ArticlePDF Available

A Peritumorally Injected Immunomodulating Adjuvant Elicits Robust and Safe Metalloimmunotherapy Against Solid Tumors

Wiley
Advanced Materials
Authors:

Abstract and Figures

Clinical immunotherapy of solid tumors elicits durable responses only in a minority of patients, largely due to the highly immunosuppressive tumor microenvironment (TME). Although rational combinations of vaccine adjuvants with inflammatory cytokines or immune agonists that relieve immunosuppression represent an appealing therapeutic strategy against solid tumors, there is unavoidable non‐specific toxicities due to the pleiotropy of cytokines and undesired activation of off‐target cells. Herein, we report a Zn2+ doped layered double hydroxide (Zn‐LDH) based immunomodulating adjuvant, which not only relieves immunosuppression but also elicits robust antitumor immunity. Peritumorally injected Zn‐LDH sustainably neutralizes acidic TME and releases abundant Zn2+, promoting a pro‐inflammatory network composed of M1‐tumor‐associated macrophages, cytotoxic T cells and natural‐killer cells. Moreover, the Zn‐LDH internalized by tumor cells effectively disrupts endo‐/lysosomes to block autophagy and induces mitochondrial damage, and the released Zn2+ activates the cGas‐STING signaling pathway to induce immunogenic cell death, which further promotes the release of tumor‐associated antigens to induce antigen‐specific cytotoxic T lymphocytes. Unprecedentedly, merely injection of Zn‐LDH adjuvant, without using any cytotoxic inflammatory cytokines or immune agonists, significantly inhibits the growth, recurrence, and metastasis of solid tumors in mice. Our study provides a rational bottom‐up design of potent adjuvant for cancer metalloimmunotherapy against solid tumors. This article is protected by copyright. All rights reserved
This content is subject to copyright. Terms and conditions apply.
This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process, which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1002/adma.202206915.
This article is protected by copyright. All rights reserved.
A Peritumorally Injected Immunomodulating Adjuvant Elicits Robust and Safe
Metalloimmunotherapy Against Solid Tumors
Lingxiao Zhang, Jing Zhao, Xi Hu, Chenhan Wang, Yingbo Jia, Chaojie Zhu, Shangzhi Xie, Jiyoung Lee,
Fangyuan Li*, and Daishun Ling*
Dr. L. Zhang, J. Zhao, Dr. X. Hu, C. Wang, C. Zhu, S. Xie, J. Lee, Prof. F. Li, Prof. D. Ling
Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, P. R. China.
E-mail: dsling@sjtu.edu.cn (D. Ling), ORCID: 0000-0002-9977-0237 (D. Ling); lfy@zju.edu.cn (F. Li)
Prof. D. Ling
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical
Engineering, State Key Laboratory of Oncogenes and Related Genes, National Center for
Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Dr. X. Hu
Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine,
Hangzhou 310003, P. R. China
Prof. F. Li, Prof. D. Ling
WLA Laboratories, Shanghai 201203, P. R. China
C. Wang
Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, Nanjing,
210029, P. R. China.
This article is protected by copyright. All rights reserved.
2
Y. Jia
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy
of Sciences, Beijing 100190, P. R. China.
Keywords: vaccine adjuvants, immunogenic cell death, layered double hydroxide, nutritional metal
ions, tumor microenvironment
This article is protected by copyright. All rights reserved.
3
Abstract: Clinical immunotherapy of solid tumors elicits durable responses only in a minority of
patients, largely due to the highly immunosuppressive tumor microenvironment (TME). Although
rational combinations of vaccine adjuvants with inflammatory cytokines or immune agonists that
relieve immunosuppression represent an appealing therapeutic strategy against solid tumors, there is
unavoidable non-specific toxicities due to the pleiotropy of cytokines and undesired activation of off-
target cells. Herein, we report a Zn2+ doped layered double hydroxide (Zn-LDH) based
immunomodulating adjuvant, which not only relieves immunosuppression but also elicits robust
antitumor immunity. Peritumorally injected Zn-LDH sustainably neutralizes acidic TME and releases
abundant Zn2+, promoting a pro-inflammatory network composed of M1-tumor-associated
macrophages, cytotoxic T cells and natural-killer cells. Moreover, the Zn-LDH internalized by tumor
cells effectively disrupts endo-/lysosomes to block autophagy and induces mitochondrial damage, and
the released Zn2+ activates the cGas-STING signaling pathway to induce immunogenic cell death,
which further promotes the release of tumor-associated antigens to induce antigen-specific cytotoxic T
lymphocytes. Unprecedentedly, merely injection of Zn-LDH adjuvant, without using any cytotoxic
inflammatory cytokines or immune agonists, significantly inhibits the growth, recurrence, and
metastasis of solid tumors in mice. Our study provides a rational bottom-up design of potent adjuvant
for cancer metalloimmunotherapy against solid tumors.
This article is protected by copyright. All rights reserved.
4
1. Introduction
-
    
        -

-
              

 -      -   
          -   

         
   -         -
-
          -
        
          -
-    -      

           
     
 -
   --  -    

This article is protected by copyright. All rights reserved.
5
            
             
              
            
      -    


  --      
          
    Scheme 1 -   
-

         

  --

around the peripheral of the tumorpenetrate
into the deep tissues -  -        
-
  -       -  
          -
-
      -  -    
together with the phagocytosis of dying tumor cells by dendritic cells (DCs) and macrophages in the
, thus enhancing antigen presentation- 
This article is protected by copyright. All rights reserved.
6

          
 -

Scheme 1.           
-

   -  -
 -
This article is protected by copyright. All rights reserved.
7

        

    -        
-together with the
phagocytosis of dying tumor cells by DCs and macrophages in the TME, thus enhancing antigen
presentation   -        

