ArticlePDF Available

Arboviruses and their vectors in the Pacific–status report

Authors:

Abstract

Three arboviruses have already caused epidemics in various Pacific Island countries and territories, and currently represent a direct threat to public health. The diseases concerned are all mosquito-borne and should be kept under careful surveillance. Dengue fever, which is a worldwide major public health problem, is mainly transmitted in the Pacific by the Aedes aegypti vector but also by other mosquitoes of this genus with varying ranges. Epidemic polyarthritis due to the Ross River virus is endemic in Australia. At least one major epidemic has occurred in the Pacific where various vector mosquito species occur. Japanese encephalitis is a zoonosis that can be transmitted to humans by mosquitoes of the genus Culex. Its area of distribution in Asia is expanding and the possibility of fresh incursions into the region should be borne in mind. This paper reviews the situation regarding these diseases in the Pacific and provides information on the way they are transmitted as well as on the biology of the mosquito vectors.
ORIGINAL PAPERS
45
PACIFIC HEALTH SURVEILLANCE AND RESPONSE VOL 12. NO 2. 2005
$UERYLUXVHVDQGWKHLU9HFWRUVLQWKH3DFLÀF6WDWXV
5HSRUW
Laurent Guillaumot*
*Entomology Unit, New Caledonia Pasteur Institute, E-mail: lguillaumot@pasteur.nc
Abstract
Three arboviruses have already caused epidemics in various Pacific Island countries and territories, and currently represent a
direct threat to public health. The diseases concerned are all mosquito-borne and should be kept under careful surveillance.
Dengue fever, which is a worldwide major public health problem, is mainly transmitted in the Pacific by the Aedes aegypti vector
but also by other mosquitoes of this genus with varying ranges.
Epidemic polyarthritis due to the Ross River virus is endemic in Australia. At least one major epidemic has occurred in the
Pacific where various vector mosquito species occur.
Japanese encephalitis is a zoonosis that can be transmitted to humans by mosquitoes of the genus Culex. Its area of distribution
in Asia is expanding and the possibility of fresh incursions into the region should be borne in mind.
This paper reviews the situation regarding these diseases in the Pacific and provides information on the way they are transmitted
as well as on the biology of the mosquito vectors. (PHD, 2005 Vol 12 No 2 Pages 45 - 52)
Introduction
$YHFWRULVDQRUJDQLVPWKDWWKURXJKLWVOLIHVW\OHSLFNV
XS D SDWKRJHQ IURP DQ LQIHFWHG YHUWHEUDWH DQG WKHQ
DIWHUDSKDVHRIELRORJLFDOHYROXWLRQWKDWLVDOPRVWDOZD\V
REOLJDWRU\DFWLYHO\SDVVHVRQWKLVSDWKRJHQWRDKHDOWK\
YHUWHEUDWH :LWKLQWKLVGH¿QLWLRQWKHVXEMHFW LVDOPRVW
DOZD\VDEORRGIHHGLQJDUWKURSRG
9HFWRUERUQHGLVHDVHV DUHWKRVH ZKLFK ZLWKYHU\ IHZ
H[FHSWLRQVDUHDOZD\VWUDQVPLWWHGLQWKHZLOGLQWKLVZD\
7KHSDWKRJHQVFRQFHUQHG FDQ EH YLUXVHV HJ\HOORZ
IHYHUHQFHSKDOLWLVGHQJXHIHYHUEDFWHULDHJW\SKXV
SODJXHSURWR]RDQVHJPDODULDWU\SDQRVRPLDVLVRU
KHOPLQWKVHJ¿ODULDVLV
7KH YLUXVHV WUDQVPLWWHG E\ YHFWRUV DUH FDOOHG
³DUERYLUXVHV´ aUWKURSRGERUQH vLUXV D WHUP ZKLFK
UHIHUVWRDFRPPRQPRGHRIWUDQVPLVVLRQEXWZKLFKKDV
QREHDULQJRQ WD[RQRP\ DVDUERYLUXVHVFDQEHORQJWR
YHU\GLIIHUHQWIDPLOLHV7KUHHRIWKHPUHSUHVHQWDGLUHFW
WKUHDW WR SXEOLF KHDOWK LQ 3DFL¿F ,VODQG FRXQWULHV DQG
WHUULWRULHVDOORIZKLFKDUHWUDQVPLWWHGE\PRVTXLWRHV
$ORQJVLGH WKH PDMRU SXEOLF KHDOWK SUREOHP RI GHQJXH
IHYHU RXWEUHDNV RI HSLGHPLF SRO\DUWKULWLV GXH WR WKH
5RVV 5LYHU YLUXV KDYH DOUHDG\ RFFXUUHG LQ VRPH
LVODQG FRXQWULHV 0RUH PDUJLQDOO\ WKH VDPH FDQ EH
VDLGRI-DSDQHVHHQFHSKDOLWLVDGLVHDVHWKDWUHTXLUHV
RXUDWWHQWLRQ QRW RQO\EHFDXVH RI LWVVHYHULW\ EXW DOVR
EHFDXVHRILWVFXUUHQWO\H[SDQGLQJDUHDRIGLVWULEXWLRQ
7KLV SDSHU FRQWDLQV LQIRUPDWLRQ RQ WKH VWDWXV RI
WKHVHGLVHDVHVLQWKH 3DFL¿F DQG RQ WKHZD\WKH\DUH
WUDQVPLWWHG DV ZHOO DV RQ WKH ELRORJ\ RI WKH YHFWRU
mosquitoes.
Dengue Fever
Disease
7KLVDUERYLUXVLVSUHVHQWO\RQHRIWKHPDMRUSXEOLFKHDOWK
SUREOHPVLQWKHZRUOGZLWKHVWLPDWHVVWDQGLQJDWVRPH
PLOOLRQFDVHVRILQIHFWLRQDQQXDOO\
,WLVFDXVHGE\YLUXVHVRIWKHJHQXVFlavivirus, and four
GLIIHUHQW VHURW\SHV '(1  WR '(1  DUH NQRZQ ,Q
LWVXVXDOIRUPWKHGLVHDVHLVFKDUDFWHULVHGE\WKHUDSLG
RQVHWRILQWHQVHIHYHUDFFRPSDQLHGE\KHDGDFKHVMRLQW
SDLQVDQGDVWKHQLDRIWHQDVVRFLDWHGZLWKDVNLQUDVK
7KH GLVHDVH XVXDOO\ FOHDUV XS ZLWKRXW WUHDWPHQW DQG
ZLWKRXWFRQVHTXHQFHV DIWHU VRPH¿YH WR VL[GD\V EXW
LQDFHUWDLQQXPEHURIFDVHVDQGIRUUHDVRQVWKDWDUH
QRW \HW IXOO\ XQGHUVWRRG LW FDQ GHYHORS LQWR D VHYHUH
IRUPLHGHQJXHKDHPRUUKDJLFIHYHURUGHQJXHVKRFN
V\QGURPH ZKLFK DUH RIWHQ IDWDO LI KRVSLWDO LQWHQVLYH
FDUH IDFLOLWLHV DUH QRW DYDLODEOH $SDUW IURP WKHVH
H[WUHPH FDVHV RQH RI WKH SUREOHPV RI WKLV GLVHDVH
LVWKH H[SORVLYH FKDUDFWHURI RXWEUHDNV WKHIHZ LQLWLDO
FDVHVTXLFNO\JURZLQWRKXQGUHGVDQGWKRXVDQGVZLWKD
PACIFIC HEALTH SURVEILLANCE AND RESPONSE VOL 12. NO 2. 2005
ORIGINAL PAPERS
46
FRQVLGHUDEOHLPSDFWRQWKHHFRQRPLFDQGVRFLDOIDEULF
RIWKHFRXQWULHVDIIHFWHG
7KHUH DUH DOVR DV\PSWRPDWLF IRUPV RI WKH LQIHFWLRQ
ZKLFK FRXOG DFFRXQW IRU XS WR  RI FDVHV &XUHG
VXEMHFWV SRVVHVV ODVWLQJ LPPXQLW\ WR WKH VHURW\SH
FRQFHUQHG
'HQJXH IHYHU¶V FXUUHQW DUHD RI GLVWULEXWLRQ FRYHUV D
PDMRUSURSRUWLRQRIWKHWURSLFDODQGVXEWURSLFDOZRUOG
7KH¿UVWGHQJXHHSLGHPLFVLQWKH3DFL¿FZHUHUHSRUWHG
LQLQ+DZDLLLQ7DKLWLDQGLQ)LMLDQG1HZ
&DOHGRQLD6XEVHTXHQWO\WUDQVPLVVLRQSHULRGVUHFXUUHG
DWYDULRXVLQWHUYDOVZLWKVLJQL¿FDQWHSLVRGHVVXFKDVWKH
PDMRUSDQGHPLFIURPWRVHURW\SHXQNQRZQ
FRQWHPSRUDU\ZLWK:RUOG:DU,,$IWHUD\HDUEUHDN
YDULRXVZDYHVRIHSLGHPLFVDIIHFWHGDYDU\LQJQXPEHU
RI3DFL¿F,VODQGFRXQWULHVDQGWHUULWRULHVHJ'HQJXH
DQGLQWKHV'HQJXHDQGLQWKHV7KHQ
DIWHU DQRWKHU UHODWLYH SDXVH IURP
WRDIXUWKHURFFXUUHQFHRI
'HQJXHDQGIROORZHGE\'HQJXH
IURPWRZHUHREVHUYHG
/DVWO\D 'HQJXH  RXWEUHDN EHJDQ
LQ  LQ 3DODX DQG FRQWLQXHG LQ
 LQ )UHQFK 3RO\QHVLD EHIRUH
VSUHDGLQJWRDOPRVW WKH ZKROHRIWKH3DFL¿FLQFOXGLQJ
+DZDLLZKLFKKDGEHHQVSDUHGE\GHQJXHIHYHUVLQFH
DQG(DVWHU,VODQGSUHYLRXVO\XQWRXFKHGE\ WKLV
