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Preface

In his best-selling book Baby and Child Care, Dr. Benjamin Spock wrote ‘I think it

is preferable to accustom a baby to sleeping on his stomach from the beginning if he

is willing’. This statement was included in most editions of the book, and in most of

the 50 million copies sold from the 1950s into the 1990s. The advice was not

unusual, in that many pediatricians made similar recommendations at the time.

During this same period, from the 1950s into the 1990s, more than 100,000 babies

died of sudden infant death syndrome (SIDS), also called crib death in the United

States and cot death in the United Kingdom, where a seemingly healthy baby goes

to sleep and never wakes up.

In the early 1990s, researchers became aware that the risk of SIDS decreased by at

least 50% when babies were put to sleep on their backs rather than face down.

Governments in various countries launched educational initiatives such as the Back

to sleep campaigns in the UK and the US, which led to an immediate and dramatic

drop in the number of SIDS deaths.

While the loss of more than 100,000 children would be unspeakably sad in any

event, the real tragedy lies in the fact that many of these deaths could have been

prevented. Gilbert et al. (2005) write

‘Advice to put infants to sleep on the front for nearly half a century was contrary to

evidence available from 1970 that this was likely to be harmful. Systematic review of

preventable risk factors for SIDS from 1970 would have led to earlier recognition of

the risks of sleeping on the front and might have prevented over 10,000 infant deaths

in the UK and at least 50,000 in the Europe, the USA and Australasia.’

AN ETHICAL IMPERATIVE

This example is one of several cited by Sir Iain Chalmers in a talk entitled The

scandalous failure of scientists to cumulate scientifically (Chalmers, 2006). The

theme of this talk was that we live in a world where the utility of almost any

intervention will be tested repeatedly, and that rather than looking at any study in

isolation, we need to look at the body of evidence. While not all systematic reviews

carry the urgency of SIDS, the logic of looking at the body of evidence, rather than

trying to understand studies in isolation, is always compelling.

Meta-analysis refers to the statistical synthesis of results from a series of studies.

While the statistical procedures used in a meta-analysis can be applied to any set of

data, the synthesis will be meaningful only if the studies have been collected

8th February 2009 12:04 Wiley/ITMA Page xxi fpref
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systematically. This could be in the context of a systematic review, the process of

systematically locating, appraising, and then synthesizing data from a large number

of sources. Or, it could be in the context of synthesizing data from a select group of

studies, such as those conducted by a pharmaceutical company to assess the efficacy

of a new drug.

If a treatment effect (or effect size) is consistent across the series of studies, these

procedures enable us to report that the effect is robust across the kinds of popula-

tions sampled, and also to estimate the magnitude of the effect more precisely than

we could with any of the studies alone. If the treatment effect varies across the series

of studies, these procedures enable us to report on the range of effects, and may

enable us to identify factors associated with the magnitude of the effect size.

FROM NARRATIVE REVIEWS TO SYSTEMATIC REVIEWS

Prior to the 1990s, the task of combining data from multiple studies had been

primarily the purview of the narrative review. An expert in a given field would

read the studies that addressed a question, summarize the findings, and then arrive at

a conclusion – for example, that the treatment in question was, or was not, effective.

However, this approach suffers from some important limitations.

One limitation is the subjectivity inherent in this approach, coupled with the lack

of transparency. For example, different reviewers might use different criteria for

deciding which studies to include in the review. Once a set of studies has been

selected, one reviewer might give more credence to larger studies, while another

gives more credence to ‘quality’ studies and yet another assigns a comparable

weight to all studies. One reviewer may require a substantial body of evidence

before concluding that a treatment is effective, while another uses a lower threshold.

In fact, there are examples in the literature where two narrative reviews come to

opposite conclusions, with one reporting that a treatment is effective while the other

reports that it is not. As a rule, the narrative reviewer will not articulate (and may not

even be fully aware of) the decision-making process used to synthesize the data and

arrive at a conclusion.

A second limitation of narrative reviews is that they become less useful as more

information becomes available. The thought process required for a synthesis requires

the reviewer to capture the finding reported in each study, to assign an appropriate

weight to that finding, and then to synthesize these findings across all studies in the

synthesis. While a reviewer may be able to synthesize data from a few studies in their

head, the process becomes difficult and eventually untenable as the number of studies

increases. This is true even when the treatment effect (or effect size) is consistent from

study to study. Often, however, the treatment effect will vary as a function of study-

level covariates, such as the patient population, the dose of medication, the outcome

variable, and other factors. In these cases, a proper synthesis requires that the

researcher be able to understand how the treatment effect varies as a function of

these variables, and the narrative review is poorly equipped to address these kinds of

issues.
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THE SYSTEMATIC REVIEW AND META-ANALYSIS

For these reasons, beginning in the mid 1980s and taking root in the 1990s,

researchers in many fields have been moving away from the narrative review, and

adopting systematic reviews and meta-analysis.

For systematic reviews, a clear set of rules is used to search for studies, and then

to determine which studies will be included in or excluded from the analysis. Since

there is an element of subjectivity in setting these criteria, as well as in the

conclusions drawn from the meta-analysis, we cannot say that the systematic review

is entirely objective. However, because all of the decisions are specified clearly, the

mechanisms are transparent.

A key element in most systematic reviews is the statistical synthesis of the data,

or the meta-analysis. Unlike the narrative review, where reviewers implicitly assign

some level of importance to each study, in meta-analysis the weights assigned to

each study are based on mathematical criteria that are specified in advance. While

the reviewers and readers may still differ on the substantive meaning of the results

(as they might for a primary study), the statistical analysis provides a transparent,

objective, and replicable framework for this discussion.

The formulas used in meta-analysis are extensions of formulas used in primary

studies, and are used to address similar kinds of questions to those addressed in

primary studies. In primary studies we would typically report a mean and standard

deviation for the subjects. If appropriate, we might also use analysis of variance or

multiple regression to determine if (and how) subject scores were related to various

factors. Similarly, in a meta-analysis, we might report a mean and standard devia-

tion for the treatment effect. And, if appropriate, we would also use procedures

analogous to analysis of variance or multiple regression to assess the relationship

between the effect and study-level covariates.

Meta-analyses are conducted for a variety of reasons, not only to synthesize

evidence on the effects of interventions or to support evidence-based policy or

practice. The purpose of the meta-analysis, or more generally, the purpose of any

research synthesis has implications for when it should be performed, what model

should be used to analyze the data, what sensitivity analyses should be undertaken,

and how the results should be interpreted. Losing sight of the fact that meta-analysis

is a tool with multiple applications causes confusion and leads to pointless discus-

sions about what is the right way to perform a research synthesis, when there is no

single right way. It all depends on the purpose of the synthesis, and the data that are

available. Much of this book will expand on this idea.

META-ANALYSIS IS USED IN MANY FIELDS OF RESEARCH

In medicine, systematic reviews and meta-analysis form the core of a movement to

ensure that medical treatments are based on the best available empirical data. For

example, The Cochrane Collaboration has published the results of over 3700 meta-

analyses (as of January 2009) which synthesize data on treatments in all areas of
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health care including headaches, cancer, allergies, cardiovascular disease, pain pre-

vention, and depression. The reviews look at interventions relevant to neo-natal care,

childbirth, infant and childhood diseases, as well as diseases common in adolescents,

adults, and the elderly. The kinds of interventions assessed include surgery, drugs,

acupuncture, and social interventions. BMJ publishes a series of journals on Evidence

Based Medicine, built on the results from systematic reviews. Systematic reviews and

meta-analyses are also used to examine the performance of diagnostic tests, and of

epidemiological associations between exposure and disease prevalence, among other

topics.

Pharmaceutical companies usually conduct a series of studies to assess the

efficacy of a drug. They use meta-analysis to synthesize the data from these studies,

yielding a more powerful test (and more precise estimate) of the drug’s effect.

Additionally, the meta-analysis provides a framework for evaluating the series of

studies as a whole, rather than looking at each in isolation. These analyses play a

role in internal research, in submissions to governmental agencies, and in market-

ing. Meta-analyses are also used to synthesize data on adverse events, since these

events are typically rare and we need to accumulate information over a series of

studies to properly assess the risk of these events.

In the field of education, meta-analysis has been applied to topics as diverse as

the comparison of distance education with traditional classroom learning, assess-

ment of the impact of schooling on developing economies, and the relationship

between teacher credentials and student achievement. Results of these and similar

meta-analyses have influenced practice and policy in various locations around the

world.

In psychology, meta-analysis has been applied to basic science as well as in

support of evidence-based practice. It has been used to assess personality change

over the life span, to assess the influence of media violence on aggressive

behavior, and to examine gender differences in mathematics ability, leadership,

and nonverbal communication. Meta-analyses of psychological interventions have

been use to compare and select treatments for psychological problems, including

obsessive-compulsive disorder, impulsivity disorder, bulimia nervosa, depression,

phobias, and panic disorder.

