ArticlePDF Available

New Palynological Data of the Cerro de las Cabras Formation (Middle Triassic) at its Type Locality, Mendoza, Argentina. Biostratigraphic and Phytogeographic Implications

Authors:

Abstract and Figures

This palynological study presents a systematic update of the Cerro de Las Cabras Formation at its type section. Thirty-three genera and 81 species of palynomorphs are incorporated, including forms recorded for the first time in the Triassic of Argentina. Additionally, 53 forms of palynomorphs were synonymized with new or already known species of the unit from the taxonomic revision of previously published material. Four new combinations were proposed: Secarisporites argenteiformis, S. lobatoverrucosus, S. verrucosus and S. volkheimerii. The palynoflora is dominated by species of the Alisporites/Falcisporites, the Cycadopites/Monosulcites, the Secarisporites/Leptolepidites, and the Densoisporites/Lundbladispora complexes. The locally common presence of Illinites (~14%), cf. Rimaesporites (~4%), Minutosaccus (~2.7%), Staurosaccites (~2.3%), Protodiploxypinus (~2%), Angustisulcites (~1.7%), and Brachysaccus (~1.7%) is noteworthy. The Permian taxa Cladaitina sp., Limitisporites rectus, Lueckisporites sp., Platysaccus sp. cf. P. trumpii, Protohaploxypinus goraiensis, Punctatisporites gretensis, and Retusotriletes sp. cf. R. nigritellus are interpreted to occur in situ. The common presence of typical north-central European species such as Illinites chitonoides and Illinites kosankei, along with the co-occurrences of Densoisporites playfordii, Angustisulcites gorpii, Ovalipollis notabilis, Samaropollenites speciosus, and Staurosaccites quadrifidus, enable the constraining of the age of the palynoflora to the late Anisian–early Ladinian. On the other hand, the present study reveals a greater number of species shared with the Northern Hemisphere and low-mid latitudes of Gondwana, including typical Onslow elements such as cf. Rimaesporites aquilonalis, Samaropollenites speciosus, Staurosaccites quadrifidus, and Minutosaccus crenulatus, which allow us to ascribe the studied assemblage to a mixed Onslow-Ipswich palynoflora.
1–2, Densoisporites complicatus Balme, 1970, 1, BAPal 3074 b d44/2, 2, BAPal 3074 b E40/1; 3, Densoisporites playfordii Balme, 1963, BAPal 3079 d K48/2; 4, 9, Densoisporites psilatus (de Jersey, 1964) Raine and de Jersey in Raine et al., 1988, 4, BAPal 3074 b F35/2, 9, BAPal 3074 b Q53/2; 5, Lundbladispora punctata Césari and Colombi, 2016, BAPal 3068 c H41/2; 6–7, Lundbladispora verrucosa Gutiérrez et al., 2017, 6, BAPal 3074 b M55/1, 7, BAPal 3074 b d39/2; 8, Leschikisporis aduncus (Leschik, 1955) Potonié, 1958, BAPal 3076 ll O41/3; 10, Alisporites angustus (Ouyang & Norris, 1999) Zavattieri et al. 2018, BAPal 3075 n N38/2; 11, Alisporites aequalis Mädler, 1964, BAPal 3073 h V38/2; 12, Alisporites lowoodensis de Jersey, 1963, BAPal 3079 d E47/1; 13, Klausipollenites decipiens Jansonius, 1962, BAPal 3075 k C40/4; 14, Alisporites opii daugherty, 1941, BAPal 3079 m J30/4; 15, 16, cf. Rimaesporites aquilonalis Goubin, 1965, 15, BAPal 3079 a M30/1, 16, BAPal 3079 a J32/3; 17, Klausipollenites devolvens (Leschik, 1955) Clarke, 1965, BAPal 3068 c V35/4; 18, Cuneatisporites radialis Leschik, 1955, BAPal 3079 d V51/1; 19, Ashmoripollis reducta Helby et al., 1987, BAPal 3074 b U47/1; 20, 24, Klausipollenites gouldii dunay and Fisher, 1979, 20, BAPal 3073 h S40/3, 24, BAPal 3073 h N48/4; 21, Cedripites pannellai Jain, 1968, BAPal 3074 b N35/2; 22, Phrixipollenites infrulus Haskell, 1968, BAPal 3079 d O34/1; 23, Indusiisporites parvisaccatus (de Jersey, 1959) de Jersey, 1963, BAPal 3079 d L42/2. Scale bar= 20 μm.
… 
1, Minutosaccus acutus Mädler, 1964, BAPal 3074 c ; 2, Minutosaccus sp. cf. M. schizeatus Mädler, 1964, BAPal 3074 b T52/2; 3, Minutosaccus crenulatus dolby in dolby and Balme, 1976, BAPal 3079 m J43/1; 4, Minutosaccus potoniei Mädler, 1964, BAPal 3079 m X42/1; 5, Scheuringipollenites barakarensis (Tiwari, 1964) Tiwari, 1973, BAPal 3073 h N42/1; 6, Scheuringipollenites ovatus (Balme & Hennelly, 1955) Foster, 1975, BAPal 3075 k O33/1; 7, Scheuringipollenites maximus (Hart, 1960) Tiwari, 1973, BAPal 3073 h C49/2; 8, Pinuspollenites thoracatus Balme, 1970, BAPal 3075 k B40/4; 9, Platysaccus niger Mädler, 1964, BAPal 3079 m Y47/2; 10, Platysaccus olivae Ottone, 1992 in Ottone et al., 1992, BAPal 3073 h W40/2; 11, Cordaitina minor (Pautsch, 1971) Pautsch, 1973, BAPal 3074 c F39/2; 12, Platysaccus rhombicus Ottone, 2006 in Ottone and Mancuso, 2006, BAPal 3079 d N29/3; 13, Platysaccus sp. cf. P. trumpii Ottone, 1989, BAPal 3079 a F36/4; 14, Protodiploxypinus gracilis Scheuring, 1970, BAPal 3068 c F43/1; 15, 18, Parcisporites tenuis Leschik, 1955, 15, BAPal 3079 d V50/4, polar view, 18, BAPal 3079 d M50/1, equatorial view; 16, Pteruchipollenites gondwanensis (Jain, 1968) Ottone and García, 1991, BAPal 3075 n K26/4; 17, Pteruchipollenites gracilis (Segroves, 1969) Foster, 1979, BAPal 3079 d P45/4; 19–21, Samaropollenites speciosus Goubin, 1965, 19, BAPal 3079 a J44/4, 20, BAPal 3079 a G45/4; 21, BAPal 3079 m W32/3; 22, Vitreisporites microsaccus de Jersey, 1964, BAPal 3079 d V49/2; 23, Vitreisporites signatus Leschik, 1955, BAPal 3067 a K30/1; 24, Vitreisporites subtilis (de Jersey, 1959) de Jersey, 1962, BAPal 3079 d Q43/4; 25, Vitreisporites contectus (de Jersey, 1959) de Jersey, 1962, BAPal 3075 k M30/2; 26, Sulcosaccispora alaticonformis (Maljavkina, 1949) de Jersey, 1968, BAPal 3079 d U47/2. Scale bar= 20 μm.
… 
1, Limitisporites rectus Leschik, 1956, BAPal 3079 d P51/2; 2, Triadispora crassa Klaus, 1964, BAPal 3067 a R49/1; 3, Triadispora dockumensis dunay and Fisher, 1979, BAPal 3079 d T42/1; 4, Triadispora epigona Klaus, 1964, BAPal 3075 k P48/4; 5, Triadispora falcata Klaus, 1964, BAPal 3075 k R29/4; 6, Triadispora staplini Klaus, 1964, BAPal 3074 b W47/4; 7, Angustisulcites gorpii Visscher, 1966, BAPal 3068 c T33/2; 8, cf. Duplicisporites granulatus (Leschik, 1955) Scheuring, 1970, BAPal 3079 a X41/1; 9, Hamiapollenites insolitus (Bharadwaj & Salujha, 1964) Balme, 1970, BAPal 3068 c C33/4; 10, Lueckisporites sp., BAPal 3079 m U33/4; 11, Protohaploxypinus goraiensis (Potonié & Lele, 1961) Hart, 1964, BAPal 3067 a H33/2; 12, Portalites rigidus Zavattieri et al., 2020, BAPal 3075 n d41/2; 13, Cladaitina sp., BAPal 3079 d L37/2; 14, Crackipollenites polygonalis Gutiérrez and Zavattieri, 2020, BAPal 3075 k d38/4; 15, Ovoidites spriggii (Cookson & dettmann, 1959) Zippi, 1998, BAPal 3079 d O37/1; 16, Variapollenites rhombicus Ottone in Ottone et al., 1992 emend. Ottone in Ottone et al., 2005, BAPal 3079 m R36/1; 17, Illinites chitonoides Klaus, 1964, BAPal 3073 h Q50/2; 18, Illinites kosankei Klaus, 1964, BAPal 3073 h N50/2; 19, Variapollenites curviplicatus Ottone in Ottone et al., 1992 emend. Ottone in Ottone et al., 2005, BAPal 3073 h V48/1; 20, Ovalipollis notabilis Scheuring, 1970, BAPal 3079 m Q39/4; 21, Staurosaccites quadrifidus dolby in dolby and Balme, 1976, BAPal 3073 h T37/4; 22, Variapollenites trisulcus Ottone in Ottone et al., 1992 emend. Ottone in Ottone et al., 2005, BAPal 3079 d O48/3. Scale bar= 20 μm.
… 
Content may be subject to copyright.
NEW PALYNOLOGICAL DATA OF THE
CERRO DE LAS CABRAS FORMATION
(MIDDLE TRIASSIC) AT ITS TYPE
LOCALITY, MENDOZA, ARGENTINA.
BIOSTRATIGRAPHIC AND
PHYTOGEOGRAPHIC IMPLICATIONS
Sección Paleopali nología, Área Paleontolog ía, Museo Argentin o de Ciencias Natur ales “Bernardino Rivadavi a”, CONICET, Av. Án gel Gallardo 470, C 1405DJR Ciudad
Autónoma de Buenos Aire s, Argentina.
LAUTARO J. RUFFO REY
Submitted: November 18th, 2020 - Accepted: March 19th, 2021 - Published: June 30th, 2021
To cite this article: Lautaro J. Ruffo Rey (2021). New palynological data of the Cerro de Las Cabras Formation
(Middle Triassic) at its type locality, Mendoza, Rrgentina. Biostratigraphic and phytogeographic implications.
Ameghiniana 58(3), 181–206.
To link to this article: http://dx.doi.org/10.5710/AMGH.19.03.2021.3415
PLEASE SCROLL DOWN FOR ARTICLE
Studied assemblage is ascribed
to a mixed Onslow-Ipswich
palynoflora.
Preservation of a Jurassic flora
is determined by associated
volcanic and geothermal system.
The henricosborniid Nanolophodon
tutuca is newly described from
the Itaboraí Basin.
181
AMGHB2-0002-7014/12$00.00+.50
NEW PALYNOLOGICAL DATA OF THE CERRO DE LAS CABRAS
FORMATION (MIDDLE TRIASSIC) AT ITS TYPE LOCALITY, MENDOZA,
ARGENTINA. BIOSTRATIGRAPHIC AND PHYTOGEOGRAPHIC
IMPLICATIONS
LAUTARO J. RUFFO REY
Sección Pa leopalinología, Área Paleontología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, CONICET, A v. Ángel Gallardo 470, C 1405DJR Ciudad
Autónoma de Buenos Aire s, Argentina. ljrufforey@gmail.com
Abstract. This palynological study presents a systematic update of the Cerro de Las Cabras Formation at its type section. Thirty-three
genera and 81 species of palynomorphs are incorporated, including forms recorded for the first time in the Triassic of Argentina. Additionally,
53 forms of palynomorphs were synonymized with new or already known species of the unit from the taxonomic revision of previously
published material. Four new combinations were proposed: Secarisporites argenteiformis, S. lobatoverrucosus,S. verrucosus and S. volkheimerii.
The palynoflora is dominated by species of the Alisporites/Falcisporites, the Cycadopites/Monosulcites, the Secarisporites/Leptolepidites, and
the Densoisporites/Lundbladispora complexes. The locally common presence of Illinites (~14%), cf. Rimaesporites (~4%), Minutosaccus (~2.7%),
Staurosaccites (~2.3%), Protodiploxypinus (~2%), Angustisulcites (~1.7%), and Brachysaccus (~1.7%) is noteworthy. The Permian taxa Cladaitina
sp., Limitisporites rectus, Lueckisporites sp., Platysaccus sp. cf. P.trumpii, Protohaploxypinus goraiensis, Punctatisporites gretensis, and
Retusotriletes sp. cf. R.nigritellus are interpreted to occur in situ. The common presence of typical north-central European species such as
Illinites chitonoides and Illinites kosankei, along with the co-occurrences of Densoisporites playfordii, Angustisulcites gorpii, Ovalipollis notabilis,
Samaropollenites speciosus, and Staurosaccites quadrifidus, enable the constraining of the age of the palynoflora to the late Anisian–early
Ladinian. On the other hand, the present study reveals a greater number of species shared with the Northern Hemisphere and low-mid
latitudes of Gondwana, including typical Onslow elements such as cf. Rimaesporites aquilonalis, Samaropollenites speciosus, Staurosaccites
quadrifidus, and Minutosaccus crenulatus, which allow us to ascribe the studied assemblage to a mixed Onslow-Ipswich palynoflora.
Key words. Palynology. Systematic. Palynostratigraphy. Phytogeography. Cuyana Basin.
Resumen. NUEVOS DATOS PALINOLÓGICOS DE LA FORMACIÓN CERRO DE LAS CABRAS (TRIÁSICO MEDIO) EN SU LOCALIDAD TIPO,
MENDOZA, ARGENTINA. IMPLICANCIAS BIOESTRATIGRÁFICAS Y FITOGEOGRÁFICAS. En este estudio palinológico se presenta una
actualización sistemática de la Formación Cerro de las Cabras en su localidad tipo. Se incorporan 33 géneros y 81 especies de palinomorfos,
incluyendo formas reportadas por primera vez en el Triásico argentino. Asimismo, se llevó a cabo una revisión taxonómica del material
publicado e ilustrado con anterioridad, lo que dio como resultado un total de 53 especímenes sinonimizados con especies nuevas o ya
conocidas para la unidad. Cuatro nuevas combinaciones fueron propuestas: Secarisporites argenteiformis, S. lobatoverrucosus,S. verrucosus,
S. volkheimerii. La palinoflora está dominada por especies de los complejos Alisporites/Falcisporites, Cycadopites/Monosulcites,
Secarisporites/Leptolepidites y Densoisporites/Lundbladispora. Cabe destacar la presencia de Illinites (~14%), cf. Rimaesporites (~4%),
Minutosaccus (~2.7%), Staurosaccites (~2.3%), Protodiploxypinus (~2%), Angustisulcites (~1.7%), y Brachysaccus (~1.7%). La existencia de taxones
pérmicos (Cladaitina sp., Limitisporites rectus, Lueckisporites sp., Platysaccus sp. cf. P. trumpii, Protohaploxypinus goraiensis, Punctatisporites
gretensis, Retusotriletes sp. cf. R. nigritellus) es interpretada como in situ. La presencia común de especies típicas del centro-norte de Europa
como Illinites chitonoides e Illinites kosankei, junto con la co-ocurrencia de Densoisporites playfordii, Angustisulcites gorpii, Ovalipollis notabilis,
Samaropollenites speciosus y Staurosaccites quadrifidus, permite restringir la edad de la palinoflora al Anisiano tardío–Ladiniano temprano. Por
otro lado, se observa un mayor número de especies compartidas con el Hemisferio Norte y latitudes medias-bajas de Gondwana, incluyendo
elementos característicos de Onslow: cf. Rimaesporites aquilonalis, Samaropollenites speciosus, Staurosaccites quadrifidus, Minutosaccus
crenulatus, lo que permite relacionar a las palinofloras estudiadas con las de la subprovincia de Onslow.
Palabras clave. Palinología. Sistemática. Palinoestratigrafía. Fitogeografía. Cuenca Cuyana.
THE MIDDLE TRIASIC is a key time interval in the evolution of
life, as it represents a moment of climatic amelioration and
the full recovery of complex ecological communities follow-
ing the PermianTriassic extinction event (Preto et al., 2010;
Chen & Benton, 2012; Benton & Newell, 2014; Miller &
Baranyi, 2019). In the terrestrial environment, this time-
interval witnesses the resurgence of conifer forests and peat-
forming wetlands (Retallack et al., 1996; Looy et al., 1999;
AMEGHINIANA - 2021 - Volume 58 (3): 181–206 ARTICLES
ISSN 0002-7014
Hermann et al., 2011), and the diversification of the Dicroidium
flora in Gondwana (McLoughlin et al., 1997; Spalletti et al.,
1999; Artabe et al., 2001; Kerp et al., 2006; Peyrot et al.,
2019a). However, the Middle Triassic palynological record
of Southwestern Gondwana remains under-studied while
the biostratigraphy of the Triassic is poorly constrained in
Argentina and lacks available palynozonation schemes
(Nowak et al., 2018). In such a scenario, the palynoflora of
the Cerro de Las Cabras Formation is really important as it
holds wealth and diversity of well-preserved palynomorphs
representative of the initial stages of the Cuyana Basin in-
fill and the Middle Triassic of southwestern Gondwana.
