Leonora Poljak

Leonora Poljak
French National Centre for Scientific Research | CNRS · Laboratoire de Microbiologie et Génétique Moléculaires

About

27
Publications
1,844
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,796
Citations

Publications

Publications (27)
Article
Full-text available
RNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process a...
Preprint
Background RNase E has crucial roles in the initiation of mRNA degradation, the processing of ‘stable’ transcripts such as rRNA and tRNA, and the quality control of ribosomes. With over 20’000 potential cleavage sites, RNase E is a low specificity endoribonuclease with the capacity to cleave multiple times nearly every transcript in the cell. A lar...
Article
Full-text available
Here, we show that RNase E, RhlB, and PNPase act together as components of the multienzyme RNA degradosome in polyribosome-dependent clustering to form puncta on the inner cytoplasmic membrane. Our results support the hypothesis that RNA degradosome puncta are sites of mRNA degradation.
Article
Full-text available
Rifampicin, a broad-spectrum antibiotic, inhibits bacterial RNA polymerase. Here we show that rifampicin treatment of Escherichia coli results in a 50% decrease in cell size due to a terminal cell division. This decrease is a consequence of inhibition of transcription as evidenced by an isogenic rifampicin-resistant strain. There is also a 50% decr...
Preprint
Full-text available
Rifampicin, a broad-spectrum antibiotic, inhibits bacterial RNA polymerase. Here we show that rifampicin treatment of Escherichia coli results in a 50% decrease in cell size due to a terminal cell division. This decrease is a consequence of inhibition of transcription as evidenced by an isogenic rifampicin-resistant strain. There is also a 50% decr...
Article
Full-text available
Significance Since the discovery of penicillin, humans have widely developed and used antibiotics to protect themselves from microbial infections. However, the intensive use of these compounds has led to the emergence of pathogens resistant to all classes of antibiotics. This major public health threat has led scientists to find new molecules with...
Article
Full-text available
The reason for RNase E attachment to the inner membrane is largely unknown. To understand the cell biology of RNA degradation, we have characterized a strain expressing RNase E lacking the membrane attachment site (cytoplasmic RNase E). Genome‐wide data show a global slowdown in mRNA degradation. There is no correlation between mRNA stabilization a...
Article
Full-text available
RNase E, which is the central component of the multienzyme RNA degradosome, serves as a scaffold for interaction with other enzymes involved in mRNA degradation including the DEAD-box RNA helicase RhlB. Epifluorescence microscopy under live cell conditions shows that RNase E and RhlB are membrane associated, but neither protein forms cytoskeletal-l...
Article
RNase E is an essential endoribonuclease involved in RNA processing and mRNA degradation. The N-terminal half of the protein encompasses the catalytic domain; the C-terminal half is the scaffold for the assembly of the multienzyme RNA degradosome. Here we identify and characterize 'segment-A', an element in the beginning of the non-catalytic region...
Article
Co-immunopurification is a classical technique in which antiserum raised against a specific protein is used to purify a multiprotein complex. We describe work from our laboratory in which co-immunopurification was used to characterize the RNA degradosome of Escherichia coli, a multiprotein complex involved in RNA processing and mRNA degradation. Po...
Article
The DEAD-box RNA helicases are a ubiquitous family of enzymes involved in processes that include RNA splicing, ribosome biogenesis, and mRNA degradation. In general, these enzymes help to unwind short stretches of double-stranded RNA in processes that involve the remodeling of RNA structure or of ribonucleoprotein complexes. Here we describe work f...
Article
Full-text available
The Escherichia coli protein RhlB is an ATP-dependent motor that unfolds structured RNA for destruction by partner ribonucleases. In E. coli, and probably many other related gamma-proteobacteria, RhlB associates with the essential endoribonuclease RNase E as part of the multi-enzyme RNA degradosome assembly. The interaction with RNase E boosts RhlB...
Article