2. Results and Discussion
2.1. Synthesis and Characterization of Zn-LDH

Figure 1     -     
              
-
--
             
 --
             

--
              - 
           
This article is protected by copyright. All rights reserved.
8
     -  

-----


        -  -    - 

-
-
- --  --        
 --   -        
           The antigen-presenting
capacities of LDH and Zn-LDH were further detected using ovalbumin (OVA) as a model antigen.
Firstly, LDH and Zn-LDH with positive charges (Figure S2b, Supporting Information) and large surfaces
exhibit outstanding protein adsorption capacities (Figure 1h). Moreover, the T cell epitope of OVA
(SIINFKEL) presented by DCs in Zn-LDH group is notably higher than that of Zn2+ + OVA or LDH group
(Figure 1i; Figure S4, Supporting Information), owing to both Zn2+ doping and the great antigen-
presenting capacity of Zn-LDH. These results indicate that the introduction of Zn2+ effectively
elevates the adjuvanticity of Zn-LDH to promote DCs maturation and antigen presentation.
  
---


--

This article is protected by copyright. All rights reserved.
9

-      
Besides, the size of Zn-LDH keeps relatively stable
in pH 7.4 PBS (Figure S5, Supporting Information).-
-


This article is protected by copyright. All rights reserved.
10
Figure 1. ---
     -        -   
--nn
This article is protected by copyright. All rights reserved.
11
-
--n--
--n- OVA adsorption isotherm on LDH and Zn-LDH fitted in a Langmuir
model. (i) The expression of MHC-I/SIINFKEL by DC2.4 after incubated with ZnCl2 + free OVA,
LDH/OVA and Zn-LDH/OVA.-
 -  - 
--
  Data are means ± SEM.
-
2.2. Zn-LDH Interferes with Autophagy and Induces ICD
   -         - - 
-
--
 

-  Figure 2
         


 -
--
            
 
This article is protected by copyright. All rights reserved.
12
--
 Excitingly, we found that Zn-LDH efficiently increases the expression of phagophore-
incorporated autophagy markers, such as LC3-II and P62 in tumor cells (Figure 2e,f; Figures S9 and
S10, Supporting Information), which are normally over-expressed upon the treatment of autophagy-
inhibition drugs (e.g., chloroquine diphosphate (CQ)).[26]acridine orange (AO) was utilized
to detect the integrity of the lysosomal membrane.[12b] Zn-LDH effectively neutralizes the most of the
acidic lysosomes or autophagolysosomes in tumor cells within 4 h, and the intervention effect lasts
for at least 24 h (Figure S11  ). These results indicate that Zn-LDH can
effectively block the autophagic flux by inhibiting the acidification of autophagolysosomes.
--
  -            
         -  

 
This article is protected by copyright. All rights reserved.
13
Figure 2. -   
   of 2,7-dichlorofluorescein diacetate (DCFH-DA, cellular ROS indicator)
staining-
--- -      
-
 CLSM images of the colocalization of Zn-LDH with autophagolysosomes in B16F10 cells
after incubation for 4 or 24 h-

- LDH, Zn-LDH and chloroquine (CQ) for 24 h. The
ratio of LC3-II/I is calculated by comparing their band densities, and the ratio of LC3-II/I in saline
group is defined as 1.00.           -

This article is protected by copyright. All rights reserved.
14

--
      high-mobility group box 1 protein
(HMGB1), adenosine triphosphate (ATP) and calreticulin (CRT).[29] 
       -       Figure 3
 -and -
     1.3 folds    
. Furthermore, --
                 

              
  -
-
 -          
- Information-
- ICD (indicated by        

-
--
-
        
 M     during ICD     
--
 -  
 -    
This article is protected by copyright. All rights reserved.
15
--
           

Figure 3. -in B16F10 tumor
cells treated with ZnCl2, LDH, and Zn-LDH. Quantitative analysis of the ATP release in B16F10
tumor cells treated with ZnCl2, LDH, and Zn-LDH. (c-f) -
-                -
This article is protected by copyright. All rights reserved.
16
Phagocytosis of dying B16F10 cells by DC2.4 (g) and Raw264.7 (h).
(j-k) The antigen-presentation by DCs
(j) and macrophages (k) in tdLNs. 
-
2.3. Zn-LDH Modulates Immunosuppressive TME to Potentiate Tumor Metalloimmunotherapy
-
--
---
-
---
    - -     

-
         -   
            
-

-
              

           
-      -    

This article is protected by copyright. All rights reserved.
17
--
             
-

        -         
-
--
--
-
-      -    
-
 -
-  
-

-
--
-
        --     
-
        -
-

This article is protected by copyright. All rights reserved.
18
This article is protected by copyright. All rights reserved.
19
Figure 4. --

-

---
--
-
   -- TME          
-
2.4. Zn-LDH Inhibits the Growth of Malignant Tumors
--
Figure 5
--

         -   
 - -
--
 -
             

 --
-           -  
         -     
This article is protected by copyright. All rights reserved.
20
-

-
-
--
  -         

          --     
-
             

      -    
-
    

This article is protected by copyright. All rights reserved.
21
Figure 5. -
               

   -             
              
                
-


This article is protected by copyright. All rights reserved.
22

-


-

3. Conclusion
-  
       - 
        -     
-  -
           -  
             -
   
-          -

 -
 -          
            
 -
              
-
This article is protected by copyright. All rights reserved.
23
           

          -
          
            
-
           
-
          
 
      
ZnO, Zn-based metal-organic frameworks and ZnS) effectively induces tumor ICD by generating
tumor antigens or activating cGas-STING signaling pathway      -
          
-           

-


-
   
--
  
-
            
This article is protected by copyright. All rights reserved.
24
     -      
     diverse LDH immunomodulating adjuvants containing
these specific divalent cations are expected to effectively activate TME and evoke potent cancer
metalloimmunotherapy
 
--
-
               

            - 
           
-
   -          
 
 -          - 
             
 -        
           

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.
This article is protected by copyright. All rights reserved.
25
Acknowledgements
L.Z., J.Z., X.H. and C.W. contributed equally to this work.     
          
