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a b s t r a c t 

Speech is the most natural way of expressing ourselves as humans. It is only natural then to extend this commu- 

nication medium to computer applications. We define speech emotion recognition (SER) systems as a collection 

of methodologies that process and classify speech signals to detect the embedded emotions. SER is not a new 

field, it has been around for over two decades, and has regained attention thanks to the recent advancements. 

These novel studies make use of the advances in all fields of computing and technology, making it necessary to 

have an update on the current methodologies and techniques that make SER possible. We have identified and 

discussed distinct areas of SER, provided a detailed survey of current literature of each, and also listed the current 

challenges. 
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. Introduction 

As humans we find speech to be the most natural way to express

urselves. We depend so much on it that we recognize its importance

hen we have to use other ways of communication, such as emails or

ext messages. It is no surprise that emojis have become common in text

essages, because these text messages could be misunderstood, and we

ould like to pass the emotion along with the text as we do in speech. 

Since emotions help us to understand each other better, a natural

utcome is to extend this understanding to computers. Speech recogni-

ion is already in our everyday life, thanks to the smart mobile devices

hat are able to accept and reply to voice commands with synthesized

peech. The speech emotion recognition (SER) could be used to enable

hem to detect our emotions, as well. 

SER has been around for more than two decades ( Schuller, 2018 )

nd it has applications in human-computer interaction ( Cowie et al.,

001 ), as well as robots ( Huahu et al., 2010 ), mobile services

 Yoon et al., 2007 ), call centers ( Gupta and Rajput, 2007 ), com-

uter games ( Szwoch and Szwoch, 2015 ), and psychological assessment

 Lancker et al., 1989; Low et al., 2011 ). Although it has many appli-

ations, emotion detection is a challenging task, because emotions are

ubjective. There is no common consensus on how to measure or cate-
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orize them. They are evaluated by their perception in other humans,

nd at times, even we are known to misinterpret them. 

We define a SER system as a collection of methodologies that pro-

ess and classify speech signals to detect emotions embedded in them.

hen we take a bird’s eye view, we can separate it into several distinct

reas, as shown in Fig. 1 . It would be beneficial to understand emotions

etter so that the classification process can be improved. There are var-

ous approaches to model the emotions, and it is still an open problem;

owever, the discrete and the dimensional models are commonly used.

herefore, we first review the emotional models. A SER system requires

 classifier, a supervised learning construct, that will be trained to rec-

gnize emotions in new speech signals. Such a supervised system brings

he necessity of labeled data that have emotions embedded in them. The

ata requires preprocessing before their features can be extracted. Fea-

ures are essential to a classification process. They reduce the original

ata to its most important characteristics. For speech signals they can

e categorized under four groups; prosodic, spectral, voice quality, and

eatures based on Teager energy operator. The classifier can be strength-

ned by incorporating additional features from other modalities, such

s visual or linguistic depending on the application and availability. All

hese features are then passed to the classification system which has a

ide range of classifiers available to them. More recently, classifiers that

ncorporate deep learning have also become common. 

All areas provided in Fig. 1 are surveyed from left to right, with an

p-to-date literature. The following section discusses the existing sur-

eys and the areas that they cover. Section 3 surveys emotions, and

ection 4 surveys the databases. The methodologies for preprocessing,

eature extraction, supporting modalities, and classification are grouped
ember 2019 
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Fig. 1. An overview of speech emotion recognition systems. The recognition requirements flow from left to right. The emotions are embedded in the databases on 

the far left, and they are extracted at the far right end of the figure. 
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nder speech emotion recognition, and are detailed in Section 5 . The

aper concludes with the listing of current challenges in Section 6 and

oncluding remarks in Section 7 . 

. Related work 

There are other publications that survey existing studies on speech

motion recognition. A list of such surveys that are published relatively

ecently are listed in Table 1 and compared according to the areas they

over. Naturally, earlier publications do not include recent advances and

rends such as deep neural networks in their sections on classifiers. 

In 2006, Ververidis and Kotropoulos specifically focused on speech

ata collections, while also reviewing acoustic features and classifiers in

heir survey of speech emotion recognition ( Ververidis and Kotropou-

os, 2006 ). Ayadi et al. have presented their survey with an updated

iterature and included the combination of speech features with sup-

orting modalities, such as linguistic, discourse, and video informa-

ion ( Ayadi et al., 2011 ). Koolagudi and Rao have also relied on the

lassification of databases, features, and classifiers for their survey

 Koolagudi and Rao, 2012 ). 
Table 1 

Recent surveys on Speech Emotion Recognition and the areas they cover, compare

of databases, features, preprocessing methods, supporting modalities, classifiers, a

Publication 

Emotional speech recognition: Resources, features, and methods ( Ververidis and 

Kotropoulos, 2006 ) 

Survey on speech emotion recognition: Features, classification schemes, and 

databases ( Ayadi et al., 2011 ) 

Emotion recognition from speech: a review ( Koolagudi and Rao, 2012 ) 

Features and classifiers for emotion recognition from speech: a survey from 2000 

2011 ( Anagnostopoulos et al., 2015 ) 

Recognition of Emotion from Speech: A Review ( Ramakrishnan, 2012 ) 

A review on emotion recognition using speech ( Basu et al., 2017 ) 

Emotion detection from text and speech: a survey ( Sailunaz et al., 2018 ) 

This study 

a Only noise reduction or normalization 
b Only textual features 
c Does not include recent advances, such as deep neural networks. 

57 
Anagnostopoulos and Giannoukos have provided a comprehensive

urvey of publications between 2000 and 2011 ( Anagnostopoulos et al.,

015 ). Their survey is one of the first ones to include studies that have

pplications of deep neural networks to SER. They also highlight the

tudies that use hybrid classifiers, ensembles, and voting schemes. 

The study by Ramakrishnan includes not only the databases, features

nd classifiers in the SER systems, but also mentions the normalization

f signals, which is preprocessing stage that is performed before the ex-

raction of the features ( Ramakrishnan, 2012 ). He also suggests applica-

ion areas for SER systems, which are not part of the SER technologies

ut affect them in their requirements and design. 

A recent but brief survey by Basu et al. highlights publications that

nvolve databases, noise reduction techniques for preprocessing signals,

eatures, and classifiers including recent advances such as Convolutional

nd Recurrent Neural Networks ( Basu et al., 2017 ). 

A more recent survey by Sailunaz et al. focus on emotion detection

rom text and speech, where publications that incorporate text informa-

ion as well as speech signals to determine speech are discussed. Unlike

ther surveys, they also discuss the emotional models ( Sailunaz et al.,

018 ). Their survey also discusses the recent classifiers. 
d by the areas this study covers. The comparison is done by their inclusion 

nd emotional models. 

Date DB Feat. Prep. Supp. Mod. Classf. Em. Mod. 

2006 ✓ ✓ x x Partial c x 

2011 ✓ ✓ x ✓ Partial c x 

2012 ✓ ✓ x x Partial c x 

to 2012 ✓ ✓ x x ✓ x 

2012 ✓ ✓ Partial a x Partial c x 

2017 ✓ ✓ Partial a x ✓ x 

2018 ✓ ✓ x Partial b ✓ ✓
2019 ✓ ✓ ✓ ✓ ✓ ✓
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In comparison to other surveys, this study provides a thorough sur-

ey of all areas in the SER; the databases, features, preprocessing tech-

iques, supporting modalities, classifiers, and emotional models. 

. Emotions 

To successfully implement a speech emotion recognition system, we

eed to define and model emotion carefully. However, there is no con-

ensus about the definition of emotion, and it is still an open problem in

sychology. According to Plutchik, more than ninety definitions of emo-

ion were proposed in the twentieth century ( Plutchik, 2001 ). Emotions

re convoluted psychological states that are composed of several compo-

ents such as personal experience, physiological, behavioral, and com-

unicative reactions. Based on these definitions, two models have be-

ome common in speech emotion recognition: discrete emotional model,

nd dimensional emotional model. 

Discrete emotion theory is based on the six categories of basic emo-

ions; sadness, happiness, fear, anger, disgust, and surprise, as described

y Ekman and Oster (1979) ; Ekman et al. (2013) . These inborn and

ulturally independent emotions are experienced for a short period

 Ekman, 1971 ). Other emotions are obtained by the combination of the

asic ones. Most of the existing SER systems focus on these basic emo-

ional categories. In daily life, people use this model to define their ob-

erved emotions, hence labeling scheme based on emotional categories

re intuitive. Nonetheless, these discrete categories of emotions are not

ble to define some of the complex emotional states observed in daily

ommunication. 

Dimensional emotional model is an alternative model that uses a

mall number of latent dimensions to characterize emotions such as

alence, arousal, control, power ( Russell and Mehrabian, 1977; Wat-

on et al., 1988 ). These dimensions are definitive and generic aspects

f emotion. In the dimensional approach, emotions are not indepen-

ent of each other; instead, they are analogous to each other in a sys-

ematic way. One of the most preferred dimensional models is a two-

imensional model that uses arousal, activation, or excitation on one

imension, versus valence, appraisal, or evaluation on the other. Va-

ence dimension describes whether an emotion is positive or negative,

nd it ranges between unpleasant and pleasant. Arousal dimension de-

nes the strength of the felt emotion. It may be excited or apathetic, and

t ranges from boredom to frantic excitement ( Nicolaou et al., 2011 ). The

hree-dimensional model includes a dimension of dominance or power,

hich refers to the seeming strength of the person that is between weak

nd strong. For instance, the third dimension differentiates anger from

ear by considering the strength or weakness of the person, respectively

 Grimm et al., 2007 ). 

There are several disadvantages for the dimensional representation.

t is not intuitive enough and special training may be needed to label

ach emotion ( Zeng et al., 2009 ). In addition, some of the emotions be-

ome identical, such as fear and anger, and some emotions like surprise

annot be categorized and lie outside of the dimensional space since

urprise emotion may have positive or negative valence depending on

he context. 

. Databases 

Databases are an essential part of speech emotion recognition since

lassification process relies on the labeled data. Quality of the data af-

ects the success of the recognition process. Incomplete, low-quality, or

aulty data may lead to incorrect predictions; hence, data should be care-

ully designed and collected. Databases for speech emotion recognition

an be investigated in three parts: 

• Acted (Simulated) speech emotion databases 
• Elicited (Induced) speech emotion databases 
•
 Natural speech emotion databases d

58 
Utterances in acted speech databases are recorded by professional

r semi-professional actors in sound-proof studios. It is relatively easier

o create such a database compared to the other methods; however, it

s stated by the researchers that acted speech cannot convey the real-

ife emotions adequately, and even may be exaggerated. This lowers the

ecognition rates for real-life emotions. 

Elicited speech databases are created by placing speakers in a simu-

ated emotional situation that can stimulate various emotions. Although

he emotions are not fully-elicited, they are close to real ones. 

Natural speech databases are mostly obtained from talk shows, call-

enter recordings, radio talks, and similar sources. Sometimes, these

eal-world speeches are referred to as spontaneous speech. It is harder to

btain the data since ethical and legal problems arise when processing

nd distributing them. 

Once the method of creating a database is decided, other design is-

ues are considered, such as age and gender. Most databases contain

dult speakers, but databases of children and elders also do exist. Other

onsiderations include repeating utterances with different actors, differ-

nt emotions, and different genders. 

For example, the commonly used Berlin dataset contains seven

motions uttered by ten professional actors, half male, half female

 Burkhardt et al., 2005 ). Each utterance is repeated with different actors

nd different emotions. A list of prominent datasets are summarized in

able 2 . 

. Speech emotion recognition 

.1. Preprocessing 

Preprocessing is the very first step after collecting data that will be

sed to train the classifier in a SER system. Some of these preprocessing

echniques are used for feature extraction, while others are used to nor-

alize the features so that variations of speakers and recordings would

ot affect the recognition process. 

.1.1. Framing 

Signal framing, also known as speech segmentation, is the process

f partitioning continuous speech signals into fixed length segments to

vercome several challenges in SER. 

Emotion can change in the course of speech since the signals are non-

tationary. However, speech remains invariant for a sufficiently short

eriod, such as 20 to 30 ms. By framing the speech signal, this quasi-

tationary state can be approximated, and local features can be obtained.

dditionally, the relation and information between the frames can be

etained by deliberately overlapping 30% to 50% of these segments.

ontinuous speech signals restrain the usage of processing techniques

uch as Discrete Fourier Transform (DFT) for feature extraction in ap-

lications such as SER. Consequently, fixed size frames are suitable for

lassifiers, such as Artificial Neural Networks, while retaining the emo-

ion information in speech. 

.1.2. Windowing 

After framing the speech signal, the next phase is generally applying

 window function to frames. The windowing function is used to reduce

he effects of leakages that occurs during Fast Fourier Transform (FFT)

f data caused by discontinuities at the edge of the signals. Typically a

amming window is used, as given in Eq. 1 , where the window size is

 for the frame w ( n ). 

