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Abstract—A robust control design is proposed for the lane-
keeping and obstacle avoidance of semiautonomous ground vehi-
cles. A robust Model Predictive Controller (MPC) is used in order
to enforce safety constraints with minimal control intervention.
An uncertain driver model is used to obtain sets of predicted
vehicle trajectories in closed-loop with the predicted driver’s
behavior. The robust MPC computes the smallest corrective
steering action needed to keep the driver safe for all predicted
trajectories in the set. Simulations of a driver approaching
multiple obstacles, with uncertainty obtained from measured
data, show the effect of the proposed framework.

I. INTRODUCTION

Advances in sensing technologies have enabled the intro-

duction and commercialization of several automated driving

features over the last two decades. Examples of such appli-

cations are threat assessment Warning Strategies [1], Adap-

tive Cruise Control (ACC) [2], Rear-end Collision Avoidance

systems [3], as well as Lane Keeping systems [4]. In safety

applications, autonomous interventions are activated automati-

cally. Over-activation of automated safety interventions might

be felt as intrusive by the driver, while on the other hand, a

missed or delayed intervention might lead to a collision. In

the literature, a large variety of threat assessment and decision

making approaches can be found [3], [5], [6], [7]. In the

simplest approaches, used in production vehicles, automated

steering or braking interventions are issued when the time to

collision [3] or time to line crossing [5] pass certain thresholds.

More sophisticated approaches must both determine a safe

trajectory for the vehicle as well as coordinate the vehicle

actuators. The literature on vehicle path planning and control

is rich, see, e.g. [6], [7], [8], [9], [10], [11]. The approach in [6]

includes the computation of Bayesian collision probabilities

and [7] calculates sets of safe states from which the vehicle

can safely evolve. Because of its capability to systematically

handle system nonlinearities and constraints, work in a wide

operating region and close to the set of admissible states and

inputs, Model Predictive Control (MPC) has been shown to

be an attractive method for solving the path planning and

control problem [8], [12]. However, previous approaches to

lane departure prevention using predictive control, as in [13],
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do not incorporate any driver model and therefore fail to

capture the predicted driver’s behavior.

In previous work [14], [15] the authors of this paper

proposed an active safety system for prevention of unintended

roadway departures with a human-in-the-loop. Rather than

separately solving the threat assessment, decision making,

and intervention problems, we reformulate them as a single

combined optimization problem. In particular, a predictive

optimal control problem is formulated which simultaneously

uses predicted drivers behavior and determines the least intru-

sive intervention to keep the vehicle in a region of the state

space where the driver is deemed safe. This work assumed a

perfect driver model and did not model the uncertainty in the

prediction.

In this paper we extend the work presented in [14], [15]

and propose an uncertain driver model to provide robust

guarantees of constraint satisfaction in the presence of the

driver’s uncertain behavior. The uncertainty in the driver model

is handled at the design stage by the computation of a robust

invariant set that captures the spread of the vehicle’s future

trajectories given the uncertainty in the driver model. By

tightening the constraints of the original nominal system we

solve the optimization problem to yield the optimal corrective

action needed to augment the driver’s steering to ensure

satisfaction of the safety constraints in the presence of the

uncertain driver behavior [16]. The proposed controller is

always active, which avoids the design of switching logic or

the tuning of a sliding scale. In addition, since the proposed

controller is designed to apply only the correcting control

action necessary to avoid violation of the safety constraints,

the intrusiveness of the safety application is kept minimal. In

this paper we detail the proposed framework and show its

effectiveness through simulations.

This paper is structured as follows. In section II definitions

of invariant sets are presented and the Robust MPC framework

is outlined. In section III the vehicle and uncertain driver

models are developed. Section IV details the robust invariant

set computation. Section V presents the safety constraints and

section VI formulates the Robust MPC problem. Finally, in

section VII we present the simulation results showing the

behavior of the proposed controller.
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II. INVARIANT SETS AND ROBUST MPC

A. Background on Set Invariance Theory

In this section several definitions are provided that will be

important in developing the Robust MPC later in this paper.

We follow the notation used in [17].