The palynoflora of the Cerro de Las Cabras Formation is
composed of an abundant association of palynomorphs that
includes a mixed content of gymnosperm pollen grains,
spores derived from diverse plant communities including
ferns and allied, and a lesser proportion of freshwater algae
and fungi. The first palynological data from this unit was
produced by Zavattieri (1990a, 1990b, 1990c, 1991a,
1991b) from its type locality (Potrerillos area). Zavattieri
(1990a, 1990b) studied diverse palynological associations
of trilete and monolete spores of the unit while Zavattieri
(1991a, 1990b) documented the association of bisaccate
and colpate pollen grains abundantly represented in this
palynoflora along with striate, monosaccate, polysaccate,
and plicate forms, as well as algal remains. Zavattieri
(1990c) performed a palynostratigraphical and paleoenvi-
ronmental analysis of the unit at its type locality based on
the stratigraphic ranges and paleoecological preferences of
the palynotaxa represented in the assemblages.
This contribution presents new palynological data from
the Cerro de Las Cabras Formation by the identification of
genera and species not previously recorded in the unit. This
information includes species reported for the first time in
the Triassic of Argentina and an updated taxonomic list of
the taxa recorded in the unit. The age of the palynoflora is
reviewed together with a new phytogeographic interpreta-
tion derived from a careful analysis of the distribution of the
newly recorded species.
Institutional abbreviations. BAPal, Palynological Collection
of the Museo Argentino de Ciencias Naturales “Bernardino
Rivadavia”; CCT-CONICET, Centro Científico Tecnológico,
Consejo Nacional de Investigaciones Científicas y Técnicas
de Argentina, Mendoza, Argentina; IANIGLA, Instituto
Argentino de Nivología, Glaciología y Ciencias Ambientales,
Mendoza, Argentina; MACN, Museo Argentino de Ciencias
Naturales "Bernardino Rivadavia", Ciudad Autónoma de
Buenos Aires, Argentina.
Geological abbreviations. CdLC, Cerro de Las Cabras; Fm.,
Formation; RM, Río Mendoza.
GEOLOGICAL SETTING
The Cuyana Basin, which extends over an area of more
than 60,000 Km2in an NNW–SSE elongate trough that en-
compasses the Provinces of Mendoza, San Juan, and San
Luis (Fig. 1.1–2), is the largest Triassic rift basin of central-
western Argentina. It corresponds to a passive continental
rift composed of several narrow asymmetric half-grabens
settled over a Precambrian/Paleozoic crystalline basement
containing up to 3,700 meters of continental rocks domi-
nated by alluvial, fluvial, and lacustrine sediments interbed-
ded with volcanic tuffs (Ramos & Kay, 1991; Spalletti, 1999;
Barredo, 2004, 2012; Barredo et al., 2017).
In detail, the Cuyana Basin is subdivided into six sub-
basins: Cacheuta, Las Peñas-Santa Clara, Rincón Blanco,
Cerro Puntudo, General Alvear, Ñacuñan, and Beazley
(Barredo, 2012; Barredo et al., 2017). The Uspallata Group is
located in the Cacheuta sub-basin on the central-western
side of the Cuyana Basin (Fig. 1.2), it includes the formations
of Río Mendoza, Cerro de Las Cabras, Potrerillos, Cacheuta
and Río Blanco, and it comprises a continental sequence
representing the initial infilling of the Cuyana Basin during
the Middle to Late Triassic (Stipanicic & Marsicano, 2002;
Barredo, 2012). This Triassic succession is commonly inte-
grated by fluvial and lacustrine siliciclastic deposits interca-
lated with pyroclastic rocks associated with the rift stage
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
182
Figure 1. 1, Location map of the Potrerillos area in the Province of Mendoza (Argentina). 2, Generalized reconstruction of the Cuyana Basin of
central-western Argentina, showing the position (black arrow) of the Cacheuta sub-basin (modified from Barredo, 2012). 3, Geological map and
sedimentological profile (modified from Zavattieri, 1991a) of the studied type section (star) in its type locality (Potrerillos), situated 50 km
southwest from Mendoza City: CdLC, Cerro de Las Cabras; RM, Río Mendoza.
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
183
that followed the volcanism of the Choiyoi Group (Spalletti
et al., 2008).
The stratigraphic framework and historical background
of the Cerro de Las Cabras Formation (Uspallata Group) were
reviewed in great detail by Cariglino et al. (2016). This unit is
widely distributed throughout the Province of Mendoza as
outcrops in several localities, including Potrerillos, Cerro
Tundunqueral, Pampa Fría, Cerro Melocotón, Estancia Casa
de Piedra and Las Higueras (Cariglino et al., 2016). The type
section crops out in the North-Western flank of Cerro Bayo
in the Potrerillos area, which is located in the Potrerillos
locality of the Cuyana Basin (Fig. 1.3).
In the type locality, the Cerro de Las Cabras Formation
comprises a 190 m thick sedimentary succession (Spalletti
et al., 2008). The lower contact of this unit overlays in
conformity with the red fanglomerates of the Río Mendoza
Formation, which are composed of tabular and lenticular
deposits of conglomerates and agglomerates of volcani-
clastic origin. The Cerro de Las Cabras Formation is com-
posed of a lower part dominated by mud-rich deposits
intercalated with conglomerates, pebbly sandstones, and
algal limestones with conchostracans, a middle part com-
posed mainly of sandstones, tuffs and mudstones, and an
upper part mostly integrated by multicoloured mudstones,
tuffs and black shales with plant remains (Borrello, 1942;
Spalletti et al., 2008; Cariglino et al., 2016). The limit be-
tween both units is marked where mudstones and evap-
orites begin to predominate over the coarser sediments of
the underlying formation. However, deposits close to the
boundary may be laterally intertwined and this characteris-
tic becomes more evident towards the basin depocenter
(Stipanicic & Marsicano, 2002). Both units represent the
same depositional cycle during the evolution of the Cuyana
Basin (Synrift I, Ávila et al., 2006). The upper limit of the
Cerro de las Cabras unit is topped by the Potrerillos Forma-
tion, but its contact is not clearly discernible due to tectonic
disturbance, which results in it being considered a pseudo-
conformity. However, subsurface studies suggest a typical
angular to erosional unconformity between both units (Sti-
panicic & Marsicano, 2002).
Age and biostratigraphy of Cerro de Las Cabras
Formation
The paleontological content of the Cerro de Las Cabras
Formation is rich and diverse, and it includes vertebrates,
invertebrates and plants (see Gouiric-Cavalli et al., 2017, and
references therein). The vertebrate record is represented by
body fossils of therapsid tetrapods and fishes. Abdala et al.
(2009) studied the tetrapod fossil faunas of South America
and correlated these assemblages with the eastern African
faunas of therapsids, thus suggesting a Middle Triassic
(latest Anisian) age for the unit. Fossil fishes, conversely,
are less indicative (López-Arbarello et al., 2010); never-
theless, some species (Calaichthys tehul) have been found to
be coeval to Anisian fish faunas of Africa and Australia
(Gouiric-Cavalli et al., 2017).
The invertebrate fossil record is abundantly represented
by conchostracan Spinicaudatan crustaceans. Recently, Tassi
et al. (2015) recognized a local association of conchostra-
cans (Estheriellites zavattieriae-Euestheria martinsnetoi) in
the type section of the unit and assigned it to the late
Middle Triassic (late Anisian–late Ladinian) on the basis of
previous lithostratigraphical, paleontological and chrono-
logical data.
The first biozonation scheme for the Triassic floras of
Argentina was delineated by Spalletti et al. (1999). From a
multivariate analysis, they recognized three floristic events:
a) appearance of mesophytic elements and coexistence of
Palaeozoic and Mesozoic groups (Barrealian Stage); b) max-
imum diversification of the Dicroidium Flora (Cortaderitian
Stage); c) decline of the Dicroidium Flora and replacement by
morphotypes with strong Jurassic affinity (Florian Stage)
(Morel et al., 2003). Then, Morel et al. (2003) divided the
Barrelian Stage into two biozones: the “Pleuromeia flora”
and the CSD Biozone (Dictyophyllum castellanosii-Johnstonia
stelzneriana-Saportaea dichotoma). The flora of the Cerro de
Las Cabras Formation is represented by scarce remains and
low-diversity assemblages; yet, according to the current
biostratigraphic schemes, it belongs to the CSD Biozone,
which corresponds to the early to late Middle Triassic
(Cariglino et al., 2016).
The palynological assemblages were more informative
for age determination as previous studies recorded several
pollen grain genera related to the late Middle Triassic
(late Anisian–Ladinian) palynofloras of Europe (e.g.,
Protohaploxypinus, Striatoabieites, Triadispora,Vesicaspora,
Daughertyspora, Grebespora). More precisely, this age
assignment was supported by the presence of Parillinites
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
184
pauper, Protodiploxypinus americus, P. schizeatus, P. ujhelyi,
Daughertyspora chinleanus, Verrucosisporites thuringiacus,
Densoisporites poatinaensis, Angustisulcites klausii, Triadispora
plicata, Striatoabieites aytugii, S. rugosus, and Densoisporites
nejburgii (see Zavattieri, 1990c, p. 136–138, fig. 10). However,
due to the absence of unequivocal Middle Triassic forms and
the presence of Late Triassic species (e.g., Protodiploxypinus
americus, P. ujhelyi), the palynological content also enables
the interpretation that the upper limit of the unit reaches
the early Carnian (Zavattieri, 1990a, 1990b, 1990c, 1991a,
1991b; Zavattieri & Arcucci, 2007).
On the other hand, radiometric dates determined by
zircon U-Pb SHRIMP from ignimbrites of the basal portion
of the Río Mendoza Formation yielded an age of 243±5 Ma
(Ávila et al., 2006), whereas those obtained from tuff layers
close to the boundary between the Cerro de Las Cabras
and the Potrerillos Formations resulted in an age of
239±4.5 Ma (Spalletti et al., 2008), thus constraining the
Cerro de Las Cabras Formation to the late Anisian–early
Ladinian (Ogg, 2012). Additionally, and based on radiometric
dates and lithostratigraphic correlations, the possibility that
the Choiyoi Group encompassed the latest Permian–Early
Triassic time span or even reached the lowermost Middle
Triassic (see Zavattieri & Arcucci, 2007 and references
therein), thus placing the overlying Río Mendoza and Cerro
de Las Cabras Formations within the Middle Triassic, has
been suggested.
Summarizing, although paleontological content and ra-
diometric dating suggest a Middle Triassic age for the Cerro
de Las Cabras Formation, there is still some disagreement
concerning its age boundaries. Even so, different lines of
evidence coincide in indicating that its lower limit restricts
to the late Anisian.
MATERIALS AND METHODS
The palynological assemblage re-examined herein and
previously studied by Dr. Ana María Zavattieri (Zavattieri,
1990a, 1990b, 1999c, 1991a, 1991b) comes from four-
teen pelitic levels sampled about every 0.3–11.2 meters in
the Quebrada del Puente Creek, located in the North-
Northwestern flank of Cerro Bayo, Potrerillos, situated 50
km Southwest of Mendoza City (Northwestern Mendoza
Province) in Western Argentina. More specifically, the sam-
ples proceed from the grey and greenish laminated to
massive mudstones interbedded with tuff and medium to
coarse-sized sandstones of the Upper Member of the unit
(see Fig. 1.3). Out of the fourteen levels sampled, seven
proved sterile in palynomorphs or contained very poorly
preserved remains (levels 3066, 3069, 3070, 3071, 3072,
3077, 3078), and were accordingly left unstudied.
The samples were processed by Dr. Ana María Zavattieri
at Laboratorio de Paleopalinología, IANIGLA, CCT-CONICET,
using standard palynological acid maceration techniques
(Volkheimer & Melendi, 1976). For further details on sample
processing, see Zavattieri (1990a, p. 108–109).
The slides were re-examined with an Olympus BX-51
light microscope, and photographs were taken with an
adapted Olympus digital camera with 5 megapixels of reso-
lution belonging to Laboratorio de Paleopalinología, MACN,
Buenos Aires. The slides are designated by the abbreviation
BAPal and the numbers 3067, 3068, 3073, 3074, 3075, 3076,
and 3079, and remain stored in the Paleopalinoteca of the
MACN. Specimen locations are referred to with England
Finder coordinates (E.F.co.). For quantitative stratigraphic
studies of the major genera and palynomorph groups, 300
specimens were counted for each level at a ×400 magni-
fication.
RESULTS
Remarks on the composition and diversity
A total of 33 species belonging to 81 genera of spores,
pollen grains, and algal remains were recorded in the pres-
ent study (Figs. 2–5, Table 1). This work updates the study
of the type section of the Cerro de Las Cabras Formation in the
Potrerillos area (Zavattieri, 1990a, 1990b, 1990c, 1991a,
1991b) and includes the genera Ashmoripollis, Cladaitina,
Cordaitina,Limitisporites,Ringosporites, and Pinuspollenites,
which were recorded for the first time in the Triassic of Argentina
along with other 23 species (Table 1).
As of the systematic revision of the published material,
around 53 specimens of palynomorphs were synonymized
with new or already known taxa from the unit (Table 2).
See Supplementary Online Information 1 for further de-
tails.
Representation of palynomorphs
The total relative abundance and stratigraphic distribu-
tion of the main genera and palynomorph groups repre-
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
185
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
186
sented in the studied section are summarized in Figures 6
8. The palynoflora from the type section of the Cerro de Las
Cabras Formation is dominated (~70.5%) by pollen grains of
several groups, mostly non-striate bisaccate (~47%) and
monosulcate (~18%) pollen, while striate bisaccates (~4.4%),
inaperturate (~1.8%) and polyplicate pollen (~1.8%) generally
occur in very low proportions but in higher numbers than
monoporate (~1.2%) and monosaccate (~0.8%) pollen. The
spore assemblages are dominated (~20.7%) by trilete spores
mainly represented by cingulate forms (14%) and then fol-
lowed in much lower percentages by laevigate (4.2%) and
apiculate (2.5%) spores. Monolete (0.71%) spores and spore
tetrads-dyads (0.86%) comprise subordinated elements of
the total assemblage, and the rest is constituted by algal
(2.3%) and fungal (0.76%) remains.
The occurrences of Illinites spp. (0–13.7%),
Scheuringipollenites spp. (0–10.7%), cf. Rimaesporites
aquilonalis (0–4%), Pityosporites spp. (0–3.7%),
Pinuspollenites spp. (0–3%), Minutosaccus spp. (0.3–2.7%),
Staurosaccites quadrifidus (0–2.3%), Protodiploxypinus spp.
(0–2%), Angustisulcites spp. (0–1.7%), and Brachysaccus
neomundanus (0–1.7%) should be duly noted. Illinites spp.,
Scheuringipollenites spp., Staurosaccites spp., and
Angustisulcites spp. reach their peak abundance only at level
3073, while Pityosporites spp. and Pinuspollenites spp. do
so at level 3076.
From the taxonomic and morphological revision of
cingulate-cavate spores previously assigned to the
Leptolepidites genus, a new taxonomic assignment has been
resolved for such palynotaxa, so four new combinations
were proposed: Secarisporites argenteiformis, Secarisporites
lobatoverrucosus, Secarisporites verrucosus and Secarisporites
volkheimerii (see Appendix).
DISCUSSION
Remarks on the presence of palynomorphs taxa
The presences of Ashmoripollis reducta, Ringosporites sp.
cf. R. ringus, Cordaitina minor and Pinuspollenites thoracatus
stand out for presenting somewhat restricted geographic
and/or temporal distributions. Ashmoripollis reducta has so
far been recorded in the Triassic of the South-Eastern flank
of Gondwana (see White, 2006; Peng et al., 2018), while
Ringosporites ringus, only from the Early Triassic of India
(Tiwari & Rana, 1981). Cordaitina minor, on the other hand, is
restricted to the Triassic of the Northern Hemisphere (see
White, 2006). Conversely, Pinuspollenites thoracatus had al-
ready been documented from Lopingian strata in Central–
Western Argentina (Zavattieri et al., 2018); yet, in the
Triassic, it was only reported from mid latitudes of Eastern
Gondwana. Therefore, the present contribution constitutes
their first record in the South–Western margin of Pangea.
The presences of Cladaitina sp., Limitisporites rectus,
Lueckisporites sp., Platysaccus sp. cf. P. trumpii, Protohaploxypinus
goraiensis, Punctatisporites gretensis, and Retusotriletes sp. cf.