 ( 𝑛 ) = 0 . 54 − 0 . 46 cos 
( 2 𝜋𝑛 
𝑀 − 1 

)
0 ≤ 𝑛 ≤ 𝑀 − 1 (1)

.1.3. Voice activity detection 

An utterance consists of three parts; voiced speech, unvoiced speech,

nd silence. Voiced speech is generated with the vibration of vocal folds

hat creates periodic excitation to the vocal tract during the pronunci-

tion of phonemes which are perceptually distinct units of sound that

istinguish one word from another; such as bag, tag, tab. 
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Table 2 

There are several data sets used for emotion recognition. This table contains the prominent ones, along with unique data sets for various languages and special cases such as the ones that contain utterances by elders 

and children. 

Database Language Size Access Type Emotions Type Modalities 

Berlin Emotional Database (EmoDB) 

( Burkhardt et al., 2005 ) 

German 7 Emotions x 10 speakers(5 male, 5 

female) x 10 utterances 

Open access Anger, boredom,disgust, 

fear,happiness, sadness,neutral 

Acted Audio 

Chinese Emotional Speech Corpus 

(CASIA) ( Zhang and Jia, 2008 ) 

Mandarin 6 Emotions x 4 Speakers (2 male, 2 

female) x 500 utterances (300 parallel, 

200 non-parallel texts) 

Commercially available Surprise, happiness,sadness, 

anger,fear, neutral 

Acted Audio 

The Interactive EmotionalDyadic 

Motion CaptureDatabase (IEMOCAP) 

( Iemocap database, 2019 ) 

English 10 speakers(5 male, 5 female)1150 

utterances 

Available with license Happiness, anger,sadness, 

frustration,neutral 

Acted Audio/Visual 

Surrey Audio-Visual Expressed 

Emotion (SAVEE) ( Surrey audio-visual 

expressed emotion database, 2019 ) 

English 14 speakers (male)x 120 utterances Free Anger, disgustfear, happiness,sadness, 

surprise,neutral, common 

Acted Audio/Visual 

Toronto Emotional SpeechDatabase 

(TESS) ( Toronto emotional speech 

database, 2019 ) 

English 2 speakers (female), 2800 utterances Free Anger, disgust, neutralfear, happiness, 

sadnesspleasant, surprise 

Acted Audio 

Beihang University Database of 

Emotional Speech (BHUDES) 

( Mao et al., 2009 ) 

Mandarin 5 speakers (2 male, 3 female),323 

utterances 

Anger, happiness, fear,disgust, surprise Acted Audio 

Chinese Annotated Spontaneous 

Speech corpus (CASS) ( Li et al., 2000 ) 

Mandarin 7 speakers (2 male, 5 female),6 h of 

speech 

Commercially available Anger, fear,happiness, sadness, 

surprise, neutral 

Natural Audio 

Chinese Natural Emotional 

Audio–Visual Database(CHEAVD) 

( Li et al., 2017 ) 

Mandarin 238 speakers (child to elderly) 140 

min emotional segmentsfrom movies, 

TV-shows. 

Free toresearch use Anger, anxious,disgust, happiness, 

neutral, sadness,surprise and worried 

ActedNatural Audio/Visual 

Danish Emotional SpeechDatabase 

(DES) ( Engberg et al., 1997 ) 

Danish 4 speakers (2 male, 2 female)10 min 

of speech 

Free Neutral, surprise, anger,happiness, 

sadness 

Acted Audio 

Chinese Elderly Emotional Speech 

Database (EESDB) ( Wang et al., 2014 ) 

Mandarin 16 speakers (8 male, 8 female),400 

utterances from teleplay 

Free to research use Anger, disgust,fear, happiness, neutral, 

sadness, surprise 

Acted Audio 

Electromagnetic Articulography 

Database (EMA) ( Lee et al., 2005 ) 

English 3 speakers (1 male, 2 female) 14 

sentences for male, 10 sentences for 

female 

Free to research use Anger, happiness, sadness, neutral Acted Audio/ Articulatory 

movement data 

Italian Emotional Speech 

Database(EMOVO) ( Costantini et al., 

2014 ) 

Italian 6 speakers(3 male, 3 female)x 14 

sentences x 7 emotions = 588 

utterances 

Free Disgust, happiness, fear, anger, 

surprise, sadness, neutral 

Acted Audio 

eNTERFACE’05 Audio-Visual Emotion 

Database ( Martin et al., 2006 ) 

English 42 speakers (34 male, 8 female) from 

14 nationalities, 1116 video sequences 

Free Anger, disgust, fear, happiness, 

sadness, surprise 

Elicited Audio/Visual 

Keio University Japanese Emotional 

Speech Database (Keio-ESD) ( Mori et 

al., 2006 ) 

Japanese 71 speaker (male) 940 utterances Free Anger, happiness, disgusting, 

downgrading, funny, worried, gentle, 

relief, indignation, shameful, 

etc.(47emotions) 

Acted Audio 

LDC Emotional Speech Database 

( Liberman et al., 2002 ) 

English 7 speakers (4 male, 3 female), 470 

utterances 

Commercially available Hot anger, cold anger, disgust, fear, 

contempt, happiness, sadness, neutral, 

panic, pride, despair, elation,interest, 

shame, boredom 

Acted Audio 

RECOLA Speech Database 

( Ringeval et al., 2013 ) 

French 46 speakers (19 males, 27 females) 7 

h of speech 

Free Five social behaviors (agreement, 

dominance, engagement, performance, 

rapport); arousal and valence 

Natural Audio/Visual 

( continued on next page ) 

5
9
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Table 2 ( continued ) 

SAMAINE Database ( McKeown et al., 

2011 ) 

English Greek Hebrew 150 speakers, 959 conversation Free Valence, activation, power, 

expectation, overall emotional 

intensity 

Natural Audio/Visual 

Speech Under Simulated and Actual 

Stress Database (SUSAS) ( Hansen and 

Bou-Ghazale, 1997 ) 

English 32 speakers (19 male, 13 female), 

16,000 utterances also include speech 

of Apache Helicopter pilots 

Commercially available Four states of speech under stress: 

Neutral, Angry, Loud, and Lombard 

Natural Acted Audio 

Vera Am Mittag Database (VAM) 

( Grimm et al., 2008 ) 

German 47 speakers from talk-show, 947 

utterances 

Free Valence, activation,and dominance Natural Audio/Visual 

FAU Aibo Emotion Corpus 

( Batliner et al., 2008 ) 

German 51 children talking to robot dog Aibo, 

9 h of speech 

Commercially available Anger, bored, emphatic, helpless, 

joyful, motherese, neutral, 

reprimanding, rest, surprised, touchy 

Natural Audio 

TUM AVIC Database ( Schuller et al., 

2009 ) 

English 21 speakers (11 male, 10 female), 

3901 utterances 

Free Five level of interest; 5 non-linguistic 

vocalizations (breathing, consent, 

garbage, hesitation, laughter) 

Natural Audio/Visual 

AFEW Database ( Kossaifi et al., 2017 ) English 330 speakers, 1426 utterances from 

movies, TV-shows 

Free Anger, disgust, surprise, fear, 

happiness, neutral, sadness 

Natural Audio/Visual 

Turkish Emotional Speech Database 

(TURES) ( Oflazoglu and Yildirim, 2013 ) 

Turkish 582 speakers (394 male,188 female) 

from movies, 5100 utterances 

Free to research use Happiness, surprised, sadness, anger, 

fear, neutral, valence, activation, and 

dominance 

Acted Audio 

BAUM-1 Speech Database 

( Zhalehpour et al., 2017 ) 

Turkish 31 speakers (18 male, 13 female) 288 

acted, 1222 spontaneous video clip 

Free to research use Happiness, anger, sadness, disgust, 

fear, surprise, bothered, boredom, 

contempt unsure, being thoughtful, 

concentration, interest 

Acted Natural Audio/Visual 

6
0
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On the other hand, unvoiced speech is the result of air passing

hrough a constriction in the vocal tract, producing transient and tur-

ulent noises that are aperiodic excitations of the vocal tract. Due to its

eriodic nature, voiced speech can be identified and extracted. The de-

ection of the presence of voiced speech among various unvoiced speech

nd silence is called endpoint detection, speech detection or voice ac-

ivity detection. 

The performance of the endpoint detection algorithm affects the ac-

uracy of the system. It’s hard to model silence and noise accurately in a

ynamic environment; if voice and noise frames are removed, it will be

asier to model speech. In addition, speech consists of many silent and

oisy frames which increase the computational complexity. Removal

f these frames decreases the complexity and increases accuracy. Most

idely used methods for voice activity detection are zero crossing rate,

hort time energy, and auto-correlation method. 

Zero crossing rate is the rate at which a signal changes its sign from

ositive to negative or vice versa within a given time frame. In voiced

peech, the zero crossing count is low whereas it has a high count in

nvoiced speech ( Bachu et al., 2010 ). The voiced speech has high en-

rgy due to its periodicity while low energy is observed in the unvoiced

peech. The auto-correlation method provides a measure of similarity

etween a signal and itself as a function of delay. It is used to find re-

eating patterns. Because of its periodic nature, voiced signals can be

etected using the auto-correlation method. 

.1.4. Normalization 

Feature normalization is an important step which is used to re-

uce speaker and recording variability without losing the discrimina-

ive strength of the features. By using feature normalization, the gen-

ralization ability of features are increased. Normalization can be done

t different levels, such as function level and corpus level. Most widely

sed normalization method is z-normalization (standard score). If mean

and standard deviation 𝜎 of the data is known, z-normalization is cal-

ulated as 𝑧 = 

𝑥 − 𝜇
𝜎

. 

.1.5. Noise reduction 

In real life, the noise present in the environment is captured along

ith the speech signal. This affects the recognition rate, hence some

oise reduction techniques must be used to eliminate or reduce the

oise. Minimum mean square error (MMSE) and log-spectral amplitude

MSE (LogMMSE) estimators are most successfully applied methods for

oise reduction ( Pohjalainen et al., 2016 ). 

In MMSE, the clean signal is estimated from a given sample func-

ion of the noisy signal. It needs apriori information of speech and noise

pectrum. It is based on the assumption that the additive noise spec-

rum and estimate of the speech spectrum is available. The aim of the

ethod is minimizing the expected distortion measure between clean

nd estimated speech signal. 

There are also single-channel noise reduction techniques such as

pectral subtraction that can be used for noise reduction. 

.1.6. Feature selection and dimension reduction 

Feature selection and dimension reduction are important steps in

motion recognition. There is a need to use a feature selection algorithm

ecause there are many features and there is no certain set of features

o model the emotions. Otherwise, with so many features, the classifiers

re faced with the curse of dimensionality, increased training time and

ver-fitting that highly affect the prediction rate. 

Feature selection is the process of choosing a relevant and useful

ubset of the given set of features. The unneeded, redundant or irrele-

ant attributes are identified and removed to provide a more accurate

redictive model. Luengo et al. used a Forward 3-Backward 1 wrapper

ethod which selects features that maximize the accuracy in each step

 Luengo et al., 2005 ). After these three steps, the least useful feature

s eliminated. A 93.50% of recognition rate has been obtained without

eature selection using prosodic features with a SVM classifier, whereas,
61 
 92.38% recognition rate has been obtained with the selected six fea-

ures. They state that the slight reduction in the recognition rate is com-

ensated by the lower computational cost of extracting the features and

raining. They also report that using GMM, a recognition rate of 84.79%

as been achieved with the complete set of 86 prosodic features, while

he rate has increased to 86.71% with the selection of six best features.

Schuller et al. used an SVM based Sequential Floating For-

ard Search (SFFS) algorithm to decrease the number of features

 Schuller et al., 2005a ). With the original 276 features, they obtained

6.23% recognition rate, while SFFS yielded the top 75 features with an

0.53% recognition rate. 

Rong et al. proposed a selection algorithm called Ensemble Ran-

om Forest to Trees (ERFTrees) that can be used on a small number of

ata sets with a large number of features ( Rong et al., 2009 ). ERFTrees

onsists of two parts: feature selection and voting strategy. First, us-

ng the C4.5 decision tree and Random Forest algorithm, two subsets of

andidate features are selected among original features. The majority

oting method combines these two subsets to obtain the final feature

et. They have achieved a 66.24% recognition rate with original 84-

imensional features, and a rate of 61.18% with selected 16-features by

ulti-Dimensional Scaling, a rate of 60.40% with ISOMAP, and a rate

f 69.32% with the proposed algorithm. 

In his study, Schuller used correlation-based feature subset (CFS) se-

ection ( Schuller, 2011 ). In CFS, useful features are uncorrelated with

ach other while they are highly correlated with the target class. From

60 acoustic features, for each of valence, activation, dominance dimen-

ions, the number of features is reduced to 238, 109, and 88 for each,

hile the correlation coefficients increased from 0.789 to 0.810, 0.403

o 0.451, and 0.745 to 0.788 for each, respectively. 

.2. Features 

Features are an important aspect of speech emotion recognition.

arefully crafted set of features that successfully characterize each emo-

ion increases the recognition rate. Various features have been used for

ER systems; however, there is no generally accepted set of features for

recise and distinctive classification. The existing studies have all been

xperimental so far. 

