John Garner

John Garner
Akina, Inc. · PolySciTech

Bachelor of Science: Chemistry Major/Biology Minor
General Manager at Akina, Inc.

About

26
Publications
7,456
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
687
Citations
Introduction
Primary work focuses on biodegradable polymer (PLGA) synthesis, development, applications, and analysis.
Additional affiliations
June 2005 - November 2015
Akina, Inc.
Position
  • Manager
Education
August 2001 - June 2005
University of Indianapolis
Field of study
  • Major Chemistry/Minor Biology

Publications

Publications (26)
Article
Poly(lactide-co-glycolide) (PLGA)-based microparticle formulations have been a mainstay of long-acting injectable drug delivery applications for decades. Despite a long history of use, tools and techniques to analyze and understand these formulations are still under development. Recently, a new characterization method was introduced known as the su...
Article
Biodegradable poly(lactide-co-glycolide) (PLGA) microparticles have been used as long-acting injectable (LAI) drug delivery systems for more than three decades. Despite extensive use, few tools have been available to examine and compare the three-dimensional (3D) structures of microparticles prepared using different compositions and processing para...
Article
Pleural and tracheal injuries remain significant problems, and an easy to use, effective pleural or tracheal sealant would be a significant advance. The major challenges are requirements for adherence, high strength and elasticity, dynamic durability, appropriate biodegradability, and lack of cell or systemic toxicity. We designed and evaluated two...
Article
Poly(lactide-co-glycolide) polymers (PLGAs) have been used in many clinical formulations of injectable, long-acting formulations. Frequently, PLGAs having different lactide:glycolide (L:G) ratios, molecular weights (MWs), end-groups, and molecular structures have been used individually or in mixtures. To understand the properties of existing formul...
Article
Poly(lactic-co-glycolic acid) (PLGA) has been used for long-acting injectable drug delivery systems for more than 30 years. The factors affecting the properties of PLGA formulations are still not clearly understood. The drug release kinetics of PLGA microparticles are influenced by many parameters associated with the formulation composition, manufa...
Article
Injectable long-acting formulations, specifically poly(lactide-co-glycolide) (PLGA) based systems, have been used to deliver drugs systemically for up to 6 months. Despite the benefits of using this type of long-acting formulations, the development of clinical products and the generic versions of existing formulations has been slow. Only about two...
Article
Defining the qualitative sameness of parenteral formulations comprised of poly(lactide-co-glycolide) (PLGA) requires assays of the relevant properties of polymer from each formulation. Gel-permeation chromatography with quaternary detection (GPC-4D) has been previously applied to other polymers, and the relevant mathematical parameters for their ch...
Article
Full-text available
Polyester–polyether block copolymers with thermogelling properties have been widely used in pharmaceutical and biomedical applications for their biocompatibility and degradation to nontoxic components. The biodegradable polymers, such as poly(lactide‐co‐glycolide) and poly(lactide‐co‐caprolactone) (PLCL), have been used as the polyester block. The...
Article
With the increase in knowledge on the importance of the tumor microenvironment, cell culture models of cancers can be adapted to better recapitulate physiologically relevant situations. Three main microenvironmental factors influence tumor phenotype: the biochemical components that stimulate cells, the fibrous molecules that influence the stiffness...
Article
Poly(lactide-co-glycolide) (PLGA) has been used in many injectable, long-acting depot formulations. Despite frequent use of PLGA, however, its characterization has been limited to measuring its molecular weight, lactide:glycolide (L:G) ratio, and end-group. These conventional methods are not adequate for characterization of unique PLGA polymers, su...
Article
Injectable, long-acting depot formulations based on poly(lactide-co-glycolide)(PLGA)have been used clinically since 1989. Despite 30 years of development, however, there are only 19 different drugs in PLGA formulations approved by the U.S. Food and Drug Administration (FDA). The difficulty in developing depot formulations stems in large part from t...
Article
Poly (lactide-co-glycolide) (PLGA) has been used for making injectable, long-acting depot formulations for the last three decades. An in depth understanding of PLGA polymers is critical for development of depot formulations as their properties control drug release kinetics. To date, about 20 PLGA-based formulations have been approved by the U.S. Fo...
Article
Background Tissue expansion of oral mucosa prior to ridge augmentation promises to reduce the soft tissue exposure and improve the final intraoral bone graft density and volume. This study explored a novel, shapeable hydrogel tissue expander (HTE) in intraoral sites that had undergone previous expansion and surgery. Methods Nine beagle dogs had al...
Article
Drug-loaded polymeric microparticles have been used as long-acting injectable (LAI) depot formulations. To obtain FDA approval, a generic LAI depot product needs to be qualitatively (Q1) and quantitatively (Q2) the same in terms of inactive ingredients as its reference listed drug (RLD). However, Q1/Q2 sameness as the RLD does not guarantee the sam...
Article
Background There are few methods for expanding oral mucosa, and these often cause complications such as tissue necrosis and expander eruption. This study examines mucosal blood perfusion following insertion of a novel shapeable hydrogel tissue expander (HTE). The canine model used subgingival insertion of HTE following tooth extraction and alveolar...
Article
Tissue expansion is the process by which extra skin is generated using a device that applies pressure from underneath the skin. Over the course of weeks to months, stretching by this pressure creates a flap of extra tissue that can be used to cover a defect area or enclose a permanent implant. Conventional tissue expanders require a silicone shell...
Article
Poly(lactide-co-glycolide) (PLGA) is the key component of long acting drug products responsible for providing sustained release in a controlled manner. The objective of the current study was to develop and validate an analytical protocol to determine key properties of PLGA used in commercial long-acting drug products. Procedures to isolate PLGA fro...
Article
Polysaccharides have been utilized for a wide variety of industrial, cosmetic, food, and medical applications. The presence of functional groups on polysaccharides has been exploited for chemical modification to prepare polymers with unique properties. Various polysaccharides form hydrogels through physical or chemical cross-linking, and many of th...
Chapter
Polysaccharides have been utilized for a wide variety of industrial, cosmetic, food, and medical applications. The presence of functional groups on polysaccharides has been exploited for chemical modification to prepare polymers with unique properties. Various polysaccharides form hydrogels through physical or chemical cross-linking, and many of th...
Article
Full-text available
In this study, we prepared and evaluated a series of biocompatible and biodegradable block copolymer hydrogels with a delayed swelling property for tissue expander application. The hydrogels were synthesized via a radical crosslinking reaction of poly(ethylene glycol) (PEG) diacrylate and poly(D,L-lactide-co-glycolide)-poly(ethylene glycol)-poly(D,...

Network

Cited By