ArticlePDF Available

Chondroitin Sulfates in Axon Regeneration and Plasticity

Authors:

Abstract and Figures

Chondroitin sulfate proteoglycans (CSPGs) are large extracellular matrix molecules which are highly upregulated in the glial scar after injury to the nervous system. They are mostly inhibitory and have been shown to hinder regeneration of axons across lesions. The removal of CPSGs with bacterial enzyme chondroitinase ABC improves axonal regeneration. In addition, CSPGs are a major component of perineuronal nets, which control plasticity in the CNS, and their removal enhances structural plasticity resulting in an increase in functional recovery. In this review, we shall discuss the role of CSPGs in axonal regeneration and plasticity after nervous system injury and how recent discoveries of CSPG receptors and interacting partners may shed new insights onto the function of these inhibitory molecules.
Content may be subject to copyright.
201
©2011 FCCA (Forum: Carbohydrates Coming of Age)
Trends in Glycoscience and Glycotechnology
Vol.23 No.133 (September 2011) pp.201–211
doi.10.4052/tigg.23.201
Kwok, Jessica C.F.; Tan, Chin Lik; Wang, Difei; Heller, Janosch; and Fawcett, James W.
Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson
Way, Cambridge CB2 0PY, United Kingdom
FAX: 44-1223-331174, E-mail: jcfk2@cam.ac.uk or jf108@cam.ac.uk
(Received on September 24, 2011, accepted on October 3, 2011)
Key Words
:
chondroitin sulfate proteoglycans, axon regeneration, plasticity, perineuronal net, spinal cord injury
Chondroitin Sulfates in Axon Regeneration and Plasticity
MINIREVIEW
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are large
extracellular matrix molecules which are highly upregulated
in the glial scar after injury to the nervous system. They are
mostly inhibitory and have been shown to hinder regeneration
of axons across lesions. The removal of CPSGs with bacterial
enzyme chondroitinase ABC improves axonal regeneration.
In addition, CSPGs are a major component of perineuronal
nets, which control plasticity in the CNS, and their removal
enhances structural plasticity resulting in an increase in
functional recovery. In this review, we shall discuss the role
of CSPGs in axonal regeneration and plasticity after nervous
system injury and how recent discoveries of CSPG receptors
and interacting partners may shed new insights onto the
function of these inhibitory molecules.
A. Introduction
The extension of axons during growth and regeneration
is dependent on the various extracellular matrix (ECM)
molecules present in the surrounding environment (1). These
molecules can be growth-promoting,
e.g
. laminin, bronectin
and collagen; or growth-inhibitory,
e.g
. CSPGs and tenascin.
The relative balance of promoting and inhibitory factors
together with the properties of the axons determines their
growth and guidance. The strong upregulation of CSPGs
at the site of injury hampers the endogenous regeneration
abilities of neurons. Here, we are going to examine the role of
CSPGs after injury, the use of chondroitinase ABC (ChABC)
in promoting regeneration and plasticity and recent advances
towards understanding the mechanism of CSPG inhibition.
B. CSPGs on Regeneration and Plasticity after Nervous
System Injury
The ECM of the central nervous system (CNS) is
unique in its composition and organization with relatively
small quantities of brous structural proteins and high levels
軸索再生と神経可塑性におけるコンドロイチン硫酸
要 約
コンドロイチン硫酸プロテオグリカン (CSPGs) は、巨大
胞外クスり、神経にグ
る。 CSPGs は、
位をよう索の妨げ子と
くこれてる。来のコン
イチナー ABC により CSPGs を除去することで、軸索再生
が改善される。また、CSPGs は中枢神経系の可塑性を制御す
り、CSPGs
より、強され、たら
す。説では、の軸おけ
CSPGs の役割を概説するとともに、CSPG の受容体もしく
互作発見明らきた、
らの阻害分子の機能的側面について論じる。
A. はじめに
発生および再生時における軸索の伸長は、それを取り囲む
環境中に存在する様々な細胞外マトリックス (ECM) 分子に依
存している (1) 。これらには、ラミニン、フィブロネクチンお
よびコラーゲンのような成長促進分子と、CSPGs よびテネ
ンの長阻る。促害因
的バ軸索って、とガ
ンスが決められる。損傷部位における CSPGs の顕著な増加は、
胞のを妨る。は、損傷
における CSPGs の機能、コンドロイチナーゼ ABC (ChABC)
処理による軸索再生と可塑性の促進作用、および CSPGs によ
再生子機に向近のいて
べる。
B. 神経損傷後の再生と可塑性における CSPGs
