Laurent Petit

Laurent Petit
Institut des Maladies Neurodegeneratives | IMN · Neurofunctional imaging group (GIN)

Researcher

About

187
Publications
47,294
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,468
Citations
Additional affiliations
January 2016 - December 2020
French National Centre for Scientific Research
Position
  • Researcher

Publications

Publications (187)
Article
Full-text available
Hemispheric specialization is central to human evolution and fundamental to human cognitive abilities. While being a defining feature of functional brain architecture, hemispheric specialization is overlooked to derive brain parcellations. Alongside language, which is typically lateralized in the left hemisphere, visuospatial attention is set to be...
Preprint
Full-text available
Hemispheric specialization is central to human evolution and fundamental to human cognitive abilities. While being a defining feature of functional brain architecture, hemispheric specialization is overlooked to derive brain parcellations. Alongside language, which is typically lateralized in the left hemisphere, visuospatial attention is set to be...
Article
Full-text available
People with late-stage Parkinson’s disease (PD) often suffer from debilitating locomotor deficits that are resistant to currently available therapies. To alleviate these deficits, we developed a neuroprosthesis operating in closed loop that targets the dorsal root entry zones innervating lumbosacral segments to reproduce the natural spatiotemporal...
Article
Full-text available
Integrating the underlying brain circuit's structural and functional architecture is required to explore the functional organization of cognitive networks. In that regard, we recently introduced the Functionnectome. This structural–functional method combines an fMRI acquisition with tractography-derived white matter connectivity data to map cogniti...
Preprint
In primates, the putamen and the caudate nucleus are connected by ~1mm-thick caudolenticular gray matter bridges (CLGBs) interspersed between the white matter bundles of the internal capsule. Little is understood about the functional or microstructural properties of the CLGBs. In studies proposing high resolution diffusion magnetic resolution imagi...
Poster
Full-text available
Attention is a fundamental cognitive function that is, in most humans, lateralized in the right hemisphere. Although the identification of the neural attentional networks has been performed using various neuroimaging techniques in healthy individuals and patients with spatial neglect, the study of lateralization has been largely overlooked as compa...
Article
Full-text available
Over the past two decades, the study of resting-state functional magnetic resonance imaging has revealed that functional connectivity within and between networks is linked to cognitive states and pathologies. However, the white matter connections supporting this connectivity remain only partially described. We developed a method to jointly map the...
Article
Full-text available
White matter bundle segmentation is a cornerstone of modern tractography to study the brain's structural connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present FIESTA (FIbEr Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and easily semi-automatically cali...
Article
Full-text available
Background Two Centuries from today, Karl Friedrich Burdach attributed the nomenclature “arcuate fasciculus” to a white matter (WM) pathway connecting the frontal to the temporal cortices by arching around the Sylvian fissure. Although this label remained essentially unvaried, the concepts related to it and the characterization of the structural pr...
Preprint
Full-text available
Integrating the underlying brain circuit's structural and functional architecture is required to explore the functional organization of cognitive networks properly. In that regard, we recently introduced the Functionnectome. This structural-functional method combines an fMRI acquisition with tractography-derived white matter connectivity data to ma...
Article
Full-text available
Since 2015, research groups have sought to produce the ne plus ultra of tractography algorithms using the ISMRM 2015 Tractography Challenge as evaluation. In particular, since 2017, machine learning has made its entrance into the tractography world. The ISMRM 2015 Tractography Challenge is the most used phantom during tractography validation, altho...
Article
Current tractography methods use the local orientation information to propagate streamlines from seed locations. Many such seeds provide streamlines that stop prematurely or fail to map the true white matter pathways because some bundles are "harder-to-track" than others. This results in tractography reconstructions with poor white and gray matter...
