
On	the	reparameterization	of	torsional	potentials	in	molecular	mechanics:	

A	tutorial	based	on	NAMD	code	and	CHARMM	force	field	

Torsions???	

Among	the	terms	contributing	to	the	description	of	the	molecular	shape	in	a	molecular	mechanics	(MM)	force	
field	(FF),	the	ones	describing	the	torsional	potentials	are	probably	the	most	important	and	the	most	indicated	
for	a	careful	check	before	starting	a	simulation	campaign.	With	torsional	potential,	it	is	meant	the	variation	of	
the	 energy	 as	 a	 function	 of	 the	 torsional	 (or	 dihedral)	 angle,	 by	 definition	 the	 angle	 between	 four	 atoms	
connected	 in	 a	 row	 1-2-3-4,	 which	 can	 span	 a	 full	 turn.	 In	 mathematical	 terms,	 the	 dihedral	 angle	𝜑	is	 a	
pseudoscalar,	i.	e.	a	quantity	that	behaves	like	a	scalar,	except	that	it	changes	sign	under	a	parity	inversion	(a	
flip	of	the	sign	of	one	coordinate	axis)	such	as	improper	rotations,	while	a	true	scalar	does	not	[Note1].	In	its	[-
π:+π]	definition,	it	can	be	calculated	from	the	atomic	coordinates		𝑟!,	𝑟!	,𝑟!,	𝑟!	and	their	differences		𝑟!" = 𝑟! −
𝑟!,	…,	as	(see	Appendix	A	for	the	corresponding	Fortran	code):	

𝜑 = cos!! 𝑟!"×𝑟!" ∙ 𝑟!"×𝑟!" / 𝑟!"×𝑟!" ∙ 𝑟!"×𝑟!" 	 ,	 	 	 	 	 (1)	

with	its	sign	given	by		

𝑠gn(𝜑) = 𝑠gn 𝑟!"×𝑟!" × 𝑟!"×𝑟!" ∙ 𝑟!" 	 .	 	 	 	 	 	 	 (2)	

The	origin	of	the	importance	of	torsional	potential	can	be	found	in	the	low	energy	associated	by	the	change	of	
a	 dihedral	 angle	 (with	 the	 exception	 of	 dihedrals	 between	 atoms	 belonging	 to	 the	 same	 aromatic	 ring,	 see	
figure	1,	we	are	speaking	of	energy	barriers	of	few	kcal/mol),	or	 in	other	words	the	in	“softness”	of	torsional	
vibrational	modes.	The	consequences	are	multiple,	among	them:	

- these	modes	can	be	strongly	anharmonic,		hence	they	are	described	in	the	FF	with	a	series	of	cosines	
(see	eq.	1),	and	not	with	parabolas	like	bending	and	stretching	terms	

- the	torsional	potential	has	several	local	minima	separated	by	small	energy	barriers	
- the	parameters	describing	the	potential	are	difficult	to	transfer	to	a	molecule	to	another		
- the	 variation	 of	 the	 conformation	 (the	 value	 of	 the	 local	 minimum	 effectively	 populated)	 strongly	

affects	the	shape	of	the	molecule	
- the	conformation	or	the	population	of	conformations	may	quickly	change	with	temperature	and	from	a	

phase	to	another	(see	e.g.	[Pizzirusso	2011]).	

In	standard	FFs,	the	torsional	parameters	are	specified	for	
each	 quadruple	 of	 atom	 types,	 where	 the	 type	 identifies	
elements	 sharing	 the	 same	 chemical	 environment,	 see	
reference	[Wang	2004]	and	figure	1.		

In	the	simplest	case,	only	the	type	of	the	two	central	atoms	
(D1	 and	 D2	 in	 figure	 2)	 is	 specified,	 with	 parameters	 that	
disregard	 the	 type	 of	 the	 two	 extreme	 atoms,	 indicated	
with	 a	 wildcard	 (“X”).	 It	 is	 worth	 noting	 that	 the	 total	
energy	 expression	 of	 the	 CHARMM	 force	 field	 reported	
below	 (equation	 3),	 the	 sum	 over	 the	 dihedrals	 runs	 on	
every	 quadruple	 of	 atom	 types,	 and	 that,	 depending	 on	

the	implementation,	the	number	of	cosines	in	the	Fourier	series	is	often	limited	to	a	maximum	of	six	terms	for	
each	of	them,	but	with	freedom	in	the	six	values	of	n	chosen.	

	 	
Figure	1:	Example	of	atom	types.	In	naphthalene	
(left),	 all	 the	 carbons	 belong	 to	 the	 same	 type	
“CA”,	 while	 for	 biphenyl	 a	 new	 type	 “cp”	must	
be	 introduced	 for	 bridge	 carbons,	 as	 they	
experience	 a	 different	 torsional	 potential	 with	
respect	 to	 the	 carbons	 belonging	 to	 the	 same	
phenyl	ring	[Wang	2004].	
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To	 complete	 the	 picture	 we	 should	 keep	 in	 mind	 that	 the	 long	 range	 electrostatic	 and	 van	 der	 Waals	
contributions	(described	with		the	sum	over	atoms	in	equation	3),	are	normally	excluded	for	atoms	separated	
by	two	bonds	 (“1-3	 interactions”)	and	are	scaled	by	a	given	factor	 for	atoms	separated	by	three	bonds	 (“1-4	
interactions”).	Clearly	these	1-3	and	1-4	interactions	are	relevant	in	the	case	of	dihedral	potentials.	1-4	factors	
of	 1/2	 and	 5/6	 are	 used	 for	 vdW	 and	 electrostatics	 in	 the	 most	 adopted	 OPLS-AMBER	 FF,	 respectively	
[Jorgensen	1996].	To	be	more	specific	we	take	the	sketch	of	figure	2	as	example.	In	that	case,	only	one	torsion	
is	 present,	 involving	 all	 the	 quadruples	 of	 atoms	Ai–D1–D2–Bi.	 The	 number	 of	 quadruples	 for	 each	 torsion	 is	
sometimes	called	the	multiplicity	of	the	dihedral,	from	herewith	called	NQ.	This	number	is	given	by	multiplying	
the	number	of	atoms	connected	to	D1	and	D2.	In	the	example,	NQ	=	NA	x	NB	=	9,	consisting	in	the	quadruples	(A1-
D1-D2-B1),	 	 (A2-D1-D2-B1),	 (A3-D1-D2-B1),	 (A1-D1-D2-B2),	 (A2-D1-D2-B2),	 (A3-D1-D2-B2),	 (A1-D1-D2-B3),	 (A2-D1-D2-B3),	
(A3-D1-D2-B3).	 For	 each	 of	 these	 quadruples	 the	 corresponding	 parameters	 must	 be	 present	 in	 the	 dihedral	
section	of	the	parameter	file	[Note2].	For	instance	if	the	atom	type	of	atoms	Ai	,D1,	D2,	Bi	are	named	AI,	D1,	D2,	
BI,	we	could	have:	
	