 
--
             
          
the Innovative Research Team
of High-Level Local Universities in Shanghai (SHSMU-ZDCX20210900),
         

-
Conflict of Interest

Data Availability Statement
  

Received: ((will be filled in by the editorial staff))
Revised: ((will be filled in by the editorial staff))
Published online: ((will be filled in by the editorial staff))
This article is protected by copyright. All rights reserved.
26
References
[1] a) M. Binnewies, E. W. Roberts, K. Kersten, V. Chan, D. F. Fearon, M. Merad, L. M. Coussens, D.
I. Gabrilovich, S. Ostrand-Rosenberg, C. C. Hedrick, R. H. Vonderheide, M. J. Pittet, R. K. Jain, W. Zou,
T. K. Howcroft, E. C. Woodhouse, R. A. Weinberg, M. F. Krummel, Nat. Med. 2018, 24, 541; b) M. Jin,
W. Jin, Signal Transduction Targeted Ther. 2020, 5, 166.
[2] a) Z. Hu, P. A. Ott, C. J. Wu, Nat. Rev. Immunol. 2018, 18, 168; b) U. Sahin, Ö. Türeci, Science
2018, 359, 1355.
[3] a) L. Hammerich, A. Binder, J. D. Brody, Mol. Oncol. 2015, 9, 1966; b) Y. Wang, N. Gong, C. Ma,
Y. Zhang, H. Tan, G. Qing, J. Zhang, Y. Wang, J. Wang, S. Chen, X. Li, Q. Ni, Y. Yuan, Y. Gan, J. Chen, F.
Li, J. Zhang, C. Ou, Y. Zhao, X. Liu, X. Liang, Nat. Commun. 2021, 12, 4964.
[4] a) Y. Agarwal, L. E. Milling, J. Y. H. Chang, L. Santollani, A. Sheen, E. A. Lutz, A. Tabet, J. Stinson,
K. Ni, K. A. Rodrigues, T. J. Moyer, M. B. Melo, D. J. Irvine, K. D. Wittrup, Nat. Biomed. Eng. 2022, 6,
129; b) Q. Chen, C. Wang, X. Zhang, G. Chen, Q. Hu, H. Li, J. Wang, D. Wen, Y. Zhang, Y. Lu, G. Yang, C.
Jiang, J. Wang, G. Dotti, Z. Gu, Nat. Nanotechnol. 2019, 14, 89.
[5] a) B. Pulendran, P. S. Arunachalam, D. T. O'Hagan, Nat. Rev. Drug Discovery 2021, 20, 454; b) T.
Cai, H. Liu, S. Zhang, J. Hu, L. Zhang, J. Nanobiotechnol. 2021, 19, 389; c) G. A. Roth, V. C. T. M.
Picece, B. S. Ou, W. Luo, B. Pulendran, E. A. Appel, Nat. Rev. Mater. 2022, 7, 174.
[6] a) X. Zheng, Y. Wu, J. Bi, Y. Huang, Y. Cheng, Y. Li, Y. Wu, G. Cao, Z. Tian, Cell. Mol. Immunol.
2022, 19, 192; b) E. C. Morris, S. S. Neelapu, T. Giavridis, M. Sadelain, Nat. Rev. Immunol. 2022, 22,
85; c) G. Morad, B. A. Helmink, P. Sharma, J. A. Wargo, Cell 2021, 184, 5309.
[7] a) B. Chaigne-Delalande, M. J. Lenardo, Trends Immunol. 2014, 35, 332; b) C. Wang, R. Zhang, X.
Wei, M. Lv, Z. Jiang, Adv. Immunol. 2020, 145, 187; c) Z. Shen, J. Song, B. C. Yung, Z. Zhou, A. Wu, X.
Chen, Adv. Mater. 2018, 30, 1704007; d) J. H. Han, H. E. Shin, J. Lee, J. M. Kang, J. H. Park, C. G. Park,
D. K. Han, I. H. Kim, W. Park, Small 2022, 2200316.
[8] a) D. Cen, Q. Ge, C. Xie, Q. Zheng, J. Guo, Y. Zhang, Y. Wang, X. Li, Z. Gu, X. Cai, Adv. Mater.
2021, 33, 2104037; b) Y. Zhao, Z. Zhang, Z. Pan, Y. Liu, Exploration 2021, 1, 20210089.
[9] a) M. Certo, C. H. Tsai, V. Pucino, P. C. Ho, C. Mauro, Nat. Rev. Immunol. 2021, 21, 151; b) I.
Martinez-Reyes, N. S. Chandel, Nat. Rev. Cancer 2021, 21, 669; c) A. S. Prasad, F. W. Beck, D. C. Snell,
O. Kucuk, Nutr. Cancer 2009, 61, 879.
[10] a) E. Spugnini, S. Fais, Semin. Cancer Biol. 2017, 43, 111; b)S. Pilon-Thomas, K. N. Kodumudi, A.
E. El-Kenawi, S. Russell, A. M. Weber, K. Luddy, M. Damaghi, J. W. Wojtkowiak, J. J. Mule, A. Ibrahim-
Hashim, R. J. Gillies, Cancer Res. 2016, 76, 1381; c) H. Abumanhal-Masarweh, L. Koren, A. Zinger, Z.
Yaari, N. Krinsky, G. Kaneti, N. Dahan, Y. Lupu-Haber, E. Suss-Toby, E. Weiss-Messer, M. Schlesinger-
Laufer, J. Shainsky-Roitman, A. Schroeder, J. Controlled Release 2019, 296, 1.
This article is protected by copyright. All rights reserved.
27
[11] R. Chen, M. Jäättelä, B. Liu, Cancers 2020, 12, 2437.
[12] a) J. M. M. Levy, A. Thorburn, Cell Death Differ. 2020, 27, 843; b) J. Wang, Y. Yu, K. Lu, M. Yang,
Y. Li, X. Zhou, Z. Sun, Int. J. Nanomed. 2017, 12, 809.
[13] a) M. Borkowska, M. Siek, D. V. Kolygina, Y. I. Sobolev, S. Lach, S. Kumar, Y. K. Cho, K. Kandere-
Grzybowska, B. A. Grzybowski, Nat. Nanotechnol. 2020, 15, 331; b) H. Xia, D. R. Green, W. Zou, Nat.
Rev. Cancer 2021, 21, 281.
[14] a) L. Zhang, J. Hu, Y. Jia, R. Liu, T. Cai, Z. P. Xu, Nanoscale 2021, 13, 7533; b) G. R. Williams, K.
Fierens, S. G. Preston, D. Lunn, O. Rysnik, S. D. Prijck, M. Kool, H. C. Buckley, B. N. Lambrecht, D.
J. Exp. Med. 2014, 211, 1019.
[15] X. Chu, H. Zhuang, Y. Liu, J. Li, Y. Wang, Y. Jiang, H. Zhang, P. Zhao, Y. Chen, X. Jiang, Y. Wu, W.
Bu, Adv. Mater. 2022, 34, 2108653.
[16] a) Z. P. Xu, M. Niebert, K. Porazik, T. L. Walker, H. M. Cooper, A. P. J. Middelberg, P. P. Gray, P.
F. Bartlett, G. Q. Lu, J. Controlled Release 2008, 130, 86; b) L. Zhang, X. Xie, D. Liu, Z. P. Xu, R. Liu,
Biomaterials 2018, 174, 54.
[17] B. Li, Z. Gu, N. Kurniawan, W. Chen, Z. P. Xu, Adv. Mater. 2017, 29, 1700373.
[18] L. Zhang, X. Sun, Z. P. Xu, R. Liu, ACS Appl. Mater. Interfaces 2019, 11, 35566.
[19] T. H. Kim, W. J. Lee, J. Y. Lee, S. M. Paek, J. M. Oh, Dalton Trans. 2014, 43, 10430.
[20] M. Li, Z. P. Xu, Y. Sultanbawa, W. Chen, J. Liu, G. Qian, Colloids Surf., B 2019, 181, 585.
[21] a) G. Starukh, O. Rozovik, O. Oranska, Nanoscale Res. Lett. 2016, 11, 228; b) M. Wang, L. Jiang,
E. J. Kim, S. H. Hahn, RSC Adv. 2015, 5, 87496.