In the field of criminology, government agencies have funded meta-analyses to

examine the relative effectiveness of various programs in reducing criminal beha-

vior. These include initiatives to prevent delinquency, reduce recidivism, assess the

effectiveness of different strategies for police patrols, and for the use of special

courts to deal with drug-related crimes.

In business, meta-analyses of the predictive validity of tests that are used as part

of the hiring process, have led to changes in the types of tests that are used to select

employees in many organizations. Meta-analytic results have also been used to

guide practices for the reduction of absenteeism, turnover, and counterproductive

behavior, and to assess the effectiveness of programs used to train employees.

In the field of ecology, meta-analyses are being used to identify the environmental

impact of wind farms, biotic resistance to exotic plant invasion, the effects of changes

xxiv Preface

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



8th February 2009 12:04 Wiley/ITMA Page xxv fpref

in the marine food chain, plant reactions to global climate change, the effectiveness of

conservation management interventions, and to guide conservation efforts.

META-ANALYSIS AS PART OF THE RESEARCH PROCESS

Systematic reviews and meta-analyses are used to synthesize the available evidence

for a given question to inform policy, as in the examples cited above from medicine,

social science, business, ecology, and other fields. While this is probably the most

common use of the methodology, meta-analysis can also play an important role in

other parts of the research process.

Systematic reviews and meta-analyses can play a role in designing new research.

As a first step, they can help determine whether the planned study is necessary.

It may be possible to find the required information by synthesizing data from prior

studies, and in this case, the research should not be performed. Iain Chalmers (2007)

made this point in an article entitled The lethal consequences of failing to make use

of all relevant evidence about the effects of medical treatments: the need for

systematic reviews.

In the event that the new study is needed, the meta-analysis may be useful in

helping to design that study. For example, the meta-analysis may show that in the

prior studies one outcome index had proven to be more sensitive than others, or that

a specific mode of administration had proven to be more effective than others, and

should be used in the planned study as well.

For these reasons, various government agencies, including institutes of health in

various countries, have been encouraging (or requiring) researchers to conduct a

meta-analysis of existing research prior to undertaking new funded studies.

The systematic review can also play a role in the publication of any new primary

study. In the introductory section of the publication, a systematic review can help to

place the new study in context by describing what we knew before, and what we

hoped to learn from the new study. In the discussion section of the publication, a

systematic review allows us to address not only the information provided by the new

study, but the body of evidence as enhanced by the new study. Iain Chalmers and

Michael Clarke (1998) see this approach as a way to avoid studies being reported

without context, which they refer to as ‘Islands in Search of Continents’. Systematic

reviews would provide this context in a more rigorous and transparent manner than

the narrative reviews that are typically used for this purpose.

THE INTENDED AUDIENCE FOR THIS BOOK

Since meta-analysis is a relatively new field, many people, including those who

actually use meta-analysis in their work, have not had the opportunity to learn about

it systematically. We hope that this volume will provide a framework that allows

them to understand the logic of meta-analysis, as well as how to apply and interpret

meta-analytic procedures properly.
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This book is aimed at researchers, clinicians, and statisticians. Our approach is

primarily conceptual. The reader will be able to skip the formulas and still under-

stand, for example, the differences between fixed-effect and random-effects analy-

sis, and the mechanisms used to assess the dispersion in effects from study to study.

However, for those with a statistical orientation, we include all the relevant for-

mulas, along with worked examples. Additionally, the spreadsheets and data files

can be downloaded from the web at www.Meta-Analysis.com.

This book can be used as the basis for a course in meta-analysis. Supplementary

materials and exercises are posted on the book’s web site.

This volume is intended for readers from various substantive fields, including

medicine, epidemiology, social science, business, ecology, and others. While we

have included examples from many of these disciplines, the more important mes-

sage is that meta-analytic methods that may have developed in any one of these

fields have application to all of them.

Since our goal in using these examples is to explain the meta-analysis itself rather

than to address the substantive issues, we provide only the information needed for

this purpose. For example, we may present an analysis showing that a treatment

reduces pain, while ignoring other analyses that show the same treatment increases

the risk of adverse events. Therefore, any reader interested in the substantive issues

addressed in an example should not rely on this book for that purpose.

AN OUTLINE OF THIS BOOK’S CONTENTS

Part 1 is an introduction to meta-analysis. We present a completed meta-analysis to

serve as an example, and highlight the elements of this analysis – the effect size for

each study, the summary effect, the dispersion of effects across studies, and so on.

Our intent is to show where each element fits into the analysis, and thus provide the

reader with a context as they move on to the subsequent parts of the book where

each of the elements is explored in detail.

Part 2 introduces the effect sizes, such as the standardized mean difference or the

risk ratio, that are computed for each study, and that serve as the unit of currency in

the meta-analysis. We also discuss factors that determine the variance of an effect

size and show how to compute the variance for each study, since this affects the

weight assigned to that study in the meta-analysis.

Part 3 discusses the two computational models used in the vast majority of meta-

analyses, the fixed-effect model and the random-effects model. We discuss the

conceptual and practical differences between the two, and show how to compute a

summary effect using either one.

Part 4 focuses on the issue of dispersion in effect sizes, the fact that the effect size

varies from one study to the next. We discuss methods to quantify the heterogeneity,

to test it, to incorporate it in the weighting scheme, and to understand it in a

substantive as well as a statistical context. Then, we discuss methods to explain

the heterogeneity. These include subgroup analyses to compare the effect in
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different subgroups of studies (analogous to analysis of variance in primary stu-

dies), and meta-regression (analogous to multiple regression).

Part 5 shows how to work with complex data structures. These include studies

that report an effect size for two or more independent subgroups, for two or more

outcomes or time-points, and for two or more comparison groups (such as two

treatments being compared with the same control).

Part 6 is used to address three separate issues. One chapter discusses the proce-

dure called vote counting, common in narrative reviews, and explains the problems

with this approach. One chapter discusses statistical power for a meta-analysis. We

show how meta-analysis often (but not always) yields a more powerful test of the

null than do any of the included studies. Another chapter addresses the question of

publication bias. We explain what this is, and discuss methods that have been

developed to assess its potential impact.

Part 7 focuses on the issue of why we work with effect sizes in a meta-analysis. In

one chapter we explain why we work with effect sizes rather than p-values. In

another we explain why we compute an effect size for each study, rather than

summing data over all studies and then computing an effect size for the summed

data. The final chapter in this part shows how the use of inverse-variance weights

can be extended to other applications including Bayesian meta-analysis and ana-

lyses based on individual participant data.

Part 8 includes chapters on methods that are sometimes used in meta-analysis but

that fall outside the central narrative of this volume. These include meta-analyses

based on p-values, alternate approaches (such as the Mantel-Haenszel method) for

assigning study weights, and options sometimes used in psychometric meta-analyses.

Part 9 is dedicated to a series of general issues related to meta-analysis. We

address the question of when it makes sense to perform a meta-analysis. This Part is

also the location for a series of chapters on separate issues such as reporting the

results of a meta-analysis, and the proper use of cumulative meta-analysis. Finally,

we discuss some of the criticisms of meta-analysis and try to put them in context.

Part 10 is a discussion of resources for meta-analysis and systematic reviews.

This includes an overview of several computer programs for meta-analysis. It also

includes a discussion of organizations that promote the use of systematic reviews

and meta-analyses in specific fields, and a list of useful web sites.

WHAT THIS BOOK DOES NOT COVER

Other elements of a systematic review

This book deals only with meta-analysis, the statistical formulas and methods used

to synthesize data from a set of studies. A meta-analysis can be applied to any data,

but if the goal of the analysis is to provide a synthesis of a body of data from various

sources, then it is usually imperative that the data be compiled as part of a

systematic review.
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A systematic review incorporates many components, such as specification of

the question to be addressed, determination of methods to be used for searching

the literature and for including or excluding studies, specification of mechanisms

to appraise the validity of the included studies, specification of methods to be

used for performing the statistical analysis, and a mechanism for disseminating

the results.

If the entire review is performed properly, so that the search strategy matches the

research question, and yields a reasonably complete and unbiased collection of

the relevant studies, then (providing that the included studies are themselves valid)

the meta-analysis will also be addressing the intended question. On the other hand,

if the search strategy is flawed in concept or execution, or if the studies are

providing biased results, then problems exist in the review that the meta-analysis

cannot correct.

In Part 10 we include an annotated listing of suggested readings for the other

components in the systematic review, but these components are not otherwise

addressed in this volume.

