Luca L Fava

Luca L Fava
Università degli Studi di Trento | UNITN · CIBIO - Centre for Integrative Biology

PhD

About

33
Publications
5,761
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,456
Citations
Introduction
Luca L Fava currently works at the CIBIO - Centre for Integrative Biology, Università degli Studi di Trento. Luca does research in Cancer Research and Cell Biology.

Publications

Publications (33)
Article
ATP2B1 is a known regulator of calcium (Ca ²⁺ ) cellular export and homeostasis. Diminished levels of intracellular Ca ²⁺ content have been suggested to impair SARS-CoV-2 replication. Here, we demonstrate that a nontoxic caloxin-derivative compound (PI-7) reduces intracellular Ca ²⁺ levels and impairs SARS-CoV-2 infection. Furthermore, a rare homoz...
Preprint
Full-text available
Centrosomes are membrane-less organelles that orchestrate a wide array of biological functions by acting as microtubule organizing centers. Recently, the centrosome has been implicated in caspase-1 activation and inflammasome-driven pyroptosis. Here, we report that caspase-2-driven apoptosis is elicited in blood cells that fail cytokinesis and that...
Article
53BP1 acts at the crossroads between DNA repair and p53‐mediated stress response. With its interactors p53 and USP28, it is part of the mitotic surveillance (or mitotic stopwatch) pathway (MSP), a sensor that monitors the duration of cell division, promoting p53‐dependent cell cycle arrest when a critical time threshold is surpassed. Here, we show...
Article
Full-text available
Mutations in the tumor suppressor TP53 cause cancer and impart poor chemotherapeutic responses, reportedly through loss-of-function, dominant-negative effects and gain-of-function (GOF) activities. The relative contributions of these attributes is unknown. We found that removal of 12 different TP53 mutants with reported GOFs by CRISPR/Cas9 did not...
Preprint
Full-text available
53BP1 acts at the crossroads between DNA repair and p53-mediated stress response. With its interactor USP28, it is part of the mitotic surveillance pathway (MSP), a sensor that monitors the duration of cell division, promoting p53-dependent cell cycle arrest when a critical time threshold is surpassed. 53BP1 dynamically associates with kinetochores...
Article
Full-text available
Drugs targeting microtubules rely on the mitotic checkpoint to arrest cell proliferation. The prolonged mitotic arrest induced by such drugs is followed by a G1 arrest. Here, we follow for several weeks the fate of G1-arrested human cells after treatment with nocodazole. We find that a small fraction of cells escapes from the arrest and resumes pro...
Article
Full-text available
Background Cornelia de Lange syndrome (CdLS) is a rare multisystem genetic disorder which is caused by genetic defects involving the Nipped-B-like protein ( NIPBL ) gene in the majority of clinical cases (60–70%). Currently, there are no specific cures available for CdLS and clinical management is needed for life. Disease models are highly needed t...
Preprint
Full-text available
Background Cornelia de Lange syndrome (CdLS) is a rare multisystem genetic disorder which is caused by genetic defects involving the Nipped-B-like protein (NIPBL) gene in the majority of clinical cases (60-70%). Currently, there are no specific cures available for CdLS and clinical management is needed for life. Disease models are highly needed to...
Article
Full-text available
Pan-cancer studies sketched the genomic landscape of the tumor types spectrum. We delineated the purity- and ploidy-adjusted allele-specific profiles of 4,950 patients across 27 tumor types from the Cancer Genome Atlas (TCGA). Leveraging allele-specific data, we reclassified as loss of heterozygosity (LOH) 9% and 7% of apparent copy-number wild-typ...
Article
hTERT-RPE1 cells are genetically stable near diploid cells widely used to model cell division, DNA repair, or ciliogenesis in a non-transformed context. However, poor transfectability and limited homology-directed repair capacity hamper their amenability to gene editing. Here, we describe a protocol for rapid and efficient generation of diverse hom...
Article
The PIDDosome is a Caspase-2-activating platform assembling in response to centrosome amplification or genotoxic stress. We have recently shown that both stimuli depend on ANKRD26 (ankyrin repeat domain-containing protein 26)-mediated localization of PIDD1 (p53-inducible protein with death domain) at the centrosome, demonstrating how this organelle...
Article
Full-text available
Centrosome amplification results into genetic instability and predisposes cells to neoplastic transformation. Supernumerary centrosomes trigger p53 stabilization dependent on the PIDDo-some (a multiprotein complex composed by PIDD1, RAIDD and Caspase-2), whose activation results in cleavage of p53's key inhi-bitor, MDM2. Here, we demonstrate that P...
Article
E2F transcription factors control the cytokinesis machinery and thereby ploidy in hepatocytes. If or how these proteins limit proliferation of polyploid cells with extra centrosomes remains unknown. Here, we show that the PIDDosome, a signaling platform essential for caspase-2-activation, limits hepatocyte ploidy and is instructed by the E2F networ...
Article
Full-text available
Centrosomal p53 has been described for three decades but its role is still unclear. We previously reported that, in proliferating human cells, p53 transiently moves to centrosomes at each mitosis. Such p53 mitotic centrosome localization (p53-MCL) occurs independently from DNA damage but requires ATM-mediated p53Ser15 phosphorylation (p53Ser15P) on...