[22] J. Hu, X. Tang, Q. Dai, Z. Liu, H. Zhang, A. Zheng, Z. Yuan, X. Li, Nat. Commun. 2021, 12, 3409.
[23] J. Song, S. C. Lee, S. S. Kim, H. J. Koh, O. W. Kwon, J. J. Kang, E. K. Kim, S. H. Shin, J. H. Lee, Curr.
Eye Res. 2004, 28, 195.
[24] a) C. Wang, R. J. Youle, Annu. Rev. Genet 2009, 43, 95; b) H. Wu, F. Xia, L. Zhang, C. Fang, J. Lee,
L. Gong, J. Gao, D. Ling, F. Li, Adv. Mater. 2022, 34, e2108348.
[25] L. Guo, N. He, Y. Zhao, T. Liu, Y. Deng, Theranostics 2020, 10, 3206.
[26] Y. Xie, J. Jiang, Q. Tang, H. Zou, X. Zhao, H. Liu, D. Ma, C. Cai, Y. Zhou, X. Chen, J. Pu, P. Liu, Adv.
Sci. 2020, 7, 1903323.
[27] L. Galluzzi, D. R. Green, Cell 2019, 177, 1682.
[28] C. Forano, F. Bruna, C. Mousty, V. Prevot, Chem. Rec. 2018, 18, 1150.
This article is protected by copyright. All rights reserved.
28
[29] a) X. Wang, M. Li, K. Ren, C. Xia, J. Li, Q. Yu, Y. Qiu, Z. Lu, Y. Long, Z. Zhang, Q. He, Adv. Mater.
2020, 32, e2002160. b) E. J. Lee, G. H. Nam, N. K. Lee, M. Kih, E. Koh, Y. K. Kim, Y. Hong, S. Kim, S. Y.
Park, C. Jeong, Y. Yang, I. S. Kim, Adv. Mater. 2018, 30, 1705581.
[30] S. Textor, N. Fiegler, A. Arnold, A. Porgador, T. G. Hofmann, A. Cerwenka, Cancer Res. 2011, 71,
5998.
[31] a) L. Li, D. S. Ng, W. C. Mah, F. F. Almeida, S. A. Rahmat, V. K. Rao, S. C. Leow, F. Laudisi, M. T.
Peh, A. M. Goh, J. S. Lim, G. D. Wright, A. Mortellaro, R. Taneja, F. Ginhoux, C. G. Lee, P. K. Moore, D.
P. Lane, Cell Death Differ. 2015, 22, 1081; b) M. D. Sharma, P. C. Rodriguez, B. H. Koehn, B. Baban, Y.
Cui, G. Guo, M. Shimoda, R. Pacholczyk, H. Shi, E. J. Lee, H. Xu, T. S. Johnson, Y. He, T. Mergoub, C.
Venable, V. Bronte, J. D. Wolchok, B. R. Blazar, D. H. Munn, Immunity 2018, 48, 91.
[32] M. Cirone, A. Garufi, L. D. Renzo, M. Granato, A. Faggioni, G. D'Orazi, Oncoimmunology 2013, 2,
e26198.
[33] a) E. Ho, B. N. Ames, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 16770; b) T. Cooks, I. S. Pateras, L.
M. Jenkins, K. M. Patel, A. I. Robles, J. Morris, T. Forshew, E. Appella, V. G. Gorgoulis, C. C. Harris,
Nat. Commun. 2018, 9, 771.
[34] E. C. Lerner, R. M. Edwards, D. S. Wilkinson, P. E. Fecci, Adv. Drug Delivery Rev. 2022, 185,
114311.
[35] Z. Cao, L. Zhang, K. Liang, S. Cheong, C. Boyer, J. J. Gooding, Y. Chen, Z. Gu, Adv. Sci. 2018, 5,
1801155.
[36] a) M. Maares, H. Haase, Arch. Biochem. Biophys. 2016, 611, 58; b) A. Garufi, V. Ubertini, F.
Mancini, V. D'Orazi, S. Baldari, F. Moretti, G. Bossi, G. D'Orazi, J. Exp. Clin. Cancer Res. 2015, 34, 87.
[37] W. Chen, H. Zuo, B. Li, C. Duan, B. Rolfe, B. Zhang, T. J. Mahony, Z. P. Xu, Small 2018, 14,
1704465.
[38] S. K. Wculek, F. J. Cueto, A. M. Mujal, I. Melero, M. F. Krummel, D. Sancho, Nat. Rev. Immunol.
2020, 20, 7.
[39] a) Y. R. Murciano-Goroff, A. B. Warner, J. D. Wolchok, Cell Res. 2020, 30, 507; b) F. Gong, N.
Yang, X. Wang, Q. Zhao, Q. Chen, Z. Liu, L. Cheng, Nano Today 2020, 32, 100851.
[40] a) R. Hernandez, J. Poder, K. M. LaPorte, T. R. Malek, Nat. Rev. Immunol.
https://doi.org/10.1038/s41577-022-00680-w; b) F. G. Dall'Olio, A. Marabelle, C. Caramella, C.
Garcia, M. Aldea, N. Chaput, C. Robert, B. Besse, Nat. Rev. Clin. Oncol. 2022, 19, 75.
[41] a) H. Shin, K. Na, ACS Biomater. Sci. Eng. 2020, 6, 3430; b) Y. Zhang, C. Guo, L. Liu, J. Xu, H.
Jiang, D. Li, J. Lan, J. Li, J. Yang, Q. Tu, X. Sun, M. Alamgir, X. Chen, G. Shen, J. Zhu, J. Tao, Theranostics
2020, 10, 11197; c) Z. Dai, Q. Wang, J. Tang, M. Wu, H. Li, Y. Yang, X. Zhen, C. Yu, Biomaterials 2022,
280, 121261; d) G. He, Y. Ma, Y. Zhu, L. Yong, X. Liu, P. Wang, C. Liang, C. Yang, Z. Zhao, B. Hai, X. Pan,
Z. Liu, X. Liu, C. Mao, Adv. Healthcare Mater. 2018, 7, e1800332.
This article is protected by copyright. All rights reserved.
29
[42] a) J. Liu, Q. Chen, L. Feng, Z. Liu, Nano Today 2018, 21, 55; b) D. Fukumura, R. K. Jain, J. Cell.
Biochem. 2007, 101, 937; c) J. Nam, S. Son, K. S. Park, W. Zou, L. D. Shea, J. J. Moon, Nat. Rev. Mater.
2019, 4, 398; d) Y. Liu, W. Wang, D. Zhang, Y. Sun, F. Li, M. Zheng, D. B. Lovejoy, Y. Zou, B. Shi,
Exploration 2022, 20210274.
[43] a) C. Zhang, L. Yan, X. Wang, S. Zhu, C. Chen, Z. Gu, Y. Zhao, Nano Today 2020, 35, 101008; b)
M. A. Younis, H. M. Tawfeek, A. A. H. Abdellatif, J. A. Abdel-Aleem, H. Harashima, Adv. Drug Delivery
Rev. 2022, 181, 114083.
[44] a) X. He, Y. Zhu, L. Yang, Z. Wang, Z. Wang, J. Feng, X. Wen, L. Cheng, R. Zhu, Adv. Sci. 2021, 8,
2003535; b) B. Li, J. Tang, W. Chen, G. Hao, N. Kurniawan, Z. Gu, Z. P. Xu, Biomaterials 2018, 177, 40.
[45] a) R. Zhang, C. Wang, Y. Guan, X. Wei, M. Sha, M. Yi, M. Jing, M. Lv, W. Guo, J. Xu, Y. Wan, X. M.
Jia, Z. Jiang, Cell. Mol. Immunol. 2021, 18, 1222; b) X. Jiang, B. R. Stockwell, M. Conrad, Nat. Rev. Mol.
Cell Biol. 2021, 22, 266; c) P. Tsvetkov, S. Coy, B. Petrova, M. Dreishpoon, A. Verma, M. Abdusamad,
J. Rossen, L. Joesch-Cohen, R. Humeidi, R. D. Spangler, J. K. Eaton, E. Frenkel, M. Kocak, S. M.
Corsello, S. Lutsenko, N. Kanarek, S. Santagata, T. R. Golub, Science 2022, 375, 1254.
[46] C. Wang, W. Sun, Y. Ye, Q. Hu, H. N. Bomba, Z. Gu, Nat. Biomed. Eng. 2017, 1, 0011.
This article is protected by copyright. All rights reserved.
30
A simple yet robust immunomodulating adjuvant of Zn2+-doped layered double hydroxide (Zn-LDH) is
