ArticleLiterature Review

Sepsis-Induced Acute Lung Injury Is Alleviated by Small Molecules from Dietary Plants via Pyroptosis Modulation

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Sepsis-induced acute respiratory distress syndrome (ARDS) has high morbidity and mortality, and it has three major pathogeneses, namely alveolar-capillary barrier destruction, elevated gut permeability, and reduced neutrophil extracellular traps (NETS), all of which are pyroptosis-involved. Due to limitations of current agents like adverse reaction superposition, inevitable drug resistance, and relatively heavier financial burden, naturally extracted small-molecule compounds have a broad market even though chemically modified drugs have straightforward efficacy. Despite increased understanding of the molecular biology and mechanism underlying sepsis-induced ARDS, there are no specific reviews concerning how small molecules from dietary plants alleviate sepsis-induced acute lung injury (ALI) via regulating pyroptotic cell death. Herein, we traced and reviewed the molecular underpinnings of sepsis-induced ALI with a focus on small-molecule compounds from dietary plants, the top three categories of which are respectively flavonoids and flavone, terpenoids, and polyphenol and phenolic acids, and how they rescued septic ALI by restraining pyroptosis.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
Sepsis is a manifestation of the immune and inflammatory response to infection, which may lead to multi-organ failure. Health care advances have improved outcomes in critical illness, but it still remains the leading cause of death. Septic cardiomyopathy is heart dysfunction brought on by sepsis. Septic cardiomyopathy is a common consequence of sepsis and has a mortality rate of up to 70%. There is a lack of understanding of septic cardiomyopathy pathogenesis; knowledge of its pathogenesis and the identification of potential therapeutic targets may reduce the mortality rate of patients with sepsis and lead to clinical improvements. The present review aimed to summarize advances in the pathogenesis of cardiac dysfunction in sepsis, with a focus on mitochondrial dysfunction, metabolic changes and cell death modalities and pathways. The present review summarized diagnostic criteria and outlook for sepsis treatment, with the goal of identifying appropriate treatment methods for this disease.
Article
Keratin 7 (Krt7) is a member of the keratin family and is primarily involved in cytoskeleton composition. It has been shown that Krt7 is able to influence its own remodeling and interactions with other signaling molecules via phosphorylation at specific sites unique to Krt7. However, its molecular mechanism in acute lung injury (ALI) remains unclear. In this study, differential proteomics was used to analyze lung samples from the receptor for advanced glycation end products (RAGE)-deficient and (wild-type)WT-septic mice. We screened for the target protein Krt7 and identified Ser53 as the phosphorylation site using mass spectrometry (MS), and this phosphorylation further triggered the deformation and disintegration of Desmoplakin (Dsp), ultimately leading to epithelial barrier dysfunction. Furthermore, we demonstrated that in sepsis, mDia1/Cdc42/p38 MAPK signaling activation plays a role in septic lung injury. We also explored the mechanism of alveolar dysfunction of the Krt7-Dsp complex in the epithelial cell barrier. In summary, the present findings increase our understanding of the pathogenesis of septic acute lung injury.
Article
Full-text available
Background Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. Methods and findings In this study, we compared COVID-19 ARDS (n = 43) and bacterial sepsis-induced (non-COVID-19) ARDS (n = 24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within- ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. Conclusion We present a first comprehensive molecular characterization of differences between two ARDS etiologies–COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.
Article
Full-text available
Background: Ferroptosis is a nonapoptotic form of programmed cell death, which may be related to the occurrence and development of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). Mucin 1 (MUC1) is a kind of macromolecule transmembrane glycoprotein. Previous studies have shown that MUC1 could relieve ALI in sepsis and predict whether sepsis patients would develop into ARDS. However, the role of MUC1 in the ferroptosis of sepsis-induced ALI/ARDS remains unclear. Materials and methods: Sera samples from 50 patients with sepsis/septic shock were used to detect iron metabolism-related markers. Western blot and qRT-PCR were conducted to detect the expression levels of ferroptosis-related genes. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate inflammatory factors. Transmission electron microscopy (TEM) was used to assess morphological changes of cells. Results: The results showed that the iron metabolism-related indicators in sepsis-induced ARDS patients changed significantly, suggesting the iron metabolism disorder. The expression levels of ferroptosis-related genes in lung tissues of sepsis had marked changes, and the lipid peroxidation levels increased, while Ferrostatin-1 (Fer-1) could reverse the above results, which confirmed the occurrence of ferroptosis. In terms of mechanism studies, inhibition of MUC1 dimerization could increase the expression level of Keap1, reduce the phosphorylation level of GSK3β, inhibit the entry of Nrf2 into the nucleus, further inhibit the expression level of GPX4, enhance the lipid peroxidation level of lung tissues, trigger ferroptosis, and aggravate lung injury. Besides, inhibiting MUC1 reversed the alleviating effect of vitamin E on ALI caused by sepsis, increased the aggregation of inflammatory cells in lung tissues, and aggravated alveolar injury and edema. Conclusions: Our study was the first to explore the changes of iron metabolism indicators in ALI/ARDS of sepsis, clarify the important role of ferroptosis in ALI/ARDS induced by sepsis, and reveal the effects and specific mechanisms of MUC1 in regulating ferroptosis, as well as the sensitization on vitamin E.
Article
Full-text available
Background Interleukin (IL)-18 is a marker of inflammasome activation, and high baseline plasma IL-18 is associated with increased mortality in patients with sepsis-induced ARDS. The aim of this analysis was to determine if simvastatin was associated with benefit in patients with ARDS and high plasma IL-18. Methods In this secondary analysis of the HARP-2 study, we compared 28-day mortality and response to simvastatin according to baseline plasma IL-18 using cox proportional hazards analysis. Separately, monocyte-derived macrophages from healthy volunteers were pre-incubated with simvastatin or rosuvastatin before stimulation with ATP and LPS, and the effect on secreted IL-18 and IL-1β compared. Results 511 patients from HARP-2 had available data. High baseline plasma IL-18 (≥ 800 pg/ml) was associated with increased 28-day mortality (high IL-18 30.6% vs. low IL-18 17.5%; HR 1.89 [95% CI 1.30–2.73]; p = 0.001). Allocation to simvastatin in patients with high baseline plasma IL-18 was associated with a lower probability of 28-day mortality compared with placebo (24.0% vs 36.8%; p = 0.01). Finally, simvastatin, but not rosuvastatin, reduced stimulated macrophage secretion of IL-18 and IL-1β. Conclusion In patients with high baseline plasma IL-18, simvastatin is associated with a higher probability of survival, and this effect may be due to reduced inflammasome activation. These data suggest that baseline plasma IL-18 may allow a personalised treatment approach by identifying patients with ARDS who could benefit from simvastatin therapy.
Article
Full-text available
Epidemiological studies have shown that particulate matters with diameter less than 2.5 μm (PM2.5) play an important role in inducing and promoting respiratory diseases, but its underlying mechanism remains to be explored. The air–blood barrier, also known as the alveolar–capillary barrier, is the key element of the lung, working as the site of oxygen and carbon dioxide exchange between pulmonary vasculatures. In this study, a mouse PM2.5 exposure model was established, which leads to an induced lung injury and air–blood barrier disruption. Oxidative stress and pyroptosis were observed in this process. After reducing the oxidative stress by N-acetyl-L-cysteine (NAC) treatment, the air–blood barrier function was improved and the effect of PM2.5 was alleviated. The level of pyroptosis and related pathway were also effectively relieved. These results indicate that acute PM2.5 exposure can cause lung injury and the alveolar–capillary barrier disruption by inducing reactive oxygen species (ROS) with the participation of pyroptosis pathway.
Article
Full-text available
Approximately 50% of stroke survivors experience gastrointestinal complications. The innate immune response plays a role in changes to the gut-brain axis after stroke. The purpose of this study is to examine the importance of inflammasome-mediated pyroptosis in disruption of the gut-brain axis after experimental stroke. B6129 mice were subjected to a closed-head photothrombotic stroke. We examined the time course of inflammasome protein expression in brain and intestinal lysate using western blot analysis at 1-, 3-, and 7-days post-injury for caspase-1, interleukin-1β, nod-like receptor protein 3 (NLRP3), and apoptosis speck-like protein containing a caspase-recruiting domain (ASC) and gasdermin-D (GSDMD) cleavage. In a separate group of mice, we processed brain tissue 24 and 72 h after thrombotic stroke for immunohistochemical analysis of neuronal and endothelial cell pyroptosis. We examined intestinal tissue for morphological changes and pyroptosis of macrophages. We performed behavioral tests and assessed gut permeability changes to confirm functional changes after stroke. Our data show that thrombotic stroke induces inflammasome activation in the brain and intestinal tissue up to 7-day post-injury as well as pyroptosis of neurons, cerebral endothelial cells, and intestinal macrophages. We found that thrombotic stroke leads to neurocognitive and motor function deficits as well as increased gut permeability. Finally, the adoptive transfer of serum-derived EVs from stroke mice into naive induced inflammasome activation in intestinal tissues. Taken together, these results provide novel information regarding possible mechanisms underlying gut complications after stroke and the identification of new therapeutic targets for reducing the widespread consequences of ischemic brain injury.