GLVHDVHWKHYHFWRUZDVRQO\LQWURGXFHGWKHUHLQ
Mode of transmission
$OWKRXJK LW KDV EHHQ SURYHG WKDW PRQNH\V FDQ EH
LQIHFWHGE\WKH GHQJXH YLUXVLQWKHZLOG LW LV EHOLHYHG
WKDW WKHUH LV QR V\OYDWLF F\FOH RXWVLGH $IULFD DQG WKDW
KXPDQVDUHWKHRQO\UHVHUYRLURIWKHYLUXV
+RZHYHUWKHH[LVWHQFHRIYHUWLFDOWUDQVPLVVLRQDQGWKH
DELOLW\RIHJJVODLGE\PRVTXLWRHV RI WKH$HGHVJHQXV
WRUHVLVWGHVLFFDWLRQZRXOGVXJJHVWWKDWWKHPRVTXLWRHV
WKHPVHOYHVPD\SOD\DUROHLQWKHVXUYLYDORIWKHYLUXVLQ
SHULRGVEHWZHHQRXWEUHDNV
$SDUW IURP WKLV SDUWLFXODU FDVH WKH WUDQVPLVVLRQ RI D
YLUXV IURP DQ LQIHFWHG VXEMHFW WR D KHDOWK\ RQH WDNHV
SODFH DV IROORZV 7KH IHPDOH PRVTXLWR WDNHV LQ YLUDO
SDUWLFOHV ZKHQ LW IHHGV RQ WKH EORRG RI D YLUDHPLF
VXEMHFW7KHYLUXVLVFDUULHGZLWKWKHLQJHVWHGEORRGWR
WKH LQVHFW¶V RHVRSKDJXV DQG HQGV XS LQ WKH VWRPDFK
DQG SHQHWUDWHV WKH LQWHVWLQDO HSLWKHOLXP FHOOV ZKHUH
DIWHUDODWHQF\SKDVHLWUHSOLFDWHVLQWHQVLYHO\&DUULHGLQ
WKHKDHPRO\PSKWKHLQVHFW¶VµEORRG¶WKHYLUXVLQYDGHV
WKH ZKROH RI WKH PRVTXLWR¶V RUJDQLVP DQG UHDFKHV
WKH VDOLYDU\ JODQGV ZKHUH DQRWKHU UHSOLFDWLRQ SKDVH
WDNHVSODFH'XULQJDVXEVHTXHQWELWHWKHIHPDOHZLOO
LQMHFW LQWR LWV YLFWLP VRPH PLFURGURSV RI VDOLYD DV DOO
KDHPRSKDJHRXV DUWKURSRGV GR DQG VLPXOWDQHRXVO\
LQRFXODWHDVPDOODPRXQWRIYLUXVZKLFKLIWKHVXEMHFW
LVQRWLPPXQH ZLOO WULJJHUWKHGLVHDVHDIWHUD± GD\
LQFXEDWLRQSHULRG
,QJHVWLRQRILQIHFWHGEORRGDQGWKHVXEVHTXHQWLQIHFWLRXV
ELWHV DUH VHSDUDWHG E\ D WLPH SHULRG FDOOHG H[WULQVLF
LQFXEDWLRQ LI WKH DUWKURSRG WDNHV DQRWKHU EORRG PHDO
LQEHWZHHQWKHELWHZLOOQRWEHLQIHFWLRXV7KLVSHULRG
ZKLFKEDVLFDOO\GHSHQGVRQWKHWHPSHUDWXUHDQGGRVHRI
YLUXVLQJHVWHGPD\UDQJHIURPWRGD\V$IHPDOH
WKDWEHFRPHVLQIHFWLRXVZLOOUHPDLQVRXQWLOWKHHQGRILWV
OLIHZKLFKXVXDOO\ODVWVDERXWDPRQWK
9HFWRUV
7KH PRVTXLWRHV FDSDEOH RI WUDQVPLWWLQJ WKH GHQJXH
YLUXVHV LQ WKH 3DFL¿F DOO EHORQJ WR WKH JHQXV Aedes,
VXEJHQXV Stegomyia*. Apart from Aedes aegypti,
WKH\LQFOXGHYDULRXVVSHFLHVRIWKH
6FXWHOODULV JURXS LQFOXGLQJ Ae.
albopictus,Ae polynesiensis and
DWOHDVWQLQHRWKHUVZLWKYDU\LQJ
UDQJHV
Aedes (Stegomyia) aegypti*
/LQQDHXV  LV D PRVTXLWR RI
$IULFDQRULJLQ,WVTXDVLGRPHVWLFOLIHVW\OHKDVHQDEOHG
LWWRSDVVLYHO\ FRORQLVH DOPRVW DOOWKHWURSLFDODQGPLOG
WHPSHUDWH FRXQWULHV RI WKH ZRUOG ,W ZDV HUDGLFDWHG
LQ WKH PLGWK FHQWXU\ IURP WKH 0HGLWHUUDQHDQ ULP
DQG VXEVHTXHQWO\ IURP D PDMRU SDUW RI WKH $PHULFDQ
FRQWLQHQWXQGHUWKHLPSHWXVRISURJUDPPHVWR FRQWURO
\HOORZIHYHUIRUZKLFKLWLVDOVRWKHPDLQYHFWRU'XULQJ
WKH±\HDUVWKDWIROORZHGWKHHQGRIVXFKSURJUDPV
Ae. aegyptLUHDSSHDUHG LQ PXFKRIWKH WHUULWRU\ LWKDG
GLVDSSHDUHGIURP,WZDVLQWURGXFHGWRWKH3DFL¿FLQWKH
ODWHWKDQGHDUO\WKFHQWXULHVDQGFDQQRZEHIRXQG
LQPRVWLVODQGJURXSV
,WLVWKHPDMRUGHQJXHIHYHUYHFWRUHYHU\ZKHUHLWRFFXUV
DQGLWVELRHFRORJ\KDVEHHQH[WHQVLYHO\VWXGLHG
7KHHJJVDUHODLGDURXQGWKHOLSVRIFRQWDLQHUVRIWHQ
DUWL¿FLDORQHV 7KHVHHJJVDUH VDLG WREH GXUDEOH LQ
RWKHUZRUGV WKH\ FDQ UHVLVW GHVLFFDWLRQUHPDLQ LQWDFW
IRUDQXPEHURIPRQWKVDQG¿QDOO\KDWFKQRUPDOO\RQFH
WKH\FRPHLQFRQWDFWZLWKZDWHU,WLVSUREDEO\PDLQO\LQ
WKLVGHVLFFDWHGIRUPWKDWWKHPRVTXLWRKDVDFFRPSDQLHG
KXPDQVGXULQJWKHLUPLJUDWLRQV
7KH ODUYDH DUH YHUPLIRUP DQG KLJKO\ PRELOH 7KH\
SRVVHVV D EXOOHWVKDSHG DEGRPLQDO ´VLSKRQ´ ZKLFK
LVGDUNHU WKDQ WKHERG\ DQG IRUPVRQO\D VOLJKW DQJOH
ZLWKLW 8QGHU SRZHUIXO PDJQL¿FDWLRQ LWLVSRVVLEOHWR
,QJHVWLRQRILQIHFWHG
blood and the subsequent
infectious bites are
separated by a time period
FDOOHGH[WULQVLFLQFXEDWLRQ
ORIGINAL PAPERS
47
PACIFIC HEALTH SURVEILLANCE AND RESPONSE VOL 12. NO 2. 2005
GLVWLQJXLVKWKHSUHVHQFH RIWKLFNVSLQHVDWWKHEDVH RI
WKHODWHUDOWKRUDFLFEULVWOHV
7KH ODUYDH DUH H[FOXVLYHO\ IRXQG DURXQG KXPDQ
GZHOOLQJVLQ VPDOO WRPHGLXPVL]HG UHFLSLHQWV RIIWKH
JURXQGWKDWFRQWDLQIUHVKZDWHUZLWKOLWWOHRUJDQLFPDWWHU
FRQWHQW7KHGLVWLQFWLRQFDQEHPDGHEHWZHHQGRPHVWLF
EUHHGLQJJURXQGVGLUHFWO\ PDLQWDLQHG E\ KXPDQV DQG
DFWLYHDOO\HDUURXQGGULQNLQJZDWHUVWRUDJHFRQWDLQHUV
ÀRZHU SRWV DQLPDO GULQNLQJ ERZOV HWF DQG SHUL
GRPHVWLFEUHHGLQJVLWHVDVVRFLDWHGZLWKKXPDQDFWLYLW\
EXW RQO\ ¿OOHG XS ZLWK UDLQ ZDWHU ROG W\UHV UHFLSLHQWV
RIDOONLQGVOHIWRXWH[SRVHGWRWKHZHDWKHUERWWRPVRI
ERDWVFORJJHGJXWWHUVHWF
/HVV IUHTXHQWO\ VRPH QDWXUDO EUHHGLQJ VLWHV VXFK DV
KROORZWUHHVURFNKROHVRUSODQWVZLWKDOHDIVKHDWKHJ
%URPHOLDFHDHPD\KDUERXUAe. aegypti ODUYDH2QWKH
RWKHUKDQG WKHODUYDHDUHQHYHUIRXQGLQODUJHERGLHV
RI ZDWHU DW JURXQG OHYHO VXFK DV PDUVKODQGV UXWV RU
ÀRRGHGÀDWODQGV
Adults DUH DFWLYH LQ WKH GD\WLPH SDUWLFXODUO\ LQ WKH
PRUQLQJDQGODWHDIWHUQRRQ
Ae. aegypti’VDQWKURSRSKLO\SUHIHUHQFHIRUKXPDQEHLQJV
DV KRVWV LV YHU\ PDUNHG ,WV VSRQWDQHRXV GLVSHUVDO
UDQJHLVOHVVWKDQPDWOHDVWVRORQJDVKRVWVDQG
DGHTXDWHHJJOD\LQJ VLWHVDUHDYDLODEOH7KHFRUROODU\
RIWKHVH WZR FKDUDFWHULVWLFV LVWKDW
WKH\DUHRQO\IRXQGLQWKHLPPHGLDWH
YLFLQLW\RIKXPDQKDELWDWVRQZKLFK
WKH\DUHFRPSOHWHO\GHSHQGHQW
)HPDOHVUHDGLO\ HQWHU GZHOOLQJV WR
ELWH WKHLU YLFWLPV HQGRSKDJ\ DQG
UHPDLQLQGRRUVWRUHVW HQGRSKLO\
7KHÀLJKWRIAe. aegyptiLVGLVFUHHW
DQG SUXGHQW ZLWK WKH IHPDOH RIWHQ À\LQJ RII ZKHQ
GLVWXUEHGGXULQJDEORRGPHDO)RU WKLV UHDVRQ LW PD\
ELWHVHYHUDOSHRSOHRQHDIWHUWKHRWKHUDQGWKXVVSUHDG
DGLVHDVHPRUHTXLFNO\DPRQJDKXPDQSRSXODWLRQ
7KH ERG\ LV GDUN ZLWK ZKLWH RU VLOYHU SDWFKHV 7KH
OHJV DUH FOHDUO\ VWULSHG LQ ZKLWH DW WKH MRLQWV DQG WKH
HQGVRIWKH EDFNOHJVWDUVLQDUH FRPSOHWHO\ZKLWH
Ae. aegypti LV DOVR UHFRJQLVDEOH IURP D FRQVSLFXRXV
ZKLWHPDUNLQJLQWKHIRUPRIDWZRVWULQJO\UHRQWKHEDFN
RIWKHWKRUD[YLVLEOHXQGHUPDJQL¿FDWLRQ
Aedes (Stegomyia) albopictus*6NXVHRULJLQDWHV
LQ WKH )DU (DVW ,W LV D PHPEHU RI WKH Scutellaris
JURXSD FORVHO\ UHODWHGJURXSRI VSHFLHV SUREDEO\RI
FRPPRQRULJLQLQWKHUHODWLYHO\UHFHQWSDVW,WVDUHDRI
GLVWULEXWLRQ XQWLO UHFHQWO\ OLPLWHG WR (DVWHUQ $VLD DQG
VRPH,QGLDQ2FHDQDQG3DFL¿F,VODQGVKDVH[SDQGHG
LQDVSHFWDFXODUPDQQHURYHUWKHSDVW\HDUV,WLVQRZ
¿UPO\HVWDEOLVKHG LQ WKH 8QLWHG6WDWHV/DWLQ$PHULFD
6RXWKHUQ(XURSH$OEDQLD,WDO\DQG$IULFD1LJHULD,Q
WKH3DFL¿FLWLVIRXQGLQ3DSXD1HZ*XLQHD6RORPRQ
,VODQGV0LFURQHVLD )LML DQG+DZDLL ZKHUH LWZDV WKH
RQO\GHQJXHYHFWRUGXULQJWKH±RXWEUHDN
7KH ELRHFRORJ\ RI Ae. albopictus LV VLPLODU WR WKDW RI
Ae. aegypti.