Speech is a continuous signal of varying length that carries both in-

ormation and emotion. Therefore, global or local features can be ex-

racted depending on the required approach. Global features, also called

ong-term or supra-segmental features, represent the gross statistics such

s mean, minimum and maximum values, and standard deviation. Lo-

al features, also known as short-term or segmental features, represent

he temporal dynamics, where the purpose is to approximate a station-

ry state. These stationary states are important because emotional fea-

ures are not uniformly distributed over all positions of the speech signal

 Rao et al., 2013 ). For example, emotions such as anger are predominant

t the beginning of utterances, whereas, the surprise is overwhelmingly

onveyed at the end of it. Hence, to capture the temporal information

rom the speech, local features are used. 

These local and global features of SER systems are analyzed in the

ollowing four categories. 

• Prosodic Features 
• Spectral Features 
• Voice Quality Features 
• Teager Energy Operator (TEO) Based Features 

Prosodic and spectral features are used more commonly in SER sys-

ems. Some of the features are listed under different categories by vari-

us studies depending on their approach. TEO features are specifically

esigned for recognizing stress and anger. These features are detailed in-

ividually; however, in practice, they are commonly combined to obtain

etter results. 
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.2.1. Prosodic features 

Prosodic features are those that can be perceived by humans, such

s intonation and rhythm. A typical example is rising the intonation

n a sentence that is meant as a question: “You are coming tonight?, ”

here in this case, the intonation rises on the word “tonight, ” hinting

hat this is meant as a question. They are also known as para-linguistic

eatures as they deal with the elements of speech that are properties of

arge units as in syllables, words, phrases, and sentences. Since they are

xtracted from these large units, they are long-term features. Prosodic

eatures have been discovered to convey the most distinctive properties

f emotional content for speech emotion recognition ( Zeng et al., 2009 ).

The most widely used prosodic features are based on fundamental

requency, energy, and duration. The fundamental frequency, F 0 , is cre-

ted by the vibrations in the vocal cord. It yields rhythmic and tonal

haracteristics of the speech. The change of the fundamental frequency

ver the course of an utterance yields its fundamental frequency con-

our whose statistical properties can be used as features. The energy of

he speech signal, sometimes referred as volume or the intensity, pro-

ides a representation which reflects amplitude variation of speech sig-

als over time. Researchers suggest that high arousal emotions such as

nger happiness or surprise yields increased energy while disgust and

adness result with decreased energy ( Lin et al., 2012 ). Duration is the

mount of time to build vowels, words and similar constructs that are

resent in speech. Speech rate, duration of silence regions, rate of dura-

ion of voiced and unvoiced regions, duration of longest voiced speech

re among the most widely used duration related features. 

There are correlations between prosodic features and emotional

tates. Prosodic features expose the changes during the course of emo-

ional speech. For instance, throughout the production of the high-level

rousal emotions such as anger, fear, anxiety, and joy, mean F 0 , F 0 vari-

bility, and vocal intensity increases. F 0 contour decreases over time

uring the expression of anger. In contrast, it increases over time dur-

ng the expression of joy. Low-level arousal such as sadness yields lower

ean F 0 , F 0 variability, and vocal intensity compared to natural speech,

hile also F 0 decreases over time ( Frick, 1985; Bachorowski, 1999 ).

uration to express anger is shorter than duration to express sadness

 Rao et al., 2013 ). 

There are many studies which focus on different aspects of the

rosodic features. Prosodic features and their correlation with emotional

tates are inspected in Frick (1985) ; Cowie and Douglas-Cowie (1996) .

ome studies show that SER systems get similar results or perform better

ompared to human judges when prosodic features are used ( Nogueiras

t al., 2001; Luengo et al., 2005 ). 

As previously mentioned, the fundamental frequency is an impor-

ant prosodic feature for SER. Many features can be derived from the F 0 
ontour, yet it is unknown which fundamental frequency related feature

epresents the emotions better. 

Busso et al. analyzed various expressive F 0 contour statistics to find

he emotionally salient aspects of the F 0 contour ( Busso et al., 2009 ).

ross statistics such as the mean, maximum and minimum values, and

he range of the F 0 are found to be the most salient aspects of F 0 contour.

hey also conduct their experiment by extracting features on the sen-

ence and voiced regions levels. The results showed that features from

he sentence level surpass the features from the voiced region level. 

The performance of the prosodic features based on their granularity

s also analyzed in several studies. Schuller et al. compare gross statis-

ics of pitch and energy contours, to instantaneous pitch and energy

eatures using continuous Hidden Markov Model ( Schuller et al., 2003 ).

hey obtained 86.6% recognition rate using global features, 77.6% by

ocal ones while human judges have a recognition rate 79.8%. Rao et. al

ompared the local and global prosodic features, and their combination

 Rao et al., 2013 ). The global features are computed from gross statistics

f prosodic features. The local prosodic features are gathered from the

equence of syllable duration, frame level pitch and energy values. Com-

ared to the performance of the local features, when the local and global

rosodic features are combined, performance is slightly increased. It is
62 
lso observed that from the word and syllable level prosodic analysis,

nal words of sentences and syllables involve more information to dis-

inguish emotions compared to other parts of words and syllables. 

.2.2. Spectral features 

When sound is produced by a person, it is filtered by the shape of the

ocal tract. The sound that comes out is determined by this shape. An ac-

urately simulated shape may result in an accurate representation of the

ocal tract and the sound produced. Characteristics of the vocal tract are

ell represented in the frequency domain ( Koolagudi and Rao, 2012 ).

pectral features are obtained by transforming the time domain signal

nto the frequency domain signal using the Fourier transform. They are

xtracted from speech segments of length 20 to 30 milliseconds that is

artitioned by a windowing method. 

Mel Frequency Cepstral Coefficients (MFCC) feature represents the

hort term power spectrum of the speech signal. To obtain MFCC, utter-

nces are divided into segments, then each segment is converted into the

requency domain using short time discrete Fourier transform. A num-

er of sub-band energies are calculated using a Mel filter bank. Then,

he logarithm of those sub-bands is calculated. Finally, inverse Fourier

ransform is applied to obtain MFCC. It is the most widely used spectral

eature ( Kuchibhotla et al., 2014 ). 

Linear Prediction Cepstral Coefficients(LPCC) also embodies vocal

ract characteristics of speakers. Those characteristics show differences

ith particular emotions. LPCC can be directly obtained with a recursive

ethod from Linear Prediction Coefficient(LPC). LPC is basically the

oefficients of all-pole filters and is equivalent to the smoothed envelope

f the log spectrum of the speech ( Wong and Sridharan, 2001 ). 

Another feature, Log-Frequency Power Coefficients (LFPC), mim-

cs logarithmic filtering characteristics of the human auditory system

y measuring spectral band energies using Fast Fourier Transform

 Nwe et al., 2003a ). 

Gammatone Frequency Cepstral Coefficients (GFCC) is also a spectral

eature obtained by a similar technique of MFCC extraction. Instead of

pplying Mel filter bank to the power spectrum, Gammatone filter-bank

s applied. 

Formants are the frequencies of the acoustic resonance of the vocal

ract. They are computed as amplitude peaks in the frequency spectrum

f the sound. They determine the phonetic quality of a vowel, hence

sed for vowel recognition. 

Sato et al. use segmental MFCC features for speech emotion recog-

ition ( Sato and Obuchi, 2007 ). They labeled each frame using multi-

emplate MFCC clustering. They compared the performance with

rosody based algorithms using k-nearest neighbors and compared with

onventional MFCC based algorithms using HMM. They achieved better

erformance using the new method. 

Bitouk et al. introduced a new set of spectral features which are

tatistics of MFCC calculated over three phoneme type classes of

nterest-stressed and unstressed vowels, and consonants in the utterance

 Bitouk et al., 2010 ). Compared to prosodic features or utterance level

pectral features, they yielded results that have higher accuracy using

he proposed features. In addition, combination of these features with

rosodic features also increase accuracy. It has been also found that com-

ared to stressed and unstressed vowel features, the consonant regions

f the utterance involve more emotional information. 

.2.3. Voice quality features 

Voice quality is determined by the physical properties of the vocal

ract. Involuntary changes may produce a speech signal that might dif-

erentiate emotions using properties such as the jitter, shimmer, and

armonics to noise ratio (HNR). There is a strong correlation between

oice quality and emotional content of the speech ( Cowie et al., 2001 ).

Jitter is the variability of fundamental frequency between successive

ibratory cycles, while shimmer is the variable of the amplitude. Jitter

s a measure of frequency instability, whereas shimmer is the amplitude

nstability. Harmonics to Noise Ratio is the measurement of the relative
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s  
evel of noise in the frequency spectrum of vowels. It is the ratio be-

ween periodic to aperiodic component in voiced speech signals. These

ariations are perceived as changes in voice quality. 

Other quality measurements used in literature are Normalized Am-

litude Quotient (NAQ), Quasi Open Quotient (QOQ), the difference in

mplitude of the first two harmonics of the differentiated glottal source

pectrum (H1H2), Maxima Dispersion Quotient (MDQ), spectral tilt or

lope of wavelet responses (peak-slope), Parabolic Spectral Parameter

PSP), and shape parameter of the Liljencrants-Fant model of the glottal

ulse dynamics (Rd) ( Valstar et al., 2016 ). 

Lugger et al. use prosodic and voice quality features, namely

pen Quotient Gradient, Glottal Opening Gradient, Skewness Gradient,

ate of Closure Gradient, and Incompleteness of Closure ( Lugger and

ang, 2007 ). They use a two-level classification, where in the first level

hey classify two different activation levels (high and low), then each

f these is classified using a Bayesian classifier. While prosodic features

ave 66.7% recognition rate alone, using prosodic and voice quality pa-

ameters increase the recognition rate to 74.5%. In a follow-up study,

hey use a three-level classifier and increase recognition rate to 88.3%

 Lugger and Yang, 2008 ). 

Li et al. used shimmer and jitter as quality features and added them to

pectral baseline features for classification of emotions ( Li et al., 2007 ).

MM and GMM is used for classification and a higher recognition rate

s achieved by adding jitter and shimmer. 

Zhang used prosodic and voice quality features jitter, shimmer, HNR,

nd the first three formants ( Zhang, 2008 ). They used the prosodic and

oice quality features and achieved a 10% higher recognition rate when

ompared to the usage of prosodic features alone. 

Borchert and Düsterhöft used quality features such as formants,

NR, jitter shimmer to utilize for valence dimension and prosody fea-

ures for arousal axis ( Borchert and Dusterhoft, 2005 ). They used several

lassifiers for emotion recognition including Bayesian Networks, SMO,

euraral Networks, J48 Decision Tree. 70% average recognition rate is

btained for speaker-independent emotion recognition. 

There are also qualitative speech features which describe speech sig-

als by voice quality labels. These features are harsh, tense, breathy,

odal, whisper, creaky and lax-creaky voices. These features have a

igh correlation with the perceived emotions. However, it’s hard to ex-

ract and have a relativistic interpretation based on the researchers un-

erstanding ( Gobl and Chasaide, 2003 ). 

Laver (1980) has been associated breathy voice with intimacy, harsh

oice with anger, whispering voice with confidentiality, and creaky

oice with boredom. Scherer et al. have associated tense voice with

nger, fear and joy; and lax voice with sadness ( Scherer, 1986 ). In

ddition, Murray et al. have suggested associating breathy voice to

nger and happiness; and associating sadness to resonant voice quality

 Murray and Arnott, 1993 ). 

It can be said that the voice quality features are more supplemental

han primary features for a speech emotion recognition system. Some

f the studies list jitter, shimmer, and HNR under prosodic features

 Luengo et al., 2005; Bitouk et al., 2010; Low et al., 2011 ). 

.2.4. Teager energy operator based features 

There are features that depend on the Teager Energy Operator

TEO). It is used to detect stress in speech and has been introduced by

eager and Teager (1990) and Kaiser (1990, 1993) . According to Tea-

er, speech is formed by a non-linear vortex-airflow interaction in the

uman vocal system. A stressful situation affects the muscle tension of

he speaker that results in an alteration of the airflow during the pro-

uction of the sound. The operator developed by Teager to measure the

nergy from a speech by this non-linear process was documented by

aiser as follows where Ψ[] is Teager Energy Operator and x ( n ) is the

ampled speech signal. 

[ 𝑋( 𝑛 )] = 𝑥 2 ( 𝑛 ) − 𝑥 ( 𝑛 + 1) 𝑥 ( 𝑛 − 1) (2)
63 
Zhou et al. proposed three new TEO-based features which are TEO-

ecomposed FM (frequency modulation) variation (TEO-FM-Var), nor-

alized TEO auto-correlation envelope area (TEO-Auto-Env), and criti-

al band based TEO auto-correlation envelope area (TEO-CB-Auto-Env)

 Zhou et al., 2001 ). The variation in energy of airflow characteristics

n the vocal tract for voiced speech spoken under stress is explored

mong these features. They compared these with pitch and MFCC fea-

ures with text-dependent and text-independent pairwise stress classifi-

ations using the SUSAS dataset. TEO-FM-VAR and TEO-AUTO-ENV did

ot perform well compared to classical pitch and MFCC features. How-

ver, TEO-CB-Auto-Env outperforms both pitch and MFCC under stress

ondition. Similar results have been shown by Low et al. in their study

n the detection of clinical depression in adolescents ( Low et al., 2011 ).

hey used prosodic, spectral, voice quality, as well as Teo-Based fea-

ures. TEO-based features, specifically TEO-CB-Auto-Env, outperformed

ll other features including their combination. 

