucose
homoeostasisandriskofdiabetes
First author/
country 

design  Age range

size/
population

of cases/
controls
Dietary assessment/
 Results Adjusted variables 
Akter5/Japan 2015 Cross-
sectional
Both 18-70y 2028/
working
population
676/676 BDHQ/PRAL,NEAP Th eoddsofdevelopin gHTNinhig hestvs
lowestte rtil eofPRA LandNEAPwere
significant(PR ALOR :1.31;CI:1.01-1.70)
(NEAPO R:1.40;CI:1.0 8-1.82)
Age,sex,work-rel atedPA,
leisure -timePA,smoking,alcoh ol
consump tion,nightorrot ating
shiftwo rk,parentalhistor yof
diabete s,BMI
8
Akter6/Japan 2016 Cross-
sectional
Both 19-69y 1732 433/433 DHQ/PRAL ,NEAP PRA LandNE APwerepositive lyassociated
withHOM A-IRscore(P-trend :.045an d
.03resp ecti vely).NE APwasa lsoposi tively
associa tedwithH OMA-β sco re (P-trend:
.03).Noas sociat ionbet weenPR AL ,NEAP
andFBSorHbA1Cwasreported.
Age,sex,PA,smo king,a lcohol,
shiftwo rk,FHD,B MI
8
Akter21/Japan 2016 Cross-
sectional
Men 45-75y 27808 6952/6952 147-itemFFQ/
PRAL,NEAP
Themenint hehighestqua rtilesofPRAL
had61%highero ddsofdeve loping
diabete scomparedwitht helowes t.NE AP
wasnotass ociatedwithoddsofT2DM.
OR:1.61(CI=1.16,2 .24)P=.05
Age,BMI,HTN,s mokin g,alcohol,
PA,FHD,ene rgy,foo dgroups
intake
9
Akter21/Japan 2016 Cross-
sectional
Women 45-75y 36851 9213/9213 147-itemFFQ/NEAP N o signif icant associat ion bet ween di etar y
acidloa dandodd sofT2DMwasobserved.
NEAPwa snotasso ciatedwithoddsof
T2DM.OR:1 .08(CI=0.72,1.62)P=.7
Age,BMI,HTN,s mokin g,alcohol,
PA,FHD,ene rgy,foo dgroups
intake
9
Akter2/Japan 2017 Cross-
sectional
Both 45-75y 92478 23 120/
23118
147-itemFFQ/NEAP Beingatthehighes tPRA Lquar tile
was associated wi th highe r history of
dyslipidemia (P<.001)
Age,sex,publichealt hcenter
area,BMI,smoking,alcoholuse,
PA,histo ryofHTN,diabetes,
dyslipidemia,occupation,and
energ yintake .
9
Amodu4/USA 2013 Cross-
sectional
Both ≥20y 13 2 74 2490/2477 24HR/NEAP T heprevalenceofH TNandT2DMinlowest
quart ileofNE APwassig nific antlyhigher
than the highes t (P<.001) .
Age,sex,eGFR ,race/ethnicit y,
BMI,poverty,educati on,smo king
status,diure ticuse,T2DM,HTN ,
CVD,Alb–Crrati o,albumin,CRP
6
Bahadoran31/Iran 2015 Cross-
sectional
Both 19-70y 5620 140 5/140 5 147-itemFFQ/PRAL Nosignifica ntdifferencei ntheSBP,DBP,
FBSandth epreval enceofHTNand
hyperglycaemia between quartiles was
reported.
Age,sex,anden ergyi ntake; 6
Banerjee32/USA 2018 Cross-
sectional
Both 21-84y 3257 1074/1075 FFQ HOMA-I Rinthehig hestte rtil ewas
significantly higher. No significant
differenceint hepreva lenceofT2DMand
HTNwasreporte d.
Age,sex,T2DM,e ducat ion,
income,religio n,BMI,insulin
resist ance,smoking,HTN,C VD,
energ yintake
6
Engberink33/
Netherland
2012 Cross-
sectional
baseline
data
Both ≥55y 2241/
general
population
747/747 FFQ SBPinthehi ghestt ertileofPRA Lwas
significantly higher. No significant
differenceint hepreva lenceofT2D Mand
themeanvaluesofDBPwasob served.
Age,sex,BMI,s mokin g,educ ation ,
intakesofenerg y,alcohol,fibre,
7
(Continues)
    
|
 7 of 16
DEHGHA N AND ABBA SALIZ AD FARHAN GI
First author/
country 

design  Age range

size/
population

of cases/
controls
Dietary assessment/
 Results Adjusted variables 
Fagherazzi15/
France
2014 Cohort-
baseline
data for
HTN
Follow-up
data for
HRof
diabetes
incidence
Women 40-65y 664 85/
general
population
16621/
16622
208-ite mDHQ HRfortheasso ciatio nbetwe enPRALand
NEAPwi thincidentT2DMwere(OR:
1.56;CI:1 .29,1.90)and(OR:1.57;CI :
1.30,1 .89)resp ecti vely(P<.0 01).The
prevalenceofHTNw asnotsign ificantly
different at baseline.
Age,education,smoking,PA ,
HTN,HCL ,T2DM ,alcoho lintake,
intakeofomega3FA,CHO,
energ y,coffee,sugar,ASB ,fruits,
vegetab le,pro cessedmeat,
dietar ypat terns,BMI
8
Gæde17/Denmark 2018 Cohort-
follow-up
data for
HRof
diabetes
incidence
Men 50-6 4y 25808/
general
population
5162 /516 2 192-I te mFF Q/P RA L TheHRforincid enceofdia betesaccordin g
toPRALscorequi ntileswasnot
significantly different between highest vs
lowest.
BMI,fat,ener gy,PACHOintake,
smoking,
8
Gæde17/Denmark 2018 Cohort-
follow-up
data for
HRof
diabetes
incidence
Women 50-64y 288 43/
general
population
5769/5 769 192- Ite mFFQ/P RAL Womeni nthefif thqui ntileofPR ALwer e
morelikelytodevel opdiabetesafter
15yearsfo llow-up(O R=1.10;CI:0.98,
1.25;P=.02)
BMI,fat,ener gy,PA,CHOi ntake,
smoking,
8
Gæde17/Denmark 2018 Cross-
sectional
(Inter99)
Men 30-6 0y 2842/
general
population
569/569 FFQ/PRAL InsulinandHOMA-IRweresignifica ntly
higherintopquint ilevslowe st.Glucose,
HbA1Cnotdiffe rent.
Age,BMI,smok ing,PA,fat,en ergy,
carbo hydrateintake
8
Gæde17/Denmark 2018 Cross-
sectional
(Inter99)
Women 30-60y 27 90/
general
population
558/558 FFQ/PR AL SignificantlyhigherinsulinandlowerHBA1C
in highest quint ile vs lowe st quin tile. No
significantdifferenceinglucose,HOMA-IR
Age,BMI,smok ing,PA,fat,en ergy,
CHOinta ke
8
Haghighatdoost18/
Iran
2015 Cross-
sectional
Both Mena age
66.8
547/general
population
274/273 FFQ/PRAL FBSwassignificantl yloweran dHbA1C,SBP
significantl y higher in highe st vs lowe st
PRALcategories.
Intakeofprotein,f at,cholesterol,
fibre,w holerefinedgrains,fruit ,
meat,potassium,phosphorus,
beans,nuts,vegetab le,BMI
7
Han12/Korea 2016 Cross-
sectional
Both 40-79y 11601/
general
population
4202/3859 24HR/PR AL S BP,DBPandthep revale nceofHTNa nd
in highest tertile was signifi cantl y higher
thanthelowest .FSG,insulin,HOMA-IR
were not different.
Age,sex,PA,familyhis toryof
cardioa ndcerebro-vascular
disease,T2DM,HTN,LDL ,eGFR ,
urinepH
7
Ikizler19/USA 2016 Cross-
sectional
Both Mean age
60.8
63/general
population
21/21 3-daypro spec tive
FD/NEA P
FBS,insulin,SB P,DBPwerenone
significantl y higher in highe st vs lowe st
NEAPtertile.
Age,ra ce,sex,BMI,eG FR,us eof
diuretics
8
Iwase7/Japan 2015 Cross-
sectional
Both Mean aged
65.7±9.3
149/general
population
74/7 5 DHQ/PRAL Nosignifica ntdifferenceinSBP,HbA1Cwas
observed.
Age,sex,seru muricacidand
creatinine,tot alener gyint ake,
CHOandso diumint ake.
8
Continued
(Continues)
8 of 16 
|
   DEHGHAN AND ABB ASALI ZAD FARH ANGI
Continued
(Continues)
First author/
country 