Article
Full-text available
Severe influenza kills tens of thousands of individuals each year, yet the mechanisms driving lethality in humans are poorly understood. Here we used a unique translational model of lethal H5N1 influenza in cynomolgus macaques that utilizes inhalation of small-particle virus aerosols to define mechanisms driving lethal disease. RNA sequencing of lung tissue revealed an intense interferon response within two days of infection that resulted in widespread expression of interferon-stimulated genes, including inflammatory cytokines and chemokines. Macaques with lethal disease had rapid and profound loss of alveolar macrophages (AMs) and infiltration of activated CCR2+ CX3CR1+ interstitial macrophages (IMs) and neutrophils into lungs. Parallel changes of AMs and neutrophils in bronchoalveolar lavage (BAL) correlated with virus load when compared to macaques with mild influenza. Both AMs and IMs in lethal influenza were M1-type inflammatory macrophages which expressed neutrophil chemotactic factors, while neutrophils expressed genes associated with activation and generation of neutrophil extracellular traps (NETs). NETs were prominent in lung and were found in alveolar spaces as well as lung parenchyma. Genes associated with pyroptosis but not apoptosis were increased in lung, and activated inflammatory caspases, IL-1β and cleaved gasdermin D (GSDMD) were present in bronchoalveolar lavage fluid and lung homogenates. Cleaved GSDMD was expressed by lung macrophages and alveolar epithelial cells which were present in large numbers in alveolar spaces, consistent with loss of epithelial integrity. Cleaved GSDMD colocalized with viral NP-expressing cells in alveoli, reflecting pyroptosis of infected cells. These novel findings reveal that a potent interferon and inflammatory cascade in lung associated with infiltration of inflammatory macrophages and neutrophils, elaboration of NETs and cell death by pyroptosis mediates lethal H5N1 influenza in nonhuman primates, and by extension humans. These innate pathways represent promising therapeutic targets to prevent severe influenza and potentially other primary viral pneumonias in humans.
Article
Full-text available
Pyroptosis is a form of cell death triggered by the innate immune system that has been implicated in the pathogenesis of sepsis and acute lung injury. At the cellular level, pyroptosis is characterized by cell swelling, membrane rupture, and release of inflammatory cytokines, such as IL-1β. However, the role of endogenous lipids in pyroptosis remains underappreciated. We discovered that 4-hydroxynonenal (HNE), a major endogenous product of lipid peroxidation, inhibited pyroptosis and inflammasome activation. HNE at physiological concentrations (3 µM) blocked nigericin and ATP-induced cell death, as well as secretion of IL-1β, by mouse primary macrophages and human peripheral blood mononuclear cells. Treatment with HNE, or an increase of endogenous HNE by inhibiting glutathione peroxidase 4, reduced inflammasome activation in mouse models of acute lung injury and sepsis. Mechanistically, HNE inhibited the NLRP3 inflammasome activation independently of Nrf2 and NF-κB signaling, and had no effect on the NLRC4 or AIM2 inflammasome. Furthermore, HNE directly bound to NLRP3 and inhibited its interaction with NEK7. Our findings identify HNE as a novel, endogenous inhibitor of the NLRP3 inflammasome.
Article
Full-text available
Gene transcription is governed by epigenetic regulation that is essential for the pro-inflammatory mediators surge following pathological triggers. Acute lung injury (ALI) is driven by pro-inflammatory cytokines produced by the innate immune system, which involves the nod-like receptor 3 (NLRP3) inflammasome and nuclear factor-κB (NF-κB) pathways. These two pathways are interconnected and share a common inducer the phosphatidylinositol 4,5-bisphosphate (PIP2), an epigenetic regulator of (Ribosomal ribonucleic acid (rRNA) gene transcription, to regulate inflammation by the direct inhibition of NF-κB phosphorylation and NLRP3 inflammasome activation. Herein, we report that hederasaponin C (HSC) exerted a therapeutic effect against ALI through the regulation of the PIP2/NF-κB/NLRP3 signaling pathway. In lipopolysaccharide (LPS)/lipopolysaccharide + adenosine triphosphate (LPS+ATP)-stimulated macrophages, our results showed that HSC remarkably inhibited the secretion of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). Moreover, HSC inhibited NF-κB/p65 nuclear translocation and the binding of PIP2 to transforming growth factor-β activated kinase 1 (TAK1). The intracellular calcium (Ca²⁺) level was decreased by HSC via the PIP2 signaling pathway, which subsequently inhibited the activation of NLRP3 inflammasome. HSC markedly alleviated LPS-induced ALI, restored lung function of mice, and rescued ALI-induced mice death. In addition, HSC significantly reduced the level of white blood cells (WBC), neutrophils, and lymphocytes, as well as pro-inflammatory mediators like IL-6, IL-1β, and TNF-α. Hematoxylin and eosin (H&E) staining results suggested HSC has a significant therapeutic effect on lung injury of mice. Interestingly, the PIP2/NF-κB/NLRP3 signaling pathway was further confirmed by the treatment of HSC with ALI, which is consistent with the treatment of HSC with LPS/LPS+ATP-stimulated macrophages. Overall, our findings revealed that HSC demonstrated significant anti-inflammatory activity through modulating the PIP2/NF-κB/NLRP3 axis in vitro and in vivo, suggesting that HSC is a potential therapeutic agent for the clinical treatment of ALI.
Article
Full-text available
Background Acute lung injury (ALI) is an acute multifactorial infectious disease induced by trauma, pneumonia, shock, and sepsis. This study aimed to investigate the protective effects of pseudoephedrine and emodin combined treatment in experimental ALI, as well as the mechanisms underlying the regulation of inflammation and pulmonary edema via the VIP/cAMP/PKA pathway. Methods The wistar rats were randomly divided into fifteen groups (n = 5). Rats in each group were given intragastric administration 1 h before LPS injection. Those in the control and LPS groups were given intragastric administrations of physiological saline, rats in other groups were given intragastrically administered of differential dose therapeutic agents. The rats in the LPS and treatment groups were then injected intraperitoneally with LPS (7.5 mg/kg) to induce ALI. After being treated with pseudoephedrine and emodin for 12 h, all animals were sacrifice. Anal temperatures were taken on an hourly basis for 8 h after LPS injection. Pathological examination of lung specimen was performed by H&E staining. Cytokines (IL-1β, TNF-α, IL-6, iNOS, IL-10, Arg-1, CD86, CD206, F4/80, VIP) in lung tissue were assayed by ELISA and immunofluorescence. The expression of VIP, CAMP, AQP-1, AQP-5, p-PKA, PKA, p-IκBα, IκBα, p-p65, p65, p-P38, P38, p-ERK1/2, ERK1/2, p-JNK1/2, JNK1/2 protein in lung was determined by western blotting. Results After rats being treated with pseudoephedrine + emodin, reduced of fever symptoms. The contents of inflammatory cytokines (IL-1β, TNF-α, IL-6, iNOS) were decreased and anti-inflammatory cytokines (IL-10, Arg-1) were significantly increased in serum. Pseudoephedrine + emodin treatment effectively promoted VIP cAMP and p-PKA protein expression in lung tissues, and significantly inhibited NF-κB, MAPK phosphorylation, Pseudoephedrine + emodin treatment can inhibit M1 polarization and promoted M2 polarization via the VIP/cAMP/PKA signaling pathway. Conclusions The combination of Pseudoephedrine and emodin was effective in ameliorating LPS-induced ALI in rats by inducing VIP/cAMP/PKA signaling. Inhibiting the NF-κB, MAPK inflammatory pathway, relief of pulmonary edema suppressing macrophage M1 polarization, and promoting macrophage M2 polarization.
Article
Full-text available
Background Acute respiratory distress syndrome (ARDS) is one of the leading causes of death in patients with sepsis. As such, early and accurate identification of sepsis-related ARDS is critical. Methods Bioinformatic analysis was used to explore the GEO datasets. ELISA method was used to detect the plasma or cellular supernatant of relevant proteins. Quantitative real-time PCR was used for mRNA measurements and Western blot was applied for protein measurements. Immunohistochemistry staining and Immunofluorescence staining were used to identify the localization of OLFM4. Cecal ligation and puncture (CLP) model was used to establish sepsis model. Results The bioinformatic analysis results identified ten genes (CAMP, LTF, RETN, LCN2, ELANE, PGLYRP1, BPI, DEFA4, MPO, and OLFM4) as critical in sepsis and sepsis-related ARDS. OLFM4, LCN2, and BPI were further demonstrated to have diagnostic values in sepsis-related ARDS. Plasma expression of OLFM4 and LCN2 was also upregulated in sepsis-related ARDS patients compared to septic patients alone. OLFM4 expression was significantly increased in the lung tissues of septic mice and was co-localized with Ly6G+ neutrophils, F4/80+ macrophages and pro-surfactant C+ lung epithelial cells. In vitro data showed that OLFM4 expression in lung epithelial cells was downregulated upon LPS stimulation, whereas neutrophil media induced OLFM4 expression in lung epithelial cells. Overexpression of OLFM4 and treatment with recombinant OLFM4 effectively suppressed LPS-induced pro-inflammatory responses in lung epithelial cells. Furthermore, the increased levels of LDHA phosphorylation and the downstream NF-κB activation induced by LPS in epithelial cells were effectively diminished by OLFM4 overexpression and recombinant OLFM4 treatment via a reduction in ROS production and HIF1α expression. Conclusion OLFM4 may regulate the pro-inflammatory response of lung epithelial cells in sepsis-related ARDS by modulating metabolic disorders; this result could provide new insights into the treatment of sepsis-induced ARDS.