中枢神経 (CNS) ECM は、繊維状の構造タンパク
く、プ富むう、と構
成を示 (2) いくつか CNS ECM 分子は特定の神経
202
©2011 FCCA (Forum: Carbohydrates Coming of Age)
of proteoglycans (2). Some of this CNS ECM is organized
around certain neurons to produce specialized condensed
matrices, which are known as perineuronal nets (PNNs;
Fig. 1) (3). CSPGs are major components of the ECM and
PNNs, found throughout the CNS (4). The importance of
CSPGs in nervous system injury has been noted for a long
time. After CNS injury, CSPGs are upregulated as one of
the key components of the astrocytic glial scar (Fig. 1) (5,
6). It has been demonstrated that reactive astrocytes and
oligodendrocyte precursor cells (OPCs) upregulate CSPGs
in vitro
. Experiments have also shown that they exert a CS-
glycosaminoglycan (GAG)-dependent inhibitory effect on the
axonal growth of various neurons, such as dorsal root ganglion
(DRG) and cerebellar granular neurons (7–9). Cleavage of
CS-GAG with ChABC removes this inhibitory effect both
in
vitro
and
in vivo
(Fig. 1) (10–12). ChABC treatment of injured
rat spinal cord sections improves the regeneration of DRG
axons grown on the cryosections (11). ChABC injections
in
vivo
also improve the axonal regeneration by dopaminergic
neurons after nigrostriatal tract lesions and also axonal
regeneration and functional recovery after dorsal column
lesions
in vivo
(12–16).
As well as exerting an inhibitory effect on axonal
regeneration, CSPGs are also thought to be involved in
controlling neuronal plasticity in the CNS. In the uninjured
CNS, CSPGs are a principal component of PNNs. Several
functions have been suggested for PNNs, including roles in
synaptic stabilization and limitation of synaptic plasticity (17),
regulator of ion homeostasis around highly active neurons
(18), control of receptor diffusion (19) or neuroprotection (20
胞周囲に密に凝集し、ペリニューロナルネット (PNNs) と呼ば
れる、特徴的なマトリックスを形成する ( 1) (3)。CSPGs
CNS ECM PNNs の主要な成分であり、CNS 中に広く存
在する (4)。神経損傷における CSPGs の重要性は、長い間注目
されてきた。CNS の損傷後に CSPGs が増加し、アストロサイ
トにって成されるリア瘢痕の主成分なる ( 1)
(5、6)。
In vitro
では、反応性アストロサイトとオリゴデン
ロサイト前駆細胞 (OPCs) における CSPGs の発現が上昇する
ことが知られている。後根神経節 (DRG) や小脳顆粒神経細胞
を含む様々な神経細胞の軸索伸長に対する CSPGs の阻害効果
は、CS- グリコサミノグリカン (GAG) 鎖依存的に発揮される (7
–9)。
In vitro
in vivo
のどちらにおいても、CSPGs の阻害効
果は、ChABC による CS-GAG 鎖の切断で失われる ( 1) (10
–12)。損傷したラットの脊髄組織切片を ChABC 処理すること
で、切片上での DRG 軸索の再生が改善する (11)。
In vivo
にお
ChABC の注によて、黒質体路障害ドー
作動再生、び、障害
後の軸索再生と機能的回復が改善する (12–16)。
CSPGs は軸索再生を阻害すると同時に、CNS の神経可塑
性の制御にも関与すると考えられている。正常な CNS におい
CSPGs PNNs の主要成分である。PNNs は、シナプスの
とシ (17)、に活
にお恒常 (18)、
質受容体の拡散制御 (19)、および、神経細胞の保護 (20–22)
どとった様々機能をもことが想されている。CSPGs
Fig. 1. Schematic diagram showing
the upregulation of CSPGs in the glial
scar and axonal regeneration/plasticity
after ChABC treatment.
After an injury,
glial cells such as astrocytes migrate to the
lesion area. They synthesize and secrete CSPGs
around the lesion area where regenerating axons
are unable to surpass. Treatment with ChABC
removes the CSPGs in both the glial scar and
the PNNs. This facilitates the regenerating
axons to pass through the lesion core to connect
to the distal target. Moreover, the removal
of CSPGs on the PNN enables the sprouting
bers to make de novo connections resulted in
increased structural plasticity.
203
©2011 FCCA (Forum: Carbohydrates Coming of Age)
–22). One of the rst studies revealing the potential of CSPGs
to change CNS plasticity was carried out in the visual system
(see the next session). Injection of ChABC into the visual
cortex of monocular deprived rats was able to re-instate ocular
dominance plasticity in adult animals, an ability which is lost
at the end of critical period (23, 24). Similar observations are
subsequently reported in other neuronal systems, such as song
learning in HVC (this acronym is the proper name) in bird
and fear conditioning in amygdala in rat (25–26). Preventing
the formation of PNNs by elimination of a key component,
cartilage link protein, has a similar effect to ChABC,
demonstrating that PNNs control plasticity (27).