design  Age range

size/
population

of cases/
controls
Dietary assessment/
 Results Adjusted variables 
Iwase7/Japan 2015 Cross-
sectional
Both Mean aged
65.7±9.3
149/general
population
74/7 5 DHQ/NEA P Nosignifican tdiffe renceinS BP,HbA1Cwas
observed.
Age,sex,seru muricacidand
creatinine,tot alener gy,CHOand
sodiumintake.
8
Jia20/Sweden 2015 Cross-
sectional
Both ≥70y 861/general
population
215/215 7-dayFR/NE AP No sign ifica nt diff erence i n the prevalence
ofdiabetesbetweenNE APquar tile swas
observed.
Sex,BMI,PA,energyintake,
alcoholintake,smokin g,eGFR
education.
7
Kieft e-deJon g34/
USA
2017 Cohort-
NHS-
median
follow-up
data
Both 30-55y 121 70 0/
general
population
14 974 /
11 449
FFQ/NEA P,PRAL Higherpreva lenceofHT Ninhighe stvs
lowestquintileofNEAPwasrepor ted.T he
oddsofT2DMinhighestquint ileofNE AP
andPR ALwerehighercom paredwiththe
lowest.
Age,energyintake,BMI,FHD,
menopa usalstatus,HTNand
HCL,sm oking ,alcoholintake ,
PA,glycaemiclo ad,AHEIindex ,
western dietar y pattern
9
Kieft e-deJon g34/
USA
2017 Cohort-
NHS2-
median
follow-up
data
Women 25-42y 116430/
general
population
13878/
18030
FFQ/NEA P,PRAL Higherpreva lenceofHT Ninhighe stvs
lowestquintileofNEAPwasrepor ted.T he
oddsofT2DMinhighestquint ileofNE AP
andPR ALwerehighercom paredwiththe
lowest.
Age,energyintake,BMI,FHD,
menopa usalstatus,HTNand
HCL,sm oking ,alcoholintake ,
PA,glycaemiclo ad,AHEIindex ,
western dietar y pattern
9
Kieft e-deJon g34/
USA
2017 Cohort-
HPFS-
median
follow-up
data
Men 40-75y 51529/
general
population
7472 /64 28 FFQ/NEAP,PRA L Higherp revale nceofHTNinhighes tvs
lowestquintileofNEAPwasrepor ted.T he
oddsofT2DMinhighestquint ileofNE AP
andPR ALwereno n-signi ficantlyhigher
than the lowest.
Age,energyintake,BMI,FHD,
HTNmeno pausa lstatus,HCL ,
smokin g,alcoholinta ke,PA,
glycae micload,AHEIin dex,
western dietar y pattern
9
Ko35/Korea 2 017 Cross-
sectional
Both ≥65y 136 9/
general
population
342/343 FFQ/eNE AP Nosignif icantd ifferenceinFB S,SBP,DBP,
theprev alenceofd iabete sandHTN
betwe enlowes tandhigh este-NEAP
quartiles was reported.
Age,sex,Diet aryc aloricand
sodium;B MI,smoking,education,
PA;HTN,T2DM,HLP,CVD
7
Krupp36/Ger many 2018 Cross-
sectional
Both 18-79y 7115/
general
population
1358/1356 FFQ/PR AL Nosignifica ntdifferenceb etwee nSBPand
DBPwasob served.Theprevalenceof
HTNwaslowerinfif thquintilecompared
with the first.
Age,sex,BMI,B P,fastingdu ration,
eGFR,FBS,TC,s mokin g,natrium
excretion,alcoholuse,diuretics,
beta-blockers
8
Kucharska37/
Poland
2018 Cross-
sectional
Men ≥20y 276 0/
general
population
920/920 24HR/NEAP No significant di fference in th e preval ence
ofHTNandtheSBPandDBPvalu es
betwe enNEA Ptertileswasrepor ted.
Age,WC 5
Kucharska37/
Poland
2018 Cross-
sectional
Women ≥20y 34 0 9/
general
population
1136/1137 24HR/NEAP Nosignif icantdifferenceinFB S,the
prevalenceofHTN ,diabetesbet ween
PRALtertil eswasobserve d.
Age,WC 5
Kucharska37/
Poland
2018 Cross-
sectional
Men ≥20y 276 0/
general
population
920/920 24HR/ PR AL Nosig nific antdif ferenceinFBS,t he
prevalenceofHTN ,diabetesbet ween
NEAPte rtil eswasobs erve d.
Age,WC 5
Kucharska37/
Poland
2018 Cross-
sectional
Women ≥20y 34 0 9/
general
population
1136/1137 24HR /PR AL Nosignificantdif ferenceinFBS,the
prevalenceofHTN ,betweenPR ALter tiles
wasobserved.Theprev alenceofT2DMin
highes ttert ileofPR ALwashig her.
Age,WC 5
    
|
 9 of 16
DEHGHA N AND ABBA SALIZ AD FARHAN GI
Continued
First author/
country 

design  Age range

size/
population

of cases/
controls
Dietary assessment/
 Results Adjusted variables 
Luis38/Sweden 2014 Cross-
sectional
Both 70-71y 673/general
population
224/224 7d-FR/PR AL Nosign ificantdifferencei nSBP,DBP,
theprev alenceofH TN,T2DM ,between
terti lesofPR ALwasob served.
Age,BMI,smok ingstatus,so dium,
alcohol,energyintake,PA,HL P,
education,C VD,T2DM,eGFR,
SBP,thenight time/day timeSBP
ratio
8
Moghadam39/Iran 2016 Cross-
sectional
Both 22-80y 925/general
population
224 FFQ/PRA L SBPandD BPweresignific antlyh igher
inhighestvslowestquar tileofPRAL .
Nosignif icantd ifferenceinfbs,insulin,
HOMA-IR ,HOMA-β,insulinresist anceat
baselinebetw eenquartilesofPRA Lwas
reported.
Age 6
Moghadam39/Iran 2016 Cohort Both 22-80y 925/general
population
224 FFQ/PR AL,NEAP Significantly higher odds of insulin
resist anceint hehighe stvslowe stPR AL
andNEA Pquar tilesafter3yfollow-up.
Nosignif icantd ifferenceinSBP,DBP,
FBG,ins ulin,HOMA-IR ,HOMA-β,i nsulin
resist anceaf ter3yfoll ow-upbet ween
quart ilesofPR ALwasrepor ted.
Age,sex,BMI, PA,dietaryenerg y,
fat,CHO,SFA,fibre
8
Murakami40/Japan 2008 Cross-
sectional
Both 18-22y 1136/
general
population
227/227 DHQ/PRAL Signific antlyhighervaluesofS BP,DBP
betwe endiff erentqu arti lesofPR AL.N o
differenceinFB S,HbA1Cwasobser ved.
Residen tialblock,residentialarea
size,sur veyyear,PA,smoking ,
BMI,WC .
7
Rebholz41/USA 2015 Cross-
sectional
Both 45-64y 15055 3011/3 011 FFQ/N EAP,PRAL Significantlyhighe rpreval enceofT2DM
(13.8%vs10%)an dHTN(37.7%vs31.9%)
inhighestvslowestPRA Lquar tile.
Age,sex,race-center,caloric
intake,d iabete s,HTN,obese,
smokin g,educ ation ,PA,base line
eGFR
8
van-denBerg22/
Denmark
2012 Cross-
sectional
Both ≥18y 707/ re nal
transplant
patients
236/236 FFQ/NEAP Nodiffer enceinth eSBP,DBP,HbA1Cand
theprev alenceofT 2DMorHTNb etwee n
terti lesofNE APwasreporte d.
Age,BSA,sexm edications,e GFR,
timesincetrans plant ation,
smoking
7
Xu42/Sweden 2016 Cross-
sectional
Both 70-71y 911 304/303 7-dFR/PRAL Nosignifica ntdiff erencei ntheFBS ,insulin,
theprev alenceofT 2DM,HTNb etween
PRALtertil eswasobserve d.ThePR ALor
NEAPwe renotassociatedw ithodd sof
T2DMincidence.
Age,BMI,smok ingstatus,PA,
education,gl ucosedisposalrate,
CVD,HTN ,HLP,energ y-adjus ted
fibre,M UFA,PUFA,SFA,CHO
intake,e GFR,UA ER
8
Abbreviations:24HR,24-hourdietar yrecallquestionnaire;AHEI,alternativehealthyeatingindex;ASB,artificiallysweetenedbeverages;BDHQ,briefvalidatedself-administereddiethis tory
questionnaire;BMI,bodymassindex;BSA,bodysurf acearea;CHO,carbohydrate;CRP,C-reactiveprotein;CVD,cardiovasculardisease;DBP,diastolicbloodpressure;eGFR,estimatedglomerular
filtrationrate;FBS,fastingbloodsugar;FD,fooddiary;FHD,familyhistoryofdiabetes;HbA1C,haemoglobinA1C;HCL,hy percholesterolaemia;HLP,hyperlipidaemia;HOMA-IR ,homeostaticmodel
assessmentofinsulinresistance;HR,hazardratio;HTN,hypertension;MUFA ,monounsaturatedfat tyacid;NEAP,net-endogenousacidproduction;PA,physic alactivity;PRAL,potentialrenalacidload;
PUFA,polyunsaturatedfatt yacid;SBP,systolicbloodpressure;SFA,s aturatedfattyacid;T2DM,type2diabetesmellitus;UAER ,urinaryalbuminexcretion;WC ,waistcircumference.
10 of 16 
|
   DEHGHAN AND ABB ASALI ZAD FARH ANGI
scores.20-22,32-34,37,42Inverseassociationsofthehigherprevalence
ofT2DMinthelowestcategories ofNE APinthe studybyAmodu
etal,4lowerHbA1Cconcentrationsinthehigher quintile ofPRAL
inacross-s ec tionalan al ys isofI nter 99cohortofG ædee talstudy17
and lower FBS c oncentrations in t he higher categor y of PRAL18
should also be mentioned.
|
DBP across different dietary acid load categories
All of the studies included inthe current meta-analysis hadcross-
sectional designwhile onlyt wo studies were cohort. Inthe cross-
secti onal and even in the coh ort studies , the baseline dat a (data
befo re fo llow-up) we reinc lu dedinth em eta -a na lysis .T her ef or e,the
design of the included studies could not be a source of bias in the
current analysis. Although, formore assurance, wealsoperformed
subgroup analysis according to all of possible confounders includ-
ing design, country, sample size,gender, dietary assessment tool
and stud y quality s core. Totally, in the met a-analysis of th e mean
differenceofSBPin differentPRALcategories 12studieswerein-
cluded;theForestplotispresentedinFigure2.Accordingly,higher
dietar yacidload was associated with 0.97mmHgincrease in SBP
(WMD = 0.98; CI: 0.51, 1.45; P<.001)withthemoderatehetero-
geneity (Heterogeneity chi-squared = 20.73 [df = 11]; P=.036;
I2=49.6%;Tau
2=0.225).Inthemeta-analysisofNEAPandSBP
including six studies (Figure 2), however, no significant associa-
tion was ob served ( WMD = 0.495; CI = −0. 29,1.28; P=.22)and
no evidence of heterogeneity was also present (Heterogeneity
chi-squar ed = 3.13 [df = 5]; P=.68;I
2=0.0%;Tau
2 = 0.00 ). For
the meta-analysis of the association bet ween dietary acid load
identif ied as PRA L and DBP (Figu re 3), totally, eight s tudies were
includedand higherPRALcategorieswere associated withsignifi-
cantincreaseequalto0.61mmHginDBPvalues(WMD=0.61;CI:
0.089,1.135;P=.022)withapartiallyhighlevelofheterogeneity
(Heterogeneity chi-squared = 28.77 [df = 7];P<.001;I2=75.7%;
Tau 2=0.31).Accordingly,inthemeta-analysisofNEAPandDBP
associat ions (Figure 3), no evid ence of association was obser ved
(WMD =0.03; CI =−1.07,1.13;P=.95)andnoheterogeneitywas
reported(Heterogeneitychi-squared=0.1[df=2];P=.95;I2=0 .0% ;
Tau 2=0.00).TheresultsofthesubgroupanalysisofthePRAL-DBP
associations(TableS6)showedthatsubgroupingaccordingtocoun-
try, dieta ry assessm ent tool and gende r significant ly reduced the
amountofheterogeneityandtherefore,theseparameterscouldbe
considered as the possible sources of heterogeneity. Study quality
was not a source of heterogeneity.
|
1C across different dietary acid load categories
Totallythe associationbetweenPR ALandNEAPwithFBS wasre-
porte d in 12 and 5 studie s (Figure 4). No eff ects of diet ary acid
load measured byPRAL and NEAP on the serum FBS were iden-
tified (PR AL: WMD = 0.034, CI: −2.913, 2.981; P=.98andfor
NEAP: W MD = 0.502; CI: −0.164, 1 .168; P=.139).Thehetero-
geneit y was also high for the FB S-PRAL analy sis (Heterogeneit y
chi-squared = 26.24 [df =1];P<.001;I
2=98.6%;Tau2= 26.23);
whileno heterogeneity was observed forFBS-NEAPassociations
(Heterogeneity chi-squared = 2.93 [df = 4]; P=.57;I
2 = 0.0%;
Forestplotillustrating
weighted mean difference in systolic
bloodpressure(SBP)inhighestvslowest
potentialrenalacidload(PRAL)andnet-
endogenousacidproduction(NEAP)
    