Article
Full-text available
5-Hydroxymethylfurfural (5-HMF) is a common reaction product during heat processing and the preparation of many types of foods and Traditional Chinese Medicine formulations. The aim of this study was to evaluate the protective effect of 5-HMF on endotoxin-induced acute lung injury (ALI) and the underlying mechanisms. Our findings indicate that 5-HMF attenuated lipopolysaccharide (LPS)-induced ALI in mice by mitigating alveolar destruction, neutrophil infiltration and the release of inflammatory cytokines. Furthermore, the activation of macrophages and human monocytes in response to LPS was remarkably suppressed by 5-HMF in vitro through inhibiting the NF-κB signaling pathway, NLRP3 inflammasome activation and endoplasmic reticulum (ER) stress. The inhibitory effect of 5-HMF on NLRP3 inflammasome was reversed by overexpressing ATF4 or CHOP, indicating the involvement of ER stress in the negative regulation of 5-HMF on NLRP3 inflammasome-mediated inflammation. Consistent with this, the ameliorative effect of 5-HMF on in vivo pulmonary dysfunction were reversed by the ER stress inducer tunicamycin. In conclusion, our findings elucidate the anti-inflammatory and protective efficacy of 5-HMF in LPS-induced acute lung injury, and also demonstrate the key mechanism of its action against NLRP3 inflammasome-related inflammatory disorders via the inhibition of ER stress.
Article
Full-text available
Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection that often results in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). An emerging mechanism of sepsis-induced ARDS involves neutrophils/macrophages undergoing cell death, releasing nuclear histones to cause tissue damage that exacerbates pulmonary injury. While published studies focus on unmodified histones, little is known about the role of citrullinated histone H3 (CitH3) in the pathogenesis of sepsis and ALI. In this study, we found that levels of CitH3 were elevated in the patients with sepsis-induced ARDS and correlated to PaO2/FiO2 in septic patients. Systematic administration of CitH3 peptide in mice provoked Caspase-1 activation in the lung tissue and caused ALI. Neutralization of CitH3 with monoclonal antibody improved survival and attenuated ALI in a mouse sepsis model. Furthermore, we demonstrated that CitH3 induces ALI through activating Caspase-1 dependent inflammasome in bone marrow derived macrophages and bone marrow derived dendritic cells. Our study suggests that CitH3 is an important mediator of inflammation and mortality during sepsis-induced ALI.
Article
Full-text available
Pneumonia, such as acute lung injury (ALI), has been a type of lethal disease that is generally caused by uncontrolled inflammatory response and excessive generation of reactive oxygen species (ROS). Herein, we report Fe-curcumin-based nanoparticles (Fe-Cur NPs) with nanozyme functionalities in guiding the intracellular ROS scavenging and meanwhile exhibiting anti-inflammation efficacy for curing ALI. The nanoparticles are noncytotoxic when directing these biological activities. Mechanism studies for the anti-inflammation aspects of Fe-Cur NPs were systematically carried out, in which the infected cells and tissues were alleviated through downregulating levels of several important inflammatory cytokines (such as TNF-α, IL-1β, and IL-6), decreasing the intracellular Ca²⁺ release, inhibiting NLRP3 inflammasomes, and suppressing NF-κB signaling pathways. In addition, we performed both the intratracheal and intravenous injection of Fe-Cur NPs in mice experiencing ALI and, importantly, found that the accumulation of such nanozymes was enhanced in lung tissue (better than free curcumin drugs), demonstrating its promising therapeutic efficiency in two different administration methods. We showed that the inflammation reduction of Fe-Cur NPs was effective in animal experiments and that ROS scavenging was also effectively achieved in lung tissue. Finally, we revealed that Fe-Cur NPs can decrease the level of macrophage cells (CD11bloF4/80hi) and CD3⁺CD45⁺ T cells in mice, which could help suppress the inflammation cytokine storm caused by ALI. Overall, this work has developed the strategy of using Fe-Cur NPs as nanozymes to scavenge intracellular ROS and as an anti-inflammation nanodrugs to synergistically cure ALI, which may serve as a promising therapeutic agent in the clinical treatment of this deadly disease. Fe-Cur NP nanozymes were designed to attenuate ALI by clearing intracellular ROS and alleviating inflammation synergistically. Relevant cytokines, inflammasomes, and signaling pathways were studied.
Article
Full-text available
Background Honokiol (HKL) has been reported to ameliorate lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, its potential mechanism of its protective effects remains unclear. In this study, the protective mechanism of HKL on LPS-induced ALI was explored in vivo and in vitro . Methods In vivo, the SD rats were intratracheally instilled with LPS (5 mg/kg) to establish an acute lung injury model and then treated with HKL (1.25/2.5/5 mg/kg) or ML385 (30 mg/kg) intraperitoneally. In vitro, the human bronchial epithelial cell line (BEAS-2B) was stimulated with LPS and ATP to induce pyroptosis and treated with HKL (12.5/25/50 μM). Small interfering RNA (siRNA) technique was used to knockdown Nrf2 in BEAS-2B cells. The protein and mRNA expression levels of Nrf2, HO-1, NLRP3, ASC, CASP1, and GSDMD in cells and lung tissues were detected by western blot and real time-PCR. The expression levels of interleukin (IL)-1β, IL-18, MPO, MDA, and SOD in bronchoalveolar lavage fluid (BALF) and supernatant were determined by ELISA. The degree of pathological injury of lung tissue was evaluated by H&E staining. Results The results showed that HKL could alleviate oxidative stress and inflammatory responses by regulating the levels of MPO, MDA, SOD, IL-1β, IL-18 in supernatant. And it could also inhibit the expression levels of NLRP3, ASC, CASP1, GSDMD via activation of Nrf2 in BEAS-2B cells. Further studies revealed that HKL could attenuate the pathological injury in LPS-induced ALI rats, and the molecular mechanism was consistent with the results in vitro. Conclusions Our study demonstrated that HKL could alleviate LPS-induced ALI by reducing the oxidative stress and inhibiting NLRP3 inflammasome-mediated pyroptosis, which was partly dependent on the Nrf2 activation. Graphical Abstract
Article
Full-text available
Endophytic fungi are proving to be an excellent source of chemical entities with unique structures and varied bioactivities. Terretonin (TE) and its structurally related derivatives are a class of meroterpenoids, possessing the same unique tetracyclic core skeleton, which have been reported from the Aspergillus genus. This study was carried out to assess the potential protective effects of TE separated from the endophytic fungus A. terreus against LPS (lipopolysaccharide)-induced ALI (acute lung injury) in mice. The results revealed that TE alleviated pulmonary edema as it lowered both the W/D lung ratio and protein content. The inflammatory response represented by inflammatory cell infiltration into the lung tissues was greatly repressed by TE. That was supported by the improved histopathological results and also by the reduced level of myeloperoxidase in the lung. TE showed a potent antioxidant activity as it attenuated lipid peroxidative markers (malondialdehyde, 4-hydroxynonenal, and protein carbonyl) and enhanced endogenous antioxidants (reduced glutathione, superoxide dismutase, and catalase) in lung tissues. Similarly, TE increased the mRNA expression of SIRT1, Nrf2, and its genes (HO-1, NQO1, and GCLm). On the other hand, TE restrained the activation of NF-κB (nuclear factor-κB) in the lung. Consequently, TE depressed the pro-inflammatory cytokines: nitric oxide (NOx), TNF-α (tumor necrosis factor-α), and interleukins (IL-6 and -1β). Additionally, TE inhibited NLRP3 signaling and interrupted apoptosis by decreasing the levels of proapoptotic markers (Bax and caspase-3) and increasing the level of an anti-apoptotic marker (Bcl-2). In conclusion, TE had a remarkable protective potential on LPS-induced lung damage via antioxidant and anti-inflammatory mechanisms. This finding encourages further investigations on this promising candidate.
Article
Full-text available
Acute lung injury (ALI) is a common lung disease characterized by severe acute inflammatory lung injury in patients with sepsis. Syringaresinol (SYR) has been reported to have anti-apoptotic and anti-inflammatory effects, but whether it could prevent pyroptosis to improve sepsis-induced ALI remains unclear. The purpose of this work was to examine the impact of SYR on sepsis-induced ALI and investigate the underlying mechanisms. The ALI model was induced by caecal ligation and puncture (CLP) in C57BL/6 mice, structural damage in the lung tissues was determined using haematoxylin and eosin (HE) staining, and the levels of related inflammatory cytokines and macrophage polarization were examined by enzyme-linked immunosorbent assays (ELISAs) and flow cytometry, respectively. The activation of the NLRP3 inflammasome and the protein levels of TLR4, NF-κB and MAPKs was measured by western blotting. The results demonstrated that SYR pretreatment significantly reduced lung tissue histological damage, inhibited the production of proinflammatory cytokines and albumin in bronchoalveolar lavage fluid (BALF), and decreased myeloperoxidase (MPO) levels, thereby alleviating lung tissue injury. Meanwhile, septic mice treated with SYR displayed a higher survival rate and lower percentage of M1 macrophages in the BALF and spleen than septic mice. In addition, lung tissues from the CLP + SYR group exhibited downregulated protein expression of NLRP3, ASC, GSDMD caspase-1 p20 and TLR4, along with decreased phosphorylated levels of NF-κB, ERK, JNK and P38, indicating that SYR administration effectively prevented CLP-induced pyroptosis in the lung. SYR also suppressed LPS-induced pyroptosis in RAW 264.7 cells by inhibiting the activation of the NLRP3 inflammasome, which was abolished by an oestrogen receptor-β (ERβ) antagonist (PHTPP). In conclusion, SYR exerted protective effects on CLP-induced ALI via the oestrogen receptor-β signalling pathway.