The up-regulation of CSPGs after CNS injury may
restrict plasticity during spinal cord injury (SCI) recovery.
ChABC degradation of CS-GAG chains promotes sprouting
of Purkinje axons (17) in rat cerebellum and sprouting of
the spared retinal ganglion cell axons in partially denervated
superior colliculus (28). Although rats that have been treated
with ChABC showed some axonal regeneration into the lesion
site following SCI, the recovery of motor and bladder function
(12, 15) is likely to be, at least in part, due to an increase
in plasticity (29) rather than axonal regeneration. This is
supported by the studies showing that CS-GAG degradation
also enhances the plasticity of intact systems within the
brainstem and spinal cord after SCI and peripheral nerve
injury (30–32).
Moreover, recent evidence also shows that ChABC
treatment combined with rehabilitation further maximizes
functional recovery after acute and chronic SCI. Animals
subjected to a rehabilitation program after a C4 dorsal
funiculus cut and acute ChABC injections demonstrated
better functional recovery than either ChABC injection or
rehabilitation alone (33). In another study where ChABC
injection and subsequent rehabilitation was initiated at 4
weeks after a dorsal spinal cord lesion also demonstrated
an additive effect (34). These experiments demonstrate that
ChABC treatment in SCI opens up a window during which
rehabilitation can promote recovery.
C. CSPGs on Development and Plasticity in the Visual
System
Similar to neurons within the brain and spinal cord,
axons of retinal ganglion cells (RGCs) do not normally
regenerate. After axotomy in the orbit, over 95% of RGCs
undergo apoptosis within two weeks (35, 36). Like all lesions
in the CNS, optic nerve crush leads to the formation of glial
scar with elevated CSPGs in the lesioned area (37–40) and
regenerating RGCs only extend a few axons on a growth-
permissive substrate or into a peripheral nerve graft both in
vitro and in vivo (41–49). Various factors affect axon growth,
including molecules released from glia, and growth can be
CNS 可塑性における役割を初めて明らかにした実験は、視
た(
ChABC 注入ことで、界期終了失わる眼
(23、24)。
の観察が、鳥類の HVC(この頭字語が適切な名前である)
おけるさえずり学習、ラットの扁桃体における恐怖学習など、
他の神経系においても続いて報告された (25–26)。PNNs
の成である軟骨リクタンパク質欠損によ PNNs
成を妨げると、ChABC と同様の効果が得られることからも、
PNNs の神経可塑性における重要性が明らかである (27)。
CNS 損傷後の CSPGs の増加は、脊髄損傷 (SCI) からの回
い。ChABC
CS-GAG 鎖の分解はラット小脳のプルキンエ細胞 (17)、および
分的受けおけ神経軸索
長を促進する (28)。SCI 後に ChABC 処理を施すと、損傷部位
いての軸られが、よび
機能が回復する原因 (12、15)、軸索再生というよりむしろ、
少なくとも一部は、可塑性の増加であると考えられ (29) 。こ
の考えは、CS-GAG 鎖の分解によって、SCI および末梢神経損
の脳におて、位での神
可塑性も増強されることから支持される (30–32)。
さらに、最近の研究から、ChABC 処理とリハビリテーショ
ンをみ合せるとで、性おび慢 SCI らの能的
回復がさらに増強することが示された。C4 髄後索の切断と
急性の ChABC 注入後にリハビリテーションを受けることで、
ChABC 注入もしくはリハビリテーションのいずれか一方のみ
に比べ、より良い回復を示す (33)。別の研究では、背側脊髄障
害の 4 週間後に、ChABC 処理とそれに続くリハビリテーショ
ンを行うと、相加的な効果があることが示され (34) 。これら
の研究は、SCI において ChABC 処理がリハビリテーションに
よる回復を促進させる可能性を提示している。
C. 視覚系の発生と可塑性における CSPGs
脳や脊髄の神経細胞と同様に、網膜神経節細胞 (RGCs)
い。て、
RGCs 2 週間以内にアポトーシスを起こす (35、36)。CNS
全てに、視は、部位
での CSPGs の増加を伴うグリア性瘢痕の形成をもたらし (37
–40)、RGCs は軸索伸長を許容する基質上、もしくは、末梢神
経移植組織中で 2-3 本の軸索を伸長させるにすぎない (41–49)。
リア分泌子を様々軸索
響をる。た、長はグリ
細胞され子、しくは、Rho 酵素
204
©2011 FCCA (Forum: Carbohydrates Coming of Age)
promoted by factors released from adult olfactory ensheathing
glia or inhibition of Rho kinase (50, 51). Rho signaling
has been implicated in the inhibitory pathway from several
inhibitory molecules, including CSPGs. Interestingly, lens
injury or microglial activation can transform RGCs into an
active regenerative state in which more RGCs survive axotomy
and extend axons beyond the optic nerve injury site (48, 52
–55). The growth-promoting effect of lens injury can further
be enhanced through the blockage of inhibitory signaling
pathways,
e.g.