|
 11 of 16
DEHGHA N AND ABBA SALIZ AD FARHAN GI
Tau 2 = 26.23). Sensitivity analysis showed no significant altera-
tionsintheobtainedresults. Thesubgroupanalysisfor findingthe
possible source of heterogeneity for the FBS-PRAL associations
ispresented in Table S7 and countryand dietary assessmenttool
foundtobethepossiblesourcesofheterogeneity.TheForestplot
of the asso ciations bet ween PRAL a nd NEAP wit h serum HbA1C
arepresented in Figure5presenting no significant effects of nei-
ther PRAL nor NE AP on the serum glycosylated haemoglobin
(PRAL: WMD = 0.307,CI: −0.954, 0.341; P=.35andforNEAP:
WMD = −0.032; CI: −0.088, 0.024; P=.265)whileagain,the
great heterogeneity was identified in the PRAL-HbA1C analysis
(Heterogeneitychi-squared=2175.30[df=5];P<.001;I2=99.8%;
Tau 2=0. 6 49)b utn otinN E AP- HbA1Cmeta-analysis(Heterogeneity
chi-squared=0.32[df=2];P=.8 5; I2= 0.0 %; Tau 2=0 .00) .S ubg ro up
anal ys isforth ea ss ociat io nb etweenHb A1Can dP R AL, prese nt edin
TableS8re ve aledt ha ts ubg ro uping ac co rdi ng to co untry,con ti nen t,
dietaryassessmenttoolandsamplesizearethepossiblesourcesof
observed heterogeneity.
Forestplotillustrating
weighted mean difference in diastolic
bloodpressure(DBP)inhighestvslowest
potentialrenalacidload(PRAL)andnet-
endogenousacidproduction(NEAP)
Forestplotillustrating
weighted mean difference in fasting
bloodsugar(FBS)inhighestvslowest
potentialrenalacidload(PRAL)andnet-
endogenousacidproduction(NEAP)
12 of 16 
|
   DEHGHAN AND ABB ASALI ZAD FARH ANGI
|

load categories
The Fores t plot of the ef fects of PR AL and NE AP on the ser um
insulinconcentrationsispresentedinFigure6.HighdietaryPRAL
values, increases serum insulin concentrations by 0.23 µIU/mL
(WMD = 0.235, CI:0.070,0.400;P=.005),whilethiseffectwas
not obser ved for the NE AP (WMD = −0. 318, CI: −0.039, 0.676;
P=.081).AmodestheterogeneitywasidentifiedinthePRAL-
insulin analysis (Heterogeneity chi-squared = 14.09 [df=6];
P=.029;I2=57.4%;Tau2=0.022)andnotinNEAP-insulinmeta-
analysis (Heterogeneity chi-squared = 0.17 [df = 1]; P=.68;
I2=0.0%;Tau2=0.00).Accordingtosubgroupanalysis(TableS9),
continent,dietary assessmenttool,sample sizeandgender were
thepossiblesourceofheterogeneity.Inevaluatingtheassociation
between HOMA-IR and dietary acid load, eight studies reported
theassoc iatio nbetweenPRALandHOM A-IRwhileonlyon estudy
reportedtheassociationasNEAP6thereforeitwasexcludedfrom
the anal ysis. According to th e meta-analysis r esults summar ised
in Figure 7 as Fo rest plot, no evidence of the ef fects of PRA L
on HOMA-IR w as obtained (W MD = −0.053, CI: 0.007,0 .113;
P=.085).Thesensitivityanalysisrevealednomeaningfulchange
in the resu lts. Moreove r,be cause of the high h eterogeneit y ob-
tained (Heterogeneity chi-squared =14759.28[df =6];P < .001;
I2=100.0%;Tau
2=0.005)thesubgroupanalysiswasalsoper-
formed andtheresults arepresentedinTableS10andtheresults
introducedno sourceofheterogeneity exceptforthepossibleef-
fect s of dietary a ssessment too l. Moreover, only t wo studies6, 39
reportedtheassociationofHOMA-βwithPRALwhichnosignifi-
cantassociationwasobserved (Datanot shown). Theinformation
ofQUICKIandhyperglycaemia wasabsent inalmost allofthein-
cludedstudies.Thereforenoanalysiswasdone.
|
dietary acid load-hypertension, diabetes and odd's
ratios of diabetes
Totally, nine studi es report ed the preval ence of HTN in the h igh-
estvslowest category ofPRAL. The Forestplotoftheprevalence
ofHTNby subgroups highestvslowest categories ofPRAL is pre-
sented in Figure S1. Accordingly, the prevalence of HTNwas 19%
(CI: 0.19-0.20) in highest a nd lowest categor y of PRAL. No het-
erogenei ty was obse rved in the m eta-analysi s. The Fores t plot of
theprevalenceof HTN in different NEAPcategoriesis reported in
Figure S2indicating19%prevalence ofHTNinlowest and highest
NEAP categories with no evidence of heterogeneity. The Forest
plot ofthe proportions ofdiabetesinlowest vs highest PR AL cat-
egories (Figure S3) presents the 13% (CI: 0.13, 0.14)prevalenceof
T2DMinthehighestvs11%(CI: 0.10-0.12) in the lowest category
ofPRALincludingsevenstudieswithnoevidenceofheterogeneity.
In the Forest plot of the T2DM prevalence in different NEAP cat-
egorie s(F igureS4),9%pre valen cew asr epor tedbothinhighe stand
lowest category of NE AP with no evidence ofheterogeneity. The
Forestplotofthemeta-analysisofoddsofT2DMinhighestvslow-
est PRAL or NEAPcategories is identified inFigure S5. A positive
associationwasobservedbetweendiabetes and PRAL(OR= 1.19;
CI: 1.092 , 1.311;P<.001)andNEAP(OR=1.22;CI:1.14,1.31,
P<.001)inrandomeffectmodel.Inotherword,beinginthehigh-
est cate gory of PRA L and NEAP ma kes individua ls 19% and 22%
morelikelytodevelopdiabetescomparedwiththelowestcategory.
A great between-study heterogeneity was also observed for the
givenresults(forPRAL:Heterogeneitychi-squared=22.55[df=7];
P=.002;I2=69.0%;Tau2=0.0104andforNEAP:Heterogeneity
chi -squared=11.12[df=5];P=. 049;I2=55 .0 %;Tau2=0.00 69).Fo r
findingthepossiblesourceofheterogeneity,thesubgroupanalysis
basedonthediff er encein in cl udedstu di es ispe rform ed (TablesS11
Forestplotillustrating
weighted mean difference in haemoglobin
A1C(HbA1C)inhighestvslowest
potentialrenalacidload(PRAL)andnet-
endogenousacidproduction(NEAP)
    
