ArticlePDF Available

Current feedback operational amplifier(CFOA) based programmable lossless floating inductor realization

Authors:

Abstract and Figures

A CMOS digitally programmable lossless floating inductor is proposed. The proposed inductor is based on current feedback operational amplifier and resistor array to provide digital tuning of the inductance value. The presented block realizes a programmable floating inductor tuned from 0.4167mH to 5.67 mH. As an application for the proposed circuit a resonant circuit and low pass filter have been realized using the digital programmable circuit. The simulation results has been demonstrated and discussed using a SPICE simulation for 0.18 μm TSMC CMOS technology and dual supply voltages ±1.5 V.
Content may be subject to copyright.
Current Feedback Operational Amplier(CFOA)
Based Programmable Lossless Floating Inductor
Realization



 
     
         
       
        
    
       
          
      
        
  
      



     
         
      
      
        
          
         
         
     
        
  
 
          
        
        
       

       
       
         
         
       
          
          

978-1-4799-5807-8/14/$31.00 @2014 

 

 
         
        
  
       
       















 









 








1



  




 

  
        
      



  
rv'


  




 







   
 

 
 
     
 
   
 
         
        
      
         

 [

[y]=  
 



       
       
         
   

   
   
         



      
       

 
        
        
      
         

      

             
      
 









 










 








 



           
  

 

       

 
 







 



 


 
 



 




 



   
 
  


 




 

















       
        
     
 
          






 








 
 

 
 








 
 
        
          
         
      
 

 
        
         
        
        
            
     








 
















 







 

 



 
  

 



 


 
         
        
        
   

        
       
        


 




 






 







     
    
 



 


 




 

  

       



 
 





        

        
        

         


 
     
   

 
        
  
  
        
  
         
        


          


          
 
         
      

        
     

          
     

          
  

         
      

           
 



       

       


  

           
 

