Article

Development of a Repair Enzyme Fluorescent Probe to Reveal the Intracellular DNA Damage Induced by Benzo[a]pyrene in Living Cells

Authors:
  • China National Analytical Center Guangzhou
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Pollutant exposure causes a series of DNA damage in cells, resulting in the initiation and progression of diseases and even cancers. An investigation of the DNA damage induced by pollutants in living cells is significant to evaluate the cytotoxicity, genotoxicity, and carcinogenicity of environmental exposure, providing critical insight in the exploration of the etiologies of diseases. In this study, we develop a repair enzyme fluorescent probe to reveal the DNA damage caused by an environmental pollutant in living cells by single-cell fluorescent imaging of the most common base damage repair enzyme named human apurinic/apyrimidinic endonuclease 1 (APE1). The repair enzyme fluorescent probe is fabricated by conjugation of an APE1 high affinity DNA substrate on a ZnO2 nanoparticle surface to form a ZnO2@DNA nanoprobe. The ZnO2 nanoparticle serves as both a probe carrier and a cofactor supplier, releasing Zn2+ to activate APE1 generated by pollutant exposure. The AP-site in the DNA substrate of the fluorescent probe is cleaved by the activated APE1, releasing fluorophore and generating fluorescent signals to indicate the position and degree of APE1-related DNA base damage in living cells. Subsequently, the developed ZnO2@DNA fluorescent probe is applied to investigate the APE1-related DNA base damage induced by benzo[a]pyrene (BaP) in living human hepatocytes. Significant DNA base damage by BaP exposure is revealed, with a positive correlation of the damage degree with exposure time in 2-24 h and the concentration in 5-150 μM, respectively. The experimental results demonstrate that BaP has a significant effect on the AP-site damage, and the degree of DNA base damage is time-dependent and concentration-dependent.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
Air quality impacts from wildfires are poorly understood, particularly indoors. As frequencies increase, it is important to optimize methodologies to understand and reduce chemical exposures from wildfires. Public health recommendations use air quality estimates from outdoor stationary air monitors, discounting indoor air conditions, and do not consider chemicals in the vapor phase, known to elicit adverse effects. We investigated vapor-phase polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air before, during, and after wildfires using a community-engaged research approach. Paired passive air samplers were deployed at 15 locations across four states. Twelve unique PAHs were detected only in outdoor air during wildfires, highlighting a PAH exposure mixture for future study. Heavy-molecular-weight (HMW) outdoor PAH concentrations and average Air Quality Index (AQI) values were positively correlated (p < 0.001). Indoor PAH concentrations were higher in 77% of samples across all sampling events. Even during wildfires, 58% of sampled locations still had higher indoor PAH air concentrations. When AQI values exceeded 140 (unhealthy for sensitive groups), outdoor PAH concentrations became similar to or higher than indoors. Cancer and noncancer inhalation risk estimates from vapor-phase PAHs were higher indoors than outdoors, regardless of the wildfire impact. Consideration of indoor air quality and vapor-phase PAHs could inform public health recommendations regarding wildfires.
Article
Full-text available
DNA damage is a constant event in every cell caused by exogenous factors such as ultraviolet and ionizing radiation (UVR/IR) and intercalating drugs, or endogenous metabolic and replicative stress. Proteins of the DNA damage response (DDR) network sense DNA lesions and induce cell cycle arrest, DNA repair, and apoptosis. Genetic defects of DDR or DNA repair proteins can be associated with immunodeficiency, bone marrow failure syndromes, and cancer susceptibility. Although various diagnostic tools are available to evaluate DNA damage, their quality to identify DNA repair deficiencies differs enormously and depends on affected pathways. In this study, we investigated the DDR biomarkers γH2AX (Ser139), p-ATM (Ser1981), and p-CHK2 (Thr68) using flow cytometry on peripheral blood cells obtained from patients with combined immunodeficiencies due to non-homologous end-joining (NHEJ) defects and ataxia telangiectasia (AT) in response to low-dose IR. Significantly reduced induction of all three markers was observed in AT patients compared to controls. However, delayed downregulation of γH2AX was found in patients with NHEJ defects. In contrast to previous reports of DDR in cellular models, these biomarkers were not sensitive enough to identify ARTEMIS deficiency with sufficient reliability. In summary, DDR biomarkers are suitable for diagnosing NHEJ defects and AT, which can be useful in neonates with abnormal TREC levels (T cell receptor excision circles) identified by newborn screening. We conclude that DDR biomarkers have benefits and some limitations depending on the underlying DNA repair deficiency.
Article
Full-text available
Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence5,6,7 in the immune system only. We show that Vav-iCre+/−;Ercc1−/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice8,9,10. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre+/−;Ercc1−/fl or aged wild-type mice into young mice induced senescence in trans, whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre+/−;Ercc1−/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function11,12. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.
Article
Full-text available
In the US alone, around 60,000 lives/year are lost to colon cancer. In order to study the mechanisms of colon carcinogenesis, in vitro model systems are required in addition to in vivo models. Towards this end, we have used the HT-29 colon cancer cells, cultured in Dulbecco’s Modified Eagle Medium (DMEM), which were exposed to benzo(a)pyrene (BaP), a ubiquitous and prototypical environmental and dietary toxicant at 1, 10, 100 nM and 1, 5, 10, and 25 μM concentrations for 96 h. Post-BaP exposure, growth, cytotoxicity, apoptosis, and cell cycle changes were determined. The BaP metabolite concentrations in colon cells were identified and measured. Furthermore, the BaP biotransformation enzymes were studied at the protein and mRNA levels. The BaP exposure–induced damage to DNA was assessed by measuring the oxidative damage to DNA and the concentrations of BaP-DNA adducts. To determine the whole repertoire of genes that are up- or downregulated by BaP exposure, mRNA transcriptome analysis was conducted. There was a BaP exposure concentration (dose)-dependent decrease in cell growth, cytotoxicity, and modulation of the cell cycle in the treatment groups compared to untreated or dimethylsulfoxide (DMSO: vehicle for BaP)-treated categories. The phase I biotransformation enzymes, CYP1A1 and 1B1, showed BaP concentration-dependent expression. On the other hand, phase II enzymes did not exhibit any marked variation. Consistent with the expression of phase I enzymes, elevated concentrations of BaP metabolites were generated, contributing to the formation of DNA lesions and stable DNA adducts, which were also BaP concentration-dependent. In summary, our studies established that biotransformation of BaP contributes to cytotoxicity, proliferation of tumor cells, and alteration of gene expression by BaP. Graphical abstract • Benzo(a)pyrene (BaP) is an environmental and dietary toxicant. • BaP causes cytotoxicity in cultured HT-29 colon cancer cells. • mRNA transcriptome analyses revealed that BaP impacts cell growth, cell cycle, biotransformation, and DNA damage.