Denote by fa the constrained, discrete time linear au-

tonomous system perturbed by a bounded, additive distur-

bance. The system dynamics are

x(t+ 1) = fa(x(t), w(t)) = Ax(t) + w(t) (1)

where x(t) and w(t) denote the state and the disturbance

vectors, respectively. System (1) is subject to the constraints

x(t) ∈ X ⊆ R
n, w(t) ∈ W ⊆ R

d, (2)

where X and W are polyhedra that contain the origin in their

interiors.

Definition 1: (Reachable set for autonomous systems) we

define the one-step robust reachable set for initial states x

contained in the set S as

Reachfa(S,W)
△
= {x ∈ R

n|

∃ x(0) ∈ S, ∃ w ∈ W : x = fa(x(0), w)}.
(3)

For the nominal system, i.e., with w(t) = 0, ∀t, the one-step

reachable set is defined as

Reachfa(S)
△
= {x ∈ R

n|∃ x(0) ∈ S : x = fa(x(0))}. (4)

Similarly, for systems with inputs

x(t+1) = f(x(t), u(t), w(t)) = Ax(t)+Bu(t)+w(t), (5)

subject to the constraints

x(t) ∈ X , u(t) ∈ U ⊆ R
m, w(t) ∈ W , (6)

the one-step robust reachable set is defined as follows.

Definition 2: (Reachable set for systems with external in-

puts) the one-step robust reachable set for initial states x

contained in the set S is

Reachf (S,W)
△
= {x ∈ R

n|

∃ x(0) ∈ S, ∃ u ∈ U , ∃ w ∈ W : x = fa(x(0), u, w)}.
(7)

Therefore, all states contained in S are mapped into the

reach set Reachfa under the map fa for all disturbances

w ∈ W , and under the map f for all inputs u ∈ U and

all disturbances w ∈ W . We will next define robust invariant

sets. Robust invariant sets are computed for the autonomous

system (1)-(2). We define the robust invariant set as follows:

Definition 3: (Robust Positive Invariant Set) A set Z ⊆ X
is said to be a robust invariant set for the autonomous system

(1) subject to the constraints in (2), if

x(0) ∈ Z ⇒ x(t) ∈ Z, ∀w(t) ∈ W , ∀t ∈ N
+ (8)

Definition 4: (Maximal Robust Positive Invariant Set) The

set Z∞ ⊆ X is the maximal robust invariant set for the

autonomous system (1) subject to the constraints in (2), if

Z∞ is a robust invariant set and Z∞ contains all positive

invariant sets contained in X that contain the origin.

Two important operations for the discussion to follow

are the Pontryagin difference and the Monkowski sum. The

Pontryagin difference of two polytopes P and Q is a polytope

P ⊖Q := {x ∈ R
n : x+ q ∈ P , ∀q ∈ Q}, (9)

and the Minkowski sum of P and Q is a polytope

P ⊕Q := {x+ q ∈ R
n : x ∈ P , q ∈ Q}. (10)

B. Background on Robust MPC

In this section we outline the framework used to develop

the robust model predictive controller in section VI. We

follow a notation similar to [18]. The control problem is

divided into two components: (1) a feedforward control input

computed for the nominal system and (2) a linear state

feedback controller that acts on the error between the actual

state and the predicted nominal state. We denote the control

sequence and the disturbance sequence for system (5)-(6) as

u = {u0, u1, ..., uN−1} and w = {w0, w1, ..., wN−1} for

t = 0...N − 1. Let Φ(t;x,u,w) denote the solution of (5)

at time t controlled by u when x(0) = x. Furthermore, let

Φ̄(t, x, ū) denote the solution of the nominal system

x̄(t+ 1) = Ax̄(t) +Bū(t) (11)

at time t controlled by the nominal control sequence ū =
{ū0, ū1, ..., ūN−1} when x(0) = x. Denote the predicted

nominal state trajectory by x̄ = {x̄0, x̄1, ..., x̄N−1}. We write

the controller as

v(t) = ū(t) +K(x(t)− x̄(t)) (12)

where ū(t) is the feedforward component for the nominal sys-

tem and K(x(t)−x̄(t)) is the linear state feedback component

acting on the error between the actual state and the predicted

nominal state. We make use of the following assumption.