|
 13 of 16
DEHGHA N AND ABBA SALIZ AD FARHAN GI
andS12).A cco rdi ngly,inthestudieseval uat ingthedietaryacidload
byPRAL and odds of diabetes,countr y and thesamplesize could
beconsidered as the source of heterogeneit y.InNEAP evaluating
studiescountry,design,samplesizeandgenderdifferencecouldbe
a source of heterogeneity.
|
The Funnel plots revealed moderate asymmetr y (Figures S6 and
S7). However, the B egg's and Egge r's tests provi ded no evidence
ofsubstantialpublicationbias forallofthevariables.Exceptionally,
Egger'stest for the FBS was significant as an evidence of possible
public ation bias. Th e provided valu es are as follow s: DBP,Eg ger's
test (P=.087)andBegg'stest(P=0.93);SBP,Egger'stest(P=.72)
andBeg g' stes t(P=0.5 4) ;FBS ,E gger'ste st(P<.00 1)andBeg g' stes t
(P=.09);HOMA-IR,Egger'stest(P=.87)andBegg'stest(P=0.38).
Ins ulin,Eg ge r'ste st (P=.17)a ndBegg'stes t(P=.99) ;HbA1C,Egger's
test (P=.87)andBegg'stest(P =0.09); ORdiabetes, Egger's test
(P=.33)andBegg'stest(P=.11).
|
Inthecurrentmeta-analysis,wesummarisedtheresultsofstudies
reportingtheassociationbetweenPRAL ,NEAPandmetabolicrisk
factors of glucosehomoeostasis, blood pressure, the prevalence
ofdiabetes, HTN and theoddsofdiabetes. Accordingly,beingin
the highe st categor y of PRAL scor es was associate d with higher
SBP,DBP,insulinconcentrationsandhigherprevalenceandriskof
diabetes c ompared with lowe st category. Wher eas, being in the
highest c ategory of NE AP was only ass ociated with high er odds
Forestplotillustrating
weightedmeandifferenceinInsulinin
highest vs lowest potential renal acid
load(PRAL)andnet-endogenousacid
production(NEAP)
Forestplotillustrating
weighted mean difference in homeostatic
model assessment of insulin resistance
(HOMA-IR)inhighestvslowest
potentialrenalacidload(PRAL)andnet-
endogenousacidproduction(NEAP)
14 of 16 
|
   DEHGHAN AND ABB ASALI ZAD FARH ANGI
ofdiabetes. No association between markersof glucosehomoeo-
stasis includingfastingblood glucose, HbA1Cand HOMA-IRwith
PRAL o r NEAP was ob served. A nimal foods i ncluding me at, fish,
egg,chicken,cheeseandalsocerealsarerichinsulphur-containing
aminoacids,phosphorousandchloridearepotentially acid form-
ers; whil e vegetable s and fruit s high in malate , citrate an d gluta-
mate are pote ntially base for mers theref ore, animal-bas ed foods
and high contents in western diets are potentially considered as
mostimportantacid-producerdietsandareassociatedwithhigher
ri sko fi n sul inr e sis t anc e ,h i ghb loo d pre s sur ean ddi a bet e sa ses t a b-
lishedinnumerousworks.11 Accordingly,western dietar ypattern
with high di etary a cid load conte nt, is a potent in ducer of meta-
bolic disorders; several studies had revealed significant relation-
ships bet ween weste rn dietar y pattern an d the increa sed risk of
metabolicsyndrome, hypertension and dyslipidemia. Accordingly,
western dietar y pattern with high content of red meat, eggsand
refined grains is associated with increased riskofobesity and in-
crease dlevelsofb loodsuga r,systo licbloodpre ssure,trigl yce rides ,
and reducedlevels of HDL.43-45IthasbeensuggestedthatPRAL
is a more accurate measure of dietary acid load because it consid-
ersdietaryintakeofproteinandnumerousmicronutrients,potas-
sium, calcium phosphorus andmagnesiumand takes intoaccount
theabsorptionrateofthenutrientsintheintestinalborder,unlike
theNEAPscor e, wh ic ho nlyconsid er thediet ar y pr ot ei na ndpot as -
siumintake.15Therefore,thisleadtoPRALbeagoodpredictorof
the effects of acidity on the body.46Insubgroupanalysisofmen
and women separately,theodds of diabetes amongwomen were
strongerthanmeninbothPRALandNEAPassessment.Apossible
explanation isthe difference in sex-hormones affectingacid-base
balance47an da ls op ossib lythehigh ersam pl es iz eofwom en pa r tic-
ipant scomparedwithmenisapossiblesourceofhighereffectsize
amongthem.Asmentionedinthe resultssection, gender,dietary
assessment tool and continent could be a source of heterogeneity
among obs erved assoc iation. In the cu rrent meta-ana lysis, PRAL
andNE APcalculationswerebasedonself-reporteddatagathered
by 24-hour rec all method , 24-hour record met hod and food f re-
quency questionnaire which might be potential sources of bias.
Moreover,differenceintheitemsoftheFFQmightbeasourceof
heterogeneity;asdescribedpreviously,theFFQitemsrangedfrom
63to168itemsandthelocalfoodsintheFFQcouldalsoaffect
the heterogeneity,48although,almostalloftheincludedstudies
usedvalidatedandreliableFFQs.FFQcoversawiderangeofdi-
etaryingredientsandismoreaccuratethan24-hourrecallmethod
reflecting usual dietar y intake in a short period of time; it has
beenconfirmedthatFFQcouldbemorehelpfulinevaluatingthe
diet-diseaserelationships.49Another sourceofheterogeneity,the
continent ,presents the possible role of geographical distribution,
geneticbackgroundandculturalfactorsinfluencingtheassociation
betweendietary acidloadandmet abolicriskfactors.50Inthecur-
rentmeta-analysis,higherPRALscoreswere associatedwithboth
higherSBPandDBPconcentrationsalthoughno difference inthe
oddsofHTN indifferentPRALor NEAPcategories was reported.
Thepossibleunderlying mechanisms are decline in renalfunction
andreducedcitrateexcretion,increasedcalciumandcortisolsecre-
tion.33WedidnotobserveanyassociationbetweenPRAL,NEAP
and marker s of glucose homo eostasis inc luding FBS, HbA1C a nd
HOMA-IR values. Higher FBS concentrations in higher PR AL cat-
ego rieswererepor tedintheHag hi gh at do ostetals tud y18 although
thisassociation did not achievesignificant threshold, while other
studies reported no significant difference.7,12,17,22,31,35,37,39,40,42
Thecurrentmeta-analysis has severallimitations and strengths;
the current meta-analysis included the results of observational
studie s with the cross-se ctional or coho rt design whic h makes
thecausalinferenceimpossible;although,thestudieswerelarge
population-basedstudieswith acceptablequalit y.However,our
study,basedonourknowledge,isthefirstmeta-analysisevaluat-
ingtheassociationbetweendietar yacidload asboth PRALand
NEAP scoreswitha widerangeofmetabolicriskfactorsinclud-
ing systolic and diastolic blood pressure, fasting serum glucose,
HbA1C, i nsu l in,H O MA- I Ra n dthe p rev a len c eof hyp e r t ens i ona n d
diabetes.Inconclusion,inthe currentmet a-analysis,we found a
potent role of high acid content of diet as a possible leading cause
of metabolic abnormalities, high blood pressure, higher insulin
concentrationsandhighprevalenceofhypertension.Wesuggest
interventional studies in this regard for better causal inference.

Theauthorsdeclarethattheyhavenoconflictofinterest.

MAF and PD designedthe research; MAFconducted the research
and per formed stat istical analy sis; NAF and PD wrote t he paper;
both authors read and approved the final manuscript.

TheprotocolofthecurrentstudyhasbeenregisteredinPROSPERO
with the identification number of CRD42019122272. Moreover,
the study protocol has also been registered by the ethics commit-
tee of Tabriz University ofMedicalSciences (Registration number:
IR.TBZMED.VCR.REC.1398.140).

Mahdieh Abbasalizad Farhangi https://orcid.
org/0000-0002-7036-6900

1. WorldHealth Organization. Non Communicable Disease (NCDs).
2018. https://www.who.int/news-room/fact-sheets/detail/nonco
mmunicable-diseasesAccessedJune1,2018
2. Akter S, N anri A, Mizo ue T,e t al. Dietar y acid load a nd mor-
tality among Japanese men and women: the Japan Public
Health Center-based Prospective Study. Am J Clin Nutr.
2017;106(1):146-154.
3. Kraut JA, MadiasNE. Consequencesandtherapyofthemet abolic
acidosisofchronickidneydisease.Pediatr Nephrol.2011;26:19-28.
4. AmoduA ,Abramowit zMK.Dietar yacid,age,andserumbicarbon-
ate levels among adults in the United States. Clin J Am Soc Nephrol.
2013;8(12):2034-2042.
    