Preprint
Full-text available
Since 2015, research groups seek to produce the nec-plus-ultra tractography algorithms using the ISMRM 2015 Tractography Challenge as evaluation. In particular, since 2017, machine learning has made its entrance into the tractography world. The ISMRM 2015 Tractography Challenge is the most used phantom during tractography validation, although it co...
Preprint
Full-text available
White matter bundle segmentation is a cornerstone of modern tractography to study the brain's structural connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present FIESTA (FIbEr Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and easily semi-automatically cali...
Preprint
Full-text available
A tractogram is a virtual representation of the brain white matter. It is composed of millions of virtual fibers, encoded as 3D polylines, which approximate the white matter axonal pathways. To date, tractograms are the most accurate white matter representation and thus are used for tasks like presurgical planning and investigations of neuroplastic...
Chapter
Clustering Tractographytractography streamlines is an important step to characterize the brain White matterwhite matter structural connectivity. Numerous methods have been proposed to group whole-brain tractography streamlines into anatomically coherent bundles. However, the time complexity, or the initial streamline sorting in conventional methods...
Article
Full-text available
The angular gyrus (AG) has been described in numerous studies to be consistently activated in various functional tasks. The angular gyrus is a critical connector epicenter linking multiple functional networks due to its location in the posterior part of the inferior parietal cortex, namely at the junction between the parietal, temporal, and occipit...
Article
Full-text available
Efficient communication across fields of research is challenging, especially when they are at opposite ends of the physical and digital spectrum. Neuroanatomy and neuroimaging may seem close to each other. When neuroimaging studies try to isolate structures of interest, according to a specific anatomical definition, a variety of challenges emerge....
Preprint
Full-text available
Current tractography methods use the local orientation information to propagate streamlines from seed locations. Many such seeds provide streamlines that stop prematurely or fail to map the true pathways because some white matter bundles are "harder-to-track" than others. This results in tractography reconstructions with poor white and gray matter...
Preprint
Full-text available
The angular gyrus (AG) has been described in numerous studies to be consistently activated in various functional tasks. The angular gyrus is a critical connector epicenter linking multiple functional networks regarding its location in the posterior part of the inferior parietal cortex, namely at the junction between the parietal, temporal, and occi...
Preprint
Full-text available
Efficient communication across fields of research is challenging, especially when they are at opposite ends of the physical and digital spectrum. Neuroanatomy and neuroimaging may seem close to each other, but the terminology and processes to study the brain can be very different. More specifically, investigations of white matter anatomy are suscep...
Article
Full-text available
The segmentation of brain structures is a key component of many neuroimaging studies. Consistent anatomical definitions are crucial to ensure consensus on the position and shape of brain structures, but segmentations are prone to variation in their interpretation and execution. White‐matter (WM) pathways are global structures of the brain defined b...
Preprint
Full-text available
Over the past two decades, the study of resting-state functional magnetic resonance imaging (fMRI) has revealed the existence of multiple brain areas displaying synchronous functional blood oxygen level-dependent signals (BOLD)-resting-state networks (RSNs). The variation in functional connectivity between the different areas of a resting-state net...
Article
Full-text available
Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances and innovations which will allow these techniques to accurately map the connections of the human brain. The so-called "crossing fiber problem" has received tremendous attention and has continuously triggered the communi...
Article
Full-text available
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Article
Full-text available
In recent years, the field of functional neuroimaging has moved away from a pure localisationist approach of isolated functional brain regions to a more integrated view of these regions within functional networks. However, the methods used to investigate functional networks rely on local signals in grey matter and are limited in identifying anatomi...
Article
Full-text available
We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 1870 young healthy adults, aged 18–35 years, while undergoing university-level education. MRi-Share contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility-weighted (SWI), and resting-state functional imaging modalities. Here, we described...
Article
Full-text available
The relationship between hippocampal subfield volumetry and verbal list-learning test outcomes have mostly been studied in clinical and elderly populations, and remain controversial. For the first time, we characterized a relationship between verbal list-learning test outcomes and hippocampal subfield volumetry on two large separate datasets of 447...