DIHEDRAL 
X   D1  D2  X     2.1   3    180.0 
X   D1  D2  X     0.2   6    180.0 
A1  D1  D2  B3    2.7   4      0.0 
	
Starting	 with	 the	 format,	 after	 the	 four	 atom	 type	 labels	 we	 find	 the	 constant	𝑉! 	(in	 kcal/mol),	 n	 (the	
multiplicity	of	the	cosine)	and	the	phase	𝛾!.	In	this	example,	two	cosine	terms	with	n=3	and	6	are	used	for	all	
the	quadruples	but	(A1-D1-D2-B3)	where	the	explicit	term	with	n=4	overrides	the	previous	definitions.	There	are	
neither	limitation	in	the	integer	values	n	can	assume,	nor	in	the	phase	angle.	A	negative	sign	of	𝑉!	is	equivalent	
to	a	phase	of	180°.	For	instance	for	the	CF3–CF2C-	torsion	of	1,	1,	1,	2,	2-pentafluorobutane	(figure	2)	we	used	
[Roscioni	2012]:	
	
F  CF CF F    0.156  3 0.0 
F  CF CF CF   0.156  3 0.0 
CF CF CF CF  -0.2531 1 0.0 
CF CF CF CF  -0.2002 2 0.0 
CF CF CF CF  -0.9107 3 0.0 
CF CF CF CF   0.5057 4 0.0 
CF CF CF CF   0.0986 5 0.0 
CF CF CF CF  -0.1229 7 0.0 
 
As	already	mentioned,	the	existing	parameterizations	for	dihedrals	are	often	not	too	accurate	(see	e.g.	[Berardi	
2005])	and	it	is	good	practice	to	calculate	a	more	reliable	potential	with	quantum	chemistry	methods	and	re-
parameterize	 the	 FF.	 This	 is	 particularly	 relevant	 for	 torsions	 involving	 rigid	 aromatic	 fragments	 or	
heteroatoms.		The	choice	of	the	level	of	calculation	depends	on	the	size	of	the	molecule:	for	small	ones	(max	
30	 atoms?),	 the	 “golden	 standard”	 is	 CCSD(T)	 at	 the	extrapolated	 complete	basis	 set	 limit	 [Riley	2012];	 as	 a	
matter	of	fact,	we	never	tried	this	method,	mainly	because	the	molecules	we	study	have	normally	around	100	
atoms	or	more.	In	this	case,	and	in	presence	of	many	torsions	to	scan,		CCSD(T)	is	prohibitive,	and	usually	we	
resort	 to	 long	 range	 corrected	Density	 Functional	 Theory	 (DFT)	 functionals,	 such	 as	 B97D	 [Grimme	2006]	 or	
wB97XD	[Chai	2008],	possibly	with	a	triple	zeta	basis	set	(cc-pVTZ).	However	B3LYP/cc-pVDZ	or	/6-31G*	[Becke	



1993]	 is	 still	 the	 reference	method	 in	 the	 literature	and	well	accepted	by	 referees,	although	 in	 the	 family	of	
hybrid	 DFT/Hartree	 Fock	 functionals	 the	 double	 hybrid	 B2PLYP(-D)	 [Schwabe	 2007]	 is	 considered	 the	 best	
method	 [Sancho-Garcia	 2009],	 albeit	 quite	 expensive	 in	 its	 Gaussian09	 implementation.	 Ideally,	 all	 the	
calculations	should	be	run	with	a	triple	zeta	basis	set	with	polarization	and	diffuse	functions	(e.g.	aug-cc-pVTZ	
or	 6-311+G*,	 6-311++G**).	 In	 practice,	 it’s	 a	 matter	 of	 choosing	 the	 best	 compromise	 between	 accuracy,	
feasibility,	and	deadlines/	time	available	for	completing	the	force	field	setup.	

	

To	 be	 more	 precise,	 the	 total	 torsional	 energy	 potential	 –	𝑈(𝜑) 	from	 here	 -	 should	 be	 calculated	 with	
constrained	energy	minimizations:	for	each	value	of	𝜑,	approximated		in	discrete	steps	of	5-30°,	a	constrained	
energy	minimization	must	 be	 run,	 letting	 the	 other	molecular	 degrees	 of	 freedom	 relaxed.	 	 In	 the	 FF,	𝑈(𝜑)	
corresponds	to	the	sum	of	all	 the	terms	corresponding	to	the	quadruples	 i	of	atoms	centered	at	the	torsion,	
𝑢!(𝜑),		opportunely	phase	shifted	–	in	fact	the	definition	of	of	𝜑	is	not	consistent	for	all	the	quadruples.	In	the	
figure	2	example,	 if	we	define	𝜑	as	 the	dihedral	 angle	between	 the	atoms	A1-D1-D2-B1,	 than	 for	 at	 the	 same	
geometry	 the	 dihedral	 for	 A1-D1-D2-B2	 will	 be	𝜑 + 𝛽!" ,	 and	 A2-D1-D2-B3	 will	 be	𝜑 + 𝛽!" .	 So	 in	 general	 a	
quadruple	i	will	be	out	of	phase	of	an	angle	𝛿! 	which	value	depends	on	the	quadruple	chosen	for	the	definition	
of	𝜑:	

𝑈 𝜑 =  𝑢! 𝜑 +  𝛿!  =  𝑉!,! 1 + cos 𝑛!𝜑 + 𝑛!𝛿! + 𝛾!,!!
!!

!!
!!!

!!
!!! 		 	 	 	 (4)	

On	one	hand	this	definition	allows	for	a	great	flexibility	 in	defining	the	FF	parameters;	on	the	other,	multiple	
choices	are	possible	for	reproducing	the	torsional	potential,	depending	on	the	types	of	the	atoms	linked	to	D1	
and	D2.	In	the	simplest	and	luckier	cases,	symmetry	or	local	symmetry	(the	torsional	potential	is	affected	only	
by	atoms	about	5	Å	away	from	D1	and	D2)	helps	us	in	the	definition	of	the	better	function	for	fitting	𝑈 𝜑 :	the		
𝛿! 	angles	 are	 all	 equal,	 the	 atom	 types	 AI	 and	 BI	 are	 all	 the	 same	 and	 	𝑈 𝜑 	reflects	 the	 symmetry	 of	 the	
chemical	environment.	In	those	case,	experience	and	mathematics	tells	us	that	the	choice	of	𝑛! 	respecting	this	
symmetry	helps	and	quicken	the	derivation	of	suitable	parameters,	although	other	solutions	can	be	found.	For	
instance	for	the	Cp-Cp	dihedral	 in	figure	1	only	even	cosine	terms	respect	the	symmetry	and	thus	odd	terms	
should	 be	 excluded	 from	 the	 “basis	 set”.	 In	 asymmetric	 cases,	 it	 is	more	 convenient	 to	 adopt	 a	 symmetric	
potential	for	all	atom	types	quadruples	but	one,	and	to	“charge”	the	asymmetry	only	on	one	quadruple	type,	
possibly	the	one	with	lowest	occurrence	–	see	the	CF3–CF2C-	example	below.			

And	so	what	should	I	do?	