Other meta-analytic methods

In this volume we focus primarily on meta-analyses of effect sizes. That is, analyses

where each study yields an estimate of some statistic (a standardized mean differ-

ence, a risk ratio, a prevalence, and so on) and our goal is to assess the dispersion in

these effects and (if appropriate) compute a summary effect. The vast majority of

meta-analyses performed use this approach. We deal only briefly (see Part 8) with

other approaches, such as meta-analyses that combine p-values rather than effect

sizes. We do not address meta-analysis of diagnostic tests.

Further Reading

Chalmers, I. (2007). The lethal consequences of failing to make use of all relevant evidence about

the effects of medical treatments: the need for systematic reviews. In P. Rothwell(ed.),

Treating Individuals, ed. London: Lancet: 37–58.

Chalmers, I., Hedges, L.V. & Cooper, H. (2002). A brief history of research synthesis. Evaluation

in the Health Professions. 25(1): 12–37.

Clarke, M, Hopewell, S. & Chalmers, I. (2007). Reports of clinical trials should begin and end

with up-to-date systematic reviews of other relevant evidence: a status report. Journal of the

Royal Society of Medicine. 100: 187–190.

Hunt, M. (1999). How Science Takes Stock: The Story of Meta-analysis. New York: Russell Sage

Foundation.

Sutton, A.J. & Higgins, J.P.T. (2008). Recent developments in meta-analysis. Statistics in

Medicine 27: 625–650.
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PART 3

Fixed-Effect Versus Random-Effects
Models
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CHAPTER 10

Overview

Introduction
Nomenclature

INTRODUCTION

Most meta-analyses are based on one of two statistical models, the fixed-effect

model or the random-effects model.

Under the fixed-effect model we assume that there is one true effect size (hence

the term fixed effect) which underlies all the studies in the analysis, and that all

differences in observed effects are due to sampling error. While we follow the

practice of calling this a fixed-effect model, a more descriptive term would be a

common-effect model. In either case, we use the singular (effect) since there is only

one true effect.

By contrast, under the random-effects model we allow that the true effect could

vary from study to study. For example, the effect size might be higher (or lower) in

studies where the participants are older, or more educated, or healthier than in others,

or when a more intensive variant of an intervention is used, and so on. Because studies

will differ in the mixes of participants and in the implementations of interventions,

among other reasons, there may be different effect sizes underlying different studies.

If it were possible to perform an infinite number of studies (based on the inclusion

criteria for our analysis), the true effect sizes for these studies would be distributed

about some mean. The effect sizes in the studies that actually were performed are

assumed to represent a random sample of these effect sizes (hence the term random

effects). Here, we use the plural (effects) since there is an array of true effects.

In the chapters that follow we discuss the two models and show how to compute a

summary effect using each one. Because the computations for a summary effect are

not always intuitive, it helps to keep in mind that the summary effect is nothing

more than the mean of the effect sizes, with more weight assigned to the more

precise studies. We need to consider what we mean by the more precise studies and
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how this translates into a study weight (this depends on the model), but not lose

track of the fact that we are simply computing a weighted mean.

NOMENCLATURE

Throughout this Part we distinguish between a true effect size and an observed

effect size. A study’s true effect size is the effect size in the underlying population,

and is the effect size that we would observe if the study had an infinitely large

sample size (and therefore no sampling error). A study’s observed effect size is the

effect size that is actually observed.

In the schematics we use different symbols to distinguish between true effects and

observed effects. For individual studies we use a circle for the former and a square

for the latter (see Figure 10.1). For summary effects we use a triangle for the former

and a diamond for the latter.

Worked examples

In meta-analysis the same formulas apply regardless of the effect size being used.

To allow the reader to work with an effect size of their choosing, we have separated

the formulas (which are presented in the following chapters) from the worked

examples (which are presented in Chapter 14). There, we provide a worked example

for the standardized mean difference, one for the odds ratio, and one for

correlations.

The reader is encouraged to select one of the worked examples and follow the

details of the computations while studying the formulas. The three datasets and all

computations are available as Excel spreadsheets on the book’s web site.
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Figure 10.1 Symbols for true and observed effects.
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CHAPTER 11

Fixed-Effect Model

Introduction
The true effect size
Impact of sampling error
Performing a fixed-effect meta-analysis

INTRODUCTION

In this chapter we introduce the fixed-effect model. We discuss the assumptions of

this model, and show how these are reflected in the formulas used to compute a

summary effect, and in the meaning of the summary effect.

THE TRUE EFFECT SIZE

Under the fixed-effect model we assume that all studies in the meta-analysis share a

common (true) effect size. Put another way, all factors that could influence the

effect size are the same in all the studies, and therefore the true effect size is the

same (hence the label fixed) in all the studies. We denote the true (unknown) effect

size by theta (�)
In Figure 11.1 the true overall effect size is 0.60 and this effect (represented by a

triangle) is shown at the bottom. The true effect for each study is represented by a

circle. Under the definition of a fixed-effect model the true effect size for each study

must also be 0.60, and so these circles are aligned directly above the triangle.

IMPACT OF SAMPLING ERROR

Since all studies share the same true effect, it follows that the observed effect size

varies from one study to the next only because of the random error inherent in each

study. If each study had an infinite sample size the sampling error would be zero and

the observed effect for each study would be the same as the true effect. If we were to

plot the observed effects rather than the true effects, the observed effects would

exactly coincide with the true effects.
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In practice, of course, the sample size in each study is not infinite, and so there is

sampling error and the effect observed in the study is not the same as the true effect.

In Figure 11.2 the true effect for each study is still 0.60 (as depicted by the circles)

but the observed effect (depicted by the squares) differs from one study to the next.

In Study 1 the sampling error (e1) is�0.20, which yields an observed effect (Y1) of

Y1 ¼ 0:60� 0:20 ¼ 0:40:

In Study 2 the sampling error (e2) is 0.10, which yields an observed effect (Y2) of

Y2 ¼ 0:60þ 0:10 ¼ 0:70:

In Study 3 the sampling error (e3) is �0.10, which yields an observed effect (Y3) of

Y3 ¼ 0:60� 0:10 ¼ 0:50:

More generally, the observed effect Yi for any study is given by the population mean

plus the sampling error in that study. That is,

Yi ¼ �þ ei: ð11:1Þ
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Figure 11.1 Fixed-effect model – true effects.
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Figure 11.2 Fixed-effect model – true effects and sampling error.
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While the error in any given study is random, we can estimate the sampling

distribution of the errors. In Figure 11.3 we have placed a normal curve about the

true effect size for each study, with the width of the curve being based on the

variance in that study. In Study 1 the sample size was small, the variance large,

and the observed effect is likely to fall anywhere in the relatively wide range of

0.20 to 1.00. By contrast, in Study 2 the sample size was relatively large, the

variance is small, and the observed effect is likely to fall in the relatively narrow

range of 0.40 to 0.80. (The width of the normal curve is based on the square root of

the variance, or standard error).

PERFORMING A FIXED-EFFECT META-ANALYSIS

In an actual meta-analysis, of course, rather than starting with the population effect

and making projections about the observed effects, we work backwards, starting

with the observed effects and trying to estimate the population effect. In order to

obtain the most precise estimate of the population effect (to minimize the variance)

we compute a weighted mean, where the weight assigned to each study is the

inverse of that study’s variance. Concretely, the weight assigned to each study in

a fixed-effect meta-analysis is

Wi ¼
1

VYi

; ð11:2Þ

where VYi
is the within-study variance for study (i). The weighted mean (M) is then

computed as
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Figure 11.3 Fixed-effect model – distribution of sampling error.
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M ¼

Xk

i¼1

WiYi

Xk

i¼1

Wi

; ð11:3Þ

that is, the sum of the products WiYi (effect size multiplied by weight) divided by the

sum of the weights.

The variance of the summary effect is estimated as the reciprocal of the sum of

the weights, or

VM ¼
1Xk

i¼1

Wi

ð11:4Þ

and the estimated standard error of the summary effect is then the square root of the

variance,

SEM ¼
ffiffiffiffiffiffiffi
VM

p
: ð11:5Þ

Then, 95% lower and upper limits for the summary effect are estimated as

LLM ¼ M � 1:96� SEM ð11:6Þ

and
ULM ¼ M þ 1:96� SEM: ð11:7Þ

Finally, a Z-value to test the null hypothesis that the common true effect � is zero

can be computed using

Z ¼ M

SEM

: ð11:8Þ

For a one-tailed test the p-value is given by

p ¼ 1� F �jZjð Þ; ð11:9Þ

where we choose ‘þ’ if the difference is in the expected direction and ‘–’ otherwise,

and for a two-tailed test by

p ¼ 2 1� ðF jZjð ÞÞ
h i

; ð11:10Þ

where F(Z) is the standard normal cumulative distribution. This function is tabled

in many introductory statistics books, and is implemented in Excel as the function

¼NORMSDIST(Z).