Assumption 1: (Stabilizing Disturbance Rejection Con-

troller) The linear state feedback gain K ∈ R
m×n in (12)

is chosen such that AK = A+BK is Hurwitz.

Using the above definitions we can formulate the following

Proposition. The details can be found in [18].

Proposition 1: Suppose that Assumption 1 is satisfied and

that Z is a robust positively invariant set for the perturbed

system (5)-(6) with control law (12). If x ∈ {x̄} ⊕ Z , then

x(t + 1) ∈ {x̄(t + 1)} ⊕ Z for all admissible disturbance

sequences w(t) ∈ W .

Proposition 1 states that if the control law (12) is used it will

keep the states x(t) = Φ(t;x,u,w) of the uncertain system

(5) within the robust positive invariant set Z centered on the

predicted state trajectory Φ̄(t, x, ū) of the nominal system (11)

for all admissible disturbance sequences w:

x(0) ∈ {x̄0}⊕Z ⇒ x(t) ∈ {x̄t}⊕Z ∀w(t) ∈ W , ∀t ≥ 0,
(13)
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Fig. 1. Modeling notation.

where x(0) and x̄0 are the initial states of (5) and (11).

Proposition 1 suggests that if the optimal control problem for

the nominal system (11) is solved for the tightened constraints

X̄ = X ⊖ Z, Ū = U ⊖KZ, (14)

then the use of the control law (12) will ensure persistent

constraint satisfaction for the controlled uncertain system (5)

[18].

III. MODELING

In this section the models utilized for control are introduced.

The dynamic equations of the vehicle are presented in III-A

and the driver model used for prediction of driver behavior is

introduced in III-B. In III-C the vehicle and driver models are

combined to form a closed-loop model the incorporates both

the vehicle and driver behavior.

A. Vehicle Model

The error dynamics of a vehicle are linear with respect to the

lateral motion within the lane by assuming a constant velocity,

Vx, and constraining the slip angles, αi, to operate in the linear

region of the tire forces. The differential equations describing

the motion are compactly written as,

ẋ(t) = Ax(t) +Bu(t) +Eψ̇road(t) (15)

where the state is x(t) = [ey, ėy, eψ, ėψ]
T ∈ R

4×1 at time t

and x0 = x(0), the control input u = δ is the steering angle

command and the system matrices A ∈ R
4×4, B ∈ R

4×1,

and E ∈ R
4×1 are detailed in [2]. we denote by m and Iz the

vehicle mass and yaw inertia. eψ and ey denote the vehicle

orientation and lateral position, respectively, in a road aligned

coordinate frame. The tire cornering stiffness is denoted Cαf
and Cαr for the front and rear tires, respectively. The lateral

tire force components in the vehicle body frame are modeled

as,

Fyi = −Cαiαi, i ∈ {f, r} (16)

where αi is the slip angle at wheel i. We assume only the

steering angles of the front wheels can be controlled, i.e., δf =

δ and δr = 0. In addition, an actuator which corrects the driver

commanded steering angle, such that δ = δd+δc, is available,

where δd is the driver commanded steering angle and δc is the

correcting steering angle component. See the reference in [2]

for more details of the vehicle model.

B. Uncertain Driver Model

We utilize a model of the driver’s steering behavior. In gen-

eral, an accurate description of the driver’s behavior requires

complex models accounting for a large amount of exogenous

signals [19], [20]. We are interested in very simple model

structures, enabling the design of a low complexity model-

based threat assessment and control design algorithm. In this

paper the driver’s steering behavior is described by a model,

where the vehicle state and the road geometry information

are exogenous signals, the steering angle is the model output

and the steering model parameters are estimated based on the

observed behavior of the driver. The modeling and estimation

of the driver behavior considered in this paper was presented in

[7]. In this paper we extend the model to include the uncertain

characteristics.