expression of a dominant-negative form of the
Nogo-receptor or the RhoA inactivator ADP-ribosyltransferase
(56, 57).
CSPGs play a major role in the axon guidance of
RGCs in the developing vertebrate visual system. It has been
demonstrated that RGC axons avoid CS-containing substrata
in vitro
(41–43). In embryonic rodents, the concentration of
CS increases towards the retinal periphery and growing RGCs
project their axons towards the region of low CS concentration,
i.e.
the centre of the retina. Enzymatic digestion of CSPGs
with ChABC disrupts these projections and causes aberrant
growth of the RGC axons (5860). In addition to axonal
pathnding across the retina, CS is also important in routing
at the optic chiasm (50). Axons from the ventral temporal
regions of the retina diverge and project to the ipsilateral
optic tract and digestion with ChABC leads to a decreased
ipsilateral pathway (61). The negative effect of CS digestion
on developmental axonal routing has also been demonstrated
in other regions of the mammalian rhombencephalon (62–63).
Recently, semaphorin (Sema) 5A was found to bind
to CSPGs in the developing visual system playing a vital
role in optic axon guidance. Sema5A is expressed in the
neuroepithelium in the optic disc and also along the optic
nerve. Application of function-blocking anti-Sema5a antibody
led to defasciculation of the optic nerve bundle (64). The
transmembrane Sema5A protein evokes either an attraction
or a repulsion of RGC axons depending on whether it binds
to heparan sulfate or CS (65). These experiments suggest that
CSPGs in the visual system work by binding, localizing and
inuencing the function of other guidance molecules.
In addition to axon guidance, CSPGs also play a
major role in limiting plasticity following the closure of the
critical period. The critical period refers to a time period
during development where appropriate experience drives the
establishment and organization of a neuronal network and
deprivation of correct experience may lead to formation of
incorrect neural connections. In the visual cortex, deprivation
of visual input by suturing one eye during the critical period
causes an anatomical rewiring of horizontal connections
and thalamic afferents (66, 67), unbalancing the competition
between the two eyes for the control of cortical territory (68).
This results in a shift in cortical ocular dominance (OD) where
阻害によって促進される (50、51)。Rho シグナル伝達経路は、
CSPGs 含んだいくつかの阻害分子の下流にある阻害経路に
与す言わる。興いこに、晶体害や
ミクログリアの活性化は、RGCs を再生可能状態に変換し、そ
の結果、多く RGCs 索切断をき残り、視経の損傷
部位を超えて軸索の伸長が起こ (48、52–55)。水晶体の障害
が軸索伸長を促進される作用は、伸長阻害経路の阻害、例えば、
機能阻害型の Nogo 受容体の発現、もしくは、RhoA を不活性
化する ADP- リボシル化酵素によってさらに促進され (56、
57)。
CSPGs は、発達期の脊椎動物視覚系での RGCs の軸索ガ
す。
In vitro
て、
RGCs の軸索は CS を含む基質を避けて伸長することが知られ
(41–43)。のげは、CS
の周辺に向かって高くなるが、成長中の RGCs の軸索は、CS
が低かっる。ChABC
り、CSPGs 酵素的に分解すると、この投射が乱され、異常
RGCs の軸索伸長をもたらす (58–60)。網膜における軸索誘
導に加えて、CS は視神経交叉での軸索経路の制御においても
重要である (50)。網膜の耳側および鼻側から伸長した軸索は、
交叉束し、れ、同よび視神投射
していくが、ChABC 処理によって、同側への投射が減少する
(61)。このように CS 化が、発生期の軸索伸長に対し負の
果を示すは、哺乳動物の菱においても観察さ (62–63)
最近、セマフォリン (Sema) 5A CSPGs と結合し、発達
の視系にて視索のイダに重な役
たすとがされた。Sema5A 視神円板神経上皮
神経に沿って発現している。抗 Sema5A 機能阻害抗体によっ
て、 (64)。
Sema5A は、ヘパラン硫酸もしくは CS のどちらに結合するか
に依存して、RGCs の軸索を誘引もしくは反発する (65)。これ
らの研究は、CSPGs が視覚系において、他のガイダンス分子
と結合し、その局在を調節する働きがあることを示している。
軸索ガイダンスに加えて、CSPGs 臨界期終了後に可塑
を抑るこられる。臨は、発程で
切な験が回路築と織化たら特定
指す。た、の時切な入力と、誤
神経が形る。視では、に片瞼を
い合せ、視覚遮断と、皮平神合と
床か皮質射す心性索の的な経回
えが (66、67)、領域
競合していたバランスが崩れる (68)。その結果、眼優位性 (OD)
205
©2011 FCCA (Forum: Carbohydrates Coming of Age)
the deprived eye becomes amblyopic (reduction in visual
acuity and contrast sensitivity) and the opened eye will spread
its innervation into the territory of the deprived eye (69–71).