R. nigritellus are also to be noted, as these species are common
Permian elements that are thought to disappear around the
Permian–Triassic boundary (see White, 2006; Raine et al.,
2011). Given that they are also rare components in the studied
assemblage (Batten, 1991), their occurrence in the Middle
Triassic of Argentina could be explained by means of the
recycling of older deposits. However, this seems unlikely
because these specimens do not show clear signs of
contrasting preservation such as differing thermal alteration
(Batten, 1991).
Kürschner and Herngreen (2010) noticed that some
pollen grain forms that entered the European Triassic paly-
nological record during the Anisian had been recorded from
the Permian but also argued that it is uncertain whether
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
187
Figure 2. 1, Dictyophyllidites sp. cf. D. harrisi Couper, 1953, BAPal 3075 n D35/2; 2, Retusotriletes sp. cf. R. nigritellus (Luber, 1955) Foster, 1979,
BAPal 3075 n O23/1; 3, Punctatisporites gretensis Balme and Hennelly, 1956, BAPal 3073 h S32/3; 4, Anapiculatisporites spiniger (Leschik,
1955) Reinhardt, 1962, BAPal 3067 f H33/2; 5, Apiculatisporis parvispinosus Leschik, 1955, BAPal 3073 b R30/1; 6, Ringosporites sp. cf. R.
ringus Tiwari and Rana, 1981, BAPal 3067 c T31/3; 7, Converrucosisporites spp., BAPal 3074 b F56/1; 8, Lophotriletes sp. cf. L. novicus Singh,
1964, BAPal 3076 f C37/3; 9, Osmundacidites wellmanii Couper, 1953, BAPal 3074 b B37/4; 10, Secarisporites triangularis Gutiérrez et al., 2017,
BAPal 3079 a U46/2; 11–12, Secarisporites argenteiformis (Bolchovitina, 1953) nov. comb., 11, BAPal 3074 b H41/4, 12, BAPal 3074 b S43/4;
13, Secarisporites bullatus (Balme & Hennelly, 1956) Foster 1979, BAPal 3075 k G34/1; 14, Secarisporites imperialis (Jansonius, 1962) Gutiérrez
et al., 2017, BAPal 3074 b K40/2; 15, Secarisporites lacunatus (Tiwari, 1965) Backhouse, 1988, BAPal 3074 b L43/4; 16–17, Secarisporites
lobatoverrucosus (Hiltmann, 1967) nov. comb., 16, BAPal 3068 e G30/2, 17, BAPal 3079 m F42/1; 18–19, Secarisporites verrucosus (de Jersey,
1964) nov. comb., 18, BAPal 3074 b M50/1, 19, BAPal 3074 b R40/3; 20–21, Secarisporites volkheimerii (Zavattieri, 1986) nov. comb., 20,
BAPal 3074 b J36/1, 21, BAPal 3074 b K54/3. Scale bar= 20 m.
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
188
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
189
these morphological types reappeared independently in
the Middle Triassic, or whether they evolved from Permian
taxa that migrated into the European realm. Recently,
Hochuli et al. (2020) documented the presence of charac-
teristic late Paleozoic genera (Lycospora, Cladaitina, Florinites)
in the Middle Triassic of central Europe. These taxa represent
groups of arborescent lycopsids (Lepidodendron/Lepidophloios)
and Cordaites (Ruffloriaceae) (Balme, 1995; Bek, 2012; Za-
vattieri & Gutiérrez, 2012) that are considered to have gone
extinct at the end of the Paleozoic; thus, their presence in
situ is thought to indicate these lineages survived until the
Middle Triassic (Hochuli et al., 2020).
More precisely, Cladaitina is typically attributed to
Cordaitales (Ruffloriaceae), Limitisporites and Lueckisporites to
Voltziales (Majonicaceae, Ulmanniaceae), and Cordaitina to
both Cordaitales and Voltziales (Ruffloriaceae, Emporiaceae)
conifers (Balme, 1995; Zavattieri & Gutiérrez, 2012; Gibson
et al., 2020). However, the Triassic Cordaitina minor is
morphologically distinct from other Paleozoic species of the
genus and, consequently, cannot be attributed to these
groups but rather to an unknown voltzialean conifer
(Reichgelt et al., 2013).
Except for the family Ulmanniaceae, which can be traced
until the Anisian (Farjon, 2018), there are currently no reli-
able records of Cordaitales, Emporiaceae and Majonicaceae
in Triassic strata (Archangelsky, 1996; Taylor et al., 2009;
Farjon, 2018). Therefore, attempting to establish their pres-
ence in the studied unit based on palynological evidence
would be highly speculative. Even so, it is most likely that
these genera were produced by voltzialean conifers. In any
case, the macrofloral record from the Cerro de Las Cabras
Formation already contains Permian relicts such as Saportaea
dichotoma (Cariglino et al., 2016); thus, the presence of late
Paleozoic palynomorphs is to be expected.
Remarks on the stratigraphic distribution of paly-
nomorph groups
Spores represent autochthonous elements of a vegeta-
tion of hygrophyle conditions that grew in a wetland envi-
ronment while pollen grains mostly represent a meso-
xerophytic vegetation of gymnosperms that developed in
the surrounding and drier area (Zavattieri, 1990c). The
relative frequencies and stratigraphic distributions of the
main suprageneric palynomorph groups are quite variable
(Figs. 7–8) and suggest highly fluctuating environmental
conditions throughout the section probably related with
successive episodes of expansion and contraction of the
water body where spore-producing plants lived.
Age and correlation
The present study recorded several species with
stratigraphic value. The occurrence of Angustisulcites gorpii,
Illinites chitonoides, Illinites kosankei,Staurosaccites
quadrifidus, Ovalipollis notabilis, Samaropollenites speciosus,
Densoisporites playfordii, Protodiploxypinus gracilis, Leschikisporis
aduncus,Minutosaccus crenulatus, Anapiculatisporites spiniger,
Apiculatisporis parvispinosus, Ashmoripollis reducta,
Densoisporites psilatus, Parcisporites tenuis, Klausipollenites
gouldii, and Triadispora dockumensis is considered significant
because most of these taxa are restricted to the Middle–
Late Triassic of Europe and adjacent Tethyan regions, and
have a wide geographical distribution which enables
intercontinental correlations (see White, 2006; Raine et al.,
2011) (Fig. 9).
Staurosaccites quadrifidus is a characteristic element of
Circum-Tethyan palynofloras. The stratigraphic range of this
species in the Triassic spans the Anisian–Norian interval in
the region of Tibet and North-Central Europe (Kürschner
& Herngreen, 2010; Vigran et al., 2014; Peng et al., 2018;
Figure 3. 1–2, Densoisporites complicatus Balme, 1970, 1, BAPal 3074 b D44/2, 2, BAPal 3074 b E40/1; 3, Densoisporites playfordii Balme,
1963, BAPal 3079 d K48/2; 4, 9, Densoisporites psilatus (de Jersey, 1964) Raine and de Jersey in Raine et al., 1988, 4, BAPal 3074 b F35/2, 9,
BAPal 3074 b Q53/2; 5, Lundbladispora punctata Césari and Colombi, 2016, BAPal 3068 c H41/2; 6–7, Lundbladispora verrucosa Gutiérrez et
al., 2017, 6, BAPal 3074 b M55/1, 7, BAPal 3074 b D39/2; 8, Leschikisporis aduncus (Leschik, 1955) Potonié, 1958, BAPal 3076 ll O41/3; 10,
Alisporites angustus (Ouyang & Norris, 1999) Zavattieri et al. 2018, BAPal 3075 n N38/2; 11, Alisporites aequalis Mädler, 1964, BAPal 3073 h
V38/2; 12, Alisporites lowoodensis de Jersey, 1963, BAPal 3079 d E47/1; 13, Klausipollenites decipiens Jansonius, 1962, BAPal 3075 k C40/4;
14, Alisporites opii Daugherty, 1941, BAPal 3079 m J30/4; 15, 16, cf. Rimaesporites aquilonalis Goubin, 1965, 15, BAPal 3079 a M30/1, 16,
BAPal 3079 a J32/3; 17, Klausipollenites devolvens (Leschik, 1955) Clarke, 1965, BAPal 3068 c V35/4; 18, Cuneatisporites radialis Leschik, 1955,
BAPal 3079 d V51/1; 19, Ashmoripollis reducta Helby et al., 1987, BAPal 3074 b U47/1; 20, 24, Klausipollenites gouldii Dunay and Fisher, 1979,
20, BAPal 3073 h S40/3, 24, BAPal 3073 h N48/4; 21, Cedripites pannellai Jain, 1968, BAPal 3074 b N35/2; 22, Phrixipollenites infrulus Haskell,
1968, BAPal 3079 d O34/1; 23, Indusiisporites parvisaccatus (de Jersey, 1959) de Jersey, 1963, BAPal 3079 d L42/2. Scale bar= 20 m.
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
190
Paterson & Mangerud, 2019), and the late Anisian–early
Carnian in Australia (Dolby & Balme, 1976; Helby et al.,
1987). Moreover, it constitutes a common element in the
Ladinian of Western Australia (Helby et al., 1987) and may
become abundant in the Ladinian–early Carnian of the Arctic
(Vigran et al., 2014).
Angustisulcites gorpii and Densoisporites playfordii are
typical Early Triassic species of Central-Northern Europe
with last occurrences in the late Anisian (Vigran et al., 2014;
Mouritzen et al., 2018; Paterson & Mangerud, 2019; Hochuli
et al., 2020). Other important elements of European Middle
Triassic palynofloras are Illinites chitonoides and I. kosankei.
These species, first recorded in the late Spathian (uppermost
Early Triassic) of central-northwestern Europe (Hochuli
& Vigran, 2010; Kürschner & Herngreen, 2010), became
common to locally abundant in the late Anisian (Pelsonian
Illyrian stages) and lower part of the Ladinian in the Arctic
(Hochuli & Vigran, 2010; Vigran et al., 2014; Mouritzen et al.,
2018), where their stratigraphic range extended up to the
late Carnian (Goldsmith et al., 1995; Hochuli & Vigran, 2010;
Kürschner & Herngreen, 2010; Vigran et al., 2014; Mouritzen
et al., 2018). The presence of Ovalipollis notabilis is also re-
markable as its oldest appearance was in the latest Anisian
(Illyrian substage) of the Southern Alps and in association
with ammonites of the lower–middle reitzi ammonoid sub-
zone (Dal Corso et al., 2015).
Samaropollenites speciosus, Ashmoripollis reducta and
Minutosaccus crenulatus are conspicuous elements of Western
Australia Late Triassic palynofloras (Dolby & Balme, 1976;
Helby et al., 1987). The stratigraphic range of S. speciosus
spans the early Ladinian–Rhaetian interval although the
first occurrences of A. reducta and M. crenulatus were tradi-
tionally reported from the Carnian of Western Australia
(Dolby & Balme, 1976; Helby et al., 1987; Vajda & McLoughlin,
2007). However, Peng et al. (2018) recently recorded both
species from the lower part of the Staurosaccites quadrifidus
Taxon-range Zone in Tulong (China), which spans the late
Anisian–early Norian interval. Moreover, the presence of
Minutosaccus crenulatus (along with Enzonalasporites vigens)
in the Triassic of Timor-Leste was interpreted to indicate
an age not older than Ladinian (Peyrot et al., 2019b). Ac-
cordingly, their first occurrences are tentatively placed
within the Ladinian stage.
Protodiploxypinus gracilis, Anapiculatisporites spiniger,
Apiculatisporis parvispinosus, Densoisporites psilatus,
Parcisporites tenuis, and Leschikisporis aduncus are less
indicative as they extend from the early Anisian to the
early Carnian or beyond; nevertheless, they usually
constitute common elements of Middle Triassic Euro-
Asian associations (Leschik, 1955; Raine et al., 1988, 2011;
Vigran et al., 2014; Paterson & Mangerud, 2017, 2019; Peng
et al., 2018). Conversely, K. gouldii and T. documensis were
not previously reported from Middle Triassic beds since
their oldest records are approximately located in the
middle–late Carnian of North America (Dunay & Fisher,
1979; Cornet, 1993).
The known stratigraphic ranges of these species con-
strain the age of the palynoflora to the late Anisian–Carnian
interval (Fig. 9) and thus conform to previous palynostrati-
graphical interpretations. However, the age of the unit
seems to be restricted to the Middle Triassic as radiomet-
ric dating constrains its upper limit to the early Ladinian
(Spalletti et al., 2008). This age assignment is also consis-
tent with the common presence of Illinites in the studied
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
191
Figure 4. 1, Minutosaccus acutus Mädler, 1964, BAPal 3074 c ; 2, Minutosaccus sp. cf. M. schizeatus Mädler, 1964, BAPal 3074 b T52/2; 3,
Minutosaccus crenulatus Dolby in Dolby and Balme, 1976, BAPal 3079 m J43/1; 4, Minutosaccus potoniei Mädler, 1964, BAPal 3079 m X42/1;
5, Scheuringipollenites barakarensis (Tiwari, 1964) Tiwari, 1973, BAPal 3073 h N42/1; 6, Scheuringipollenites ovatus (Balme & Hennelly, 1955)
Foster, 1975, BAPal 3075 k O33/1; 7, Scheuringipollenites maximus (Hart, 1960) Tiwari, 1973, BAPal 3073 h C49/2; 8, Pinuspollenites thoracatus
Balme, 1970, BAPal 3075 k B40/4; 9, Platysaccus niger Mädler, 1964, BAPal 3079 m Y47/2; 10, Platysaccus olivae Ottone, 1992 in Ottone et
al., 1992, BAPal 3073 h W40/2; 11, Cordaitina minor (Pautsch, 1971) Pa utsch, 1973, BA Pal 3074 c F39/2; 12, Pla tysaccus rhombicus
Ottone, 2006 in Ottone and Mancuso, 2006, BAPal 3079 d N29/3; 13, Platysaccus sp. cf. P. trumpii Ottone, 1989, BAPal 3079 a F36/4; 14,
Protodiploxypinus gracilis Scheuring, 1970, BAPal 3068 c F43/1; 15, 18, Parcisporites tenuis Leschik, 1955, 15, BAPal 3079 d V50/4, polar view,
18, BAPal 3079 d M50/1, equatorial view; 16, Pteruchipollenites gondwanensis (Jain, 1968) Ottone and García, 1991, BAPal 3075 n K26/4; 17,
Pteruchipollenites gracilis (Segroves, 1969) Foster, 1979, BAPal 3079 d P45/4; 19–21, Samaropollenites speciosus Goubin, 1965, 19, BAPal
3079 a J44/4, 20, BAPal 3079 a G45/4; 21, BAPal 3079 m W32/3; 22, Vitreisporites microsaccus de Jersey, 1964, BAPal 3079 d V49/2; 23,
Vitreisporites signatus Leschik, 1955, BAPal 3067 a K30/1; 24, Vitreisporites subtilis (de Jersey, 1959) de Jersey, 1962, BAPal 3079 d Q43/4; 25,
Vitreisporites contectus (de Jersey, 1959) de Jersey, 1962, BAPal 3075 k M30/2; 26, Sulcosaccispora alaticonformis (Maljavkina, 1949) de Jersey,
1968, BAPal 3079 d U47/2. Scale bar= 20 m.
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
192
association given that the recorded frequency values (~14%)
conform to those documented by Hochuli and Vigran (2010)
in the Barents Sea during the late Anisian–early Ladinian
(10–20%).
Therefore, the common presence of typical species from
central-northern Europe such as Illinites chitonoides and I.
kosankei, together with the co-occurrence of Densoisporites
playfordii, Angustisulcites gorpii, Ovalipollis notabilis,
Samaropollenites speciosus and Staurosaccites quadrifidus,
also supports a late Anisian–early Ladinian age for the type
section of the Cerro de Las Cabras Formation.
Phytogeographical implications
Two southern hemisphere phytogeographical
assemblages had been originally established for the
Middle–Late Triassic of Australia by Dolby and Balme
(1976): the Onslow and Ipswich Microfloras. The Ipswich
Microflora was interpreted to have developed in cool
temperate climates of high latitudes and be characterized
by low diversity assemblages with a dominance of bisaccate
pollen grains of bisaccate pollen attributed to the
Alisporites-Falcisporites complex (Dolby & Balme, 1976;
Foster et al., 1994; Kustatscher et al., 2018; Peyrot et al.,
2019a). On the other hand, the Onslow Microflora is
interpreted to have thrived in warm-humid climates of
middle-low latitudes and be characterized by its higher
taxonomic diversity and a greater number of genera
shared with the Tethyan region, such as Camerosporites,
Aulisporites, Enzonalasporites, Ovalipollis, Samaropollenites,
Infernopollenites, Rimaesporites, Minutosaccus, and
Staurosaccites, which are absent in the Ipswich Microflora
(Dolby & Balme, 1976; Foster et al., 1994; Kustatscher et al.,
2018; Peyrot et al., 2019a).
The Triassic palynological record of Argentina was tra-
ditionally referred to Ispwich microflora based on the
absence of Tethyan species (Zavattieri & Batten, 1996).
