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Abstract. The research study explores the modeling and optimization of multi-
objective operation of biomass gasification facilities using of Artificial Neural
Networks (ANN) and Stochastic non-linear Programming methods. This study
underpins the modelling by starting from the classification of the information
derived from the systemic analysis of the gasification facilities. The study is
based on the multi-objective mathematical modeling of these facilities through
the different optimization and Neural Networks techniques specified in the lit-
erature. A 3N experimental plan with 3 replicas is made to generate four models
according to their performance indicators using Neural Networks, with satis-
factory results and their evaluation based on regression of coefficients. The
standard errors are calculated using biomasses with low, medium and high
caloric power biomass. The experimental installation and the developed data
acquisition systems are presented to validate the results. Numerical experi-
mentation and the analysis show that such models could be used for developing
operational system for existing design of downdraft installations.
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1 Introduction

For the transformation biomass into energy, different technologies have been devel-
oped, motivated, basically, by the necessity of using the existing great quantity of
wastes from the agricultural productive processes and domestic life [1], between these
technologies the downdraft process became the most efficient way for electric power
generation. In general, the rationality of the use of the technologies depends on the
optimization of its operation. Given the inherent complexity of the gasification process
and the necessity of modelling it operation, acquire particular interest the works linked
to the simulation and optimization models linked to it operation [2]. Ahead, it is
assumed as operation the tasks of decisions making associated to the selection of the
variables values that determine the global efficiency of the process in real time,
understanding as control the actions guided to achieve the previously adopted operation
variables values [3]. Upon the development of the mathematical model for a given
biomass processing system and its validation, the model can be utilized to predict or
simulate the behavior and/or criteria and/or performance of the system. When it comes
to simulating a complete flowsheet, due to its complexity involving hundreds of
equations and variables, it is often advantageous to use process simulators to evaluate
the process performance depending on different operating conditions in reasonable time
with minimal effort [4]. Steady state simulators which can be used in simulating
biomass gasification for hydrogen production could include ASPEN PLUS or other
simulation package [5]. Another approach to simulate the behavior of some already
designed downdraft installations could be the organization of experimental plans, on
the basis of system analysis, and the processing of the obtained results by regression or
neural network models [6, 7].

In the present work neural network models (ANN) for a concrete downdraft
installation lodged by low, medium and high caloric power biomasses are found
starting from an applied system analysis that allows to define the set of relationships
required to model it operation in real time [7, 8]. A 3N experimental plan with three
replicas was organized, from which four ANN models, corresponding to the respective
performance indicators, were elaborated with satisfactory results from their evaluation
based on the calculated regression coefficients and standard errors for eichhornia
crassipes (commonly known as lechuguin), oryza sativa (rice straw) and wood, used as
biomass in an experimental installation with the objective of generating the experi-
mental data required to identify the relationships that should be part of the stochastic
non-linear decisions making operation models. Bellow the results obtained for the rice
straw biomass modelling, the algorithm used for solving the obtained model and the
human-machine interaction procedure are described.

2 System Analysis

The proposed methodology contributes to the literature in the field of systems analysis
aiding to make easier and better engineering decisions. The solution of these tasks
includes components, either as the solution of the complex tasks, its decomposition and
the solutions composition among the resulting tasks and/or the conciliation of
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interrelated criteria [3]. This methodology is explained bellow in the example of the
studied task. The external analysis is constituted by the following stages (see Fig. 1).

Study of the overall task and determination of coordination variables. In this study,
the specification of the higher-level system and the analysis of the coordination vari-
ables are performed. In this way, one makes sure that the system under analysis is
appropriately inserted in the “environment” in which it will work. The coordination
variables “u” is related to the overall task. In the operation of downdraft installations,
the more span level system is constituted by the existent energy system in the isolated
from the national electric net territory as a part of which the downdraft installation is
considered.

Related coordination variables

– Demanded (or desirable) power ud.
– Lower level of the caloric power required of the generated gas PCGinf.
– Masa and type of available biomass to be used Cbioj

sup, j 2 (1, 2, …, n).

The input data “d” of the studied task is constituted by the current value of the
environmental humidity Hu. Efficiency indicators “y”. These indicators determine the
overall behavior and the quality of the system. They could be formalized in a quan-
tifiable or non-quantifiable way. In the studied case were obtained the following
quantifiable indicators: Generated power u, that is determined by the caloric power
PCG y the mass flow of the gas MG. Installation efficiency Ef. And the Temperature of
the pyloric zone Tzp. The decisions variables “x” is those that could be modified by the
system user with the purpose of obtaining the best possible commitment among the
efficiency indicators. This compromise is determined, among other things, by the rel-
ative importance that the user donates to each indicator. In the studied case it was
obtained:

– Masa of the biomass j type Cbioj, j 2 (1, 2, …, n)
– Mass flow of the combustion air Cau

Elaboration of the conceptual mathematical model for the decision support process.
Starting from the analysis of the considered engineering task, the set of quantifiable
indicators to be optimized is defined along with the set of intermediate variables subject
to restrictions and the set of indicators of subjective character to evaluate. In this way, it
becomes possible to formulate the conceptual model for organizing a decision support
process. In this model the simulation, visualizations, and the results of human-machine
interaction are incorporated.