	
	

Figure	 2:	 	 Left:	 scheme	 of	 the	 dihedral	 angle	 Ai–D1–D2–Bi	 ;	 right:	 a	 real	 molecule	 featuring	 three	 types	 of	
dihedrals	(one	for	each	carbon-carbon	bond):	1,1,1,2,2-pentafluorobutane.	



Let’s	 take	 a	 practical	 example,	 and	 suppose	 that	 we	 have	 calculated	 the	 “correct”	 torsional	 potential	 for	
dithiophene	 (T2)	with	 the	help	of	 some	quantum	chemistry	calculations,	 like	 in	 figure	3.	 First	of	all,	 also	 the	
quantum	chemistry	potential	𝑈!" 𝜑 	can	be	conveniently	fitted	and	expressed	with	a	series	of	cosines	–	very	
effectively	for	ground	state	calculations,	a	bit	less	for	charged	molecules,	in	particular	if	DFT	is	used	(figure	3).		
It	could	be	tempting	to	transfer	directly	the	fit	parameters	to	the	force	field,	however	this	is	not	possible:	first	
because	all	the	terms	in	equation	3	contribute	to	the	effective	torsional	potential,	and	in	particular	the	van	der	
Waals	and	electrostatic	intermolecular	interaction,	but	also	the	stretching	of	the	bond	between	D1	and	D2.	We	
call	these	“external”	contributions	𝑈! 𝜑 		while	we	keep	the	symbol		𝑈 𝜑 	for	the	explicit	force	field	torsional	
term	 shown	 in	 equation	 4.	 Secondly,	 depending	 on	 the	 symmetry	 of	 the	 atoms	 involved,	 it	 is	 not	
straightforward	to	translate	the	𝑈!" 𝜑 	profile	into	the	sums	on	the	right	hand	side	of	equation	4,	although	in	
the	ideal	case	proper	symmetry,		𝑈! 𝜑 = 0	and	only	one	atom	type	for	the	Ai	and	Bi,	𝑈 𝜑 = 𝑁!𝑢! 𝜑 	could	
hold.	It	the	most	common	case	it	does,	but	still 𝑈! 𝜑 ≠ 0.	

	
	 	

Figure	3:	From	the	left,	dithiophene	(T2,	C8S2H6)	chemical	structure,	T-T	torsional	potential	calculated	
with	different	methods	for	the	positively	charged	molecule,	the	same	potential	calculated	at	MP2//cc-
pVTZ	level	for	positively	charged	and	neutral	state	(points)	and	corresponding	fit	with	a	series	of	cosines	
(continuous	lines).	As	the	definition	of	the	angle	is	not	unique,	it	must	always	be	specified:	in	this	case	it	
the	S-C-C-S	quadruple	has	been	selected.	

	

The	 problem	 of	 deriving	 the	 FF	 parameters	 than	 translates	 into	 finding	 a	 way	 for	 evaluating	 the	 function	
 𝑈! 𝜑  produced	by	the	FF.	Known	this,	the	explicit	FF	parameters	reproducing	the	QM	potential	can	be	easily	
calculated	as:	

𝑢 𝜑 = ! !
!!

= !!" ! !!! !
!!

	 	 	 	 	 	 	 	 	 	 (5)	

As	 usual	 the	 simplest	 solution	 is	 never	 available:	most	MD/MM	 codes	 do	 not	 include	 a	 constrained	 energy	
minimization	 algorithm	 in	 their	 implementation,	 allowing	 for	 a	 direct	 calculation	 of	 𝑈! 𝜑  and	 comparison	
with	 𝑈!" 𝜑  	(it	is	always	good	practice	to	parameterize	the	force	field	with	the	code	that	is	used	for	running	
subsequent	 simulations):	 as	 a	 consequence,	 in	 the	 last	 years	we	 always	 approximated	 the	 (internal)	 energy	
profile	 𝑈! 𝜑  with	 the	 free	 energy	 profile	 𝐹! 𝜑  .	 Thermodynamics	 tells	 us	 that	 in	 the	 case	 of	 the	 NVT	
ensemble	we	normally	use	for	such	calculations,	𝐹! 𝜑 =	𝑈! 𝜑 − 𝑇𝑆! 𝜑 ,	where	temperature	and	and	the	
entropy	 associated	 to	molecular	 vibrational	 and	 translational	modes	 appear.	 The	 approximation	of	𝐹! 𝜑 ≅	
𝑈! 𝜑 	[Johansson	2008]	may	be	considered	a	good	one	for	several	reasons:	

- we	try	to	keep	the	temperature	as	low	as	possible	(200	K)	
- it	 is	 not	 the	absolute	 value	of	 	𝐹! 𝜑 	or	 	𝑈! 𝜑 	that	matters,	but	 the	difference	of	energy	between	

two	different	values	of	𝜑,	and	the	derivative	of	the	curves	
- there	 are	 no	 strong	 physical	 arguments	 for	 having	 	𝑆! 𝜑 	strongly	 depending	 on	𝜑:	 for	 instance	 for	

biphenyl	 torsion	 the	effect	of	 considering	entropy	 in	ab	 initio	 calculations	 resulted	 in	changes	of	 the	



minimum	energy	angle	of	about	5	degrees	and	in	changes	of	energy	of	about	0.2	kJ/mol,	both	below	
the	resolution	of	MM	calculations	[Johannson	2008]	

- last	but	not	least,	all	referees	accepted	this	approximation	so	far	;)	

The	calculation	of	 free	energy	 is	a	 long	standing	computational	problem	 itself	 [Chipot	2007],	however	 in	our	
case,	 due	 to	 the	 relative	 simplicity	 of	 the	 torsional	 energy	 profile,	 at	 least	 two	 methods	 are	 available	 and	
affordable,	although	the	latter	is	much	quicker	and	more	effective:	Boltzmann	inversion	and	Adaptive	Biasing	
Force	(ABF)	calculations	[Chipot	2007,	Darve	2008,	Henin	2010].	

We	start	the	truly	tutorial	part	by	applying	the	Boltzmann	inversion	method	–	the	most	“natural”	one.	In	fact	it	
consists	 in	 running	 a	 standard	 MD	 simulation	 at	 a	 given	 temperature,	 calculate	 from	 the	 trajectory	 the	
distribution	of	the	dihedral	angle	of	interest,	and	calculate	the	corresponding	free	energy	profile	by	“inverting”	
the	distribution,	assuming	that	it	is	determined	by	Maxwell-Boltzmann’s	statistics:	

𝑃 𝜑 ∝ exp −𝐹 𝜑 /𝑘𝑇 	 	 	 	 	 	 	 	 	 	 (6)	

𝐹 𝜑 = −𝑘𝑇 log𝐹 𝜑 + 𝐹!	 	 	 	 	 	 	 	 	 	 (7)	

where	𝐹!	is	set	a	posteriori	in	order	to	have	only	positive	free	energies	with	the	minimum	at	𝐹 = 0.	
Regarding	the	simulation	setup,	here	we	are	interested	in	the	comparison	with	QM	calculations	–	i.e.	isolated	
molecules	 –	 hence	 the	 best	 would	 be	 to	 simulate	 an	 isolated	 molecule	 with	 MD.	 However	 proper	
thermalization	is	difficult	 in	these	cases,	and	it	 is	easy	to	risk	the	so-called	“flying	ice	cube”	problem	[Note3].	
We	 then	 prefer	 to	 run	 simulations	 in	 the	 gas	 phase,	 by	 adding	 a	 few	 Argon	 atoms	 which	 ensure	 a	 better	
exchange	of	kinetic	energy	by	frequent	collisions	with	the	target	molecule.	Normally	a	box	size	is	of	50	with	40	
Ar	atoms	is	adequate	(Figure	4).	For	T2,	we	use	MP2/cc-pVTZ	charges	and	“our”	force	for	sexithiophene,	largely	
coincident	with	the	AMBER	force	field	–	see	topology	and	parameter	files	in	appendix	b)	and	c).	