However, recent studies conducted by Césari and Colombi
(2013, 2016) in the Ischigualasto Formation (Late Triassic)
revealed, for the first time in Argentina, the existence of
an Onslow microflora by finding typical Tethyan taxa such
as Samaropollenites speciosus, Rimaesporitesaquilonalis,
Enzonalasporites vigens, Patinasporites densus, Vallatisporites
ignacii, Ovalipollis pseudoalatus and Cycadopites stonei.
More recently and by means of a cluster analysis of Raup-
Crick similarity, Pérez Loinaze et al. (2018) recovered the
Ischigualasto and Chañares Formations (Late Triassic) as
transitional palynofloras between Onslow and Ipswich.
The Cerro de Las Cabras Formation was formerly
assigned to the Ipswich subprovince (Zavattieri, 1990c).
However, the present study reveals a greater number of
species shared with the Northern Hemisphere and the
Onslow Microflora: Illinites chitonoides,I. kosankei, cf.
Rimaesporites aquilonalis,Ovalipollis notabilis, Angustisulcites
gorpii, Triadispora dockumensis, Triadispora epigona,
Triadispora staplini, cf. Duplicisporites granulatus, Parcisporites
tenuis, Protodip loxypinus gracilis, Platysaccus niger,
Anapiculatisporites spiniger, Apiculatisporis parvispinosus,
Klausipollenites gouldii, Leschikisporis aduncus, and Cordaitina
minor. Moreover, the following species are typical Onslow-
type elements: cf. Rimaesporites aquilonalis, Samaropollenites
speciosus, Staurosaccites quadrifidus and Minutosaccus
crenulatus. The vast majority of these species are rare
components and occur in very low numbers; however, cf.
Rimaesporites aquilonalis, Staurosaccites quadrifidus and
Minutosaccus/Protodiploxypinus spp. may become relatively
common (see above) and account for a considerable
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
193
Figure 5. 1, Limitisporites rectus Leschik, 1956, BAPal 3079 d P51/2; 2, Triadispora crassa Klaus, 1964, BAPal 3067 a R49/1; 3, Triadispora
dockumensis Dunay and Fisher, 1979, BAPal 3079 d T42/1; 4, Triadispora epigona Klaus, 1964, BAPal 3075 k P48/4; 5, Triadispora falcata
Klaus, 1964, BAPal 3075 k R29/4; 6, Triadispora staplini Klaus, 1964, BAPal 3074 b W47/4; 7, Angustisulcites gorpii Visscher, 1966, BAPal
3068 c T33/2; 8, cf. Duplicisporites granulatus (Leschik, 1955) Scheuring, 1970, BAPal 3079 a X41/1; 9, Hamiapollenites insolitus (Bharadwaj &
Salujha, 1964) Balme, 1970, BAPal 3068 c C33/4; 10, Lueckisporites sp., BAPal 3079 m U33/4; 11, Protohaploxypinus goraiensis (Potonié &
Lele, 1961) Hart, 1964, BAPal 3067 a H33/2; 12, Portalites rigidus Zavattieri et al., 2020, BAPal 3075 n D41/2; 13, Cladaitina sp., BAPal 3079
d L37/2; 14, Crackipollenites polygonalis Gutiérrez and Zavattieri, 2020, BAPal 3075 k D38/4; 15, Ovoidites spriggii (Cookson & Dettmann, 1959)
Zippi, 1998, BAPal 3079 d O37/1; 16, Variapollenites rhombicus Ottone in Ottone et al., 1992 emend. Ottone in Ottone et al., 2005, BAPal 3079
m R36/1; 17, Illinites chitonoides Klaus, 1964, BAPal 3073 h Q50/2; 18, Illinites kosankei Klaus, 1964, BAPal 3073 h N50/2; 19, Variapollenites
curviplicatus Ottone in Ottone et al., 1992 emend. Ottone in Ottone et al., 2005, BAPal 3073 h V48/1; 20, Ovalipollis notabilis Scheuring, 1970,
BAPal 3079 m Q39/4; 21, Staurosaccites quadrifidus Dolby in Dolby and Balme, 1976, BAPal 3073 h T37/4; 22, Variapollenites trisulcus Ottone
in Ottone et al., 1992 emend. Ottone in Ottone et al., 2005, BAPal 3079 d O48/3. Scale bar= 20 m.
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
194
TABLE 1. Distribution of the new species recorded in the Cerro de Las Cabras type section assemblages.
Taxa 3079 3076 3075 3074 3073 3068 3067
Alisporites aequalis*X X
Alisporites angustus*X X X X X X X
Alisporites lowoodensis X X X X X
Alisporites opii X X
Angustisulcites gorpii*X X X
Apiculatisporites parvispinosus*X X X X
Apiculatisporites spiniger X X
Ashmoripollis reducta*X X X X X X
Cedripites pannellai X X X
cf. Duplicisporites granulatus X X
cf. Rimaesporites aquilonalis X X X X X X
Cladaitina sp.*X X
Converrucosisporites spp. X X X X
Cordaitina minor* X X X
Crackipollenites polygonalis X X X X X
Cuneatisporites radialis X X
Densoisporites complicatus X X X
Densoisporites playfordii X X X
Densoisporites psilatus X X X X
Dictyophyllidites sp. cf. D. harrisii X X X
Hamiapollenites insolitus*X
Illinites chitonoides*X X X
Illinites kosankei*X X X
Indusiisporites parvisaccatus X
Klausipollenites decipiens X X X X
Klausipollenites devolvens X X X
Klausipollenites gouldii X X X X
Leschikisporis aduncus*X X X
Limitisporites rectus*X X
Lophotriletes sp. cf. L. novicus*X X X X
Lueckisporites sp. X X X
Lundbladispora punctata XXXXX
Lundbladispora verrucosa X X X X X
Minutosaccus acutus X X X X X
Minutosaccus crenulatus X X X
Minutosaccus potoniei X X X
Minutosaccus sp. cf. M. schizeatus X X X
Osmundacidites wellmanii X
Ovalipollis notabilis*X
Ovoidites spriggii X X X X
Parcisporites tenuis X X X X
Phrixipollenites infrulus X X X X
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
195
TABLE 1. Continuation.
Taxa 3079 3076 3075 3074 3073 3068 3067
Pinuspollenites thoracatus X X X X
Platysaccus niger*X X X
Platysaccus olivae X X X X X
Platysaccus rhombicus X X X
Platysaccus sp. cf. P. trumpii*X X X X
Portalites rigidus X X X X X X
Protodiploxypinus gracilis X X X X
Protohaploxypinus goraiensis*X X X
Pteruchipollenites gondwanensis X X X X X X
Pteruchipollenites gracilis X X X X
Punctatisporites gretensis X X
Retusotriletes sp. cf. R. nigritellus X X
Ringosporites sp. cf. R. ringus*X X
Samaropollenites speciosus X X X
Scheuringipollenites barakarensis*X X X X
Scheuringipollenites maximus X X X X
Scheuringipollenites ovatus X X X X X
Secarisporites argenteaeformis X X X X X
Secarisporites bullatus*X X X
Secarisporites imperialis*X X X
Secarisporites lacunatus X X X X
Secarisporites lobatoverrucosus X X X X X
Secarisporites triangularis*X X X X X
Secarisporites verrucosus X X X
Secarisporites volkheimerii X X X X X
Staurosaccites quadrifidus XXXXX
Sulcosaccispora alaticonformis X X X
Triadispora crassa X X X X X
Triadispora dockumensis X X
Triadispora epigona X X
Triadispora falcata X X X X
Triadispora staplini*X
Variapollenites curviplicatus XXXXXXX
Variapollenites rhombicus X X
Variapollenites trisulcus X X X
Vitreisporites contectus X X
Vitreisporites microsaccus X X X X
Vitreisporites signatus X X
Vitreisporites subtilis X X X X X
* First record in the Argentine Triassic.
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
196
TABLE 2. List of synonymized specimens.
New assignation Previous assignation
Accinctisporites excentricus 1991a Angustisulcites klausii Zavattieri, p. 22, pl. 6, figs. 2
1991a Vesicaspora ovata Zavattieri, p. 4, pl. 2, fig. 2
Accinctisporites sp. cf. A. excentricus 1991a Angustisulcites klausii Zavattieri, p. 22, pl. 6, figs. 1, 3
1991a Sulcatisporites institatus Zavattieri, p. 18, pl. 6, fig. 4
Anapiculatisporites sp. 1990a Anaplanisporites sp. Zavattieri, pl. 4, fig. 10
Angustisulcites gorpii 1991a Accinctisporites excentricus Zavattieri, p. 4, pl. 1, fig. 3
Angustisulcites klausii 1991a Illinites sp. Zavattieri, p. 22, pl. 8, fig. 1
1991a Vesicaspora ovata Zavattieri. Zavattieri, p. 4, pl. 1, fig. 1
1991a Potonieisporites novicus Zavattieri, p. 6, pl. 1, fig. 2
Antulsporites distaverrucosus 1990b Cingulatisporites distaverrucosus Zavattieri, p. 216, pl. 2, fig. 10
Antulsporites sp. 1990b Densosporites sp. Zavattieri, p. 216, pl. 5, figs. 3-7
Apiculatisporis parvispinosus 1990a Scabratisporites sp. Zavattieri, p. 120, pl. 1, figs. 7, 9, pl. 2, figs. 7, 10, 17
Apiculatisporis sp. 1990a Scabratisporites sp. Zavattieri, p. 120, pl. 3, fig. 2
cf. Rimaesporites aquilonalis 1991a Accinctisporites excentricus Zavattieri, p. 4, pl. 2, fig. 1
Cladaitina sp. 1991b cf. Perinopollenites sp. Zavattieri, p. 214, pl. 6, fig. 4
Converrucosisporites sp. 1990a Verrucosisporites sp. Zavattieri, p. 125, pl. 6, fig. 6
Crackipollenites polygonalis 1991b Inaperturopollenites sp. 1 p. 220, pl. 6, figs. 10–11
Daughertyspora chinleanus 1991a Podocarpidites sp. 1 Zavattieri, p. 16, pl. 6, fig. 5
Densoisporites psilatus 1990b Lycospora sp. Zavattieri, p. 216, pl. 4, fig. 8, pl. 5, figs. 1–2
Illinites chitonoides 1991a Illinites sp. p. 22, pl. 7, figs. 5, 6
Illinites kosankei 1991a Parillinites pauper Zavattieri, p. 22, pl. 9, fig. 2
Klausipollenites sp. 1991a Protodiploxypinus ujhelyi Zavattieri, p. 18, pl. 7, fig. 1
Lundbladispora verrucosa 1990b Cirratriradites sp. cf. C. splendens Zavattieri, p. 214, pl. 3, fig. 7, pl. 4, figs. 6, 12
1990b Cirratriradites sp. 1 Zavattieri, p. 214, 216, pl. 4, figs. 2, 4, 7, 9–11
1990a Densoisporites sp. 1, Zavattieri, p. 219, pl. 3, figs. 5, 8–9
Minutosaccus acutus 1991a Protodiploxypinus schizeatus Zavattieri, p. 11, pl. 4, fig. 9
Monosaccate indet. 1991a Parillinites pauper Zavattieri, p. 26, pl. 8, fig. 7
Podocarpidites sp. 1 1991a Daughertyspora chinleanus Zavattieri, p. 5, pl. 1, figs. 5
Portalites rigidus 1991b Pilasporites sp. cf. P. calculus Zavattieri, p. 214, pl. 4, fig. 6, pl. 5, fig. 4, pl. 6, fig. 14
Platysaccus rhombicus 1991a Platysaccus queenslandii Zavattieri, p. 20, pl. 3, fig. 7
Scheuringipollenites ovatus 1991a Sulcatisporites ovatus Zavattieri, p. 11, pl. 4, fig. 2
Secarisporites argenteiformis 1990b Leptolepidites sp. 2 Zavattieri, p. 210, pl. 1, fig. 5
1990b Leptolepidites crassibalteus Zavattieri, p. 208, pl. 1, fig. 7
1990b Leptolepidites sp. cf. L. bossus Zavattieri, p. 208, pl. 1, fig. 6
1990b Uvaesporites sp. Zavattieri, p. 212, pl. 2, fig. 8
Secarisporites lobatoverrucosus 1990b Leptolepidites argenteaeformis Zavattieri, p. 208, pl. 1, fig. 12
1990b Leptolepidites sp. 2 Zavattieri, p. 210, pl. 1, fig. 8
1990b Leptolepidites argenteaeformis Zavattieri, p. 208, pl. 2, fig. 1
1990b Leptolepidites lobatoverrucosus Zavattieri, p. 208, pl. 2, figs. 3–4
proportion of the total assemblage (Fig. 6). The finding of S.
speciosus is noteworthy since this species is a major
phytogeographical indicator of the Onslow subprovince
(Cirilli & Eshet, 1991; Buratti & Cirilli, 2007; Cirilli, 2010).
Four diagnostic species of Onslow microflora are
absent in the studied assemblage: Aulisporites astigmosus,
Camerosporites secatus, Enzonalasporites vigens, and
Infernopollenites claustratus. Nevertheless, it should be
noted that A. astigmosus, C. secatus and E. vigens are usually
registered at higher stratigraphic levels (Dolby & Balme,
1976; Helby et al., 1987) while A. astigmosus seems to be
facies controlled (Foster et al., 1994). Accordingly, their
absence is expected in the studied interval, but specimens
of Infernopollenites sp. have already been recorded in the
unit (Zavattieri, 1991b).
These results are consistent with recent macrofloristic
findings of the Quebrada de los Fósiles Formation that
reveal the existence of several Laurasian species into the
late Anisian–early Carnian of Central-Western Argentina
(Cariglino et al., 2018). Therefore, the presence of diagnos-
tic Northern palynotaxa and related forms within assem-
blages dominated by Gondwanan species enables the
pioneer suggestion of a close relationship between the pa-
lynoflora of the Cerro de Las Cabras Formation and that of
the Onslow subprovince.
CONCLUSIONS
The present study incorporates 33 genera and 81
species of palynomorphs to the Cerro de las Cabras Forma-
tion at its type locality. This information also includes new
records of previously unknown genera and species for the
argentine Triassic. As of a detailed systematic revision of
the published material, about 53 forms of pollen grains and
spores, originally illustrated for the Cerro de Las Cabras
Formation, were relocated in synonymy with new or already
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
197
TABLE 2. Continuation.
New assignation Previous assignation
Secarisporites verrucosus 1990a Cadargasporites verrucosus Zavattieri, p. 126, pl. 3, fig. 4, pl. 5, fig. 9, pl. 6, fig. 7
1990b Uvaesporites glomeratus Zavattieri, p. 210, pl. 2, figs. 2,5
Secarisporites volkheimerii 1990b Leptolepidites volkheimerii Zavattieri, p. 208, pl. 1, fig. 3, 9
Secarisporites spp. 1990b Leptolepidites sp. 1 Zavattieri, p. 210, pl. 1, fig. 10–11, 13
1990b Uvaesporites sp. Zavattieri, p. 212, pl. 2, fig. 7
1990b Uvaesporites sp. Zavattieri, p. 212, pl. 2, fig. 6
Staurosaccites quadrifidus 1991a Parillinites pauper Zavattieri, p. 26, pl. 9, figs. 3–5
1991a Accinctisporites excentricus Zavattieri, p. 4, pl. 1, fig. 4
Triadispora epigona 1991b Triadispora sp. 1 Zavattieri, p. 212, pl. 3, fig. 9
Unidentified algal remain 1991b Pediastrum sp. Zavattieri p. 221, pl. 6, fig. 13
Variapollenites trisulcus 1991b cf. Dacrycarpites sp. Zavattieri, p. 212, pl. 3, figs. 2, 3, 10, pl. 4, fig. 7
Variapollenites rhombicus 1991b Pseudoquadrisaccus sp. Zavattieri, p. 212, pl. 4, fig. 1
Vitreisporites contectus 1991a Protodiploxypinus americus Zavattieri, p. 18, pl. 2, figs. 4–5, pl. 3, fig. 6
Figure 6. Total relative abundances of the main genera represented in
the Upper Member of the Cerro de Las Cabras Formation at its type
locality (in percentages, %). Some genera were grouped together
owing to their close morphological resemblance.
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
198
Figure 8. Quantitative stratigraphic distribution of major palynomorph groups of spores, algae and fungi (in percentages, %) recorded in the
studied section of the Cerro de Las Cabras Formation. Monolete category includes both laevigate and apiculate spores, while the categories
Cingulate, Apiculate and Laevigate refer to trilete spores.
Figure 7. Quantitative stratigraphic distribution of major palynomorph groups of pollen grains (in percentages, %) recorded in the studied
section of the Cerro de Las Cabras Formation.