... Various research groups around the world have reported different configurations of floating immittance simulators, that is, floating series/parallel R-L and R-C circuits, as well as floating FDNR, floating lossless inductor, and floating capacitance multiplier circuits using CFOAs. 32,33,[44][45][46][47][48][49][50] The work presented in this paper pertains to floating-type lossless inductor, parallel R-L, parallel R-C, parallel C-D, floating T A B L E 1 Comparative table of the earlier reported floating parallel R-L, parallel R-C, and parallel C-D circuits with the proposed circuit. lossless capacitance multiplier circuits, and floating FDNR; a brief review of previously reported CFOA-based floating immittance simulators is included to put the presented work in proper perspective. ...
... This circuit allows independent tunability of inductance using a single resistor without requiring any matching constraints. Furthermore, a floating lossless inductor realization, derived from a filter configuration reported in Chang and Hwang, 51 is presented in Said et al. 46 This circuit employs three CFOAs, one grounded capacitor, and two resistors (one of which is replaced by an array of resistors and a controlled NMOS for digital tuning), providing independent tunability. Additionally, two configurations of series R-L and parallel R-L simulators employing two CFOAs, two resistors, and one capacitor have been presented in Bhaskar and Senani. ...
Article
A new synthetic floating simulator topology is proposed which realizes lossy parallel inductance (R-L), lossy parallel capacitance (R-C), lossy parallel C-D, and lossless floating capacitance multiplier (FCM) circuits using only three current feedback operational amplifiers (CFOA) as active elements and three impedances. In all the presented circuits, the value of L, C, and D is independently controllable through a single resistance without requiring any matching condition for passive elements. A novel feature of the proposed circuit involves a straightforward adjustment in the CFOA connections, allowing the circuit to function as either a floating lossless immittance simulator or a floating series-type lossy immittance simulator. Various application examples of the presented circuits such as lead compensator, lag compensator, first-order high-pass filter, and fourth-order Butterworth filter are also given to justify the theoretical analysis. To validate the workability of the proposed circuits, several analyses are conducted, including frequency analysis, transient analysis, Monte-Carlo analysis, and temperature analysis, using the macro-model of AD844 in the SPICE simulation tool. Experimental results of the parallel R-L simulator and application examples are also provided using commercially available IC AD844-type integrated CFOAs.
... In recent years, low-voltage, low-power integrated circuit design has been receiving much momentum due to some strong motivations such as downscaling trend of integrated circuit technology and increasing demand for portable electronics [1][2][3]. Unfavorably as feature sizes decreased, the transistor gain factor gm.ro (with usual meaning of symbols) has also rapidly decreased and reaches to such dramatically low value of 3-6 in 65nm CMOS technology [4]. This problem along with other restrictions such as transistors large threshold voltage with respect to allowed supply voltages and their low output impedance preclude employment of classical analog circuits making it mandatory to find new solutions to preserve high performance of analog circuits. ...
... This problem along with other restrictions such as transistors large threshold voltage with respect to allowed supply voltages and their low output impedance preclude employment of classical analog circuits making it mandatory to find new solutions to preserve high performance of analog circuits. One of the new solutions is current mode signal processing Leila which has been widely used to tackle the problems associated with analog circuit design owing to the potential advantages such as low voltage operation, wider dynamic range, simpler circuitry, wider bandwidth and lower consumed power [1][2][3][5][6][7][8][9][10][11][12][13][14]. ...
Article
Full-text available
This paper presents a novel low voltage low power class AB current output stage (COS) with high current drive capability. The proposed circuit is based on a novel control circuitry that eliminates channel length modulation effect of output branch transistors. Most remarkably the utilized control circuitry helps to reconcile the conflicting features of low voltage operation, low power consumption, high output impedance and high current drive capability altogether with simple structure and wide bandwidth. The approach is well suited for low voltage operation as it uses only two transistors between supply voltages at the output branch. Employing replica and current splitting transistors at the input branch along with the high gain current mirrors at the output branch enables the proposed COS to provide very high output currents under low supply voltages. The operation of the proposed COS is verified through HSPICE simulations based on TSMC 0.18µm CMOS technology parameters. Under supply voltage of ±0.9V, it can deliver large output current of 320mA with total harmonic distortion (THD) of-40.6dB. Of more interest is that the bias current of output branch transistors IB is only 73µA leading to the high current drive capability (Ioutmax/IB) of 4383. Its output impedance, current gain,-3dB bandwidth, power dissipation and chip area are also found as 1.57MΩ, 25.2dB, 4.63MHz, 156µW and 1.8mm×1.65mm respectively.
... The simulated inductor is employed in many applications as the design of filters, oscillators, and tuned amplifiers. Gyrator circuit, Operational Amplifiers (Op-Amp), Current Conveyors (CCII) and Current Feedback Operational Amplifiers (CFOA) are used to implement the simulated inductor circuits [7][8][10][11][12][13][14]. ...
Conference Paper
Full-text available
In this paper, a generalized fractional-order form of the simulated inductor using a single current feedback operational amplifier (CFOA) and a fractional-order capacitor is introduced. Analytical expression of the equivalent fractional-order inductor versus the circuit elements is achieved. Moreover, the effect of the parasitic impedance and the non-idealities of the CFOA are investigated analytically with numerical simulations and circuit equivalent. Circuit simulations are discussed using AD844 spice model to validate the theoretical study of the fractional-order inductor. Simulations show an extra degree of freedom in selecting the impedance value and the phase shift compared to the conventional realization. As an application, a fractional order low pass filter is simulated to verify the performance of the proposed circuit.