7KHHJJVDUHDOVRGXUDEOHEXW WKRVH RI FHUWDLQ VWUDLQV
DUH PRUH FROGUHVLVWDQW ZKLFK H[SODLQV WKH EURDGHU
GLVWULEXWLRQRIWKHVSHFLHVLQWHPSHUDWHFRXQWULHV
7KHODUYDHDUHDOPRVWLGHQWLFDOWRWKRVHRIAe. aegypti,
IURP ZKLFK WKH\ FDQ EH GLVWLQJXLVKHG RQO\ E\ WUDLQHG
REVHUYHUVDVVLVWHGE\SRZHUIXOPDJQL¿FDWLRQ
'HSHQGHQFH RQ WKH KXPDQ HQYLURQPHQW LV OHVV VWULFW
WKDQ Ae. aegypti¶V ,Q DGGLWLRQ WR DUWL¿FLDO HJJOD\LQJ
sites, Ae. AlbopictusPD\XVHDZLGHUYDULHW\RIQDWXUDO
EUHHGLQJJURXQGVURFNKROHV KROORZ WUHHVOHDIVWHPV
EDPERRVWXPSVHWFDQGDGXOWIHPDOHVDUHDVOLNHO\WR
ELWHDQLPDOVDVKXPDQVZKLFKH[SODLQVZK\WKLVVSHFLHV
LVRIWHQIRXQG LQUXUDODUHDVDQGHYHQLQIRUHVWV 7KLV
DOVRH[SODLQVWKH IDFWWKDWLWVYHFWRUDELOLW\LV JHQHUDOO\
FRQVLGHUHGORZHUWKDQWKDWRI Ae. aegypti ZKHUHDV LWV
VXVFHSWLELOLW\WRRUDOLQIHFWLRQLVKLJKHU,QWKHZLOGDPDMRU
SURSRUWLRQRIWKHLQIHFWLRXVEORRGPHDOVDUHWDNHQIURP
DQLPDOVZKLFKDUHHSLGHPLRORJLFDO
GHDGHQGV/HVVHQGRSKDJLFWKDQ
Ae. aegyptiDQGVHOGRPHQGRSKLOLF
Ae. albopictus KDV D ZLGHU ÀLJKW
UDQJH ZKLFK GRHV QRW KRZHYHU
VHHPWRH[FHHGWRPHWHUV
DURXQGWKHRULJLQDOEUHHGLQJVLWH,W
is also a diurnal mosquito.
7KH DGXOW LV YHU\ VLPLODU WR Ae. aegypti ZLWK VRPH
H[FHSWLRQV WKH O\UHVKDSHG PDUNLQJ RQ WKH EDFN
RI WKH WKRUD[ LV UHSODFHG E\ D VLQJOH ZKLWH VWULSH LQ
Ae. albopictusDQGDFRQVSLFXRXVSDWFKRIZKLWHVFDOHV
VKDSHGOLNH DERRPHUDQJFDQEH VHHQRQWKHVLGHV RI
WKHWKRUD[XQGHUWKHZLQJV
Aedes (Stegomyia) polynesiensis* 0DUNV 
DOVR EHORQJV WR WKH VFXWHOODULV JURXS ,W LV OLNHO\ WKDW
IROORZLQJKXPDQPLJUDWLRQVLQWKH3DFL¿FWKLVPRVTXLWR
KDVXQGHUJRQHVSHFLDWLRQDVVRFLDWHGZLWKLWVDELOLW\WR
EUHHG LQ ODQG FUDE EXUURZV 2WKHU HFRORJLFDO QLFKHV
YDFDQWLQ WKH LVODQG HQYLURQPHQWDUHWKRXJKW WR KDYH
EHHQ UHFRORQLVHG VXEVHTXHQWO\ ,WV FXUUHQW DUHD RI
GLVWULEXWLRQ LQFOXGHV WR TXRWH IXOO FXUUHQW NQRZOHGJH
)LML6DPRD:DOOLVDQG)XWXQD7XYDOX7RNHODX&RRN
,VODQGV)UHQFK3RO\QHVLDDQG3LWFDLUQ
/HVVIUHTXHQWO\VRPH
QDWXUDOEUHHGLQJVLWHVVXFK
DVKROORZWUHHVURFNKROHV
or plants with a leaf sheath
HJ%URPHOLDFHDHPD\
KDUERXU$HDHJ\SWLODUYDH
PACIFIC HEALTH SURVEILLANCE AND RESPONSE VOL 12. NO 2. 2005
ORIGINAL PAPERS
48
,WLVWKHPDMRUYHFWRURIO\PSKDWLF¿ODULDVLVLQWKH3DFL¿F
DUHDVZKHUHLWRFFXUVEXWLWVDELOLW\WRWUDQVPLWGHQJXH
KDVDOVREHHQSURYHQ5HVHDUFK KDV VKRZQ WKDW WKLV
PRVTXLWRFDQ PDLQWDLQ HSLGHPLFV E\LWVHOIDV ZDV WKH
FDVH LQ WKH SDVW LQ $PHULFDQ 6DPRD WKH 0DUTXHVDV
,VODQGV DQG WKH &RRN ,VODQGV EHIRUH Ae. aegypti ZDV
LQWURGXFHG WR WKHVH DUHDV ,Q :DOOLV DQG )XWXQD WKH
WUDQVPLVVLRQRIGHQJXH LQ ± ZDV DVVRFLDWHG
ZLWKAe. polynesiensisWKHRQO\SRWHQWLDOYHFWRUUHFRUGHG
GXULQJWKLVSHULRGDQGVLPLODUREVHUYDWLRQVZHUHPDGH
GXULQJWKH±RXWEUHDN
7KLVVSHFLHVLVSDUWLFXODUO\ZHOOVXLWHGWRWKHHFRV\VWHPV
IRXQGLQWKH3DFL¿F,VODQGV,WVODUYDHFDQEHIRXQGLQ
WKHDUWL¿FLDOUHFLSLHQWVDOUHDG\PHQWLRQHGLQFRQQHFWLRQ
ZLWK Ae. aegypti DQG LQ D YDULHW\ RI QDWXUDO EUHHGLQJ
JURXQGV EXW DOVR LQ WKH KLJKO\ VSHFL¿F ELRWRSHV OLNH
IDOOHQFRFRQXWVJQDZHGE\UDWVDQGWKHEXUURZVRIWKH
ODQGFUDECardisoma carnifex.
7KHVHFKDUDFWHULVWLFVPDNHLWDPRVTXLWRWKDWRFFXUVLQ
WKHKXPDQHQYLURQPHQW LQIRUHVWVDQGRQXQLQKDELWHG
LVOHWV6ZDUPVPD\ EH YHU\ ODUJH LQVRPHFDVHVDQG
ELWLQJUDWHVRIRUPRUHSHUKXPDQDQGSHUKRXUDUH
not unusual.