However, this degree of plasticity is absent after the closure of
critical period. PNNs in the visual cortex appear at the end of
the critical period, particularly around inhibitory interneurons
(72). The digestion of CSPGs with ChABC partially restores
the OD plasticity in older animals (23, 24, 27) and the re-
opening of the critical period leads to the recovery of visual
acuity and dendritic spine density (23), suggesting the
importance of CSPGs in controlling the OD plasticity. This
correlation is further conrmed by experiments where animals
reared in complete darkness retain their cortical plasticity
and also demonstrate a delay in CSPG condensation around
neurons (73–76). The mechanism of how CSPGs and PNNs
limit plasticity is not fully understood but they may stabilize
synapses (17, 73, 77, 78) and controlling ion homeostasis
around neurons (20). In addition, PNN CSPGs bind Sema3A,
localizing it to inhibitory interneurons where it may play a
part in controlling synapse dynamics (79).
D. The Discovery of CSPG Receptors and Their Impact on
Regeneration
The distinctive inhibitory effects of extracellular
CSPGs and CS-GAGs have long raised the question of
whether or not CSPG receptors exist. The ability of CSPGs
to affect intracellular signaling has been well documented.
Studies have identified the roles of the small GTPase Rho
and its downstream effector Rho kinase (ROCK) in CSPG
mediated growth cone collapse and inhibition of neurite
outgrowth (8082). CSPGs induce calcium transients in
dissociated DRG neurons growing across a barrier of laminin
and CSPGs (83) and activate calcium-dependent protein
kinase C (PKC) (84) leading to phosphorylation of epidermal
growth factor receptor (EGFR) kinase (85) and increased
the activity of both serine/threonine protein kinase Akt and
glycogen synthase kinase-3 (GSK-3β) (86).
The most direct way CSPGs could interact with
intracellular signaling pathways would be through a direct
receptor-ligand interaction. Various molecules have been
identified that interact directly with CSPGs, in most cases
through the core proteins of CSPGs; a cell-surface
N
-acetylg
alactosaminylphosphotransferase is thought to interact with
neurocan (87) and interactions have been recorded between
phosphacan and cell adhesion molecules (88). On the other
hand ChABC digestion of the CS-GAG chains removes
most of the inhibitory effects of CSPGs, implying that CS-
GAGs are the key, rather than the protein core. The search
therefore focused on discovering a receptor for CS-GAGs, and
transmembrane receptor protein tyrosine phosphatase sigma
(RPTPσ) and contactin-1 have now been identified. RPTPσ
化し、た眼ントが低
弱視となり、また、遮蔽されていなかった眼はその神経支配を、
遮蔽眼の領域にまで広げる (69–71)。しかし、この可塑性は
界期が終了したあとは見られない。PNNs は臨界期の終了に伴
い、抑制性介在神経細胞の周囲に形成される (72)。ChABC
よる CSPGs の分解によって、成体動物において OD 可塑性が
部分的に回復し (23、24、27)、視力と樹状突起棘の密度が回復
するための臨界期が再度もたらされ (23)。これらの研究は、
OD 御に CSPGs 示唆る。
CSPGs OD 可塑性の関連性は、げっ歯動物を暗室で飼育す
成体も可するに、経細
囲での CSPGs の濃縮が妨げられることからも支持される (73–
76)。CSPGs PNNs がどのように可塑性を制限するかよく分
かっていないが、PNNs はシナプスを安定化する (17、73、77、
78)、もくは、経細胞周のイン濃度の常性制御
る可能性がある (20)。さらに、PNNs CSPGs Sema3A
結合することで、抑制性介在神経細胞に Sema3A を局在化し、
シナプスの動態を調節するかもしれない (79)。
D. CSPG 受容体の発見とその神経再生における重要性
上述したような細胞外 CSPGs CS-GAGs 鎖の顕著な阻
害効果は古くから知られていたが、CSPGs 受容体が存在す