.3. Supporting modalities 

Several technologies are available that can be used for emotion

ecognition systems. These systems use modalities such as visual sig-

als, physiological signals, word recognition, brain signals to classify

motions. Although as standalone systems, these technologies are used

o recognize emotions, they are not yet successful enough to recognize

motions fully. However, they can be used as supporting methods to

nhance the power of speech emotion recognition systems. 

Systems that use numerous modalities to classify emotions are called

ultimodal or multi-cue fusion emotion recognition systems. In multi-

odal systems, a fusion of multiple modalities can be analyzed in four

ifferent classes: feature level, decision level, model level, and hybrid

usion ( Wu et al., 2013a ). 

In feature level fusion, feature vectors of different modalities are

ombined and a new feature vector is constructed before they are used

n the classification. However, the new high dimensional feature set

uffers from the curse of dimensionality, and cause data sparseness.

o overcome this problem feature selection algorithms explained in

ection 5.1.6 can be used. 

In decision level fusion, each feature set from different modalities

lassified with domain-specific classifiers, and recognition results are

ombined by some criteria to obtain the final result. However, by using

eature sets of each modality on separate classifiers, information corre-

ation among feature sets are lost ( Zeng et al., 2008a ). 

To overcome this correlation problem hybrid feature fusion and

odel level features fusions are proposed. These methods combine fea-

ure level and decision level fusion methods. 

Model level fusion emphasizes the mutual correlation among the

treams of multiple signals. Hidden Markov Model and Bayesian Net-

ork based systems are used for model-level fusion ( Sebe et al., 2006 ).

Hybrid fusion combines different levels of the fusion schemes to in-

rease recognition rate ( Wu et al., 2013a ). In most cases of the hybrid

usion, features from different modalities first fused in feature level and

lassified using a classification algorithm. Then, each modality is classi-

ed with separate classifiers and decision level fusion is applied. Finally

esults from both classification are fused again, and the final result is

btained. 

Visual signals and audio signals are complementary to each other

 Picard et al., 1995 ). Therefore, visual signals are the most used

odality alongside speech signals to classify emotions, furthermore,

hey are easy to collect which can be acquired alongside speech us-

ng a single camera. A large number of audio-visual databases are

vailable to use for multimodal classification. Furthermore, most of

he research on multimodal emotion recognition is focused on audio-

isual methods ( Sebe et al., 2006 ), ( Chen et al., 1998 ), ( Pantic and

othkrantz, 2003 ), ( Busso et al., 2004 ), ( Zeng et al., 2008b ), ( Wu et al.,

013b ), ( Tzirakis et al., 2017 ). Some of the audio-visual databases are

hown in Table 2 . They are mostly acquired from movies, reality shows
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r talk shows. Facial expressions, gestures, posture, body movements

re the visual cues used alongside speech signals. Most of the research

n emotion recognition system is focused on acted data. However, in

ecent years there is increasing attention on spontaneous data. 

The research on physiological signals or biosignals with speech is

carce due to the need for a device to collect physiological signals. Cur-

ently, data collection is mostly done as elicited in the laboratory envi-

onment. While it is challenging to collect biosignals for both training

nd classification, they have the advantage of being uncontrolled; for

xample, people may hide their emotions in their speech; however, it is

arder to alter biosignals ( Kim and André, 2006 ). 

Biosignals that can be used are Blood Volume Pulse (BVP), EMG

electromyogram), skin conductivity, skin temperature, respiration,

eart rate, EDA (electrodermal activity), ECG (electrocardiogram), and

PG (photoplethysmography). In his study, Kim used biosignals and

peech to classify emotions ( Kim, 2007 ). He used sequential backward

election for feature selection, and LDA for classification. For the fu-

ion of the modalities, feature level, decision level, and hybrid fusion

ethods are used. Best results are obtained using feature-level fusion. It

as been found that biosignal-audio fusion is not as complementary as

udio-visual recognition systems. 

Word recognition technology can also be used to enhance the per-

ormance of speech emotion recognition. In their study, Eyben et al.

sed low-level speech features and binary linguistic features for emo-

ion detection using dimensional model ( Eyben et al., 2010 ). They have

sed an interpreter component that assigns function related attributes to

ords like agree and disagree, or positive and negative. They performed

lassification separately using speech and linguistic features and also us-

ng feature level fusion combined with the modalities and Bidirectional

ong Short-Term Memory Recurrent Neural Network (BLSTM-RNN) is

sed for classification. They showed that acoustic features performed

etter than linguistic features. However, best results are obtained when

oth modalities are combined. Wu et al. used Meta-Decision tree to clas-

ify speech data, and maximum entropy level to characterize the rela-

ionship between emotional states and the Emotion Association Rules

hat are extracted from a Chinese knowledge base ( Wu and Liang, 2011 ).

hen, a weighted product fusion method is used to combine both to

roduce the final result. Speech-based recognition and semantic label-

ased methods achieved a recognition rate of 80% and 80.92%, re-

pectively. Multimodal recognition achieved an 83.55% recognition

ate. 

Keystroke dynamics, mouse movement, and touch behavior are other

echnologies that can be used alongside speech. In an empirical study,

sihrintzis et al. compared facial expression and keystroke as modali-

ies to detect emotions ( Tsihrintzis et al., 2008 ). They found out that

nger and sadness can be recognized better using keystrokes dynam-

cs, while facial expression based methods performed better on sur-

rise and disgust. In their study, Khanna and Sasikumar (2010) ob-

erved that approximately 70% of people’s typing speed decreased

hen they are in a sad state, and 80% of people type faster when

hey in a happy state. There is no current study on multimodal emo-

ion recognition using speech and keystroke dynamics. However, it can

e studied especially for emotion recognition for people playing video

ames. 

.4. Classifiers 

Speech emotion recognition systems classify underlying emotions for

 given utterance. Including traditional classifiers and deep learning al-

orithms, many machine learning algorithms are used to carry out the

peech emotion recognition task. However, just as with any complicated

roblem, there is no generally accepted machine learning algorithm that

an be used; current studies are generally empirical. In Table 4 , studies

re summarized including databases, features, classifiers, and result of

he experiments. In addition, Table 3 presents the studies with features

nd classifiers used in them. 
64 
.4.1. Traditional classifiers 

SER systems typically make use of classification algorithms. A classi-

cation algorithm requires an input X , an output Y , and a function that

aps X to Y as in 𝑓 ( 𝑋) = 𝑌 . The learning algorithm approximates the

apping function, which helps predict the class of new input. The learn-

ng algorithm needs labeled data which identifies the samples and their

lasses. Once the training is over, data that has not been used during

raining is used to test the performance of the classifier. 

Most preferred algorithms are Hidden Markov Model (HMM), Gaus-

ian Mixture Model (GMM), Support Vector Machines (SVM), and Ar-

ificial Neural Networks (ANN). There are also classification methods

ased on Decision Trees (DT), k-Nearest Neighbor (k-NN), k-means, and

aive Bayes Classifiers. In addition to usage of single classifiers, ensem-

le methods are also used for SER that combines several classifiers to

btain better results. 

.4.1.1. Hidden Markov Model. Hidden Markov Model is a commonly

sed method for speech recognition and has been successfully extended

o recognize emotions, as well. As the name suggests, HMM relies on the

arkov property which says that the current state of a system at a time

 only depends on the previous state at time 𝑡 − 1 . The term “hidden ”

enotes the inability of seeing the process that generates the state at

ime t . It is then possible to use probability to predict the next state by

aking observations of the current state of the system. 

Nogueiras et al. used low-level pitch and energy features,

nd their contours using hidden semi-continuous Markov models

 Nogueiras et al., 2001 ). They obtained a recognition rate of over 70%

or 6 emotion class including happiness, anger, joy, fear, disgust, sad-

ess. 

Schuller et al. compared two methods ( Schuller et al., 2003 ). In the

rst method, utterances are classified by GMMs using global statistics

f features derived from the raw pitch and energy contour of the speech

ignal. In the second one, continuous HMM is applied using low-level

nstantaneous features rather than global statistics. The average recog-

ition accuracy of seven discrete emotion classes exceeded 86% using

lobal statistics, whereas the recognition rate of the human deciders for

he same corpus is 79.8%. 

Nwe et al. showed that LFPC feature on Hidden Markov Model

HMM) yields better performance than MFCC and LPCC ( Nwe et al.,

003a ). They achieved a recognition rate of 77.1% and 89% for aver-

ge and best recognition rate, respectively, while human recognition

as 65.8%. 

Lin et al. used HMM and SVM to classify five emotions, which

re anger, happiness, sadness, surprise, and a neutral state ( Lin and

ei, 2005 ). For HMM, 39 candidate features are extracted, then SFS

s applied for feature selection. Classification performance with selected

eatures is compared to classification using MFCC. From the difference

etween Mel frequency scale sub-bands energies, a new vector is built

nd the performance of the K-nearest neighbor is tested using this newly

uilt vector. For HMM, 99.5% accuracy is obtained for the speaker-

ependent case, whereas the accuracy for SVM is 88.9%. 

Gaussian Mixture Model Gaussian Mixture Model is a probabilistic

ethod which can be viewed as a special case of continuous HMM that

ontains only one state. The idea behind the mixture models is modeling

he data in terms of a mixture of several components, where each com-

onent has a simple parametric form, such as a Gaussian. It is assumed

hat each data point belongs to one of the components, and it is tried to

nfer the distribution for each component separately. 

Neiberg et al. compared MFCC and MFCC-low features obtained by

lacing filter banks in the 20 - 300 Hz region to model pitch feature as

FCC and plain pitch features with GMM as the classifier ( Neiberg et al.,

006 ). For classification, a root GMM is trained using Expectation Max-

mization (EM) algorithm with a maximum likelihood criterion. Later,

rom the root model using the maximum a posteriori (MAP) criterion,

ne GMM per class is constructed. For the training and test data, average

og-likelihoods of n-grams using manual orthographic transcriptions are



M.B. Akçay and K. O ğuz Speech Communication 116 (2020) 56–76 

Table 3 

Classifiers and features used in the literature. 

Prosodic Features Spectral Features Voice Quality Features Teo-Based Features Other 

HMM Schuller et al. (2003) , 

Kwon et al. (2003) , 

Nogueiras et al. (2001) ; 

Ververidis and 

Kotropoulos (2005) 

Kwon et al. (2003) , 

Nogueiras et al. (2001) ; 

Nwe et al. (2003b) , Sato 

and Obuchi (2007) 

Zhou et al. (2001) 

GMM Busso et al. (2009) , 

Kwon et al. (2003) ; 

Luengo et al. (2005) , 

Low et al. (2011) 

Kwon et al. (2003) , 

Luengo et al. (2005) ; 

Low et al. (2011) 

Low et al. (2011) Low et al. (2011) 

SVM Borchert and 

Dusterhoft (2005) , 

Luengo et al. (2005) ; 

Rao et al. (2013) , Schuller 

et al. (2005b,a) , 

Shen et al. (2011) 

Low et al. (2011) 

Borchert and 

Dusterhoft (2005) , 

Bitouk et al. (2010) ; 

Hu et al. (2007) , 

Luengo et al. (2005) ; 

Schuller et al. (2005a) , 

Shen et al. (2011) 

Low et al. (2011) 

Borchert and 

Dusterhoft (2005) , 

Schuller et al. (2005a) 

Low et al. (2011) 

Low et al. (2011) 

MLP Nakatsu et al. (1999) , 

Schuller et al. 

(2005b,a) Petrushin (1999) ; 

Nicholson et al. (2000) 

Nakatsu et al., 

Schuller et al. (2005a) 

Nicholson et al. (2000) 

Schuller et al. (2005a) 

kNN Rong et al., 

Schuller et al. (2005b) 

Rong et al. (2009) 

Decision Tree Borchert and 

Dusterhoft (2005) , 

Lee et al. (2011) , 

Schuller et al. (2005b) 

Borchert and 

Dusterhoft (2005) , 

Lee et al. (2011) 

Borchert and 

Dusterhoft (2005) 

Rule Based Fuzzy 

Estimator 

Grimm et al. (2007) Grimm et al. (2007) 

Denoising Autoencoder Deng et al. (2013, 2014) Deng et al. (2013, 2014) , Deng et al. (2013, 2014) 

DNN Han et al. (2014) Han et al. (2014) 

CNN Mao et al. (2014) , 

Trigeorgis et al. (2016) , 

Kim et al. (2017b) , 

Zhao et al. (2019) 

Lim et al. (2016) 

RNN Wöllmer et al. (2008) , 

Mirsamadi et al. (2017) , 

Eyben et al. (2010) ; 

Lee and Tashev (2015) 

Wöllmer et al. (2008) , 

Mirsamadi et al. (2017) , 

Eyben et al. (2010) , 

Lee and Tashev (2015) 

Mirsamadi et al. (2017) , 

Lee and Tashev (2015) 

Ensemble Albornoz et al. (2011) , 

Schuller et al. (2005b) 

Wu and Liang (2011) ; 

Lee et al. (2011) 

Albornoz et al. (2011) , 

Wu and Liang (2011) ; 

Lee et al. (2011) 

Wu and Liang (2011) , 

Lee et al. (2011) 
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lso used in addition to acoustic features. They created different GMMs

or each of MFCC, MFCC-low, and pitch, and they also combined all

hree classifiers. They tested the classifiers with data from a Swedish

ompany Voice Provider (VP), and The ISL Meeting Corpus (ISL). Best

esults are obtained by the combination of the classifiers using acoustic

eatures using priors. 