Illustrative example

We suggest that you turn to a worked example for the fixed-effect model before

proceeding to the random-effects model. A worked example for the standardized
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mean difference (Hedges’ g) is on page 87, a worked example for the odds ratio is on

page 92, and a worked example for correlations is on page 97.

SUMMARY POINTS

� Under the fixed-effect model all studies in the analysis share a common true

effect.

� The summary effect is our estimate of this common effect size, and the null

hypothesis is that this common effect is zero (for a difference) or one (for a

ratio).

� All observed dispersion reflects sampling error, and study weights are

assigned with the goal of minimizing this within-study error.
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CHAPTER 12

Random-Effects Model

Introduction
The true effect sizes
Impact of sampling error
Performing a random-effects meta-analysis

INTRODUCTION

In this chapter we introduce the random-effects model. We discuss the assumptions

of this model, and show how these are reflected in the formulas used to compute a

summary effect, and in the meaning of the summary effect.

THE TRUE EFFECT SIZES

The fixed-effect model, discussed above, starts with the assumption that the true

effect size is the same in all studies. However, in many systematic reviews this

assumption is implausible. When we decide to incorporate a group of studies in a

meta-analysis, we assume that the studies have enough in common that it makes

sense to synthesize the information, but there is generally no reason to assume that

they are identical in the sense that the true effect size is exactly the same in all the

studies.

For example, suppose that we are working with studies that compare the propor-

tion of patients developing a disease in two groups (vaccinated versus placebo). If

the treatment works we would expect the effect size (say, the risk ratio) to be similar

but not identical across studies. The effect size might be higher (or lower) when the

participants are older, or more educated, or healthier than others, or when a more

intensive variant of an intervention is used, and so on. Because studies will differ in

the mixes of participants and in the implementations of interventions, among other

reasons, there may be different effect sizes underlying different studies.
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Or, suppose that we are working with studies that assess the impact of an

educational intervention. The magnitude of the impact might vary depending on

the other resources available to the children, the class size, the age, and other

factors, which are likely to vary from study to study.

We might not have assessed these covariates in each study. Indeed, we might

not even know what covariates actually are related to the size of the effect.

Nevertheless, logic dictates that such factors do exist and will lead to variations in

the magnitude of the effect.

One way to address this variation across studies is to perform a random-effects

meta-analysis. In a random-effects meta-analysis we usually assume that the true

effects are normally distributed. For example, in Figure 12.1 the mean of all true

effect sizes is 0.60 but the individual effect sizes are distributed about this mean, as

indicated by the normal curve. The width of the curve suggests that most of the true

effects fall in the range of 0.50 to 0.70.

IMPACT OF SAMPLING ERROR

Suppose that our meta-analysis includes three studies drawn from the distribution of

studies depicted by the normal curve, and that the true effects (denoted �1, �2, and

�3) in these studies happen to be 0.50, 0.55 and 0.65 (see Figure 12.2).

If each study had an infinite sample size the sampling error would be zero and the

observed effect for each study would be the same as the true effect for that study.
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Figure 12.1 Random-effects model – distribution of true effects.
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Figure 12.2 Random-effects model – true effects.
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If we were to plot the observed effects rather than the true effects, the observed

effects would exactly coincide with the true effects.

Of course, the sample size inany study is not infinite and therefore the sampling error

is not zero. If the true effect size for a study is �i, then the observed effect for that study

will be less than or greater than �i because of sampling error. For example, consider

Study 3 in Figure 12.2. This study is the subject of Figure 12.3, where we consider the

factors that control the observed effect. The true effect for Study 3 is 0.50 but the

sampling error for this study is –0.10, and the observed effect for this study is 0.40.

This figure also highlights the fact that the distance between the overall mean and

the observed effect in any given study consists of two distinct parts: true variation in

effect sizes (�i) and sampling error (ei). In Study 3 the total distance from � to Y3 is

�0.20. The distance from � to �3 (0.60 to 0.50) reflects the fact that the true effect

size actually varies from one study to the next, while the distance from �3 to Y3

(0.5 to 0.4) is sampling error.

More generally, the observed effect Yi for any study is given by the grand mean,

the deviation of the study’s true effect from the grand mean, and the deviation of the

study’s observed effect from the study’s true effect. That is,

Yi ¼ �þ �i þ ei: ð12:1Þ

Therefore, to predict how far the observed effect Yi is likely to fall from � in any

given study we need to consider both the variance of �i and the variance of "i.

The distance from � (the triangle) to each �i (the circles) depends on the standard

deviation of the distribution of the true effects across studies, called � (tau) (or �2 for

its variance). The same value of �2 applies to all studies in the meta-analysis, and in

Figure 12.4 is represented by the normal curve at the bottom, which extends roughly

from 0.50 to 0.70.

The distance from �i to Yi depends on the sampling distribution of the sample

effects about �i. This depends on the variance of the observed effect size from

each study,VYi
, and so will vary from one study to the next. In Figure 12.4 the

curve for Study 1 is relatively wide while the curve for Study 2 is relatively narrow.
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Figure 12.3 Random-effects model – true and observed effect in one study.
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PERFORMING A RANDOM-EFFECTS META-ANALYSIS

In an actual meta-analysis, of course, rather than start with the population effect and

make projections about the observed effects, we start with the observed effects and

try to estimate the population effect. In other words our goal is to use the collection

of Yi to estimate the overall mean, �. In order to obtain the most precise estimate of

the overall mean (to minimize the variance) we compute a weighted mean, where

the weight assigned to each study is the inverse of that study’s variance.

To compute a study’s variance under the random-effects model, we need to know

both the within-study variance and �2, since the study’s total variance is the sum of

these two values. Formulas for computing the within-study variance were presented

in Part 3. A method for estimating the between-studies variance is given here so that

we can proceed with the worked example, but a full discussion of this method is

deferred to Part 4, where we shall pursue the issue of heterogeneity in some detail.

Estimating tau-squared

The parameter �2 (tau-squared) is the between-studies variance (the variance of the

effect size parameters across the population of studies). In other words, if we

somehow knew the true effect size for each study, and computed the variance of

these effects sizes (across an infinite number of studies), this variance would be �2.

One method for estimating �2 is the method of moments (or the DerSimonian and

Laird) method, as follows. We compute

T2 ¼ Q� df

C
; ð12:2Þ
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Figure 12.4 Random-effects model – between-study and within-study variance.
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where

Q ¼
Xk

i¼1

WiY
2
i �

Xk

i¼1

WiYi

 !2

Xk

i¼1

Wi

; ð12:3Þ

df ¼ k � 1; ð12:4Þ

where k is the number of studies, and

C ¼
X

Wi �
X

W2
iX

Wi

: ð12:5Þ

Estimating the mean effect size

In the fixed-effect analysis each study was weighted by the inverse of its variance.

In the random-effects analysis, too, each study will be weighted by the inverse of its

variance. The difference is that the variance now includes the original (within-

studies) variance plus the estimate of the between-studies variance, T 2. In keeping

with the book’s convention, we use �2 to refer to the parameter and T 2 to refer to the

sample estimate of that parameter.

To highlight the parallel between the formulas here (random effects) and those in

the previous chapter (fixed effect) we use the same notations but add an asterisk (*)

to represent the random-effects version. Under the random-effects model the weight

assigned to each study is

W�i ¼
1

V�Yi

ð12:6Þ

where V �Yi
is the within-study variance for study i plus the between-studies variance,

T2. That is,

V �Yi
¼ VYi

þ T2:

The weighted mean, M*, is then computed as

M� ¼

Xk

i¼1

W�i Yi

Xk

i¼1

W�i

ð12:7Þ

that is, the sum of the products (effect size multiplied by weight) divided by the sum

of the weights.
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The variance of the summary effect is estimated as the reciprocal of the sum of

the weights, or

VM� ¼
1Xk

i¼1

W�i

ð12:8Þ

and the estimated standard error of the summary effect is then the square root of the

variance,

SEM� ¼
ffiffiffiffiffiffiffiffiffi
VM�
p

: ð12:9Þ

The 95% lower and upper limits for the summary effect would be computed as

LLM� ¼ M� � 1:96� SEM� ; ð12:10Þ

and

ULM� ¼ M� þ 1:96� SEM� : ð12:11Þ

Finally, a Z-value to test the null hypothesis that the mean effect � is zero could be

computed using

Z� ¼ M�

SEM�
: ð12:12Þ

For a one-tailed test the p-value is given by

p� ¼ 1� Fð� Z�j jÞ; ð12:13Þ

where we choose ‘þ’ if the difference is in the expected direction or ‘–’ otherwise,

and for a two-tailed test by

p� ¼ 2 1� F jZ�jð Þð Þ½ �; ð12:14Þ

where F(Z*) is the standard normal cumulative distribution. This function is tabled

in many introductory statistics books, and is implemented in Excel as the function

¼NORMSDIST(Z*).