るかどうかに関しては不明であった。しかし、CSPGs 細胞
グナ影響よくる。低
GTP アーゼの Rho とその下流の Rho リン酸化酵素 (ROCK)
が、CSPGs 媒介する成長円錐の崩壊と神経突起伸長の阻害
に関与する (80–82)。CSPGs は、ラミニンと CSPGs の基質上
を伸長する培養 DRG 神経細胞の細胞内カルシウム濃度の一過
的上昇を誘導し (83)、カルシウム依存性タンパク質キナーゼ C
(PKC) を活性化することで (84)、上皮成長因子受容体 (EGFR)
(85)、 / ニン
Akt とグリコーゲン合成酵素キナーゼ -3 (GSK-3
β
) の活性を上
昇させる (86)。
CSPGs 細胞内シグナル伝達経路を調節するための最
は、 -
と思われる。CSPGs と直接結合する分子が数多く同定され
が、 CSPGs
を介する。例えば、細胞表面の
N
-acetylgalactosaminylphos-
photransferase (87)、
ァカつか着分合す知ら
(88)。方、CSPGs は、
ChABC 消化により CS-GAG 鎖を除くことで消失するので、コ
アタパクよりむしろ、CS-GAG 重要であこと
唆しいる。こで、CS-GAG 鎖の容体発見るための
206
©2011 FCCA (Forum: Carbohydrates Coming of Age)
rst attracted attention due to its ability to bind heparan sulfate
proteoglycans (89–91). There is now a significant body of
evidence implicating RPTPσ in neuronal regeneration. The
rate of axon regeneration in peripheral nerves is enhanced after
sciatic nerve injury and facial nerve crush injury in RPTPσ
−/−
mice (92–93), as well as from RGC axons after an optic nerve
crush injury (94). In an even more promising development,
recent data have suggested that RPTPσ plays a role in CNS
regeneration. RPTPσ
−/
mice displayed significantly long
distance axonal regeneration of the corticospinal tract after
dorsal hemisection lesion compared with wild type mice
(95). Increased axonal regeneration is also observed with
spinal cord contusion models (95). Cerebellar granular cells
from RPTPσ
−/−
mice show better adhesion on CSPG than the
wild type cells. These cerebellar granular cells also extended
many more neurites crossing permissive poly-
L
-lysine
substrates to CSPG substrates than was the case in wild type
cells, suggesting that the inhibiting effects of CSPG may be
mediated through RPTPσ (95). Studies have also demonstrated
a direct interaction between RPTPσ and CSPG neurocan
with a single binding afnity (96). Neurite outgrowth from
dissociated RPTPσ
−/−
DRG neurons is less inhibited by CSPG
than is the case for wild type cells; similarly such an inhibition
is also overcome by ChABC (96). There is also signicantly
increased growth of injured primary afferent bers in RPTPσ
−/−
mice following dorsal column injury, an observation similar to
that in the case of corticospinal axons (96–97).
Other than RPTPσ, contactin-1 also interacts with CS-
GAGs. Contactin-1 interacts specifically with di-sulfated
CS-E. The effect of this interaction is, however, mainly
associated with stimulation of neurite outgrowth (98). Further
intracellular signaling processes have yet to be characterized
for the CSPG-receptor interaction. The functional signicance
of different ligands, such as heparan sulfate proteoglycans
and CSPGs as in the case of RPTPσ, remains unclear. Recent
data suggests that differential receptor clustering for different
ligands may account for the differential effects of heparan
sulfate proteoglycans and CSPGs on neurite outgrowth (99).
Many questions still remain with regards to the downstream
effects of the activation or inhibition, whether different
CS-GAG chains interact differently with the receptors and
whether other receptors for CS-GAGs exist. Nevertheless,
inhibition of the CS receptors may become an alternative way
of manipulating CSPGs and affecting CNS regeneration and
plasticity to ChABC treatments
in vivo
.