|
 15 of 16
DEHGHA N AND ABBA SALIZ AD FARHAN GI
5. AkterS ,EguchiM, KurotaniK, etal.Highdietar yacidload isasso-
ciated wit h increase d prevalence of hy perten sion: The Furuk awa
NutritionandHealthStudy.Nutrition.2015;31(2):298-303.
6. AkterS,EguchiM,KuwaharaK,etal.Highdietar yacidloadisasso-
ciated with insulinresist ance: The Furukawa Nutrition and Health
Stu dy. Clin Nutr.2016;35(2):453-459.
7. Iwase H, Tanaka M, Kob ayashi Y, et al. Lower veget able protein
intake an d higher diet ary acid lo ad associate d with lower ca rbo-
hydrate intakeareriskfactorsformetabolic syndrome in patients
withtype2diab etes:post-hocanalysisofacross-sectionals tudy.J
Diabetes Investig.2015;6(4):465-472.
8. DeFronzo RA, Beckles AD. Glucose intolerance following
chronic metabolic acidosis in man. Am J Physiol Renal Physiol.
1979;236(4):E328.
9. Rebolledo O R, Hern andez RE , Zanet ta AC, Ga gliardin o JJ. Insulin
secretion duringacid-base alterations. Am J Physiol Renal Physiol.
1978;234(4):E426.
10. WhittakerJ,CuthbertC,HammondVA,AlbertiKG.T heef fect sof
metabolic acidosis in vivo on insulin binding to isolated rat adipo-
cytes. Metabolism.1982;31(6):553-557.
11. Adeva MM, Sou to G. Diet-induced met abolic acido sis. Clin Nutr.
2011;30(4):416-421.
12. Han E, Kim G, H ong N, et al. Ass ociation betwe en dietary ac id
load and the risk of cardiovascular disease: nationwide surveys
(KNHANES200 8–2011).Cardiovasc Diabetol.2016;15(1):122.
13. Remer T, Manz F. Estimation of the ren al net acid excretion by
adults consuming diets containing variable amounts of protein. Am
J Clin Nutr.1994;59(6):1356-1361.
14. Frassetto L A, Todd KM, M orris RC Jr, Seb astian A . Estima tion of
net endogenous noncarbonic acid production in humans from
diet potassium and protein contents. Am J Clin Nutr. 1998;68(3):
576-58 3 .
15. Fagherazzi G , Vilier A , Bonne t F,et al. D ietar y acid load a nd risk
of type 2 diabetes: The E3N-EPIC cohort study. Diabetologia.
2014;57(2):313-320.
16. Faure AM, Fisc her K, Dawson -Hughes B, Eg li A, Bisch off-Ferrari
HA. Gender-specific association betwe en dietary acid load and
total lean body mass and its dependency on protein intake in se-
niors. Osteoporos Int.2017;28(12):3 451-34 62.
17. Gæde J,Nielsen T,Madsen ML,etal.Population-basedstudies of
relationships between dietary acidity load, insulin resistance and
incidentdiabetesinDanes .Nutr J.2018;17(1): 91.
18. Haghighatdoost F, Najafabadi MM , Bellissimo N, A zadbakht
L. Association of dietary acid load with cardiovascular disease
risk fac tors in patients with diabetic nephropathy. Nutrition.
2015;31(5):697-702.
19. Iki zlerH O,Z elnickL ,Ruzi ns kiJ,etal .Diet aryaci dloadisass oc iated
withserumbicarbonatebutnotinsulinsensitivityinchronickidney
disease. J Ren Nutr.2016;26(2):93-102.
20. JiaT,Byberg L , Lindholm B,et al. Dietar y acid load, kidney func-
tion,os teoporosis,andriskoffracturesinelderlymenandwomen.
Osteoporosis Int.2014;26(2):563-570.
21. AkterS,Kurot aniK ,KashinoI,etal.Highdietar yacidloadscoreis
associatedwithincreased riskoftype2diabetesinJapanesemen:
The Japa n Public Heal th Center-based Pr ospecti ve Study. J Nutr.
2016;146(5):1076-1083.
2 2. van den Berg E , Engberink M F,Bri nk EJ, et al. Di etary ac id load
and metabolic acidosis in renal transplant recipients. Clin J Am
SocNephrol.2012;7(11):1811-1818.
23. JayediA,Shab-BidarS.Dietar yacidloadandriskoftype2diabetes:
asystematic reviewanddose-responsemeta-analysis of prospec-
tive observational studies. Clin Nutr.2018;23:10-18.
24. Moher DA, Liber ati A, Tetzlaff J,AltmanDG. Preferredrepor ting
ite ms forsystemat ic reviewsan dm et a-analyses:th ePRISM Astate-
ment. Annals Iintern Med.2009;151(4):264-269.
25. Beller EM, G lasziou PP, Altman DG , et al. PRISM A for abstra cts:
reporting systematic reviews in journal and conference abstracts.
PLoS Medicine.2013;10(4):e1001419.
26. Miller SA, Forrest JL. Enhancing your practice through evi-
dence-based decision making: PICO, learning how to ask good
questions. J Evid Based Dent Pract.2001;1(2):136-141.
27. HigginsJPT,GreenS,eds.Cochrane handbook for systematic reviews
of interventions.Cochranebookseries. Hoboken,NJ:WileyOnline
Librar y;20 08.
28. StangA .Criticalevaluationofthe Newcastle-Ottawascaleforthe
assessmentofthequalityofnonran domizedstudiesinmeta-analy-
ses. Eur J Epidemiol.2010;25(9):603-605.
29. Berkey CS, Ro ckett HRH , Field AE , et al. Acti vity, dieta ry inta ke,
and weight changes in a longitudinal study of preadolescent and
adolescent boys and girls. Pediatrics.2000;105(4):e56.
3 0. Higgins JP, Thompson SG . Quantifying heterogeneit y in a me-
ta-analysis.Stat Med.2002;21:1539-1558.
31. Bahador anZ,MirmiranP,KhosraviH,AziziF.Associationsbetween
dietar y acid-bas e load and ca rdiometa bolic risk f actors in a dults:
The Tehran Lipid and Glucose Study. Endocrinol Metab (Seoul).
2015;30(2):201-207.
32. BanerjeeT,TuckerK,GriswoldM,etal.Dietarypotentialrenalacid
load and r isk of albuminu ria and reduced k idney funct ion in the
JacksonHeartStudy.J Ren Nutr.2018;28(4):251-258.
33. Engberink MF, Bakker SJL, Brink EJ, et al. Dietary acid load
and risk of hypertension: The Rotterdam stu dy. Am J Clin Nutr.
2012;95(6) :143 8-14 44.
3 4. Kief te-de JongJC, LiY,Chen MU, et al. Diet-dependentacidload
and type 2 diabetes: pooled results from three prospec tive cohort
studies. Diabetologia.2017;60 (2):270 -279.
35. KoB-J,ChangY,RyuS, etal.Dietar yacidloadandchronickidney
diseaseinelderlyadults: Proteinandpotassiumintake.PLoS ONE.
2017;12(9):e0185069.
36. Krupp D, Esche J, Mensink G, Klenow S, Thamm M, Remer T.
Dietar yacid load and potassium intakeassociate withbloodpres-
sure and hypertension prevalence in a representative sample of the
German adult population. Nutrients.2 018;10 (1):103.
37. KucharskaAM,Szostak-WȩgierekDE,WaskiewiczA,etal.Dietary
acid loa d and cardi ometabo lic risk in th e Polish adu lt populat ion.
Advan Clin E xp Med.2018;27(10):1347-1354 .
38. LuisD,HuangX,RiserusU,etal.EstimateddietaryacidloadIsnot
associated with blood pressure or hypertension incidence in men
whoareapproximately70yearsold.J Nutr.2015;145(2):315-321.
39. Moghadam SK , Bahadoran Z, Mirmiran P, Tohidi M, Azizi F.
Associationbetweendietaryacidloadandinsulinresistance:Tehran
LipidandGlucoseStudy.Prev Nutr Food Sci.2016;21(2) :104-109.
4 0. MurakamiK,SasakiS,TakahashiY,UenishiK.Associationbetween
dietary acid-base load andcardiometab olicrisk factors in young
Japanesewomen.Brit J Nutr.2008;100(3):642-651.
41. Rebholz CM,Coresh J, Grams ME, et al. Dietar yacid loadandin-
cident chronic kidney disease: Results from the ARIC Study.Am J
Nephrol.2015;42(6):427-435.
42. Xu H, Jia T, Huang X, et al. Dietary acid load, insulin sensitiv-
ity and risk of type 2diabetes in community-dwelling older men.
Diabetologia.2014;57(8):1561-1568.
43. FarhangiMA,VajdiM,NajafiM.Diet aryacidloadsignificantlypre-
dicts10-years sur vivalinpatientsunder went coronary ar teryby-
passgraf ting(C ABG)surgery.PLoS ONE.2019;14(10):e022383 0.
4 4. Farhangi MA, Jahangir y L, Asghari-Jafar abadi M, Najafi M .
Association between dietar y patterns andmetabolic syndrome in
asampleofTehranianadults.Ob es Res Clin Pract.2016;10: S6 4-S73.
45. Farhangi MA , Nikniaz L, Ni kniaz Z. Higher d ietary aci d load po-
tentially increases serum triglyceride and obesity prevalence in
adults:anupdatedsystematicreviewandmet a-analysis.PLoS ONE.
2019;14(5):e0216547.
16 of 16 
|
   DEHGHAN AND ABB ASALI ZAD FARH ANGI
46. MichaudDS ,Troiano RP,Subar AF,etal.Comparisonofestimated
renalnetacidexcretionfromdietaryintakeandbodysizewithurine
pH.J Am Diet Assoc.20 03;103(8):10 01-1007.
47. Orr-WalkerBJ,HorneAM,EvansMC ,etal.Hormone replacement
thera py causes a res piratory al kalosis in nor mal postme nopausal
women. J Clin Endocrinol Metabol.1999;84(6):1997-2001.
48. Mueller M, Hobiger S, Jungbauer A. Anti-inflammatory ac-
tivity of extracts from fruits, herbs and spices. Food Chem.
2010;122(4):987-996.
49. ShimJS,OhK,K imHC .Dietaryassessmentmethodsin epidemio-
logic studies. Epidemiol Health.2014;36:e2014009.
50. SlimaniN,FaheyM,WelchA,etal.Diversityofdietarypatternsob-
servedin theEuropean ProspectiveInvestigation into Cancer and
Nutrition(EPIC)project.Public Health Nutr.2002;5:1311-1328.