Article
Full-text available
Human brain white matter undergoes a protracted maturation that continues well into adulthood. Recent advances in diffusion-weighted imaging (DWI) methods allow detailed characterizations of the microstructural architecture of white matter, and they are increasingly utilized to study white matter changes during development and aging. However, relat...
Article
Full-text available
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Preprint
Full-text available
Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances and innovations which will allow these techniques to accurately map the connections of the human brain. The so-called "crossing fiber problem" has received tremendous attention and has continuously triggered the communi...
Article
Full-text available
The description of human white matter pathways experienced a tremendous improvement, thanks to the advancement of neuroimaging and dissection techniques. The downside of this progress is the production of redundant and conflicting literature, bound by specific studies’ methods and aims. The Superior Longitudinal System (SLS), encompassing the arcua...
Article
Full-text available
Current brain white matter fiber tracking techniques show a number of problems, including: generating large proportions of streamlines that do not accurately describe the underlying anatomy; extracting streamlines that are not supported by the underlying diffusion signal; and under-representing some fiber populations, among others. In this paper, w...
Article
Full-text available
Introduction: Since its first description in the early 19th century, the inferior frontooccipital fascicle (IFOF) and its anatomo-functional features were neglected in the neuroscientific literature for the last century. In the last decade, the rapid development of in vivo imaging for the reconstruction of white matter (WM) connectivity (i.e., tra...
Preprint
Full-text available
Human brain white matter undergoes a protracted maturation that continues well into adulthood. Recent advances in diffusion-weighted imaging (DWI) methods allow detailed characterizations of the microstructural architecture of white matter, and they are increasingly utilised to study white matter changes during development and ageing. However, rela...
Article
Background: Tractography uses diffusion magnetic resonance imaging to noninvasively infer the macroscopic pathways of white matter fibers and it is the only available technique to probe in vivo the structural connectivity of the brain. However, despite this unique and compelling ability and its wide range of possible neurological applications, trac...
Preprint
Full-text available
In recent years, the field of functional neuroimaging has moved from a pure localisationist approach of isolated functional brain regions to a more integrated view of those regions within functional networks. The methods used to investigate such networks, however, rely on local signals in grey matter and are limited in identifying anatomical circui...
Article
Full-text available
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Preprint
Full-text available
In recent years, the field of functional neuroimaging has moved from a pure localisationist approach of isolated functional brain regions to a more integrated view of those regions within functional networks. The methods used to investigate such networks, however, rely on local signals in grey matter and are limited in identifying anatomical circui...
Preprint
Full-text available
In recent years, the field of functional neuroimaging has moved away from a pure localisationist approach of isolated functional brain regions to a more integrated view of these regions within functional networks. However, the methods used to investigate functional networks rely on local signals in grey matter and are limited in identifying anatomi...
Article
Full-text available
White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were...
Article
Full-text available
MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating t...
Preprint
Full-text available
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Preprint
Full-text available
Current brain white matter fiber tracking techniques show a number of problems, including: generating large proportions of streamlines that do not accurately describe the underlying anatomy; extracting streamlines that are not supported by the underlying diffusion signal; and under-representing some fiber populations, among others. In this paper, w...
Article
Full-text available
Diffusion magnetic resonance imaging is a noninvasive imaging modality that has been extensively used in the literature to study the neuronal architecture of the brain in a wide range of neurological conditions using tractography. However, recent studies highlighted that the anatomical accuracy of the reconstructions is inherently limited and chall...
Preprint
We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 1,870 young healthy adults, aged 18 to 35 years, while undergoing university-level education. MRi-Share contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility weighted (SWI), and resting-state functional imaging modalities. Here, we descri...
Article
Full-text available
Parameters of water diffusion in white matter derived from diffusion-weighted imaging (DWI), such as fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, AD, and RD), and more recently, peak width of skeletonized mean diffusivity (PSMD), have been proposed as potential markers of normal and pathological brain ageing. However, their...