E. CSPGs in Neuroprotection
Interestingly, in contrast to their inhibitory properties
on axonal regeneration, there is also evidence suggesting
the role of CSPGs in neuroprotection. CSPGs have been
shown to protect neurons from excitotoxicity of glutamate or
が行れ、通タあるロシ
スファターゼ
σ
(RPTP
σ
) とコンタクチン -1 が同定された。以
前から、RPTP
σ
はヘパラン硫酸プロテオグリカンと結合する
ことが知られていた (89–91)。また、RPTP
σ
が神経再生に関与
するという多くの証拠がある。RPTP
σ
欠損マウスは、坐骨神
経損傷や顔面神経障害後の末梢神 (92–93)、および、眼球
経損傷後の RGC より良い軸索再生を示す (94)。さらに最近
の研究により、RPTP
σ
CNS 生においても重要な役割
果たすことが示された。RPTP
σ
欠損マウスは野生型マウスに
比べ、脊髄の背側片側切断損傷後の皮質 - 脊髄神経路の軸索の
顕著な再生を示す (95)。軸索再生の回復は脊髄挫傷モデルでも
見られる (95)。RPTP
σ
欠損マウス由来の小脳顆粒神経細胞は、
野生型と比べ CSPGs 基質によく接着し、神経突起伸長に許容
的な基質であるポ -
L
- リジンを超えて、阻害的 CSPGs
質に多くの神経突起を伸ばすことができ (95)。このことは、
CSPGs 阻害効果 RPTP
σ
を介することを示している。さ
らに、RPTP
σ
CSPGs の一種であるニューロカンと直接
合する (96)。DRG 神経細胞の神経突起伸長に対する CSPGs
害効 ChABC 消化よっち消れると同
に、RPTP
σ
欠損マウス由来の DRG 経細胞は、野生型マウ
スに比べ、CSPGs によって阻害されにくい (96)。皮質 - 脊髄神
経路で見られたように、RPTP
σ
欠損マウスは、野生型マウス
比べ側片傷後再生増加
る (96–97)。
RPTP
σ
の他にコンタクチン -1 CS-GAG 鎖と相互作用す
子でる。チン -1 は、 CS-E
し、そり、伸長なく
促進させる (98)。こ CSPG- 容体相互作用の下流に存在
る細胞内シグナル伝達経路はまだよく分かっていない。また、
RPTP
σ
のよに、ヘパラン硫プロテオグリンと CSPGs
う異ガンが、た機るか
不明る。は、ヘオグ
CSPGs は、
によって説明できることを示唆してい (99)。CSPGs CS-
GAG で、
神経に対と促う異用が
のか、は、するか、
いことは不明である。CS-GAG 鎖の受容体を阻害することで、
CSPGs の作用を制御し、CNS の再生と可塑性を調節すること
ができるかも知れない。
E. CSPGs の神経保護作用
CSPGs の軸索再生を阻害する性質とは別に、CSPGs が神
経の保護においても重要な役割を果たすことが示されている。
207
©2011 FCCA (Forum: Carbohydrates Coming of Age)
its analogs. Excessive glutamate leads to over-excitation of
glutamate receptors and results in neuronal death. The addition
of glutamate in cortical neuronal culture pre-treated with CS-E
(chondroitin 4,6-sulfates), but not other CS isoforms, shows a
signicant reduction in the glutamate-induced neuronal death.
In addition, this reduction is accompanied by suppression in
caspase-3 activation in the CS-E treated neurons (100).
In Alzheimer’s disease (AD), double immunohisto-
c he mi st ry o f P NN s w i th h yp er ph o sp ho ry la te d t au
demonstrates that hyperphosphorylated tau tends to exclude
the PNN- or CSPG-rich area in human AD brains. The PNN-
ensheathed neurons are almost unaffected by the formation
of neurofibrillary tangles even in severely deficit brain
regions (101103). Similar observations have also been
reported in bison and monkey (104). Miyata
et al
. have also
demonstrated that PNN-bearing neurons are able to withstand
the neurotoxicity of amyloid β protein (Aβ)-42 when added
into culture medium. This neuroprotective effect of PNNs on
cultured cortical neurons is abolished when the culture was
treated with ChABC prior to the addition of Aβ-42 (105).
These results suggest that the presence of PNNs may protect
neurons from the neurotoxicity of both hyperphosphorylated
tau and β-amyloid. However, it remains unclear of how PNNs
exert their effects, whether it is a result from the protective
effect of PNNs on cells or if the PNNs-bearing neurons are
intrinsically resistant to damage. There is also an effect of
CSPG digestion on the atrophy of axotomised neurons in
the visual cortex, with ChABC injected into the spinal cord
preventing atrophy of corticospinal neurons (106).
F. CSPGs on the Function of Integrins
Other than the recently identified CSPG receptors
mentioned above, there are reports showing that CSPGs may
control neuronal behavior by blocking integrin function.