7KHODUYDHDUHLPSRVVLEOHWRGLVWLQJXLVKIURPWKRVHRI
Ae. albopictus DQG RWKHU PHPEHUV RI WKH scutellaris
JURXSZLWKRXWH[WHQVLYHH[SHULHQFH7KHVDPHFDQEH
VDLGRIDGXOWIHPDOHVZKLFK DUH DOVR FKDUDFWHULVHG E\
DVLQJOHZKLWHVWULSHRQWKHWKRUD[,QWKHVDPHZD\DV
WKHWZRVSHFLHVSUHYLRXVO\UHIHUUHGWRWKH\KDYHGLXUQDO
DFWLYLW\EXWOLNHAe. albopictusWKH\GRQRWXVXDOO\HQWHU
KXPDQGZHOOLQJV7KH\WDNHWKHLUEORRGPHDOVIURPERWK
KXPDQVDQGZLOGRUGRPHVWLFDQLPDOV7KHLUGLVSHUVDO
DURXQG WKH RULJLQDO EUHHGLQJ VLWH H[WHQGV WR VHYHUDO
KXQGUHG PHWUHV EXW FDQ H[FHHG RQH NP LI WKHUH LV D
VKRUWDJHRIKRVWVDQGRUEUHHGLQJVLWHV
2WKHUVSHFLHVRIWKHscutellarisJURXS
6SHFLHV RI WKH scutellaris JURXS DUH QXPHURXV LQ WKH
3DFL¿F ZKHUH VSHFLDWLRQ KDV WDNHQ SODFH EHFDXVH RI
WKH VSHFL¿F LVRODWLRQ FRQGLWLRQV SUHYDLOLQJ LQ LVODQGV
'LVWULEXWLRQLVRIWHQKLJKO\ORFDOLVHG
6RPH RI WKHP KDYH EHHQ LQFULPLQDWHG DV GHQJXH
YHFWRUV HLWKHU RQ D ELRORJLFDO EDVLV LH H[SHULPHQWDO
WUDQVPLVVLRQ RU ODERUDWRU\LQGXFHG LQIHFWLRQ RU RQ
DQ HSLGHPLRORJLFDO EDVLV LH RFFXUUHQFH RI GHQJXH
HSLGHPLFVZLWKQRVLJQL¿FDQWSUHVHQFHRIAe. aegypti or
RWKHUVSHFLHVZLWKDUHFRJQLVHGYHFWRUFDSDFLW\RUERWK
RIWKHDERYHVLPXOWDQHRXVO\
)RU WKLV UHDVRQ WKH :HVWHUQ 3DFL¿F LV SUREDEO\ WKH
ZRUOG¶V UHJLRQ ZLWK WKH KLJKHVW QXPEHU RI GLIIHUHQW
GHQJXHIHYHUYHFWRUVSHFLHV
7KHVH PRVTXLWRHV KDYH D PRUSKRORJ\ VLPLODU WR WKDW
of Ae. polynesiensis DQG DUH H[WUHPHO\ GLI¿FXOW WR
GLVWLQJXLVKRQHIURPDQRWKHU
7KH\KDYHLQFRPPRQWKHIDFWWKDWWKH\OD\GXUDEOHHJJV
LQVPDOOFOXWFKHVLQFRQWDLQHUVJHQHUDOO\DERYHJURXQG
OHYHOHJKROORZWUHHVRUURFNVFRFRQXWVKHOOVD[LOVRI
SODQWVZLWKVKHDWKHGOHDYHVDQGD YHU\ ZLGH UDQJH RI
DUWL¿FLDOUHFLSLHQWVVXFKDVWKRVHXVHGE\Ae. aegypti.
ORIGINAL PAPERS
49
PACIFIC HEALTH SURVEILLANCE AND RESPONSE VOL 12. NO 2. 2005
7KHODUYDHRIFHUWDLQVSHFLHVFRORQLVHODQGFUDEEXUURZV
LQ ODUJH QXPEHUV DQG WKH\ DUH RFFDVLRQDOO\ IRXQG LQ
ZHOOV
7KH DGXOW PRVTXLWRHV DOO KDYH GLXUQDO DFWLYLW\ 7KH\
YLUWXDOO\ DOO RQO\ DWWDFN KXPDQV (QGRSKDJLF DQG
HQGRSKLOLFEHKDYLRXUYDULHVIURPVSHFLHVWRVSHFLHV
$SDUWLDOOLVWRIWKRVHPRVTXLWRHVLVJLYHQLQ7DEOH
Epidemic Polyarthritis Due To The Ross
River Virus
Disease
7KH5RVV5LYHUYLUXVWKHDJHQWRIWKLVGLVHDVHEHORQJV
WRWKHJHQXVAlphavirus,WZDV¿UVWLVRODWHGLQLQ
DEDWFKRIPRVTXLWRHVAedes vigilaxFROOHFWHGFORVHWR
WKHULYHURIWKHVDPHQDPHLQ4XHHQVODQG$XVWUDOLD
7KHLQFXEDWLRQSHULRG YDULHV IURPWR GD\V EXW LQ
PRVW FDVHV LV EHWZHHQ  DQG 
GD\V 7KH PDLQ V\PSWRP LV WKH
UDSLG VXGGHQ RQVHW RI DUWKUDOJLD
XVXDOO\LQ OLPEMRLQWVDQGH[WUHPLWLHV
DFFRPSDQLHGE\DVWKHQLDDQGPXVFOH
pains. Frequently observed is a
PDFXORSDSXODUUDVKZKLFKLVQRUPDOO\
QRW SUXULJLQRXV 7KH SDWLHQW¶V
WHPSHUDWXUHLVQRWRIWHQKLJK
(YROXWLRQ LV DOZD\V IDYRXUDEOH EXW WHPSRUDU\ DIWHU
HIIHFWVDUH QRW XQFRPPRQ 7KHUDVKJRHVDZD\DIWHU
RQHWR WZR ZHHNV -RLQW SDLQV PD\ ODVWIURP VHYHUDO
GD\VWRVHYHUDOPRQWKVRUHYHQ\HDUV
,WLVHVWLPDWHGWKDWDERXWRILQIHFWHGVXEMHFWVGHYHORS
WKHGLVHDVHZKLOHWKHRWKHUVUHPDLQDV\PSWRPDWLF
7KH DUHD RI GLVWULEXWLRQ H[WHQGV RYHU WKH ZKROH RI
$XVWUDOLDZKHUHWKRXVDQGVRIFDVHVDUHUHSRUWHGHYHU\
\HDU&DVHVRIWUDQVPLVVLRQKDYHDOVREHHQUHFRUGHGLQ
1HZ*XLQHD3DSXD1HZ*XLQHDDQG,ULDQ-D\DDQGD
PDMRURXWEUHDNDIIHFWHGVHYHUDO6RXWK3DFL¿FFRXQWULHV
IURP  WR  LQFOXGLQJ )LML &RRN ,VODQGV 1HZ
&DOHGRQLD:DOOLVDQG)XWXQD7RQJDDQG6DPRD
Mode of transmission
7KH 5RVV 5LYHU YLUXV PDLQO\ LQIHFWV DQLPDOV ZLWK
PDFURSRG PDUVXSLDOV VHUYLQJ DV WKH PDLQ YHUWHEUDWH
KRVWUHVHUYRLUV LQ WKRVH DUHDV ZKHUH WKH GLVHDVH LV
HQGHPLF$XVWUDOLD +RZHYHUGRPHVWLFDQLPDOVVXFK
DV KRUVHV PD\ SOD\ D UROH LQ WKH HSLGHPLRORJ\ RI WKH
YLUXVDV PD\ FHUWDLQ VSHFLHV RI&KLURSWHUD Pteropus
spp /DVWO\ VRPH DVSHFWV RI WKH ± 3DFL¿F
RXWEUHDNVWURQJO\VXJJHVWWKDWXQGHUFHUWDLQFRQGLWLRQV
GLUHFW KXPDQ±PRVTXLWR±KXPDQ WUDQVPLVVLRQ PD\
RFFXU,WLVSRVVLEOHWKDWWKHVXUYLYDORIWKHYLUXVEHWZHHQ
HSLGHPLFVSDUWO\RFFXUVGXHWRWKHH[LVWHQFHRIYHUWLFDO
WUDQVPLVVLRQ ZKLFK KDV EHHQ GHPRQVWUDWHG LQ VRPH
YHFWRUVSHFLHV
9HFWRULQIHFWLRQRFFXUVLQWKHVDPHZD\DVIRUGHQJXH
IHYHULHGXULQJEORRGPHDOVRQYLUDHPLFYHUWHEUDWHV
Vectors
7KH 5RVV 5LYHU YLUXV KDV EHHQ LVRODWHG IURP D ODUJH
QXPEHURI&XOLFLGDH:HZLOORQO\UHIHUKHUHWRWKRVH
ZKRVH HSLGHPLRORJLFDO UROH LV VLJQL¿FDQW DQG ZKLFK
UHSUHVHQWDULVNIRUWKH3DFL¿FDUHD
Aedes (Ochlerotatus) vigilax*6NXVH  LV D
PRVTXLWR RI WKH FRDVWDO ]RQHV ZKLFK RFFXUV DOO DORQJ
WKHZHVWHUQ3DFL¿FVHDERDUGIURP7KDLODQGWR$XVWUDOLD
DQGIURP0DOD\VLDWR)LMLDQG1HZ&DOHGRQLD
7KHHJJVZKLFKDUHGXUDEOHLQWKHVDPHZD\DVWKRVH
of Ae. aegyptiDUHODLGVHSDUDWHO\GLUHFWO\RQWKHJURXQG
RUDWWKHEDVHRISODQWVWHPV%UHHGLQJVLWHVDUHIRUPHG
E\SRROVDQGWURXJKVWRWKHODQGZDUG
VLGH RI WKH PDQJURYHV WKDW ¿OO ZLWK
ZDWHUHLWKHU GXULQJWKHKLJKHVWKLJK
WLGHVRUEHFDXVHRIKHDY\UDLQV
7KH ODUYDH FDQ WROHUDWH ZDWHU ZLWK
KLJKVDOLQLW\7KH\DUHYHU\VLPLODUWR
WKDWRIAe. aegyptiEXWWKHWZRVSHFLHV
QHYHUFRKDELW'HQVLWLHVRIVHYHUDOKXQGUHGVSHFLPHQV
per square metre are not unusual.
7KHDGXOWVDUHDFWLYHWKURXJKRXWWKHQ\FWKHPHURQZLWK
DSHDN RI DJJUHVVLYHQHVVDWVXQVHW /DUJHFORXGVRI
WKHVHPRVTXLWRHVFDQRIWHQEHIRXQGFORVHWREUHHGLQJ
sites.
7KLV PRVTXLWR KDV H[FHOOHQW À\LQJ DELOLWLHV DQG VRPH
VSHFLPHQV FDQ EH IRXQG DV IDU DV VHYHUDO NLORPHWUHV
DZD\IURPWKHLURULJLQDOEUHHGLQJVLWH
7KHERG\LVGDUNDQG WKH SRLQWHG DEGRPHQ LV EDQGHG
ZLWKSDOHVWULSHV1RPDUNLQJVDUHYLVLEOHRQWKHEDFN
RIWKH WKRUD[DQGRQO\DIHZ\HOORZLVKSDWFKHVDSSHDU
RQWKHÀDQNV7KHOHJVDUHVWULSHGDQGDUHEODFNDWWKH
HQGV 7KH SURERVFLVLV\HOORZ FORVH WRWKH KHDG DQG
EODFNRYHUWKHODVWWKLUG
7KHIHPDOHAe. vigilaxDWWDFNVERWKKXPDQVDQGDZLGH
YDULHW\RIDQLPDOVLQFOXGLQJELUGV
Culex (Culex) annulirostris Skuse RFFXUVLQWKH
3KLOLSSLQHV,QGRQHVLDDQG$XVWUDOLD,WLVIRXQGLQ1HZ
*XLQHDDQGWKURXJKRXWWKH3DFL¿F,VODQGVH[FHSW1HZ
=HDODQG,WLVWKHPDLQYHFWRURIWKH0XUUD\9DOOH\YLUXV
LQ $XVWUDOLD EXW LW LV DOVR H[WHQVLYHO\ UHVSRQVLEOH IRU
WUDQVPLWWLQJWKH5RVV5LYHUYLUXV
9HFWRULQIHFWLRQRFFXUV
in the same way as for
GHQJXHIHYHULHGXULQJ
blood meals on viraemic
vertebrates.