Define the orientation error e
lp
ψ , w.r.t. a look-ahead point as

in Figure 1,

e
lp
ψ = ψ − ψlproad = eψ +∆ψroad, (17)

where ψ
lp
d is the desired orientation at time t + tlp, with t

the current time, ∆ψd = ψd − ψ
lp
d and tlp the preview time

that can be mapped into the preview distance dlp under the

assumption of constant speed vx. We compute an estimate of

the driver commanded steering angle δ̂d as,

δ̂d = Kyey +Kψe
lp
ψ = Kyey +Kψeψ +Kψ∆ψroad,

(18)

with Ky and Kψ as gains that are, in general, time varying

and are updated online. Clearly, ∆ψroad in (17) depends

on the preview time tlp that, in our modeling framework,

is considered as a parameter of the driver model. We also

remark that the steering model (18) is velocity dependant since

∆ψroad also depends on the vehicle speed vx.

Estimation results of the driver model parameters in (17)-

(18), obtained using a nonlinear recursive least squares algo-

rithm, are presented in [7] for both normal and aggressive

driving styles. We use the value of δ̂d obtained in (18) as a

linear state-dependent estimate of the driver’s steering input.

The actual value of δd is assumed to lie in an interval centered

at δ̂d. Then,

W(x) =
{

δd : ‖δd − δ̂d‖ ≤ ǫ > 0, ‖δd‖ ≤ δd,max

}

, (19)

where ǫ is a parameter that must be chosen. The constraint

δd ∈ W(x) can also be expressed in terms of a polytopic

contraint in R, independent of x, by using a conservative

approximation. That is,

δd ∈ W(x)⇒ δd ∈ {δ̂d ⊕W} ⊆ R (20)
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The feedback equation for the driver model is compactly

written as

u(t) = Fx(t) +G∆ψroad + w(t) + v(t) (21)

where w(t) ∈ W , F = [Ky, 0, Kψ, 0] ∈ R
1×4 and G =

[Kψ] ∈ R. Clearly, u(t) = δ̂d(t) + w(t) + v(t) where v(t)
has been introduced as an exogenous input signal and will be

determined by the robust control law (12).

C. Driver-in-the-Loop Vehicle Model

We write the model (15), in closed-loop with the uncertain

driver model (21), as

ẋ(t) = Adm x(t) +B v(t) +Edmp(t) +Bw(t) (22)

where Adm = (A + BF) ∈ R
4×4 is the closed-loop system

matrix, Edm ∈ R
4×2 is the augmented parameter matrix where

Edm = [E BG], p(t) = [ψ̇road ∆ψroad]
T ∈ R

2×1, and w(t)
is the bounded additive disturbance vector. By propagating

the state according (22) a prediction that incorporates both

the vehicle dynamics and the driver’s behavior is obtained.

By using the definitions provided in section II-A and the

framework introduced in section II-B, v(t) is chosen to provide

robust guarantees on constraint satisfaction in the presence of

uncertain driver behavior.

IV. ROBUST INVARIANT SET COMPUTATION

The objective of the robust model predictive controller is to

determine a corrective steering action to keep the driver safe in

the presence of uncertain driver input (20). In this section we

derive the robust control law for the uncertain system defined

in (22). The robust analysis is done off-line and the notion of

robust invariant sets is important for the discussion to follow.

Recall control law (12). The choice of the stabilizing state

feedback gain matrix K will determine the size of the robust

invariant set. In this paper we choose K as the optimal infinite

horizon LQR solution K∞
LQR. Then,

v(t) = ū(t) +K∞

LQR(x(t) − x̄(t)). (23)

We can then compute the robust positive invariant set Z
needed to calculate the tightened constraints X̄ and Ū defined

in (14). Note that Z is dependent upon the choice of K .

The robust invariant set Z is used to determine the tightened

constraints for the nominal system. Algorithm 1 will calculate

the reachable set Z (definition 3) if it converges in a finite

number of steps. For the problem to be well-posed we make

the assumption that the tightened constraints X̄ and Ū exist

and contain the origin. For this assumption to hold it is

required that W is sufficiently small. Clearly there is a design

trade-off between disturbance rejection properties (large K)

and the size of the tightened constraints.

