ArticlePDF AvailableLiterature Review

Diverse preparation methods for small intestinal submucosa (SIS): Decellularization, components, and structure

Authors:

Abstract

The native extracellular matrix (ECM) biomaterial derived from small intestinal submucosa (SIS) is widely applied in tissue engineering for tissue repair and regeneration. SIS ECM is obtained through physical and chemical methods to remove the intrinsic cells which would otherwise cause adverse immune reactions when the SIS ECM is implanted into the host body. Several research teams have reported diverse SIS decellularization methods. However, there was no consensus on the criteria to be used for the decellularization methods for SIS and further research on the mechanism action of SIS is needed for comprehensive detection of the biological composition. In this present study, we used three reported methods to prepare SIS and compared their effects on decellularization and the remaining biological components, microstructure and cytocompatibility. SIS prepared by the three kinds of decellularization methods all achieved the recommended criteria, had good biocompatibility and retained most active components. Nevertheless, regardless of which decellularization method was used, the microstructure and bioactive components of the prepared SIS were damaged in varying degrees. We recommend that researchers need to select a decellularization method that would be appropriate to use according to their research purposes. This article is protected by copyright. All rights reserved.
A preview of the PDF is not available
... The submucosal layer of a 6-9 mo porcine small intestine (Animal Technologies) was isolated as previously described. 52 The small intestine was washed in PBS and cut into 10 cm sections. Each section was sliced longitudinally to form a flat sheet. ...
... 1,4 With its wide use, numerous decellularization techniques have been established to meet different needs due to the potential impact on dECM composition and bioactivity. 52 The Abraham, 53 Badylak, 54, 55 and Luo 6, 56 decellularization techniques were therefore explored to characterize their impact on SIS suspension properties and spinnability to establish a robust and versatile protocol ( Figure 5). SIS was prepared with the Abraham, 53 and peracetic acid. ...
... Stronger treatments are more effective at removing cell components, but they also remove some ECM components in the process. 52 Thus, the proper decellularization method must be chosen based on the application to balance immunogenicity and the preservation of the native ECM for the retention of bioactivity. Due to the impacts of the decellularization on the ECM components, each electrospinning suspension must be tailored for spinnability. ...
Preprint
Decellularized extracellular matrices (dECM) have strong regenerative potential as tissue engineering scaffolds; however, current clinical options for dECM are limited to freeze-drying its native form into sheets. Electrospinning is a versatile scaffold fabrication technique that allows control of macro- and microarchitecture. It remains challenging to electrospin dECM; which has led researchers to either blend it with synthetic materials or use enzymatic digestion to fully solubilize the dECM. Both strategies reduce the innate bioactivity of dECM and limit its regenerative potential. Herein, we developed a new suspension electrospinning method to fabricate a pure dECM scaffold that retains its innate bioactivity. Systematic investigation of suspension parameters was used to identify critical rheological properties required to instill “spinnability,” including homogenization, concentration, and particle size. Homogenization enhanced particle interaction to impart the requisite elastic behavior to withstand electrostatic drawing without breaking. A direct correlation between concentration and viscosity was observed that altered fiber morphology; whereas, particle size had minimal impact on suspension properties and fiber morphology. The versatility of this new method was demonstrated by electrospinning dECM with three common decellularization techniques (Abraham, Badylak, Luo) and tissue origins (intestinal submucosa, heart, skin). Bioactivity retention after electrospinning was confirmed using cell proliferation, angiogenesis, and macrophage assays. Collectively, these findings provide a framework for researchers to electrospin dECM for diverse tissue engineering applications. Abstract Figure
... Decellularized ECM from the porcine jejunum makes up the SIS (another porcine derived xenograft). Its main components include various collagens, glycosaminoglycans (GAGs), adhesion molecules, and growth factors, which contain VEGF, BFGF, and TGF-β and are essential for tissue remodeling and regeneration [60][61][62][63]. The SIS is frequently utilized as a wound dressing, tissue regeneration membrane, surgical mesh, and cell culture matrix, due to its favorable biocompatibility, hydrophilicity, and low immunogenicity [64,65]. ...
... Yanhui Ji assessed three distinct SIS decellularization methods: Abraham's methods, Luo's methods, and Badylak's methods [37]. The brief procedures are shown in Table 1. ...
Article
Full-text available
The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.
... In prior investigations, we have ascertained that decellularized SIS serves as an exceptional matrix material following decellularization [42]. SIS demonstrates remarkable biocompatibility and low immunogenicity. ...