PACIFIC HEALTH SURVEILLANCE AND RESPONSE VOL 12. NO 2. 2005
ORIGINAL PAPERS
50
,WV HJJV GR QRW WROHUDWH GHVLFFDWLRQ 7KH\ DUH ODLG
GLUHFWO\RQ WKH VXUIDFHRIWKH ZDWHU LQ ³UDIWV´ RI WR
HJJV
7KH ODUYDH SRVVHVV D ORQJ WKLQ UHVSLUDWRU\ VLSKRQ
7KH\PD\EHIRXQGLQDOPRVW DOO NLQGV RI JURXQGO\LQJ
ZDWHUERGLHVWHPSRUDU\RUSHUPDQHQWIUHVKRUVOLJKWO\
EUDFNLVKFOHDURUFRQWDLQLQJRUJDQLFPDWWHUH[SRVHGWR
WKHVXQVKLQHRULQWKHVKDGH/HVVIUHTXHQWO\DUWL¿FLDO
UHFLSLHQWVPD\DOVREHXVHG
7KHDGXOWIHPDOHKDVDURXQGHGDEGRPHQDQGDZKLWH
ULQJ RQ WKH SURERVFLV 7KH OHJV KDYH FOHDU PDUNLQJV
DW WKH MRLQWV 7KLV LV D JHQHUDOO\ QRFWXUQDO PRVTXLWR
EXW WKH SHDN RI DFWLYLW\ ZRXOG DSSHDU WR YDU\ IURP
RQH ORFDWLRQ WR DQRWKHU DQG DWWDFNV PD\ RFFXU LQ WKH
GD\WLPH7KHFKRLFHRIKRVWVLVYHU\ZLGHEXWOLYHVWRFN
LVXVXDOO\SUHIHUUHGIROORZHGE\GRJVWKHQKXPDQVDQG
RWKHUPDPPDOVCx. annulirostris does not seem to be
DWWUDFWHGWRELUGV
Aedes (Finlaya) notoscriptus*
6NXVH  LV DQ $XVWUDOLDQ
VSHFLHV ,WV DUHD RI GLVWULEXWLRQ LQ
WKH 3DFL¿F LQFOXGHV 1HZ *XLQHD
1HZ&DOHGRQLD DQG 1HZ=HDODQG
7KLV VHPLGRPHVWLF PRVTXLWR
EUHHGVLQVPDOOQDWXUDOUHFLSLHQWVRU
DUWL¿FLDOFRQWDLQHUV,WELWHVKXPDQVELUGVDQGYDULRXV
ZLOGRUGRPHVWLFDQLPDOVDWDQ\WLPHRIWKHGD\RUQLJKW
,WVUHVSRQVLELOLW\LQWKHWUDQVPLVVLRQRIWKH5RVV5LYHU
YLUXVLVEDVHGRQLVRODWLRQVSHUIRUPHGIURPVSHFLPHQV
FROOHFWHGLQWKHZLOG
Other vector mosquitoes
'XULQJ WKH ± RXWEUHDN LQ WKH 3DFL¿F ,VODQGV
WKH PDLQ VSHFLHV UHVSRQVLEOH IRU WUDQVPLVVLRQ ZDV
apparently Ae. polynesiensis ZKHUH LW RFFXUUHG DQG
ZKHQ Ae. vigilax ZDV DEVHQW Ae. aegypti KDV QHYHU
EHHQ IRXQG WR EH FDUU\LQJ WKH YLUXV LQ WKH ZLOG EXW
H[SHULPHQWDO WUDQVPLVVLRQ KDV SURYHG SRVVLEOH
Ae. albopictusZDVQRWSUHVHQWLQJUHDWQXPEHUVLQ)LML
GXULQJWKHUHOHYDQWRXWEUHDN 2Q WKH RWKHU KDQG LW LV
SRVVLEOHWKDW LW SOD\VD UROH LQWKHWUDQVPLVVLRQ RI WKH
YLUXVLQ3DSXD1HZ*XLQHDDQG6RORPRQ,VODQGV
Japanese Encephalitis
Disease
-DSDQHVH HQFHSKDOLWLV LV WKH PRVW LPSRUWDQW DUERYLUDO
HQFHSKDOLWLV LQ WKH ZRUOG LQ WHUPV RI PRUELGLW\ DQG
PRUWDOLW\ ZLWK VRPH  FDVHV FDXVLQJ 
GHDWKVHDFK \HDU7KHYLUXV RI WKHJHQXVFlavivirus,
KDV EHHQ LQ FLUFXODWLRQ IRU D ORQJ WLPH WKURXJKRXW
VRXWKHUQ DQG HDVWHUQ $VLD ,W KDV UHFHQWO\ DSSHDUHG
LQ3DSXD1HZ*XLQHDDQGWKH7RUUHV 6WUDLW ,VODQGV RI
$XVWUDOLD2XWEUHDNVKDYHDOVRRFFXUUHGLQ0LFURQHVLD
LHRQ*XDPLQDQGRQ6DLSDQLQ$IWHUD
±GD\LQFXEDWLRQSHULRGDIWHUWKHELWHE\WKHYHFWRU
PRVTXLWR WKH LQIHFWLRQ GHYHORSV LQWR DV\PSWRPDWLF
IRUPV HVWLPDWHG WR SUHYDLO LQ DSSUR[LPDWHO\  RI
FDVHV RU LQWR D FOLQLFDO SUR¿OH UDQJLQJ IURP D EHQLJQ
IHYHULVK V\QGURPH WR DFXWH HQFHSKDOLWLV 7KH ODWWHU
FRQGLWLRQPD\EHFKDUDFWHULVHGE\KHDGDFKHVYRPLWLQJ
UHGXFHGDZDUHQHVVDQGFRQYXOVLRQV7KHPRUWDOLW\UDWH
UHDFKHVRIFOLQLFDOFDVHVDQGKDOIRIWKHVXUYLYRUV
VXIIHUIURPVHYHUHQHXURSV\FKLDWULFFRQVHTXHQFHV
Mode of transmission
-DSDQHVH HQFHSKDOLWLV LV D ]RRQRVLV DIIHFWLQJ PDQ\
GRPHVWLFDQGZLOG DQLPDOV )URP WKHHSLGHPLRORJLFDO
VWDQGSRLQW WKH PRVW LPSRUWDQW VSHFLHV DUH SLJV WKDW
VKRZDKLJKDQGORQJODVWLQJYLUDHPLDZKLFKLVGLI¿FXOW
WR GHWHFW GXH WR WKH ODFN RI FOLQLFDO VLJQV VRPH ELUGV
LQ SDUWLFXODU WKH $UGHLGDH KHURQV HJUHWV HWF DQG
&KLURSWHUD 2Q WKH RWKHU KDQG FDWWOH GRJV KRUVHV
DQGKXPDQVKDYHLQVXI¿FLHQWYLUDHPLDWRLQIHFWYHFWRU
mosquitoes and so do not play any
UROHLQWKHGLVVHPLQDWLRQRIWKLVYLUXV
7KHPRGHRILQIHFWLRQIRUYHFWRUVLV
WKHVDPHDVIRUGHQJXHIHYHU
Vectors
$OWKRXJKRWKHUVSHFLHVFDQWUDQVPLW
WKLVYLUXVLQWKHODERUDWRU\HJAe.
albopictusLWLVEHOLHYHGWKDWWKHYHFWRUVRIWKH-(YLUXV
LQWKHZLOGDUHXVXDOO\PRVTXLWRHVRIWKHJHQXVCulex.
:HZLOORQO\UHIHUKHUHWRWKRVHVSHFLHVWKDWRFFXULQWKH
3DFL¿F
Culex (Culex) tritaeniorhynchus *LOHV  KDV D
YHU\EURDGJHRJUDSKLFDOUDQJHLQWKHZKROHHDVWHUQELR
JHRJUDSKLFDO UHJLRQ DQG H[WHQGV QRUWKHDVW WR -DSDQ
.RUHD&KLQDDQGPDULWLPH5XVVLDQ6LEHULD,WLVSUHVHQW
LQWKH3DFL¿FLQWKH0DULDQD,VODQGV ,WLVWKHSULQFLSDO
YHFWRURIWKH-(YLUXVLQFRQWLQHQWDO$VLD
%RWKLWVELRHFRORJ\ DQG PRUSKRORJ\DUHYHU\FORVHWR
WKRVHRI Cx. annulirostris ,W LVD QRFWXUQDO PRVTXLWR
ZKLFKIHHGVSUHIHUHQWLDOO\RQFDWWOHSLJVDQGELUGVDQG
RFFDVLRQDOO\RQKXPDQV
Culex (Culex) annulirostris 6NXVH  LV DOVR
FRQVLGHUHGWREHDYHFWRURIWKH-(YLUXV
Culex (Culex) sitiens:LHGHPDQQOLNHAe. vigilax,
LVDVHDVLGHGZHOOLQJPRVTXLWR,WLVIRXQGRQWKHWURSLFDO
VKRUHVRIWKH,QGLDQ2FHDQWKH3DFL¿FDQGDGMDFHQWVHDV
,WGRHVQRWRFFXUHDVWRI1LXH,WWUDQVPLWVWKHYLUXVYHU\
HI¿FLHQWO\ LQ ODERUDWRU\ FRQGLWLRQV DQG LWV DEXQGDQFH
SOHDGVLQ IDYRXU RIDQ DFWLYH UROHLQ WKH HSLGHPLRORJ\
RIWKLVGLVHDVH,WLVDOZD\VIRXQGDORQJWKHVHDVKRUH
ZKHUH LWV ODUYDH FRORQLVH SRROV SXGGOHV DQG GUDLQV
7KHPRUWDOLW\UDWHUHDFKHV
RIFOLQLFDOFDVHV
and half of the survivors
VXIIHUIURPVHYHUHQHXUR
psychiatric consequences.