The	 idea	 is	 to	 run	a	 simulation	 long	enough	 to	be	able	 to	
evaluate	  𝑈! 𝜑 	and	 then	 use	 equation	 5)	 or	 a	 more	
elaborate	 one	 to	 derive	 the	 𝑢 𝜑 	for	 each	 of	 the	
quadruples	 involved,	here	CA-CS-CS-CA,	S-CS-CS-S,	and	2	x	
CA-CS-CS-S.	 The	 proper	 length	 of	 the	 simulation	 depends	
on	 the	 temperature,	 the	 energy	 barrier,	 the	 level	 of	
accuracy	needed,	etc.	We	start	with	T=600	K	and	10	ns;	at	
this	 high	 T	we	 expect	 that	 energy	 barriers	 can	 be	 passed	
rather	easily.	 For	 this	example,	we	opt	 for	a	dumb	use	of	
equation	 5)	 and	 then	 we	 aim	 at	 finding	 a	 proper	 set	 of	
parameter	 for	 the	 X-CS-CS-X	 torsions:	 to	 estimate	 the	
corresponding	 	  𝑈! 𝜑 	the	 simplest	 way	 is	 to	 set	 their	
value	 to	 zero	 in	 the	 prm	 file	 for	 the	 first	 simulation	
“round”:	
	
X  CS CS X 0.0 2 180 
 

We	 are	 then	 ready	 to	 start	 the	 simulation	 (see	 NAMD	
configuration	file	in	appendix	d).	It	is	important	to	switch	of	

the	Particle	Mesh	Ewald	method	because	we	are	not	interested	in	long	range	electrostatic	interactions	(all	the	
charged	atoms	are	 inside	the	molecule)	and	because	 it	considerably	slows	down	the	simulation.	Once	run	 it,	
the	NAMD	dcd	file	must	have	been	converted	as	usual	into	the	trj	format	(the	outside	ascii	format,	although	a	
direct	read	from	dcd	is	a	planned	improvement)	via	the	command:	
	
$ dcd_to_trj T2gas 1. 

	
Figure	4:	A	typical	simulation	box	with	the	target	
molecule	and	40	Argon	atoms	in	the	gas	phase.	



 

Then	we	use	outside	to	compute	the	torsion	angle	distribution	and	free	energy	(see	appendix	e	for	an	example	
input).	 Once	 the	 free	 energy	 𝑈! 𝜑 	is	 calculated,	 then	 equation	 5	 is	 used	 to	 compute	 the	 new	 force	 field	
parameters	 for	 the	 torsion.	 Normally	 the	 first	 correction	 is	 not	 sufficient	 to	 achieve	 convergence	 in	 the	 ff	
parameters,	and	then	it	is	necessary	to	reiterate	the	procedure	updating	each	time	the	ff	parameters	(summing	
the	correction	to	the	previous	ones).	Although	other	choices	are	possible,	for	performing	fits	and	correction	we	
typically	use	a	gnuplot	script	(appendix	f)	which	must	be	updated	after	each	round	and	the	parameter	file	as	
well.	As	already	mentioned,	in	the	script	used	in	this	tutorial	equation	5	is	adopted	on	purpose,	even	if	is	not	
completely	 correct,	 moreover	 a	 symmetrized	 form	 of	 the	 QM	 potential	 is	 also	 adopted	 (	
𝑈!" 𝜑 = [2𝑈!" 𝜑 +2𝑈!" 𝜑 + 180 ]/4 	).	 In	 practice	 then	 at	 least	 two	 errors	 are	 contained	 in	 the	
script/procedure:	we	use	the	SS-CS-CS-SS	distribution	of	the	energy	without	taking	into	account	that	the	other	
quadruples	have	not	necessarily	the	same	phase	𝛿!,	while	we	do	it	for	the	QM	potential,	in	practice	decreasing	
its	 asymmetry	 (the	peaks	at	 0	 and	180	degrees	have	 the	 same	height	 in	 the	 symmetrized	 form).	 The	wrong	
concept	is	that	we	try	to	fit	an	asymmetric	dihedral	potential	with	an	implicitly	symmetric	function	(the	choice	
of	a	X-CS-CS-X	expression	in	the	parameter	file):	it	could	work	only	if	𝑁!	would	be	equal	to	one.	The	results	on	
the	 free	 energy	 profile	 of	 the	 first	 three	 iteration	 of	 this	 procedure	 are	 shown	 in	 figure	 5:	 despite	 the	
conceptual	error,	things	don’t	work	too	badly	and	already	at	the	second	round	the	FF	produces	a	profile	rather	
similar	 to	 the	 QM	 one.	 Unfortunately,	 further	 iterations	 (up	 to	 four	 were	 tried)	 do	 not	 bring	 any	 further	
improvement:	 this	 in	 our	 experience	 is	 the	 typical	 symptom	 of	 using	 the	 wrong	 symmetry	 (like	 here)	 or	
mathematical	functions	(for	example,	there	is	a	typing	error	somewhere	in	the	several	files,	or	all	𝛿! 	are	set	to	
zero,	or	even	𝑛! 	when	odd	values	are	requested,	…).	

	 	 	
Figure	5:	Thiophene-thiophene	torsional	free	energy	calculated	from	MD	simulation	(blue	dots),	corresponding	
fitting	 function	 (black	 line),	 and	QM	original	 and	 symmetrized	 “PhasedQM”	potential	 (cyan	and	green	 lines).	
From	the	left,	first	“round”	at	600	K,	second	at	300	K,	and	third	at	200	K.	
 

Figure	 5	 is	 still	 instructive	 as	 we	 can	 observe	 several	 features:	 i)	 what	 we	 called	 the	 “external”	 torsional	
potential	 𝑈! 𝜑 	is	 far	 from	being	negligible,	and	has	peaks	 in	correspondence	with	conformations	on	which	
the	 atoms	 Ai	 are	 eclipsed	 by	 Bi	 (figure	 5	 left	 [Note4]);	 ii)	 the	 noise	 in	 the	 simulation	 data	 depends	 on	 the	
temperature:	a	lower	temperature	gives	lower	noise	in	the	populated,	low	energy	regions,	but	also	higher	nois	
/	 worse	 sampling	 in	 the	 barrier	 regions;	 iii)	 fitting	 the	 simulated	 potential	 with	 an	 appropriate	 function	
somehow	reduces	the	noise;	iv)	despite	we	use	a	FF	expression	symmetric	in	0	and	180,	the	overall	potential	
obtained	from	MD	is	not	symmetric	there:	this	because		 𝑈! 𝜑  is	not	symmetric	due	to	the	different	charges	
and	van	der	Waals	parameters	for	the	SS	and	CS	atom	types.	