developed to potentiate cancer metalloimmunotherapy without using any cytotoxic inflammatory
cytokines or immune agonists. Peritumorally injected Zn-LDH simultaneously modulates
immunosuppressive tumor microenvironment and induces tumor immunogenic cell death, eliciting
robust antitumor immunity.
Lingxiao Zhang, Jing Zhao, Xi Hu, Chenhan Wang, Yingbo Jia, Chaojie Zhu, Shangzhi Xie, Jiyoung Lee,
Fangyuan Li*, and Daishun Ling*
A Peritumorally Injected Immunomodulating Adjuvant Elicits Robust and Safe
Metalloimmunotherapy Against Solid Tumors
Article
Full-text available
Metal ions play an essential role in regulating the functions of immune cells by transmitting intracellular and extracellular signals in tumor microenvironment (TME). Among these immune cells, we focused on the impact of metal ions on T cells because they can recognize and kill cancer cells and play an important role in immune-based cancer treatment. Metal ions are often used in nanomedicines for tumor immunotherapy. In this review, we discuss seven metal ions related to anti-tumor immunity, elucidate their roles in immunotherapy, and provide novel insights into tumor immunotherapy and clinical applications.
Article
Full-text available
To overcome current limitations in photoimmunotherapy, such as insufficient tumor antigen generation and a subdued immune response, a novel photo‐/metallo dual‐mode immunotherapeutic agent (PMIA) is introduced for potent near‐infrared (NIR) light‐triggered cancer therapy. PMIA features a dumbbell‐like AuPt heterostructure decorated with starry Pt nanoclusters, meticulously engineered for enhancing plasmonic catalysis through multi‐dimensional regulation of Pt growth on Au nanorods. Under NIR laser exposure, end‐tipped Pt nanoclusters induce efficient electron‐hole spatial separation along the longitudinal axis, resulting in radial and axial electron distribution polarization, conferring unique anisotropic properties to PMIA. Additionally, starry Pt nanoclusters on the sides of Au nanorods augment the local electron enrichment field. Validated through finite‐difference time‐domain analysis and Raman scattering, this configuration fosters local electron enrichment, facilitating robust reactive oxygen species generation for potent photoimmunotherapy. Moreover, Pt nanoclusters facilitate Pt²⁺ ion release, instigating intranuclear DNA damage and inducing synergistic immunogenic cell death (ICD) for metalloimmunotherapy. Consequently, PMIA elicits abundant danger‐associated molecular patterns, promotes T cell infiltration, and triggers systemic immune responses, effectively treating primary and distant tumors, inhibiting metastasis in vivo. This study unveils a pioneering dual‐mode ICD amplification strategy driven by NIR light, synergistically integrating photoimmunotherapy and metalloimmunotherapy, culminating in potent cancer photometalloimmunotherapy.
Chapter
This chapter explores the transformative role of metal-based compounds in diverse cancer treatment strategies. Metal complexes enhance immunotherapy by modulating immune responses and also synergize with conventional treatments in combination therapy. In non-invasive modalities like photodynamic therapy (PDT), photothermal therapy (PTT), and sonodynamic therapy (SDT), metal complexes act as potent agents, generating reactive oxygen species (ROS), or heat, for targeted tumour destruction. Metallic nanoparticles and metal-organic framework (MOFs) offer innovative approaches, enhancing drug delivery and therapeutic effects. Metal-based compounds also reveal promising targets, disrupting key cellular processes. With their unique properties, these compounds signify a paradigm shift, promising improved outcomes and a new era of hope in cancer treatment.
Article
Piezoelectric catalysis is a novel catalytic technology that has developed rapidly in recent years and has attracted extensive interest among researchers in the field of tumor therapy for its acoustic‐sensitizing properties. Nevertheless, researchers are still controversial about the key technical difficulties in the modulation of piezoelectric sonosensitizers for tumor therapy applications, which is undoubtedly a major obstacle to the performance modulation of piezoelectric sonosensitizers. Clarification of this challenge will be beneficial to the design and optimization of piezoelectric sonosensitizers in the future. Here, the authors start from the mechanism of piezoelectric catalysis and elaborate the mechanism and methods of defect engineering and phase engineering for the performance modulation of piezoelectric sonosensitizers based on the energy band theory. The combined therapeutic strategy of piezoelectric sonosensitizers with enzyme catalysis and immunotherapy is introduced. Finally, the challenges and prospects of piezoelectric sonosensitizers are highlighted. Hopefully, the explorations can guide researchers toward the optimization of piezoelectric sonosensitizers and can be applied in their own research.
Article
Full-text available
Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticles with rich copper vacancies (named BCO‐VCu) are rationally designed and engineered for ferroelectricity‐enhanced apoptosis, cuproptosis, and the subsequently evoked immunotherapy. In this structure, the suppressed recombination of the electron–hole pairs by the vacancies and the band bending by the ferroelectric polarization lead to high catalytic activity, triggering reactive oxygen species bursts and inducing apoptosis. The cell fragments produced by apoptosis serve as antigens to activate T cells. Moreover, due to the generated charge by the ferroelectric catalysis, this nanomedicine can act as “a smart switch” to open the cell membrane, promote nanomaterial endocytosis, and shut down the Cu⁺ outflow pathway to evoke cuproptosis, and thus a strong immune response is triggered by the reduced content of adenosine triphosphate. Ribonucleic acid transcription tests reveal the pathways related to immune response activation. Thus, this study firstly demonstrates a feasible strategy for enhancing the efficacy of immunotherapy using single ferroelectric semiconductor‐induced apoptosis and cuproptosis.
Article
Full-text available
Lymphocytes are crucial to defend against harmful pathogens and sustain adaptive immunity. Developing immunomodulating materials to activate lymphocytes is imperative to induce effective and enduring immune responses. Here, a new polymer serving as a highly efficient activator of B cells is reported and corresponding polymer spheres are synthesized through a droplet‐assisted ternary copolymerization process of ascorbic acid, ethylenediamine, and glyoxal. In‐depth studies are conducted on the polymerization mechanisms and polymer spheres ranging from 250 to 1200 nm with various surface functional groups are synthesized. These prepared polymer materials exhibit remarkable immunomodulatory functions correlated to the polymer spheres' size and surface functional groups, and effective activations on B cells are observed in vivo and in vitro. Through cell phagocytosis experiments and RNA sequencing analysis, it is proposed that the selective phagocytosis of B cells and the presence of CD21 on the B cell membrane contribute to the activation of B cells. This work has extended the realm of immunological research from a unique perspective of chemical synthesis, further substantiating the fundamental research and application potential of designing immunomodulating polymers.
Article
Full-text available
To circumvent the limitations of conventional cancer immunotherapy, it is critical to prime antigen‐presenting cells (APCs) to initiate the cancer‐immune cycle. Here, the authors develop a metal‐phenolic network (MPN)‐based immunoactive nanoparticle in combination with irreversible electroporation (IRE) for an effective cancer immunotherapy. The MPN nanoparticles are synthesized by coordinating tannic acid with manganese (Mn) ions, and subsequent coating with CpG‐oligodeoxynucleotides (CpG‐ODNs) via hydrogen bonding. The CpG‐ODN‐coated Mn‐phenolic network (CMP) nanoparticles are effectively internalized into macrophages, a type of APCs, and successfully trigger M1 polarization to promote release of proinflammatory cytokines. Notably, the CMP nanoparticles demonstrate an extended retention time period than the free CpG‐ODN in the tumor. The tumor microenvironment tailored bipolar IRE, enhances the therapeutic efficacy by significantly broadening the ablation zone, which further increases immunogenic cell death (ICD). Ultimately, the simultaneous CMP nanoparticles and IRE treatment successfully inhibit tumor growth and prolong survival in a mouse tumor model. Thus, CMP nanoparticles are empowered with Mn and CpG‐ODN immunomodulators and the tumor microenvironment tailored bipolar IRE will be a new tool for effective cancer immunotherapy to treat intractable malignancies.
Article
Full-text available
Glioblastoma (GBM) is a central nervous system tumor with poor prognosis due to the rapid development of resistance to mono chemotherapy and poor brain targeted delivery. Chemoimmunotherapy (CIT) combines chemotherapy drugs with activators of innate immunity that hold great promise for GBM synergistic therapy. Herein, we chose temozolomide, TMZ, and the epigenetic bromodomain inhibitor, OTX015, and further co‐encapsulated them within our well‐established erythrocyte membrane camouflaged nanoparticle to yield ApoE peptide decorated biomimetic nanomedicine (ABNM@TMZ/OTX). Our nanoplatform successfully addressed the limitations in brain‐targeted drug co‐delivery, and simultaneously achieved multidimensional enhanced GBM synergistic CIT. In mice bearing orthotopic GL261 GBM, treatment with ABNM@TMZ/OTX resulted in marked tumor inhibition and greatly extended survival time with little side effects. The pronounced GBM treatment efficacy can be ascribed to three key factors: (i) improved nanoparticle‐mediated GBM targeting delivery of therapeutic agents by greatly enhanced blood circulation time and blood–brain barrier penetration; (ii) inhibited cellular DNA repair and enhanced TMZ sensitivity to tumor cells; (iii) enhanced anti‐tumor immune responses by inducing immunogenic cell death and inhibiting PD‐1/PD‐L1 conjugation leading to enhanced expression of CD4+ and CD8+ T cells. The study validated a biomimetic nanomedicine to yield a potential new treatment for GBM. We developed temozolomide and epigenetic bromodomain inhibitor co‐encapsulated biomimetic nanomedicine (ABNM@TMZ/OTX) achieved multidimensional enhanced glioblastoma synergistic chemoimmunotherapy in both primary and recurrent orthotopic mice models with significant extended survival rate and little side effects.
