Lalit Kaurani

Lalit Kaurani
Deutsches Zentrum für Neurodegenerative Erkrankungen | DZNE · RG Epigenetic mechanism in dementia (Göttingen)

Doctor of Philosophy

About

60
Publications
9,544
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,325
Citations
Introduction
I am an enthusiastic and inquisitive scientist with a Ph.D. in Genomics from the CSIR-Institute of Genomics and Integrative Biology, Delhi, India, achieved in 2016. Currently, I am a postdoctoral researcher at DZNE-Göttingen, specializing in molecular neuroscience with a keen interest in neuro-epigenetics. My research primarily focuses on the molecular and genetic underpinnings of complex disorders such as Alzheimer's, Frontotemporal dementia, Schizophrenia, and Depression.
Education
May 2010 - March 2016

Publications

Publications (60)
Preprint
Full-text available
Frontotemporal dementia is a debilitating neurodegenerative disorder characterized by frontal and temporal lobe degeneration, resulting in behavioral changes, language difficulties, and cognitive decline. In this study, smallRNA sequencing was conducted on postmortem brain tissues obtained from FTD patients with GRN, MAPT, or C9ORF72 mutations, foc...
Preprint
Full-text available
Micro RNAs (miRNAs) play a crucial role as regulators of various biological processes and have been implicated in the pathogenesis of mental disorders such as schizophrenia and bipolar disorders. In this study, we investigate the expression patterns of miRNAs in the PsyCourse Study (n=1,786), contrasting three broad diagnostic groups: Psychotic (Sc...
Article
Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregul...
Article
Full-text available
Depression is a major contributor to the overall global burden of disease. The discovery of biomarkers for diagnosis or prediction of treatment responses and as therapeutic agents is a current priority. Previous studies have demonstrated the importance of short RNA molecules in the etiology of depression. The most extensively researched of these ar...
Preprint
Full-text available
Frontotemporal dementia (FTD) is a neurodegenerative disorder that causes the frontal and temporal lobes of the brain to deteriorate over time. This leads to changes in behavior, language problems, and a loss of mental abilities. Dysregulation of microRNAs (miRNAs) has been linked to several neurodegenerative diseases, including FTD, which suggests...
Article
Full-text available
Exercise has been recognized as a beneficial factor for cognitive health, particularly in relation to the hippocampus, a vital brain region responsible for learning and memory. Previous research has demonstrated that exercise-mediated improvement of learning and memory in humans and rodents correlates with increased adult neurogenesis and processes...
Article
Full-text available
Understanding the molecular mechanisms underlying frontotemporal dementia (FTD) is essential for the development of successful therapies. Systematic studies on human post-mortem brain tissue of patients with genetic subtypes of FTD are currently lacking. The Risk and Modyfing Factors of Frontotemporal Dementia (RiMod-FTD) consortium therefore has g...
Article
Full-text available
There is a strong medical need to develop suitable biomarkers to improve the diagnosis and treatment of depression, particularly in predicting response to certain therapeutic approaches such as electroconvulsive therapy (ECT). MicroRNAs are small non-coding RNAs that have the ability to influence the transcriptome as well as proteostasis at the sys...
Preprint
Full-text available
Exercise has been recognized as a beneficial factor for cognitive health, particularly in relation to the hippocampus, a vital brain region responsible for learning and memory. Previous research has demonstrated that exercise-mediated improvement of learning and memory in humans and rodents correlates with increased adult neurogenesis and processes...
Preprint
Full-text available
Schizophrenia is a psychiatric disorder that is still not readily treatable. Pharmaceutical advances in the treatment of schizophrenia have mainly focused on the protein coding part of the human genome. However, the vast majority of the human transcriptome consists of non-coding RNAs. MicroRNAs are small non-coding RNAs that control the transcripto...
Article
Full-text available
N6-methyladenosine (m6A) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of m6A in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the m6A epitranscriptome...
Article
Full-text available
As core symptoms of schizophrenia, cognitive deficits contribute substantially to poor outcomes. Early life stress (ELS) can negatively affect cognition in patients with schizophrenia and healthy controls, but the exact nature of the mediating factors is unclear. Therefore, we investigated how ELS, education, and symptom burden are related to cogni...
Article
Full-text available
Extracellular vesicles (EVs) have emerged as mediators of cellular communication, in part via the delivery of associated microRNAs (miRNAs), small non-coding RNAs that regulate gene expression. We show that brain-derived neurotrophic factor (BDNF) mediates the sorting of miR-132-5p, miR-218-5p, and miR-690 in neuron-derived EVs. BDNF-induced EVs in...
Article
Full-text available
Background: Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro. Methods: K...
Article
Full-text available
In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b i...
Article
Full-text available
Infantile-onset RNaseT2 deficient leukoencephalopathy is characterised by cystic brain lesions, multifocal white matter alterations, cerebral atrophy, and severe psychomotor impairment. The phenotype is similar to congenital cytomegalovirus brain infection and overlaps with type I interferonopathies, suggesting a role for innate immunity in its pat...
Article
Full-text available
While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the ide...
Article
Full-text available
Increase in the size of human neocortex―acquired in evolution―accounts for the unique cognitive capacity of humans. This expansion reflects the evolutionarily enhanced proliferative ability of basal progenitors (BPs), including the basal radial glia and basal intermediate progenitors (bIPs) in mammalian cortex, which may have been acquired through...
Preprint
Full-text available
Histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Amongst these enzymes SET domain containing 1b (SETD1B) has been linked to syndromic intellectual disability but its role in the postnatal brain has not been studied yet. Here we employ mice that lack Setd1b from excitatory neurons of the postnatal foreb...
Preprint
Full-text available