Article
Full-text available
This study investigated the effect and mechanism of chrysosplenol D (CD) on LPS-induced acute lung injury in mice. Histological changes in the lungs were measured by hematoxylin-eosin staining. The levels of IL-6, IL-1β, and TNF-α in the bronchoalveolar lavage fluid were detected by ELISA. The levels of oxidative stress were detected by the cuvette assay. Immune cells in peripheral blood, the levels of reactive oxygen species, and apoptosis of primary lung cells were detected by flow cytometry. The mRNA levels of TLR4, MyD88, IL-1β, and NLRP3 were measured by quantitative real-time polymerase chain reaction. The levels of proteins in apoptosis and the TLR4-MAPKs/NF-κB signaling pathways were detected by Western blot. Hematoxylin-eosin staining showed that CD could improve lung injury; decrease the levels of inflammatory factors, oxidative stress, reactive oxygen species, and cell apoptosis; and regulate the immune system. Moreover, CD could down-regulate the mRNA levels of TLR4, MyD88, NLRP3, and IL-1β in lung, and the protein levels of Keap-1, Cleaved-Caspase-3/Caspase-3, Cleaved-Caspase-9/Caspase-9, TLR4, MyD88, p-ERK/ERK, p-JNK/JNK, p-p38/p38, p-p65/p65, NLRP3, and IL-1β, and up-regulated the levels of Bcl-2/Bax, p-Nrf2/Nrf2, and HO-1. The results suggested that CD could protect mice against LPS-induced acute lung injury by inhibiting oxidative stress, inflammation, and apoptosis via the TLR4-MAPKs/NF-κB signaling pathways.
Article
Full-text available
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Article
Full-text available
— Emodin, the effective component of the traditional Chinese medicine Dahuang, has anti-inflammatory effects. However, the protective effects and potential mechanisms of emodin are not clear. This study investigated the protective effects and potential mechanisms of emodin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in vitro and in vivo . In vivo , we designed an LPS-induced ALI rat model. In vitro , we chose the J774A.1 cell line to establish an inflammatory cellular model, and knocked down NOD-like receptor family pyrin domain containing 3 (NLRP3) using small interfering RNA. The mRNA and protein expression of NLRP3, a C-terminal caspase recruitment domain (ASC), caspase 1 (CASP1), and gasdermin D (GSDMD) in cells and lung tissues were detected by western blot and real-time quantitative polymerase chain reaction (PCR). The expression levels of interleukin 1 beta (IL-1β) and IL-18 in the serum and supernatant were determined by the enzyme-linked immunosorbent assay. The degree of pathological injury in lung tissue was evaluated by hematoxylin and eosin (H&E) staining. In vitro , we demonstrated that emodin could inhibit NLRP3 and then inhibit the expression of ASC, CASP1, GSDMD, IL-1β, and IL-18. In vivo , we confirmed that emodin had protective effects on LPS-induced ALI and inhibitory effects on NLRP3 inflammasome -dependent pyroptosis. Emodin showed excellent protective effects against LPS-induced ALI by regulating the NLRP3 inflammasome-dependent pyroptosis signaling pathway.
Article
Full-text available
Delivering macromolecules into the cytosol or nucleus is possible in vitro for DNA, RNA and proteins, but translation for clinical use has been limited. Therapeutic delivery of macromolecules into cells requires overcoming substantially higher barriers compared to the use of small molecule drugs or proteins in the extracellular space. Breakthroughs like DNA delivery for approved gene therapies and RNA delivery for silencing of genes (patisiran, ONPATTRO®, Alnylam Pharmaceuticals, Cambridge, MA, USA) or for vaccination such as the RNA-based coronavirus disease 2019 (COVID-19) vaccines demonstrated the feasibility of using macromolecules inside cells for therapy. Chemical carriers are part of the reason why these novel RNA-based therapeutics possess sufficient efficacy for their clinical application. A clear advantage of synthetic chemicals as carriers for macromolecule delivery is their favourable properties with respect to production and storage compared to more bioinspired vehicles like viral vectors or more complex drugs like cellular therapies. If biologicals can be applied to intracellular targets, the druggable space is substantially broadened by circumventing the limited utility of small molecules for blocking protein–protein interactions and the limitation of protein-based drugs to the extracellular space. An in depth understanding of the macromolecular cargo types, carrier types and the cell biology of delivery is crucial for optimal application and further development of biologicals inside cells. Basic mechanistic principles of the molecular and cell biological aspects of cytosolic/nuclear delivery of macromolecules, with particular consideration of protein delivery, are reviewed here. The efficiency of macromolecule delivery and applications in research and therapy are highlighted.
Article
Full-text available
Purpose Although several studies demonstrate the anti-inflammatory effect of oxytocin in different pathophysiological processes, there are limited data describing the impact of oxytocin on acute respiratory distress syndrome (ARDS). We aimed to elucidate the protective effect of oxytocin in ARDS with histopathological evaluation and radiological imaging in addition to biochemical markers. Materials and Methods Fecal intraperitoneal injection procedure (FIP) was performed on 24 of 32 rats included in the study for creating a sepsis model. Rats were randomly assigned into four groups: control group (no procedure was applied, n = 8), untreated septic group [was operated (FIP) and received no treatment, n = 8], placebo group (FIP, treated with 10 ml/kg of saline at once, n = 8), and treated group (FIP, treated with 0.1 mg/kg of oxytocin at once, n = 8). Chest CT was performed for all rats 20 hours after the procedure and density of the lungs were measured manually by using HU. All animals were sacrificed for histopathological examination of lung damage and blood samples were collected for biochemical analysis. Results Plasma malondialdehyde (MDA), lactic acid (LA), C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin 1-beta (IL 1-β) levels were significantly increased in the placebo (FIP + saline) and the untreated (FIP) groups, and plasma levels of all biomarkers were reversed by oxytocin. Further, the density of the lung parenchyma (Hounsfield unit) on CT images and the histopathological lung damage score values were closer to the control group in the oxytocin-treated group compared to the placebo group. Conclusion Our findings suggested that oxytocin could exert anti-inflammatory, antioxidant and protective effects in FIP-induced ARDS.
Article
Full-text available
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2), is characterized by respiratory distress, multiorgan dysfunction, and, in some cases, death. The pathological mechanisms underlying COVID-19 respiratory distress and the interplay with aggravating risk factors have not been fully defined. Lung autopsy samples from 18 patients with fatal COVID-19, with symptom onset-to-death times ranging from 3 to 47 days, and antemortem plasma samples from 6 of these cases were evaluated using deep sequencing of SARS-CoV-2 RNA, multiplex plasma protein measurements, and pulmonary gene expression and imaging analyses. Prominent histopathological features in this case series included progressive diffuse alveolar damage with excessive thrombosis and late-onset pulmonary tissue and vascular remodeling. Acute damage at the alveolar-capillary barrier was characterized by the loss of surfactant protein expression with injury to alveolar epithelial cells, endothelial cells, respiratory epithelial basal cells, and defective tissue repair processes. Other key findings included impaired clot fibrinolysis with increased concentrations of plasma and lung plasminogen activator inhibitor-1 and modulation of cellular senescence markers, including p21 and sirtuin-1, in both lung epithelial and endothelial cells. Together, these findings further define the molecular pathological features underlying the pulmonary response to SARS-CoV-2 infection and provide important insights into signaling pathways that may be amenable to therapeutic intervention.
Article
Full-text available
Background: Polymorphonuclear neutrophils (PMNs) play an important role in sepsis-related acute lung injury (ALI). Accumulating evidence suggests PMN-derived exosomes as a new subcellular entity acting as a fundamental link between PMN-driven inflammation and tissue damage. However, the role of PMN-derived exosomes in sepsis-related ALI and the underlying mechanisms remains unclear. Methods: Tumor necrosis factor-α (TNF-α), a key regulator of innate immunity in sepsis-related ALI, was used to stimulate PMNs from healthy C57BL/6J mice in vitro. Exosomes isolated from the supernatant were injected to C57BL/6J wild-type mice intraperitoneally (i.p.) and then examined for lung inflammation, macrophage (Mϕ) polarization and pyroptosis. In vitro co-culture system was applied where the mouse Raw264.7 macrophages or bone marrow-derived macrophages (BMDMs) were co-cultured with PMN-derived exosomes to further confirm the results of in vivo animal study and explore the potential mechanisms involved. Results: Exosomes released by TNF-α-stimulated PMNs (TNF-Exo) promoted M1 macrophage activation after in vivo i.p. injection or in vitro co-culture. In addition, TNF-Exo primed macrophage for pyroptosis by upregulating NOD-like receptor 3 (NLRP3) inflammasome expression through nuclear factor κB (NF-κB) signaling pathway. Mechanistic studies demonstrated that miR-30d-5p mediated the function of TNF-Exo by targeting suppressor of cytokine signaling (SOCS-1) and sirtuin 1 (SIRT1) in macrophages. Furthermore, intravenous administration of miR-30d-5p inhibitors significantly decreased TNF-Exo or cecal ligation and puncture (CLP)-induced M1 macrophage activation and macrophage death in the lung, as well as the histological lesions. Conclusions: The present study demonstrated that exosomal miR-30d-5p from PMNs contributed to sepsis-related ALI by inducing M1 macrophage polarization and priming macrophage pyroptosis through activating NF-κB signaling. These findings suggest a novel mechanism of PMN-Mϕ interaction in sepsis-related ALI, which may provide new therapeutic strategies in sepsis patients.
Article
Full-text available
The NLRP3 inflammasome mediates the production of proinflammatory cytokines and initiates inflammatory cell death. Although NLRP3 is essential for innate immunity, aberrant NLRP3 inflammasome activation contributes to a wide variety of inflammatory diseases. Understanding the pathways that control NLRP3 activation will help develop strategies to treat these diseases. Here we identify WNK1 as a negative regulator of the NLRP3 inflammasome. Macrophages deficient in WNK1 protein or kinase activity have increased NLRP3 activation and pyroptosis compared with control macrophages. Mice with conditional knockout of WNK1 in macrophages have increased IL-1β production in response to NLRP3 stimulation compared with control mice. Mechanistically, WNK1 tempers NLRP3 activation by balancing intracellular Cl– and K+ concentrations during NLRP3 activation. Collectively, this work shows that the WNK1 pathway has a critical function in suppressing NLRP3 activation and suggests that pharmacological inhibition of this pathway to treat hypertension might have negative clinical implications. The serine/threonine kinase WNK1 is an inhibitor of chloride efflux. Here the authors show that this inhibition is a means of negatively regulating the activation of the NLRP3 inflammasome in macrophages, leading to reduced inflammatory responses.