The RNA degradosome of Escherichia coli is a ribonucleolytic multienzyme complex containing RNase E, polynucleotide phosphorylase, RhlB, and enolase. Previous in vitro and in vivo work has shown that RhlB facilitates the exonucleolytic degradation of structured mRNA decay intermediates by polynucleotide phosphorylase in an ATPase-dependent reaction...
Article
The non-catalytic region of Escherichia coli RNase E contains a protein scaffold that binds to the other components of the RNA degradosome. Alanine scanning yielded a mutation, R730A, that disrupts the interaction between RNase E and the DEAD-box RNA helicase, RhlB. We show that three other DEAD-box helicases, SrmB, RhlE and CsdA also bind to RNase...
Article
The hydrolytic endoribonuclease RNase E, which is widely distributed in bacteria and plants, plays key roles in mRNA degradation and RNA processing in Escherichia coli. The enzymatic activity of RNase E is contained within the conserved amino-terminal half of the 118 kDa protein, and the carboxy-terminal half organizes the RNA degradosome, a multi-...
Article
HIV-1 nucleocapsid protein NCp7 is a small basic protein with two zinc fingers, found in the virion core where several hundred molecules coat the genomic RNA. NCp7 has nucleic acid chaperone properties that guide reverse transcriptase (RT) to synthesize the proviral DNA flanked by the long terminal repeats (LTR). In vitro, NCp7 can strongly activat...
Article
Full-text available
Autonomously replicating sequences (ARSs) in the yeast Yarrowia lipolytica require two components: an origin of replication (ORI) and centromere (CEN) DNA, both of which are necessary for extrachromosomal maintenance. To investigate this cooperation in more detail, we performed a screen for genomic sequences able to confer high frequency of transfo...
Article
Full-text available
The integrase (IN) protein of the human immunodeficiency virus mediates integration of the viral DNA into the cellular genome. In vitro, this reaction can be mimicked by using purified recombinant IN and model DNA substrates. IN mediates two reactions: an endonucleolytic cleavage at each 3' end of the proviral DNA (terminal cleavage) and the joinin...
Article
The catalytic activities of topoisomerase II are responsible primarily for solving the complex topological problems that arise from cellular processes such as DNA replication, transcription and chromosome segregation; however, topoisomerase II may also play a crucial structural role in the chromosome scaffold. Cell-cycle-regulated phosphorylation m...
Article
Full-text available
Two minimal scaffold-associated regions (SARs) from Drosophila were tested in stably transformed cells for their effects on the expression of reporter genes. The expression of genes bounded by two SARs is consistently stimulated by about 20- to 40-fold, if the average of a pool of cell transformants is analyzed. However, analysis of individual, sta...
Article
Full-text available
Histone H1 preferentially and cooperatively binds scaffold-associated regions (SARs) in vitro via specific interactions with the numerous short A + T-rich tracts (A-tracts) contained in these sequences. Selective titration of A-tracts by the oligopeptide distamycin abolishes this interaction and results in a redistribution of H1. Similarly, treatme...
Article
It has been proposed that scaffold-associated regions are DNA elements that form the bases of chromatin loops in eukaryotic cells. Recent evidence supports a role for these elements as cis-acting 'handlers' of both structural and functional chromatin domains.
Article
Full-text available
cis-Diamminedichloroplatinum (II) (cisplatin) compounds and the chloroethylnitrosoureas are two different classes of anticancer drugs that work by modifying DNA covalently. We have compared the platinating drug cisplatin with the alkylating drug bischloroethylnitrosourea and other chloroethylnitrosoureas by modifying double stranded DNA in vitro an...
Article
Full-text available
The DNA structure of a fragment containing the SV40 termination sequences was examined using gel mobility assays. The region is shown to contain a DNA bend as evidenced by an abnormal mobility that is progressively accentuated as the temperature is lowered. This represents the strongest example of DNA bending among the collection of SV40 fragments...
Article
We have studied the relative abilities of different simian virus 40 (SV40) DNA segments to reconstitute into nucleosomes in vitro. The SV40 genome was separated into 15 discrete fragments by restriction endonuclease digestion and reconstituted with calf thymus core histones under conditions of varying histone-to-DNA ratios. Three fragments show ver...

Network

Cited By