ORIGINAL PAPERS
51
PACIFIC HEALTH SURVEILLANCE AND RESPONSE VOL 12. NO 2. 2005
FRQWDLQLQJEUDFNLVKRU VDOWZDWHU,QWKHVDPHZD\ DV
Ae. polynesiensisLWLVDEOHWREUHHGLQODQGFUDEEXUURZV
7KHODUYDHDUHYHU\VLPLODUWRWKRVHRICx. Annulirostris,
ZLWK ZKLFK LW VRPHWLPHV FRKDELWV 7KH DGXOW KDV WKH
VDPH JHQHUDO DSSHDUDQFH EXW WKH FRORXULQJ LV GDUNHU
DQGVRPHGHWDLOVPDNHLWSRVVLEOHWRGLVWLQJXLVKLWHDVLO\
ZLWKSRZHUIXOPDJQL¿FDWLRQCx. sitiensLVDQRFWXUQDO
PRVTXLWR,WVDJJUHVVLYHQHVVWRKXPDQVVHHPVWRYDU\
FRQVLGHUDEO\IURPSODFHWRSODFH
$UHFHQWWD[RQRPLF UHYLHZ 5HLQHUW  SURSRVHG
DWKRURXJKUHVWUXFWXULQJRIWKHJHQXVAedesHOHYDWLQJ
PDQ\VXEJHQHUDWRJHQXVOHYHOZLWKFRQVHTXHQWQDPH
FKDQJHVDIIHFWLQJVSHFLHVRIPDMRUPHGLFDOLPSRUWDQFH
$OLYHO\ GHEDWHHQVXHG EHWZHHQ WD[RQRPLVWVPHGLFDO
HQWRPRORJLVWVDQGSXEOLVKHUVRIVFLHQWL¿FMRXUQDOVDQG
WKH FRQVHQVXV WKDW HPHUJHG FRQFOXGHG WKDW IXUWKHU
LQYHVWLJDWLRQZDVQHFHVVDU\3HQGLQJWKHUHVXOWVRIVXFK
IXUWKHUUHVHDUFKWKHWUDGLWLRQDOQDPHVVKRXOGFRQWLQXH
WREHXVHG7KLVPHDQV WKDW WKH JHQXV Ochlerotatus,
FUHDWHGE\ 5HLQKDUGW LQUHYHUWV WR EHLQJDVXE
JHQXVRIWKHJHQXVAedes.
Aedes aegypti
Aedes ploynesiensis
Culex annulirostris
Aedes aegypti larvae
Aedes vigilax
Culex sitiens
PACIFIC HEALTH SURVEILLANCE AND RESPONSE VOL 12. NO 2. 2005
ORIGINAL PAPERS
52
Bibliography
 %HONLQ -1 7KH PRVTXLWRHV RI WKH 6RXWK 3DFL¿F
8QLYHUVLW\RI &DOLIRUQLD 3UHVV %HUNHOH\  /RV$QJHOHV
YROV
 &DOLVKHU&+3HUVLVWDQW(PHUJHQFHRI'HQJXH(PHUJHQW
,QIHFWLRXV'LVHDVHV
 (IÀHU 39 'HQJXH IHYHU +DZDLL  (PHUJLQJ
,QIHFWLRXV'LVHDVHV
 *XEOHU'-'HQJXHDQG GHQJXH KHPRUUKDJLF IHYHU LWV
KLVWRU\DQGUHVXUJHQFHDVDJOREDOSXEOLFKHDOWKSUREOHP
,Q*XEOHU'-.XQR*HGLWRUV'HQJXHDQGGHQJXH
KHPRUUKDJLFIHYHU1HZ<RUN&$% ,QWHUQDWLRQDO 
p.1-22.
 +DOVWHDG 6% -DFREVRQ - -DSDQHVH (QFHSKDOLWLV
$GYDQFHVLQ9LUXV5HVHDUFK
 +DUOH\ ' 6OHLJK $ 5LWFKLH 6$ 5RVV 5LYHU 9LUXV
7UDQVPLVVLRQ,QIHFWLRQDQG'LVHDVHD&URVV'LVFLSOLQDU\
5HYLHZ&OLQLFDO0LFURELRORJ\5HYLHZV

 .LHGU]\QVNL 7 6RXDUHV < 6WHZDUW 7 'HQJXH LQ WKH
3DFL¿FDQXSGDWHGVWRU\3DFLF+HDOWK'LDORJ

 /HH '- +LFNV 00*ULI¿WKV 0 5XVVHOO 5& 0DUNV
(1(QWRPRORJ\PRQRJUDSKQ7KH&XOLFLGDHRIWKH
$XVWUDODVLDQ5HJLRQ$XVWUDOLDQ*RYHUQPHQW 3XEOLVKLQJ
6HUYLFH&DQEHUUDYROV
 /LQGVD\ 0'$5RVV 5LYHU DQG %DUPDK )RUHVW YLUXVHV
LQ :HVWHUQ $XVWUDOLD &RXUVH QRWHV 0RVTXLWR &RQWURO
&RXUVH0DQGXUDK WK6HSWHPEHU SXEOLVKHG
E\WKH+HDOWK'HSDUWPHQWRI:HVWHUQ$XVWUDOLD
 3HUUHW & $EDUFD . 2YDOOH - HW DO 'HQJXH YLUXV
LVRODWLRQ GXULQJ ¿UVW GHQJXH IHYHU RXWEUHDN RQ (DVWHU
,VODQG&KLOH(PHUJ,QIHFW'LV >VHULDO RQOLQH@  1RY
>GDWH FLWHG@ $YDLODEOH IURP 85/ KWWSZZZFGFJRY
QFLGRG(,'YROQRKWP
 5LYLHUH ) 7KqVH GH GRFWRUDW eFRORJLH GH $HGHV
6WHJRP\LDSRO\QHVLHQVLV0DUNVHWWUDQVPLVVLRQ
GHOD¿ODULRVHGH%DQFURIWHQ3RO\QpVLH
 5RGKDLQ ) 3HUH] & 3UpFLV G¶(QWRPRORJLH 0pGLFDOH HW
9pWpULQDLUH0DORLQHVDpGLWHXU
 5RGKDLQ)5RVHQ/0RVTXLWRYHFWRUVDQGGHQJXHYLUXV
YHFWRU UHODWLRQVKLSV ,Q  *XEOHU '- .XQR * HGLWRUV
'HQJXHDQGGHQJXH KHPRUUKDJLF IHYHU1HZ <RUN&$%
,QWHUQDWLRQDOS
 5XHGD /0 3LFWRULDO NH\V IRU WKH LGHQWL¿FDWLRQ RI
PRVTXLWRHV'LSWHUD&XOLFLGDHDVVRFLDWHGZLWK'HQJXH
9LUXV7UDQVPLVVLRQ=RRWD[D
 6DYDJH +0 HW DO (SLGHPLF RI GHQJXH YLUXV LQ <DS
VWDWH)HGHUDWHG6WDWHVRI0LFURQHVLDDQGLPSOLFDWLRQRI
$HGHV+HQVLOOL DVDQHSLGHPLFYHFWRU$PHULFDQ-RXUQDO
RI7URSLFDO0HGHFLQHDQG+\JLHQH
 7USLV0+DXVHUPDQQ:'LVSHUVDODQGRWKHUSRSXODWLRQ
SDUDPHWHUV RI $HGHV DHJ\SWL LQ DQ$IULFDQ YLOODJH DQG
WKHLU SRVVLEOH VLJQL¿FDQFH LQ HSLGHPLRORJ\ RI YHFWRU
ERUQHGLVHDVHV$PHULFDQ-RXUQDORI7URSLFDO0HGHFLQH
DQG+\JLHQH
7RDGGUHVVSRYHUW\HFRQRPLFJURZWKLVQRWDQRSWLRQLWLVDQHFHVVLW\
0DKLEXEXO+DJ±
... (Stegomyia) tabu, are also suspected to be potential vectors of DENV 16 . Understanding mosquito phylogeny holds significant importance for different reasons. ...
... For example, the speciation between Ae. futunae and the cluster Ae. polynesiensis/Ae. pseudoscutellaris, dated back to approximately 25 MYA (95%HPD: [16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33], when analyzing the 5′ cox1 and around 27 MYA (95%HPD: 20-33), when analyzing the 3′ cox1. Also, the speciation between Ae. riversi and the cluster Ae. malayensis/Ae. ...
... at the same period: around 20 MYA (95%HPD:[13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29] for the cluster comprising Ae. daitensis, Ae. malayensis, Ae. riversi and Ae. scutellaris, and approximately 25 MYA (95%HPD:[16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33] for the cluster composed of Ae. futunae, Ae. polynesiensis and Ae. ...
Article
Full-text available
The Scutellaris Group of Aedes comprises 47 mosquito species, including Aedes albopictus. While Ae. albopictus is widely distributed, the other species are mostly found in the Asia–Pacific region. Evolutionary history researches of Aedes species within the Scutellaris Group have mainly focused on Ae. albopictus, a species that raises significant public health concerns, neglecting the other species. In this study, we aimed to assess genetic diversity and estimate speciation times of several species within the Scutellaris Group. Mosquitoes were therefore collected from various Asia–Pacific countries. Their mitochondrial cytochrome c oxidase subunit 1 (cox1) and subunit 3 (cox3) sequences were analyzed alongside those of other Scutellaris Group species available in the GenBank database. To estimate the divergence time, we analyzed 1849 cox1 gene sequences from 21 species, using three species (Aedes aegypti, Aedes notoscriptus and Aedes vigilax) as outgroups. We found that most of the speciation dates occurred during the Paleogene and the Neogene periods. A separation between the Scutellaris Subgroup and the Albopictus Subgroup occurred approximately 64–61 million years ago (MYA). We also identified a split between species found in Asia/Micronesia and those collected in Melanesia/Polynesia approximately 36–35 MYA. Our findings suggest that the speciation of Aedes species within the Scutellaris Group may be driven by diversity in mammalian hosts, climate and environmental changes, and geological dynamics rather than human migration.
... To allow a direct comparison between our test collectives, data were standardized by age and gender (Fig 2) (Fig 2). In the two Cook Islands sub-populations, extrapolated rates amount to 32 ...