Article
Full-text available
Transcriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-mediated transcription and silencing of repair genes is further mediated by the p21-dependent E2F4/DREAM complex. Notably, repression of DNA repair is also observed following exposure to the active B[a]P metabolite BPDE and upon ionizing radiation and occurs in response to a p53/p21-triggered, irreversible cell cycle arrest marking the onset of cellular senescence. Overall, our results suggest that repression of MMR and HR is an early event during genotoxic-stress induced senescence. We propose that persistent downregulation of DNA repair might play a role in the maintenance of the senescence phenotype, which is associated with an accumulation of unrepairable DNA lesions.
Article
Full-text available
Reactive oxygen species (ROS)-generating anticancer agents can act through two different mechanisms: (i) elevation of endogenous ROS production in mitochondria, or (ii) formation/delivery of exogenous ROS within cells. However, there is a lack of research on the development of ROS-generating nanosystems that combine endogenous and exogenous ROS to enhance oxidative stress-mediated cancer cell death. Methods: A ROS-generating agent based on polymer-modified zinc peroxide nanoparticles (ZnO2 NPs) was presented, which simultaneously delivered exogenous H2O2 and Zn²⁺ capable of amplifying endogenous ROS production for synergistic cancer therapy. Results: After internalization into tumor cells, ZnO2 NPs underwent decomposition in response to mild acidic pH, resulting in controlled release of H2O2 and Zn²⁺. Intriguingly, Zn²⁺ could increase the production of mitochondrial O2·⁻ and H2O2 by inhibiting the electron transport chain, and thus exerted anticancer effect in a synergistic manner with the exogenously released H2O2 to promote cancer cell killing. Furthermore, ZnO2 NPs were doped with manganese via cation exchange, making them an activatable magnetic resonance imaging contrast agent. Conclusion: This study establishes a ZnO2-based theranostic nanoplatform which achieves enhanced oxidative damage to cancer cells by a two-pronged approach of combining endogenous and exogenous ROS.
Article
Full-text available
Telomerase is expressed in the majority (>85%) of tumors, but has restricted expression in normal tissues. Long-term telomerase inhibition in malignant cells results in progressive telomere shortening and reduction in cell proliferation. Here we report the synthesis and characterization of radiolabeled oligonucleotides that target the RNA subunit of telomerase, hTR, simultaneously inhibiting enzymatic activity and delivering radiation intracellularly. Oligonucleotides complementary (Match) and noncomplementary (Scramble or Mismatch) to hTR were conjugated to diethylenetriaminepentaacetic dianhydride (DTPA), allowing radiolabeling with the Auger electron-emitting radionuclide indium-111 (111In). Match oligonucleotides inhibited telomerase activity with high potency, which was not observed with Scramble or Mismatch oligonucleotides. DTPA-conjugation and 111In-labeling did not change telomerase inhibition. In telomerase-positive cancer cells, unlabeled Match oligonucleotides had no effect on survival, however, 111In-labeled Match oligonucleotides significantly reduced clonogenic survival and upregulated the DNA damage marker γH2AX. Minimal radiotoxicity and DNA damage was observed in telomerase-negative cells exposed to 111In-Match oligonucleotides. Match oligonucleotides localized in close proximity to nuclear Cajal bodies in telomerase-positive cells. In comparison with Match oligonucleotides, 111In-Scramble or 111In-Mismatch oligonucleotides demonstrated reduced retention and negligible impact on cell survival. This study indicates the therapeutic activity of radiolabeled oligonucleotides that specifically target hTR through potent telomerase inhibition and DNA damage induction in telomerase-expressing cancer cells and paves the way for the development of novel oligonucleotide radiotherapeutics targeting telomerase-positive cancers. Significance These findings present a novel radiolabeled oligonucleotide for targeting telomerase-positive cancer cells that exhibits dual activity by simultaneously inhibiting telomerase and promoting radiation-induced genomic DNA damage.
Article
Full-text available
Given the essential role of apurinic/apyrimidinic endonuclease (APE1) in gene repair and cancer progression, we report a novel approach for probing and regulating cellular APE1 activity by using DNA tetrahedron. The tetrahedron with an AP site-contained antenna exhibits high sensitivity and specificity to APE1. It is suitable for APE1 in vitro detection (detection limit 5 pM), and cellular fluorescence imaging without any auxiliary transfection reagents, which discriminates the APE1 expression level of cancer cell and normal cell. In contrast, the tetrahedron with an AP site on its scaffold exhibits high binding affinity to APE1 but limits enzymatic catalysis rendering this nanostructure as an APE1 inhibitor with an IC50 of 14.8 nM. It suppresses the APE1 activity in living cells and sensitizes cancer cells to the anticancer drug. We also demonstrate the APE1 probe and inhibitor can be switched allosterically via stand displacement, which holds potential for reversible inhibition of APE1. Our approach provides a new way for fabricating enzyme probe and regulator and new insights of enzyme-substrate interactions, and it can be expanded to regulate other nucleic acid related enzymes.
Article
Full-text available
Base excision repair (BER) handles many forms of endogenous DNA damage, and apurinic/apyrimidinic endonuclease 1 (APE1) is central to this process. Deletion of both alleles of APE1 (a.k.a. Apex1) in mice leads to embryonic lethality, and deficiency in cells can promote cell death. Unlike most other BER proteins, APE1 expression is inversely correlated with cellular senescence in primary human fibroblasts. Depletion of APE1 via shRNA induced senescence in normal human BJ fibroblasts, a phenotype that was not seen in counterpart cells expressing telomerase. APE1 knock-down in primary fibroblasts resulted in global DNA damage accumulation, and the induction of p16INK4a and p21WAF1 stress response pathways; the DNA damage response, as assessed by γ-H2AX, was particularly pronounced at telomeres. Conditional knock-out of Apex1 in mice at post-natal day 7/12 resulted in impaired growth, reduced organ size, and increased cellular senescence. The effect of Apex1 deletion at post-natal week 6 was less obvious, other than cellular senescence, until ∼8-months of age, when premature aging characteristics, such as hair loss and impaired wound healing, were seen. Low APE1 expression in patient cancer tissue also correlated with increased senescence. Our results point to a key role for APE1 in regulating cellular senescence and aging features, with telomere status apparently affecting the outcome.
Article
Full-text available
A large number of chemicals and several physical agents, such as UV light and γ-radiation, have been associated with the etiology of human cancer. Generation of DNA damage (also known as DNA adducts or lesions) induced by these agents is an important first step in the process of carcinogenesis. Evolutionary processes gave rise to DNA repair tools that are efficient in repairing damaged DNA; yet replication of damaged DNA may take place prior to repair, particularly when they are induced at a high frequency. Damaged DNA replication may lead to gene mutations, which in turn may give rise to altered proteins. Mutations in an oncogene, a tumor-suppressor gene, or a gene that controls the cell cycle can generate a clonal cell population with a distinct advantage in proliferation. Many such events, broadly divided into the stages of initiation, promotion, and progression, which may occur over a long period of time and transpire in the context of chronic exposure to carcinogens, can lead to the induction of human cancer. This is exemplified in the long-term use of tobacco being responsible for an increased risk of lung cancer. This mini-review attempts to summarize this wide area that centers on DNA damage as it relates to the development of human cancer.