Fig. 1. Classification of the information involved in the preparing a decision support process
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Conceptual mathematical model for the decision support process. Starting from the
analysis of the considered engineering task, the set of quantifiable indicators to be
optimized is defined along with the set of intermediate variables subject to restrictions
and the set of indicators of subjective character to evaluate. In the studied case will be:

Minimize max w1
Ef � Ef d
�� ��

Ef d
; ð1� w1Þ

u� ud
�� ��

ud

� �� �
ð1Þ

Assuring the fulfillment of:

Cbio � Cbiosup ð2Þ

Tzp Cau;Cbio;Huð Þ � Tzpinf ð3Þ

PCGðCau;Cbio;HuÞ � PCGinf ð4Þ

Where:

u ¼ MB Cau; Cbio;Huð Þ � PCG Cau;Cbio;Huð Þ ð5Þ

In the relationship (1) coefficient w1 represents the “importance level” the indicative
Ef it values varies in the interval 0–1. The optimization model’s solution, according to
external analysis, requires the identification of the following relationships.

Ef ¼ Ef Cau;Cbio; Huð Þ ð6Þ

Tzp ¼ Tzp Cau;Cbio; Huð Þ ð7Þ

MG ¼ MG Cau; Cbio; Huð Þ ð8Þ

PCG ¼ PCG Cau; Cbio; Huð Þ ð9Þ

The internal analysis consists on the identification of the models required for the
calculation of all and each one of the acting indicators represented by the expressions
(6)–(8). As it comes off from analysis of the state, reflected in the literature, of the
processes modelling and simulation methods for the operation of downdraft type
gasifiers, briefly carried out in the introduction, the models identification could be done
starting from experimental plans and its later prosecution to obtain models that satis-
factorily identify the relationships (6)–(8). With this purpose, an experimental plan was
conceived with 3 replicas structure that allow to reflect the casual caused errors,
including the mensuration ones, for biomasses with low, medium and high caloric
power. As such biomasses were selected: Eichhornia Crassipes (popularly known as
lechugín), Oryza sativa (rice straw) and firewood. In the Table 1 are exposed technical
characteristics of the downdraft gasifier selected for doing experiments. In Table 1 the
more important technical characteristics of the installation selected for experimentation
are shown.
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The experiments were carried out by lots in the following order: activation of the
installation, biomass loading, opening of the air valve, capture of the resulting gas and
sending to laboratory for the gas’s composition and mass measurement and calculation
of its caloric power by the authors. The temperature measurement was carried out in a
permanent way in the points indicated in the Fig. 2, and averaged for the pyloric area
for the whole lot. In the articles [7–9] the authors and their collaborators published the
detailed experimental data, non-linear regression and neural network models results
obtained for identifying the relations (6)–(9).

Table 1. Technical characteristics of the dowdraft gasifier used for experimentation

Parameter Values

Max. electric power (KW) 10
Gas flow (m2/hr) 0.5–27
Consume of biomass (kg/day) 10–320

Fig. 2. Control points of the downdraft gasifier
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Best results were obtained by artificial neural network modelling. The optimal
number of nodes found, in all the cases, were 8 for the first hidden layer and 4 for the
second hidden layer. The best transfer function found for the layers 1–3, for all the
biomasses was the sigmoidal tangent function. For all the relations and feeding bio-
masses in each one and all the biomasses the more appropriate structure of the models
is shown in the Fig. 3.

So, the models found for all the biomasses an all the outputs have the general
mathematical structure:

y ¼ f 3 W3f 2 W2f 1 W1xþ b1
� � þ b2

� � þ b3
� � ð10Þ

Where y is the output vector, x the input vector W i, fi, b i coefficients` matrixes, transfer
functions and bias vectors of the i layer.

3 Synthesis of the Operation System

Given the stochastic character of the real values around the calculated by the ANN
model, the real values the calculated by the models (2.6)–(2.9) magnitudes are dis-
tributed around its calculated values by close to normal distribution [10]. As it is
required to assure close to desirable values, with certain probability, of the efficiency
and of generated power, assuring the restricted values of the interest variables Cbio,
Tzp and PCG, the optimization model (1)–(5) it is expressed in the following way

Minimize max w1
Ah Efð Þ � Ef d
�� ��

Ef d
; ð1� w1Þ

Ah uð Þ � ud
�� ��

ud

� �� �
ð11Þ

Where:

u ¼ MG Cau;Hu:Cbioð Þ � PCG Cbioj;Cau;Hu
� � ð12Þ

Fig. 3. Structure of the neural network found for all the biomasses and all the outputs
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assuring:

Cbioj �Cbiosupj ; j ¼ 1; . . .; jt ð13Þ

Ah Tzp Cau;Hu;Cbioð Þ½ � � Tzpinf ð14Þ

Ah PCG Cau;Cbio;Huð Þ½ � �PCGinf ð15Þ

Where Ah is the assured value of the corresponding magnitude, with a probability
higher or similar to h. Given the normal character of the behavior of the evaluated
indicators with helped by regression equations (including those obtained by neural
nets), with regard to its calculated values, each assured value you could be calculated
by the expression [10]:

Ah Indð Þ ¼ Indc � PerchS ð16Þ

For a probability h = 95%,

Ah Indð Þ ¼ Indc � 1; 68 S ð17Þ

In the case of the indicators Ef, MG, Tzp and PCG the value of the S parameter is
the same of the corresponding equation of selected regression ANN, because the
realization of 3 replicas in the experiments leads to the integration of the dispersion of
the measurements it is included in common S value of. The parameters of the distri-
bution of the indicator u are distributed starting from the corresponding parameters of
the distributions of MG and PCG according to [10]:

u ¼ MG� PCG ð18Þ

Su ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2MG þ S2PCG

q
ð19Þ

Where MG; SMG; PCG; SPCG are the means calculated values and the dispersion
obtained during the calculation of MG and PCG helped by the neural network corre-
sponding to the biomass used. In spite of the stochastic character of the model (1)–(5),
their identification and conversion to the model (10)–(14) with the inclusion of the
relationships that assure certain probabilities of the indicators that are part of the model
transform it into a non-lineal programming model. The procedure for the optimization of
the operation the Exploration in a Net of Variables method of Non-Lineal Programming
(PNL) was selected. This way, the following solution outline is implemented: Reading of
type of biomass to be gasified (corresponding to own indicators description models)
Cbiosupj ; Tzpinf ; PCGinf . Settle down the initial and final intervals of the two decision
variables: Cbioj from zero until Cbiosupj and Cau from zero until Causup. The four cutting
points corresponding to the four combinations of internal values of both variables are
generated. The objective function (10) is calculated for the four combinations adding a
penalization function for the nonfulfillment of the restrictions (12), (13) and (14).
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The combination is selectedwith smaller value of the penalized objective function and the
subinterval that doesn’t contain the component of the best solution for each variable is
eliminated and Cau and Cbioj superior or inferior values are rectified as it proceeds.
Return to the beginning of the exploration cycle while the search longitude of at least one
of the variables adopts a smaller than the adopted precision value (0, 1) forCau andCbioj.
For the implementation of the penalization of the objective function for the nonfulfillment
of the restrictions of the task the J. N. Kelley function is applied [3]. For this, the following
it easier expressions are used:

PCbio ¼ 108ðCbio� CbiorequiredÞ2 ð20Þ

PTCraq ¼ 108ðA0;95 Tzpð Þ � TzpcraqÞ2 ð21Þ

PPCR ¼ 108ðA0;95 PCGð Þ � PCGrequiredÞ2 ð22Þ

The original objective function is substituted by:

Z 0 ¼ Z þ PCbio þPTCraq þPPCR ð23Þ

The Pareto front obtained, for rice straw biomass, using concrete input data are
shown in Fig. 4.

Similar fronts were also obtained for the eichhornia crassipes and firewood
biomasses.

Fig. 4. Pareto front obtained loading rice straw biomass
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4 Conclusions

The detailed study of the state of the art evidences the lack of a systemic approach in
the construction of operation models of downdraft installations, being arrived only to
the elaboration of certain rules in determinate technologies variants and the modeling
and characterization of the syngas obtained, that are used for the realization of simu-
lations that are validated with data reported by designers or other authors. In the last
years could be observed the evolution of the mathematical tools and of more modern
software used. The systemic analysis constitutes an indispensable requirement for the
elaboration of conceptual models of the processes of operation of the downdraft
gasification installations. These models must be identified posteriorly to obtain appli-
cable mathematical models for the process operation. The systemic study allows to
elaborate experimental plans and the characteristics of needed installations for doing it,
with the due instrumentation and the localization of the control points, previous to the
realization of the experimental design and the prosecution of data for the identification
of the obtained conceptual mathematical model. From the research carried out it is clear
the usefulness of the multilayer artificial neural networks or non-lineal regression
techniques in the construction of operation models of the gasification processes in
downdraft installations. The later exploitation of the installation could allow to com-
plete the primary information to perfect and to increase the precision of these model
and, therefore, the same quality of the operation these installations. The elaboration of
behavior rules for the operation of facilities of gasification type downdraft facilitates its
automation in the same PLC implemented for the control, without additional material
cost some, although to coast of the increment of the error of determination.
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