Preprint
Full-text available
Tractograms are virtual representations of the white matter fibers of the brain. They are of primary interest for tasks like presurgical planning, and investigation of neuroplasticity or brain disorders. Each tractogram is composed of millions of fibers encoded as 3D polylines. Unfortunately, a large portion of those fibers are not anatomically pla...
Article
Full-text available
Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called “virtual dissection.” Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. It is our opinion th...
Preprint
Parameters of water diffusion in white matter derived from diffusion-weighted imaging (DWI), such as fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, AD and RD), and more recently, peak width of skeletonized mean diffusivity (PSMD), have been proposed as potential markers of normal and pathological brain ageing. However, their r...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Abstract No abstract available Keywords: association pathways; dissection; human brain; nomenclature; taxonomic classification; tractography; white matter anatomy.
Article
Full-text available
Editorial on the Research Topic Organization of the White Matter Anatomy in the Human Brain Between nineteenth and twentieth centuries, neurosciences experienced the first sharing of experiences and competences between the world of brain anatomy and clinics. The improvements in the knowledge of human white matter (WM) anatomy provided the natural b...
Article
Full-text available
Whether brain networks underlying the multimodal processing of language in humans are present in non-human primates is an unresolved question in primate evolution. Conceptual awareness in humans, which is the backbone of verbal and non-verbal semantic elaboration, involves intracerebral connectivity via the inferior fronto-occipital fascicle (IFOF)...
Preprint
Full-text available
Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called "virtual dissection". Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. The contribution of...
Article
Full-text available
Fiber tractography (FT) using diffusion magnetic resonance imaging (dMRI) is widely used for investigating microstructural properties of white matter (WM) fiber-bundles and for mapping structural connections of the human brain. While studying the architectural configuration of the brain’s circuitry with FT is not without controversy, recent progres...
Article
Full-text available
With the advances in diffusion MRI and tractography, numerous atlases of the human pyramidal tract (PyT) have been proposed, but the inherent limitation of tractography to resolve crossing bundles within the centrum semiovale has so far prevented the complete description of the most lateral PyT projections. Here, we combined a precise manual positi...
Article
Full-text available
We herein propose an atlas of 32 sentence-related areas based on a 3-step method combining the analysis of activation and asymmetry during multiple language tasks with hierarchical clustering of resting-state connectivity and graph analyses. 144 healthy right-handers performed fMRI runs based on language production, reading and listening, both with...
Article
The frontal eye filed (FEF) is a relatively small frontal region that has been intensely studied. It received multiple definitions that help to locate it with some discrepancies between non-human primates and humans. The goal of this review is to provide an inter-species comparison of the location, extent, and boundaries of the FEF through the mult...
Article
Full-text available
The heterogeneity and complexity of white matter (WM) pathways of the human brain were discretely described by pioneers such as Willis, Stenon, Malpighi, Vieussens and Vicq d’Azyr up to the beginning of the 19th century. Subsequently, novel approaches to the gross dissection of brain internal structures have led to a new understanding of WM organiz...
Article
Full-text available
Anatomical white matter bundles vary in shape, size, length, and complexity, making diffusion MRI tractography reconstruction of some bundles more difficult than others. As a result, bundles reconstruction often suffers from a poor spatial extent recovery. To fill-up the white matter volume as much and as best as possible, millions of streamlines c...
Preprint
With the advances in diffusion MRI and tractography, numerous atlases of the human pyramidal tract (PyT) have been proposed but the inherent limitation of tractography to resolve crossing bundles within the centrum semiovale have so far prevented the complete description of the most lateral PyT projections. Here, we combined a precise manual positi...