Article
Full-text available
Here, we used stopped-flow fluorescence techniques to conduct a comparative kinetic analysis of the conformational transitions in human apurinic/apyrimidinic endonuclease 1 (APE1) and in DNA containing an abasic site in the course of their interaction. Effects of monovalent (K(+)) and divalent (Mg(2+), Mn(2+), Ca(2+), Zn(2+), Cu(2+), and Ni(2+)) metal ions on DNA binding and catalytic stages were studied. It was shown that the first step of substrate binding (corresponding to formation of a primary enzyme-substrate complex) does not depend on the concentration (0.05-5.0 mM) or the nature of divalent metal ions. In contrast, the initial DNA binding efficiency significantly decreased at a high concentration (5-250 mM) of monovalent K(+) ions, indicating the involvement of electrostatic interactions in this stage. It was also shown that Cu(2+) ions abrogated the DNA binding ability of APE1, possibly, due to a strong interaction with DNA bases and the sugar-phosphate backbone. In the case of Ca(2+) ions, the catalytic activity of APE1 was lost completely with retention of binding potential. Thus, the enzymatic activity of APE1 is increased in the order Zn(2+) < Ni(2+) < Mn(2+) < Mg(2+). Circular dichroism spectra and calculation of the contact area between APE1 and DNA reveal that Mg(2+) ions stabilize the protein structure and the enzyme-substrate complex.
Article
Full-text available
This review summarises recent knowledge of polycyclic aromatic hydrocarbons (PAHs) biotransformation by microorganisms and plants. Whereas most research has focused on PAH degradation either by plants or microorganisms separately, this review specifically addresses the interactions of plants with their rhizosphere microbial communities. Indeed, plant roots release exudates that contain various nutritional and signalling molecules that influence bacterial and fungal populations. The complex interactions of these populations play a pivotal role in the biodegradation of high-molecular-weight PAHs and other complex molecules. Emerging integrative approaches, such as (meta-) genomics, (meta-) transcriptomics, (meta-) metabolomics, and (meta-) proteomics studies are discussed, emphasising how "omics" approaches bring new insight to decipher molecular mechanisms of PAH degradation both at the single species and community levels. Such knowledge address new pictures on how organic molecules are co-metabolically degraded in a complex ecosystem and should help in setting up novel decontamination strategies based on the rhizosphere interactions between plants and their microbial associates.
Article
Full-text available
The potential toxicity of nanoparticles has currently provoked public and scientific discussions, and attempts to develop generally accepted handling procedures for nanoparticles are under way. The investigation of the impact of nanoparticles on human health is overdue and reliable test systems accounting for the special properties of nanomaterials must be developed. Nanoparticular zinc oxide (ZnO) may be internalised through ambient air or the topical application of cosmetics, only to name a few, with unpredictable health effects. Therefore, we analysed the determinants of ZnO nanoparticle (NP) genotoxicity. ZnO NPs (15-18 nm in diameter) were investigated at concentrations of 0.1, 10 and 100 μg mL(-1) using the cell line A549. Internalised NPs were only infrequently detectable by TEM, but strongly increased Zn(2+) levels in the cytoplasm and even more in the nuclear fraction, as measured by atom absorption spectroscopy, indicative of an internalised zinc and nuclear accumulation. We observed a time and dosage dependent reduction of cellular viability after ZnO NP exposure. ZnCl2 exposure to cells induced similar impairments of cellular viability. Complexation of Zn(2+) with diethylene triamine pentaacetic acid (DTPA) resulted in the loss of toxicity of NPs, indicating the relevant role of Zn(2+) for ZnO NP toxicity. Foci analyses showed the induction of DNA double strand breaks (DSBs) by ZnO NPs and increased intracellular reactive oxygen species (ROS) levels. Treatment of the cells with the ROS scavenger N-acetyl-l-cysteine (NAC) resulted in strongly decreased intracellular ROS levels and reduced DNA damage. However, a slow increase of ROS after ZnO NP exposure and reduced but not quashed DSBs after NAC-treatment suggest that Zn(2+) may exert genotoxic activities without the necessity of preceding ROS-induction. Our data indicate that ZnO NP toxicity is a result of cellular Zn(2+) intake. Subsequently increased ROS-levels cause DNA damage. However, we found evidence for the assumption that DNA-DSBs could be caused by Zn(2+) without the involvement of ROS.
Article
Full-text available
N-nitroso compounds represent a common type of environmental and endogenous DNA-damaging agents. After metabolic activation, many N-nitroso compounds are converted into a diazoacetate intermediate that can react with nucleobases to give carboxymethylated DNA adducts such as N3-carboxymethylthymidine (N3-CMdT) and O(4)-carboxymethylthymidine (O(4)-CMdT). In this study, we constructed non-replicative plasmids carrying a single N3-CMdT or O(4)-CMdT, site-specifically positioned in the transcribed strand, to investigate how these lesions compromise the flow of genetic information during transcription. Our results revealed that both N3-CMdT and O(4)-CMdT substantially inhibited DNA transcription mediated by T7 RNA polymerase or human RNA polymerase II in vitro and in human cells. In addition, we found that N3-CMdT and O(4)-CMdT were miscoding lesions and predominantly directed the misinsertion of uridine and guanosine, respectively. Our results also suggested that these carboxymethylated thymidine lesions may constitute efficient substrates for transcription-coupled nucleotide excision repair in human cells. These findings provided important new insights into the biological consequences of the carboxymethylated DNA lesions in living cells. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Article
Full-text available
Cells in tissues and organs are continuously subjected to oxidative stress and free radicals on a daily basis. This free radical attack has exogenous or endogenous (intracellular) origin. The cells withstand and counteract this occurrence by the use of several and different defense mechanisms ranging from free radical scavengers like glutathione (GSH), vitamins C and E and antioxidant enzymes like catalase, superoxide dismutase and various peroxidases to sophisticated and elaborate DNA repair mechanisms. The outcome of this dynamic equilibrium is usually the induction of oxidatively induced DNA damage and a variety of lesions of small to high importance and dangerous for the cell i.e. isolated base lesions or single strand breaks (SSBs) to complex lesions like double strand breaks (DSBs) and other non-DSB oxidatively generated clustered DNA lesions (OCDLs). The accumulation of DNA damage through misrepair or incomplete repair may lead to mutagenesis and consequently transformation particularly if combined with a deficient apoptotic pathway. In this review, we present the current status of knowledge and evidence on the mechanisms and involvement of intracellular oxidative stress and DNA damage in human malignancy evolution and possible use of these parameters as cancer biomarkers. At the same time, we discuss controversies related to potential artifacts inherent to specific methodologies used for the measurement of oxidatively induced DNA lesions in human cells or tissues.