Additional supporting information may be found online in the
Suppor tingInformationsection.
DehghanP,AbbasalizadFarhangiM.
Dietar yacidload,bloodpressure,fastingbloodsugarand
biomarkersofinsulinresistanceamongadults:Findingsfrom
anupdatedsystematicreviewandmeta-analysis.Int J Clin
Pract. 2020;74:e13471. https ://doi.o rg /10.1111/ijc p.13471
... Dietary intake assessment tools were food frequency questionnaire (FFQ), 24-h dietary recall, diet history questionnaire (DHQ), and dietary record form. Among the included studies, 51,9,8,12,16,10,13,19, and 16 studies examined BMI, WC, HDL, LDL-C, TG, TC, FBS, SBP, and DBP, respectively. The included studies had a NOS score between 5 and 9, so that 42 articles had high quality. ...
... The lack of association observed in our study may be partly explained by the fact that most of the research was conducted on people without diabetes who probably had sufficient cellular function and insulin signaling to maintain blood glucose concentrations in the optimal range. Our results were consistent with the results of previous meta-analysis studies [12,16] despite the addition of more recent studies. Considering the findings of the current meta-analysis on anthropometric indices, there was significant results in terms of WC-NEAP, WC-PRAL, and BMI-PRAL associations. ...
... However, they were unable to perform a meta-analysis for the NEAP effect size [23]. Dehghan et al. showed a significant relationship between PRAL and blood pressure but not for NEAP [16]. By adding recently published studies, we demonstrated that SBP and DBP were significantly associated with NEAP and PRAL. ...
... A diet high in animal protein and grains and low in fruits and vegetables typically leads to a high acid load (8). Diet has been demonstrated to be a leading contributor to variations in endogenous acid production in different people (10). ...
... It has been recognized that PRAL is a more precise indicator of DAL since, in contrast to the NEAP score, which only takes dietary intake of protein and potassium into account, the PRAL score considers dietary intake of protein and several micronutrients, phosphorus, potassium, magnesium, and calcium, as well as the rate at which the nutrients are absorbed in the intestinal border (34). As a result, PRAL is a better predictor of the impacts of diet acidity on health outcomes (10,35). Regarding underlying biological mechanisms, high DAL values may be linked to the development of MetS through several interlinked mechanisms, including chronic low-grade inflammation (36), mineral imbalances (37), alterations of the gut microbiota (38), and insulin resistance (39). ...
Article
Full-text available
Background and aim Several studies have identified that dietary acid load (DAL) may be associated with the odds of metabolic syndrome (MetS); however, the evidence is inconclusive. This dose–response meta-analysis aimed to examine the relation of DAL to MetS. Methods A systematic literature search was carried out in PubMed and Scopus up to April 2023 for pertinent studies evaluating the relation of DAL scores, including potential renal acid load (PRAL) and net endogenous acid production (NEAP), to the odds of MetS. The odds ratios (OR) with 95% confidence intervals (CI) were pooled using a random-effects meta-analysis to test the association. Results Eight studies, with an overall sample size of 31,351 participants, were included in this meta-analysis. Higher DAL scores were significantly related to the elevated odds of MetS (NEAP: OR = 1.42, 95%CI = 1.12–1.79; PRAL: OR = 1.76, 95%CI = 1.11–2.78), with significant evidence of heterogeneity across studies. The linear dose–response analysis proposed that a 10 mEq/day elevation in NEAP and PRAL was linked to a 2% (OR = 1.02, 95%CI = 1.001–1.05) and 28% (OR = 1.28, 95%CI = 1.11–1.47) increased odds of MetS, respectively. No non-linear association was observed between MetS and NEAP (P-non-linearity = 0.75) and PRAL (P-non-linearity = 0.92). Conclusion This study revealed a significant direct relationship between DAL and MetS. Therefore, lower acidogenic diets are suggested for the prevention of MetS.
... This reduces the absorption of monosaccharides in the intestines, leading to a decrease in plasma glucose levels [18]. Moreover, the KD enhances insulin sensitivity and attenuates HOMA-IR scores [15,[19][20][21]. ...
Article
Full-text available
It is widely acknowledged that the ketogenic diet (KD) has positive physiological effects as well as therapeutic benefits, particularly in the treatment of chronic diseases. Maintaining nutritional ketosis is of utmost importance in the KD, as it provides numerous health advantages such as an enhanced lipid profile, heightened insulin sensitivity, decreased blood glucose levels, and the modulation of diverse neurotransmitters. Nevertheless, the integration of the KD with pharmacotherapeutic regimens necessitates careful consideration. Due to changes in their absorption, distribution, metabolism, or elimination, the KD can impact the pharmacokinetics of various medications, including anti-diabetic, anti-epileptic, and cardiovascular drugs. Furthermore, the KD, which is characterised by the intake of meals rich in fats, has the potential to impact the pharmacokinetics of specific medications with high lipophilicity, hence enhancing their absorption and bioavailability. However, the pharmacodynamic aspects of the KD, in conjunction with various pharmaceutical interventions, can provide either advantageous or detrimental synergistic outcomes. Therefore, it is important to consider the pharmacokinetic and pharmacodynamic interactions that may arise between the KD and various drugs. This assessment is essential not only for ensuring patients’ compliance with treatment but also for optimising the overall therapeutic outcome, particularly by mitigating adverse reactions. This highlights the significance and necessity of tailoring pharmacological and dietetic therapies in order to enhance the effectiveness and safety of this comprehensive approach to managing chronic diseases.
... Te etiology of these diseases is complex and multifaceted, involving an interplay of genetic predisposition, environmental exposures, and lifestyle factors, particularly dietary habits. Several studies have shown a signifcant association between chronic latent metabolic acidosis and an increased risk of developing or progressing NCDs such as osteoporosis, type 2 diabetes, and even mental disorders or cancer [3][4][5][6][7]. Prolonged adherence to an acid-forming diet results in a sustained disturbance of acid-base balance, leading to chronic latent acidosis. ...
Article
Full-text available
Background. Noncommunicable diseases (NCDs) are a global health challenge. The complex etiology of NCDs involves genetic, environmental, and lifestyle factors, including dietary habits. Chronic latent metabolic acidosis has been associated with an increased risk of NCDs. Alkalizing diets and mineral water consumption have shown promise in improving acid-base balance and potentially impacting NCDs. Methods. In this randomized controlled intervention study, the effect of drinking 1,500–2,000 mL of mineral water daily on acid-base balance was evaluated. Ninety-four healthy participants were divided into two groups: one consumed mineral water with a high bicarbonate and sodium content (HBS, n = 49) and the other consumed mineral water with a low bicarbonate and sodium content (LBS, n = 45). Changes in venous blood gas and urinary acid-base parameters were measured over a short-term (3 days) and long-term (28 days) intervention period. Potential renal acid load (PRAL) and nutrient intake were calculated at baseline and after 28 days. Results. HBS water consumption led to increased urinary pH (24-hour urine and spontaneous urine, both p<0.001) and bicarbonate levels (p<0.001), accompanied by reduced titratable acids (p<0.001) and ammonium (p<0.001), resulting in a lower renal net acid excretion (p<0.001). These changes occurred in the short term and persisted until the end of the study. LBS consumption showed no significant effects on urinary pH but led to a slight decrease in bicarbonate (p<0.001) and NH4⁺ (p<0.001), resulting in a slight decrease in NAE (p=0.011). Blood gas changes were modest in both groups. Mineral water consumption in the HBS group altered dietary intake of sodium and chloride, contributing to changes in PRAL values. Conclusion. The study demonstrates that the consumption of mineral water high in bicarbonate and sodium (1,500 mL–2,000 mL/day) can positively influence urinary acid-base parameters and reduce NAE, suggesting potential benefits in maintaining acid-base balance without adverse effects on human health. These findings highlight the importance of mineral water composition in acid-base regulation. This trial is registered with DRKS00025341.
... Insulin resistance and obesity are both clinical traits of type 2 diabetes. One of the main goals of treating diabetes is reducing insulin resistance [19]. On the other hand, there are very few studies examining the significance of KD in reducing insulin resistance in diabetic individuals; the majority of these studies concentrated on the impact on obese people [20]. ...
Article
Full-text available
This study examined the effects of a few biochemical variables on obese Iraqi males and females with a 30.5 body mass index (BMI) when they were fed a ketogenic diet. The present study demonstrates how an individual who follows a ketogenic diet has an increase in low-density lipoprotein (LDL-cholesterol). This research's objective was to assess the levels of some biochemical variables in obese people who were eating a ketogenic diet. Following 35 days on a ketogenic diet, the results show a significantly higher P ≤ 0.05 level of low-density lipoprotein (LDL) and total cholesterol (TC). Additionally, insulin, fasting blood sugar (FBS), cortisol, HOMA-IR, urea, BMI, and creatinine all show a considerable reduction, P ≤ 0.05.
... Because the kidneys play an important role in controlling the acid-base balance [45], an excessive dietary intake of acid can impair kidney function [42]. Accordingly, many studies have reported that metabolic disorders can occur when metabolic acidosis, which is also related to various chronic diseases, is continuously maintained [19,[24][25][26]. The acid-base balance is also associated with the respiratory system. ...
Article
Full-text available
We investigated whether cigarette smoking and dietary acid load (DAL) are associated with a risk of chronic obstructive pulmonary disease (COPD) in healthy, middle-aged Korean men. Healthy men without diagnosed chronic disease (aged 40–64 years) from the KNHANES-VI (2013–2015) were included in the analysis (n = 774) and were subdivided by smoking status and DAL levels, as estimated using the quartile of net endogenous acid production (NEAP). The current smokers tended to have a higher risk of COPD than the never-smokers before and after adjustment. When divided by the DAL quartile, the Q4 group tended to have a higher risk of COPD than the Q1 group. Additionally, the current smokers with lower (Q2), modest (Q3), and the highest NEAP scores (Q4) showed risks of COPD that were more than fourfold higher than those of the never-smokers with the lowest NEAP scores (Q1). The ex-smokers with higher NEAP scores (Q3 and Q4) showed risks of COPD that were more than fourfold higher than those of the Q1 group. Interestingly, the risk of COPD was also more than sixfold higher in the never-smokers with the highest NEAP scores compared to that in the Q1 group. The NEAP scores and smoking status synergistically increased the risk of COPD in healthy, middle-aged Korean men. This suggests that DAL levels are an important factor in the prevention and management of COPD.