For	 refining	 the	 FF,	we	 turn	 to	 the	 second	method	 for	 calculating	 𝑈! 𝜑 	,	 i.e.	 to	 the	 adapting	biasing	 force	
technique.	To	make	 it	 short,	 in	 this	 framework	 it	 is	possible	 to	define	a	collective	variable	 (the	 torsion	angle	
here)	for	which	the	free	energy	is	calculated:	i)	the	forces	acting	on	𝜑	are	monitored	and	averaged	during	the	
MD	simulation,	and	 ii)	equal	and	opposite	forces	are	applied.	 	Keeping	track	of	the	forces	(−𝜕𝑈(𝜑)/𝜕𝜑	)	 for	
discrete	values	of	𝜑	allows	for	computing	the	free	energy	by	integrating	over	𝜑	(NAMD	stores	it	 in	a	file	with	
extension	 .pmf),	 while	 the	 counterforces	 improve	 the	 sampling	 making	 easy	 to	 overcome	 the	 barriers	 and	



determining	an	almost	uniform	sampling	at	the	end	of	the	simulation.	ABF	calculations	are	available	in	NAMD	
form	version	2.7	onwards,	to	run	our	one	we	just	need	to	add	to	the	configuration	file	the	two	following	lines:	
 
colvars         on 
colvarsConfig   SStors.colvars 

	
We	 also	 need	 to	 provide	 an	 additional	 file	 “SStors.colvars”	 where	 the	 collective	 variable	 is	 defined	 –	 see	
appendix	g	 for	our	 torsion	and	NAMD	manual	 for	more	elaborated	cases.	Regarding	 the	MD	simulation,	 it	 is	
completely	 similar	 to	 the	 previous	 ones,	 albeit	 shorter	 simulations	 times	 (2	 ns)	 are	 normally	 adequate,	 and	
although	 we	 are	 no	 more	 worried	 on	 sampling,	 we	 cannot	 use	 very	 low	 temperatures	 as	 Ar	 atoms	 could	
crystallize	–	we	continue	with	200	K.		As	now	we	intend	to	consider	that	the	QM	potential	has	different	values	
at	 0	 and	180	degrees,	we	 choose	of	modifying	 in	 the	parameter	 file	 only	 the	 SS	CS	CS	 SS	 parameters	while	
leaving	the	other	unaltered	with	respect	to	figure	5	right,	where	we	had	(a	decent	guess):	
 
X  CS CS X -0.1229 1 0.0 
X  CS CS X -0.352  2 0.0 
X  CS CS X  0.1015 4 0.0 
X  CS CS X  0.0141 6 0.0 
 

And	now	we	distinguish	some	quadruples	and	switch	to:	
 
CA CS CS X  -0.1229 1 0.0 
CA CS CS X  -0.352  2 0.0 
CA CS CS X   0.1015 4 0.0 
CA CS CS X   0.0141 6 0.0 
SS CS CS SS  0.0    1 0.0 

	
and	run	the	first	ABF/MD	simulation.	To	analyze	the	results,	we	must	modify	the	gnuplot	script	by	changing	the	
file	name	and	the	columns	of	the	simulation	data	(the	.pmf	file,	column	1:2),	and	most	importantly	change	the	
dihedral	multiplicity	from	4	to	1	as	now	we	are	dealing	with	the	SS	CS	CS	SS	quadruple	only,	and	fit	the	original	
QM	function	instead	of	a	symmetrized	one.	After	this	run,	the	force	field	potential	is	still	far	away	from	the	QM	
one	 	 (see	 figure	 6,	 left),	 as	 the	 SS	 CS	 CS	 SS	were	 set	 to	 zero.	 By	 fitting	 again	 the	 difference	we	 obtain	 the	
following	parameters	to	start	the	second	ABF/MD	run:		
	
SS  CS CS SS -0.4363 2 0.0 
SS  CS CS SS  0.0603 3 0.0 
SS  CS CS SS  0.1334 4 0.0 
SS  CS CS SS -0.0159 8 0.0 

	
The	 resulting	potential	 is	 shown	 in	 figure	6	 right:	 finally	 the	agreement	between	QM	and	MM	is	 satisfactory	
and	no	further	runs	are	necessary.	
	

	 	



Figure	 6:	 Thiophene-thiophene	 torsional	 free	 energy	 calculated	 with	 ABF/MD	 simulation	 (green	 dots),	
corresponding	 fitting	 function	 (thick	 line),	and	QM	potential	 (thin	 line).	 Left	 first	and	 right	 second	“round”	at	
200	K.	
	

We	 conclude	 this	 tutorial	 with	 a	 quick	 comparison	 between	 the	 Boltzmann	 inversion	 and	 ABF	 techniques	
applied	to	the	dithiophene	torsion,	showing	a	few	distributions	and	energy	profiles	 in	figure	7	and	discussing	
them:	

- unbiased	MD	gives	the	real	distribution	while	ABF	a	flat	one	with	almost	uniform	sampling	
- MD	is	 limited	by	a	poor	sampling	 in	the	high	energy	regions,	and	to	overcome	this	effect	rather	 long	

runs	(50	ns)	are	necessary	
- the	 free	 energy	 profiles	 calculated	 with	 MD	 are	 very	 similar	 at	 300	 and	 600	 K,	 indicating	 that	 the	

entropy	dependence	on	the	dihedral	angle	is	negligible;	besides,	the	noise	is	much	higher	at	600	K	
- ABF	gives	a	very	smooth	and	well	defined	free	energy	profile.	

In	 summary,	 the	 ABF	 method	 is	 much	 more	 efficient	 when	 applied	 to	 the	 current	 problem	 and	 must	 be	
preferred	when	 available,	 but	 the	 effectiveness	 of	 both	methods	 relies	 in	 a	 proper	 definition	 of	 the	 torsion	
angle	symmetry.	
 