Article
Full-text available
Acellular dermal matrix (ADM) shows promise for cartilage regeneration and repair. However, an effective decellularization technique that removes cellular components while preserving the extracellular matrix, the transformation of 2D-ADM into a suitable 3D scaffold with porosity and the enhancement of bioactive and biomechanical properties in the 3D-ADM scaffold are yet to be fully addressed. In this study, we present an innovative decellularization method involving 0.125% trypsin and 0.5% SDS and a 1% Triton X-100 solution for preparing ADM and converting 2D-ADM into 3D-ADM scaffolds. These scaffolds exhibit favorable physicochemical properties, exceptional biocompatibility and significant potential for driving cartilage regeneration in vitro and in vivo. To further enhance the cartilage regeneration potential of 3D-ADM scaffolds, we incorporated porcine-derived small intestinal submucosa (SIS) for bioactivity and calcium sulfate hemihydrate (CSH) for biomechanical reinforcement. The resulting 3D-ADM+SIS scaffolds displayed heightened biological activity, while the 3D-ADM+CSH scaffolds notably bolstered biomechanical strength. Both scaffold types showed promise for cartilage regeneration and repair in vitro and in vivo, with considerable improvements observed in repairing cartilage defects within a rabbit articular cartilage model. In summary, this research introduces a versatile 3D-ADM scaffold with customizable bioactive and biomechanical properties, poised to revolutionize the field of cartilage regeneration.
Article
Small intestine perforation is a serious medical condition that requires immediate medical attention. The traditional course of treatment entails resection followed by anastomosis; however, it has complications such as small bowel syndrome (SBS), anastomotic leakage, and fistula formation. Here, a novel strategy is demonstrated, that utilizes the xenogeneic, decellularized goat small intestine as a patch for small intestine regeneration in cases of intestinal perforation. The goat small intestine scaffold underwent sodium dodecyl sulfate decellularization, which revealed consistent, quick, and effective decellularization. Decellularization contributed the least amount of extracellular matrix degradation while maintaining the intestinal architecture. By implanting the decellularized goat small intestine scaffolds (DGSIS) on the chorioallantoic membrane (CAM), no discernible loss of angiogenesis was seen in the CAM region, and this enabled the DGSIS to be evaluated for biocompatibility in ovo. The DGSIS was then xeno-transplanted as a patch on a small intestine perforation rat model. After 30 days post transplant, barium salt used as contrast gastrointestinal X-ray imaging revealed no leakage or obstruction in the small intestine. Histology, scanning electron microscopy, and immunohistochemistry assisted in analyzing the engraftment of host cells into the xeno patch. The xeno-patch expressed high levels of E-cadherin, α-smooth muscle actin (α-SMA), Occludin, Zonnula occluden (ZO-1), Ki 67, and Na+/K+-ATPase. The xeno-patch was consequently recellularized and incorporated into the host without causing an inflammatory reaction. As an outcome, decellularized goat small intestine was employed as a xenograft and could be suitable for regeneration of the perforated small intestine.
Article
Bladder mucosa damage that causes harm to the interstitium is a recognized pathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS). The intravesical instillation of drugs is an important second‐line therapy, but it is often necessary to use drugs repeatedly in the clinic because of their short residence time in the bladder cavity, which alters the therapeutic effect. To overcome this drawback, this study developed a novel composite acellular matrix/hyaluronic acid (HA) thermosensitive hydrogel (HA‐Gel) using rabbit small intestinal submucosa extracellular matrix (ECM) as the thermosensitive material and HA as the drug component and examined its composition, microstructure, thermodynamic properties, temperature sensitivity, rheological properties, biocompatibility, drug release, hydrogel residue, and bacteriostatic properties. The study showed HA‐Gel was liquid at temperatures of 15–37.5°C and solid at 37.5–50°C, its swelling rate decreased with increasing temperature, and its lower critical solution temperature occurred at approximately 37.5°C. This property made the hydrogel liquid at room temperature convenient for intravesical perfusion and turned into a solid about 1 min after entering the body and rising to body temperature to increase its residence time. Subsequent experiments also proved that the gel residue time of HA‐Gel in vivo and the drug release time of HA in vivo could reach more than 5 days, which was significantly higher than that of HA alone, and it had good biocompatibility and antibacterial properties. Therefore, this hydrogel possesses the proper characteristics to possibly make it an ideal dosage form for IC/BPS intravesical instillation therapy.