Article
Full-text available
Background The mechanisms by which moderate tidal volume ventilation (MTV) exacerbates preexisting lung injury are unclear. We hypothesized that systemic endotoxemia via the gut-lung axis would lead to non-canonical and canonical inflammasome activation and pyroptosis in a two-hit model involving polyinosinic-polycytidylic acid (Poly(I:C)), a synthetic analog of dsRNA and MTV and that this would associate with acute lung injury (ALI). Methods Anesthetized mice were administered Poly(I:C) intratracheally and then 6 h later, they were mechanically ventilated for 4 h with otherwise non-injurious MTV (10ml/kg). Changes in intestinal and alveolar capillary permeability were measured. Further documentation of ALI was assessed by evans blue albumin permeability, protein and IL-1 family concentration in bronchoalveolar lavage fluid (BALF) or plasma, and histopathology in cohorts of wildtype (WT), whole body genetically ablated caspase-11 (caspase-11-/-), caspase-1/caspase-11 double knockout (caspase-1/11-/-), gasdermin D (GSDMD)-/-, nucleotide-binding domain leucine-rich repeat-containing protein 3 (NLRP3)-/- and advanced glycosylation end product-specific receptor (RAGE) -/- mice. Results Non-injurious MTV exacerbated the mild lung injury associated with Poly(I:C) administration. This included the disruption of alveolar-capillary barrier and increased levels of interleukin (IL)-6, high mobility group proteins 1 (HMGB-1), IL-1β in BALF and IL-18 in plasma. Combined (Poly(I:C)-MTV) injury was associated with increase in gastrointestinal permeability and endotoxin in plasma and BALF. Poly(I:C)-MTV injury was sensitive to caspase-11 deletion with no further contribution of caspase-1 except for maturation and release of IL-18 (that itself was sensitive to deletion of NLRP3). Combined injury led to large increases in caspase-1 and caspase-11. Genetic ablation of GSDMD attenuated alveolar-capillary disruption and release of cytokines in combined injury model. Conclusions The previously noted exacerbation of mild Poly(I:C)-induced ALI by otherwise non-injurious MTV is associated with an increase in gut permeability resulting in systemic endotoxemia. The gut-lung axis resulted in activation of pulmonary non-canonical (cytosolic mediated caspase-11 activation) and canonical (caspase-1) inflammasome (NLRP3) mediated ALI in this two-hit model resulting in GSDMD sensitive alveolar capillary barrier disruption, pyroptosis (alveolar macrophages) and cytokine maturation and release (IL-1β; IL-18). Pharmacologic strategies aimed at disrupting communication between gut and lung, inhibition of inflammasomes or GSDMD in pyroptosis may be useful in ALI.
Article
Full-text available
Neutrophil-mediated activation and injury of the endothelium play a role in the pathogenesis of diverse disease states ranging from autoimmunity to cancer to COVID-19. Neutralization of cationic proteins (such as neutrophil extracellular trap/NET-derived histones) with polyanionic compounds has been suggested as a potential strategy for protecting the endothelium from such insults. Here, we report that the FDA-approved polyanionic agent defibrotide (a pleotropic mixture of oligonucleotides) directly engages histones and thereby blocks their pathological effects on endothelium. In vitro, defibrotide counteracted endothelial cell activation and pyroptosis-mediated cell death, whether triggered by purified NETs or recombinant histone H4. In vivo, defibrotide stabilized the endothelium and protected against histone-accelerated inferior vena cava thrombosis in mice. Mechanistically, defibrotide demonstrated direct and tight binding to histone H4 as detected by both electrophoretic mobility shift assay and surface plasmon resonance. Taken together, these data provide insights into the potential role of polyanionic compounds in protecting the endothelium from thromboinflammation with potential implications for myriad NET- and histone-accelerated disease states.
Article
Full-text available
Acute liver failure (ALF) is a rare and critical medical condition. This study was designed to investigate the protective effects and underlying mechanism of ACY1215 in ALF mice. Our findings suggested that ACY1215 treatment ameliorates the pathological hepatic damage of ALF and decreases the serum levels of ALT and AST. Furthermore, ACY1215 pretreatment increased the level of ATM, γ‐H2AX, Chk2, p53, p21, F‐actin and vinculin in ALF. Moreover, ACY1215 inhibited the level of NLRP3, ASC, caspase‐1, IL‐1β and IL‐18 in ALF. The ATM inhibitor KU55933 could decrease the level of ATM, γ‐H2AX, Chk2, p53, p21, F‐actin and vinculin in ALF with ACY1215 pretreatment. The F‐actin inhibitor cytochalasin B decreased the level of F‐actin and vinculin in ALF with ACY1215 pretreatment. However, cytochalasin B had no effect on protein levels of ATM, Chk2, p53 and p21 in ALF with ACY1215 pretreatment. Cytochalasin B could dramatically increase the level of NLRP3, ASC, caspase‐1, IL‐1β and IL‐18 in ALF with ACY1215 pretreatment. These results indicated that ACY1215 exhibited hepatoprotective properties, which was associated with the inhibition of NLRP3 inflammasome, and this effect of ACY1215 was connected with upregulation of the ATM/F‐actin mediated signalling pathways.
Article
Full-text available
Sepsis-induced endothelial acute respiratory distress syndrome (ARDS) is related to microvascular endothelial dysfunction caused by endothelial glycocalyx disruption. Recently, recombinant antithrombin (rAT) was reported to protect the endothelial glycocalyx from septic vasculitis; however, the underlying mechanism remains unknown. Here, we investigated the effect of rAT administration on vascular endothelial injury under endotoxemia. Lipopolysaccharide (LPS; 20 mg/kg) was intraperitoneally injected into 10-week-old male C57BL/6 mice, and saline or rAT was intraperitoneally administrated at 3 and 24 h after LPS administration. Subsequently, serum and/or pulmonary tissues were examined for inflammation and cell proliferation and differentiation by histological, ultrastructural, and microarray analyses. Survival rate was significantly higher in rAT-treated mice than in control mice 48 h after LPS injection (75% vs. 20%, p < 0.05). Serum interleukin-1β was increased but to a lesser extent in response to the LPS injection in rAT-treated mice than in the control mice. Lectin staining and ultrastructural studies showed a notable attenuation of injury to the endothelial glycocalyx after rAT treatment. Microarray analysis further revealed an upregulation of gene sets corresponding to DNA repair, such as genes involved in DNA helicase activity, regulation of telomere maintenance, DNA-dependent ATPase activity, and ciliary plasm, following rAT treatment. Thus, rAT treatment may promote DNA repair, attenuate inflammation, and promote ciliogenesis, thereby attenuating the ARDS caused by endothelial injury.
Article
Full-text available
Sepsis in premature newborns is a risk factor for bronchopulmonary dysplasia (BPD), but underlying mechanisms of lung injury remain unclear. Aberrant expression of endothelial cell (EC) angiopoietin 2 (ANGPT2) disrupts angiopoietin 1 (ANGPT1)/TIE2-mediated endothelial quiescence, and is implicated in sepsis-induced acute respiratory distress syndrome in adults. We hypothesized that recombinant ANGPT1 will mitigate sepsis-induced ANGPT2 expression, inflammation, acute lung injury (ALI), and alveolar remodeling in the saccular lung. Effects of recombinant ANGPT1 on lipopolysaccharide (LPS)-induced endothelial inflammation were evaluated in human pulmonary microvascular endothelial cells (HPMEC). ALI and long-term alveolar remodeling were assessed in newborn mice exposed to intraperitoneal LPS and recombinant ANGPT1 pretreatment. LPS dephosphorylated EC TIE2 in association with increased ANGPT2 in vivo and in vitro. ANGPT1 suppressed LPS and ANGPT2-induced EC inflammation in HPMEC. Neonatal mice treated with LPS had increased lung cytokine expression, neutrophilic influx, and cellular apoptosis. ANGPT1 pre-treatment suppressed LPS-induced lung Toll-like receptor signaling, inflammation, and ALI. LPS-induced acute increases in metalloproteinase 9 expression and elastic fiber breaks, as well as a long-term decrease in radial alveolar counts, were mitigated by ANGPT1. In an experimental model of sepsis-induced BPD, ANGPT1 preserved endothelial quiescence, inhibited ALI, and suppressed alveolar simplification. Key message: Angiopoietin 1 inhibits LPS-induced neonatal lung injury and alveolar remodeling. Additions to existing literature: Demonstrates dysregulation of angiopoietin-TIE2 axis is important for sepsis- induced acute lung injury and alveolar simplification in experimental BPD. Establishes recombinant Angiopoietin 1 as an anti-inflammatory therapy in BPD. Impact: Angiopoietin 1-based interventions may represent novel therapies for mitigating sepsis-induced lung injury and BPD in premature infants.