 
 

Figure	6:	Comparison	between	MD/BI	(left)	and	ABF/MD	(right)	distributions	(top)	and	free	energy	profiles	
(bottom)	for	the	simulated	system	shown	in	figure	3.	
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Appendix	

a) Fortran	code	for	the	calculation	of	a	dihedral	angle	

function DiedroV (v12,v23,v34) result (D) 
    ! calculates a dihedral angle in degrees 
    ! cos(1234)= (r12 x r23) (r23 x r34) / module 
    real(rk),intent(in):: v12(3),v23(3),v34(3) 
    real(rk):: D 
    real(rk):: p123(3),p234(3),sign_check(3) 
    real(rk):: coseno,segno,n123,n234 
 
    p123(1)=v12(2)*v23(3)-v12(3)*v23(2) 
    p123(2)=v12(3)*v23(1)-v12(1)*v23(3) 
    p123(3)=v12(1)*v23(2)-v12(2)*v23(1) 
    p234(1)=v23(2)*v34(3)-v23(3)*v34(2) 
    p234(2)=v23(3)*v34(1)-v23(1)*v34(3) 
    p234(3)=v23(1)*v34(2)-v23(2)*v34(1) 
 
    n123=sqrt(dot_product(p123,p123)) 
    n234=sqrt(dot_product(p234,p234)) 
    p123=p123/n123 
    p234=p234/n234 
 
    coseno=dot_product(p123,p234) 
 
    sign_check(1)=p123(2)*p234(3)-p123(3)*p234(2) 
    sign_check(2)=p123(3)*p234(1)-p123(1)*p234(3) 
    sign_check(3)=p123(1)*p234(2)-p123(2)*p234(1) 
 
    segno=dot_product(sign_check,v23) 
    segno=segno/abs(segno) 
 
    D=segno*rad_to_deg*acos(coseno) 
  end function DiedroV 

	

b) CHARMM	topology	file	for	dithiophene	and	argon	

* Charmm tpg file from uniteda 
AUTOgenerate ANGLES DIHEDRAL 
MASS 1  CA  12.0110  CA 
MASS 2  CS  12.0110  CS 
MASS 3  HA   1.0079  HA 
MASS 4  SS  32.0655  SS 
MASS 5  AR  40.0000  AR 
 
RESIDUE T2   0.0 
* 
*                    H16     H15 
*            S7         C1 - C5 
*           /   \      /      \ 
*     H13 C8     C6 - C2      C4 H14 
*         \      /      \    / 
*          C9 - C10       S3 
*        H12     H11 
 group 
  atom C1     CA  -0.08645 
  atom C2     CS  -0.01165 
  atom S3     SS   0.0407 
  atom C4     CS  -0.24045 
  atom C5     CA  -0.17435 
  atom H14    HA   0.2051 



  atom H15    HA   0.1527 
  atom H16    HA   0.11445 
group 
  atom C10    CA  -0.08645 
  atom C6     CS  -0.01165 
  atom S7     SS   0.0407 
  atom C8     CS  -0.24045 
  atom C9     CA  -0.17435 
  atom H13    HA   0.2051 
  atom H12    HA   0.1527 
  atom H11    HA   0.11445 
 
 bond C1     C2      C1     C5      C1     H16     C2     S3 
 bond C2     C6      S3     C4      C4     C5      C4     H14 
 bond C5     H15     C6     S7      C6     C10     S7     C8 
 bond C8     C9      C8     H13     C9     C10     C9     H12    C10    H11 
 
RESIDUE AR   0.0 
 group 
  atom AR    AR  .00000 
end	

c) CHARMM	parameter	file	for	dithiophene	and	argon	

BOND 
HA  CA     344.3   1.08 
HA  CS     344.3   1.077 
CA  CA     478.4   1.42 
CA  CS     478.4   1.38 
SS  CS     256.6   1.83 
CS  CS     478.4   1.43 
ANGLE 
HA  CA CA  35.0 123. 
HA  CA CS  35.0 123. 
HA  CS CA  35.0 128. 
HA  CS SS  44.3 120. 
CA  CA CS  63.0 120. 
CA  CS CS  63.0 120. 
CA  CS SS  62.0 111. 
CS  CS SS  62.0 120. 
CS  SS CS  63.3  92. 
DIHEDRAL 
x   CA  CA  x  3.6250 2 180. 
x   CA  CS  x  3.6250 2 180. 
x   CS  SS  x  1.2000 2 180. 
x   C2  CS  x  0.0000 2 180. 
x   CS  CS  x  0.0 2 180. 
NONBONDED 
HA 0. -0.015 1.4590 0. -0.0075 1.4590 
CA 0. -0.086 1.9080 0. -0.043  1.9080 
CS 0. -0.086 1.9080 0. -0.043  1.9080 
SS 0. -0.250 2.0000 0. -0.125  2.0000 
AR 0. -.2300 1.911 0.  .0       0. 

	

d) NAMD	configuration	file	for	dithiophene	and	argon	

#--- integrator 
numsteps            50000000 
timestep            1 
nonbondedFreq       1 
fullElectFrequency  1 
stepspercycle       20 
 



#--- Parameter options (14 scaling is for electrostatics) 
paratypeCharmm  on 
parameters T2.prm 
structure       T2gas.psf 
exclude  scaled1-4 
1-4scaling 0.8333333 
cutoff          12. 
switching       on 
switchdist      10. 
pairlistdist  15.0 
 
#--- Thermodynamic 
rescaleTemp     300K  
rescalefreq     100 
COMmotion       no 
BerendsenPressure   off 
 
#--- PBC 
cellBasisVector1  50.   0.    0. 
cellBasisVector2    0. 50.    0. 
cellBasisVector3    0.   0.  50. 
 
#--- PME 
dielectric      1 
PME             off 
 
#--- Input coords 
temperature 300K 
coordinates T2gas.pdb 
#bincoordinates  T2gasr.coor 
#binvelocities   T2gasr.vel 
 
#--- Output & Restart 
 
binaryoutput    no 
outputname  T2gas 
 
binaryrestart   yes 
restartname     T2gasr 
restartfreq     100000 
 
DCDfile         T2gas.dcd 
DCDfreq         2000 
XSTfreq         2000 
 
#---  Standard Output 
outputEnergies 10000 
 

e) Outside	input	for	computing	the	dihedral	angle	distribution	and	energy	for	the	X	CS	CS	X	torsion	force		

--- reading the template pdb file	
100	
T2gas.pdb	
--- reading topology and parameters 
998 
T2.tpc 
T2.prm 
0.5 
0.833333 
--- setting temperature 
98 
200. 
--- reading trajectory 
99 



T2gas.trj 
--- calculating torsion angle distribution and energy 
6 
T2 
S3 
C2 
C6 
S7 
sss 
--- exiting 
0 
 

f) Gnuplot	script	for	fitting	the	X	CS	CS	X	torsional	force	field		

set ang deg  # very important 
set xtics 60 
set ytics 0.3 
set format y "%1.1f" 
 
n=4 # multiplicity of the dihedral: very important! 
 
set xlabel "angle (deg)" 
set ylabel "energy (kcal/mol)" 
 
# QM(x) is the function fitting the QM calculated torsional profile 
QM(x)= o0+o1*(1+cos(x+na1))+ o2*(1+cos(2*x+na2)) + o3*(1+cos(3*x+na3)) + \ 
o4*(1+cos(4*x+na4)) +o5*(1+cos(5*x+na5)) + o6*(1+cos(6*x+na6)) + \ 
o7*(1+cos(7*x+na7)) + o8*(1+cos(8*x+na8))+ o9*(1+cos(9*x+na9)) + \ 
o10*(1+cos(10*x+na10)) + o11*(1+cos(11*x+na11))+o12*(1+cos(12*x+na12)) + \ 
o13*(1+cos(13*x+na13)) +o14*(1+cos(14*x+na14)) 
na1 = 0. ; na2 = 0. ; na3 = 0. ; na4 = 0. ; na5 = 0. ; na6 = 0. ; na7 = 0. ; 
na8 = 0. ; na9 = 0. ; na10 =0. ; na11 =0. ; na12 =0. ; na13 =0. ; na14 =0. 
 