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
199
known taxa from the unit. Four new combinations were
proposed: Secarisporites argenteiformis, S. lobatoverrucosus,
S. verrucosus and S. volkheimerii.
The palynoflora is dominated by species of the
Alisporites/Falcisporites (~21%), Cycadopites/Monosulcites
(~17%), Secarisporites/Leptolepidites (~8%), and
Densoisporites/Lundbladispora (~4%) complexes. The locally
common occurrences of Illinites (~14%), cf. Rimaesporites
(~4%), Minutosaccus (~2.7%), Staurosaccites (~2.3%),
Protodiploxypinus (~2%), and Angu stisulcites (~1.7%) are
also noteworthy. This study records the presence of
several Permian taxa (Cladaitina sp., Limitisporites rectus,
Lueckisporites sp., Platysaccus sp. cf. P. trumpii,
Protohaploxypinus goraiensis, Punctatisporites gretensis) that
are interpreted to occur in situ. The stratigraphic distribution
of the major palynomorph groups point to highly fluctuating
environmental conditions.
The newly identified species support a late Anisian–
early Ladinian age for the type locality of the unit. More
precisely, it is the common presence of typical species from
Central-Northern Europe, such as Illinites chitonoides and I.
kosankei, together with the co-occurrence of Densoisporites
playfordii, Angustisulcites gorpii, Ovalipoll is notabilis,
Samaropollenites speciosus and Staurosaccites quadrifidus,
that enable the constraining of the age of the palynoflora
to this time interval. On the other hand, this new analysis
reveals a greater number of species shared with the
Northern Hemisphere and low-mid latitudes of Gondwana
than previously thought, including typical Onslow elements
cf. Rimaesporites aquilonalis, Samaropollenites speciosus,
Staurosaccites quadrifidus and Minutosaccus crenulatus, which
suggest, for the first time, a close relationship between the
palynofloras of the Cerro de Las Cabras Fm. and those of the
Onslow subprovince.
Figure 9. World stratigraphic ranges of selected species from the Cerro de las Cabras Formation.
ACKNOWLEDGMENTS
This research has been partially funded by Agencia Nacional de
Promoción Científica y Tecnológica, Argentina (research grant
ANPCYT-PICT 2016-00663). Part of the research that led to the
revision of this material was financially supported by Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET), Argentina (PIP
0705 to P.R. Gutiérrez and PIP 11220090100605 to A. M.
Zavattieri). I am deeply indebted to A. M. Zavattieri, who kindly
provided the samples studied herein, as well as to my PhD advisors,
M. L. Balarino and P. R. Gutiérrez, for their invaluable assistance
throughout the realization of the present work. Thanks are given to
the Editor, V. Barreda, but also to D. Peyrot, E. G. Ottone, N. A. Muñoz,
and one anonymous reviewer for the English style, grammatical
corrections, format revision, critical suggestions, and comments,
which greatly improved the quality of this manuscript.
REFERENCES
Abdala, F., Martinelli, A. G., Bento Soares, M., de la Fuente, M., & Ri-
beiro, A. M. (2009). South American Middle Triassic continental
faunas with amniotes: biostratigraphy and correlation. Palaeon-
tologia Africana, 44, 83–87.
Archangelsky, S. (1996). Aspects of Gondwana paleobotany: gym-
nosperms of the Paleozoic–Mesozoic transition. Review of
Palaeobotany and Palynology, 90(3–4), 287–302.
Artabe, A. E., Morel, E. M., & Spalletti, L. A. (2001). Paleoecología de
las floras triásicas argentinas. El Sistema Triásico en la Argentina,
10, 199–225.
Ávila, J. N., Chemale, F., Mallmann, G., Kawashita, K., & Armstrong, R.
A. (2006). Combined stratigraphy and isotopic studies of Triassic
strata, Cuyo Basin, Argentine Precordillera. Geological Society of
America Bulletin, 118(9–10), 1088–1098.
Backhouse, J. (1988). Permian trilete spores from the Collie Basin,
Western Australia. Memoir of the Association of Australasian
Palaeontologists,5, 53–72.
Bai, Y. H., Lu, M. N., Chen, L. Y., & Long, R. H. (1983). Mesozoic spore-
pollen. In Chengdu Institute of Geology and Mineral Resources
(Eds.), Palaeontological Atlas of Southwest China (Microfossils) (pp.
520–653). Geological Publishing House.
Balme, B. E. (1963). Plant microfossils from the Lower Triassic of
Western Australia. Palaeontology, 6(1), 12–40.
Balme, B. E. (1970). Palynology of Permian and Triassic strata in the
Salt Range and Surghar Range, West Pakistan. In B. Kummel, &
C. Teichert (Eds.), Stratigraphic boundary problems: Permian and
Triassic of West Pakistan. The University of Kansas Paleontological
Contributions Special Publication (pp. 305–453). University Press
of Kansas.
Balme, B. E. (1995). Fossil in situ spores and pollen grains: an anno-
tated catalogue. Review of Palaeobotany and Palynology, 87(2–4),
81–323.
Balme, B. E., & Hennelly, J. P. F. (1955). Bisaccate sporomorphs from
Australian Permian coals. Australian Journal of Botany, 3(1), 89–98.
Balme, B. E., & Hennelly, J. P. F. (1956). Trilete sporomorphs from
Australian Permian sediments. Australian Journal of Botany, 4(3),
240–260.
Barredo, S. P. (2004). Análisis estructural y tectosedimentario de la sub-
cuenca de Rincón Blanco, Precordillera Occidental, provincia de San
Juan (Tesis Doctoral, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires). Available from https://bibliote-
cadigital.exactas.uba.ar/download/tesis/tesis_n3857_Barredo.pdf
Barredo, S. P. (2012). Geodynamic and tectonostratigrafic study of
a continental rift: The Triassic Cuyana Basin, Argentina. In R.
Sharkov (Ed.), Tectonics: Recent Advances (pp. 99–130). InTech.
Barredo, S. P., Sosa Massaro, A., Fuenmayor, E., Abalos, R., Stinco, L.
P., & Abarzúa, F. (2017). Depositional controls over the lacus-
trine source rocks of the Cuyana Basin. An approach to model a
mechanical cyclicity through an integrated analysis of sequence
stratigraphy, petrophysics and rock properties. Society of Petro-
leum Engineers, Latin America and Caribbean Petroleum Engineering
Conference, SPE-185529-MS. https://doi.org/10.2118/185529-MS.
Batten, D. J. (1991). Reworking of plant microfossils and sedimen-
tary provenance. Geological Society, London, Special Publications,
57(1), 79–90.
Bek, J. (2012). A review of the genus Lycospora. Review of Palaeobotany
and Palynology, 174, 122–135.
Benton, M. J., & Newell, A. J. (2014). Impacts of global warming on
Permo-Triassic terrestrial ecosystems. Gondwana Research,
25(4), 1308–1337.
Bharadwaj, D. C., & Salujha, S. K. (1964). Sporological Study of Seam
VIII in Raniganj Coalfield, Bihar, India. Part I: Description of the
sporae dispersae. The Palaeobotanist, 12(2), 181–215.
Bol chovi tina, N. A . (195 3). Spore s and poll en cha racte risti c of
Cretaceous deposits of central regions of the USSR. Trudy Insti-
tuta Geologicheskikh Nauk, Akademya Nauk S.S.S.R.,145, 1–183.
Borrello, A. V. (1942). Estratigrafía y tectónica del Triásico–Retiense en
los alrededores de Potrerillos, provincia de Mendoza (Tesis Docto-
ral, Facultad de Ciencias Naturales y Museo, Universidad Nacio-
nal de La Plata).
Buratti, N., & Cirilli, S. (2007). Microfloristic provincialism in the
Upper Triassic Circum–Mediterranean area and palaeogeo-
graphic implication. Geobios, 40(2), 133–142.
Cariglino, B., Monti, M., & Zavattieri, A. M. (2018). A Middle Triassic
macroflora from southwestern Gondwana (Mendoza, Argentina)
with typical Northern Hemisphere elements: Biostratigraphic,
palaeogeographic and palaeoenvironmental implications. Review
of Palaeobotany and Palynology, 257, 1–18.
Cariglino, B., Zavattieri, A. M., Gutiérrez, P. R., & Balarino, M. L.
(2016). The paleobotanical record of the Triassic Cerro de Las
Cabras Formation at its type locality, Potrerillos, Mendoza
(Uspallata Group): an historical account and first record of fossil
flora. Ameghiniana, 53(2), 184–204.
Césari, S. N., & Colombi, C. E. (2013). A new Late Triasssic phyto-
geographical scenario in westernmost Gondwana. Nature com-
munications, 4(1), 1–6.
Césari, S. N., & Colombi, C. E. (2016). Palynology of the Late Triassic
Ischigualasto Formation, Argentina: paleoecological and paleo-
geographic implications. Palaeogeography, Palaeoclimatology,
Palaeoecology, 449, 365–384.
Chen, Z. Q., & Benton, M. J. (2012). The timing and pattern of biotic
recovery following the end-Permian mass extinction. Nature
Geoscience, 5(6), 375–383.
Cirilli, S. (2010). Upper Triassic–lowermost Jurassic palynology and
palynostratigraphy: a review. Geological Society, London, Special
Publications, 334(1), 285–314.
Cirilli, S., & Eshet, Y. (1991). First discovery of Samaropollenites and
the Onslow Microflora in the Upper Triassic of Israel, and its
phytogeographic implications. Palaeogeography, Palaeoclimatology,
Palaeoecology, 85(3–4), 207–212.
Clarke, R. F. A. (1965). British Permian saccate and monosulcate
miospores. Palaeontology, 8(2), 322–354.
Cookson, I. C., & Dettmann, M. E. (1959). On Schizosporis, a new form
genus from Australian Cretaceous deposits. Micropaleontology,
5(2), 213–216.
Cornet, B. (1993). Applications and limitations of palynology in age,
climatic, and paleoenvironmental analyses of Triassic se-
quences in North America. New Mexico Museum of Natural History
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
200
and Science Bulletin, 3, 75–93.
Couper, R. A. (1953). Upper Mesozoic and Cainozoic spores and pollen
grains from New Zealand. Palaeontological Bulletin 22, New
Zealand Geological Survey.
Dal Corso, J., Roghi, G., Kustatscher, E., Preto, N., Gianolla, P., Manfrin,
S., & Mietto, P. (2015). Ammonoid-calibrated sporomorph as-
semblages reflect a shift from hygrophytic to xerophytic ele-
ments in the late Anisian (Middle Triassic) of the Southern Alps
(Italy). Review of Palaeobotany and Palynology, 218, 15–27.
Daugherty, L. H. (1941). The Upper Triassic flora of Arizona. Carnegie
Institute of Washington Publications, 526, 1–108.
De Jersey, N. J. (1959). Jurassic spores and pollen grains from the
Rosewood Coalfield. Queensland Government Mining Journal, 60,
346–366.
De Jersey, N. J. (1962). Triassic spores and pollen grains from the Ipswich
coalfield. Geological Survey of Queensland, Publication 307, 1–18.
De Jersey, N. J. (1963). Jurassic spores and pollen grains from the
Marburg Sandstone. Geological Survey of Queensland, Publication
313, 1–15.
De Jersey, N. J. (1964). Triassic spores and pollen grains from the
Bundamba Group. Geological Survey of Queensland, Publication
321, 1–21.
De Jersey, N. J. (1968). Triassic spores and pollen grains from the
Clematis Sandstone. Geological Survey of Queensland, Publication
338, Palaeontological Paper, 14, 1–44.
De Jersey, N. J. (1971). Triassic miospores from the Tivoli Formation
and Kholo sub-group. Geological Survey of Queensland, Publica-
tion 353, Palaeontological Paper, 28, 1–40.
Dettmann, M. E. (1963). Upper Mesozoic microfloras from south-
eastern Australia. Proceedings of the Royal Society of Victoria
Queensland, 77(1), 1–148.
Dolby, J. H., & Balme, B. E. (1976). Triassic palynology of the Carnarvon
Basin, western Australia. Review of Palaeobotany and Palynology,
22(2), 105–168.
Döring, H. (1965). Die sporenpaläontologische Gliederung des
Wealden in Westmecklenburg. Geologie, 14, 1–118.
Dunay, R. E., & Fisher, M. J. (1979). Palynology of the Dockum Group
(Upper Triassic), Texas, USA. Review of Palaeobotany and Paly-
nology, 28(1), 61–92.
Farjon, A. (2018). The Kew review: Conifers of the world. Kew bulletin,
73(1), 1–16.
Foster, C. B. (1975). Permian plant microfossils from the Blair Athol
Coal measures, central Queensland, Australia. Palaeontographica
Abteilung B, 154, 121–171.
Foster, C. B. (1979). Permian plant microfossils of the Blair Athol
Coal Measures, Baralaba Coal Measures, and basal Rewan For-
mation of Queensland. Geological Survey of Queensland, Publica-
tion 372, Palaeontological Paper, 45, 1–244.
Foster, C. B., Balme, B. E., & Helby, R. (1994). First record of Tethyan
palynomorphs from the Late Triassic of East Antarctica. Journal
of Australian Geology and Geophysics, 15(2), 239–246.
Gibson, M. E., Taylor, W. A., & Wellman, C. H. (2020). Wall ultra-
structure of the Permian pollen grain Lueckisporites virkkiae
Potonié et Klaus 1954 emend. Clarke: Evidence for botanical
affinity. Review of Palaeobotany and Palynology, 275, 104169.
Goldsmith, P. J., Rich, B., & Standring, J. (1995). Triassic correlation
and stratigraphy in the south Central Graben, UK North Sea.
Geological Society, London, Special Publications, 91(1), 123–143.
Goubin, N. (1965). Description et repartition des principaux pollen-
ites Permiens, Triassiques et Jurassiques des Sondages du
Bassin de Morondava (Madagascar). Revue del Institut Francais
du Pétrole, 20, 1415–1461.
GouiricCavalli, S., Zavattieri, A. M., Gutiérrez, P. R., Cariglino, B., &
Balarino, L. (2017). Increasing the fish diversity of the Triassic
faunas of Gondwana: a new redfieldiiform (Actinopterygii) from
the Middle Triassic of Argentina and its palaeobiogeographical
implications. Papers in Palaeontology, 3, 559–581.
Gutiérrez, P. R., & Zavattieri, A. M. (2020). New Middle Triassic pollen
taxa of the San Rafael Basin, Mendoza Province, Argentina.
Ameghiniana, 57(4), 1–22.
Gutiérrez, P. R., Zavattieri, A. M., & Ezpeleta, M. (2017). Palynology of
the la Veteada Formation (Lopingian) at its type locality,
Famatina Range, la Rioja Province, Argentina. Spores. Ameghiniana
54, 441–464.
Hart, G. F. (1960). Microflora investigation of the Lower Coal Measures
(K2); Ketewaka Mchuchuma Coalfield, Tanganyinka. Bulletin
Geological Survey Tanganyika, 30, 1–18.
Hart, G. F. (1964). A review of the classification and distribution of
the Permian miospore: Disaccate Striatiti. 5º Congrès international
de stratigraphie et de géologie du Carbonifère(pp. 1171–1199). Paris.
Haskell, T. R. (1968). Saccate pollen grains from the Lower Creta-
ceous of the Great Artesian Basin, Australia. University Queens-
land Papers, Department of Geology, 6, 211–243.
Helby, R. J., Morgan, R., & Partridge, A. D. (1987). A palynologycal
zonation of the Australian Mesozoic. Memoirs of the Australasian
Association of Palaeontologist, 4, 141–155.
Hermann, E., Hochuli, P. A., Bucher, H., Brühwiler, T., Hautmann, M.,
Ware, D., & Roohi, G. (2011). Terrestrial ecosystems on North
Gondwana following the end-Permian mass extinction. Gondwana
Research, 20(2–3), 630–637.
Hiltmann, W. (1967). Über die Sporenführung des Kernprofils der
Bohrung Contern FG11 (Unterer Lias, Luxemburg). Service
géologique de Luxemburg publication, 17, 137–206.
Hochuli, P. A., Schneebeli-Hermann, E., Brack, P., Ramseyer, K., &
Rebetez, D. (2020). Palynology and Chemostratigraphy of Middle
Triassic successions in Northern Switzerland (Weiach, Benken,
Leuggern) and southern Germany (Weizen, Freudenstadt). Rivista
italiana di paleontologia e stratigrafia, 126(2), 363–394.
Hochuli, P. A., & Vigran, J. O. (2010). Climate variations in the Boreal
Triassic-inferred from palynological records from the Barents
Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1–4),
20–42.
Jain, R. K. (1968). Middle Triassic pollen grains and spores from
Minas de Petróleo Beds of Cacheuta Formation (Upper Gond-
wana), Argentina. Palaeontographica Abteilung B, 122, 1–47.
Jansonius, J. (1962). Palynology of Permian and Triassic sediments,
Peace River area, western Canada. Palaeontographica Abteilung
B, 110, 35–98.
Kerp, H., Hamad, A. A., Vörding, B., & Bandel, K. (2006). Typical Triassic
Gondwanan floral elements in the Upper Permian of the paleotrop-
ics. Geology, 34(4), 265–268.
Klaus, W. (1964). Zur sporenstratigraphischen Einstufung von gips-
führenden Schichten in Bohrungen. Erdöl–Zeitschrift, 4, 119–132.