Illustrative example
As before, we suggest that you turn to one of the worked examples in the next

chapter before proceeding with this discussion.

SUMMARY POINTS

� Under the random-effects model, the true effects in the studies are assumed to

have been sampled from a distribution of true effects.

� The summary effect is our estimate of the mean of all relevant true effects, and

the null hypothesis is that the mean of these effects is 0.0 (equivalent to a ratio

of 1.0 for ratio measures).
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� Since our goal is to estimate the mean of the distribution, we need to take

account of two sources of variance. First, there is within-study error in

estimating the effect in each study. Second (even if we knew the true mean

for each of our studies), there is variation in the true effects across studies.

Study weights are assigned with the goal of minimizing both sources of

variance.
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CHAPTER 13

Fixed-Effect Versus Random-Effects
Models

Introduction
Definition of a summary effect
Estimating the summary effect
Extreme effect size in a large study or a small study
Confidence interval
The null hypothesis
Which model should we use?
Model should not be based on the test for heterogeneity
Concluding remarks

INTRODUCTION

In Chapter 11 and Chapter 12 we introduced the fixed-effect and random-

effects models. Here, we highlight the conceptual and practical differences

between them.

Consider the forest plots in Figures 13.1 and 13.2. They include the same six

studies, but the first uses a fixed-effect analysis and the second a random-effects

analysis. These plots provide a context for the discussion that follows.

DEFINITION OF A SUMMARY EFFECT

Both plots show a summary effect on the bottom line, but the meaning of this

summary effect is different in the two models. In the fixed-effect analysis we

assume that the true effect size is the same in all studies, and the summary

effect is our estimate of this common effect size. In the random-effects analysis

we assume that the true effect size varies from one study to the next, and that

the studies in our analysis represent a random sample of effect sizes that could
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have been observed. The summary effect is our estimate of the mean of these

effects.

ESTIMATING THE SUMMARY EFFECT

Under the fixed-effect model we assume that the true effect size for all studies

is identical, and the only reason the effect size varies between studies is

sampling error (error in estimating the effect size). Therefore, when assigning
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Figure 13.1 Fixed-effect model – forest plot showing relative weights.
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Figure 13.2 Random-effects model – forest plot showing relative weights.

78 Fixed-Effect Versus Random-Effects Models

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



weights to the different studies we can largely ignore the information in the

smaller studies since we have better information about the same effect size in

the larger studies.

By contrast, under the random-effects model the goal is not to estimate one true

effect, but to estimate the mean of a distribution of effects. Since each study

provides information about a different effect size, we want to be sure that all these

effect sizes are represented in the summary estimate. This means that we cannot

discount a small study by giving it a very small weight (the way we would in

a fixed-effect analysis). The estimate provided by that study may be imprecise, but

it is information about an effect that no other study has estimated. By the same

logic we cannot give too much weight to a very large study (the way we might in

a fixed-effect analysis). Our goal is to estimate the mean effect in a range of

studies, and we do not want that overall estimate to be overly influenced by any

one of them.

In these graphs, the weight assigned to each study is reflected in the size of the

box (specifically, the area) for that study. Under the fixed-effect model there is a

wide range of weights (as reflected in the size of the boxes) whereas under the

random-effects model the weights fall in a relatively narrow range. For example,

compare the weight assigned to the largest study (Donat) with that assigned to the

smallest study (Peck) under the two models. Under the fixed-effect model Donat is

given about five times as much weight as Peck. Under the random-effects model

Donat is given only 1.8 times as much weight as Peck.

EXTREME EFFECT SIZE IN A LARGE STUDY OR A SMALL STUDY

How will the selection of a model influence the overall effect size? In this example

Donat is the largest study, and also happens to have the highest effect size. Under

the fixed-effect model Donat was assigned a large share (39%) of the total weight

and pulled the mean effect up to 0.41. By contrast, under the random-effects model

Donat was assigned a relatively modest share of the weight (23%). It therefore had

less pull on the mean, which was computed as 0.36.

Similarly, Carroll is one of the smaller studies and happens to have the smallest

effect size. Under the fixed-effect model Carroll was assigned a relatively small

proportion of the total weight (12%), and had little influence on the summary effect.

By contrast, under the random-effects model Carroll carried a somewhat higher

proportion of the total weight (16%) and was able to pull the weighted mean toward

the left.

The operating premise, as illustrated in these examples, is that whenever �2 is

nonzero, the relative weights assigned under random effects will be more balanced

than those assigned under fixed effects. As we move from fixed effect to random

effects, extreme studies will lose influence if they are large, and will gain influence

if they are small.
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CONFIDENCE INTERVAL

Under the fixed-effect model the only source of uncertainty is the within-study

(sampling or estimation) error. Under the random-effects model there is this same

source of uncertainty plus an additional source (between-studies variance).

It follows that the variance, standard error, and confidence interval for the summary

effect will always be larger (or wider) under the random-effects model than under

the fixed-effect model (unless T 2 is zero, in which case the two models are the

same). In this example, the standard error is 0.064 for the fixed-effect model, and

0.105 for the random-effects model.
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Figure 13.4 Very large studies under random-effects model.
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Figure 13.3 Very large studies under fixed-effect model.
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Consider what would happen if we had five studies, and each study had an

infinitely large sample size. Under either model the confidence interval for the

effect size in each study would have a width approaching zero, since we know

the effect size in that study with perfect precision. Under the fixed-effect

model the summary effect would also have a confidence interval with a width

of zero, since we know the common effect precisely (Figure 13.3). By con-

trast, under the random-effects model the width of the confidence interval

would not approach zero (Figure 13.4). While we know the effect in each

study precisely, these effects have been sampled from a universe of possible

effect sizes, and provide only an estimate of the mean effect. Just as the error

within a study will approach zero only as the sample size approaches infinity,

so too the error of these studies as an estimate of the mean effect will

approach zero only as the number of studies approaches infinity.

More generally, it is instructive to consider what factors influence the standard

error of the summary effect under the two models. The following formulas are

based on a meta-analysis of means from k one-group studies, but the conceptual

argument applies to all meta-analyses. The within-study variance of each mean

depends on the standard deviation (denoted �) of participants’ scores and the

sample size of each study (n). For simplicity we assume that all of the studies

have the same sample size and the same standard deviation (see Box 13.1 for

details).

Under the fixed-effect model the standard error of the summary effect is given by

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � n

r
: ð13:1Þ

It follows that with a large enough sample size the standard error will approach zero,

and this is true whether the sample size is concentrated on one or two studies, or

dispersed across any number of studies.

Under the random-effects model the standard error of the summary effect is

given by

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � n
þ �

2

k

r
: ð13:2Þ

The first term is identical to that for the fixed-effect model and, again, with a

large enough sample size, this term will approach zero. By contrast, the second

term (which reflects the between-studies variance) will only approach zero as the

number of studies approaches infinity. These formulas do not apply exactly in

practice, but the conceptual argument does. Namely, increasing the sample size

within studies is not sufficient to reduce the standard error beyond a certain point

(where that point is determined by �2 and k). If there is only a small number of

studies, then the standard error could still be substantial even if the total n is in the

tens of thousands or higher.
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BOX 13.1 FACTORS THAT INFLUENCE THE STANDARD ERROR OF THE
SUMMARY EFFECT.

To illustrate the concepts with some simple formulas, let us consider a meta-

analysis of studies with the very simplest design, such that each study

comprises a single sample of n observations with standard deviation �. We

combine estimates of the mean in a meta-analysis. The variance of each

estimate is

VYi
¼ �

2

n

so the (inverse-variance) weight in a fixed-effect meta-analysis is

Wi ¼
1

�2=n
¼ n

�2

and the variance of the summary effect under the fixed-effect model the standard

error is given by

VM ¼
1Xk

i¼1

Wi

¼ 1

k � n=�2
¼ �2

k � n
:

Therefore under the fixed-effect model the (true) standard error of the summary

mean is given by

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � n

r
:

Under the random-effects model the weight awarded to each study is

W�i ¼
1

�2
�

n
� �

þ �2

and the (true) standard error of the summary mean turns out to be

SEM � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � n
þ �

2

k

r
:
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THE NULL HYPOTHESIS

Often, after computing a summary effect, researchers perform a test of the

null hypothesis. Under the fixed-effect model the null hypothesis being tested

is that there is zero effect in every study. Under the random-effects model the

null hypothesis being tested is that the mean effect is zero. Although some may

treat these hypotheses as interchangeable, they are in fact different, and it is

imperative to choose the test that is appropriate to the inference a researcher wishes

to make.