Preprint
Full-text available
Substantial progress in acquisition, processing, and analysis boosted the reliability of diffusion-weighted MRI and increased the accuracy of mapping white matter pathways with fiber tractography. Since the introduction of 'region of interest' (ROI) based virtual dissection by Conturo et al. in 1999, researchers have used tractography to identify w...
Conference Paper
Full-text available
Diffusion tractography allows the investigation of white matter (WM) pathways of interest. However, to cover the full spatial extent of the desired bundles, tractography requires a large amount of streamlines (millions) to be generated. In this work, we developed a bundlespecific tractography algorithm using voxel-wise orientation priors. Our metho...
Article
Full-text available
Increasing attention is being paid to the assessment of white matter properties and its structural connectivity, both in healthy subjects and patients with cerebral lesions. Within this framework, new neurocognitive models based on hodological properties have been developed under a connectomic perspective in order to explain substrates and cognitiv...
Article
Full-text available
Touch delivers a wealth of information already from birth, helping infants to acquire knowledge about a variety of important object properties using their hands. Despite the fact that we are touch experts as much as we are visual experts, surprisingly, little is known how our perceptual ability in touch is linked to either functional or structural...
Preprint
Full-text available
We herein propose an atlas of 32 sentence-related areas based on a 3-step method combining the analysis of activation and asymmetry during multiple language tasks with hierarchical clustering of resting-state connectivity and graph analyses. 144 healthy right-handers performed fMRI runs based on language production, reading and listening, both with...
Chapter
Full-text available
Tractography allows the investigation of white matter fascicles. However, it requires a large amount of streamlines to be generated to cover the full spatial extent of desired bundles. In this work, a bundle-specific tractography algorithm was developed to increase reproducibility and sensitivity of white matter fascicle virtual dissection, thus av...
Article
Full-text available
Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct su...
Conference Paper
Full-text available
We show that deep learning techniques can be applied successfully to fiber tractography. Specifically, we use feed-forward and recurrent neural networks to learn the generation process of streamlines directly from diffusion-weighted imaging (DWI) data. Furthermore, we empirically study the behavior of the proposed models on a realistic white matter...
Article
Full-text available
Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the tool of choice to probe the human brain's white matter in vivo. However, tractography algorithms produce a large number of erroneous streamlines (false positives), largely due to complex ambiguous tissue configurations. Moreover, the relationship between the result...
Article
Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest that make it a process that is very hard to reproduce across experts. Having automated tools that can extract white matter bundles for tract-b...
Preprint
We show that deep learning techniques can be applied successfully to fiber tractography. Specifically, we use feed-forward and recurrent neural networks to learn the generation process of streamlines directly from diffusion-weighted imaging (DWI) data. Furthermore, we empirically study the behavior of the proposed models on a realistic white matter...
Article
Full-text available
Despite its significant functional and clinical interest, the anatomy of the uncinate fasciculus (UF) has received little attention. It is known as a ‘hook-shaped’ fascicle connecting the frontal and anterior temporal lobes and is believed to consist of multiple subcomponents. However, the knowledge of its precise connectional anatomy in humans is...
Article
Introduction i-Share (internet–based Student Heath REsSaC) est la premiere enquete epidemiologique d’envergure (n = 30 000) sur la sante des etudiants. L’acquisition d’une IRM cerebrale multimodale est en cours dans une partie de la cohorte (n = 2000), afin d’etudier la maturation cerebrale post-adolescence (18–35 ans), en particulier l’impact des...
Article
Full-text available
Fiber tractography based on non-invasive diffusion imaging is at the heart of connectivity studies of the human brain. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain dataset with ground truth white matter tracts, we organized an open international tractography challenge, which r...
Article
Full-text available
Previous studies on visuo-haptic shape processing provide evidence that visually learned shape information can transfer to the haptic domain. In particular, recent neuroimaging studies have shown that visually learned novel objects that were haptically tested recruited parts of the ventral pathway from early visual cortex to the temporal lobe. Inte...
Article
Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large–scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a...

Network

Cited By