Algorithm 1 Computation of Z

Input: fa, X0, W
Output: Z

1: Let Ω0 = X0

2: Let Ωk+1 = Reachfa(Ωk,W) ∪ Ωk
3: if Ωk+1 = Ωk then

4: Z ← Ωk+1

5: else

6: GOTO 2.
7: end if

V. SYSTEM CONSTRAINTS

We recall that the overall aim of the safety system proposed

in this paper is to keep the vehicle in the lane while maintain-

ing a stable vehicle motion. In this section, we express the

requirements that the vehicle stays in the lane while operating

in a stable operating region as constraints on the vehicle state

and input variables.

Let eyi be the distances of the four vehicle corners from

the lane centerline. The requirement that the vehicle stays in

the lane is then expressed as,

ēymin
≤ eyi ≤ ēymax

, i ∈ {1, 2, 3, 4}. (24)

where ēymin
and ēymax

are derived from the tightened con-

straint set X̄ projected onto the state ey, [ēymin
, ēymax

] =
Projey (X̄ ). In addition to staying in the lane, we require

that the vehicle operates in a region of the state space where

the vehicle is easily maneuverable by a normally skilled

driver. By limiting the slip angles to the linear region of

the lateral tire force characteristics the vehicle behavior is

predictable by most drivers and Electronic Stability Control

(ESC) systems are inactive [21], [22]. The requirement that the

vehicle operates in stable operating conditions is thus ensured

by limiting the tire slip angles αi,

αimin
≤ αi ≤ αimax

, ∀i. (25)

The constraints (24)-(25) are compactly written as,

h(x, v) ≤ 0, (26)

where 0 is the zero vector with appropriate dimension.

VI. ROBUST PREDICTIVE CONTROL PROBLEM

In this section we formulate the threat assessment and con-

trol problems as a Model Predictive Control Problem (MPC).

At each sampling time instant an optimal input sequence is

calculated by solving a constrained finite time optimal control

problem. The computed optimal control input sequence is only

applied to the plant during the following sampling interval. At

the next time step the optimal control problem is solved again,

using new measurements.

We discretize the closed-loop driver controlled system (22)

with a fixed sampling time Ts and formulate the nominal
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optimization problem with tightened constraints, to be solved

at each time instant, as

min
ū,ε

N−1
∑

k=0

||ūt+k,t||
2
Q + ||∆ūt+k,t||

2
R + ρε (27a)

s.t. x̄t+k+1,t = fdm(x̄t+k,t, ūt+k,t), (27b)

ht(x̄t+k,t, ūt+k,t) ≤ 1ε, ε ≥ 0, (27c)

ūt+k,t = ∆ūt+k,t + ūt+k−1,t, (27d)

ūt+k,t ∈ Ū , (27e)

∆ūt+k,t ∈ ∆Ū , (27f)

ūt−1,t = ū(t− 1), (27g)

x̄t,t = x̄(t), (27h)

where t denotes the current time instant and x̄t+k,t denotes the

predicted state at time t+ k obtained by applying the control

sequence ū = {ūt,t, . . . , ūt+k,t} to system (27d) with x̄t,t =
x̄(t). N denotes the prediction horizon. The safety constraints

(26) have been imposed as soft constraints, by introducing the

slack variable ε in (27a) and (27c). Q, R and ρ are weights of

appropriate dimension penalizing control action, change rate

of control, and violation of the soft constraints, respectively.

We note that no penalty on deviation from a tracking

reference is imposed in the cost function (27a). The objective

here is to ensure that the safety constraints (26) are not

violated, while utilizing minimal control action. If the driver

steering model (18) predicts the vehicle will not violate the

safety constraints (26), no control action will be applied and

the optimal cost will thus be zero.

VII. RESULTS

In this section the results from simulations are presented.

The model predictive control problem is solved using Tom-

lab/NPSOL at each time step. The off-line analyses to de-

termine the robust invariant sets and solve for the tightened

constraints was done by running Algorithm 1 in Matlab

using MPT Toolbox. Table I lists the parameters used in the

simulations. Two scenarios are considered, (1) where the driver

approaches an obstacle on the right of the roadway, and (2)

where the driver navigates between two obstacles obstructing

the lane.