... In terms of secondary vectors, the Cook Islands are home to Ae. polynesiensis while Ae. albopictus is prevalent in Vanuatu [17,32]. Another species of the genus Aedes present in Vanuatu is Ae. ...
... Another species of the genus Aedes present in Vanuatu is Ae. hebrideus [32], but since data concerning CHIKV transmission for this mosquito are scarce it is not further discussed within this work. Regarding the epidemiological effect of the two secondary vectors Ae. albopictus and Ae. ...
Article
Full-text available
Background Arthropod-borne diseases pose a significant and increasing risk to global health. Given its rapid dissemination, causing large-scale outbreaks with severe human infections and economic loss, the Chikungunya virus (CHIKV) is one of the most important arboviruses worldwide. Despite its significance, the real global impact of CHIKV remains underestimated as outbreak data are often incomplete and based solely on syndromic surveillance. During 2011–2016, the South Pacific Region was severely affected by several CHIKV-epidemics, yet the area is still underrepresented in arboviral research. Methods 465 outpatient serum samples collected between 08/2016 and 04/2017 on three islands of the island states Vanuatu (Espiritu Santo) and the Cook Islands (Rarotonga, Aitutaki) were tested for anti-CHIKV specific antibodies using Enzyme-linked immunosorbent Assays. Results A total of 30% (Cook Islands) and 8% (Vanuatu) of specimens were found positive for anti-CHIKV specific antibodies with major variations in national and intranational immunity levels. Seroprevalence throughout all age groups was relatively constant. Four potential outbreak-protective factors were identified by comparing the different study settings: presence of Ae. albopictus (in absence of ECSA E1-A226V-mutation CHIKV), as well as low levels of human population densities, residents’ travel activity and tourism. Conclusion This is the first seroprevalence study focussing on an arboviral disease in the Cook Islands and Vanuatu. It highlights the impact of the 2014/2015 CHIKV epidemic on the Cook Islands population and shows that a notable part of the Vanuatu test population was exposed to CHIKV although no outbreaks were reported. Our findings supplement the knowledge concerning CHIKV epidemics in the South Pacific Region and contribute to a better understanding of virus dissemination, including outbreak modifying factors. This study may support preventive and rapid response measures in affected areas, travel-related risk assessment and infection identification in returning travellers. Trial registration ClinicalTrials.gov Aachen: 051/16_09/05/2016 Cook Islands Ref.: #16-16 Vanuatu Ref.: MOH/DG 10/1/1-GKT/lr.
... To date, the main Aedes vectors of DENV, CHIKV and ZIKV of the Pacific region are Ae. aegypti, Ae. albopictus [13][14][15][16][17] and Aedes polynesiensis [20][21][22], these last two species belonging to the Scutellaris Group [23,24]. In addition, at least nine other Aedes species of the Scutellaris Group present in the region are vectors, or highly suspected to be vectors of DENV such as Ae. ...
... scutellaris and Ae. pseudoscutellaris [23,25]. Seven other species belonging to the Scutellaris Group are also documented in the Pacific region, but their potential implication in arboviruses transmission has not yet been established [24,26]. ...
... First, only six Aedes species of the Scutellaris Group were included in this database. About 40 species is currently classified in this group with at least 12 species vectors of DENV [23,24,26,45]. However, the results obtained are very encouraging and constitute a proof of concept for using this technique to identify the other species of the Scutellaris Group. ...
Article
Full-text available
Dengue, Zika and chikungunya viruses cause significant human public health burdens in the world. These arboviruses are transmitted by vector mosquito species notably Aedes aegypti and Aedes albopictus. In the Pacific region, more vector species of arboviruses belonging to the Scutellaris Group are present. Due to the expansion of human travel and international trade, the threat of their dispersal in other world regions is on the rise. Strengthening of entomological surveillance ensuring rapid detection of introduced vector species is therefore required in order to avoid their establishment and the risk of arbovirus outbreaks. This surveillance relies on accurate species identification. The aim of this study was to assess the use of the Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) as a tool for an international identification and surveillance of these mosquito vectors of arboviruses. Field-mosquitoes belonging to 8 species (Ae. aegypti, Ae. albopictus, Aedes polynesiensis, Aedes scutellaris, Aedes pseudoscutellaris, Aedes malayensis, Aedes futunae and Culex quinquefasciatus) from 6 countries in the Pacific, Asian and Madagascar, were included in this study. Analysis provided evidence that a MALDI-TOF database created using mosquitoes from the Pacific region allowed suitable identification of mosquito species from the other regions. This technic was as efficient as the DNA sequencing method in identifying mosquito species. Indeed, with the exception of two Ae. pseudoscutellaris, an exact species identification was obtained for all individual mosquitoes. These findings highlight that the MALDI-TOF MS is a promising tool that could be used for a global comprehensive arbovirus vector surveillance.
... Aedes polynesiensis est un vecteur reconnu de ZIKV, CHIKV et DENV, même si aucune étude de compétence vectorielle n'ait pour le moment été réalisée sur cette espèce pour ce dernier Guillaumot, 2005;Richard and Cao-Lormeau, 2019). C'est une espèce endémique de la région Pacifique. ...
... Aedes pseudoscutellaris serait également vecteur du DENV (Guillaumot, 2005). Très peu d'informations sur la bionomique de cette espèce sont disponibles, probablement en raison de la confusion entre cette espèce, Ae. polynesiensis et Aedes horrescens qui sont morphologiquement difficiles à distinguer (Belkin, 1962). ...
... Néanmoins l'intensification des échanges régionaux et internationaux augmente le risque d'invasion de ces espèces dans les autres îles de la région, voire dans d'autres régions du monde. (Elliott, 1980;Cooper et al., 1994;Gratz, 2004;Guillaumot et al., 2012;Roth et al., 2014a;Kamgang et al., (Belkin, 1962;Burkot et al., 2007;Calvez et al., 2018Calvez et al., , 2020Guillaumot, 2005;Richard and Cao-Lormeau, 2019;Roth et al., 2014a) Ae. hensilli Récipients naturels et artificiels ...
Thesis
Full-text available
La région Pacifique est régulièrement touchée par des épidémies liées aux virus de la dengue (DENV), du Zika (ZIKV) et du chikungunya (CHIKV). Les moustiques impliqués dans la transmission de ces arbovirus sont notamment Aedes aegypti, Aedes albopictus et Aedes polynesiensis, ces deux derniers appartenant au groupe Scutellaris. Il existe également, dans le Pacifique, d’autres espèces du groupe Scutellaris impliquées ou suspectées dans la transmission du DENV. L’accélération des échanges internationaux pourrait favoriser la dispersion de ces espèces dans toute la région, voire dans le monde. L’introduction de ces espèces en Nouvelle-Calédonie, où le seul vecteur connu de DENV est Ae. aegypti, pourrait compromettre la stratégie de lutte mise en place au travers du World Mosquito Program (WMP). Cette stratégie vise à réduire les épidémies de dengue grâce aux lâchers d’Ae. aegypti infectés par Wolbachia sur le terrain, qui ont une capacité de transmission réduite des arbovirus.Dans ce contexte, un renforcement de la surveillance entomologique via une bonne identification des moustiques est essentiel. Un suivi régulier de l’implémentation du WMP en Nouvelle-Calédonie est également nécessaire. Cette thèse s’est donc intéressée à : (i) optimiser et développer la spectrométrie de masse MALDI-TOF (Matrix Assisted Laser Desorption Ionisation – Time Of Flight) pour l’identification des moustiques en Nouvelle-Calédonie, dans le Pacifique et dans le monde et (ii) à développer un outil permettant la détection de Wolbachia chez Ae. aegypti en associant l’utilisation du MALDI-TOF à des techniques modernes d’analyse des données. Ainsi, nous avons pu démontrer la capacité du MALDI-TOF à identifier les espèces de moustiques capturés sur le terrain, à une échelle locale, régionale et internationale. Cet outil a également permis d’identifier les Aedes du groupe Scutellaris, qui sont morphologiquement et phylogénétiquement proches. Le MALDI-TOF, couplé aux techniques d’analyse de données par l’intelligence artificielle, a également été capable de distinguer les Ae. aegypti infectés ou non par Wolbachia. Ces travaux ont notamment souligné l’importance d’approfondir les connaissances sur les Aedes du groupe Scutellaris, dans une perspective de mieux les contrôler.
... In Vanuatu and Fiji the presence of the other competent mosquito species Ae. albopictus and Ae. polynesiensis in our release areas means that dengue virus transmission is still feasible despite wMel establishment [35]. In Vanuatu and Kiribati, dengue was probably not endemic prior to Wolbachia deployments, i.e. not consistently present. ...
Article
Full-text available
Author summary For decades, dengue, Zika and chikungunya have been public health issues across the Pacific Island region. Aedes aegypti mosquitoes are considered most responsible for the transmission of dengue between people. The introduction of a bacteria called Wolbachia pipientis (wMel strain) to these mosquitoes is known to reduce the transmission of these diseases. Herein, we describe the production and release of wMel-carrying Ae. aegypti mosquitoes into several Pacific Island cities, including Suva, Lautoka, and Nadi in Fiji, Port Vila in Vanuatu, and South Tarawa in Kiribati. With community support, these mosquitoes were released on a weekly basis for periods ranging from 2 to 5 months. The result was a widespread integration of the wMel bacteria into local mosquito populations. Long-term monitoring has shown that the wMel bacteria has been sustained at high levels in mosquitoes in nearly all of the areas where it was introduced. This innovative approach could potentially improve the way we combat mosquito-borne diseases, protecting communities in the Pacific Islands and beyond from the devastating effects of dengue, chikungunya, and Zika.
... 6 Outbreaks of dengue have been reported in the Pacific as early as the mid 19 th century, whereas Zika and chikungunya have only recently emerged in the region. 7 outbreaks. 9 Clinical differential diagnosis of dengue, Zika and chikungunya is challenging as there are several overlapping non-specific symptoms, such as fever, headache, myalgia, arthralgia, rash, retro-orbital pain and lymphadenopathy. ...