Article
Full-text available
Pyroptosis is the process of inflammatory cell death. The primary function of pyroptosis is to induce strong inflammatory responses that defend the host against microbe infection. Excessive pyroptosis, however, leads to several inflammatory diseases, including sepsis and autoimmune disorders. Pyroptosis can be canonical or noncanonical. Upon microbe infection, the canonical pathway responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), while the noncanonical pathway responds to intracellular lipopolysaccharides (LPS) of Gram-negative bacteria. The last step of pyroptosis requires the cleavage of gasdermin D (GsdmD) at D275 (numbering after human GSDMD) into N- and C-termini by caspase 1 in the canonical pathway and caspase 4/5/11 (caspase 4/5 in humans, caspase 11 in mice) in the noncanonical pathway. Upon cleavage, the N-terminus of GsdmD (GsdmD-N) forms a transmembrane pore that releases cytokines such as IL-1β and IL-18 and disturbs the regulation of ions and water, eventually resulting in strong inflammation and cell death. Since GsdmD is the effector of pyroptosis, promising inhibitors of GsdmD have been developed for inflammatory diseases. This review will focus on the roles of GsdmD during pyroptosis and in diseases.
Article
Full-text available
Simple Summary In this review, the genetic landscape of squamous cell carcinoma is related to the potential targets of indirubin-based small molecules in cancer therapy. Being a component of traditional Chinese medicine, indirubins are used to treat chronic or inflammatory diseases, and have received increasing attention in cancer treatment due to their proapoptotic and antiproliferative activity. Frequent genetic alterations of squamous cell carcinomas are summarized, and it is discussed how these may render tumors susceptible to indirubin-based small molecule inhibitors. Abstract Skin cancers are the most common malignancies in the world. Among the most frequent skin cancer entities, squamous cell carcinoma (SCC) ranks second (~20%) after basal cell carcinoma (~77%). In early stages, a complete surgical removal of the affected tissue is carried out as standard therapy. To treat advanced and metastatic cancers, targeted therapies with small molecule inhibitors are gaining increasing attention. Small molecules are a heterogeneous group of protein regulators, which are produced by chemical synthesis or fermentation. The majority of them belong to the group of receptor tyrosine kinase inhibitors (RTKIs), which specifically bind to certain RTKs and directly influence the respective signaling pathway. Knowledge of characteristic molecular alterations in certain cancer entities, such as SCC, can help identify tumor-specific substances for targeted therapies. Most frequently, altered genes in SCC include TP53, NOTCH, EGFR, and CCND1. For example, the gene CCND1, which codes for cyclin D1 protein, is upregulated in nearly half of SCC cases and promotes proliferation of affected cells. A treatment with the small molecule 5′-nitroindirubin-monoxime (INO) leads to inhibition of cyclin D1 and thus inhibition of proliferation. As a component of Danggui Longhui Wan, a traditional Chinese medicine, indirubins are used to treat chronic diseases and have been shown to inhibit inflammatory reactions. Indirubins are pharmacologically relevant small molecules with proapoptotic and antiproliferative activity. In this review, we discuss the current literature on indirubin-based small molecules in cancer treatment. A special focus is on the molecular biology of squamous cell carcinomas, their alterations, and how these are rendered susceptible to indirubin-based small molecule inhibitors. The potential molecular mechanisms of the efficacy of indirubins in killing SCC cells will be discussed as well.
Article
Circular RNAs (circRNAs) have important regulation in in sepsis-related acute lung injury (ALI). Circ_0001498 was significantly overexpressed in sepsis-induced acute respiratory distress syndrome. The aims of this study were to explore role and mechanism of circ_0001498 in lipopolysaccharide (LPS)-treated WI-38 cells. Human samples were collected from 56 sepsis patients and 46 healthy volunteers at Liyang People's Hospital. Circ_0001498, microRNA-574-5p (miR-574-5p) or sex-determining region Y-related high-mobility-group box 6 (SOX6) levels were detected via reverse transcription-quantitative polymerase chain reaction assay. Cell viability was determined through Cell Counting Kit-8 assay. Apoptosis rate was examined by flow cytometry. Western blot was used for measurement of proteins. Inflammatory cytokines were detected via enzyme-linked immunosorbent assay. Target relation was analyzed via dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Circ_0001498 was overexpressed in sepsisrelated ALI patients and LPS-treated WI-38 cells. Silencing circ_0001498 reduced LPS-induced cell apoptosis and inflammation. Circ_0001498 interacted with miR-574-5p. The regulation of circ_0001498 knockdown was abolished by miR-574-5p inhibitor. Furthermore, miR-574-5p directly targeted SOX6 and circ_0001498 upregulated SOX6 via targeting miR-574-5p. Overexpression of miR-574-5p alleviated LPS-induced cell injury by downregulating SOX6. This research identified that circ_0001498 facilitated sepsis-related ALI progression by targeting miR-574-5p to upregulate SOX6.
Article
The assembly of inflammasomes drives caspase-1 activation, which further promotes proinflammatory cytokine secretion and downstream pyroptosis. The discovery of novel caspase-1 inhibitors is pivotal to developing new therapeutic means for inflammasome-involved diseases. In our present study, sennoside A (Sen A), a popular ingredient in multiple weight-loss medicines and dietary supplements, is found to potently inhibit the enzymatic activity of caspase-1 in vitro. Sen A considerably decreased IL-1β production in macrophages stimulated by LPS plus ATP, nigericin or MSU as well as poly(dA:dT) transfection, and remedied ROS-involved pyroptosis via caspase-1 inhibition. Mechanistically, Sen A not only suppressed the assembly of both NLRP3 and AIM2 inflammasome but also affected the priming process of NLRP3 inflammasome by blocking NF-κB signaling. Sen A significantly ameliorated the pathophysiological effect in LPS-, MSU- and carrageenan-challenged rodent models by suppressing inflammasome activation. Furthermore, P2X7 was indispensable for Sen A inhibiting NLRP3 inflammasome since it failed to further decrease IL-1β and IL-18 production in LPS plus ATP-stimulated BMDMs that were transfected with P2X7 siRNA. Sen A also restrained the large pore-forming functionalities of the P2X7R as verified by the YO-PRO-1 uptake assay. Taken together, Sen A inactivates caspase-1 to inhibit NLRP3 and AIM2 inflammasome-involved inflammation in a P2X7-dependent manner, making it an attractive candidate as a caspase-1 small-molecular inhibitor.
Article
Objective: To explore the effect and mechanism of baicalin in the treatment of acute lung injury (ALI) by and experiments. Methods: ALI was induced by instilling 10 mg/mL lipopolysaccharide (LPS) into the airway of rats. Different doses of baicalin (50 and 100 mg·kg ·d) were administered by gavage one day before modeling. Results: Baicalin significantly reduced the permeability of the alveolocapillary membrane, alleviated tissue injury and inflammatory infiltration, and inhibited the secretion of inflammatory factors and the infiltration of neutrophils. The decline in these inflammations was related to the inhibition of the toll like receptor-4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB)/nod-like receptor pyrin containing 3 (NLRP3) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway. Conclusions: Baicalin inhibits the secretion of inflammatory factors by inhibiting the TLR4-MyD88-NF-κB/NLRP3 pathway and the MAPK signaling pathway. Thus, it reduces lung bronchial epithelial layer, alveolar damage, and pulmonary edema as detected in the and experiments. Therefore, baicalin may be a potential preventive and therapeutic drug for ALI.
Article
Acute lung injury (ALI) is the leading cause of bacterial sepsis-related death because of disrupted pulmonary endothelial barrier, resulting in protein-rich pulmonary oedema, an influx of pro-inflammatory cells and refractory hypoxaemia. Several studies have reported that C3a levels are significantly higher in organs with sepsis and their peripheral organs and are closely associated with organ dysfunction and poor prognosis in sepsis. However, the role of the C3a complement in sepsis ALI remains unclear. Therefore, this study aimed to investigate the important role and mechanism of C3a in preventing the occurrence of pyroptosis (a pro-inflammatory form of cell death) to protect the lung endothelial cells (ECs) in sepsis-induced ALI. A septic mouse model was established with caecal ligation and puncture (CLP), which demonstrated that C3a mediated EC pyroptosis through its C3aR receptor. Furthermore, inhibition of the C3a–C3aR axis could block both NLRP3/caspase-1 and caspase-11 pathways, thus preventing pulmonary EC from pyroptosis. These results indicate that inhibition of the C3A–C3AR complement axis can inhibit pulmonary vascular EC pyroptosis, a potential target for the treatment of ALI.
Article
The pathogenesis of sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) has not yet been fully elucidated. Growth arrest–specific 6 (Gas6) has marked effects on hemostasis and reduces inflammation through its interaction with receptor tyrosine kinases of the TAM family: Tyro3, Axl, and Mer. Here, we found that plasma concentrations of Gas6 and soluble Mer were greater in patients with severe sepsis or septic ALI/ARDS compared with those in normal healthy donors. To determine whether the Gas6-Mer axis was critical in the pathogenesis of ALI/ARDS, we investigated the effects of intravenous administration of the selective Mer inhibitor UNC2250 on lipopolysaccharide (LPS)–induced ALI in mouse models subjected to inhalation of LPS. UNC2250 markedly inhibited the infiltration into the lungs of neutrophils and monocytes with increased amounts of Gas6 and Mer proteins, severe lung damage, and increased amounts of reactive oxygen species (ROS) in LPS-induced ALI in mice. In human pulmonary aortic endothelial cells, LPS induced decreases in the amounts of endothelial nitric oxide synthase, thrombomodulin, and vascular endothelial–cadherin, which was blocked by treatment with UNC2250. UNC2250 also inhibited the LPS-dependent increases in cell proliferation and enhanced apoptosis in HL-60 cells, a human neutrophil–like cell line, and RAW264.7 cells, a mouse monocyte/macrophage cell line. These data provide insights into the potential multiple beneficial effects of the Mer inhibitor UNC2250 as a therapeutic reagent to treat inflammatory responses in ALI/ARDS.