Article
Full-text available
Our knowledge of the molecular mechanisms of intracellular homeostatic control of zinc ions is now firmly grounded on experimental findings gleaned from the study of zinc proteomes and metallomes, zinc transporters, and insights from the use of computational approaches. A cell's repertoire of zinc homeostatic molecules includes cytosolic zinc-binding proteins, transporters localized to cytoplasmic and organellar membranes, and sensors of cytoplasmic free zinc ions. Under steady state conditions, a primary function of cytosolic zinc-binding proteins is to buffer the relatively large zinc content found in most cells to a cytosolic zinc(ii) ion concentration in the picomolar range. Under non-steady state conditions, zinc-binding proteins and transporters act in concert to modulate transient changes in cytosolic zinc ion concentration in a process that is called zinc muffling. For example, if a cell is challenged by an influx of zinc ions, muffling reactions will dampen the resulting rise in cytosolic zinc ion concentration and eventually restore the cytosolic zinc ion concentration to its original value by shuttling zinc ions into subcellular stores or by removing zinc ions from the cell. In addition, muffling reactions provide a potential means to control changes in cytosolic zinc ion concentrations for purposes of cell signalling in what would otherwise be considered a buffered environment not conducive for signalling. Such intracellular zinc ion signals are known to derive from redox modifications of zinc-thiolate coordination environments, release from subcellular zinc stores, and zinc ion influx via channels. Recently, it has been discovered that metallothionein binds its seven zinc ions with different affinities. This property makes metallothionein particularly well positioned to participate in zinc buffering and muffling reactions. In addition, it is well established that metallothionein is a source of zinc ions under conditions of redox signalling. We suggest that the biological functions of transient changes in cytosolic zinc ion concentrations (presumptive zinc signals) complement those of calcium ions in both spatial and temporal dimensions.
Article
Full-text available
We investigated the interaction dynamics of human abasic endonuclease, the Ape1 protein (also called Ref1, Hap1, or Apex), with its DNA substrate and incised product using electrophoretic assays and site-specific amino acid substitutions. Changing aspartate 283 to alanine (D283A) left 10% residual activity, contrary to a previous report, but complementation of repair-deficient bacteria by the D283A Ape1 protein was consistent with its activity in vitro. The D308A, D283/D308A double mutant, and histidine 309 to asparagine proteins had 22, 1, and approximately 0. 02% of wild-type Ape1 activity, respectively. Despite this range of enzymatic activities, all the mutant proteins had near-wild-type binding affinity specific for DNA containing a synthetic abasic site. Thus, substrate recognition and cleavage are genetically separable steps. Both the wild-type and mutant Ape1 proteins bound strongly to the enzyme incision product, an incised abasic site, which suggested that Ape1 might exhibit product inhibition. The use of human DNA polymerase beta to increase Ape1 activity by eliminating the incision product supports this conclusion. Notably, the complexes of the D283A, D308A, and D283A/D308A double mutant proteins with both intact and incised abasic DNA were significantly more stable than complexes containing wild-type Ape1, which may contribute to the lower turnover numbers of the mutant enzymes. Wild-type Ape1 protein bound tightly to DNA containing a one-nucleotide gap but not to DNA with a nick, consistent with the proposal that substrate recognition by Ape1 involves a space bracketed by duplex DNA, rather than mere flexibility of the DNA.
Article
Full-text available
Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created in cells both spontaneously and by damage-specific DNA glycosylases. The biologically critical human base excision repair enzyme APE1 cleaves the DNA sugar-phosphate backbone at a position 5' of AP sites to prime DNA repair synthesis. Here we report three co-crystal structures of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed, positively charged surface to kink the DNA helix and engulf the AP-DNA strand. APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out AP site in a pocket that excludes DNA bases and racemized beta-anomer AP sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA and Mn2+ support a testable structure-based catalytic mechanism. Alanine substitutions of the residues that penetrate the DNA helix unexpectedly show that human APE1 is structurally optimized to retain the cleaved DNA product. These structural and mutational results show how APE1 probably displaces bound glycosylases and retains the nicked DNA product, suggesting that APE1 acts in vivo to coordinate the orderly transfer of unstable DNA damage intermediates between the excision and synthesis steps of DNA repair.
Article
Full-text available
Human Ape1 is a multifunctional protein with a major role in initiating repair of apurinic/apyrimidinic (AP) sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage. Besides in double-stranded DNA, Ape1 has been shown to cleave at AP sites in single-stranded regions of a number of biologically relevant DNA conformations and in structured single-stranded DNA. Extension of these studies has revealed a more expansive repertoire of model substrates on which Ape1 exerts AP endonuclease activity. In particular, Ape1 possesses the ability to cleave at AP sites located in (i) the DNA strand of a DNA/RNA hybrid, (ii) "pseudo-triplex" bubble substrates designed to mimic stalled replication or transcription intermediates, and (iii) configurations that emulate R-loop structures that arise during class switch recombination. Moreover, Ape1 was found to cleave AP-site-containing single-stranded RNA, suggesting a novel "cleansing" function that may contribute to the elimination of detrimental cellular AP-RNA molecules. Finally, sequence context immediately surrounding an abasic site in duplex DNA was found to have a less than threefold effect on the incision efficiency of Ape1, and ATP was found to exert complex effects on the endonuclease capacity of Ape1 on double-stranded substrates. The results suggest that in addition to abasic sites in conventional duplex genomic DNA, Ape1 has the ability to incise at AP sites in DNA conformations formed during DNA replication, transcription, and class switch recombination, and that Ape1 can endonucleolytically destroy damaged RNA.
Article
Herein, the 2,4-dinitrophenyl functional group acting as the thiophenol reactive site was introduced into a carbazole–chalcone fluorophore to synthesize probe-CCF2, which could result in a remarkable increase in fluorescence when reacting with thiophenols. The selectivity and accuracy of probe-CCF2 were investigated with thiophenols, hydrosulphide salt, aliphatic thiols, glutathione, cysteine, anions and metal cations. Probe-CCF2 exhibited a detection limit of 37 nmol/L (R2 = 0.9951), a remarkable Stokes shift of approximately 130 nm, and a brief response time of 9 min with a remarkable increase in fluorescence of 90-fold. Probe-CCF2 was applied for thiophenol detection in water samples and imaging in living cells successfully, with high sensitivity and excellent selectivity.