Article
Full-text available
Inductance simulators and capacitor multipliers can be used to implement several electronic devices such as active filters, oscillators, cancellation of parasitic elements and phase shifting circuits. In this work, grounded inductance simulators (GISs) and grounded capacitor multipliers (GCMs) employing only one active component Current Follower Transconductance Amplifier (CFTA) and two passive elements (R and C) have been proposed. The aim of this work is to implement inductance simulators and capacitor multipliers using the minimum number of active elements which commercially available. The performance of the proposed circuits verified by using the LTSpice. To support the theoretical study, all simulation results are provided.
Article
A new grounded inductor simulator (GIS) with the property of improved low frequency performance is proposed in this paper. The proposed GIS includes two current feedback operational amplifiers, three resistors and a grounded capacitor. As applications for the proposed GIS, a second-order very high-Q band-pass filter (BPF) and a quadrature oscillator (QO) are given. The very high-Q BPF and the QO have low total harmonic distortion values. Nevertheless, for proper operation, the proposed GIS, the very high-Q BPF and the QO need a single resistive matching constraint. Many SPICE simulations and an experiment for the very high-Q BPF are achieved.
Article
The grounded inductance simulators using available commercially integrated circuit (IC) are proposed in this paper. The three types of active inductor called parallel R and L, series R and L and pure L are achieved. The proposed inductance simulators consist of single available commercially IC from Linear Technology Inc. called LT1228 with a resistor and a capacitor. The tune of inductance and resistance value can be done electronically. The proposed inductance simulators don’t require any active and passive component matching condition. The performances of proposed circuit are verified through PSPICE simulation and experiment. To show the usability of the proposed simulators, they are used to realize the sinusoidal oscillator, second order bandpass filter and second order band-reject filter. The workability of these applications is experimented. The results agree well with theoretical expect.
Article
Full-text available
A novel circuit for realizing floating inductance, floating capacitance, floating frequency dependent negative resistance (FDNR) and grounded to floating admittance converter depending on the passive component selection is proposed in this paper. The proposed simulator employs second-generation current conveyors (CCIIs), differential voltage current conveyor (DVCC) and only grounded passive elements. The non-ideal current and voltage gains as well as parasitic impedance effects on the proposed circuit are investigated. Also, simulation results using PSPICE program are given for the introduced floating simulator to verify the theory and to exhibit the performances of the circuit.
Article
Full-text available
A new MOS-C bandpass-low-pass filter using the current feedback operational amplifier (CFOA) is presented. The filter employs two CFOAs, eight MOS transistors operating in the nonsaturation region, and two grounded capacitors. The proposed MOS-C filter has the advantage of independent control of Q and ω0. PSpice simulation results for the proposed filter are given
Article
Full-text available
Floating inductor circuits using minimum number of passive elements namely two resistors and one capacitor is reviewed in this paper. All the circuits considered in this paper are floating. Previously reported non-floating circuits are modified to be floating and new floating circuits are introduced as well. The active elements used in this paper are floating conveyor building blocks as well as pairs of non-floating conveyor blocks acting as a floating pair. Simulation results of second order lowpass filters realized using different types of floating inductors are included. [Nature and Science 2010;8(5):167-180]. (ISSN: 1545-0740).
Article
Full-text available
The current feedback operational amplifiers (CFOAs) are receiving increasing attention as basic building blocks in analog circuit design. This paper gives an overview of the applications of the CFOAs, in particular several new circuits employing the CFOA as the active element are given. These circuits include differential voltage amplifiers, differential integrators, nonideal and ideal inductors, frequency dependent negative resistors and filters. The advantages of using the CFOAs in realizing low sensitivity universal filters with grounded elements will be demonstrated by several new circuits suitable for VLSI implementation. PSPICE simulations using the AD844-CFOA which indicate the frequency limitations of some of the proposed circuits are included.
Article
This paper introduces two different current differencing buffered amplifier (CDBA)-based synthetic floating inductance circuits. Both configurations use a grounded capacitor. They are fully integrable and provide the advantages of electronic tuning.
Article
A novel low-voltage CMOS current feedback operational amplifier (CFOA) is presented. This realization nearly allows rail-to-rail input/output operations. Also, it provides high driving current capabilities. The CFOA operates at supply voltages of ±0.75 V with a total standby current of 304 μA. The circuit exhibits a bandwidth better than 120 MHz and a current drive capability of ±1 mA. An application of the CFOA to realize a new all-pass filter is given. PSpice simulation results using 0.25 μm CMOS technology parameters for the proposed CFOA and its application are given.
Article
A systematic method for deriving CFA-based all-grounded-capacitor filters from current mode RLC prototype ladder has been given. It is based on the operational simulation of node voltages and branch currents. It is extended to a voltage-mode ladder. These filters employ a minimum number of capacitors and minimum total capacitance. In some cases, all the capacitors can be made of equal value. Such filters are suitable for fabrication in integrated circuit technology. Illustrative examples for realizing generic filters are included with their simulation results. Copyright © 2007 John Wiley & Sons, Ltd.