TABLE I
SIMULATION PARAMETERS

Parameter Value Units Parameter Value Units

m 2050 kg N 15 -

Iz 3344 kg.m2 ey [0,-5] m
µ 1 - ēy [-0.36,-4.63] m
Cα 80,000 - u [0.2,-0.2] rad
Ts 50 ms ū [0.16,-0.16] rad
Q,R 1,1 - α [4◦,-4◦] deg

ρ 10
4 - W [0.1,-0.1] rad

A. Single Obstacle

Figure 2 captures a snapshot of the moment the model

predictive controller must add corrective steering action. Two

trajectories are shown. Trajectory 2 is the one predicted by the

40 45 50 55

−5

0

(m)X

(m
)

Y X

X̄

Trajectory 1

Trajectory 2

Fig. 2. Trajectory 1 is assisted by the controller to keep the driver safe.
Trajectory 2 is the expected driver input and collides with the obstacle.
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Fig. 3. The inputs in Trajectory 1 and 2 as well as the corrective action ū
determined by the controller.

nominal driver model only, in Equation (18), and is depicted

by the vehicles in outline. This is the expected steering input

predicted for the driver. Clearly, the vehicle is predicted

to collide with the obstacle, denoted by the constraint X .

Trajectory 1 is the corrected trajectory and ensures satisfaction

for the tightened constraints X̄ for any disturbance in the

predicted driver model, w ∈ W . The tightened constraints are

shown in dashes and the drawn vehicles show the predicted

trajectory with the corrective action. Figure 3 plots the inputs

for Trajectory 1 and 2. ū is the added corrective action from

the solution to the nominal optimization problem, δ̂d is the

nominal driver model from Trajectory 2, and u is the final

augmented steering from Trajectory 1.

B. Multiple Obstacles

In this section we simulate the proposed controller during a

scenario where the vehicle approaches two obstacles. Similar

to the scenario detailed in section VII-A, the vehicle encoun-

ters an obstacle in the road and the controller must intervene

to keep the driver safe. Immediately after the first obstacle the

vehicle encounters a second, an intervention is again needed

to ensure the safety constraints are satisfied.

In Figure 4 the nominal trajectory, x̄, as well as the disturbed

trajectory, x, are shown. Boxes are plotted along the trajectory

to show the geometry of the vehicle at various points in time.

In addition, a sketch Zey = projey (Z) is plotted to illustrate

the size of the robust invariant set in the ey dimension. The

tightened constraints X̄ are shown in dashed lines. In Figure

5 the calculated inputs are shown for the scenario presented

in Figure 4. δ̂d is the nominal steering angle determined by

the driver model, ū is the corrective action calculated by the

nominal MPC problem, and unom is the final augmented input

for the nominal trajectory, x̄. Further, the disturbed input,
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Fig. 4. A plot of the nominal trajectory, x̄, the disturbed trajectory, x, and
a projection of the robust invariant set along the nominal trajectory.
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Fig. 5. The inputs showing the corrective action from the controller, ū, the
input from the driver model augmented with the controller action, unom, the
input with additive disturbance, udis, and the steering from the driver model,

δ̂d.

udis, is plotted. It is clear to see the disturbed trajectory is

contained within the robust invariant set around the nominal

state trajectory.

VIII. CONCLUSION

In this paper a robust control framework is proposed for

lane departure avoidance and obstacle collision avoidance for

semi-autonomous ground vehicles. The framework formulates

this problem as a model predictive control problem. A vehicle

model is simulated in closed-loop with an uncertain driver

model to obtain a prediction of the driver’s future trajectory.

A robust positive invariant set is found for a given control

law and Robust MPC is used to tighten the original input and

state constraints to ensure constraint satisfaction even in the

presence of uncertain driver behavior. Various scenarios are

simulated where the driver approaches multiple obstacles in

the roadway. An optimization problem is solved to find the

minimal amount of corrective action to keep the driver safe

while still satisfying the safety constraints in the presence of

uncertainty. The promising results of the simulations presented

motivate an effort to study the behavior of the proposed

controller in an experimental setting.
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