Article
Sepsis is involved in ~ 20% of annual global deaths. Despite decades of research, the current management of sepsis remains supportive rather than curative. Clinical trials in sepsis have mainly been focused on targeting the inflammatory pathway, but without success. Recent data indicate that metabolic dysregulation takes place in sepsis, and targeting metabolic pathways might hold much promise for the management of sepsis. Sepsis yields a strong starvation response, including the release of high-energy metabolites such as lactate and free fatty acids. However, the activity of two major transcription factors, GR and PPARα, is downregulated in hepatocytes, leading to the accumulation and toxicity of metabolites that, moreover, fail to be transformed into useful molecules such as glucose and ketones. We review the literature and suggest mechanisms and potential therapeutic targets that might prevent or revert the fatal metabolic dysregulation in sepsis.
Article
Background aims Sepsis-induced acute respiratory distress syndrome (ARDS) can be mediated by an imbalance in macrophage polarization; however, the underlying mechanisms remain poorly understood. This study aimed to investigate the modulatory role of sirtuin 6 (SIRT6) in macrophage polarization during sepsis-induced ARDS. Methods A mouse ARDS model was established using cecal ligation and puncture. Isolated alveolar macrophages (AMs) and lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDMs) were adopted as in vitro models. Macrophage polarization was evaluated by measuring M1 and M2 macrophage percentages via flow cytometry and expression of specific markers. The expression of microtubule-associated light chain protein 3I/II and beclin-1 was detected for assessing macrophage autophagy. Binding between specificity protein 1 (SP1) and the target gene promoter was evaluated using a chromatin immunoprecipitation assay. RNA expression was analyzed by quantitative reverse transcription polymerase chain reaction and western blotting. Results Treatment with the SIRT6 activator UBCS039 significantly alleviated lung injury in the mouse ARDS model and enhanced autophagy and M2 polarization in isolated AMs. M2 polarization and autophagy in LPS-challenged BMDMs were also effectively promoted by UBCS039 treatment or SIRT6 overexpression. An adenosine monophosphate-activated protein kinase inhibitor (Compound C) or autophagy inhibitor (3-methyladenine) partially abrogated M2 polarization mediated by SIRT6 overexpression upon LPS exposure. SIRT6 induced autophagy and M2 polarization of BMDMs partially via its deacetylase activity. SIRT6 inhibited mammalian target of rapamycin transcription by modulating SP1 to promote BMDM M2 polarization, which was independent of autophagy. Conclusions SIRT6 promotes M2 polarization of macrophages to alleviate sepsis-induced ARDS in an autophagy-dependent and -independent manner.
Article
Ethnopharmacological relevance Physalin B (PB) is an active constituent of Physalis alkekengi L. var. Franchetii, which is a traditional medicine for clearing heat and detoxification, resolving phlegm, and diuresis. It has been commonly applied to treat sore throat, phlegm-heat, cough, dysuria, pemphigus, and eczema. Aim of study Physalin B has shown efficacy as an anti-acute lung injury (ALI) agent previously; however, its mechanisms of action remain unclear. In the present study, we established a lipopolysaccharide-induced septic ALI model using BALB/c mice to further confirm the therapeutic potential of PB and to assess the underlying molecular mechanisms. Materials and methods We used 75% ethanol and macroporous resin for extraction, separation, and enrichment of PB. The LPS-induced ALI mouse model was used to determine anti-inflammatory effects of PB. The severity of acute lung injury was evaluated by hematoxylin and eosin staining, wet/dry lung ratio, and myeloperoxidase (MPO) activity in lung tissue. An automatic analyzer was used to measure the arterial blood gas index. Protein levels of pro-inflammatory cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung tissue was measured using an ELISA. Quantitative RT-PCR was used to measure changes in RNA levels of pro-inflammatory cytokines in the lungs. A fluorometric assay kit was used for determination of apoptosis-related factors to assess anti-apoptotic effects of PB. Western blotting was used to assess levels of key pathway proteins and apoptosis-related proteins. Connections between the pathways were tested through inhibitor experiments. Results Pretreatment with PB (15 mg kg⁻¹ d⁻¹, i.g.) significantly reduced lung wet/dry weight ratios and MPO activity in blood and BALF of ALI mice, and it alleviated LPS-induced inflammatory cell infiltration in lung tissue. The levels of pro-inflammatory factors TNF-α, IL-6, and IL-1β and their mRNA levels in blood, BALF, and lung tissue were reduced following PB pretreatment. PB pretreatment also downregulated the apoptotic factors caspase-3, caspase-9, and apoptotic protein Bax, and it upregulated apoptotic protein Bcl-2. The NF-κB and NLRP3 pathways were inhibited through activation of the PI3K/Akt pathway due to PB pretreatment, whereas administration of PI3K inhibitors increased activation of these pathways. Conclusions Taken together, our results suggest that the anti-ALI properties of PB are closely associated with the inactivation of NF-κB and NLRP3 by altering the PI3K/Akt pathway. Furthermore, our findings provide a novel strategy for application of PB as a potential agent for treating patients with ALI. To the best of our knowledge, this is the first study to elucidate the underlying mechanism of action of PB against ALI.
Article
NOD-like receptor (NLR), family pyrin domain containing 3 (NLRP3) assembles a protein complex known as the NLRP3 inflammasome upon sensing certain pathogen products or sterile danger signals. Gain-of-function mutations such as the D301N substitution in NLRP3, which cause its constitutive activation (NLRP3CA) also results in inflammasome assembly. This inflammasome processes pro–interleukin-1 β (pro–IL-1β) and pro–IL-18 into bioactive IL-1β and IL-18, respectively, and cleaves gasdermin D (GSDMD). GSDMD amino-terminal fragments form plasma membrane pores that facilitate the secretion of IL-1β and IL-18 and lead to the inflammatory cell death pyroptosis. Accordingly, GSDMD inactivation results in negligible spontaneous inflammation in various experimental models such as in Nlrp3CA/+ mice lacking GSDMD (Nlrp3CA/+;Gsdmd−/− mice). Here, we found that Nlrp3CA/+;Gsdmd−/− mice, when challenged with LPS or TNF-α, still secreted IL-1β and IL-18, indicating inflammasome activation independent of GSDMD. Accordingly, Gsdmd−/− macrophages failed to secrete IL-1β and undergo pyroptosis when briefly exposed to NLRP3 inflammasome activators but released these cytokines when persistently activated. Sustained NLRP3 inflammasome induced caspase-8/-3 and GSDME cleavage and IL-1β maturation in vitro in Gsdmd−/− macrophages. Thus, a salvage inflammatory pathway involving caspase-8/-3–GSDME was activated after NLRP3 activation when the canonical NLRP3-GSDMD signaling was blocked. Consistent with genetic data, the active metabolite of FDA-approved disulfiram CuET, which inhibited GSDMD and GSDME cleavage in macrophages, reduced the severe inflammation and tissue damage that occurred in the Nlrp3CA/+ mice. Thus, NLRP3 inflammasome activation overwhelms the protection afforded by GSDMD deficiency, rewiring signaling cascades through mechanisms that include GSDME to propagate inflammation.
Article
Purpose The anticoagulant agent recombinant thrombomodulin (rTM) activates protein C to prevent excessive coagulation and also possibly regulates hyper-inflammation via neutralization of high-mobility-group B1 (HMG-B1). The glycocalyx layer in endothelial cells also plays a pivotal role in preventing septic shock–associated hyperpermeability. The present study examined the effect of rTM in a murine model of Streptococcus pneumoniae–induced sepsis. Methods Male C57BL/6N mice were injected intratracheally via midline cervical incision with 2 × 10⁷ CFU of S. pneumoniae (capsular subtype 19A). Control mice were sham-treated identically but injected with saline. rTM (10 mg/kg) was injected intraperitoneally 3 h after septic insult. Blood concentrations of soluble inflammatory mediators (interleukin [IL]-1β, IL-6, IL-10, and tumor necrosis factor [TNF]-α) were determined using a microarray immunoassay. Serum concentrations of HMG-B1 and syndecan-1, as a parameter of glycocalyx damage, were determined by enzyme-linked immunosorbent assay. The glycocalyx was also evaluated with electron microscopy. The lungs were removed, and digested to cells, which were then stained with a mixture of fluorophore-conjugated antibodies. Anti-mouse primary antibodies included PE-Cy7–conjugated anti-CD31, AlexaFluor 700–conjugated anti-CD45, PerCP-Cy5.5–conjugated anti-CD326, APC-conjugated anti–TNF-α, PE-conjugated anti–IL-6, and PE-conjugated anti–IL-10. A total of 1 × 10⁶ cells per sample were analyzed, and 2 × 10⁵ events were recorded by flow cytometry, and parameters were compared with/without rTM treatment. Results The blood concentration of TNF-α was significantly reduced 24 h after intratracheal injection in S. pneumoniae–challenged mice treated with rTM (P = 0.016). Levels of IL-10 in the lung endothelium of rTM-treated S. pneumoniae–challenged mice increased significantly 12 h after intratracheal injection (P = 0.03). Intriguingly, serum HMGB-1 and syndecan-1 levels decreased significantly (P = 0.010 and 0.015, respectively) in rTM-treated mice 24 h after intratracheal injection of S. pneumoniae. Electron microscopy indicated that rTM treatment preserved the morphology of the glycocalyx layer in septic mice. Conclusions These data suggest that rTM modulates local inflammation in the lung endothelium, thus diminishing systemic inflammation, i.e., hypercytokinemia. Furthermore, rTM treatment reduced serum syndecan-1 levels, thus preventing glycocalyx damage. The use of rTM to treat sepsis caused by bacterial pneumonia could therefore help prevent both excessive inflammation and glycocalyx injury in the lung endothelium.