... It has been reported that metabolic acidosis may be exacerbated by a western-style diet rich in animal-derived foods and poor in fruits and vegetables, which provides a high acid load [9]. Numerous studies have shown that an increase in the acidic composition of the diet may be a risk factor for obesity, insulin resistance, cardiovascular diseases [10,11], and worsening disease progression in patients with CKD [9,12]. ...
Article
Full-text available
Background: This study aimed to determine the dietary acid load of children with chronic kidney disease (CKD) and to evaluate the relationship between dietary acid load, nutritional status, and health-related quality of life (HRQOL). Method: A total of 67 children aged 3-18 years with a diagnosis of CKD stages II-V were included in the study. Anthropometric measurements (body weight, height, mid-upper arm circumference, waist, and neck circumference) and 3-day food consumption records were taken to evaluate the nutritional status. The net endogenous acid production (NEAP) score was calculated to determine the dietary acid load. "Pediatric Inventory of Quality of Life (PedsQL)" was used to assess the participants' HRQOL. Results: The mean NEAP was 59.2 ± 18.96 mEq/day. Stunted and malnourished children had significantly higher NEAP than those who were not (p < 0.05). There were no significant differences in terms of HRQOL scores according to NEAP groups. The multivariate logistic regression analysis showed that waist circumference (OR: 0.890, 95% CI: 0.794-0.997), serum albumin (OR: 0.252, 95% CI: 0.068-0.929), and glomerular filtration rate (GFR) (OR: 0.985, 95% CI: 0.970-1.000) were negatively associated with high NEAP. Conclusion: This study shows that a diet shifted in an acidic direction in children with CKD and a higher dietary acid load are associated with lower serum albumin, GFR, and waist circumference, but not HRQOL. These results suggest that dietary acid load might affect nutritional status and CKD progression in children with CKD. Future studies with larger samples are needed to confirm these results and to understand underlying mechanisms. A higher resolution version of the Graphical abstract is available as Supplementary information.
Article
Chronic kidney disease (CKD) is a major public health burden, with dietary acid load (DAL) and gut microbiota playing crucial roles. As DAL can affect the host metabolome, potentially via the gut microbiota, we cross-sectionally investigated the interplay between DAL, host metabolome, gut microbiota, and early-stage CKD (TwinsUK, n = 1,453). DAL was positively associated with CKD stage G1-G2 (Beta (95% confidence interval) = 0.34 (0.007; 0.7), p = 0.046). After adjusting for covariates and multiple testing, we identified 15 serum, 14 urine, 8 stool, and 7 saliva metabolites, primarily lipids and amino acids, associated with both DAL and CKD progression. Of these, 8 serum, 2 urine, and one stool metabolites were found to mediate the DAL-CKD association. Furthermore, the stool metabolite 5-methylhexanoate (i7:0) correlated with 26 gut microbial species. Our findings emphasize the gut microbiota’s therapeutic potential in countering DAL’s impact on CKD through the host metabolome. Interventional and longitudinal studies are needed to establish causality.
Article
High blood pressure (BP) is a major pathological risk factor for the development of several cardiovascular diseases. Diet is a key modifier of BP, but the underlying relationships are not clearly demonstrated. This is an umbrella review of published meta-analyses to critically evaluate the wide range of dietary evidence from bioactive compounds to dietary patterns on BP and risk of hypertension. PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials were searched from inception until October 31, 2021, for relevant meta-analyses of randomized controlled trials or meta-analyses of observational studies. A total of 175 publications reporting 341 meta-analyses of randomized controlled trials (145 publications) and 70 meta-analyses of observational studies (30 publications) were included in the review. The methodological quality of the included publications was assessed using Assessment of Multiple Systematic Reviews 2 and the evidence quality of each selected meta-analysis was assessed using NutriGrade. This umbrella review supports recommended public health guidelines for prevention and control of hypertension. Dietary patterns including the Dietary Approaches to Stop Hypertension and the Mediterranean-type diets that further restrict sodium, and moderate alcohol intake are advised. To produce high-quality evidence and substantiate strong recommendations, future research should address areas where the low quality of evidence was observed (for example, intake of dietary fiber, fish, egg, meat, dairy products, fruit juice, and nuts) and emphasize focus on dietary factors not yet conclusively investigated.
Article
Abundant diet components are unexplored as vital factors in intestinal homeostasis. Dietary irritants stimulate the nervous system and provoke somatosensory responses, further inducing diarrhea, gut microbiota disorder, intestinal barrier damage or even severe gastrointestinal disease. We depicted the effects of food with piquancy, high fat, low pH, high-refined carbohydrates, and indigestible texture. The mechanism of dietary irritants on intestinal homeostasis were comprehensively summarized. Somatosensory responses to dietary irritants are palpable and have specific chemical and neural mechanisms. In contrast, even low-dose exposure to dietary irritants can involve multiple intestinal barriers. Their mechanisms in intestinal homeostasis are often overlapping and dose-dependent. Therefore, treating symptoms caused by dietary irritants requires personalized nutritional advice. The reprocessing of stimulant foods, additional supplementation with probiotics or prebiotics, and enhancement of the intestinal barrier are effective intervention strategies. This review provides promising preliminary guidelines for the treatment of symptoms and gastrointestinal injury caused by dietary irritants.
Article
Full-text available
Backgrounds Numerous studies have revealed the role of dietary acid load as a potential risk factor for cardiovascular events and blood pressure. However, its role in predicting the mortality rate in patients underwent coronary artery bypass grafting surgery (CABG) has not been reported. In the current study we aimed to evaluate the relationship of dietary acid load and cardio-metabolic risk factors with ten year survival among patients underwent CABG. Methods The current prospective cohort study comprises 454 patients underwent CABG. Anthropometric, clinical and biochemical measurements were performed. Dietary acid load was calculated as either potential renal acid load (PRAL) or net endogenous acid production (NEPA) using the data obtained from a semi-quantitative food frequency questionnaire (FFQ). Survival analysis was performed using Kaplan-Meier method followed by log-rank test. The association between all-cause mortality and study parameters was performed with Cox-proportional hazard model. Results Patients in the higher PRAL and NEAP quartiles had lower BMI and lower ejection fraction rate (P <0.05). Moreover, lower hematocrit values were observed in patients of higher PRAL quartiles. Higher PRAL scores were associated with higher mortality rate and reduced survival days (adjusted hazard ratio: 1.023 (1.00–1.04; P-value = 0.01). However, there was no relationship between NEAP and survival. Conclusions We revealed that high PRAL scores are positive predictors of 10-year mortality in patients underwent CABG. The results of our study suggest that maintaining an adequate acid-base balance can contribute to longevity by reducing the risk of mortality.
Article
Full-text available
Background In the current meta-analysis, we aimed to systematically review and summarize the eligible studies evaluating the association between dietary acid load in terms of potential renal acid load (PRAL) and net-endogenous acid production (NEAP) with anthropometric parameters and serum lipids in adult population. Methods In a systematic search from PubMed, Scopus, Web of Sciences and Cochrane electronic databases up to December 2018, relevant studies were included. Cross-sectional, case control or cohort studies evaluating the association between PRAL and NEAP with the mean values of body mass index (BMI), waist circumference (WC), low and high density lipoprotein cholesterol (LDL, HDL), triglyceride (TG), total cholesterol (TC) and the prevalence of obesity were included. Results According to our results, having higher dietary acid load content in terms of high PRAL scores was associated with higher triglyceride concentrations (weighted mean difference (WMD): 3.468; confidence interval (CI): -0.231, 7.166, P = 0.04) and higher obesity prevalence (30% and 27% in highest versus lowest categories). Accordingly, being in the highest category of NEAP was associated with higher prevalence of obesity (25% and 22% in highest versus lowest category). In subgroup analysis, higher PRAL scores was associated with higher BMI in women (WMD: 0.122; CI: -0.001, 0.245; P = 0.049) and higher NEAP in men (WMD: 0.890; CI: 0.430, 1.350; P < 0.001). There was no association between dietary acid load and other studied parameters. Conclusions In the current meta-analysis, high dietary acid load content was associated with higher serum triglyceride concentrations and higher obesity prevalence. Reducing dietary acid load content might be a useful preventive strategy against obesity and metabolic disorders.
Article
Full-text available
Background: It has been suggested that the acidity of the diet may be related to increased risk of type 2 diabetes. To investigate this hypothesis, we tested if the acidity of the diet, measured as the Potential Renal Acid Load (PRAL) score, was associated with incident diabetes and diabetes-related intermediary traits. Methods: A total of 54,651 individuals from the Danish Diet, Cancer and Health (DCH) cohort were included in the prospective cox regression analyses of incident diabetes over a 15 years follow-up period. Moreover, 5724 Danish individuals with baseline data from the Inter99 cohort were included in the cross sectional, multivariate and logistic regression analyses of measures of insulin sensitivity, insulin release and glucose tolerance status derived from an oral glucose tolerance test (OGTT). Results: In the DCH cohort a trend analysis showed that quintiles of PRAL score were, after multifactorial adjustment, associated with a higher incidence of diabetes (ptrend = 6 × 10- 7). HR for incident diabetes was 1.24 (1.14; 1.35) (p = 7 × 10- 7) between first and fifth PRAL score quintile. In Inter99 higher PRAL score associated with insulin resistance as estimated by lower BIGTT-Si (an OGTT-derived index of insulin sensitivity) (p = 4 × 10- 7) and Matsuda index of insulin sensitivity (p = 2 × 10- 5) as well as higher HOMA-IR (p = 0.001). No association was observed for measures of insulin release, but higher PRAL score was associated with lower OGTT-based disposition index. Conclusions: A high dietary acidity load is associated with a higher risk of diabetes among middle-aged Danes. Although adjustment for BMI attenuated the effect sizes the association remained significant. The increased risk of diabetes may be related to our finding that a high dietary acidity load associates with impaired insulin sensitivity.