Article
H2O2 and polarity are quite important in many physiological and pathological processes, and their relationship is complicated and obscure for researchers. Thus, it is vital and challenging to achieve simultaneous detection of H2O2 and polarity in vivo. Herein, the first naphthalimide-triphenylamine-based dual-site fluorescent probe NATPA is developed for simultaneously imaging intracellular H2O2 and polarity fluctuations. It exhibits excellent sensitivity (LOD = 44 nM), selectivity, and fast response (15 min) to H2O2 and a superior capacity for detecting polarity upon the intramolecular charge transfer (ICT) effect. Besides, the probe displays low cytotoxicity and lipid droplet targeting and is further applied in imaging H2O2 and polarity fluctuations in HepG2 and L-02 cells, so that NATPA is qualified to distinguish cancer cells from normal cells. This research contributes a new design principle for the construction of dual-site fluorescent probes for simultaneously detecting active molecules and polarity.
Article
In situ imaging of DNA repair enzymes in living cells gives important insights to diagnosis and explore the formation of various diseases. Fluorescent probes have become a powerful and widely used technique for their high sensitivity and real-time capabilities, but empirical design and optimization of the corresponding probes can be blind and time-consuming. Herein, we report a strategy combining experimental studies with molecular simulation techniques for the rapid and rational design of sensitive fluorescent DNA probes for a representative DNA repair enzyme human apurinic/apyrimidinic endonuclease 1 (APE1). Extended-system Adaptive Biasing Force (eABF) was applied to study the interaction mechanism between DNA probes with respect to the enzyme, based on which a novel sensitive DNA probe was designed efficiently and economically. Product inhibition effect which significantly limited the sensitivity of existing probes was eliminated by decreasing the key interactions between DNA probe products and enzyme. Experimental mechanism studies showed the existence of intramolecular hairpin structure in DNA probes is important for the recognition of APE1 and elimination of product inhibition, which is in consistent with the simulations. The obtained fluorescent DNA nanoprobe (Nanoprobe N) showed a high sensitivity for APE1 with the detection limit as low as 0.5 U/L (∼0.018 pM), and the Nanoprobe N could effectively respond to the variation of APE1 within cells and distinguish cancer cells from normal cells. This work not only demonstrated the effectiveness of molecular simulations in probe design, but also provided a reliable platform for accurate imaging of APE1 and effectors screening at single-cell level.
Article
The use of fluorescent probes in visible detection has been developed over the last several decades. Biomolecules are essential in the biological processes of organisms, and their distribution and concentration are largely influenced by environmental factors. Significant advances have occurred in the applications of fluorescent probes for the detection of the dynamic localization and quantity of biomolecules during various environmental stress-induced physiological and pathological processes. Herein, we summarize representative examples of small molecule-based fluorescent probes that provide bimolecular information when the organism is under environmental stress. The discussion includes strategies for the design of smart small-molecule fluorescent probes, in addition to their applications in biomolecule imaging under environmental stresses, such as hypoxia, ischemia-reperfusion, hyperthermia/hypothermia, organic/inorganic chemical exposure, oxidative/reductive stress, high glucose stimulation, and drug treatment-induced toxicity. We believe that comprehensive insight into the beneficial applications of fluorescent probes in biomolecule detection under environmental stress should enable the further development and effective application of fluorescent probes in the biochemical and biomedical fields.
Article
The comet assay is a simple technique for measurements of low levels of DNA damage and repair in single cells. However, there is variation in background levels of DNA damage in peripheral blood mononuclear cells (PBMCs). This variation has been documented by inter-laboratory ring-trials where identical samples have been analysed in different laboratories using the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. The coefficient of variation of background levels of Fpg-sensitive sites was 128% in the first inter-laboratory validation trial called European Standards Committee on Oxidative DNA Damage. The variation was reduced to 44% by the end of the project. Subsequent ring-trials by the European Comet Assay Validation Group showed similar inter-laboratory variation in Fpg-sensitive sites in PBMCs (45%). The lowest inter-laboratory variation in Fpg-sensitive sites in PBMCs was 12% when using calibration to standardize comet assay descriptors. Introduction of standard comet assay procedures was surprisingly unsuccessful as certain laboratories experienced technical problems using unaccustomed assay conditions. This problem was alleviated by using flexible assay standard conditions rather than a standard protocol in a ring-trial by the hCOMET group. The approach reduced technical problems, but the inter-laboratory variation in Fpg-sensitive sites was not reduced. The ring-trials have not pinpointed specific assay steps as major determinants of the variation in DNA damage levels. It is likely that small differences in several steps cause inter-laboratory variation. Although this variation in reported DNA damage levels causes concern, ring-trials have also shown that the comet assay is a reliable tool in biomonitoring studies.
Article
As a tremendously noxious and extensively utilized chemical reagent, hydrazine (N2H4) has become a serious threat to ecosystem and human health. Thus, it is desirable to exploit an efficient method for real-time tracking of hydrazine. Here, a novel ratiometric fluorescent probe PBQ-AB for hydrazine was rationally constructed from isolongifolanone. This probe displayed an extremely large Stokes shift of 230 nm and could selectively recognize hydrazine in the presence of other competitive species within an extremely short time (< 40 s). PBQ-AB also displayed some fascinating merits in the detection of hydrazine, including low detection limit (48 nM), wide pH range (5-12), excellent photostability (> 240 min), and well-resolved emission wavelength shift (148 nm). Moreover, this probe was utilized to fabricate a ready-to-use electrospinning nanofibrous membrane for convenient detection of hydrazine vapor by virtue of smartphone. Furthermore, PBQ-AB was capable of determining hydrazine contaminant in environmental soil and water samples. Additionally, its favorable performance for detecting hydrazine was successfully demonstrated in live HeLa cells as well as in live Arabidopsis thaliana tissues, manifesting its promising application for labeling hydrazine in living systems. Therefore, we believed that this probe has great potential in environmental analysis and health supervision.
Article
In the present work, a novel amino-functionalized hexaalkylguanidinium chloride ionic liquid was prepared and grafted on the surface of magnetic materials through polyethyleneimine to enrich polycyclic aromatic hydrocarbons in water in combination with HPLC equipped with an ultraviolet detector. The effect of several parameters on the extraction efficiency was investigated, including the desorption solvent, the amounts of sorbents, the extraction time, the desorption time and the salt amount. Under the optimized conditions, the method validation exhibited good linearity with correlation coefficients above 0.994 in the range of 0.2–300 ng/mL and low limits of detection and quantification of 0.05 and 0.2 ng/mL, respectively. Besides, relative recoveries were in the range of 80–120%, and the intra-day and inter-day repeatability were good with the relative standard deviations of less than 20%. Finally, the guanidinium ionic liquid modified magnetic materials were applied for the extraction of polycyclic aromatic hydrocarbons from real water samples to demonstrate the utility, and the results show that the proposed method has good prospect for effective enrichment and determination of pollutants in water.