.4.1.2. Artificial Neural Networks. Artificial Neural Networks are a

ommonly used method for several kinds of classification problems. It

s basically constructed with an input layer, one or more hidden layers,

nd an output layer. The layers are made up of nodes; while the number

f nodes in the input and output layers depends on the representation

f the data and the labeled classes, the hidden layers can have as many

odes as required. Each layer is connected to the next using weights that

re initially randomly chosen. When a sample is chosen from the train-

ng data, its values are loaded to the input layer, and then forwarded to

he next layer. At the output layer, the weights are updated using the

ackpropagation algorithm. Once the training is complete, the weights

re expected to be able to classify new data. 

Nicholson et al. used ANN for a speaker and context independent

ER system ( Nicholson et al., 2000 ). They selected speech power, pitch,

PC and delta LPC as parameters. For each emotion in the database, they

reated a sub neural network. Each neural network output a value rep-

esenting the likelihood that the utterance corresponds to an emotion.

ased on this value, the best prediction is selected by the decision logic.
65 
hey obtained a 50% average recognition rate using this one-class-in-

ne neural network. 

Petrushin et al. developed an application to be used in call-centers

 Petrushin, 1999 ). They tested their system using ANN, and an ensem-

le of ANN and k-nearest neighbor (kNN) classifiers. They selected

ome statistics of the pitch, energy, the speaking rate and the first

nd second formants as a feature set. 55%, 65%, and 70% of aver-

ge accuracies are obtained for kNN, ANN, and the ensemble of ANNs,

espectively. 

Support Vector Machine SVMs are supervised classifiers which find an

ptimal hyperplane for linearly separable patterns. Given the training

ata the objective of an SVM classifier is to find the hyperplane that

as the maximum margin, between data points of both classes. If these

atterns are not linearly separable, using a kernel function original data

oints are mapped to a new space. 

Kwon et al. extracted pitch, log energy, formant, Mel-band energies,

nd MFCCs as base features ( Kwon et al., 2003 ). To consider the speak-

ng rate and model the dynamics of the corresponding temporal change

f pitch and spectrum, velocity and acceleration information are in-

luded for pitch and MFCCs, respectively. They gathered these features

rom utterances and calculated the statistics of the features. Finally clas-

ified the signals using LDA, QDA, binary Gaussian kernel SVM (GSVM),

inear SVM (LSVM), HMM. Pair-wise classification and Multi-class clas-

ification is tested. GSVM and HMM give the best results with accuracies

2.3% and 40.8%, respectively. 
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Table 4 

List of studies. 

Paper Dataset Features Classifier Results 

Albornoz et al. (2011) Berlin Emo DB Mean of log spectrum, MFCC, 

and prosodic features 

Hierarchical classifier using 

HMM, GMM, and MLP 

71.5% average recognition rate 

Bitouk et al. (2010) LDC, Berlin Emo DB Spectral features SVM 46.1% recognition rate for LDC 

by using group-wise feature 

selection with class level 

spectral features, 81.3% 

recognition rate for EMODB by 

rank search subset evaluation 

feature selection with 

combined class level spectral 

features and utterance level 

prosodic features. 

Borchert and 

Dusterhoft (2005) 

Berlin Emo DB Formants, spectral energy 

distribution in different 

frequency bands, HNR, jitter, 

and shimmer. 

SVM, J48 90% recognition rate for single 

emotionrecognition, 70% for 

all emotions 

Busso et al. (2009) EPSAT, EMA, GES, SES, WSJ Features derived from the F0 

contour. 

GMM 77% average recognition rate 

Deng et al. (2013) AVIC, EMODB, eNTERFACE, 

SUSAS, VAM 

LLDs such as ZCR, RMS, 

energy, pitch frequency, HNR, 

MFCC 

Denoising autoencoder For AVIC 62.7% recognition 

rate,for EMODB 57.9%, for 

eNTERFACE 59.1% for SUSAS 

59.5%, for VAM 60.2% 

Deng et al. (2014) AIBO DB, ABC DB, SUSAS DB Low-Level Descriptors Denoising autoencoders and 

SVM 

64.18% average recognition 

rate for ABC DB, 62.74% 

average recognition rate for 

SUSAS DB 

Grimm et al. (2007) EMA DB, VAM I-II DBs Pitch related features, 

speaking rate related 

features,spectral features 

Rule based fuzzy estimator 

and SVM 

0.27, and 0.23 mean errors for 

VAMI, and VAMII,respectively 

for both gender. 0.19 mean 

error for EMA DB. 

Han et al. (2014) IEMOCAP DB MFCC features,pitch-based 

features, and their delta 

feature across time frames 

DNN and Extreme Learning 

Machine 

54,3% average recognition rate 

Hu et al. (2007) 8 native Chinese speakers (4 

females and 4 males) uttered 

each sentence in five 

simulated emotional states, 

resulting in 1600 utterances in 

total. 

Spectral features GMM supervector based SVM 82.5% recognition rate 

formixed gender, 91.4% for 

male,93.6% for female 

Kwon et al. (2003) SUSAS DB and AIBO DB Prosodic and spectral features GSVM and HMM For SUSAS DB using GSVM 90% 

and 92.2% recognition rates 

are obtainedfor neutral and 

stress speech, 

respectively.Using HMM 96.3% 

recognition rateis obtained. 

Recognition rate is 70.1% for 

4-class style classification with 

HMM.For multiclass 

classification on AIBO DB, 

GSVM achieved an average 

recognitionrate of 42.3%.The 

average recognition rateis 

40.8% using HMM. 

Lee et al. (2011) AIBO DBUSC IEMOCAP DB. ZCR, root mean square energy, 

pitch, harmonics-to-noise 

ratio,and 12 MFCCs and their 

deltas. 

Decision tree For AIBO, 48.37% using 

leave-onespeaker out cross 

validation on the training 

dataset. For IEMOCAP, average 

unweighted recall of 58.46% 

using leave-one speakerout 

cross-validation 

Luengo et al. (2005) Emotional speech databasefor 

Basque, recorded bythe 

University of theBasque 

Country, with single actress 

Prosodic and spectral features SVM, GMM 98% accuracy for GMM-MFCC, 

92.32% with SVM & 

prosodicfeatures, 86.71% with 

GMM& prosodic feature 

Mirsamadi et al. (2017) IEMOCAP corpus Automatically learned by Deep 

RNN, as wellas hand-crafted 

LLDs consisting of F0, voicing 

probability, frame energy,ZCR, 

and MFCC 

Deep RNN Proposed system with raw 

spectral features have 61.8% 

recognition rateProposed 

system with LLD features have 

63.5% recognition rate 

Mao et al. (2014) SAVEE DB, Berlin EMO DB,DES 

DB, MES DB 

Automatically learned by CNN CNN 73.6% accuracy for SAVEE 

DB,85.2% for EMODB,79.9% for 

DES DB 78.3% for MES DB 

Nakatsu et al. (1999) 100 utterance50 male, 50 

female 

Speech power, pitch, LPC Neural networks 50% recognition rate 

( continued on next page ) 

66 
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Table 4 ( continued ) 

Nogueiras et al. (2001) Spanish corpus of INTERFACE, 

Emotional Speech Synthesis 

Database 

Prosodic and spectral features HMM Recognition rate higher than 

70%for all emotions 

Nwe et al. (2003b) 3 female 3 malefor Burmese 

language3 female 3 male for 

Mandarin language 

LFPC HMM Average recognition rates of 

classification for the Burmese 

and the Mandarin utterances 

are 78.5% and 75.7%, 

respectively. 

Rao et al. (2013) Telugu emotion speech corpus Prosodic features SVM 66% average recognition rate 

with sentence level prosodic 

features,65.38% average 

recognition rate withword 

level prosodic features, 63% 

average recognition rate with 

syllable level prosodic features 

Rong et al. (2009) One natural and one acted 

speech corpora in Mandarin 

Pitch, energy, ZCR,and spectral 

features 

kNN 66.24% average recognition 

rate with all 84 features, 

61.18% with PCA/MDS, 60.40% 

with ISOMAP, and 69.21% with 

proposed ERFTrees method 

Sato and 

Obuchi (2007) 

Database from Linguistic Data 

Consortium 

MFCC HMM 66.4% recognition rate 

Schuller et al. (2003) German and English 5 speaker 

5250 sample. Acted and 

natural data 

Energy and Pitch based 

features 

continuous HMM 86.8% average recognition rate 

with global prosodic features 

and 77.8% average recognition 

ratefor instantaneous features 

Schuller et al. (2005b) 3947 movie and automotive 

interaction dialog-turns 

database consisting of 35 

speakers. 

Pitch, energy, and duration 

related features 

StackingCSVM NB C4.5 kNN 63.51% recognition rate for 

276dimensional features and 

71.62% for 100 dimensional 

features 

Schuller et al. (2005a) Berlin EmoDb The raw contours of ZCR, 

pitch, first seven formants, 

energy, spectral development, 

and HNR and linguistic 

features 

StackingC MLR NB 1NN SVM 

C4.5 

76.23% recognition rate 

withall 276 features, 80.53% 

with top 75 features selected 

by SVM SFFS 

Schuller (2011) VAM DB Low level descriptors such as 

signal contour, spectral pitch, 

formants, HNR, MFCCs, or 

energy of the signal and 

linguistic features 

Support Vector Regression Best result for Valence 

dimension is 66.7% using 

linguistic features. For 

Activation dimension 85.1% 

recognition rate with acoustic 

and bag of n-grams features. 

For Dominance acoustic and 

bag of character n-grams 

features recognition rate is 

82.5% 

Shen et al. (2011) Berlin Emo DB Energy, pitch, LPCC, MFCC, 

LPCMCC 

SVM Best results with energy and 

pitch features is 66.02%, 70.7% 

for only LPCMCC features,and 

82.5% for using both of them. 

Trigeorgis et al. (2016) RECOLA DB. Automatically learned by deep 

CNN 

Deep CNN with LSTM MSE in arousal dimensionis 

0.684, and MSE in valence 

domain is 0.261 

Ververidis and 

Kotropoulos (2005) 

1300 utterances from DES Statistical properties of 

formants, pitch, and energy 

contours of the speech signal 

GMM 48.5% recognition rate for 

GMM with one Gaussian 

density, 56% for males and 

50.9% for females 

Wang et al. (2015) Berlin EMO DB, CASIA DB, 

Chinese elderly emotion 

database(EESDB) 

Fourier Parameters, MFCC SVM For EMO DB 88.88% 

recognition rate, while for 

CASIA DB 79% recognition rate, 

and for EESDB 76% recognition 

rate 

Wollmer et al. (2010) Sensitive Artificial Listener 

(SAL) database 

Low Level audio features such 

as pitch, MFCC, energy, HNR 

and also linguistic features 

BL STM, L STM,SVM, and 

conventional RNN 

Quadrant prediction 

F1-measure of up to 51.3%, 

Wu and Liang (2011) Two corpora; corpora A and B 

consist of the utterances from 

six and two volunteers, total 

2033 sentences 

Pitch, intensity, formants1-4 

and formant bandwidths1-4, 

four types of 

jitter-relatedfeatures, six types 

of shimmer-relatedfeatures, 

three types of 

harmonicity-related features, 

MFCCs 

Meta Decision Tree (MDT) 

containing SVM, GMM, MLP 

classifiers 

80% recognition rate with 

mixed utterances from corpora 

A and B. 

( continued on next page ) 
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Table 4 ( continued ) 

Wu et al. (2011) Berlin Emo DB, VAM DB Prosodic features, speaking 

rate features,ZCR and TEO 

based features 

SVM 91.3% by proposed modulation 

spectral features and prosodic 

features for EMODB, 86% by 

prosodic and spectral 

modulation features for VAM 

DB 

Yang and 

Lugger (2010) 

Berlin Emo DB Prosodic, spectral and voice 

quality features 

Bayesian classifier 73.5% average recognition rate 

Zhang et al. (2011) ABC, AVIC, DES,eNTERFACE, 

SAL, and VAM. 

LLDs such as energy, pitch, 

voice quality, spectral, MFCC 

features 

Unsupervised Learning Mean unweighted recognition 

rate is 66.8% using 

Z-normalization of arousal 

classification, 58.2% for 

valence classification with 

centering normalization on 

cross-corpus emotion 

recognition 
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Shen et al. using SVM classified the emotions in Berlin Database

 Shen et al., 2011 ). They compared energy, pitch, LPCMCC features.

6.02%, 70.7%, and 82.5% classification accuracies are obtained for us-

ng only energy and pitch, for using LPCMCC, and for the combination

f prosodic and spectral features, respectively. 