WHICH MODEL SHOULD WE USE?

The selection of a computational model should be based on our expectation about

whether or not the studies share a common effect size and on our goals in perform-

ing the analysis.

Fixed effect

It makes sense to use the fixed-effect model if two conditions are met. First, we

believe that all the studies included in the analysis are functionally identical.

Second, our goal is to compute the common effect size for the identified population,

and not to generalize to other populations.

For example, suppose that a pharmaceutical company will use a thousand patients to

compare a drug versus placebo. Because the staff can work with only 100 patients at a

time, the company will run a series of ten trials with 100 patients in each. The studies

are identical in the sense that any variables which can have an impact on the outcome

are the same across the ten studies. Specifically, the studies draw patients from a

common pool, using the same researchers, dose, measure, and so on (we assume that

there is no concern about practice effects for the researchers, nor for the different

starting times of the various cohorts). All the studies are expected to share a common

effect and so the first condition is met. The goal of the analysis is to see if the drug

works in the population from which the patients were drawn (and not to extrapolate to

other populations), and so the second condition is met, as well.

In this example the fixed-effect model is a plausible fit for the data and meets the

goal of the researchers. It should be clear, however, that this situation is relatively

rare. The vast majority of cases will more closely resemble those discussed imme-

diately below.

Random effects

By contrast, when the researcher is accumulating data from a series of studies that

had been performed by researchers operating independently, it would be unlikely

that all the studies were functionally equivalent. Typically, the subjects or inter-

ventions in these studies would have differed in ways that would have impacted on

9th February 2009 07:07 Wiley/ITMA Page 83 c13

Chapter 13: Fixed-Effect Versus Random-Effects Models 83

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



the results, and therefore we should not assume a common effect size. Therefore, in

these cases the random-effects model is more easily justified than the fixed-effect

model.

Additionally, the goal of this analysis is usually to generalize to a range of

scenarios. Therefore, if one did make the argument that all the studies used an

identical, narrowly defined population, then it would not be possible to extrapolate

from this population to others, and the utility of the analysis would be severely limited.

A caveat

There is one caveat to the above. If the number of studies is very small, then the

estimate of the between-studies variance (�2) will have poor precision. While the

random-effects model is still the appropriate model, we lack the information needed

to apply it correctly. In this case the reviewer may choose among several options,

each of them problematic.

One option is to report the separate effects and not report a summary effect.

The hope is that the reader will understand that we cannot draw conclusions

about the effect size and its confidence interval. The problem is that some readers

will revert to vote counting (see Chapter 28) and possibly reach an erroneous

conclusion.

Another option is to perform a fixed-effect analysis. This approach would yield a

descriptive analysis of the included studies, but would not allow us to make

inferences about a wider population. The problem with this approach is that (a)

we do want to make inferences about a wider population and (b) readers will make

these inferences even if they are not warranted.

A third option is to take a Bayesian approach, where the estimate of �2 is based on

data from outside of the current set of studies. This is probably the best option, but the

problem is that relatively few researchers have expertise in Bayesian meta-analysis.

Additionally, some researchers have a philosophical objection to this approach.

For a more general discussion of this issue see When does it make sense to

perform a meta-analysis in Chapter 40.

MODEL SHOULD NOT BE BASED ON THE TEST FOR HETEROGENEITY

In the next chapter we will introduce a test of the null hypothesis that the between-

studies variance is zero. This test is based on the amount of between-studies

variance observed, relative to the amount we would expect if the studies actually

shared a common effect size.

Some have adopted the practice of starting with a fixed-effect model and then

switching to a random-effects model if the test of homogeneity is statistically

significant. This practice should be strongly discouraged because the decision to

use the random-effects model should be based on our understanding of whether or

not all studies share a common effect size, and not on the outcome of a statistical test

(especially since the test for heterogeneity often suffers from low power).

9th February 2009 07:07 Wiley/ITMA Page 84 c13

84 Fixed-Effect Versus Random-Effects Models

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



If the study effect sizes are seen as having been sampled from a distribution of

effect sizes, then the random-effects model, which reflects this idea, is the logical one

to use. If the between-studies variance is substantial (and statistically significant) then

the fixed-effect model is inappropriate. However, even if the between-studies var-

iance does not meet the criterion for statistical significance (which may be due simply

to low power) we should still take account of this variance when assigning weights. If

T 2 turns out to be zero, then the random-effects analysis reduces to the fixed-effect

analysis, and so there is no cost to using this model.

On the other hand, if one has elected to use the fixed-effect model a priori but the

test of homogeneity is statistically significant, then it would be important to revisit

the assumptions that led to the selection of a fixed-effect model.

CONCLUDING REMARKS

Our discussion of differences between the fixed-model and the random-effects

model focused largely on the computation of a summary effect and the confidence

intervals for the summary effect. We did not address the implications of the

dispersion itself. Under the fixed-effect model we assume that all dispersion in

observed effects is due to sampling error, but under the random-effects model we

allow that some of that dispersion reflects real differences in effect size across

studies. In the chapters that follow we discuss methods to quantify that dispersion

and to consider its substantive implications.

Although throughout this book we define a fixed-effect meta-analysis as assum-

ing that every study has a common true effect size, some have argued that the fixed-

effect method is valid without making this assumption. The point estimate of the

effect in a fixed-effect meta-analysis is simply a weighted average and does not

strictly require the assumption that all studies estimate the same thing. For simpli-

city and clarity we adopt a definition of a fixed-effect meta-analysis that does

assume homogeneity of effect.

SUMMARY POINTS

� A fixed-effect meta-analysis estimates a single effect that is assumed to be

common to every study, while a random-effects meta-analysis estimates the

mean of a distribution of effects.

� Study weights are more balanced under the random-effects model than under the

fixed-effect model. Large studies are assigned less relative weight and small

studies are assigned more relative weight as compared with the fixed-effect

model.

� The standard error of the summary effect and (it follows) the confidence

intervals for the summary effect are wider under the random-effects model

than under the fixed-effect model.
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� The selection of a model must be based solely on the question of which model

fits the distribution of effect sizes, and takes account of the relevant source(s)

of error. When studies are gathered from the published literature, the random-

effects model is generally a more plausible match.

� The strategy of starting with a fixed-effect model and then moving to a

random-effects model if the test for heterogeneity is significant is a mistake,

and should be strongly discouraged.
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CHAPTER 43

Criticisms of Meta-Analysis

Introduction
One number cannot summarize a research field
The file drawer problem invalidates meta-analysis
Mixing apples and oranges
Garbage in, garbage out
Important studies are ignored
Meta-analysis can disagree with randomized trials
Meta-analyses are performed poorly
Is a narrative review better?
Concluding remarks

INTRODUCTION

While meta-analysis has been widely embraced by large segments of the research

community, this point of view is not universal and people have voiced numerous

criticisms of meta-analysis.

Some of these criticisms are worth mentioning for their creative use of metaphor.

The first set of Cochrane reviews dealt with studies in neonatology, and one

especially creative critic, cited by Mann (1990), called the reviewers an obstetrical

Baader Meinhof gang (obstetrical being a reference to the field of research, and

Baader Meinhof gang a reference to the terrorist group that operated in Europe

during the 1970s and 1980s).

Others were more circumspect in their comments. Eysenck (1978) criticized a

meta-analysis as an exercise in mega-silliness. Shapiro (1994) published a

paper entitled Meta-Analysis / Shmeta Analysis. Feinstein (1995) wrote an

editorial in which he referred to meta-analysis as ‘statistical alchemy for the

21st century’.
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These critics share not only an affinity for allegory and alliteration but also a

common set of concerns about meta-analysis. In this chapter we address the

following criticisms that have been leveled at meta-analysis, as follows.

� One number cannot summarize a research field

� The file drawer problem invalidates meta-analysis

� Mixing apples and oranges

� Garbage in, garbage out

� Important studies are ignored

� Meta-analysis can disagree with randomized trials

� Meta-analyses are performed poorly

After considering each of these questions in turn, we ask whether a traditional

narrative review fares any better than a systematic review on these criticisms. And,

we summarize the legitimate criticisms of meta-analysis that need to be considered

whenever meta-analysis is applied.

ONE NUMBER CANNOT SUMMARIZE A RESEARCH FIELD

Criticism

A common criticism of meta-analysis is that the analysis focuses on the summary

effect, and ignores the fact that the treatment effect may vary from study to study. Bailar

(1997), for example, writes, ‘Any attempt to reduce results to a single value, with

confidence bounds, is likely to lead to conclusions that are wrong, perhaps seriously so.’