Kremp, G. O. W. (1965). Morphologic encyclopedia of palynology: an in-
ternational collection of definitions and illustrations of spores and
pollen. University of Arizona Press.
Kürschner, W. M., & Herngreen, G. W. (2010). Triassic palynology of
central and northwestern Europe: a review of palynofloral di-
versity patterns and biostratigraphic subdivisions. Geological
Society, London, Special Publications, 334(1), 263–283.
Kustatscher, E., Ash, S. R., Karasev, E., Pott, C., Vajda, V., Yu, J., &
McLoughlin, S. (2018). Flora of the Late Triassic. In L. H. Tanner
(Ed.). The Late Triassic World (pp. 545–622). Springer.
Leschik, G. (1955). Die Keuperflora von Neuewelt bei Basel. II. Die
Iso– und Mikrosporen. Abhandlungen der schweizerischen
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
201
Palaeontologischen Gesellschaft, Band, 72, 1–70.
Leschik, G. (1956). Sporen aus dem Salzton des Zechsteins von Neuhof
(bei Fulda). Palaeontographica Abteilung B, 100(4–6), 122–142.
Looy, C. V., Brugman, W. A., Dilcher, D. L., & Visscher, H. (1999). The
delayed resurgence of equatorial forests after the Permian–
Triassic ecologic crisis. Proceedings of the National Academy of
Sciences, 96(24), 13857–13862.
LópezArbarello, A., Rauhut, O. W., & Cerdeño, E. (2010). The Triassic
fish faunas of the Cuyana Basin, western Argentina. Palaeontology,
53, 249–276.
Luber, A. A. (1955). Atlas of spores and pollen from Paleozoic sedi-
ments of Kazakhstan. Izd. Akademiya Nauk Kazakhstan SSR,
Alma–Ata, 1–126.
Mädler, K. (1964). Die geologische Verbreitung von Sporen und
Pollen in der deutschen Trias. Beihefte zum Geologisches
Jahrbuch, 65, 1–147.
Maljavkina, V. S. (1949). Key to determination of pollen and spores from
Jurassic and Cretaceous deposits. Naphta Institute.
McLoughlin, S., Lindström, S., & Drinnan, A. N. (1997). Gondwanan
floristic and sedimentological trends during the Permian–Triassic
transition: new evidence from the Amery Group, northern Prince
Charles Mountains, East Antarctica. Antarctic Science, 9(3), 281–298.
Miller, C. S., & Baranyi, V. (2019). Triassic climates. Reference mod-
ule in earth systems and environmental sciences, 1–11.
Morbey, S. J. (1975). The palynostratigraphy of the Rhaetian Stage,
Upper Triassic, in the Kendelbachgraben, Austria. Palaeonto-
graphica Abteilung B, 52, 1–75.
Morel, E. M., Artabe, A. E., & Spalletti, L. A. (2003). Triassic floras of
Argentina: biostratigraphy, floristic events and comparison with
other areas of Gondwana and Laurasia. Alcheringa: An Aus-
tralasian Journal of Palaeontology, 27, 231–243.
Mouritzen, C., Farris, M. A., Morton, A., & Matthews, S. (2018). Inte-
grated Triassic stratigraphy of the greater Culzean area, UK cen-
tral North Sea. Petroleum Geoscience, 24(2), 197–207.
Neves, R. (1961). Namurian plant spores from the southern Pennines,
England. Palaeontology, 4(2), 247–279.
Nowak, H., Schneebeli-Hermann, E., & Kustatscher, E. (2018). Cor-
relation of Lopingian to Middle Triassic Palynozones. Journal of
Earth Science, 29(4), 755–777.
Ogg, J. G. (2012). Triassic. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz,
& G. M. Ogg (Eds.), The Geologic Time Scale 2012 (pp. 681–730).
Elsevier.
Ottone, E. G. (1989). Palynoflores de la Formation Santa Maxima,
Paléozoïque supérieur, République Argentine. Palaeontographica
Abteilung B, 213, 89–187.
Ottone, E. G., Alvarez, P. P., & Benoit, S. V. (1992). Late Triassic plant
microfossils from the Rancho de Lata Formation, Main
Cordillera, Argentina. Micropaleontology, 38(3), 261–278.
Ottone, E. G., & García, G. B. (1991). A Lower Triassic miospore as-
semblage from the Puesto Viejo formation, Argentina. Review
of Palaeobotany and Palynology, 68(3–4), 217–232.
Ottone, E. G., Mancuso, A. G., & Resano, M. (2005). Miospores and
chlorococcalean algae from the Los Rastros Formation, Middle
to Upper Triassic of central-western Argentina. Ameghiniana,
42(2), 347–362.
Ouyang, S., & Norris, G. (1999). Earliest Triassic (Induan) spores and
pollen from the Junggar Basin, northwestern China. Review of
Palaeobotany and Palynology, 106, 1–56.
Paterson, N. W., & Mangerud, G. (2017). Palynology and depositional
environments of the Middle–Late Triassic (Anisian–Rhaetian)
Kobbe, Snadd and Fruholmen formations, southern Barents Sea,
Arctic Norway. Marine and Petroleum Geology, 86, 304–324.
Paterson, N. W., & Mangerud, G. (2019). A revised palynozonation
for the Middle–Upper Triassic (Anisian–Rhaetian) Series of the
Norwegian Arctic. Geological Magazine, 1–25.
Pautsch, M. E. (1971). Sporomorphs of the Upper Triassic from a
borehole at Trzciana near Mielec (S. Poland). Acta Palaeobotanica,
12(1), 1–18.
Pautsch, M. E. (1973). Upper Triassic spores and pollen from the
Polish Carpathian Foreland. Micropaleontology, 19(2), 129–148.
Peng, J., Li, J., Slater, S. M., Li, W., Zhu, H., & Vajda, V. (2018). Triassic
palynostratigraphy and palynofloral provinces: evidence from
southern Xizang (Tibet), China. Alcheringa: An Australasian Journal
of Palaeontology, 42(1), 67–86.
Pérez Loinaze, V. S., Vera, E. I., Fiorelli, L. E., & Desojo, J. B. (2018).
Palaeobotany and palynology of coprolites from the Late Triassic
Chañares Formation of Argentina: implications for vegetation
provinces and the diet of dicynodonts. Palaeogeography, Palaeo-
climatology, Palaeoecology, 502, 31–51.
Peyrot, D., Keep, M., Scibiorski, J., McCartain, E., Baillie, P., Soares, J.,
Haig, D. W., & Mory, A. J. (2019b). The Foura Sandstone type sec-
tion (Samaropollenites speciosus Zone, Carnian–early Norian;
early Late Triassic), Timor-Leste: preliminary correlation be-
tween Timor and the Bonaparte Basin. ASEG Extended Abstracts,
2019(1), 1–5.
Peyrot, D., Playford, G., Mantle, D. J., Backhouse, J., Milne, L. A.,
Carpenter, R. J., Foster, C., Mory, A. J., McLoughlin, S., Vitacca, J.,
Scibiorski, J., Mack, C. L., & Bevan, J. (2019a). The greening of
Western Australian landscapes: the Phanerozoic plant record.
Journal of the Royal Society of Western Australia, 102, 52–82.
Playford, G. (2020). Palynology of the Mount Johnstone Formation
(Mississippian), southern New England Orogen, New South
Wales, Australia. Palynology, 1–38.
Playford, G., & Dettmann, M. E. (1996). Spores. In J. Jansonius, & D.
C. McGregor (Eds.), Palynology: principles and applications. (pp.
227–260). American Association of Stratigraphic Palynologists
Foundation.
Potonié, H. (1893). Die Flora des Rothliegenden von Thüringen.
Abhandlungen der Königlich preussischen Geologischen Landesanstalt,
Neue Folge, 9, 1–185.
Potonié, R. (1958). Synopsis der Gattungen der Sporae dispersae. II. Teil:
Sporites (Nachträge), Saccites, Aletes, Praecolpates, Polyplicates,
Monocolpates. Beihefte zum Geologischen Jahrbuch, 31, 1–106.
Potonié, R., & Kremp, G. (1954). Die Gattungen der Paläozoischen
Sporae dispersae und ihre Stratigraphie. Beihefte Geologischen
Jahrbuch, 69, 111–194.
Potonié, R., & Lele, K. M. (1961). Studies in the Talchir flora of India–
1. Sporae dispersae from the Talchir beds of South Rewa Gond-
wana basin. The Palaeobotanist, 8(1–2), 22–37.
Preto, N., Kustatscher, E., & Wignall, P. B. (2010). Triassic climates—
state of the art and perspectives. Palaeogeography, Palaeoclima-
tology, Palaeoecology, 290(1–4), 1–10.
Raine, J. I., de Jersey, N. J., & Ryan, K. G. (1988). Ultrastructure and
lycopsid affinity of Densoisporites psilatus (de Jersey) comb. nov.
from the Triassic of New Zealand and Queensland. Memoir of the
Association of Australasian Palaeontologists, 5, 79–88.
Raine, J. I., Mildenhall, D. C., & Kennedy, E. M. (2011). New Zealand
fossil spores and pollen: an illustrated catalogue. 4th edition.
GNS Science miscellaneous series no. 4, from http://data.gns.
cri.nz/sporepollen/index.htm.
Ramos, V. A., & Kay, S. M. (1991). Triassic rifting and associated
basalts in the Cuyo basin, central Argentina. In R. S. Harmon, &
C. W. Rapela (Eds.), Andean magmatism and its tectonic setting
(pp. 79–91). Geological Society of America.
Reichgelt, T., Parker, W. G., Martz, J. W., Conran, J. G., van Konijnenburg-
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
202
van Cittert, J. H., & Kürschner, W. M. (2013). The palynology of
the Sonsela Member (Late Triassic, Norian) at Petrified Forest
National Park, Arizona, USA. Review of Palaeobotany and Paly-
nology, 189, 18–28.
Reinhardt, P. (1962). Sporae dispersae aus dem Rhat Thuringens.
Monatsberichte der Königlichen Preussische Akademie des Wis-
senschaften zu Berlin, 3, 704–711.
Reiser, R. F., & Williams, A. J. (1969). Palynology of the Lower Jurassic
sediments of the northern Surat Basin. Geological Survey of
Queensland,399, 1–24.
Retallack, G. J., Veevers, J. J., & Morante, R. (1996). Global coal gap
between Permian–Triassic extinction and Middle Triassic re-
covery of peat-forming plants. Geo logical Society of America
Bulletin, 108(2), 195–207.
Scheuring, B. W. (1970). Palynologische und palynostratigraphische
Untersuchungen des Keupers im Bölchentunnel (Solothurner
Jura). Abhandlungen der Schweizerischen Paläontologischen
Gesellschaft, 88, 1–119.
Schulz, E. (1967). Sporenpaläontologische Untersuchungen räto-
liassischer Schichten im Zentralteil des Germanischen Beckens.
Akademie–Verlag. Palaeontographica Abteilung B, 2(3), 543–633.
Segroves, K. L. (1969). Saccate plant microfossils from the Permian
of Western Australia. Grana Palynologica, 9(1–3), 174–227.
Singh, H. P. (1964). A miospore assemblage from the Permian of
Iraq. Paleontology, 7, 240–265.
Spalletti, L. A. (1999). Cuencas triásicas del Oeste argentino: origen
y evolución. Acta Geológica Hispánica, 32(1), 29–50.
Spalletti, L. A., Artabe, A. E., Morel, E. M., & Brea, M. (1999). Biozo-
nación paleoflorística y cronoestratigrafía del Triásico Argen-
tino. Ameghiniana, 36(4), 419–451.
Spalletti, L. A., Fanning, C. M., & Rapella, C. W. (2008). Dating the
Triassic continental rift in the southern Andes: the Potrerillos
Formation, Cuyo Basin, Argentina. Geologica Acta, 6, 267–283.
Stipanicic, P. N., & Marsicano, C. A. (2002). Léxico Estratigráfico de la
Argentina, Volumen 8: Triásico. Asociación Geológica Argentina.
Tassi, L. V., Zavattieri, A. M., & Gallego, O. F. (2015). Triassic Spini-
caudatan fauna from the Cerro de Las Cabras Formation (Cuyo
Basin), Mendoza Province (Argentina): description of new
species and revision of previous records. Ameghiniana, 52(2),
241–264.
Taylor, E. L., Taylor, T. N., & Krings, M. (2009). Paleobotany: the
biology and evolution of fossil plants. Academic Press.
Tiwari, R. S. (1964). New miospore genera in the coals of Barakar
Stage (Lower Gondwana) of India. ThePalaeobotanist, 12, 250–269.
Tiwari, R. S. (1965). Miospore assemblage in some coals of Barakar
Stage (Lower Gondwana) of India. The Palaeobotanist, 12, 168–214.
Tiwari, R. S. (1973). Scheuringipollenites, a new name for the Gond-
wana Sporomorphs so far assigned to Sulcatiporites Leschik
1955. Senckenbergiana Lethaea, 54, 105–117.
Tiwari, R. S., & Rana, V. (1981). Sporae disperae of some Lower and
Middle Triassic sediments from Damodar Basin, India. The
Palaeobotanist, 27, 190–220.
Vajda, V., & McLoughlin, S. (2007). Extinction and recovery patterns
of the vegetation across the Cretaceous–Palaeogene bound-
ary—a tool for unravelling the causes of the end-Permian
mass-extinction. Review of Palaeobotany and Palynology, 144(1–
2), 99–112.
Vigran, J. O., Mangerud, G., Mørk, A., Worsley, D., & Hochuli, P. A.
(2014). Palynology and geology of the Triassic succession of
Svalbard and the Barents Sea. Geological Surve y of Norway,
Special Publication, 14, 1–270.
Visscher, H. (1966). Palaeobotany of the Mesophytic, 3. Plant mi-
crofossils from the Upper Bunter of Hengelo, The Netherlands.
Acta Botanica Neerlandica, 15(2), 316–375.
Volkheimer, W., & Melendi, D. (1976). Palinomorfos como fósiles
guía. Tercera Parte: Técnicas de laboratorio palinológico. Revista
Minera de Geología y Mineralogía, 34, 19–30.
White, J. M. (2006). Palynodata Inc., from http://paleobotany.ru/pa-
lynodata.
Zavattieri, A. M. (1986). Estudio palinológico de la Formación Potre-
rillos (Triásico) en su localidad tipo, Cuenca Cuyana (provincia de
Mendoza, Argentina). Parte I. Esporas triletes y monoletes. Re-
vista Española de Micropaleontología, 18(2), 247–294.
Zavattieri, A. M. (1990a). Palinología de la Formación Las Cabras
(Triásico) en su localidad tipo, Cuenca Cuyana (provincia de
Mendoza, Argentina). Parte 1. Esporas triletes. Ameghiniana, 27,
107–129.
Zavattieri, A. M. (1990b). Palinología de la Formación Las Cabras
(Triásico) en su localidad tipo, Cuenca Cuyana (provincia de
Mendoza, Argentina). Parte 2. Esporas triletes y monoletes.
Ameghiniana, 27, 207–224.
Zavattieri, A. M. (1990c). Stratigraphic and paleoecologic evaluation of
the palynofloras of the Triassic Las Cabras Formation at the type
locality Cerro Las Cabras, Mendoza, Argentina. Neues Jahrbuch
für Geologie und Paläontologie Abhandlungen, 181, 117–142.
Zavattieri, A. M. (1991a). Granos de polen de la Formación Las Cabras
(Triásico), en su localidad tipo, provincia de Mendoza, Argentina.
Parte 1. Ameghiniana, 28, 3–29.
Zavattieri, A. M. (1991b). Granos de polen de la Formación Las Cabras
(Triásico), en su localidad tipo, provincia de Mendoza, Argentina.
Parte 2. Ameghiniana, 28, 205–224.
Zavattieri, A. M., & Arcucci, A. B. (2007). Edad y posición estratigrá-
fica de los tetrápodos del cerro Bayo de Potrerillos (Triásico),
Mendoza, Argentina. Ameghiniana, 44, 133–142.
Zavattieri, A. M., & Batten, D. J. (1996). Miospores from Argentinian
Triassic deposits and their potential for intercontinental corre-
lation. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Princi-
ples and Applications, vol. 2 (pp. 767–778). American Association
of Stratigraphic Palynologists Foundation.
Zavattieri, A. M., & Gutiérrez, P. R. (2012). A new species of Cladaitina
Maheshwari et Meyen, 1975 (cordaitalean pollen) from Upper-
most Permian deposits of the Famatina range, Central Western
Argentina. Revista Brasileira de Paleontologia, 15(2), 125–134.
Zavattieri, A. M., Gutiérrez, P. R., & Ezpeleta, M. (2018). Gymnosperm
pollen grains from the La Veteada Formation (Lopingian), Paganzo
Basin, Argentina: biostratigraphic and palaeoecological implica-
tions. Alcheringa: An Australasian Journal of Palaeontology, 42,
276–299.