Hu et al. used the GMM supervector based SVM with spectral features

or classification ( Hu et al., 2007 ). For each emotional utterance in the

atabase, a GMM is trained, later the corresponding GMM supervector

s used as the input for SVM. They also compared result using ordinary

MM. While the accuracy is 82.5% for GMM supervector based SVM,

7.9% accuracy is obtained using GMM. 

Pan et al. used SVM with pitch, energy, MFCC, LPCC, MEDC fea-

ures to classify Berlin database and their self-built Chinese emotional

atabase ( Pan et al., 2012 ). They trained different SVM classifiers for

ombinations of the features. For the Chinese database, best results are

btained using MFCC, MEDC, Energy features with an accuracy of %

1.3043 while it’s %95.087 for Berlin database using the same combi-

ation of the features. 

Schuller et al. used a Multilayer SVM for speech emotion recognition

 Schuller et al., 2004 ). Multilayer SVM has several input layers, then has

 hidden layer which may contain a number of SVM layers, and finally,

n output layer similar to neural networks but trains Support Vector

oefficients and the biases of all SVMs in the architecture, instead of

eights. In this study, a layer-wise binary classification is repeatedly

ade until only one class remains. As a result of the experiments, it

s found out that classes which are hardly separable should be divided

t last. They also tested regular SVM, MLP, GMM, kNN, and k-nearest

eighbor algorithms. Best results are obtained by ML-SVM by an 18.71%

rror rate. In a second approach, they added the spoken content as sup-

orting modality for emotional key-phrases by applying Belief Network

ased spotting. They further improved recognition rate by combining

coustical and linguistic features using MLP as soft decision fusion. The

rror rate is decreased to 8%. 

Truong et al. used Support Vector Regression (SVR) with a RBF ker-

el to compared self-reported emotion ratings to observed emotion rat-

ngs and tried to see how differences between two ratings affect devel-

pment of emotional speech recognizers in a two-dimensional arousal-

alence space ( Truong et al., 2012 ). They used acoustic and lexical fea-

ures to be used for the classification. They found that observed emotions

re easier to recognize than self-reported emotions and that averaging

atings from multiple observers increases the performance of the emo-

ion recognizers. 

.4.1.3. Ensemble of Classifiers. In ensemble learning, a number of ma-

hine learning algorithms are combined to increase predictive perfor-

ance. Each algorithm in ensemble classifier is combined in some way,

ypically by a voting procedure, to obtain a final result. Performances of

he ensembles are often higher than the individual classifiers. Different

ypes of architectures are available in ensemble classifiers. One of the
68 
ays is feeding the same data to each classifier by comparing the results

btaining a final decision. Another approach is using the hierarchical

lassifier. In this approach, input data is fed to one algorithm, then the

esult is fed to another type of classifier in a hierarchical approach, then

he final decision is given. 

Xiao et al. proposed an hierarchical two-staged classifier based on

 “Dimensional Emotion Classifier ” ( Xiao et al., 2010 ). At stage 1 emo-

ional states classified according to arousal dimension in two sub-stages

nto three classes as active, median, and passive. At stage 2, member of

hese three classes further classified based on appraisal dimension. At

ach classification stage, most relevant features are selected using SFS

lgorithm. They used back-propagation neural network as classification

lgorithm. Berlin and DES databases are used as dataset which are based

n categorical emotional model. These categories are mapped into the

imensional space. For Berlin dataset 68.60% recognition rate is ob-

ained and the result is increased to 71.52% when gender classification

s applied prior. With DES dataset 81% recognition rate is obtained. 

Lee et al. proposed and hierarchical classifier for speech emotion

ecognition task ( Lee et al., 2011 ). The proposed method classifies an

nput utterance through sequential layers of binary classifications. They

sed Bayesian Logistic Regression as a binary classifier. They obtained

n improvement of 7.44% over a baseline SVM classifier. 

Wu et al. used acoustic features and semantic labels for emotion clas-

ification ( Wu and Liang, 2011 ). They used GMM, SVM, and MLP as

ase level classifiers. A Meta Decision Tree is used for fusion of base

lassifier to get recognition confidence for acoustic features. For seman-

ic labels, Emotion Association Rules (EARS) are extracted and using

aximum entropy model to identify the relationship between emotional

tates and EARs. Finally, the weighted product fusion method is used to

ombine acoustic features and semantic labels. They achieved 85% av-

rage recognition rate by combining acoustic and linguistic information.

Albornoz et al. used two-stage hierarchical classifier for a SER sys-

em ( Albornoz et al., 2011 ). When the number of emotional classes to

ecognize is decreased, higher performance is obtained. Furthermore,

ifferent emotions can be represented better with different features and

ifferent classifiers. Hence hierarchical classifier is chosen for this task.

n each stage of the two-stage hierarchical classifier, separate feature ex-

raction and classification steps are applied. They created two variants

f the hierarchical classifier in the first one, at the first stage emotions

re partitioned into three groups namely disgust, BNS (boredom, neu-

ral, surprise), and JAF (joy, anger, fear), whereas in the second one at

he first stage into two groups: BNS and JAFD. In the second stage of

oth variations, specific features are extracted for each group and these

re fed into group-specific classifiers. Finally, individual emotions are

btained. They tested different combinations of features and classifiers.

xperimental results showed that HMM with 30 Gaussians in mixtures

re best for stage I, and for Stage II HMM is better to discriminating

oredom, Neutral, Sadness whereas MLP is better for Joy, Anger, Fear.

hey also showed that 12 mean MFCC features and their deltas and ac-
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eleration coefficients are best features for Stage I and BNS group for

tage II, 12 mean MFCC, 30 mean log-spectrum, mean and standard de-

iation of the fundamental frequency and pitch are the best features for

tage II JAF group. 

.4.2. Deep learning based classifiers 

Most of the deep learning algorithms are based on Artificial Neural

etworks hence are commonly referred to deep neural networks. The

erm “deep ” comes from the number of hidden layers as it can reach

o hundreds of layers, whereas a traditional neural network contains

wo or three hidden layers. In recent years, performance of the deep

earning algorithms surpass the traditional machine learning algorithms,

ence the focus on research changed direction towards them and the

urrent trend in SER research is no different. The advantage of some

f these algorithms is that there is no need for feature extraction and

eature selection steps. All features are automatically selected with deep

earning algorithms. Most widely used deep learning algorithms in SER

omain are Convolutional Neural Networks (CNN), Recurrent Neural

etworks (RNN). 

.4.2.1. Recurrent Neural Networks. RNNs are a family of neural net-

orks which are specialized in processing sequential data. By the usage

f internal memory, they can remember the received input data and

ake a precise prediction about what is coming next. Because of their

ature, RNNs are successfully used for sequential data such as time se-

ies, speech, text, video. 

When a unit of RNN produces an output, it forwards data to the next

nit and also loops the output back itself. As a result, it has two types

f input: present input and input from the recent past. The input from

he recent past is important because the sequence of the data contains

mportant information about what is coming next. 

RNNs have a short time memory, however, by using Long-Short Time

emory architecture, RNN can gain access to long term memory. LSTM-

NNs are a kind of gated RNN which are the most effective models used

n practical applications that solves the long term dependency problem

f the RNN. LSTM-RNNs have special “LSTM cells ” that have internal

ecurrence besides the outer recurrence of RNN. In addition to standard

nput and output of the RNN, it has more parameters and gating units

ith sigmoid nonlinearity that control the flow of information. LSTM

as three types of gates: input gate, forget gate and remember gate. By

pening and closing these gates, LSTM cell makes decisions about what

o store, and when to allow inputs, outputs, and deletions. 

Eyben et al. proposed an online SER system using LSTM-RNN

 Eyben et al., 2010 ). They added the time dimension to 2D activation-

alence emotional model to create a new 3D model. The motivation

ehind adding the third time dimension to evaluating emotions incre-

entally in real-time. Since LSTM-RNN does not require any segmen-

ation besides the low-level framing, it is suitable to use for real-time

pplications. Another factor to use LSTM-RNN is the fact that its suit-

bility for the connected time series. Prosodic, spectral and voice quality

eatures are used as acoustical features. In addition, linguistic features

re extracted, and acoustic and linguistic features are combined by the

eature level fusion. 

Tian et al. used hierarchical fusion to combine acoustic and lexi-

al features for emotion recognition with dimensional emotional model

 Tian et al., 2016 ). They used LSTM for classification task with LLD,

GeMAPS, and global prosodic features are used as acoustic features,

nd Disfluency and Non-verbal Vocalization (DIS-NV) Features, Point-

ise Mutual Information (PMI) Features, and Crowd-Sourced Emotion

nnotation (CSA) features are used as lexical features. In hierarchical fu-

ion, an LSTM network with three hidden layers is proposed. In the first

ayer LLD and eGeMAPS features are used in first hidden layer, later GP

nd DIS-NV features are added, finally PMI and CSA features are used

n third layer. Also a network with two hidden layer with GP, DIS-NV,

nd CSA features are proposed. AVEC 2012 and IEMOCAP databases
69 
re used for experiments. Better results are obtained with hierarchical

usion compared to feature level and decision level fusions. 

Wöllmer et al. used LSTM-RNN for continuous emotion recognition

n a 3D space spanned by activation, valence, and time ( Wöllmer et al.,

008 ). For experiments Belfast Sensitive Artificial Listener data which is

art of the HUMAINE database is used. Best results for activation (MSE

.08) is obtained by LSTM-RNN. However, for the valence dimension

STM-RNN and SVR performed equally (MSE 0.18) They also observed

hat classification performance of the valence was relatively low as the

etection of valence from only acoustic features is known to be hard.

ence they suggest additional modalities to be used, such as linguis-

ic features for valence classification. Similar results are obtained by

ther studies which indicated that valence estimation is higher with se-

antic features while arousal elicitation is better with acoustic features

 Karado ğan and Larsen, 2012; Asgari et al., 2014 ). 

Kaya et al. investigated LSTM-RNN for cross-corpus and cross-

ask acoustic emotion recognition using dimensional emotional model

 Kaya et al., 2018 ). They employed an approach to utilize the frame

evel valence and arousal predictions of LSTM models for utterance

evel emotion classification. They combined discretized predictions of

STM models with the components of the baseline system. Baseline sys-

em used SVM and learner performance is increased further using least

quares based weighted kernel classifiers. Results from LSTM and base-

ine system is combined with Weighted score level fusion. For cross-

orpus experiment RECOLA, SEMAINE and CreativeIT datasets are used

 Metallinou et al., 2010 ). Their results showed the suitability of the pro-

osed method for both time-continuous and utterance level cross-corpus

coustic emotion recognition tasks. 

.4.2.2. Convolutional Neural Networks. Convolutional Neural Net-

orks (CNNs) are particular types of neural networks which are de-

igned to process data that has a grid-like topology, such as images.

hrough applications of several relevant filters, CNN can successfully

apture temporal and spatial dependencies from an input source. The

nputs are reduced into a form without loss of feature so that compu-

ational complexity decreases and the success rate of algorithm is in-

reased. A CNN is composed of several layers: convolution layer, polling

ayer, and Fully-Connected layer. 

A convolution layer is used to extract high-level features from the

nput. Mathematically a convolution means combining two functions

o obtain a third one. In CNN, the input is taken and, then a kernel is

pplied to it. The resulting output is a feature map. 

Polling layer is used to reduce the size of convoluted features to de-

rease computational complexity through dimensionality reduction. It

s useful for extracting dominant features of the input data. 

After passing input from several convolution and polling layers and

xtracting the high-level features, the resulting features are used as an

nput to a fully connected layer by flattening the 2D data to a column

rray and feeding it to a feed-forward network that operates as an ordi-

ary neural network. 

Trigeorgis et al. proposed a system that combines CNN with LSTM

etworks, where CNN is used to automatically learn the best descriptive

haracteristics of the speech signal directly from the raw time represen-

ation ( Trigeorgis et al., 2016 ). Speech signals are segmented first, then

enoising is applied as preprocessing step. Next, using CNN, acoustic

eatures are extracted. Finally, LSTM layered deep RNN are fed with

xtracted features. Significantly better performance is obtained by the

roposed method compared to traditional designed features. A similar

pproach is taken by Lim et al. (2016) . They compared the proposed

ime distributed CNN to CNN and LSTM-RNN They obtained 88.01% av-

rage precision using the proposed method, whereas single CNN classi-

er and LSTM classifier obtained average precision 86.32% and 78.31%,

espectively. 

CNNs can be built by different dimensionalities. Zhao et al. used

-D and 2-D CNNs with LSTM network for speech emotion recognition

 Zhao et al., 2019 ). 1-D CNN is built to learn to local and global emotion-
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elated features from speech whereas 2-D CNN is used to learn Mel-

pectrogram. Both networks share a similar architecture; both have four

ocal feature learning blocks (LFLBs) and one LSTM network. LFLB net-

ork contains a convolution layer and a polling layer. The convolution

nd pooling kernels in each LFLB are all one-dimensional in 1-D CNN

ince it learns features from the raw speech signal. The learned features

re fed to LSTM layer to get contextual dependencies. In 2-D CNN, Mel-

pectgrams in the form of 2-D matrices are fed to CNN to learn high-level

motional features. Features are extracted from and again fed to LSTM.

n overall, the 2-D network performed better than the 1-D network.

n Berlin EmoDB, 2-D network obtained recognition rates of 95.33%

nd 95.89% with speaker-dependent and speaker-independent experi-

ents respectively, whereas recognition rates are 89.16% and 52.14%

n IEMOCAP database for speaker dependent and speaker independent

ases, respectively. 