Article
Full-text available
Dengue, Zika and chikungunya outbreaks pose a significant public health risk to Pacific Island communities. Differential diagnosis is challenging due to overlapping clinical features and limited availability of laboratory diagnostic facilities. There is also insufficient information regarding the complications of these arboviruses, particularly for Zika and chikungunya. We conducted a systematic review and meta‐analysis to calculate pooled prevalence estimates with 95% confidence intervals (CI) for the clinical manifestations of dengue, Zika and chikungunya in the Pacific Islands. Based on pooled prevalence estimates, clinical features that may help to differentiate between the arboviruses include headache, haemorrhage and hepatomegaly in dengue; rash, conjunctivitis and peripheral oedema in Zika; and the combination of fever and arthralgia in chikungunya infections. We estimated that the hospitalisation and mortality rates in dengue were 9.90% (95% CI 7.67–12.37) and 0.23% (95% CI 0.16–0.31), respectively. Severe forms of dengue occurred in 1.92% (95% CI 0.72–3.63) of reported cases and 23.23% (95% CI 13.58–34.53) of hospitalised patients. Complications associated with Zika virus included Guillain‐Barré syndrome (GBS), estimated to occur in 14.08 (95% CI 11.71–16.66) per 10,000 reported cases, and congenital brain malformations such as microcephaly, particularly with first trimester maternal infection. For chikungunya, the hospitalisation rate was 2.57% (95% CI 1.30–4.25) and the risk of GBS was estimated at 1.70 (95% CI 1.06–2.48) per 10,000 reported cases. Whilst ongoing research is required, this systematic review enhances existing knowledge on the clinical manifestations of dengue, Zika and chikungunya infections and will assist Pacific Island clinicians during future arbovirus outbreaks.
... These three viruses are transmitted by Aedes mosquitoes of the subgenus Stegomyia, mainly Aedes aegypti and Ae. albopictus, although additional species in the scutellaris group of this subgenus may be important local vectors in the Pacific (e.g., Ae. hensilli, Ae. polynesiensis, Ae. scutellaris, etc.) (9)(10)(11)(12)(13). Nonetheless, this review focuses on Ae. aegypti and Ae. ...
Article
Full-text available
Recurring outbreaks of mosquito-borne diseases, like dengue, in the Pacific region represent a major biosecurity risk to neighboring continents through potential introductions of disease-causing pathogens. Aedes mosquitoes, highly prevalent in this region, are extremely invasive and the predominant vectors of multiple viruses including causing dengue, chikungunya, and Zika. Due to the absence of vaccines for most of these diseases, Aedes control remains a high priority for public health. Currently, international organizations put their efforts into improving mosquito surveillance programs in the Pacific region. Also, a novel biocontrol method using Wolbachia has been tried in the Pacific region to control Aedes mosquito populations. A comprehensive understanding of mosquito biology is needed to assess the risk that mosquitoes might be introduced to neighboring islands in the region and how this might impact arboviral virus transmission. As such, we present a comprehensive review of arboviral disease outbreak records as well as Aedes mosquito biology research findings relevant to the Pacific region collected from both non-scientific and scientific sources.
... Arbovirus vectors including Aedes aegypti are found in larger, more densely populated areas, whereas Ae. albopictus dominates in rural settings and smaller urban centres [10]. Locally important secondary Aedes species include Ae. scutellaris [11,12]. ...
Article
Full-text available
Background Insecticide resistance (IR) monitoring is essential for evidence-based control of mosquito-borne diseases. While widespread pyrethroid resistance in Anopheles and Aedes species has been described in many countries, data for Papua New Guinea (PNG) are limited. Available data indicate that the local Anopheles populations in PNG remain pyrethroid-susceptible, making regular IR monitoring even more important. In addition, Aedes aegypti pyrethroid resistance has been described in PNG. Here, Anopheles and Aedes IR monitoring data generated from across PNG between 2017 and 2022 are presented. Methods Mosquito larvae were collected in larval habitat surveys and through ovitraps. Mosquitoes were reared to adults and tested using standard WHO susceptibility bioassays. DNA from a subset of Aedes mosquitoes was sequenced to analyse the voltage-sensitive sodium channel (Vssc) region for any resistance-related mutations. Results Approximately 20,000 adult female mosquitoes from nine PNG provinces were tested. Anopheles punctulatus sensu lato mosquitoes were susceptible to pyrethroids but there were signs of reduced mortality in some areas. Some Anopheles populations were also resistant to DDT. Tests also showed that Aedes. aegypti in PNG are resistant to pyrethroids and DDT and that there was also likelihood of bendiocarb resistance. A range of Vssc resistance mutations were identified. Aedesalbopictus were DDT resistant and were likely developing pyrethroid resistance, given a low frequency of Vssc mutations was observed. Conclusions Aedes aegypti is highly pyrethroid resistant and also shows signs of resistance against carbamates in PNG. Anopheles punctulatus s.l. and Ae. albopictus populations exhibit low levels of resistance against pyrethroids and DDT in some areas. Pyrethroid-only bed nets are currently the only programmatic vector control tool used in PNG. It is important to continue to monitor IR in PNG and develop proactive insecticide resistance management strategies in primary disease vectors to retain pyrethroid susceptibility especially in the malaria vectors for as long as possible. Graphic abstract
... 6 Outbreaks of DENV have been reported in the Pacific as early as the mid 19 th century, however, ZIKV and CHIKV have only recently emerged in the region. 7 In 2007, the first outbreak of ZIKV in the Pacific was reported in Federated States of Micronesia, and in 2011, the first CHIKV outbreak in the region was reported in New Caledonia. 8 Since then, the arboviruses have disseminated throughout the region. ...
Preprint
Background: Dengue fever (DENV), Zika virus (ZIKV) and chikungunya (CHIKV) pose a significant public health risk to Pacific Island countries. However, there is limited existing research that compares the clinical manifestations of these arboviruses. Methods: We searched PubMed, Embase and Scopus for epidemiological studies that presented quantitative data for symptoms or complications of DENV, ZIKV or CHIKV in a Pacific Island country. Risk of bias assessment was conducted using the Newcastle-Ottawa Scale (NOS). For each arbovirus, we used descriptive statistics and performed random-effects meta-analysis to calculate pooled prevalence estimates with 95% confidence intervals. Heterogeneity was assessed using the I² statistic and was further investigated through subgroup analysis. Publication bias was assessed via Egger’s test. Findings: We found that fever, headache, arthralgia, myalgia, rash and gastrointestinal symptoms were common in all three arboviruses. Complications for ZIKV included Guillain-Barré syndrome (GBS) (0.5%) and microcephaly (56%), and for CHIKV, were shock or organ failure (3%), liver disease (1%), myocarditis (0.1%) and neurological complications (1%). Through meta-analysis, we estimated the rates of hospitalisation (12.45% [7.88-17.87]), mortality (0.25% [0.05-0.54]) and severe dengue (4.47% [0.97-10.17]) in DENV. Subgroup analysis revealed clinical heterogeneity based on age, geographical location, study design and whether studies only examined hospitalised patients. Publication bias was also detected for studies assessing complications of DENV. Interpretation: We identified overlapping symptoms as well as clinical features that were specific to each arbovirus: For DENV, haemorrhagic symptoms, flushed face and taste alteration; and for ZIKV, limb oedema, Guillain-Barré syndrome and microcephaly. Despite CHIKV being recognised as a classically mild disease, we also identified the potential for severe complications such as myocarditis, encephalitis and shock or organ failure. We proposed updated clinical criteria for DENV, ZIKV and CHIKV to guide clinicians in Pacific Island countries. Our review was limited by lack of data availability and consequently we advocate for efforts to improve the transparency and consistency of disease reporting systems in the region. Overall, our research will assist healthcare providers in Pacific Island countries to better understand these clinically challenging arboviruses. (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4155238.)
Thesis
Full-text available
Mosquitoes pose a serious threat to the economy, health status, and biosecurity of countries around the world. Mosquitoes kill an average of 700,000 people per year. The global expansion of air, sea, and land transport networks has greatly enhanced the spread of mosquitoes internationally. In the Pacific, the number of mosquito-borne diseases occurring has been on the rise in recent years, possibly as a result of human-mediated dispersal of larvae and adult mosquitoes. The Kingdom of Tonga has had numerous outbreaks of dengue fever and chikungunya virus in recent years. Previous research has catalogued species occurrences and distributions throughout Tonga. However, it is unknown whether new species have arrived in Tonga, and if distribution of previously found species has changed since the last comprehensive survey in 2006. Present research aims to update the literature by conducting a mosquito survey at 84 sites across the four islands of Tongatapu, Pangaimotu, ‘Oneata, and ‘Eua to record the distribution and occurrence of mosquito larvae. Nine mosquito species were collected: Aedes aegypti Linnaeus, A. albopictus Skuse, A. tongae Edwards, A. horrescens Edwards, A. vexans nocturnus Theobold, Culex annulirostris Skuse, C. albinervis Edwards, C. quinquefasciatus Say and C. sitiens Wiedemann. The collection of A. albopictus is the second time that this species has been recorded in Tonga. Moreover, the spatial extent of this species throughout Tonga was far greater than previously recorded. A major outcome of this survey has been the creation of an identification key for the mosquito larvae species of Tonga. This key should increase the accuracy of positive mosquito larvae identifications in Tonga. Mosquitoes were more frequently collected in artificial (e.g., used car tyres, fuel drums, containers) than natural (e.g., pools, ponds, tree holes) habitats. Car tyres, water containers, fuel drums, fridges, washing machines, and ponds were the most common habitats in which mosquito larvae were found. Aedes aegypti, A. albopictus, and C. quinquefasciatus were the three most common mosquito species collected, whereas A. tongae, A. horrescens, A. vexans nocturnus, C. annulirostris, C. sitiens, and C. albinervis were less frequently found. Multiple logistic regression analyses indicated that habitat volume had a significant positive effect on the presence of A. albopictus and A. tongae, whereas conductivity had a significant positive effect on the presence of C. annulirostris. Additionally, the volume by temperature interaction was a significant predictor of species presence for A. aegypti, A. albopictus, and C. annulirostris (as habitat volume increases, the effect of temperature went from neutral to negative). This suggests that larger, cooler habitats favour colonisation by these species. The number of artificial habitats (particularly used car tyres) present may have significantly increased since previous studies. Management should therefore focus on implementing community-run mosquito projects aimed at reducing the number of artificial habitats capable of being colonised by mosquito larvae. Covering, tipping out water, and infilling these habitats with soil to prevent mosquito oviposition is a pragmatic and straightforward mosquito control solution. This should immensely reduce the abundance of mosquitoes and may prevent disease outbreak in Tonga.
ResearchGate has not been able to resolve any references for this publication.