Article
Full-text available
Background: The potential influence of disorders of acid/base homeostasis on cardiovascular risk factors has been suggested. Objectives: The aim of the study was to estimate the relationship between dietary acid load and the prevalence of cardiovascular disease and the prevalence and intensity of cardiovascular risk factors (i.e., hypertension, diabetes, overweight and obesity, dyslipidemia) in the Polish adult population. Material and methods: Data was derived from a cross-sectional survey of a random sample of 6,170 Polish residents aged 20+ (Multi-Center National Population Health Examination Survey, WOBASZ II study), including anthropometric and laboratory measurements, and estimates of nutrient intakes by 24-h recall. Dietary acid/ base load was assessed as potential renal acid load (PRAL) and net endogenous acid production (NEAP). Results: The median PRAL and NEAP values for the whole study population were: PRAL -3.85 mEq/day and NEAP 39.79 mEq/day. The prevalence of overweight and obesity, both in males and females, tended to decrease across tertiles of PRAL and to increase across tertiles of NEAP. In females, the values of several metabolic characteristics differed across tertiles of NEAP. After adjustment for age and waist circumference, these relationships did not persist, but the prevalence of diabetes was found to increase across tertiles of PRAL (p for trend <0.05) in females. Conclusions: The dietary acid load in the Polish adult population was relatively low. There was no independent relationship between dietary acid load and cardiovascular disease and its risk factors in the population under study, except for the positive association between the PRAL value and diabetes prevalence in females.
Article
Full-text available
Diets rich in fruits and vegetables, like the Dietary Approaches to Stop Hypertension (DASH)-diet, are usually characterized by high potassium intake and reduced dietary acid load, and have been shown to reduce blood pressure (BP). However, the relevance of potential renal acid load (PRAL) for BP has not been compared with the relevance to BP of urinary biomarker (K-urine)- and dietary food frequency questionnaire (K-FFQ)-based estimates of potassium intake in a general adult population sample. For 6788 participants (aged 18-79 years) of the representative German Health-Interview and Examination Survey for Adults (DEGS1), associations of PRAL, K-urine, and K-FFQ with BP and hypertension prevalence were cross-sectionally examined in multivariable linear and logistic regression models. PRAL was significantly associated with higher systolic BP (p = 0.0002) and higher hypertension prevalence (Odds ratio [OR] high vs. low PRAL = 1.45, p = 0.0004) in models adjusted for age, sex, body mass index (BMI), estimated sodium intake, kidney function, relevant medication, and further important covariates. Higher estimates of K-FFQ and K-urine were related to lower systolic BP (p = 0.04 and p < 0.0001) and lower hypertension prevalence (OR = 0.82, p = 0.04 and OR = 0.77, p = 0.02) as well as a lower diastolic BP (p = 0.03 and p = 0.0003). Our results show, for the first time in a comparative analysis of a large representative population sample, significant relationships of BP and hypertension prevalence with questionnaire- and biomarker-based estimates of potassium intake and with an estimate of dietary acid load.
Article
Full-text available
Background Dietary net endogenous acid production (NEAP), which represents total dietary load of nonvolatile acid, may affect kidney function. Estimated NEAP (eNEAP) is calculated indirectly by the ratio of protein and potassium intake. A few studies are available assessing the association between eNEAP and chronic kidney disease (CKD), and its relation to dietary protein and potassium intake in the elderly. Methods A total 1,369 community-dwelling elderly Koreans in the Kangbuk Samsung Cohort Study (KSCS) were evaluated using a food frequency questionnaire (FFQ) and comprehensive health examination. We evaluated the association between eNEAP and the CKD. We also examined their relation to protein and potassium intake. Results eNEAP was correlated with potassium intake (r = -0.410, P < 0.001), but was not correlated with protein intake (r = -0.004, P = 0.879). In a full multivariate adjustment for sociodemographic factors, dietary factors, and comorbidities, the participants with higher eNEAP quartiles (Q2, Q3, Q4) had higher odds of CKD compared to the lowest eNEAP quartile (Q1); OR (95% CI) were 1.47 (0.78–2.72), 1.66 (0.85–3.23), and 2.30 (1.16–4.60) respectively (P for trend = 0.019). The odds of CKD decreased for participants with higher potassium intake quartiles (Q2, Q3, Q4) compared to the lowest potassium intake quartile (Q1); OR (95% CI) were 0.52 (0.28–0.95), 0.50 (0.26–0.96), and 0.50 (0.21–0.99) respectively (P for trend = 0.050). Protein intake was not associated with CKD. The association between eNEAP and CKD was similar in subgroup analysis. Conclusion Dietary acid load was associated with CKD. Among the nutrients related to dietary acid load, potassium intake was negatively associated with CKD, but protein intake was not associated with CKD in elderly adults.
Article
Objective: Diets high in sulfur-rich protein and low in fruit and vegetables affect human acid-base balance adversely and may have a harmful effect on progression of chronic kidney disease (CKD). Little is known about the relationship of participant characteristics, dietary acid load (DAL), and kidney injury in African-Americans with high risk of CKD progression. Design and methods: We examined the association of DAL with CKD in 3,257 African-Americans aged >20 years in Jackson Heart Study. DAL was measured with nutrient intakes assessed with a food frequency questionnaire, using a model described by Remer and Manz. We tested associations of participant characteristics with DAL using median regression, and associations of DAL with albuminuria (>17 mg/g for men, >25 mg/g for women), reduced kidney function (eGFR <60 mL/minute/1.73 m2), or CKD defined as albuminuria or reduced kidney function using logistic regression. We further explored whether endothelin and aldosterone production in participants with hypertension mediated risk of albuminuria or reduced kidney function due to the intake of an acid-inducing diet. Results: Younger adults, men, and those with higher body mass index had higher DAL. Higher DAL, compared with lower, was associated with greater odds of reduced kidney function (OR [95% CI]: 2.82 [1.40-4.75]). Higher DAL was also associated with greater risk of CKD, and this persisted after adjustment for confounders. Results were similar in adults with hypertension; the OR [95% CI] for highest, versus lowest, tertile of DAL with albuminuria was 1.66 [1.01-2.59]. Aldosterone and endothelin mediated the association between DAL and albuminuria; the OR [95% CI] in the highest tertile was no longer significant 1.53 [0.97-2.40] after their inclusion. Conclusions: Higher DAL was associated with higher prevalence of CKD and with reduced kidney function. DAL may be an important target for future interventions in African-Americans at high risk of CKD.
Article
Background & aims Existing evidence suggests a link between acid-forming potential of diet and type 2 diabetes. But the degree of the associations and shape of the dose–response relations across different indices of diet-dependent acid load and risk of type 2 diabetes and potential confounding by sex have not been established. We aimed to test the dose–response association of different measures of dietary acid load and risk of incident type 2 diabetes, with considering the sex as a potential confounder. Methods A systematic search was done using PubMed and Scopus, from inception up to September 2017. Prospective observational studies reporting the risk estimates of type 2 diabetes for three or more quantitative categories of potential renal acid load (PRAL), net endogenous acid production (NEAP) and animal protein-to-potassium ratio (A:P) scores were included. Pooled relative risks (RRs) were calculated using random effects models. Results Seven prospective cohort studies with 319,542 participants and 17,986 incident cases of type 2 diabetes were included. Pooled RRs for a 5 unit increment in dietary PRAL, NEAP and A:P were 1.04 (95% CI: 1.01, 1.06; I² = 79%, n = 7), 1.03 (95% CI: 1.01, 1.04; I² = 54%, n = 7), and 1.11 (95% CI: 1.07, 1.15; I² = 41%, n = 3), respectively. Subgroup analysis resulted in significant positive relationship only among women, compared with men. There was a linear association between NEAP and A:P scores and risk of type 2 diabetes, whereas the association appeared to be U-shaped in analysis of PRAL. Conclusions Adherence to a diet with high acid-forming potential might increase the risk of type 2 diabetes. Shape of the dose–response relations across different indices of dietary acid load and potential sex differences in the associations need to be further explored. The interpretation of the results is limited by low number of studies.
Article
Introduction: The aim of this study was to determine if dietary acid load is associated with total lean body mass in male and female seniors age ≥ 60 years. Methods: We investigated 243 seniors (mean age 70.3 ± 6.3; 53% women) age ≥ 60 years who participated in the baseline assessment of a clinical trial on vitamin D treatment and rehabilitation after unilateral knee replacement due to severe knee osteoarthritis. The potential renal acid load (PRAL) was assessed based on individual nutrient intakes derived from a food frequency questionnaire. Body composition including percentage of total lean body mass (%TLM) was determined using dual-energy X-ray absorptiometry. Cross-sectional analyses were performed for men and women separately using multivariable regression models controlling for age, physical activity, smoking status, protein intake (g/kg BW per day), energy intake (kcal), and serum 25-hydroxyvitamin D concentration. We included a pre-defined subgroup analysis by protein intake (< 1 g/kg BW day, > 1 g/kg BW day) and by age group (< 70 years, ≥ 70 years). Results: Adjusted %TLM decreased significantly across PRAL quartiles only among women (P trend = 0.004). Moreover, in subgroup analysis, the negative association between the PRAL and %TLM was most pronounced among women with low protein intake (< 1 g/kg BW per day) and age below 70 years (P = 0.002). Among men, there was no association between the PRAL and %TLM. Conclusion: The association between dietary acid load and %TLM seems to be gender-specific, with a negative impact on total lean mass only among senior women. Therefore, an alkaline diet may be beneficial for preserving total lean mass in senior women, especially in those with low protein intake.