Zavattieri, A. M., Gutiérrez, P. R., & Monti, M. (2020). Middle Triassic
freshwater green algae and fungi of the Puesto Viejo Basin,
central-western Argentina: palaeoenvironmental implications.
Alcheringa: An Australasian Journal of Palaeontology, 1–30.
Zippi, P. A. (1998). Freshwater algae from the Mattagami Formation
(Albian), Ontario: paleoecology, botanical affinities, and sys-
tematic taxonomy. Micropaleontology, 44, 1–78.
doi: 10.5710/AMGH.19.03.2021.3415
Submitted: November 18th, 2020
Accepted: March 19th, 2021
Published: June 30th, 2021
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
203
Appendix.List of new combinations proposed.
The suprageneric classification follows that of Potonié
and Kremp (1954), with modifications introduced by Playford
and Dettmann (1996). For descriptions, it is followed the
terminology of Dettmann (1963), Kremp (1965), Playford
and Dettmann (1996), and Playford (2020). Size meas-
urements are presented in the format N1(N2)N3, where N1
and N3 represent the minimum and maximum values, re-
spectively, and N2 are the mean sizes. ED/id ratio refers to
Exoexine Diameter (ED)/intexine diameter and (id) ratio
(Gutiérrez et al., 2017). Taxonomic and morphological dis-
cussions are given in Supplementary Online Information 1
for those species where systematic clarification is needed.
SYSTEMATIC PALEONTOLOGY
Anteturma SPORITES Potonié, 1893
Turma TRILETES Reinsch emend. Dettmann, 1963
Suprasubturma ACAVARTITRILETES Dettmann, 1963
Subturma AZONOTRILETES Lüber emend. Dettmann, 1963
Infraturma PSEUDOCINGULATI Neves, 1961
Genus Secarisporites Neves, 1961
Type species. Secarisporites lobatus Neves 1961. Namurian of England,
UK.
Discussion. Leptolepidites Couper (1953) was originally es-
tablished for acavate trilete microspores sculpted with
verrucae on the equator and distal pole (see Dettmann,
1963). Schulz (1967: 558) broadened the generic diagnosis
of Leptolepidites but separated this genus from Uvaesporites
Döring, 1965 on the basis of their size ranges, being the for-
mer smaller (up to 40 m) than the latter (40–62 m). Later,
Morbey (1975: 14) rejected Schulz’s criteria for size limita-
tions and combined Uvaesporites with Leptolepidites, but
without discussing on the arrangement of the spore layers.
Finally, Foster (1979: 58) established a synonymy between
Secarisporites Neves, 1961 and Uvaesporites specifically
highlighting the two-layered nature of the exine (spores to-
tally or partially cavate) and the nature of the sculpture
composed of verrucae and/or pilae, anastomosing equato-
rially to form a more or less pronounced cingulum. This author
also interpreted the proximal surface of the type material
as either smooth or with reduced sculptural elements.
From a closer examination of the Cerro de las Cabras
material, it is revealed that specimens originally assigned
to Leptolepidites presents a cavate exine, allowing them to
be relocated to the genus Secarisporites. Therefore, follow-
ing Foster’s criteria four new combinations are proposed:
Secarisporites argenteiformis (Bolchovitina, 1953) nov.
comb., Secarisporites lobatoverrucosus (Hiltmann, 1967) nov.
comb., Secarisporites verrucosus (de Jersey, 1964) nov. comb.,
Secarisporites volkheimerii (Zavattieri, 1986) nov. comb.
Secarisporites argenteiformis (Bolchovitina, 1953)
nov. comb.
Figure 2.11–2.12
1953 Stenozonotriletes argenteaeformis Bolchovitina, p. 51,
pl. 7, fig. 9.
1967 Uvaesporites argenteaeformis (Bolchovitina). Schulz, p.
560, pl. 2, figs. 10–11.
1975 Leptolepidites argenteaeformis (Bolchovitina). Morbey,
p. 14, pl. 3, figs. 7–9.
1990b Leptolepidites sp. 2 Zavattieri, p. 210, pl. 1, fig. 5.
1990b Leptolepidites crassibalteus Zavattieri, p. 208, pl. 1,
fig. 7.
1990b Leptolepidites sp. cf. L. bossus Zavattieri, p. 208, pl. 1,
fig. 6.
1990b Uvaesporites sp. Zavattieri, p. 212, pl. 2, fig. 8.
Referred material. BAPal 3074 b H41/4 (Fig. 2.11), BAPal
3074 b S43/4 (Fig. 2.12).
Geographic occurrence. Potrerillos locality, Mendoza
province, Argentina (Fig. 1).
Stratigraphic occurrence. Upper Member of Cerro de Las
Cabras Formation, Middle Triassic, Uspallata Group (Fig. 1).
Description. Radial trilete spores, cavate, amb triangular to
subcircular with equatorial extension of the exoexine. In-
texine contracted forming an inner body that conforms to
the equatorial outline of the spore. Smooth proximal face
having a trilete mark, sometimes indistinct, with straight to
slightly wavy rays bordered by lips of 1–2.5 m in width and
extending up to 0.75 of the spore radius. Distal face and
equator densely covered by subspherical to reniform or
gem-like verrucae with a flat or round top. In plant view,
sculptural elements display an irregular to polygonal shape,
sometimes merging and producing a negative reticulum. At
equator, these elements tend to elongate and enlarge
adopting a more or less radial arrangement, with their sides
and bases commonly merged into a cingulum which usually
gives the spore outline an irregular appearance.
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
204
Dimensions. Exoexine maximum diameter, 27(40)57 m;
Intexine maximum diameter, 19(28)38 m; ED/id ratio,
1.4(1.4)1.5. Sculptural elements: verrucae diameter/length
in plant view, 1(1.5–5.2)9 m; in lateral view, verrucae
2(2.7–6.3)10 m in basal width, 4(7)10 m in length. Meas-
urements were taken in 15 specimens.
Remarks. Leptolepidites sp. 2 (Zavattieri, 1990b, pl. 1, fig. 5),
L. crassibalteus (Zavattieri, 1990b, pl. 1, fig. 7), Leptolepidites
sp. cf. L. bossus (Zavattieri, 1990b, pl. 1, fig. 6) and
Uvaesporites sp. (Zavattieri, 1990b, pl. 2, fig. 8) are included
in Secarisporites argenteiformis (Bolchovitina, 1953) nov.
comb., because they present a subtriangular outline with a
cingulum formed by relatively large reniform verrucae,
fused at their bases, and arranged more or less radially.
Secarisporites lobatoverrucosus (Hiltmann, 1967)
nov. comb.
Figure 2.16–2.17
1967 Uvaesporites lobatoverrucosus Hiltmann, p. 159, pl. 2,
figs. 23–35.
1990b Leptolepidites lobatoverrucosus (Hiltmann). Zavattieri,
p. 208, pl. 2, figs. 3–4.
1990b Leptolepidites argenteaeformis Zavattieri, p. 208, pl. 1,
fig. 12.
1990b Leptolepidites sp. 2 Zavattieri, p. 210, pl. 1, fig. 8.
1990b Leptolepidites argenteaeformis Zavattieri, p. 208, pl. 2,
fig. 1.
Referred material. BAPal 3068 e G30/2 (Fig. 2.16), BAPal
3079 m F42/1 (Fig. 2.17).
Geographic occurrence. Potrerillos locality, Mendoza
province, Argentina (Fig. 1).
Stratigraphic occurrence. Upper Member of Cerro de Las
Cabras Formation, Middle Triassic, Uspallata Group (Fig. 1).
Description. Radial trilete spores, cavate, amb subtrian-
gular with equatorial extension of the exoexine. Intexine
contracted forming an inner body that conforms to the
equatorial outline of the spore. Smooth proximal face hav-
ing a strong trilete mark, with straight rays bordered by lips
of 2–3 m in width and extending up to the equator or al-
most to. Distal face and equator covered by low verrucae of
flat or round top, all of approximately the same height. In
plant view, the sculptural elements can be fused forming an
irregular and opened reticulum. At equator, these elements
generally merge and thicken to form a darkened cingulum
that contrasts with the lighter-colored inner body, giving the
spore outline a crenate aspect.
Dimensions. Exoexine maximum diameter, 35(45)57 m;
Intexine maximum diameter, 28(36)44 m; ED/id ratio,
1.25(1.25)1.3. Sculptural elements: verrucae diameter/
length in plant view, 1(2.7–6.4)12 m; in lateral view,
verrucae 4(8)13 m in basal width, 3(4)6 m in length.
Measurements were taken in 12 specimens.
Remarks. Leptolepidites argenteaeformis (Zavattieri, 1990b,
pl. 1, fig. 12, pl. 2, fig. 1) and Leptolepidites sp. 2 (Zavattieri,
1990b, pl. 1, fig. 8) are synonymized with Secarisporites
lobatoverrucosus (Hiltmann, 1967) nov. comb. mainly for
having a low relief cingulum formed by the fusion of round-
topped verrucae, and a relatively light-colored inner body
with an irregular and open reticulum.
Secarisporites verrucosus (de Jersey, 1964) nov. comb.
Figure 2.18–2.19
1964 Discisporites verrucosus de Jersey, p. 12, pl. 2, figs. 13,
15–16.
1969 Cadargasporites verrucosus Reiser and Williams, p. 6,
pl. 2, figs. 10–13, pl. 3, figs. 1, 2.
1971 Uvaesporites verrucosus Helby, in de Jersey, p. 5, pl. 1,
figs. 4–7.
1983 Cadargasporites verrucosus Bai et al., p. 574, pl. 126,
fig. 8.
1990b Uvaesporites glomeratus Zavattieri, p. 210, pl. 2, figs. 2, 5.
Referred material. BAPal 3074 b M50/1 (Fig. 2.18), BAPal
3074 b R40/3 (Fig. 2.19).
Geographic occurrence. Potrerillos locality, Mendoza
province, Argentina (Fig. 1).
Stratigraphic occurrence. Upper Member of Cerro de Las
Cabras Formation, Middle Triassic, Uspallata Group (Fig. 1).
Description. Radial trilete spores, cavate, amb subcircular
to circular with equatorial extension of the exoexine. Intex-
ine contracted forming an inner body that conforms to the
equatorial outline of the spore. Smooth proximal face or
with reduced ornamentation, normally having a vestigial
trilete mark with straight to slightly wavy rays. Distal face
and equator densely covered by spherical to subspherical
verrucae of rounded tops, which do not usually merge with
each other. Sculptural elements with a circular outline, most
of about the same size. At equator, these elements tend to
concentrate around the cingulum but generally without
merging with each other, thus giving the spore outline an
indented appearance.
RUFFO REY: NEW PALYNOLOGICAL DATA OF SOUTHWESTERN GONDWANA
205
Dimensions. Exoexine maximum diameter, 42(47)53 m;
Intexine maximum diameter, 30(38)45 m ED/id ratio,
1.4(1.2)1.2. Sculptural elements: verrucae maximum di-
ameter/length in plant view, 1(1.7–4.4)7 m; in lateral view,
verrucae 2(3.7)5m in basal width, 3(3.7)5 m in length.
Measurements were taken in 9 specimens.
Remarks and comparisons. Cadargasporites verrucosus
Reiser and Williams, 1969 is combined with Secarisporites
Neves, 1961 because this species is considered a junior syn-
onym of Uvaesporites verrucosus (see de Jersey, 1971, p. 5).
Uvaesporites glomeratus (Zavattieri, 1990b, p. 210, pl. 2, figs.
2, 5) is transferred to S. verrucosus for being spores of sub-
circular outline that presents spherical to subspherical
isolated verrucae that usually do not merge together.
Secarisporites lacunatus (Tiwari, 1965) Backhouse, 1988 is
distinguished from S. verrucosus (de Jersey, 1964) nov. comb.
by having smaller sculptural elements, arranged more
closely, with a more polygonal outline in plant view, and for
having a stronger trilete mark.
Secarisporites volkheimerii (Zavattieri, 1986) nov. comb.
Figure 2.20–2.21
1986 Leptolepidites volkheimerii Zavattieri, p. 268, pl. 3, figs.
6–9.
1990b Leptolepidites volkheimerii Zavattieri, p. 208, pl. 1, fig.
3, 9.
Referred material. BAPal 3074 b J36/1 (Fig. 2.20), BAPal
3074 b K54/3 (Fig. 2.21).
Geographic occurrence. Potrerillos locality, Mendoza
province, Argentina (Fig. 1).
Stratigraphic occurrence. Upper Member of Cerro de Las
Cabras Formation, Middle Triassic, Uspallata Group (Fig. 1).
Description. Radial trilete spores, cavate, amb triangular to
subtriangular with equatorial extension of the exoexine.
Intexine contracted forming an inner body of triangular
outline. Smooth proximal face having a trilete mark, with
straight to slightly wavy rays bordered by lips of 2–4 m in
width and extending up to the outer border of the inner body
while often diminishing in width. Distal face and equator
covered by low verrucae with flat or rounded tops, some-
times fused forming rugulae, and variable in shape, ranging
from irregular to polygonal. At equator they merge into a
cingulum which gives the spore contour a smooth to irreg-
ular outline, and sometimes adopt a radial arrangement.
Dimensions. Exoexine maximum diameter, 27(33)43 m;
Intexine maximum diameter, 20(25)34 m; ED/id ratio,
1.35(1.3)1.25; Cingulum width, 2(4.4)7 m. Sculptural ele-
ments: verrucae diameter/length in plant view, 1(1.9–3.5)6
m. Measurements were taken in 12 specimens.
Remarks.The species Leptolepidites volkheimerii Zavattieri,
1986 is combined with the genus Secarisporites because it
presents a cavate two-layered exine.
AMEGHINIANA - 2021 - Volume 58 (3): 181–206
206
... The study of Middle Triassic paleoclimates is essential to understand the evolution of terrestrial ecosystems as it evidences the full recovery of land plant communities; however, its climatic evolution remains understudied, especially in southwestern Gondwana (Miller and Baranyi, 2019;Mancuso et al., 2021). In this regard, the Cerro de Las Cabras Formation (Middle Triassic) provides an excellent case study, because it holds wealth and diversity of well-preserved palynomorphs that has already been comprehensively studied from a systematic standpoint over seven stratigraphic levels spanning a 34 m-thick succession (Zavattieri, 1990a(Zavattieri, , b, 1991aRuffo Rey, 2021). Previous paleoecological studies suggest this palynoflora developed under a humid and warm climate, within an alluvial plain with lakes, swamps and marshes of pteridophytes surrounded by higher lands with mesophytic gymnosperm communities (Zavattieri, 1990c), however, other lines of evidence would indicate rather semiarid conditions during its deposition . ...
... 3, Geological map (modified from Zavattieri, 1991a) of the studied type section (star) in its type locality (Potrerillos), situated 50 km southwest from Mendoza City. Modified from Ruffo Rey (2021). interbedded with black shales and fine to medium-grained sandstones with wavy lamination, which contain plant remains and rhizoliths Cariglino et al., 2016;Gouiric-Cavalli et al., 2017) (Fig. 2). ...
... The type section of Cerro de Las Cabras Formation was ascribed to a Middle Triassic age on the basis of radiometric datings and biostratigraphic interpretations (Ruffo Rey, 2021). More precisely, radiometric dates determined by zircon U-Pb SHRIMP from ignimbrites of the basal portion of the Río Mendoza Formation yielded an age of 243 ± 5 Ma (Ávila et al., 2006), whereas those obtained from tuff layers close to the boundary between the Cerro de Las Cabras and the Potrerillos Formations resulted in an age of 239 ± 4.5 Ma , thus constraining the Cerro de Las Cabras Formation to the late Anisian-early Ladinian (Ogg, 2012). ...
Article
The Cerro de Las Cabras Formation provides a great opportunity for advancing the understanding of Middle Triassic paleoclimates and terrestrial ecosystems. Previous palynological studies conducted at the type locality suggest it developed in a humid and warm environment, however, other lines of evidence would indicate rather semiarid conditions during its deposition. In order to test the first hypothesis, these same palynofloras are re-studied with a new methodological approach. The presented Eco-Guild model provides a conceptual framework for identifying the main abiotic factors that rule vegetation dynamics and composition. It incorporates the moisture requirement, temperature preference, adaptive strategy and body size of parent plants into the context of ecological successions.for their statistical analysis. The paleoecological re-study of palynofloras led to the identification of four palynophases (Woodland “A”,“B″, Riparian Forest “A”,“B″, Palustrine, Lacustrine “A”,“B″) related to two distinct plant zonations: a riverine zonation characterized by ruderal plants living in ephemeral to intermittent fluvial streams, and a lacustrine zonation which is subdivided into a stress-tolerant plant community related to standing water bodies of alkaline-saline conditions, and a plant association linked to small freshwater bodies in the surrounding floodplain area. Around these wetland areas were mesophytic forests of gymnosperms. On an individual scale, this whole ecosystem developed in a highly stressed environment but without major disturbance episodes. However, in stratigraphic terms, it developed under highly fluctuating climatic circumstances. Furthermore, at the middle part of the studied section a significant pulse of moistness was detected, which would be coincident to a major humidity episode occurred during the late Anisian–early Ladinian in central-western Argentina. These results would confirm for the first time the presence of this climatic event in the Uspallata Group (Cacheuta Sub-basin), thereby improving the knowledge regarding the paleoclimatic evolution of southwestern Gondwana during the Middle Triassic.