fit QM(x) '../_mp2ccpvtz/ene.dat' u 1:3 via 
o0,o1,o2,o3,o4,o5,o6,o7,o8,o9,o10,o11,o12,o13,o14 
#,na1,na2,na3,na4,na5,na6,na7,na8,na9,na10,na11,na12,na13,na14 
 
# PhasedQM(x) is what we expect to obtain by taking into account the symmetry and the phases 
# of the four quadruples involved: here it is used replacing QM(x) to show that nevertheless 
# we do not obtain a symmetric Charmm term  
 
PhasedQM(x)= ( 2*QM(x) + 2*QM(x+180))/n 
 
pl [-180:180] QM(x), '../_mp2ccpvtz/ene.dat' u 1:3,PhasedQM(x) 
pause -1 
  
# Charmm(x) is the function fitting the simulated torsional profile contained in 
'T2gas.dih_sss' 
Charmm(x)= c0+(c1)*(cos(x+a1))+(c2)*(cos(2*x+a2))+(c3)*(cos(3*x+a3))+(c4)*(cos(4*x+a4)) + \ 
(c5)*(cos(5*x+a5))+(c6)*(cos(6*x+a6))+(c7)*(cos(7*x+a7))+(c8)*(cos(8*x+a8)) + \ 
(c9)*(cos(9*x+a9))+(c10)*(cos(10*x+a10))+(c11)*(cos(11*x+a11))+(c12)*(cos(12*x+a12)) 
c0 =0.1 ; c1 =0.1 ; c2 =0.1 ; c3 =0.1 ; c4 =0.1 ; c5 =0.1 ; c6 =0.1 ; c7 =0.1  
c8 =0.1 ; c9 =0.1 ; c10=0.1 ; c11=0.1 ; c12=0.1  
a1 =0.000001  ; a2 =0.000001  ; a3 =0.000001  ; a4 =0.000001  ; a5 =0.000001   
a6 =0.000001  ; a7 =0.000001  ; a8 =0.000001  ; a9 =0.000001  ; a10=0.000001   
a11=0.000001  ; a12=0.000001    
 
fit Charmm(x) 'T2gas.dih_sss' u 1:3 via c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12 
 
# the correct way should be to take into account of the dihedral geometry also here, 
# by imposing Charmm_total(x)= ( 2*Charmm(x) + 2*Charmm(x+180))/n and use Charmm_total 
# in the following 
 
pl [-180:180][*:*] \ 



   Charmm(x) lw 8 lt 7,PhasedQM(x) lw 4, 'T2gas.dih_sss' u 1:3, QM(x) lw 2 lt 7 
pause -1 
 
# odiff(x) at this point contains the force field used in the MD simulations 
# at the first “round” it is zero, then it must be updated after each change in the prm file 
odiff(x)=odi0+(odi1)*cos(1*x+oai1)+(odi2)*cos(2*x+oai2)+(odi3)*cos(3*x+oai3)+\ 
(odi4)*cos(4*x+oai4)+(odi5)*cos(5*x+oai5)+(odi6)*cos(6*x+oai6)+(odi7)*cos(7*x+oai7)+\ 
(odi8)*cos(8*x+oai8)+(odi9)*cos(9*x+oai9)+(odi10)*cos(10*x+oai10)+\ 
(odi11)*cos(11*x+oai11)+(odi12)*cos(12*x+oai12) 
 
odi0 =0.0 ; odi1 =0.0 ; odi2 =0.0 ; odi3 =0.0 ; odi4 =0.0 ; odi5 =0.0 ; odi6 =0.0  
odi7 =0.0 ; odi8 =0.0 ; odi9 =0.0 ; odi10=0.0 ; odi11=0.0 ; odi12=0.0 
oai0 =0.0 ; oai1 =0.0 ; oai2 =0.0 ; oai3 =0.0 ; oai4 =0.0 ; oai5 =0.0 ; oai6 =0.0  
oai7 =0.0 ; oai8 =0.0 ; oai9 =0.0 ; oai10=0.0 ; oai11=0.0 ; oai12=0.0 
 
# example of updated values of odiff(x) after some “rounds”: only the non zero values 
# need to be specified 
odi0 =-0.1474 
odi1 =-0.1281 
odi2 =-1.4604 
odi4 =0.306 
odi8 =0.019 
odi11=0.018 
odi12=-0.0161 
 
# we fit the difference between the symmetric PhasedQM(x)instead of QM(x)- if this was not 
# a tutorial, we should fit QM(x) or PhasedQM(x)? I am not sure of the answer ;)Let’s say   
# that the geometry of the dihedral must be taken into account for both, QM(x) and Charmm(x) 
set  table "t1" 
pl [-180:180]  PhasedQM(x)-Charmm(x) 
unset table 
 
 
# diff(x) contains in a first instance the difference from current force field results  
# and QM(x), (first fit command). At last, it contains this difference plus the current 
# force field used in the prm file (second fit command) 
diff(x)=(di0+ (di1)*cos(1*x+ai1) + (di2)*cos(2*x+ai2) + (di3)*cos(3*x+ai3) + 
(di4)*cos(4*x+ai4) + (di5)*cos(5*x+ai5)\ 
     + (di6)*cos(6*x+ai6) + (di7)*cos(7*x+ai7) + (di8)*cos(8*x+ai8) + 
(di9)*cos(9*x+ai9) + (di10)*cos(10*x+ai10) + (di11)*cos(11*x+ai11)+  (di12)*cos(12*x+ai12) ) 
 
di0 =0.1   ; di1 =0.1 ; di2 =0.1 ; di3 =0.1 ; di4 =0.1 ; di5 =0.1 ; di6 =0.1 
di7 =0.1   ; di8 =0.1 ; di9 =0.1 ; di10=0.1 ; di11=0.1 ; di12=0.1 
 
ai0 =0.00001 ; ai0 =0.00001 ; ai1 =0.00001 ; ai2 =0.00001 ; ai3 =0.00001 ; ai4 =0.00001 ; 
ai5 =0.00001 ; 
ai6 =0.00001 ; ai7 =0.00001 ; ai8 =0.00001 ; ai9 =0.00001 ; ai10=0.00001 ; ai11=0.00001 ; 
ai12=0.00001 
 
fit diff(x) 't1' u 1:($2) via di0,di1,di2,di3,di4,di5,di6,di7,di8,di9,di10,di11,di12 
#fit diff(x) 't1' u 1:($2) via di0,di1,di2,di3,di4,di5,di6,di7,di8,di9,di10,di11,di12,\ 
#                                  ai1,ai2,ai3,ai4,ai5,ai6,ai7,ai8,ai9,ai10,ai11,ai12 
 
pl [-180:180]  diff(x),'t1' 
pause -1 
 
set table "t2" 
pl [-180:180]  diff(x)+odiff(x) 
unset table 
 
fit diff(x) 't2' u 1:($2) via di0,di1,di2,di3,di4,di5,di6,di7,di8,di9,di10,di11,di12 
#fit diff(x) 't2' u 1:($2) via di0,di1,di2,di3,di4,di5,di6,di7,di8,di9,di10,di11,di12,\ 
#                                  ai1,ai2,ai3,ai4,ai5,ai6,ai7,ai8,ai9,ai10,ai11,ai12 
 



pl [-180:180] PhasedQM(x),QM(x), Charmm(x) t "sim",Charmm(x)+diff(x)-odiff(x)+0.1 t 
"corrected",diff(x) t "force field" 
pause -1 
 