Article
Full-text available
Copper is an essential cofactor for all organisms, and yet it becomes toxic if concentrations exceed a threshold maintained by evolutionarily conserved homeostatic mechanisms. How excess copper induces cell death, however, is unknown. Here, we show in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration. We show that copper-dependent death occurs by means of direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle. This results in lipoylated protein aggregation and subsequent iron-sulfur cluster protein loss, which leads to proteotoxic stress and ultimately cell death. These findings may explain the need for ancient copper homeostatic mechanisms.
Article
Full-text available
The tumor microenvironment is a complex milieu where neurons constitute an important non‐neoplastic cell type. From “Cancer Neuroscience”, the crosstalk between tumors and neurons favors the rapid growth of both, making the cancer‐nerve interaction a reciprocally beneficial process. Thus, the cancer‐nerve crosstalk may provide new targets for therapeutic intervention against cancer and cancer‐related symptoms. We proposed a nerve‐cancer crosstalk blocking strategy for metastatic bone cancer pain treatment, achieved by Mg/Al‐layered double hydroxide nanoshells (Mg/Al‐LDH) with AZ‐23 loaded inside and alendronate (ALD) decorated outside. The pain‐causing H+ was rapidly eliminated by LDH, with neurogenesis inhibited by the antagonist AZ‐23. As positive feedback, the decreased pain reversed the nerve‐to‐cancer Ca2+ crosstalk‐related cell cycle, dramatically inhibiting tumor growth. All experiments confirmed the improved pain threshold and enhanced tumor inhibition. The study may inspire multidisciplinary researchers to focus on the cancer‐nerve crosstalk for treating cancer and accompanied neuropathic diseases. This article is protected by copyright. All rights reserved
Article
Full-text available
Anti-tumour inflammatory cytokines are highly toxic when administered systemically. Here, in multiple syngeneic mouse models, we show that the intratumoural injection of recombinantly expressed cytokines bound tightly to the common vaccine adjuvant aluminium hydroxide (alum) (via ligand exchange between hydroxyls on the surface of alum and phosphoserine residues tagged to the cytokine by an alum-binding peptide) leads to weeks-long retention of the cytokines in the tumours, with minimal side effects. Specifically, a single dose of alum-tethered interleukin-12 induced substantial interferon-γ-mediated T-cell and natural-killer-cell activities in murine melanoma tumours, increased tumour antigen accumulation in draining lymph nodes and elicited robust tumour-specific T-cell priming. Moreover, intratumoural injection of alum-anchored cytokines enhanced responses to checkpoint blockade, promoting cures in distinct poorly immunogenic syngeneic tumour models and eliciting control over metastases and distant untreated lesions. Intratumoural treatment with alum-anchored cytokines represents a safer and tumour-agnostic strategy to improving local and systemic anticancer immunity.
Article
Full-text available
Bioactive materials are a kind of materials with unique bioactivities, which can change the cellular behaviors and elicit biological responses from living tissues. Bioactive materials came into the spotlight in the late 1960s when the researchers found that the materials such as bioglass could react with surrounding bone tissue for bone regeneration. In the following decades, advances in nanotechnology brought the new development opportunities to bioactive nanomaterials. Bioactive nanomaterials are not a simple miniaturization of macroscopic materials. They exhibit unique bioactivities due to their nanoscale size effect, high specific surface area, and precise nanostructure, which can significantly influence the interactions with biological systems. Nowadays, bioactive nanomaterials have represented an important and exciting area of research. Current and future applications ensure that bioactive nanomaterials have a high academic and clinical importance. This review summaries the recent advances in the field of bioactive nanomaterials, and evaluate the influence factors of bioactivities. Then, a range of bioactive nanomaterials and their potential biomedical applications are discussed. Furthermore, the limitations, challenges, and future opportunities of bioactive nanomaterials are also discussed. In this review, we summary the recent advances of bioactive nanomaterials, and discuss the influence factors of bioactivities including the physical structure of bioactive nanomaterials, surface properties, and nanotopography. Then, a range of bioactive nanomaterials, including inorganic nanomaterials, carbon‐based nanomaterials, polymeric nanomaterials, and supramolecular‐based nanomaterials are discussed. In addition, we also introduce several typical applications of bioactive nanomaterials, including wound healing, cancer therapy, neurodegenerative disease therapy, and biocatalyst.