Human pluripotent stem cell derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for derivation of skeletal muscle cells and their utility in three-dimensional skeletal muscle organoid formation as well as skeletal muscle tissue engineering. Key steps include the directed differen...
Preprint
Extracellular vesicles (EVs) have emerged as novel regulators of several biological processes, in part via the transfer of EV content such as microRNA; small non-coding RNAs that regulate protein production, between cells. However, how neuronal EVs contribute to trans-neuronal signaling is largely elusive. We examined the role of neuron-derived EVs...
Preprint
Increase in the size of human neocortex, acquired in evolution, accounts for the unique cognitive capacity of humans. This expansion appears to reflect the evolutionarily-enhanced proliferative ability of basal progenitors (BPs) in mammalian cortex, which may have been acquired through epigenetic alterations in BPs. However, whether or how the epig...
Preprint
Full-text available
Understanding the molecular mechanisms underlying frontotemporal dementia (FTD) is essential for the development of successful therapies. Here we integrated transcriptomic and epigenomic analyses of postmortem human brains of FTD patients with mutations in MAPT, GRN and C9orf72 and detected common and distinct dysregulated cellular pathways between...
Preprint
Full-text available
Understanding the molecular mechanisms underlying frontotemporal dementia (FTD) is essential for the development of successful therapies. Here, we present Phase 1 of a multi-omics, multi-model data resource for FTD research which will allows in-depth molecular research into these mechanisms. We have integrated and analysed data from the frontal lob...
Preprint
Full-text available
Histone-3-lysine-4-methylation (H3K4me) is mediated by six different lysine methyltransferases (KMTs). Amongst these enzymes SET domain containing 1b (SETD1B) has been linked to intellectual disability but its role in the adult brain has not been studied yet. Here we show that mice lacking Setd1b from excitatory neurons of the adult forebrain exhib...
Article
Full-text available
Fusion transcripts can contribute to diversity of molecular networks in the human cortex. In this study, we explored the occurrence of fusion transcripts in normal human cortex along with single neurons and astrocytes. We identified 1305 non-redundant fusion events from 388 transcriptomes representing 59 human cortices and 329 single cells. Our res...
Article
Full-text available
Alzheimer’s disease (AD) is the most common neurodegenerative disorder causing huge emotional and economic burden to our societies. An effective therapy has not been implicated yet, which is in part also due to the fact that pathological changes occur years before clinical symptoms manifest. Thus, there is a great need for the development of a tran...
Article
Full-text available
Schizophrenia is a severe neuropsychiatric disorder with persistence of symptoms throughout adult life in most of the affected patients. This unfavorable course is associated with multiple episodes and residual symptoms, mainly negative symptoms and cognitive deficits. The neural diathesis-stress model proposes that psychosocial stress acts on a pr...
Article
Background Schizophrenia (SCZ) is a multifactorial disorder with heritability estimates of ~ 65%. Even though major breakthroughs have been made in the identification of genetic risk factors, large proportions of the heritability remain unaccounted for. Analysing multiply affected families using Whole Exome Sequencing (WES) is a very promising appr...
Article
Full-text available
Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished-training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively. Whether immu...
Article
Full-text available
Alzheimer's disease is a devastating neurodegenerative disease eventually leading to dementia. An effective treatment does not yet exist. Here we show that oral application of the compound anle138b restores hippocampal synaptic and transcriptional plasticity as well as spatial memory in a mouse model for Alzheimer's disease, when given orally befor...
Article
Full-text available
Kmt2a and Kmt2b are H3K4 methyltransferases of the Set1/Trithorax class. We have recently shown the importance of Kmt2b for learning and memory. Here, we report that Kmt2a is also important in memory formation. We compare the decrease in H3K4 methylation and de-regulation of gene expression in hippocampal neurons of mice with knockdown of either Km...
Article
Full-text available
Significance Early life stress (ELS) is an important risk factor for schizophrenia. Our study shows that ELS in mice increases the levels of histone-deacetylase (HDAC) 1 in brain and blood. Although altered Hdac1 expression in response to ELS is widespread, increased Hdac1 levels in the prefrontal cortex are responsible for the development of schiz...
Article
Background Illnesses from the schizophrenia-to-bipolar spectrum have a highly variable course. Determinants of these different individual trajectories have been of particular interest to scholars during the past century. Beyond rudimentary understanding, however, different course types have been difficult to delineate in categorical disease phenoty...
Article
Full-text available
Background Glaucoma is the largest cause of irreversible blindness affecting more than 60 million people globally. The disease is defined as a gradual loss of peripheral vision due to death of Retinal Ganglion Cells (RGC). The RGC death is largely influenced by the rate of aqueous humor production by ciliary processes and its passage through the tr...
Article
Full-text available
INK4 locus at chromosome 9p21 has been reported to be associated with primary open angle glaucoma (POAG) and its subtypes along with the associated optic disc parameters across the populations of European, Japanese and African ancestries. The locus encodes three tumor suppressor genes namely CDKN2A, ARF, CDKN2B and a long non-coding RNA CDKN2B-AS1...
Article
Purpose: Large copy number variations (CNV) can contribute to increased burden for neurodegenerative diseases. In this study, we analyzed the genome-wide burden of large CNVs > 100 kb in primary open angle glaucoma (POAG), a neurodegenerative disease of the eye that is the largest cause of irreversible blindness. Methods: Genome-wide analysis of...
Article
Full-text available
Fermentation is a preservation process which decreases the need for refrigeration or any other form of preservation technology. It can therefore be used in areas where access to equipment is limited. Fermented foods have increased levels of vitamins and are more palatable. Moreover, certain lactic acid bacteria and molds have been found to produce...

Network

Cited By