 
# here the values of diff(x) are conveniently plotted and formatted so to be easily 
# copy pasted into the prm file and into the gnu file for the following “round” 
 
fmt(x)=  int(10000*x+.00001)/10000. 
 
sign(x) = abs(x)/x 
nint(x) = int(  sign(x)*0.5+x) 
angle(x)= x -360*nint(x/360) 
 
print "Reminder: please select only up to 6 dihedrals!!! " 
 
# this is a minimum value to exclude negligible cosine terms 
# the lines printed here must be copied in the prm file to replace previous ones 
minV=0.05/n 
 
if( abs(fmt(di1/n) )> minV) { print "X CS CS X ",fmt(di1/n),1,fmt(angle(-ai1))    } 
if( abs(fmt(di2/n) )> minV) { print "X CS CS X ",fmt(di2/n),2,fmt(angle(-ai2))    } 
if( abs(fmt(di3/n) )> minV) { print "X CS CS X ",fmt(di3/n),3,fmt(angle(-ai3))    } 
if( abs(fmt(di4/n) )> minV) { print "X CS CS X ",fmt(di4/n),4,fmt(angle(-ai4))    } 
if( abs(fmt(di5/n) )> minV) { print "X CS CS X ",fmt(di5/n),5,fmt(angle(-ai5))    } 
if( abs(fmt(di6/n) )> minV) { print "X CS CS X ",fmt(di6/n),6,fmt(angle(-ai6))    } 
if( abs(fmt(di7/n) )> minV) { print "X CS CS X ",fmt(di7/n),7,fmt(angle(-ai7))    } 
if( abs(fmt(di8/n) )> minV) { print "X CS CS X ",fmt(di8/n),8,fmt(angle(-ai8))    } 
if( abs(fmt(di9/n) )> minV) { print "X CS CS X ",fmt(di9/n),9,fmt(angle(-ai9))    } 
if( abs(fmt(di10/n))> minV) { print "X CS CS X ",fmt(di10/n),10,fmt(angle(-ai10)) } 
if( abs(fmt(di11/n))> minV) { print "X CS CS X ",fmt(di11/n),11,fmt(angle(-ai11)) } 
if( abs(fmt(di12/n))> minV) { print "X CS CS X ",fmt(di12/n),12,fmt(angle(-ai12)) } 
 
# what is printed here must instead be copied after the odiff(x) definition above if we 
# want to refine the fit in with a second round of simulations 
 
print  "odi0 =",fmt(di0 ) 
if( abs(fmt(di1/n) )> minV)  {print  "odi1 =",fmt(di1 ) } 
if( abs(fmt(di2/n) )> minV)  {print  "odi2 =",fmt(di2 ) } 
if( abs(fmt(di3/n) )> minV)  {print  "odi3 =",fmt(di3 ) } 
if( abs(fmt(di4/n) )> minV)  {print  "odi4 =",fmt(di4 ) } 
if( abs(fmt(di5/n) )> minV)  {print  "odi5 =",fmt(di5 ) } 
if( abs(fmt(di6/n) )> minV)  {print  "odi6 =",fmt(di6 ) } 
if( abs(fmt(di7/n) )> minV)  {print  "odi7 =",fmt(di7 ) } 
if( abs(fmt(di8/n) )> minV)  {print  "odi8 =",fmt(di8 ) } 
if( abs(fmt(di9/n) )> minV)  {print  "odi9 =",fmt(di9 ) } 
if( abs(fmt(di10/n))> minV)  {print  "odi10=",fmt(di10) } 
if( abs(fmt(di11/n))> minV)  {print  "odi11=",fmt(di11) } 
if( abs(fmt(di12/n))> minV)  {print  "odi12=",fmt(di12) } 
 
if( abs(fmt(di1/n) )> minV)  {print "oai1 = ",fmt(angle(ai1))  } 
if( abs(fmt(di2/n) )> minV)  {print "oai2 = ",fmt(angle(ai2))  } 
if( abs(fmt(di3/n) )> minV)  {print "oai3 = ",fmt(angle(ai3))  } 
if( abs(fmt(di4/n) )> minV)  {print "oai4 = ",fmt(angle(ai4))  } 
if( abs(fmt(di5/n) )> minV)  {print "oai5 = ",fmt(angle(ai5))  } 
if( abs(fmt(di6/n) )> minV)  {print "oai6 = ",fmt(angle(ai6))  } 
if( abs(fmt(di7/n) )> minV)  {print "oai7 = ",fmt(angle(ai7))  } 
if( abs(fmt(di8/n) )> minV)  {print "oai8 = ",fmt(angle(ai8))  } 
if( abs(fmt(di9/n) )> minV)  {print "oai9 = ",fmt(angle(ai9))  } 
if( abs(fmt(di10/n))> minV)  {print "oai10= ",fmt(angle(ai10)) } 
if( abs(fmt(di11/n))> minV)  {print "oai11= ",fmt(angle(ai11)) } 
if( abs(fmt(di12/n))> minV)  {print "oai12= ",fmt(angle(ai12)) } 
 
# this is an example of what is printed in this last part 
Reminder: please select only up to 6 dihedrals!!!  



X CS CS X -0.0332 1 0.0 
X CS CS X -0.3637 2 0.0 
X CS CS X 0.0769 4 0.0 
X CS CS X -0.003 6 0.0 
X CS CS X 0.0062 8 0.0 
odi0 =-0.1532 
odi1 =-0.1329 
odi2 =-1.4549 
odi4 =0.3077 
odi6 =-0.0121 
odi8 =0.0248 
oai1 = 0.0 
oai2 = 0.0 
oai4 = 0.0 
oai6 = 0.0 
oai8 = 0.0 
	
g) NAMD	collective	variable	configuration	file	for	thiophene-thiophene	torsion	angle	

	
colvar { 
 
 name phi 
 
 width 2. 
 
 lowerBoundary -180. 
 upperBoundary +180. 
 
# S3 C2 C6 S7 
 dihedral {  
 group1 { atomNumbers   3} 
 group2 { atomNumbers   2} 
 group3 { atomNumbers  10} 
 group4 { atomNumbers  11} 
 } 
} 
 
abf { 
  colvars phi 
  fullSamples 100 
} 
 
 
	
	