Response

In fact, the goal of a meta-analysis should be to synthesize the effect sizes, and not

simply (or necessarily) to report a summary effect. If the effects are consistent, then

the analysis shows that the effect is robust across the range of included studies. If

there is modest dispersion, then this dispersion should serve to place the mean effect

in context. If there is substantial dispersion, then the focus should shift from the

summary effect to the dispersion itself. Researchers who report a summary effect

and ignore heterogeneity are indeed missing the point of the synthesis.

THE FILE DRAWER PROBLEM INVALIDATES META-ANALYSIS

Criticism

While the meta-analysis will yield a mathematically sound synthesis of the studies

included in the analysis, if these studies are a biased sample of all possible studies,

then the mean effect reported by the meta-analysis will reflect this bias. Several

lines of evidence show that studies finding relatively high treatment effects are

more likely to be published than studies finding lower treatment effects. The latter,

10th February 2009 13:12 Wiley/ITMA Page 378 c43

378 Meta-Analysis in Context

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



unpublished, research lies dormant in the researchers’ filing cabinets, and has led to

the use of the term file drawer problem for meta-analysis.

Response

Since published studies are more likely to be included in a meta-analysis than their

unpublished counterparts, there is a legitimate concern that a meta-analysis may

overestimate the true effect size.

Chapter 30 (entitled Publication Bias) explores this question in some detail. In that

chapter we discuss methods to assess the likely amount of bias in any given meta-

analysis, and to distinguish between analyses that can be considered robust to the

impact of publication bias from those where the results should be considered suspect.

We must remember that publication bias is a problem for any kind of literature

search. The problem exists for the clinician who searches a database to locate

primary studies about the utility of a treatment. It exists for persons performing a

narrative review. And, it exists for persons performing a meta-analysis. Publication

bias has come to be identified with meta-analysis because meta-analysis has the

goal of providing a more accurate synthesis than other methods, and so we are

concerned with biases that will interfere with this goal. However, it would be a

mistake to conclude that this bias is not a problem for the narrative review. There, it

is simply easier to ignore.

MIXING APPLES AND ORANGES

Criticism

A common criticism of meta-analysis is that researchers combine different kinds of

studies (apples and oranges) in the same analysis. The argument is that the

summary effect will ignore possibly important differences across studies.

Response

The studies that are brought together in a meta-analysis will inevitably differ in their

characteristics, and the difficulty is deciding just how similar they need to be. The

decision as to which studies should be included is always a judgment, and people

will have different opinions on the appropriateness of combining results across

studies. Some meta-analysts may make questionable judgments, and some critics

may make unreasonable demands on similarity.

We need to remember that meta-analyses almost always, by their very nature,

address broader questions than individual studies. Hence a meta-analysis may be

thought of as asking a question about fruit, for which both apples and oranges (and

indeed pears and melons) contribute valuable information. One of the strengths of

meta-analysis is that the consistency, and hence generalizability, of findings from

one type of study to the next can be assessed formally.
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Of course, we always need to remember that we are dealing with different kinds of

fruit, and to anticipate that effects may vary from one kind to the other. It is a further

strength of meta-analysis that these differences, if identified, can be investigated

formally. Assume, for example, that a treatment is very effective for patients with

acute symptoms but has no effect for patients with chronic symptoms. If we were to

combine data from studies that used both types of patients, and conclude that the

treatment was modestly effective (on average), this conclusion would not be accurate

for either kind of patient. If we were to restrict our attention to studies in only patients

with acute symptoms, or only patients with chronic symptoms, we could report how

the treatment worked with one type of patient, but could only speculate about how it

would have worked with the other type. By contrast, a meta-analysis that includes

data for both types of patients may allow us to address this question empirically.

GARBAGE IN, GARBAGE OUT

Criticism

The often-heard metaphor garbage in, garbage out refers to the notion that if a

meta-analysis includes many low-quality studies, then fundamental errors in the

primary studies will be carried over to the meta-analysis, where the errors may be

harder to identify.

Response

Rather than thinking of meta-analysis as a process of garbage in, garbage out we

can think of it as a process of waste management. A systematic review or meta-

analysis will always have a set of inclusion criteria and these should include criteria

based on the quality of the study. For trials, we may decide to limit the studies to

those that use random assignment, or a placebo control. For observational studies

we may decide to limit the studies to those where confounders were adequately

addressed in the design or analysis. And so on. In fact, it is common in a systematic

review to start with a large pool of studies and end with a much smaller set of studies

after all inclusion/exclusion criteria are applied.

Nevertheless, the studies that do make it as far as a meta-analysis are unlikely to

be perfect, and close attention should be paid to the possibility of bias due to study

limitations. A meta-analysis of a collection of studies that is each biased in the same

direction will suffer from the same bias and have higher precision. In this case,

performing a meta-analysis can indeed be more dangerous than not performing one.

However, as noted in the response to the previous criticism about apples and

oranges, a strength of meta-analysis is the ability to investigate whether variation in

characteristics of studies is related to the size of the effect. Suppose that ten studies

used an acceptable method to randomize patients while another ten used a ques-

tionable method. In the analysis we can compare the effect size in these two

subgroups, and determine whether or not the effect size actually differs between
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the two. Note that such analyses (those comparing effects in different subgroups)

can have very low power so need to be interpreted carefully, especially when there

are not many studies within subgroups.

IMPORTANT STUDIES ARE IGNORED

Criticism

Whereas the garbage in, garbage out problem relates to the inclusion of studies that

perhaps should not be included, a common complementary criticism is that important

studies were left out. The criticism is often leveled by people who are uncomfortable

with the findings of a meta-analysis. For example, a meta-analysis to assess the effects

of antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and

selenium) on overall mortality was met with accusations on the web site of the Linus

Pauling Institute (Oregon State University) that in this ‘flawed analysis of flawed data’

the authors looked at 815 human clinical trials of antioxidant supplements, but only 68

were included in the meta-analysis.

Response

We have explained that systematic reviews and meta-analyses require explicit

mechanisms for deciding which studies to include and which ones to exclude.

These eligibility criteria are determined by a combination of considerations of

relevance and considerations of bias, and are typically decided before the search

for studies is implemented. Studies should be sufficiently similar to yield results

that can be interpreted, and sufficiently free of bias to yield results that can be

believed. For both purposes, judgments are required, and not all meta-analysts or

readers would reach the same judgments on each occasion. Importantly, in meta-

analysis the criteria are transparent and are described as part of the report.

META-ANALYSIS CAN DISAGREE WITH RANDOMIZED TRIALS

Criticism

LeLorier et al. (1997) published a paper in which they pointed out that meta-

analyses sometimes yield different results than large scale randomized trials.

Specifically, they located cases in the medical literature where someone had

performed a meta-analysis, and someone else subsequently performed a large

scale randomized trial that addressed the same question (e.g. Does the treatment

work?). The authors reported that the results of the meta-analysis and the rando-

mized trial matched (both were statistically significant, or neither was statistically

significant) in about 66% of cases, but did not match (one was statistically sig-

nificant but the other was not) in the remaining 34%. Since randomized trials are

generally accepted as the gold standard they conclude that some 34% of these meta-

analyses were wrong, and that meta-analyses in general cannot be trusted.
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Response

There are both technical and conceptual flaws in this criticism. The technical flaws

relate to the question of what we mean by matching, and the authors’ decision to

define matching as both studies being (or not being) statistically significant. The

discussion that follows draws in part on comments by Ioannidis et al. (1998), Lelorier

et al. (1997, 536–543) and others (see further readings at the end of this chapter).

Consider Figure 43.1, which shows a meta-analysis of five randomized controlled

trials (RCTs) at the top, and a subsequent large-scale randomized trial at the bottom.

In this fictional example the five studies in the meta-analysis each showed

precisely the same effect, an odds ratio of 0.80. The summary effect in the meta-

analysis is (it follows) an odds ratio of 0.80. And, the subsequent study showed the

same effect, an odds ratio of 0.80.

The only difference between the summary effect in the meta-analysis and the

effect in the subsequent study is that the former is reported with greater precision

(since it is based on more data) and therefore yields a p-value under 0.05. By the

LeLorier criterion these two conclusions would be seen as conflicting, when in fact

they have the identical effect size.

Additionally, LeLorier concludes that in the face of this conflict the single

randomized trial is correct and the meta-analysis is wrong. In fact, though, it is

the meta-analysis, which incorporates data from five randomized trials rather than

one, that has the more powerful position. (What would happen if we performed a

new meta-analysis which incorporated the most recent randomized trial? Would
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Figure 43.1 Forest plot of five fictional studies and a new trail (consistent effects).
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LeLorier now see this new meta-analysis as flawed?) In fact, the real issue is not that

a meta-analysis disagrees with a randomized trial, but that randomized trials dis-

agree with each other.