Article
The integration of reactive oxygen species (ROS)-involved molecular dynamic therapy (MDT) and photodynamic therapy (PDT) holds great promise for enhanced anticancer effects. Herein, we report a biodegradable tumor microenvironment-responsive nanoplatform composed of sinoporphyrin sodium (SPS) photosensitizer-loaded zinc peroxide nanoparticles (SPS@ZnO2 NPs), which can enhance the action of ROS through the production of hydrogen peroxide (H2O2) and singlet oxygen (1O2) for MDT and PDT, respectively, and the depletion of glutathione (GSH). Under these conditions, SPS@ZnO2 NPs show excellent MDT/PDT synergistic therapeutic effects. We demonstrate that the SPS@ZnO2 NPs quickly degrade to H2O2 and endogenous Zn2+ in an acidic tumor environment and produce toxic 1O2 with 630 nm laser irradiation both in vitro and in vivo. Anticancer mechanistic studies show that excessive production of ROS damages lysosomes and mitochondria and induces cellular apoptosis. We show that SPS@ZnO2 NPs increase the uptake and penetration depth of photosensitizers in cells. In addition, the fluorescence of SPS is a powerful diagnostic tool for the treatment of tumors. The depletion of intracellular GSH through H2O2 production and the release of cathepsin B enhance the effectiveness of PDT. This theranostic nanoplatform provides a new avenue for tumor microenvironment-responsive and ROS-involved therapeutic strategies with synergistic enhancement of antitumor activity.
Article
Dietary uptake is important for trophic transfer of polycyclic aromatic hydrocarbons (PAHs) in the freshwater pelagic ecosystem. In this study, we hypothesized that both the dietary uptake rate and interval significantly influenced its relative contribution to bioaccumulation. We developed a toxicokinetic model framework for the bioaccumulation of deuterated PAHs (PAHs-d10) in aquatic organisms considering different feeding intervals ranging from none for phytoplankton to approximately continuous for zooplankton to discrete for fish and built a simple artificial freshwater pelagic food chain composed of algae Chlorella vulgaris, zooplankton Daphnia magna, and zebrafish. We conducted bioaccumulation experiments and simulations for Daphnia magna and zebrafish under different algal densities based on our model. The results showed that intermittent feeding led to a large fluctuation in the PAH-d10 concentrations in zebrafish compared to a leveled-off pattern in Daphnia magna because of approximately continuous feeding. Trophic dilution of PAHs-d10 occurred in the food chain when there was waterborne-only uptake, but dietary uptake largely mitigated its extent that depended on dietary uptake rates. The assimilation efficiency, dietary uptake rate, and its relative contribution to bioaccumulation of PAHs-d10 in zebrafish were all higher than those in Daphnia magna, suggesting that dietary uptake played a more important role in bioaccumulation of PAHs at higher trophic-level organisms.
Article
Carcinogenic benzo[a]pyrene (BP) and other non-carcinogenic polycyclic aromatic hydrocarbons (PAH) like fluoranthene (FA) and pyrene (PYR) occur as food contaminants. Molecular effects of BP, FA and PYR in human liver cells were investigated using mixtures occurring in grilled meat. Activation of aryl hydrocarbon receptor (AHR) and constitutive androstane receptor (CAR) was investigated along with target gene expression. Mixture effects on BP metabolite profile and DNA-damaging potential were studied as biological downstream effects. Compared to BP, FA and PYR activated the AHR only weakly. Mixtures were less efficient than BP. Analysis of CYP1A1 expression showed synergistic induction after co-exposure in HepaRG cells. FA and PYR were strong CAR agonists, whereas BP was less potent. Mixtures containing BP caused a strong decrease of CAR transactivation in line with lower CYP2B6 expression. The BP metabolite profile and BP-induced DNA damage were only weakly affected. PAH mixtures modulate AHR, CAR activation and their target genes. However, these mixture effects appear not to be reflected at the level of downstream events like BP metabolite formation or BP-induced DNA damage. Our study clearly shows that endpoints at all biological levels should be considered for mixture evaluation, instead of drawing conclusions exclusively based on early molecular events.
Article
Long-term exposures to environmental toxicants are causative factors for human health effects. DNA damages are of great interest in that they can serve as the potential biomarkers of environmental exposure and mutations. Qualitative and quantitative detection of their level in genomic DNA, are helpful for the understanding of the generation, transformation, repair and fate of DNA damages and for elucidating the mechanism underlying carcinogenesis. Methodologies based on liquid chromatography-mass spectrometry (LC-MS) have shown unique advantages in accurate and highly sensitive analysis of these structurally modified DNA damages. The present review summarizes our current knowledge on LC-MS analysis of genetic DNA damages, with special emphasis on structurally chemical DNA modifications induced by environmental exposure. Advances in LC-MS analysis and monitoring of oxidative DNA lesion, DNA adducts induced by heavy metals, persistent organic pollutants, bisphenols, fine particulate matters, aldehydes and halobenzoquinones are comprehensively summarized.
Article
A bio-nanocomposite with artificial binding pockets for a DNA repair enzyme has been developed by in-situ assembly of an af-finity protein with a surrounding contact surface of polydopa-mine on the surface of silica coated magnetic nanoparticles via molecular imprinting reactions. The obtained nanoparticles ex-hibited antibody-like binding behavior toward the target enzyme with highly specific and efficient inhibition effect. Moreover, the binding and inhibition could be flexibly tuned by the addition of metal ions such as Mn2+ and Mg2+, which provided a convenient tool to regulate enzyme activity with artificially engineered nano-inhibitors.
Article
Genotoxicity is considered the major concern for drinking water disinfection by-products (DBPs). Of over 700 DBPs identified to date, only a small number of has been assessed with limited information for DBP genotoxicity mechanism(s). In this study we evaluated genotoxicity of 20 regulated and un-regulated DBPs applying a quantitative toxicogenomics approach. We used GFP-fused yeast strains that examine protein expression profiling of 38 proteins indicative of all known DNA damage and repair pathways. The toxicogenomics assay detected genotoxicity potential of these DBPs in consistent with conventional genotoxicity assays endpoints. Furthermore, the high-resolution, real-time pathway activation and protein expression profiling, in combination with clustering analysis, revealed molecular level details in the genotoxicity mechanisms among different DBPs and enabled classification of DBPs based on their distinct DNA damage effects and repair mechanisms. Oxidative DNA damage and base alkylation were confirmed to be the main molecular mechanisms of DBP genotoxicity. Initial exploration of QSAR modeling using moleular genotoxicity endpoints (PELI) suggested that genotoxicity of DBPs in this study was mainly contributed by topological and quantum chemical descriptors. This study presents a toxicogenomics-based assay for fast and efficient mechanistic genotoxicity screening and assessment of large number of DBPs. The results help to fill in the knowledge gap in the understanding of the molecular mechanisms of DBP genotoxicity.