Article
Full-text available
Early diagnosis of acute liver failure (ALF) is critical for a curable treatment of the patients, because most existing ALF therapies have narrow therapeutic time windows after disease onset. Reactive oxygen species (ROS), which lead to the sequential occurrences of hepatocyte necrosis and the leakage of alanine aminotransferase (ALT), represent early biomarkers of ALF. Photoacoustic imaging is emerging as a powerful tool for in vivo imaging of ROS. However, high-performance imaging probes that can boost the photoacoustic signals of short-lived ROS of ALF are yet to be developed, and there remains a great challenge for ROS-based imaging of ALF. Herein, we present a ROS-sensitive nanozyme-augmented photoacoustic nanoprobe for successful in vivo imaging of ALF. The deep-penetrated photoacoustic signals of nanoprobe can be activated by the overexpressed ROS in ALF due to the synergy between nanocatalytic bubbles generation and thermoelastic expansion. Impressively, the nanozyme-augmented ROS imaging enables earlier diagnosis of ALF than clinical ALT method, and the ROS-activated catalytic activity of nanoprobe permits timely nanocatalytic therapy of ALF. This article is protected by copyright. All rights reserved
Article
Immunotherapies, such as immune checkpoint inhibition (ICI), have had limited success in treating intracranial malignancies. These failures are due partly to the restrictive blood-brain-barrier (BBB), the profound tumor-dependent induction of local and systemic immunosuppression, and immune evasion exhibited by these tumors. Therefore, novel approaches must be explored that aim to overcome these stringent barriers. LITT is an emerging treatment for brain tumors that utilizes thermal ablation to kill tumor cells. LITT provides an additional therapeutic benefit by synergizing with ICI and systemic chemotherapies to strengthen the anti-tumor immune response. This synergistic relationship involves transient disruption of the BBB and local augmentation of immune function, culminating in increased CNS drug penetrance and improved anti-tumor immunity. In this review, we will provide an overview of the challenges facing immunotherapy for brain tumors, and discuss how LITT may synergize with the endogenous anti-tumor response to improve the efficacy of ICI.
Article
Cytokines exert powerful immunomodulatory effects that are critical to physiology and pathology in humans. The application of natural cytokines in clinical studies has not been clearly established, and there are often problems associated with toxicity or lack of efficacy. The key reasons can be attributed to the pleiotropy of cytokine receptors and undesired activation of off-target cells. With a deeper understanding of the structural principles and functional signals of cytokine-receptor interactions, artificial modification of cytokine signaling through protein engineering and synthetic immunology has become an increasingly feasible and powerful approach. Engineered cytokines are designed to selectively target cells. Herein, the theoretical and experimental evidence of cytokine engineering is reviewed, and the “supercytokines” resulting from structural enhancement and the “immunocytokines” generated by antibody fusion are described. Finally, the “engager cytokines” formed by the crosslinking of cytokines and bispecific immune engagers and other synthetic cytokines formed by nonnatural analogs are also discussed.
Article
Despite the massive interest and recent developments in the field of nanomedicine, only a limited number of formulations have found their way to the clinics. This shortcoming reveals the challenges facing the clinical translation of this technology. In the current article, we summarize and evaluate the status, market situation, and clinical profiles of the reported nanomedicines, the shortcomings limiting their clinical translation, as well as some approaches designed to break through this barrier. Moreover, some emerging technologies that have the potential to compete with nanomedicines are highlighted. Lastly, we identify the key factors that should be considered in nanomedicine-related research to be clinically-translatable. These can be classified into five areas: rational design during the research and development stage, the recruitment of representative preclinical models, careful design of clinical trials, development of specific and uniform regulatory protocols, and calls for non-classic sponsorship. This new field of endeavor was firmly established during the last two decades and more in-depth progress is expected in the coming years.