Article
Porcine small intestinal submucosa, despite its successful use as a scaffold in regenerative medicine, has innate biomechanical heterogeneity. In this study, we hypothesized that human small intestinal submucosa could be a viable alternative bio-scaffold. For the first time, we characterize submucosal extraction from human small intestine and examine appropriate decellularization methods. In total, 16 human small intestinal submucosal samples were obtained and decellularized using three reported methods of porcine decellularization: Abraham, Badylak, and Luo. For each method, four specimens were decellularized. The remaining four specimens were designated as non-decellularized. We measured the amount of residual DNA and growth factors in decellularized human intestinal samples. Additionally, decellularized human small intestinal submucosa was co-cultured with mouse bone marrow-derived mesenchymal stem cells to examine mesenchymal stem cell survival and proliferation. The reference value for the amount of residual DNA deemed appropriate in decellularized tissue was established as 50 ng/mg of extracellular matrix dry weight or less. Abraham's method most successfully met this criterion. Measurement of residual growth factors revealed low levels observed in samples decellularized using the Abraham and Badylak methods. Co-culture of each small intestinal submucosal sample with mouse bone marrow-derived mesenchymal stem cells confirmed viable cell survival and proliferation in samples derived using protocols by Abraham and Badylak. Abraham's method most successfully met the criteria for efficient tissue decellularization and cell viability and proliferation. Thus, we consider this method most suitable for decellularization of human small intestinal submucosa.
Chapter
Decellularized extracellular matrix (ECM) scaffolds have been broadly used in tissue engineering because of their versatile bioactive nature and biomimetic properties. The ECM can be derived from various tissues, organs and cultured cells. A variety of decellularization methods have been developed to maximize the decellularization effect while minimizing the effect on ECM structures and compositions. The methods can be categorized into chemical, biological, and physical methods and their combinations. The properties and applications of ECM scaffolds are dependent on decellularization methods. This article summarizes the decellularization methods for preparation of decellularized ECM scaffolds for tissue engineering applications.
Article
Full-text available
The use of allogenic materials in reconstructive surgery is of great scientific interest due to high availability of donor tissues. The positive aspects of allogenous tissue transplantation are complicated by the histological incompatibility of donor tissue and recipient organism. This incompatibility results hypersensitivity reaction towards the allogenous transplant followed by rejection of allogenic tissue and even death in some cases. Cellular biological incompatibility may be managed by decellularization of allogenous organs and tissues prior to transplantation. The improvement of decellularization techniques will facilitate application of allogenous tissues in complex reconstructive procedures and significantly increase the capabilities of reconstructive surgery.
Article
Full-text available
Introduction At present, the treatment of osteoporotic defects poses a great challenge to clinicians, owing to the lower regeneration capacity of the osteoporotic bone as compared with the normal bone. The guided bone regeneration (GBR) technology provides a promising strategy to cure osteoporotic defects using bioactive membranes. The decellularized matrix from the small intestinal submucosa (SIS) has gained popularity for its natural microenvironment, which induces cell response. Materials and methods In this study, we developed heparinized mineralized SIS loaded with bone morphogenetic protein 2 (BMP2)-related peptide P28 (mSIS/P28) as a novel GBR membrane for guided osteoporotic bone regeneration. These mSIS/P28 membranes were obtained through the mineralization of SIS (mSIS), followed by P28 loading onto heparinized mSIS. The heparinized mSIS membrane was designed to improve the immobilization efficacy and facilitate controlled release of P28. P28 release from mSIS-heparin-P28 and its effects on the proliferation, viability, and osteogenic differentiation of bone marrow stromal stem cells from ovariectomized rats (rBMSCs-OVX) were investigated in vitro. Furthermore, a critical-sized OVX calvarial defect model was used to assess the bone regeneration capability of mSIS-heparin-P28 in vivo. Results In vitro results showed that P28 release from mSIS-heparin-P28 occurred in a controlled manner, with a long-term release time of 40 days. Moreover, mSIS-heparin-P28 promoted cell proliferation and viability, alkaline phosphatase activity, and mRNA expression of osteogenesis-related genes in rBMSCs-OVX without the addition of extra osteogenic components. In vivo experiments revealed that mSIS-heparin-P28 dramatically stimulated osteoporotic bone regeneration. Conclusion The heparinized mSIS loaded with P28 may serve as a potential GBR membrane for repairing osteoporotic defects.