Article
Permanent fish cell lines constitute a promising complement or substitute for fish in the environmental risk assessment of chemicals. We demonstrate the potential of a set of cell lines originating from rainbow trout (Oncorhynchus mykiss) to aid in the prediction of chemical bioaccumulation in fish, using benzo(a)pyrene (BaP) as model chemical. We selected three cell lines from different tissues to more fully account for whole body biotransformation in vivo: the RTL-W1 cell line representing the liver as major site of biotransformation; and the RTgill-W1 (gill) and RTgutGC (intestine) cell lines as important environment-organism interfaces, which likely influence chemical uptake. All three cell lines were found to effectively biotransform BaP. However, rates of in vitro clearance differed, with the RTL-W1 cell line being most efficient, followed by RTgutGC. Co-exposures with alpha-naphthoflavone as potent inhibitor of biotransformation, assessment of CYP1A catalytic activity, as well as the progression of cellular toxicity upon prolonged BaP exposure revealed that BaP is handled differently in the RTgill-W1 compared to the other two cell lines. Application of the cell line derived in vitro clearance rates into a physiology-based toxicokinetic model predicted a BaP bioconcentration factor (BCF) of 909-1057 compared to 920 reported in vivo in rainbow trout.
Article
A novel DNA structure containing a 3' internal-loop modified abasic site has been constructed which enables effective differentiation between apurinic/apyrimidinic endonuclease (APE1) and nonspecific endonuclease (DNase I). When this unique substrate structure is employed, a double-loop frayed-end chimeric fluorescent probe is successfully developed for quantitative measurement of the activity of APE1 in biological samples without the need of additional cleanup or preconcentration steps. The method is simple and rapid and has a single-step with a linear working range between 0.1 and 5.0 U/mL and a lower limit of detection of 0.1 U/mL. It holds great potential in real-time monitoring of the variation of intracellular and extracellular APE1, which will be very useful for further understanding of the DNA repair pathways in different organisms.
Article
Polycyclic aromatic hydrocarbons (PAHs) are significant environmental pollutants representing an important risk factor in human cancers. DNA adducts formed by the ultimate carcinogens of PAHs are potentially toxic, mutagenic and carcinogenic. DNA repair represents an important defense system against these genotoxic insults. Using a human cell-free system we have examined repair of DNA lesions induced by several PAH dihydrodiol epoxides, including anti-(± )-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide, anti-(± )-benz[a]anthracene-trans-3,4-dihydrodiol-1,2-epoxide, anti-(±)-benz[a]anthracene-trans-8,9-dihydrodiol-10,11-epoxide, anti-(± )-benzo[b]fluoranthenetrans-9,10-dihydrodiol-11,12-epoxide and anti-(±)-chrysene-trans-1,2 -dihydrodiol-3,4-epoxide. Effective repair of DNA damage induced by these five PAH metabolites was detected. Two distinct mechanisms of excision repair were observed. The major repair mechanism is nucleotide excision repair (NER). The other mechanism is independent of NER and correlated with the presence of apurinic/ apyrimidinic sites in the damaged DNA, thus presumably reflecting base excision repair (BER). However, the contribution of BER to different PAH lesions varied in vitro. These results suggest the possibility that BER may also play an important role in repair of certain PAH-induced DNA lesions.
Article
Metal ion pools are more widespread and dynamic be systematically perturbed in disease states, and that metal ions are intimately connected to canonical signaling pathways, suggesting a rich connection between transition metals and cell physiology. The ability to perform simultaneous multianalyte imaging to elucidate interactions between different metal pools will be instrumental for dissecting the mechanism of crosstalk between different ions. Such measurements would require an expanded repertoire of probes of different colors, increasing rigor in metal specificity, a greater number of localized probes, and careful attention to ensure no perturbation of the cellular pools. An additional frontier is to expand the toolkit for imaging metal ions in whole organisms, in which the three-dimensional tissue architecture and multiple complex interacting systems is preserved, would enable us to generate a more comprehensive understanding of metal homeostasis at the organismal level.
Article
Unrepaired DNA damage can lead to mutation, cancer, and death of cells or organisms. However, due to the subtlety of DNA damage, it is difficult to sense the presence of damage repair with high selectivity and sensitivity. We have shown sensitive and selective electrochemical sensing of 8-oxoguanine and uracil repair glycosylase activity within DNA monolayers on gold by multiplexed analysis with silicon chips and low-cost electrospun nanofibers. Our approach compared the electrochemical signal of electroactive, probe-modified DNA monolayers containing a base defect versus the rational control of defect-free monolayers. We found damage-specific sensitivity thresholds on the order of femtomoles of proteins and dynamic ranges of over two orders of magnitude for each target. Temperature-dependent kinetics were extracted, showing exponential signal loss with time constants of seconds. Damage specific detection in a mixture of enzymes and in response to environmental oxidative damage was also demonstrated. Nanofibers were shown to behave similarly to conventional gold-on-silicon devices, showing the potential of these low-cost devices for sensing applications. This device approach achieves a sensitive, selective, and rapid assay of repair protein activity, enabling a biological interrogation of DNA damage repair.
Article
Polycyclic aromatic hydrocarbons (PAH) emitted from fluidized bed combustion have been reviewed. Firstly, the PAH origin is undertaken. Secondly, the state of the art on their sampling and analytical procedures are commented. Finally, the influence of the fuel, fossil and nonfossil fuels, the combustor type and the combustion variables are analyzed concerning PAH formation and emission in solid/gaseous phase.
Article
Environmental and dietary carcinogens such as polycyclic aromatic hydrocarbons (PAHs) have been intensively studied for decades. Although the genotoxicity of these compounds is well characterized (i.e., formation of bulky PAH-DNA adducts), molecular details on the DNA damage response triggered by PAHs in cells and tissues remain to be clarified. The conversion of hazardous PAHs into carcinogenic intermediates depends on enzyme-catalyzed biotransformation. Certain cytochrome P450-dependent monooxygenases (CYPs) play a pivotal role in PAH metabolism. In particular, CYP1A1 and 1B1 catalyze oxidation of PAHs toward primary epoxide species that can further be converted into multiple follow-up products, both nonenzymatically and enzymatically. Distinct functions between these major CYP enzymes have only been appreciated since transgenic animal models had been derived. Electrophilic PAH metabolites are capable of forming stable DNA adducts or to promote depurination at damaged nucleotide sites. During the following DNA replication cycle, bulky PAH-DNA adducts may be converted into mutations, thereby affecting hot spot sites in regulatory important genes such as Ras, p53, and others. Depending on the degree of DNA distortion and cell cycle progression, PAH-DNA adducts trigger nucleotide excision repair (NER) and various DNA damage responses that might include TP53-dependent apoptosis in certain cell types. In fact, cellular responses to bulky PAH-DNA damage are complex because distinct signaling branches such as ATM/ATR, NER, TP53, but also MAP kinases, interact and cooperate to determine the overall outcome to cellular injuries initiated by PAH-DNA adducts. Further, PAHs and other xenobiotics can also confer DNA damage via an alternative route of metabolic activation, which leads to the generation of PAH semiquinone radicals and reactive oxygen species (ROS). One-electron oxidations mediated by peroxidases or other enzymes can result in PAH radical cations that mainly form unstable DNA adducts subjected to depurination. In addition, generation of ROS can also trigger multiple cellular signaling pathways not directly related to mutagenic or cytotoxic effects, including those mediated by NFκB, SAPK/JNK, and p38. In recent years, it became clear that PAHs may also be involved in inflammatory diseases, autoimmune disorders, or atherosclerosis. Further research is under way to better characterize the significance of such newly recognized systemic effects of PAHs and to reconsider risk assessment for human health.