Article
Upon cleavage, the Gasdermin D (GSDMD) N-terminal fragment assembles into pores on the plasma membrane to orchestrate the lytic cell death known as pyroptosis. In a recent article, Evavold et al. showed that the Ragulator-Rag-mTORC1-ROS pathway controls the transition from cleavage and membrane localization to oligomerization and pore formation.
Article
Programmed cell death (PCD) is an essential part of organismal development and plays fundamental roles in host defense against pathogens and the maintenance of homeostasis. However, excess activation of PCD pathways has proven to be detrimental and can drive disease. Additionally, resistance to PCD can also contribute to disease development. Modulation of PCD, therefore, has great therapeutic potential in a wide range of diseases, including infectious, neurodegenerative, autoinflammatory, and metabolic diseases and cancer. Nevertheless, manipulation of cell death and inflammation for therapeutic intervention is a delicate process, highly specific to the context of the disease of interest, making the selection of the appropriate target molecule crucially important. Several PCD pathways are associated with innate immunity, including pyroptosis, apoptosis, necroptosis, and PANoptosis, which is defined as an inflammatory PCD pathway with key features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these three PCD pathways alone. All of these PCD pathways are regulated by upstream sensors and signaling cascades that assemble multimeric complexes to serve as activation platforms for downstream molecules; these sensors and signaling molecules provide attractive target points for therapeutic intervention. Here, we discuss the molecular mechanisms of innate cell death in health and disease, with a particular focus on the molecules putatively involved in the formation of the PANoptosome and the induction of inflammatory cell death. Further, we discuss the implications and feasibility of targeting these molecules to improve disease outcomes, as well as current clinical approaches.
Article
Objectives Acute respiratory distress syndrome (ARDS) is characterized by an excessive pulmonary inflammatory response. Pyroptosis is a newly form of programmed inflammatory cell death that is triggered by inflammatory caspases. Studies have shown that Luteolin has powerful anti-inflammation effects through activating the function of regulatory T cells (Tregs). The study aimed at investigating the effects of Luteolin on CLP-induced ALI. Methods In our study, we employed the mouse cecal ligation and puncture (CLP) model to explore whether Luteolin contributed to alleviated lung injury in vivo. H&E staining and wet/dry (W/D) weight ratios were used to evaluate the severity of lung injury. The serum and BALF of cytokines were assessed by ELISA. The number of neutrophils in the BALF was counted. Immunohistochemistry of IL-10 and MPO in lung tissue was detected. The ROS level in lung was tested by ROS Assay Kit and expression of Gpx4 in lung tissue was detected by qRT-PCR and Western blotting. The regulatory T cells (Treg) population was analyzed in spleen and Peripheral blood mononuclear cells (PBMCs). The levels of caspase-11 protein, caspase-1 protein, GSDMD protein, IL-1α and IL-1β protein in the lung tissue was evaluated by Western blotting. Results We found Luteolin significantly inhibits inflammation and attenuated CLP-induced lung injury in vivo, and the levels of, caspase-11, caspase-1, GSDMD, IL-1α and IL-1β protein in the lungs of CLP mice decreased significantly after pretreatment with Luteolin. Furthermore, the results showed that Luteolin could increase Treg frequencies and IL-10 levels in serum and BALF of CLP mice. It is noteworthy that depleting Tregs reverse Luteolin ameliorated lung injury, and IL-10 neutralizing antibodies treatment aggravated lung pyroptosis. Conclusions Our study illustrated that Luteolin contributed to alleviated lung injury, and attenuated caspase-11-dependent pyroptosis in the lung tissue of the CLP-induced ALI mouse model. The mechanisms could be related to regulating the frequency of Tregs and the levels of Treg derived IL-10. Treg cells were show to produce IL-10 and could alleviating caspase-11-dependent lung pyroptosis.
Article
Immune deactivation of phagocytes is a central event in the pathogenesis of sepsis. Herein, we identify a master regulatory role of IL-6 signaling on LC3-associated phagocytosis (LAP) and reveal that uncoupling of these two processes during sepsis induces immunoparalysis in monocytes/macrophages. In particular, we demonstrate that activation of LAP by the human fungal pathogen Aspergillus fumigatus depends on ERK1/2-mediated phosphorylation of p47phox subunit of NADPH oxidase. Physiologically, autocrine IL-6/JAK2/Ninein axis orchestrates microtubule organization and dynamics regulating ERK recruitment to the phagosome and LC3+ phagosome (LAPosome) formation. In sepsis, loss of IL-6 signaling specifically abrogates microtubule-mediated trafficking of ERK, leading to defective activation of LAP and impaired killing of bacterial and fungal pathogens by monocytes/macrophages, which can be selectively restored by IL-6 supplementation. Our work uncovers a molecular pathway linking IL-6 signaling with LAP and provides insight into the mechanisms underlying immunoparalysis in sepsis.
Article
Although mesenchymal stromal (stem) cell (MSC) administration attenuates sepsis-induced lung injury in pre-clinical models, the mechanism(s) of action and host immune system contributions to its therapeutic effects, remain elusive. We show that treatment with MSCs decreased expression of host-derived microRNA (miR)-193b-5p and increased expression of its target gene, the tight junctional protein occludin (Ocln), in lungs from septic mice. Mutating the Ocln 3′ UTR miR-193b-5p binding sequence impaired binding to Ocln mRNA. Inhibition of miR-193b-5p in human primary pulmonary microvascular endothelial cells (HPMECs) prevents tumor necrosis factor (TNF)-induced decrease in Ocln gene and protein expression and loss of barrier function. MSC conditioned media mitigated TNF-induced miR-193b-5p upregulation and Ocln downregulation in vitro . When administered in vivo, MSC conditioned media recapitulated the effects of MSC administration on pulmonary miR-193b-5p and Ocln expression. MiR-193b deficient mice were resistant to pulmonary inflammation and injury induced by LPS instillation. Silencing of Ocln in miR-193b deficient mice partially recovered the susceptibility to LPS-induced lung injury. In vivo inhibition of miR-193b-5p protected mice from endotoxin-induced lung injury. Finally, the clinical significance of these results was supported by the finding of increased miR-193b-5p expression levels in lung autopsy samples from Acute Respiratory Distress Syndrome patients who died with diffuse alveolar damage.
Article
Sepsis and septic shock driven by microbial infections are still among the most challenging health problems, causing 11 million deaths worldwide every year. How does the host's response to pathogen infections effectively restore homeostasis instead of precipitating pathogenic and potentially fatal feedforward reactions? Recently, there have been significant new advances in our understanding of the interface between mammalian immunity and coagulation ('immunocoagulation') and its impact on sepsis. In particular, the release and activation of F3 (the main initiator of coagulation) from and on myeloid or epithelial cells is facilitated by activating inflammasomes and consequent gasdermin D (GSDMD)-mediated pyroptosis, coupled to signaling via high mobility group box 1 (HMGB1), stimulator of interferon response CGAMP interactor 1 (STING1), or sequestosome 1 (SQSTM1). Pharmacological modulation of the immunocoagulation pathways emerge as novel and potential therapeutic strategies for sepsis.
Article
Acute lung injury (ALI) is a common clinical condition with a high mortality rate and no specific treatment is available. An excessive inflammatory response contributes to the development of ALI and accelerates its progression, and the NLRP3 inflammasome and NF-κB signaling pathways are key players in inflammation. Platycodin D has been reported to have anti-oxidant and anti-stress properties in various diseases. However, the effects of PLD in ALI has not been clearly demonstrated. The aim of this study was to investigate the therapeutic effects of PLD on ALI and its possible mechanism. Our study found that PLD pre-treatment attenuated lung histopathological injury in LPS-induced SD rats and reduced the levels of inflammatory cytokines and lung wet/dry ratio in bronchoalveolar lavage fluid (BALF). In addition, PLD modulate LPS-induced production of MDA, MPO, GSH, GSH-Px and CAT in lung tissue. In addition, PLD suppressed the activation of NLRP3 inflammatory microsomes and the NF-κB signaling pathway. Thus, our results suggest that PLD are protective against LPS-induced ALI by inhibiting NLRP3 and NF-κB signaling pathway.
Article
Objective To explore the role of Forsythoside I (FI) in acute lung injury (ALI) mouse and its underling mechanism. Methods The cell models of ALI are constructed by LPS induction. After pretreatment with different concentrations of FI, the lung injury is assessed by pathological changes of lung tissues and cell apoptosis. The cell viability, levels of pro-inflammatory cytokines, and the activation of TXNIP/NLRP3 pathway are inspected to investigate whether the effect of FI on inflammatory response is exerted by regulating the TXNIP/NLRP3 pathway. Results LPS induces inflammatory cell infiltration, tissue necrosis and pulmonary interstitial edema of mouse tissues, and LPS increases the protein concentration and levels of pro-inflammatory factors in mouse BALF. Additionally, enhanced cell apoptotic level, increased W/D ratio and MPO activity, as well as suppressed SOD activity are observed in LPS-induced mouse models. Those inflammation response, oxidative stress and lung injury can be attenuated by FI (12.5 mg/kg, 25 mg/kg, 50 mg/kg) in a dose-dependent manner. Meanwhile, both in vitro and in vivo studies reveal that FI can lead to suppressed TXNIP expression and inactivated NLRP3 inflammasomes. TXNIP is an upstream target of NLRP3, and FI mitigates ALI by decreasing TXNIP to block NLRP3 inflammasomes. Conclusion FI protects against ALI through the mediation of TXNIP/NLRP3 inflammasome axis and therefore has a certain potential for ALI treatment.