Article
Full-text available
Receptor-interacting protein kinase (RIPK) 1 functions as a key mediator of tissue homeostasis via formation of Caspase-8 activating ripoptosome complexes, positively and negatively regulating apoptosis, necroptosis, and inflammation. Here, we report an unanticipated cell-death- and inflammation-independent function of RIPK1 and Caspase-8, promotin...
Article
Full-text available
Interfering with mitosis for cancer treatment is an old concept that has proven highly successful in the clinics. Microtubule poisons are used to treat patients with different types of blood or solid cancer since more than 20 years, but how these drugs achieve clinical response is still unclear. Arresting cells in mitosis can promote their demise,...
Article
The PIDDosome is often used as the alias for a multi-protein complex that includes the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the proform of an endopeptidase belonging to the caspase family, i.e. caspase-2. Yet, PIDD1 variants can also interact with a number of other proteins that in...
Article
Full-text available
Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here,we report that an increase in the number of...
Article
Full-text available
The data described here provide a systematic performance evaluation of popular data-dependent (DDA) and independent (DIA) mass spectrometric (MS) workflows currently used in quantitative proteomics. We assessed the limits of identification, quantification and detection for each method by analyzing a dilution series of 20 unmodified and 10 phosphory...
Article
This is a correspondence about “Beclin‐1 is required for chromosome congression and proper outer kinetochore assembly”.
Article
Full-text available
Cell death on extended mitotic arrest is considered arguably most critical for the efficacy of microtubule-targeting agents (MTAs) in anticancer therapy. While the molecular machinery controlling mitotic arrest on MTA treatment, the spindle assembly checkpoint (SAC), appears well defined, the molecular components executing cell death, as well as fa...
Article
In recent years, directed and particularly targeted mass spectrometric workflows have gained momentum as alternative techniques to conventional data-dependent acquisition (DDA) LC-MS/MS approaches. By focusing on specific peptide species, these methods allow hypothesis-driven analysis of selected proteins of interest and they have been shown to be...
Article
Full-text available
According to current belief, the molecular networks orchestrating cell death or exit from mitosis upon extended mitotic arrest do not interact, stubbornly executing two parallel biological programs and competing to define a stochastic decision between death and a chance for survival with uncertain destiny. However, recent findings by Diaz-Martinez...
Article
Full-text available
Much effort has been put in the discovery of ways to selectively kill p53-deficient tumor cells and targeting cell cycle checkpoint pathways has revealed promising candidates. Studies in zebrafish and human cell lines suggested that the DNA damage response kinase, checkpoint kinase 1 (Chk1), not only regulates onset of mitosis but also cell death i...
Article
Full-text available
Cell death and differentiation is a monthly research journal focused on the exciting field of programmed cell death and apoptosis. It provides a single accessible source of information for both scientists and clinicians, keeping them up-to-date with advances in the field. It encompasses programmed cell death, cell death induced by toxic agents, dif...
Article
Full-text available
Both subunits of αβ-tubulin that comprise the core components of microtubules bind GTP. GTP binding to α-tubulin has a structural role, whereas β-tubulin binds and hydrolyses GTP to regulate microtubule dynamics. γ-tubulin, another member of the tubulin superfamily that seeds microtubule nucleation at microtubule-organizing centres, also binds GTP;...
Conference Paper
Full-text available
Cell death and differentiation is a monthly research journal focused on the exciting field of programmed cell death and apoptosis. It provides a single accessible source of information for both scientists and clinicians, keeping them up-to-date with advances in the field. It encompasses programmed cell death, cell death induced by toxic agents, dif...
Article
Full-text available
The Ser-Thr kinase mammalian target of rapamycin (mTOR) controls cell growth and metabolism by stimulating glycolysis and synthesis of proteins and lipids. To further understand the central role of mTOR in cell physiology, we used quantitative phosphoproteomics to identify substrates or downstream effectors of the two mTOR complexes. mTOR controlle...
Article
Full-text available
The spindle assembly checkpoint (SAC) restrains anaphase until all chromosomes become bi-oriented on the mitotic spindle. The SAC protein Mad2 can fold into two distinct conformers, open (O) and closed (C), and can asymmetrically dimerize. Here, we describe a monoclonal antibody that specifically recognizes the dimerization interface of C-Mad2. Thi...
Article
Full-text available
Mitotic spindle formation and chromosome segregation depend critically on kinetochore-microtubule (KT-MT) interactions. A new protein, termed Spindly in Drosophila and SPDL-1 in C. elegans, was recently shown to regulate KT localization of dynein, but depletion phenotypes revealed striking differences, suggesting evolutionarily diverse roles of mit...

Network

Cited By