While most of SER systems using CNN, at least one LSTM network

s added to deal with temporal dependencies and spectral variations;

owever, it increases the depth and complexity. Instead, Kim et al. pro-

osed a 3-D CNN to learn spectro-temporal features ( Kim et al., 2017b ).

irst, two seconds of segments are extracted from utterances, padding

s applied, then 256 point spectrogram are extracted for every 20 ms.

otal of 100 frames is obtained. Finally, a temporal series of 2-D fea-

ure maps with a resolution of 10 x 256 are composed. Spectral features

re represented as feature maps in short-term windows that are 200 ms

ong. Each utterance segment has a resolution of 10x10x256 that are

enoted as short term (T), Long term (L), and spectral (S). These feature

aps are fed into 3-D CNN, and 3-D max polling is applied. Then, two

ethods are tested for learning. First, 3-D output features are flattened

nto 1-D vectors and they are forwarded to fully-connected layers with

n additional softmax layer. This method is named as 3D-CNN-DNN. In

he second method, the 3-D output is transformed into 2-D output fea-

ures and these are forwarded into a temporal series of a fully connected

ayer. Extreme Learning Machine (ELM) is used in this method, there-

ore it is named as 3D-CNN-DNN-ELM. Both methods are compared with

ff-the-shelf LSTM-ELM and DNN-ELM 1D-CNN-LSTM, 2D-CNN-LSTM,

nd 2D-CNN-LSTM-DNN. Both of the proposed methods outperformed

ff-the-shelf methods. 

.4.3. Machine learning techniques for classification enhancement 

.4.3.1. Autoencoders. Finding labeled data is a challenging task for

ER research and applications. Besides, even if the labeled data is ob-

ained, there is no guarantee on the correctness of the emotional la-

els since there is no standardization on the labeling task. In recent

ears, auto-encoders gained attention due to their unsupervised, and

emi-supervised nature. Autoencoders consists of three layers as other

eural networks, an input layer and an output layer of the same size,

nd hidden layers that contain fewer neurons than the input and out-

ut. Autoencoders reconstructs the original input data as output. It has

wo main parts: an encoder and a decoder. The encoder compresses the

nput data and transforms into a more dense representation, whereas the

ecoder part reconstructs the data. In the training phase, the reconstruc-

ion error is computed between input and output and tune the network

or better representation. Autoencoders generally work as a feature ex-

ractor rather than a classifier. After training the autoencoder, encoder

art is connected to a classifier. There are several types of autoencoders

uch as variational autoencoder (VAE), denoising autoencoder (DAE),

parse autoencoder (SAE), adversarial autoencoder (AAE). 

Eskimez et al. used and compared denoising autoencoder, varia-

ional autoencoder adversarial autoencoder, and adversarial variational

ayes as feature extractor and fed these learned features into a CNN

 Eskimez et al., 2018 ). These systems compared with baseline SVM and

NN using hand-crafted features. They used USC-IEMOCAP audio-visual

ataset to test the systems. Best results are obtained by adversarial vari-

tional Bayes which is followed by adversarial autoencoder. 

To learn latent representations of speech emotion, Latif et al. pro-

osed a system which is using variational autoencoders ( Latif et al.,
70 
017 ). In addition, they tested a type of VAE - Conditional Variational

utoencoder (CVAE). In their study, autoencoders are used to learn the

epresentation while an LSTM network is used as the classifier. They also

ompared the performance with an autoencoder-LSTM as well as with

NN and BLSTM using hand-crafted features. They used USC-IEMOCAP

ataset for testing. The best performance is obtained by CVAE-LSTM

ith a 64.93% weighted average. 

Sahu et al. inspected Adversarial autoencoder and conducted differ-

nt experiments on two points ( Sahu et al., 2017 ). Their first experiment

imed to examine classification performance of autoencoder’s compres-

ion ability which encodes high dimensional feature vector representa-

ion into a lower dimensionality. They also inspected the regeneration

f synthetic samples to be used in the training phase. They compared the

erformance of code vector learned from AAE with openSMILE features

lassified by SVM and also a lower dimensional representation of these

eatures reduced by PCA and LDA methods. Code vector obtained by

AE showed a close performance compared to openSMILE feature and

utperformed other compression techniques. Synthetic samples gener-

ted from AAE also showed promising results. Using synthetic samples

longside with original samples increased recognition rate compared to

sing only original samples. 

Deng et al. proposed a Semi-supervised Autoencoder (SS-AE) for

peech emotion recognition ( Deng et al., 2017 ). It combines discrimina-

ive and generative approaches. When supervised classifier learns from

he labeled data, it also predicts all unlabelled data in parallel, hence

ids explicitly to supervised learning by the incorporating preceding in-

ormation from unlabelled samples. This is carried out by appending

n additional class to the supervised task. A joint objective function is

reated which minimizes the reconstruction error of unsupervised objec-

ive and prediction error of supervise objective. To point out the prob-

em of exploding and vanishing gradient problem, a variation of SA-AR

hat has skip connections between layers is proposed that is called SA-

E-Skip. With these connections, information can smoothly flow across

he several layers during the training. Using the proposed system, need

or a large number of the training sample is reduced, as well as the

undamental knowledge from unlabelled data to supervised learning is

ransferred. 

.4.3.2. Multitask Learning. Most of the SER systems, are focused on

ingle task learning (STL) which aims to learn and predict the emotion

n the utterance. However, various studies show that multitask learning

MTL) improves the recognition rate significantly. MTL is a machine

earning technique where several tasks are learned simultaneously by

sing a shared representation. The learner uses similarities between the

asks leading to improved generalization. It is referred to as inductive

ransfer that improves generalization by utilizing the domain informa-

ion extracted from the training signals of tasks as an inductive bias

 Caruana, 1997 ). Generally, emotion recognition is designated as a pri-

ary task and several other tasks such as gender, spontaneity, natural-

ess classification are selected as auxiliary tasks. The succession of the

TL is heavily depended on the selection of the subtasks. 

Kim et al. proposed an MTL approach that uses emotion recognition

s primary task; and gender and naturalness as auxiliary ones ( Kim et

l., 2017 ). They tested the proposed method using within-corpora and

ross-corpora setups. For experiments, they created two variants of the

TL one using LSTM and the another DNN. They also compared the per-

ormance using STL based LSTM and DNN. For cross-corpus setup, they

sed LDC Emotional Prosody, eNTERFACE, EMODB, FAU-Aibo emotion

orpus, and IEMOCAP. For within-corpora experiments, their gain was

ot significant. However, significant gains have been obtained for large

atasets such as AIBO and IEMOCAP. For cross-corpora experiments,

TL outperformed STL and got a significant gain while gender and nat-

ralness subtasks are used together for large corpora. 

Mangalam et al. used spontaneity classification as an auxiliary task

o MTL ( Mangalam and Guha, 2018 ). They compared the results with a

ierarchical model which performs first a spontaneity detection before



M.B. Akçay and K. O ğuz Speech Communication 116 (2020) 56–76 

t  

fi  

p  

u  

d  

r  

c  

b

 

s  

r  

f  

s  

d  

v  

P  

l  

a  

d  

i  

a  

c  

n  

a  

fi  

M  

c  

D  

c  

b

 

s  

S  

H  

a  

l  

p  

a  

t  

t  

o  

i  

t  

a  

p

 

(  

t  

t  

B  

p  

f  

d  

o  

v

5  

f  

r  

e  

c  

b  

a  

o  

I  

o

 

r  

N  

e  

t  

t  

T  

b  

l  

l  

w  

C  

h  

d  

e  

t  

T  

s  

s  

w  

t  

P  

a  

t  

c

 

(  

m  

t  

d  

s  

m  

t  

o  

a  

a  

t  

t  

a

 

(  

t  

o  

t  

r  

t  

i  

i  

o  

s  

i  

t  

T  

(  

C  

w  

D  

o

5  

f  

a  

o  

v  

l  

t  
he classification process. For classification, they used an SVM classi-

er. For hierarchical architecture based on spontaneity detection sam-

les classified with different classifiers. The classification is performed

sing Interspeech 2009 emotion challenge features and USC-IEMOCAP

ataset. Proposed methods are compared with SVM, RF, CNN-based and

epresentation learning-based emotion recognition and LSTM baseline

lassifiers. Best results are obtained by hierarchical classifier followed

y MTL classifier. 

In most of the speech emotion recognition systems that use dimen-

ional emotional model, each dimensional attribute is learned sepa-

ately. MTL can be used to classify emotions by jointly learning dif-

erent dimensional attributes such as arousal, valence, and dominance

imultaneously. Parthasarathy et al. using the interrelation between the

imensions proposed a unified framework to jointly predict the arousal,

alence and dominance dimensions ( Parthasarathy and Busso, 2017 ).

rediction of the emotional attributes is formulated as a regression prob-

em that is solved using DNN. The acoustic features are taken as inputs

nd mapped into attribute scores. The scores are jointly learned to pre-

ict the values of the attributes for dimensions. Two versions of MTL

s proposed: one share the hidden layers between all three-dimensional

ttributes and one that only shares nodes in the first hidden layer which

reates a shared feature representation. In the second hidden layer,

odes are separately connected for each representation. Within-corpora

nd cross-corpora experiments are conducted using a baseline STL classi-

er and proposed two MTL classifiers. For within-corpora experiments,

SP-PODCAST corpus is used and MTL outperformed STL. For cross-

orpora experiments, IEMOCAP and MSP-IMPROV datasets are used.

ue to the training and test data mismatch performance is decreased

ompared to the within-corpora experiment. MTL systems performed

etter or equal than STL setup. 

Lotfian et al. used primary and secondary emotions for MTL within

pontaneous emotion recognition context ( Lotfian and Busso, 2018 ).

pontaneous emotions are annotated with perceptual evaluations.

ence, the annotators label the utterances based on their perspective

nd multiple answers can be given by them especially when many re-

ated emotional categories are available which creates an ambiguity

roblem. To overcome this problem, primary and secondary emotions

re used. For each sample, primary and secondary labels are generated,

hen a classifier is trained using MTL. The primary task in the MTL is

o find the most relevant category and the auxiliary task is defining all

f the labels that are relevant. For experiments, two baseline classifier

s created. In the first one, hard labels are obtained from primary emo-

ions using majority voting for draining. In the second one, soft-labels

re used that are derived from the primary labels. As a result, higher

erformance is obtained using MTL than STL with 66.8% accuracy. 

Le et al. used MTL BLSTM-RNN to classify emotional speech signals

 Le et al., 2017 ). Their approach has three steps. In the first step the con-

inuous emotional labels(valence, arousal) are discretized and mapped

o small set of discrete emotion classes by applying k-means. Then a MTL

LSTM-RNN with cost sensitive Cross Entropy loss is trained to jointly

redict label sequences at different granularity. In the end, a decoding

ramework which incorporates an emotion “language model ” to pro-

uce more robust time series estimates. The experiments are conducted

n RECOLA dataset. They achieved competitive results compared to pre-

iously published results. 

.4.3.3. Attention Mechanism. In recent years, the attention mechanism

or deep learning gained success within the context of speech emotion

ecognition ( Mirsamadi et al., 2017; Huang and Narayanan, 2017; Chen

t al., 2018; Li et al., 2018; Neumann et al., 2018 ). It ensures that the

lassifier pays attention to the specific locations of the given samples

ased on the attention weights given each portion of the input. Emotions

re not evenly distributed over the whole utterances, rather they are

bserved on the specific portion of the utterances as mentioned earlier.

n speech emotion recognition, this attention mechanism is used to focus

n the emotionally salient portion of the given utterance. 
71 
Huang et al. proposed a Deep Convolutional Recurrent Neu-

al Network (CLDNN) with an attention mechanism ( Huang and

arayanan, 2017 ). They investigated the role of the CNN for speech

motion recognition, compared CNNs task-specific spectral decorrela-

ion to discrete cosine transform (DCT) under clean and noisy condi-

ions, and explored context information for attention weight generation.

he proposed system consists of a convolutional layer, a temporal layer

ased on BLSTM, a convolutional attention layer, and a fully connected

ayer. Convolutional layer extracts the high-level representation from

og-Mels that provide complementary information compared to the raw

aveform signal and also allow to directly quantify the advantage of

NN’s task-specific decorrelation over that by the DCT. The extracted

igh-level representation is then fed into the BLSTM to learn temporal

ependencies. After that, the convolutional attention layer locally gath-

rs context information and to learn the weights. Finally, the output of

he attention layer is fed into a fully connected layer for classification.

he proposed method is compared with a baseline SVM that uses feature

ets from INTERSPEECH Challenges from 2009 to 2013, as well as clas-

ifiers such as Sparse kernel reduced rank regression (SKRRR), BLSTM

ith the fully connected network (LDNN), and CLDNN without atten-

ion mechanism. The eNTERFACE’05 dataset is selected for experiments.

roposed method outperformed the other classifiers with unweighted

ccuracies of 84.00% 91.67% for noisy and clean conditions, respec-

ively. They also showed that CNN’s task-specific spectral decorrelation

onsiderably outperforms that of the DCT. 