Article
Two phytogeographic units were defined for the Middle–Upper Triassic of Gondwana, the warm humid Onslow and the cool-temperate Ipswich microfloras; nevertheless, many uncertainties remain regarding the geographical scope of such assemblages, as well as to the degree of similarity between phytogeographical regions and the existence of different microfloristic domains within the Laurasian territory. To tackle these questions, a hierarchical cluster analysis complemented with ordination methods and bipartite network analysis was performed over a list of 70 palynomorph species and selected localities of the Anisian–Ladinian, Carnian and Norian time- intervals, with special emphasis on southwestern Gondwana units. Obtained results showed a clear dichotomy between tropical and extratropical associations, within which different microfloristic regions also developed from gradual changes in the frequency distribution of palynotaxa. These findings are significant because they confirm for first time through quantitative methods a phytogeographic separation between ‘Onslow’ and ‘Euro- Mediterranean’ assemblages, considered for a long time to be part of the same microflora. Furthermore, and contrary to expectations, two distinct phytogeographic units were recognized for the Laurasian territory, where the first is related to the hot and dry margins of western Tethys, and the other to the temperate and humid zones of Boreal Pangea. Likewise, a separate and well defined assemblage was recognized for southwestern Gondwanan, during the late Anisian–Carnian of central-western Argentina, named here as the Cuyo microfloristic region. This unit showed a close resemblance to microfloras of northern Laurasia due to the shared presence of several species of miospores that are largely absent from the eastern part of Pangea. We hypothesize that the migration of such species occurred through a trans-equatorial temperate and humid landway, following the rift basins and topographic highs developed along the suture lines of the Variscan orogenic belt and western South America at the beginning of Pangea separation.
Article
Full-text available
Diverse freshwater green algal microfossils and dispersed fungal spores among rich terrestrial palynofloras were recovered from the upper part of the Quebrada de los Fósiles Formation, Puesto Viejo Group, cropping-out in the fault-bounded San Rafael Basin, Mendoza Province, Argentina. Sedimentological data suggest that the vegetation recorded from this unit grew in floodplains of high-sinuosity fluvial systems when intense episodic volcanic activity provided great quantities of ash deposits to the sites. Small and temporary shallow lake deposits and thin peat ponds were recorded at two sections, yielding palynofloras composed of variable contents of spores, pollen, freshwater algae and fungal associations. The taxa described and illustrated herein consist of representatives of colonial Chlorophyta algae (Botryococcus), a diverse group of Zygnematales zygospores represented by the genera Lecaniella, Maculatasporites, Mehlisphaeridium, Ovoidites and the incertae sedis algae Leiosphaeridia and Retirotundia as well as representatives of fungi assigned to Microsporonites and Portalites. Two new species of Ovoidites are described herein, Ovoidites tripartitus and Ovoidites circumplicatus, and the new combination Ovoidites scissus is also presented. The terrestrial and aquatic vegetation grew associated with shallow water bodies in floodplain environments developed under warm temperate, strongly seasonal climatic conditions. The environment was stressed by volcanism that probably restricted the colonization and development of the ecosystem. The occurrence of algal microfossils in the Quebrada de los Fósiles Formation suggest shallow and episodic locally restricted aquatic environments inhabited by autochthonous freshwater green algae consistent with the sedimentological evidence. A Middle Triassic age is inferred from recent radiometric dating obtained from the basal and upper ignimbrite beds of the Quebrada de los Fósiles Formation indicate an age of 243.9 ± 2.0 Ma and 235.8 ± 2.0 Ma, respectively, thus mostly constrained to the Ladinian age. The composition of the fossil flora (palynoflora and macroflora) also indicates Middle Triassic age. Ana M. Zavattieri [amz@mendoza-conicet.gob.ar], Unidad de Paleopalinología, Departamento de Paleontología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT-CONICET-Mendoza, Av. A. Ruíz Leal s/n, Parque General San Martín, M5502IRA Mendoza, Argentina; Pedro Raúl Gutiérrez [pedroraulgutierrez@gmail.com], Museo Argentino de Ciencias Naturales “B. Rivadavia”, CONICET, Sección Paleopalinología, Área Paleontología. Buenos Aires, Argentina, Av. Ángel Gallardo 470, C1405DJR Buenos Aires, Argentina; Mariana Monti [mariana.monti@ypftecnologia.com.ar], YPF Tecnología S.A. (Y-TEC), Avenida del Petróleo s/n, entre 129 y 143, B1924CKU Berisso, Argentina.
Article
Full-text available
New Anisian to Ladinian palynology, palynofacies and stable carbon isotope records are reported for the Middle Triassic from deep Swiss wells (Weiach, Benken, Leuggern), well B3/13 (Weizen, S-Germany) and the type area of the Freudenstadt Formation in southern Germany. A wide spectrum of moderately to well-preserved palynomorphs represent a high Middle Triassic plant diversity. Based on the distribution of diverse spore-pollen assemblages five Anisian Palynozones (A–E) and two Ladinian ones (F, G) are differentiated. Throughout these Palynozones the occurrence of spores and pollen, assigned to plant groups so far known only from the Palaeozoic, shed a new light on the evolution of plant assemblages during the Triassic. The comparison of Palynozones A–G with palynostratigraphic schemes from the central part of the Germanic Basin and from the Tethyan realm demonstrate the regional variability of marker species ranges – especially for the Anisian. In agreement with the lithological record, two prominent transgressive events (Lower Muschelkalk, Upper Muschelkalk) are indicated by increased abundances of marine particulate organic matter in palynofacies data. Marginal marine influence is documented at the base of the studied interval, comprising the Buntsandstein and the base of the Lower Muschelkalk. Carbonate carbon isotopes data show a negative shift at the boundary between Lower and Middle Muschelkalk. Coincidently, a prominent change in relative abundances of climate-sensitive plant groups (e.g. Triadispora spp. vs. Pteridophytes) indicate a change to relatively dryer climatic conditions during the Middle Muschelkalk.
Article
Full-text available
The Barents Sea region of Arctic Norway preserves a thick succession of marine and deltaic Triassic strata that yield an abundant and diverse association of terrestrial and marine palynomorphs. Despite being the principal means for dating and correlation across this vast region, the Upper Triassic palynozonal resolution has remained relatively low. This is problematic due to the thickness of the Upper Triassic Series and since this corresponds to the longest of the three Triassic epochs. This paper presents a refined Middle–Upper Triassic palynozonation for the region, based on a detailed investigation of multiple localities ranging from the Svalbard Archipelago to the southern Barents Sea. The zonation comprises eleven spore-pollen zones: the Carnisporites spiniger, Triadispora obscura and Protodiploxypinus decus zones (Anisian), the Echinitosporites iliacoides Zone (Ladinian), the Semiretisporis hochulii, Podosporites vigraniae, Leschikisporis aduncus, and Protodiploxypinus spp. zones (Carnian), the Classopollis torosus, and Quadraeculina anellaeformis zones (Norian), and the Ricciisporites spp. Zone (Rhaetian). Additionally, two new dinoflagellate cyst zones are defined: the Rhaetogonyaulax arctica (upper Carnian – lower Norian) and Rhaetogonyaulax rhaetica (lower Norian) zones. Three new age-significant palynomorph taxa are described: Kyrtomisporis moerki sp. nov., Podosporites vigraniae sp. nov. and Semiretisporis hochulii sp. nov. The revised palynozonation is compared with previous palynozonal schemes for the Greater Barents Sea region, and its relationship to Triassic palaeoclimate, palaeoenvironments and sequence stratigraphy is discussed.
Article
Full-text available
Western Australian terrestrial floras first appeared in the Middle Ordovician (c. 460 Ma) and developed Gondwanan affinities in the Permian. During the Mesozoic, these floras transitioned to acquire a distinctly austral character in response to further changes in the continent’s palaeolatitude and its increasing isolation from other parts of Gondwana. This synthesis of landscape evolution is based on palaeobotanical and palynological evidence mostly assembled during the last 60 years. The composition of the plant communities and the structure of vegetation changed markedly through the Phanerozoic. The Middle Ordovician – Middle Devonian was characterised by diminutive vegetation in low-diversity communities. An increase in plant size is inferred from the Devonian record, particularly from that of the Late Devonian when a significant part of the flora was arborescent. Changes in plant growth-forms accompanied a major expansion of vegetation cover to episodically or permanently flooded lowland settings and, from the latest Mississippian onwards, to dry hinterland environments. Wetter conditions during the Permian yielded waterlogged environments with complex swamp communities dominated by Glossopteris. In response to the Permian–Triassic extinction event, a transitional vegetation characterised by herbaceous lycopsids became dominant but was largely replaced by the Middle Triassic with seed ferns and shrubs or trees attributed to Dicroidium. Another floristic turnover at the Triassic–Jurassic boundary introduced precursors of Australia’s modern vegetation and other southern hemisphere regions. Most importantly, flowering plants gained ascendancy during the Late Cretaceous. Characteristics of the state’s modern vegetation, such as sclerophylly and xeromorphy, arose during the Late Cretaceous and Paleogene. The vegetation progressively developed its present-day structure and composition in response to the increasing aridity during the Neogene–Quaternary. download from https://www.rswa.org.au/publications/journal/102/RSWA%20102%20p52-82_Peyrot%20et%20al.pdf
Article
There has been a gradual but definite change in the miofloral pattern from Permian through Triassic sediments in India, which is deduced after a careful circumscription as well as differentiation of organizations in sporae dispersae. The present study concerns the morphotaxonomy of dispersed pollen and spores in some Lower and Middle Triassic depositions in Damodar Valley. Forty-three genera and 76 species have been identified, out of which 4 genera and 17 species were found to be new. Among the newly proposed form genera, Ringosporites is a trilete spore having an equatorial crassitude and a polar or circumpolar distal thickening; Novitasporites has a trilete mark with bi- to multifurcate ray-ends and a perisporial covering; Densostriapollis accommodates non-saccate striated grains with an intexinal layer; Goubinispora is a girdling monosaccate pollen with striations on one face and partly separated exoexinal islands and strips on the other, and variously lobed monosaccus. Taxonomic position of some species have also been discussed. The qualitative significance of certain species forming diagnostic association has been pointed out.
Article
Abstract. New pollen grains are described from diverse palynological assemblages recorded from the Quebrada de los Fósiles Formation, lower unit of the Puesto Viejo Group, San Rafael Basin (Mendoza, Argentina), southwestern Gondwana. Two new pollen genera, Mendozapollenites gen. nov. and Crackipollenites gen. nov., are proposed. Also, three new species, Mendozapollenites variabilis sp. nov., Angustisulcites hexagonalis sp. nov. and Crackipollenites polygonalis sp. nov., as well as Crackipollenites sp. A and an indeterminate monosaccate pollen (Form A), are fully described and illustrated. The microflora contains: high proportions of sphenophyte and lycophyte spores; true ferns and bryophyte spores as minor components; non-taeniate pteridosperm bisaccate pollen grains; taeniate monosaccate and bisaccate pollen, scarce monosulcate and inaperturate grains, among other less frequent gymnosperm pollen; and the co-occurrence of chlorococcalean algae and fungal spores. The sedimentation of the Quebrada de los Fósiles Formation took place during the Ladinian (Middle Triassic), as was confirmed by recent radiometric dating of ignimbrites from the base and the top of the main profile of the unit. Thus, this is the first unequivocal and unique microflora recorded at present for the Ladinian in South America. Resumen. NUEVOS TAXONES DE POLEN DEL TRIÁSICO MEDIO DE LA CUENCA SAN RAFAEL, PROVINCIA DE MENDOZA, ARGENTINA. Se describen nuevos granos de polen de asociaciones palinológicas diversas registradas en la Formación Quebrada de los Fósiles, unidad inferior del Grupo Puesto Viejo, cuenca de San Rafael (Mendoza, Argentina), suroeste de Gondwana. Se proponen dos nuevos géneros, Mendozapollenites gen. nov. y Crackipollenites gen. nov. Además, se describen e ilustran tres nuevas especies, Mendozapollenites variabilis sp. nov., Angustisulcites hexagonalis sp. nov., Crackipollenites polygonalis sp. nov., así como también a Crackipollenites sp. A, y un grano de polen monosacado indeterminado (Forma A). La microflora contiene: altas proporciones de esporas de esfenópsidas y licópsidas; esporas de helechos verdaderos y briófitas como componentes menores; granos de polen bisacados no taeniados de pteridospermas; granos de polen monosacados y bisacados taeniados, escasos granos monosulcados e inaperturados, entre otros granos de polen de gimnospermas menos frecuentes; y la co-ocurrencia de algas clorococales y esporas de hongos. La sedimentación de la Formación Quebrada de los Fósiles tuvo lugar durante el Ladiniano (Triásico Medio), como fue confirmado por dataciones radiométricas recientes realizadas en los niveles de ignimbritas de la base y del techo del perfil tipo de la unidad. Por lo tanto, esta es la primera e inequívoca palinoflora registrada hasta ahora para el Ladiniano en América del Sur.
Article
Permian spore–pollen assemblages are dominated by striate bisaccate pollen grains. The botanical affinity of many of these is unknown, which limits their value in ecological reconstruction and biostratigraphy. Lueckisporites virkkiae Potonié et Klaus 1954 emend. Clarke 1965 is a bitaeniate bisaccate pollen grain of uncertain botanical affinity that dominates late Permian Euramerican assemblages, but also bridges phytogeographical provinces. It is classified into three “variants,” which capture a spectrum of morphological variability, but further complicates matters by questioning whether it comprises a natural taxon. Here we report on a TEM analysis of the gross structure and wall ultrastructure of L. virkkiae variants from the upper Permian (Lopingian) of Kimberley, Nottinghamshire, UK. The variants have the same gross structure and wall ultrastructure. The exine consists of a three-layered ektexine composed of a thin tectum, an alveolate infratectum and a thin foot layer, subtended by a solid endexine. Alveolae are either small and rounded, columellate-like, or irregularly shaped, depending on whether the exine is viewed in transverse or longitudinal section. Sacci are protosaccate, with narrow and irregular, or large and voluminous, endoreticulations. Similarities in gross structure and wall ultrastructure suggest that the current taxonomic grouping is correct with the variants representing the range of variation within a single species. We suggest that the differences in morphology are subtle and attributable to harmomegarthy. Comparisons with fossil and modern conifer pollen grains suggest an affinity with conifers. Co-occurrence with the Zechstein conifer macrofossil Pseudovoltzia liebeana (Geinitz) Florin 1880 (Majonicaceae) indicates this as a possible source.
Article
The logging and biostratigraphic characterization of the Foura Sandstone type section, Timor-Leste, show it is Carnian–early Norian (Samaropollenites speciosus Zone). Sedimentary structures indicate a turbidite origin and petrographic analysis reveals a high proportion of volcanic lithic grains. Palynological material presents a variable preservation suggesting a complex pre-burial history involving longdistance transport. The presence of prasinophytes suggests anoxic and euxinic depositional settings.
Article
This renewed palynological study of the Mount Johnstone Formation, at Balickera in the Hunter Valley region of New South Wales (eastern Australia), discloses a considerably more diverse palynoflora – termed the Grandispora maculosa Assemblage – than had been reported in 1968. Represented are some 51 species of palynomorphs, comprising 46 species of trilete spores (distributed among 27 genera), three species of monolete spores (three genera), one species of hilate spores, and a single algal-cyst species. The following species are newly instituted: Verrucosisporites adgeratus, V. johnstonense, V. pavimentatus, Anapiculatisporites robertsii, Convolutispora perplicata, Knoxisporites balickeraensis, Densoisporites argutus, Laevigatosporites demutabilis, and Latosporites durabilis. Quantitatively important and/or consistently represented species include Reticulatisporites magnidictyus (particularly), Punctatisporites spp., Verrucosisporites spp., Rattiganispora apiculata, Grandispora maculosa, Indotriradites kuttungensis, Velamisporites australiensis, Laevigatosporites demutabilis, and Psomospora detecta. The absence of marine palynomorphs supports the previously envisaged, predominantly fluvial deposition of the Mount Johnstone Formation. Key palynostratigraphic indices, in conjunction with absolute-age determinations obtained from sub- and suprajacent rocks, indicate that the G. maculosa palynoflora and its hosting Mount Johnstone strata are Mississippian – specifically middle–late Visean – age; this dating also applies to similarly palyniferous deposits in the northern Perth and Carnarvon basins of Western Australia. Beyond Eastern Gondwana, equivalents of the G. maculosa association have been reported from Western Gondwana (Brazil and Argentina in particular) and, to a lesser extent, from Northern Gondwana, thus attesting to its wide distribution and chronostratigraphic significance within the supercontinent and its distinctiveness vis-à- vis Euramerican regions.