Article
Full-text available
Regeneration of injured nerve tissues requires intricate interplay of complex processes like axon elongation, remyelination, and synaptic formation in a tissue-specific manner. A decellularized nerve matrix-gel (DNM-G) and a decellularized spinal cord matrix-gel (DSCM-G) are prepared from porcine sciatic nerves and spinal cord tissue, respectively, to recapitulate the microenvironment cues unique to the native tissue functions. Using an in vitro dorsal root ganglion–Schwann cells coculture model and proteomics analysis, it is confirmed that DNM-G promotes far stronger remyelination activity and reduces synapse formation of the regenerating axons in contrast to DSCM-G, Matrigel, and collagen I, consistent with its tissue-specific function. Bioinformatics analysis indicates that the lack of neurotrophic factors and presence of some axon inhibitory molecules may contribute to moderate axonal elongation activity, while laminin β2, Laminin γ1, collagens, and fibronectin in DNM-G promote remyelination. These results confirm that DNM-G is a promising matrix material for peripheral nerve repair. This study provides more insights into tissue-specific extracellular matrix components correlating to biological functions supporting functional regeneration.
Article
Full-text available
A stem cell-derived mineralized extracellular matrix (ECM) may be a good strategy to endow scaffolds with a bone microenvironment, thus inducing bone regeneration. However, it also faces some challenges, such as limited cell number, additional wound for autologous cell isolation, and time consumption of cell expansion. In this study, we designed a novel tissue-derived ECM scaffold fabricated by depositing porcine small intestinal submucosa (SIS) ECM on true bone ceramic (TBC), which was followed by mineralization treatment (mSIS/TBC). In vitro, compared with pure TBC, mSIS/TBC promoted cell proliferation, cell viability, and osteoblastic differentiation of the newly-seeded rat bone marrow stem cells (BMSCs), and upregulation of the mRNA level of osteogenesis-related genes. Western blot assay revealed that mSIS/TBC enhanced osteoblastic differentiation via activation of phosphorylated Smad1/5/8 and phosphorylated extracellular signal-regulated kinase (ERK), as an underlying mechanism. In vivo, in a rat cranial critical size defect model, mSIS/TBC scaffolds induced greater bone formation than pure TBC scaffolds. Meanwhile, a comparative study on the capacity of bone regeneration was also carried out between mSIS/TBC and BMSC-derived ECM deposited on TBC scaffold in vivo and in vitro. The results demonstrated that mSIS/TBC scaffolds acquired a comparable bone regeneration efficacy to that of BMSC-derived ECM deposited on TBC scaffolds. Collectively, our results demonstrated that mSIS/TBC enhanced bone regeneration by supporting cell proliferation and cell viability, and by activating Smad1/5/8 and ERK1/2 signal pathways of BMSC in vitro and in vivo; thus, mSIS/TBC is an excellent alternative to stem cell-derived ECM scaffold for bone regeneration.
Article
Full-text available
Regenerative strategies, such as stem cell-based therapies and tissue engineering applications, are being developed with the aim to replace, remodel, regenerate or support damaged tissues and organs. In addition to careful cell type selection, the design of appropriate three-dimensional (3D) scaffolds is essential for the generation of bio-inspired replacement tissues. Such scaffolds are usually made of degradable or non-degradable biomaterials and can serve as cell or drug carriers. The development of more effective and efficient drug carrier systems is also highly relevant for novel cancer treatment strategies. In this review, we provide a summary of current approaches that employed ECM and ECM-like materials, or ECM-synthetic polymer hybrids, as biomaterials in the field of regenerative medicine. We further discuss the utilization of such materials for cell and drug delivery, and highlight strategies for their use as vehicles for cancer therapy.
Article
SIS is an acellular, naturally occurring collagenous extracellular matrix (ECM) material with various bioactive factors, which broadly applied in tissue engineering in clinic. Several studies have applied SIS in bone tissue engineering to enhance bone regeneration in animal models. However, the mechanism was rarely investigated. The aim of the current study was to investigate the osteoconductivity and osteoinductivity of SIS scaffold to bone regeneration systematically and the potential mechanism. Our results showed that SIS scaffold with excellent biocompatibility was beneficial for cell attachment, proliferation, migration and osteogenic differentiation of various cells contributing to bone repair. In mouse calvarial defect model, bone regeneration was significantly enhanced in the defects implanted with SIS scaffolds, along with the up-regulation of BMP-2 and CD31 expression. Accordingly, ID-1, the downstream target gene of BMPs, was increased in BMSCs cultured on SIS scaffolds. The results of this study suggest that SIS scaffold is a potential osteoconductive and osteoinductive biomaterial which plays multiple roles to various cells during process of bone regeneration.