At a meeting of The Cochrane Collaboration in Baltimore (1996), a plenary

speaker made the same argument being made by LeLorier et al. (that meta-analyses

sometimes yield different results than randomized trials) and, like the paper, cited the

statistic that roughly a third of meta-analyses fail to match the comparable rando-

mized trial. A distinguished member of the audience, Harris Cooper, asked the

speaker if he knew what percentage of randomized trials fail to match the next

randomized trial on the same topic. It turns out that the percentage is roughly a third.

However, to move on to a more interesting question, let’s assume that the results

from a meta-analysis and a randomized trial really do differ. Suppose that the meta-

analysis yields a risk ratio of 0.67 (with a 95% confidence interval of 0.84 to 0.77)

while the new trial yields a risk ratio of 0.91 (0.82 to 1.0). According to the meta-

analysis the treatment reduces the risk by at least 23%, while the new trial says that

its impact is no more than 18%.

In this case the effect is different in the two analyses, but that does not mean that

one is wrong and the other is right. Rather, it behooves us to ask why the two results

should differ, much as we would if we had two large scale randomized trials with

significantly different results. Often, it will turn out that the different analyses either

were asking different questions or differed in some important way. A careful

examination of the differences in method, patient population, and so on, may help

to uncover the source of the difference.

10th February 2009 13:12 Wiley/ITMA Page 383 c43

0.50 1.0 2.0

RR

Trial A 0.55

Trial B 0.61

Trial C 0.67

Trial D 0.74

Trial E 0.82

Summary 0.67

Risk ratio and 95% limits

Favours Treatment Favours Placebo

0.50 1.0 2.0

New Trial 0.91

Figure 43.2 Forest plot of five fictional studies and a new trial (heterogeneous effects).
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Consider the following scenario, depicted in Figure 43.2. A new compound is

introduced, which is meant to minimize neurological damage in stroke patients. In

1990, the compound is tested in a randomized trial involving patients with a very poor

prognosis, and yields a risk ratio of 0.55. Based on these encouraging results, in 1994

it is tested in patients with a somewhat better prognosis. Since the patients in this

group are more likely to recover without treatment, the impact of the drug is less

pronounced, and the risk ratio is 0.61. By 1998 the drug is being tested with all

patients, and the risk ratio is 0.82. These are the studies included in the meta-analysis.

The new trial is performed using a relatively healthy population and (following the

trend seen in the meta-analysis) yields a risk ratio of 0.91.

If one were to report a mean effect of 0.67 for the meta-analysis versus 0.91 for the

new trial there would indeed be a problem. But, as we have emphasized throughout

this volume, the meta-analysis should focus on the dispersion in effects and try to

identify the reason for the dispersion. In this example, using either health status or

study year as a covariate we can explain the pattern of the effects, and would have

predicted that the effect size in the new study would fall where it did.

META-ANALYSES ARE PERFORMED POORLY

Criticism

John C. Bailar, in an editorial for the New England Journal of Medicine (Bailar,

1997), writes that mistakes such as those outlined in the prior criticisms are common

in meta-analysis. He argues that a meta-analysis is inherently so complicated that

mistakes by the persons performing the analysis are all but inevitable. He also

argues that journal editors are unlikely to uncover all of these mistakes.

Response

The specific points made by Bailar about problems with meta-analysis are entirely

reasonable. He is correct that many meta-analyses contain errors, some of them

important ones. His list of potential (and common) problems can serve as a bullet

list of mistakes to avoid when performing a meta-analysis.

However, the mistakes cited by Bailar are flaws in the application of the

method, rather than problems with the method itself. Many primary studies

suffer from flaws in the design, analyses, and conclusions. In fact, some

serious kinds of problems are endemic in the literature. The response of the

research community is to locate these flaws, consider their impact for the

study in question, and (hopefully) take steps to avoid similar mistakes in the

future. In the case of meta-analysis, as in the case of primary studies, we

cannot condemn a method because some people have used that method

improperly. As Bob Abelson once remarked in a related context, ‘Think of

all the things that people abuse. There are college educations. And oboes.’
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IS A NARRATIVE REVIEW BETTER?

In his editorial Bailar concludes that, until such time as the quality of meta-analyses

is improved, he would prefer to work with the traditional narrative reviews: ‘I still

prefer conventional narrative reviews of the literature, a type of summary familiar to

readers of the countless review articles on important medical issues.’

We disagree with the conclusion that narrative reviews are preferable to systema-

tic reviews, and that meta-analyses should be avoided. The narrative review suffers

from every one of the problems cited for the systematic review. The only difference

is that, in the narrative review, these problems are less obvious. For example:

� The process of determining which studies to include in the systematic review or

meta-analysis is difficult and prone to error. But at least there is a set of criteria

for determining which studies to include. If the narrative review also has such

criteria, then it is subject to the same kinds of error. If not, then we have no way of

knowing how studies are being selected, which only compounds the problem.

� Meta-analyses can be affected by publication bias. But the same biases exist in

the material upon which narrative reviews are based. Meta-analysis offers a

means to investigate the likelihood of these biases and their potential impact on

the results.

� Meta-analyses may be based on low quality primary research. But a good systema-

tic review includes a careful assessment of the included studies with regard to their

quality or risk of bias, and meta-analytic methods enable formal examination of the

potential impact of these biases. A narrative reviewer may discount a study because

of a belief that the results are suspect for some reason. However, a limitation can be

found for virtually any study, so in the absence of a systematic quality assessment

of every study, a narrative reviewer is free to be suspect about any study’s results

and to lay the blame on one or more of its limitations.

� The weighting scheme in a meta-analysis may give a lot (or little) weight to

specific studies in ways that may appear inappropriate. But in a meta-analysis the

weights reflect specific goals (to minimize the variance, or to reflect the range of

effects) and the weighting scheme is detailed as part of the report, so a reader is

able to agree or disagree with it. By contrast, in the case of a narrative review, the

reviewer assigns weights to studies based on criteria that he or she does not

communicate, and may not even be able to fully articulate. Here, the problem

involves not only the relative weights assigned to small or large studies. It

extends also to the propensity of one reviewer to focus on effect sizes, and of

another to focus on (and possibly be misled by) significance tests.

� Some meta-analyses focus on the summary effect and ignore the pattern of

dispersion in the results. To ignore the dispersion is clearly a mistake both in a

narrative review and in a meta-analysis. However, meta-analysis provides a full

complement of tools to assess the pattern of dispersion, and possibly to explain it

as a function of study-level covariates. By contrast, it would be an almost
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impossible task for a narrative reviewer to accurately assess the pattern of

dispersion, or to understand its relationship to other variables.

� In support of the narrative review, Bailer cites the role of the expert with

substantive knowledge of the field, who can identify flaws in specific studies,

or the presence of potentially important moderator variables. However, this is not

an advantage of the narrative review, since the expert is expected to play the same

role in a meta-analysis. Steve Goodman (1991) wrote, ‘The best meta-analyses

knit clinical insight with quantitative results in a way that enhances both. They

should combine the careful thought and synthesis of a good review with the

scientific rigor of a good experiment.’

CONCLUDING REMARKS

Most of the criticisms raised in this chapter point to problems with meta-analysis,

and make the implicit argument that the problem would go away if we dispensed

with the meta-analysis and performed a narrative review. We have argued that these

problems exist also for the narrative review, and that the key advantage of the

systematic approach of a meta-analysis is that all steps are clearly described so that

the process is transparent.

Is meta-analysis so difficult that the method should be abandoned, as some have

suggested? Our answer is obviously that it is not. Most of the criticisms raised deal

with the application of the method, rather than with the method itself. What we

should do is take the valid criticisms seriously and protect against them in planned

analyses and by thoughtful interpretation of results.

Steven Goodman, in his editorial for Annals of Internal Medicine (1991) writes,

Regardless of the summary number, meta-analysis should shed light on why trial

results differ; raise research and editorial standards by calling attention to the

strengths and weaknesses of the body of research in an area; and give the practitioner

an objective view of the research literature, unaffected by the sometimes distorting

lens of individual experience and personal preference that can affect a less structured

review.

SUMMARY POINTS

� Meta-analyses are sometimes criticized for a number of flaws, and critics

have argued that narrative reviews provide a better solution.

� Some of these flaws, such as the idea that we cannot summarize a body of data

in a single number, are based on misunderstandings of meta-analysis.

� Many of the flaws (such as ignoring dispersion in effect sizes) reflect pro-

blems in the way that meta-analysis is used, rather than problems in the

method itself.
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� Other flaws (such as publication bias) are a problem for meta-analysis.

However, the suggestion that these problems do not exist in narrative reviews

is wrong. These problems exist for narrative reviews as well, but are simply

easier to ignore since those reviews lack a clear structure.
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