Mirsamadi et al. used RNN to learn features for SER

 Mirsamadi et al., 2017 ). They introduced a novel weighted-polling

ethod inspired by the attention mechanisms of neural machine

ranslation ( Bahdanau et al., 2014 ). Based on the weights which are

etermined by additional parameters of the attention model, a weighted

um is computed. Simple logistic regression is used as the attention

odel. The parameters of both the attention model and RNN are trained

ogether. This attention model automatically removes the silent parts

f the utterance by assigning small weights to these parts. Additionally,

s each part of an utterance carries different emotional power, weights

re assigned to each of them accordingly. It has the ability to consider

he emotional content of different portions of speech. They compared

he proposed system with an SVM based classifier and obtained higher

ccuracy by the proposed system. 

Chen et al proposed a 3-D Convolutional Recurrent Neural Network

3-D ACRNN) with an attention model ( Chen et al., 2018 ). For input

hey used 3-D log Mel Spectrogram which consists of feature channels

f static, delta and delta deltas. Delta and delta deltas contain effec-

ive emotional information and reduce the influence of emotionally ir-

elevant factors that increases the recognition rate. The input is passed

hrough a convolutional layer to extract high-level representation. Then,

t is passed to LSTM for temporal summarization. The output of LSTM

s passed to an attention layer to focus on the emotionally salient part

f the utterances. Normalized importance weights are computed by a

oftmax function. From these weights, utterance level representation

s calculated by a weighted sum. Finally, utterance level representa-

ion is passed to a fully connected network to classify the emotion.

he proposed system is compared with DNN Extreme Learning Machine

ELM) and 2-D ACRNN. The experiments are performed using IEMO-

AP dataset and EMO-DB. Proposed systems outperformed DNN-ELM

ith an improvement of 13.5% and 11.26% for IEMOCAP and EMO-

B, respectively. Also, improvement of 2.34% and 3.44% are obtained

n 2-D ACRNN for IEMOCAP and EMO-DB, respectively. 

.4.3.4. Transfer Learning. Finding labeled data to be used in training

or speech emotion recognition is relatively hard compared to tasks such

s automatic speech recognition, speaker recognition. The low number

f data affects the recognition rate in a negative way due to the high

ariance. One of the methods intended to solve this problem is transfer

earning. It’s a machine learning technique where the knowledge ob-

ained from a source learning task is transferred to be used as a starting
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a  
oint for a target model on a different but related task. However, in or-

er to use transfer learning the source model need to be general enough.

he most common approach for transfer learning is to train a source

odel with a set of source data or use a pre-trained model, then use the

earned knowledge as a starting point on a related task. Optionally, the

odel may need to be fine-tuned. 

Deng et al. used a sparse autoencoder to transfer knowledge from one

odel to another in order to boost the performance ( Deng et al., 2013 ).

 single layer autoencoder is used to learn a representation trained on

lass-specific samples from target data. Then, this new representation is

pplied to the source data corresponding to a specific class in order to

econstruct and use it for the classification task. They used six databases

amely FAU AEC, TUM AVIC, EMO-DB, eNTERFACE, SUSAS, and VAM.

he results showed that the proposed system effectively transfer knowl-

dge and increases the recognition rate. 

Para-linguistic tasks are appropriate to be used with transfer learning

or speech emotion recognition. Gideon et al. transferred the knowledge

etween emotion, speaker, and gender recognition tasks ( Gideon et al.,

017 ). They proposed to used Progressive Neural Networks (ProgresNet)

or transfer learning ( Rusu et al., 2016 ) by extending the problem to be

sed for the cross-corpus task. Progressive neural networks avoid the for-

etting effect where the target model lost its ability to solve the source

ask during the fine-tuning of the model using initial weights learned

rom a source task. They compared the performance of the proposed

ystem with DNN and transfer learning by pre-training and fine-tuning

PT/FT) on MSP-IMPROV and IEMOCAP datasets. For paralinguistic ex-

eriments, knowledge transfer from gender and speaker recognition to

motion recognition are tested. When knowledge from speaker recog-

ition is transferred to emotion recognition, ProgresNet outperformed

NN and PT/FT with both datasets. On the other hand, on the transfer of

nowledge from gender recognition to emotion recognition, while Pro-

resNet surpassed other methods on MSP-IMPROV dataset, on IEMOCAP

t failed. In the cross-corpus experiment, ProgresNet outperformed the

ther methods. Researchers concluded that due to the higher number

f weights to transfer knowledge, ProgresNet is most useful when the

arget dataset is larger. 

The knowledge from image processing domain can be also exploited

or and transferred to speech emotion recognition domain in order to in-

rease the classification task. In recent years, pre-trained Convolutional

eural Networks such as AlexNet or ImageNet which are trained by

illions of images are extensively used for image classification tasks.

tolar et al. by using spectrograms formulated SER task as an image

lassification problem ( Stolar et al., 2017 ). They proposed two meth-

ds namely AlexNet-SVM and FTAlexNet. For AlexNet-SVM first, the

pectrogram images transformed into RGB images. These RGB spectro-

rams passed into pre-trained Convolutional Neural Network AlexNet

s input to provide the feature for SVM which is used for classification.

n FTAlexNet method, RGB images are applied to fine-tune AlexNet to

rovide emotional labels. The experiments are conducted on EMO-DB

or males and females. Experiments showed that FTAlexNet obtained

n average recognition rate of 76%, whereas the recognition rate for

lexNet-SVM was 68%. 

Transfer learning can also be used in cross-corpus and cross-language

etting in order to transfer information gained from one corpus can be

ransferred for another one. Latif et al. used Deep Belief Network (DBN)

or their experiments as it has strong generalization power ( Latif et al.,

018 ). Their approximation is powerful for any distribution and their

uilding blocks are universal approximator. They compared the pro-

osed system to Sparse Autoencoders with SVM. They used FAU-AIBO,

EMOCAP, EMO-DB, SAVEE, and EMOVO datasets for experiments. In

ithin corpus experiment, proposed system surpass sparse Autoencoder.

ater these results are used as a baseline for cross-language experiments.

or cross-language experiments, two different settings are tested. In the

rst one, FAU-AIBO and IEMOCAP datasets are used for training and

ther datasets for testing. In the second one, leave one out approach

s used. Experiments show that leave one out approach obtained the
72 
ighest accuracy. It yields training the model with a wider range of

anguages would help to capture intrinsic features from each language

hich provides a higher recognition rate. 

.4.3.5. Adversarial Training. In recent years, adversarial training

ained a lot of attention from Machine learning community. Studies

how that machine learning systems are vulnerable to adversarial ex-

mples which are samples that exposed to small but intentionally worst

ase perturbation. These examples are incorrectly classified with high

onfidence ( Goodfellow et al., 2014 ). Adversarial training is used to in-

rease the recognition rate for speech emotion recognition system where

he models are trained with both real and adversarial samples. Large

erturbations in model output are penalized by the Adversarial train-

ng when small perturbation are added to training samples ( Sahu et al.,

018b ). 

In speech emotion recognition systems most of the classifiers are

rained by using samples which are recorded in studios. When these

ystems used in the real-life data, due to the data distribution between

raining data an testing data, misclassification is observed and recogni-

ion rate decreases. The labeling process is costly, and the abundance

f unlabeled sample is available, hence we need to take advantage of

nlabeled data as much as possible. Abdelwahab et al. used Domain

dversarial Neural Network (DANN) to find a common representation

etween training data and test data ( Abdelwahab and Busso, 2018 ). The

roposed system has an adversarial multitask training phase to extract

his common representation. The primary task is to predict emotional

ttributes such as arousal, valence, and dominance whereas the auxil-

ary task is to learn a common representation between source and target

omains. The network consists of two classifiers: the main emotion clas-

ifier and a domain classifier that determines whether an input sample

s from source domain or target domain. Both classifiers have common

ayers for starting, then each classifier branch out. The primary task is

rained with source data whereas the domain classifier uses data from

oth labeled and unlabeled data. The classifiers are trained in parallel.

he representation is learned using a gradient reversal layer (GRL). The

xperiments are conducted using IEMOCAP and MSP-IMPROV datasets

s source data and MSP-Podcast dataset as the target. Two different base-

ines are established. The first network is trained and tested using only

ource samples. In the second one, the network is trained and validated

sing target samples. Both of the baselines are lack of GRL which is re-

ponsible for domain classification. With the proposed system on aver-

ge 27.3% relative improvement in concordance correlation coefficient

s obtained. 

Han et al. proposed a conditional adversarial training framework

o predict dimensional emotional representation namely arousal and

alence ( Han et al., 2018 ). The proposed system contains two net-

orks. The first network tries to generate predictions for emotions

rom the given features, whereas the second one tries to differenti-

te the prediction obtained from the first network and the original

amples while acoustic features used as conditionals. The proposed

ethod is tested using RECOLA dataset and compared to LSTM-RNN

s baseline classifier, CNN-LSTM, prediction based learning ( Han et al.,

017a ), and Reconstruction-error-based learning ( Han et al., 2017b ).

he proposed method gives the best results for both arousal and valence

imension. 

Sahu et al. proposed a system to smoothing model predictions using

dversarial training ( Sahu et al., 2018b ). The smoothness is enforced by

anifold regularization. They investigated two different training proce-

ures; adversarial training and virtual adversarial training. In the first

ne, adversarial direction is determined based on the given labels for the

raining sample, whereas for the second one it is determined based on

he output distribution of the training samples. The performance was

valuated using IEMOCAP dataset whereas cross-corpus experiments

re conducted on SAVEE, EMA, and LDC datasets. Deep Neural Net-

ork is selected used as a classifier for the experiments. DNN with

dversarial training surpassed the baseline DNN. On the cross-corpus
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etting, DNN with adversarial training is also performed best with ac-

uracies of 46.25%, 61.65%, and 43.18% for SAVEE, EMA, and, LDC,

espectively. 

. Challenges 

Although there are many advancements on speech emotion recogni-

ion systems, there are still several obstacles that need to be removed

or successful recognition. 

One of the most important problems is the generation of the dataset

hat is used for the learning process. Most of the data sets used for SER

re acted or elicited that are recorded in special silent rooms. However,

he real-life data is noisy and has far more different characteristics than

he others. Although natural data sets are also available, they are fewer

n numbers. There are legal and ethical problems to record and use nat-

ral emotions. Most of the utterances in natural data sets are taken from

alk-shows, call-center recordings, and similar cases where the involved

arties are informed of the recording. These data sets do not contain

ll emotions and may not reflect the emotions that are felt. In addi-

ion, there are problems during the labeling of the utterances. There

re human annotators labeling the speech data after the utterances are

ecorded. The actual emotion felt by the speaker and emotions perceived

y human annotators may show differences. Even the recognition rates

f human annotator are not over 90%. In favor of humans, however,

e believe that we also depend on the content and the context of the

peech as we are evaluating. 

There are also cultural and language effects on SER. There are several

tudies available working on cross-language SER. However, the results

how that current systems and features used are not sufficient for it. The

ntonation of emotions on speech among various languages may show

ifferences for example. 

An overlooked challenge is the case of multiple speech signals, where

he SER system has to decide which signal to focus on. Although it can

e handled via a speech separation algorithm in the preprocessing stage,

urrent systems fail to notice this problem. 

. Conclusion 

We have identified and detailed the parts that make up a speech

motion recognition system. These systems require training data pro-

ided by speech databases that are created using either acted, elicited,

r natural sources. The signals are then preprocessed to make them fit

or feature extraction. SER systems most commonly use prosodic and

pectral features since they support a wider range of emotion and yield

etter results. The results can further be improved by adding features

rom other modalities, such as the ones that depend on visual or linguis-

ic features. 

Once all the features are extracted, SER systems have a wide range

f classification algorithms to choose from. While most use classical ap-

roaches, there are an increasing number of studies that incorporate

ecent advances, such as Convolutional or Recurrent Neural Networks. 

All of these preprocessing and feature extraction are done to detect

he emotion in the speech signal, yet emotions are still an open problem

n psychology. There are several models that define them. SER systems

se manual labeling for their training data, which, as mentioned earlier,

s not always exactly correct. 

Although there are systems and realizations of real-time emotion

ecognition, SER systems are not yet part of our every day life, unlike

peech recognition systems that are now easily accessible even with mo-

ile devices. To reach this goal, SER systems need more powerful hard-

are so that processing can be done faster; more correctly labeled data

o that the training is more accurate; and more powerful algorithms so

hat the recognition rates increase. We believe that the research will con-

inue towards solutions that apply deep learning algorithms, and since

hey require more data and more powerful processors, and these ad-

ances are likely to follow. 
73 
We believe that, as SER systems become more part of our daily lives,

here will be more data available to learn from, which will improve

heir performance, even when at times humans can fail. The subtle dif-

erences which may not be registered by humans can be picked up by

hese networks that will improve the areas where emotion recognition is

pplicable, such as human computer interaction, healthcare, and alike. 
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