Article
Extracellular matrix (ECM)-derived bioscaffolds have been shown to elicit tissue repair through retention of bioactive signals. Given that the adventitia of large blood vessels is a richly vascularized microenvironment, we hypothesized that perivascular ECM contains bioactive signals that influence cells of blood vessel lineages. ECM bioscaffolds were derived from decellularized human and porcine aortic adventitia (hAdv and pAdv, respectively) and then shown have minimal DNA content and retain elastin and collagen proteins. Hydrogel formulations of hAdv and pAdv ECM bioscaffolds exhibited gelation kinetics similar to ECM hydrogels derived from porcine small intestinal submucosa (pSIS). hAdv and pAdv ECM hydrogels displayed thinner, less undulated, and fibrous microarchitecture reminiscent of native adventitia, with slight differences in ultrastructure visible in comparison to pSIS ECM hydrogels. Pepsin-digested pAdv and pSIS ECM bioscaffolds increased proliferation of human adventitia-derived endothelial cells and this effect was mediated in part by basic fibroblast growth factor (FGF2). Human endothelial cells cultured on Matrigel substrates formed more numerous and longer tube-like structures when supplemented with pAdv ECM bioscaffolds, and FGF2 mediated this matrix signaling. ECM bioscaffolds derived from pAdv promoted FGF2-dependent in vivo angiogenesis in the chick chorioallantoic membrane model. Using an angiogenesis-focused protein array, we detected 55 angiogenesis-related proteins, including FGF2 in hAdv, pAdv and pSIS ECMs. Interestingly, 19 of these factors were less abundant in ECMs bioscaffolds derived from aneurysmal specimens of human aorta when compared with non-aneurysmal (normal) specimens. This study reveals that Adv ECM hydrogels recapitulate matrix fiber microarchitecture of native adventitia, and retain angiogenesis-related actors and bioactive properties such as FGF2 signaling capable of influencing processes important for angiogenesis. This work supports the use of Adv ECM bioscaffolds for both discovery biology and potential translation towards microvascular regeneration in clinical applications.
Article
Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. Statement of Significance More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel.
Article
The kidney peritubular microvasculature is highly susceptible to injury from drugs and toxins, often resulting in acute kidney injury and progressive chronic kidney disease. Little is known about the process of injury and regeneration of human kidney microvasculature, resulting from the lack of appropriate kidney microvascular models that can incorporate the proper cells, extracellular matrices (ECM) and architectures needed to understand the response and contribution of individual vascular components in these processes. Here, we present methods to recreate the human kidney ECM microenvironment by fabricating kidney ECM (kECM) hydrogels derived from decellularized human kidney cortex. The majority of native matrix proteins, such as collagen-IV, laminin and heparan sulfate proteoglycan and their isoforms were preserved in similar proportions as found in normal kidneys. Human kidney microvascular endothelial cells (HKMECs) became more quiescent when cultured on this kECM gel compared to culture on collagen-I-assessed using phenotypic, genotypic and functional assays; whereas human umbilical vein endothelial cells (HUVECs) became stimulated on kECM gels. We demonstrate for the first time that human kidney cortex can form a hydrogel suitable for use in flow-directed microphysiological systems (MPSs). Our findings strongly suggest that selecting the proper extracellular matrix is a critical consideration in the development of vascularized 'organs on a chip' and carries important implications for tissue engineering of all vascularized organs.
Article
Extracellular matrix (ECM) proteins collectively represent a class of naturally derived proteinaceous biomaterials purified from harvested organs and tissues with increasing scientific focus and utility in tissue engineering and repair. This interest stems predominantly from the largely unproven concept that processed ECM biomaterials as natural tissue-derived matrices better integrate with host tissue than purely synthetic biomaterials. Nearly every tissue type has been decellularized and processed for re-use as tissue-derived ECM protein implants and scaffolds. To date, however, little consensus exists for defining ECM compositions or sources that best constitute decellularized biomaterials that might better heal, integrate with host tissues and avoid the foreign body response (FBR). Metrics used to assess ECM performance in biomaterial implants are arbitrary and contextually specific by convention. Few comparisons for in vivo host responses to ECM implants from different sources are published. This review discusses current ECM-derived biomaterials characterization methods including relationships between ECM material compositions from different sources, properties and host tissue response as implants. Relevant preclinical in vivo models are compared along with their associated advantages and limitations, and the current state of various metrics used to define material integration and biocompatibility are discussed. Commonly applied applications of these ECM-derived biomaterials as stand-alone implanted matrices and devices are compared with respect to host tissue responses.