Lyndsi Vanderwal

Lyndsi Vanderwal
North Dakota State University | NDSU · Center for Nanoscale Science and Engineering

About

24
Publications
2,431
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
584
Citations

Publications

Publications (24)
Article
Q-carbon, an allotrope of carbon, exhibits exciting functional properties and robust mechanical strength. We propose that the surface of the Q-carbon can be functionalized by doping it with silicon to enhance its performance as a potential implant material. As such, a coating of silicon-doped Q-carbon (Si-Q-carbon) is shown to minimize the formatio...
Article
Electrochemical-based additive manufacturing of metals has many potential uses for the manufacturing of medical devices with small-scale features. In this study, we examined the in vitro antimicrobial properties of metal microneedles made by local electrodeposition-based additive manufacturing called CERES (Exaddon AG, Switzerland) on metal substra...
Preprint
Full-text available
Electrochemical-based additive manufacturing of metals has many potential uses for the manufacturing of medical devices with small-scale features. In this study, we examined the in vitro antimicrobial properties of metal microneedles made by local electrodeposition-based additive manufacturing called CERES (Exaddon AG, Switzerland) on metal substra...
Article
Full-text available
Biocompatible and biodegradable materials have been used for fabricating polymeric microneedles to deliver therapeutic drug molecules through the skin. Microneedles have advantages over other drug delivery methods, such as low manufacturing cost, controlled drug release, and the reduction or absence of pain. The study examined the delivery of ampho...
Article
Full-text available
For many decades, silicone elastomers with oil incorporated have served as fouling-release coating for marine applications. In a comprehensive study involving a series of laboratory-based marine fouling assays and extensive global field studies of up to 2-year duration, we compare polydimethylsiloxane (PDMS) coatings of the same composition loaded...
Article
Grooming may be an effective technique to control marine biofouling without damaging the coating or discharging active ingredients into the environment. This study assessed the grooming performance of three experimental biocide-free siloxane polyurethane (SiPU) fouling-release coatings. Coatings were statically immersed in Port Canaveral, Florida,...
Article
Full-text available
Silicon‐incorporated diamond‐like carbon (Si‐DLC), an amorphous material containing Si atoms with sp³‐ and sp²‐hybridized carbon, is a promising biomaterial for versatile biomedical applications due to its excellent mechanical properties, chemical inertness, biocompatibility, and antimicrobial capability. However, the antifungal properties of plasm...
Preprint
Full-text available
For many decades, silicone elastomers with oil incorporated have served as fouling-release coating for marine applications. In a comprehensive study involving a series of laboratory-based marine fouling assays and extensive global field studies of up to 2-year duration, we compare polydimethylsiloxane (PDMS) coatings of the same composition loaded...
Article
Marine coatings protect submerged surfaces from the negative effects of biofouling. In this work, we demonstrate a new method to prepare self-stratified, amphiphilic glycidyl-carbamate (GC)-based (epoxy urethane-based) coatings (AmpSiGC coatings) that have fouling-release properties making them suitable for marine use. The prepared coating systems...
Article
A mixture of microflora, including Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, is found in burns and traumatic wounds. In this study, piezoelectric inkjet printing was used to apply an antifungal agent, amphotericin B, and an antibacterial agent, azithromycin, to the surfaces of gauze, silicon, and aluminum. The in vitro di...
Article
In this work, surface-modifying amphiphilic additives (SMAAs) were synthesized via hydrosilylation using various polymethylhydrosiloxanes (PMHS) and allyl-terminated polyethylene glycol monomethyl ethers (APEG) of varying molecular weights. The additives synthesized were incorporated into a hydrophobic, self-stratifying siloxane-polyurethane (SiPU)...
Article
Amphiphilic surfaces, containing both hydrophilic and hydrophobic domains, offer desirable performance for many applications such as marine coatings or anti-icing purposes. This work explores the effect of the concentration of amphiphilic moieties on converting a polyurethane (PU) system to a coating having fouling-release properties. A novel amphi...
Article
This study is focused on the development of tougher gels using combinations of acrylamide, fluoromethacrylate and a non-isocyanate urethane dimethacrylate (NIUDMA) crosslinker. The NIUDMA was tailored with 2, 3-epoxypropoxy propyl-polydimethylsiloxane segments E9 (MW = 0.36 kg mol-1), E11 (MW = 0.5-0.6 kg mol-1) and E12 (MW = 1-1.4 kg mol-1). A 3 l...
Article
Amphiphilic coatings have shown promising performance for marine applications to deter and limit biofouling. Hydrophobic marine coatings are unable to deter marine organisms that prefer hydrophobic surfaces for settlements, thus a series of amphiphilic additives were prepared and introduced to a hydrophobic system to attain surface amphiphilicity a...
Article
Silicones with improved water-driven surface hydrophilicity and anti-biofouling behavior were achieved when bulk-modified with poly(ethylene oxide) (PEO) -silane amphiphiles of varying siloxane tether length: α-(EtO)3Si-(CH2)2-oligodimethylsiloxane m -block-poly(ethylene oxide)8-OCH3 (m = 0, 4, 13, 17, 24, and 30). A PEO8-silane [α-(EtO)3Si-(CH2)3...
Article
Full-text available
Transdermal delivery of amphotericin B, a pharmacologic agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix assisted pulsed laser evaporation to print amphoteri...
Article
Full-text available
Amphiphilic siloxane–polyurethane (AmSiPU) coatings were prepared using a series of polyisocyanate prepolymers modified with polydimethyl siloxane (PDMS) and poly(ethylene glycol) (PEG). Fouling-release performance of the AmSiPU coatings was evaluated through laboratory biological assays using several representative marine organisms. First, polyiso...
Article
Poly(glycolic acid) microneedle arrays were fabricated using a drawing lithography process; these arrays were modified with a drug release agent and an antifungal agent by piezoelectric inkjet printing. Coatings containing poly(methyl vinyl ether–co–maleic anhydride), a water-soluble drug release layer, and itraconazole (an antifungal agent), were...
Article
High-throughput methods were used to prepare and characterize the fouling-release (FR) properties of an array of amphiphilic polysiloxane-based coatings possessing systematic variations in composition. The coatings were derived from a silanol-terminated polydimethylsiloxane, a silanol-terminated polytrifluorpropylmethylsiloxane (CF3-PDMS), 2-[metho...
Article
As part of ongoing efforts aimed at the development of extensive structure−property relationships for moisture-curable polysiloxane coatings containing tethered quaternary ammonium salt (QAS) moieties for potential application as environmental friendly coatings to combat marine biofouling, a combinatorial/high-throughput (C/HT) study was conducted...
Article
Siloxane-polyurethane fouling-release (FR) coatings based on aminopropyl terminated poly(dimethylsiloxane) (PDMS) macromers were prepared and characterized for FR performance via laboratory biological assays. These systems rely on self-stratification, resulting in a coating with a siloxane-rich surface and polyurethane bulk. Previously, these coati...
Article
High-throughput biological assays were used to develop structure - antimicrobial relationships for polysiloxane coatings containing chemically bound (tethered) quaternary ammonium salt (QAS) moieties. The QAS-functional polysiloxanes were derived from solution blends of a silanol-terminated polydimethylsiloxane, a trimethoxysilane-functional QAS (Q...

Network

Cited By