Article
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Article
Exposure to high levels of environmental air pollution is known to be associated with an increased carcinogenic risk. The individual contribution to this risk derived from specific carcinogenic chemicals within the complex mixture of air pollution is less certain, but may be explored by the use of molecular epidemiological techniques. Measurements of biomarkers of exposure, of effect and of susceptibility provide information of potential benefit for epidemiological and cancer risk assessment. The application of such techniques has been mostly concerned in the past with the carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) that are associated with particulate matter in air pollution, and has showed clear evidence of genotoxic effects, such as DNA adducts, chromosome aberrations (CA) and ras oncogene overexpression, in environmentally exposed Czech and Polish populations. We are currently extending these studies by an investigation of populations exposed to environmental pollution in three European countries, Czech Republic, Slovak Republic and Bulgaria. This pays particular attention to PAHs, but also investigates the extent of radically induced (oxidative) DNA damage in the exposed populations. Policemen, bus drivers and controls, who carried personal monitors to determine their exposures to PAHs have been studied, and blood and urine were collected. Antioxidant and dietary status were assessed in these populations. Stationary monitors were also used for ambient air monitoring. Amongst the parameters studied in the biological samples were: (a) exposure biomarkers, such as PAH adducts with DNA, p53 and p21(WAF1) protein levels, (b) oxidative DNA damage, (c) the biological effect of the exposure by measurement of chromosome damage by fluorescence in situ hybridisation (FISH) or conventional methods, and (d) polymorphisms in carcinogen metabolising and DNA repair enzymes. Repair ability was also measured by the Comet assay. In vitro systems are being evaluated to characterise the genotoxicity of the organic compounds adsorbed to air particles.
Article
Human apurinic/apyrimidinic endonuclease (APE1) is an enzyme of DNA base excision repair (BER) which catalyzes endonucleolytic cleavage immediately 5' to abasic (AP) sites. APE1 has long been thought to act on AP sites only in double stranded (ds) DNA, in order to generate the appropriate site for insertion of the correct nucleotide of DNA repair synthesis effected by DNA polymerase beta. We now present evidence that APE1 also acts on AP sites in single-stranded (ss) DNA. The catalytic efficiency of this activity (defined within as k(cat)/Km) is approximately 20-fold less than the activity against AP sites in ds DNA, with the disparity stemming largely from a difference in Km. Similar to its action on AP sites in ds DNA, catalysis of endonucleolytic cleavage of ss DNA by APE1 is Mg(2+) dependent, DNA N-glycosylase independent, and requires an active site aspartate. In contrast to its activity against AP sites in ds DNA, APE1 does not display product inhibition when acting on an AP site in ss DNA. We suggest that this novel activity is related to the processing of DNA N-glycosylase initiated BER in ss DNA perhaps during replication and/or transcription.
Article
Abasic lesions are common mutagenic or cytotoxic DNA damages. Ape1 is the major human apurinic/apyrimidinic (AP) endonuclease and initiates repair of abasic sites by catalyzing strand cleavage at the lesion. I show here that Ape1 single-stranded (ss) AP site incision activity prefers 0.5 mM or 2 mM MgCl(2) and low concentrations (< or =50 mM) of KCl, whereas its double-stranded (ds) activity favors 10 mM MgCl(2) and 50 mM KCl or 2 mM MgCl(2) and 200 mM KCl. Both activities favor a pH between 7.0 and 7.5, suggesting a common catalytic mechanism. In conditions designed to mimic the intracellular environment (pH 7.2; 100 mM KCl; 1 mM MgCl(2)), Ape1 ssAP site incision activity is either about fivefold more active or approximately 20-fold less efficient than its ds activity, depending on the oligonucleotide employed. Secondary structure predictions suggest a role for the DNA conformational state in determining the effectiveness of Ape1. Ape1 complex stability in the presence of EDTA (non-incising conditions) is significantly weaker for ssDNA than dsDNA, regardless of the AP substrate. Duplexes where the AP site is positioned opposite the 3' terminus of a complementary primer strand are incised with an efficiency similar (less than twofold difference) to that of the ssAP substrate alone. Moreover, Ape1 cleaved AP sites in fork-like and bubble DNA structures with an efficiency that is identical or up to sevenfold higher than ssAP-DNA. The findings here suggest that Ape1 ssAP and dsAP endonuclease activities are regulated by sequence context and the relative concentrations of certain chemical elements in vivo, and that Ape1 incision activity occurs on complex replication, recombination, and/or transcription DNA intermediates.
Article
Endonuclease IV gene, the only putative AP endonuclease of C. pneumoniae genome, was cloned into pET28a. Recombinant C. pneumoniae endonuclease I V (CpEndoIV) was expressed in E. coli and purified to homogeneity. CpEndoIV has endonuclease activity against apurinic/apyrimidinic sites (AP sites) of double-stranded (ds) oligonucleotides. AP endonuclease activity of CpEndoIV was promoted by divalent metal ions Mg2+ and Zn2+, and inhibited by EDTA. The natural (A, T, C and G) and modified (U, I and 8-oxo-G (GO)) bases opposite AP site had little effect on the cleavage efficiency of AP site of ds oligonucleotides by CpEndoIV. However, the CpEndoIV-dependent cleavage of AP site opposite modified base GO was strongly inhibited by Chlamydia DNA glycosylase MutY. Interestingly, the AP site in single-stranded (ss) oligonucleotides was also the effective substrate of CpEndoIV. Similar to E. coli endonuclease IV, AP endonuclease activity of CpEndoIV was also heat-stable to some extent, with a half time of 5 min at 60 degrees C.
  • J Lan
  • S M Rahman
  • N Gou
  • T Jiang
  • M J Plewa
  • A Alshawabkeh
  • A Gu
Lan, J.; Rahman, S. M.; Gou, N.; Jiang, T.; Plewa, M. J.; Alshawabkeh, A.; Gu, A. Z. Environ. Sci. Technol. 2018, 52, 6565− 6575.
  • S Fang
  • L Chen
  • M Zhao
Fang, S.; Chen, L.; Zhao, M. Anal. Chem. 2015, 87, 11952− 11956.
  • W Chan
  • L Jin
Chan, W.; Jin, L. Anal. Chem. 2022, 94, 803−810.
  • A Mastral
  • M Callén
Mastral, A.; Callén, M. Environ. Sci. Technol. 2000, 34, 3051− 3057.