Axons, and in particular growth cones, express a wide array
of receptors on the surface which enable them to interact
with the ECM molecules. One of the most important groups
belongs to the integrin superfamily of surface receptors. They
are evolutionarily-conserved αβ heterodimeric transmembrane
receptors present in many cell types, and bind to molecules
including laminin, fibronectin, collagen, fibrinogen,
vitronectin and others (107). While the interaction between
integrin receptors on axonal surface and these ECM molecules
facilitate better growth and regeneration, it has now becoming
clear that this interaction is subject to the modifying forces
exerted by other inhibitory molecules, notably CSPGs.
The interplay between CSPGs and integrins in
determining axon growth and regeneration is dependent on the
developmental age of the neuron. Embryonic DRG neurons
can adapt to the presence of inhibitory aggrecan substrates
by increasing the surface expression of integrin through
CSPGs は、グルタミン酸やその類似体の神経毒性から神経細
護する。ン酸は、容体
剰に神経く。皮をあ
じめ高硫酸化 CS-GAG であ CS-E 反応させることによ
り、タミ経細が、他
CS-GAG 鎖にはそのような効果はない。この効果は、CS-E
で処した神経胞内でカパー -3 活性抑制させ
とが原因かもしれない (100)。
アルツハイマー病 (AD) 患者脳の免疫組織染色から、過剰
にリン酸化されたタウタンパク質が、PNN のように CSPGs
領域されるこている。
なり病変が進んだ領域においても、PNN 囲まれた神経細胞
は、神原線濃縮の形の影をほんど受け (101
–103)。バイソンやサルの脳でも同じような報告がある (104)
Miyata らは、PNN に覆われた培養神経細胞は、培地中に加え
たアミロイド
β
タンパク質 (A
β
)-42 の神経毒性から保護される
こと見いだした。この PNNs 神経保護用はあらじめ
ChABC 細胞を処理することで消失する (105)。これらの知
見は、PNNs が過剰リン酸化タウと
β
- アミロイドの両方の神
経毒性から神経細胞を保護する働きがあることを示している。
しかし、実際に PNNs 自体が保護作用をもつのか、もしくは、
PNN で覆われた神経細胞が元来神経毒性に耐性を示すのかな
ど、詳しいことは不明である。視覚野においても、CSPG の消
によ断さ細胞に対が知
れているし、脊髄に ChABC を注入すると皮質 - 脊髄路神経細
胞の萎縮が妨げられる (106)。
F. インテグリンの機能における CSPGs
上述した最近同定された CSPG の受容体に加えて、CSPGs
インの作する神経能を調
るこされる。の成胞表
は特に、ECM 分子と相互作用するために多くの受容体分子が
ている。要なは、イ
グリーフ属する。イ
グリンは、進化的に保存された
αβ
ヘテロ二量体からなる膜貫
通型受容体分子で、ラミニン、フィブロネクチン、コラーゲン、
ブリン、ビトなどと結
(107)。軸索表面のインテグリン受容体 ECM 子が相
るこり、伸長る。さ
らに最近、CSPGs ような阻害分子は、インテグリン受容体
ECM 分子の結合を調節することで、その阻害効果を発揮す
ることが明らかになりつつある。
軸索伸長と再生に対する CSPGs とインテグリンの相互作
果は、期にる。期の
DRG 神経細胞は、
α3β1
α6β1
サブユニットの mRNA 発現
り細ンテ加さで、阻害
であるアグリカン上でも軸索を伸長させることができる (108)。
し、 DRG
208
©2011 FCCA (Forum: Carbohydrates Coming of Age)
expression of α3β1 and α6β1 subunit mRNAs (108). On
the contrary, adult DRG neurons lack this ability to undergo
similar adaptation responses (109). In addition, emerging
evidence is beginning to show that CSPGs may directly
impair the functions of integrin receptors. Zhou
et al
. found
that aggrecan inhibited NGF-supported axon assembly on
laminin without affecting NGF-induced ERK phosphorylation,
suggesting that the effect of CSPGs was on impairing ECM-
integrin signaling (110). Furthermore, addition of aggrecan to
cultured neurons resulted in a suppression of integrin signaling
in the axons, as reflected by a sequential decrease in the
phosphorylation cascade of tyrosine-397 FAK, tyrosine-861
FAK and tyrosine-418 Src (111).
But how do CSPGs affect integrins? Other than the
RPTPσ and contactin-1, CSPGs have been shown to activate
several signaling pathways including Rho/ROCK (82), protein
kinase C (PKC) (84) and epidermal growth factor receptor
(EGFR) signaling (85). One or more of these signaling
pathways may produce an impairment of integrin signaling,
which in turn inhibits axon growth. More work is needed to
elucidate these pathways.
The re are s ev eral e xp erim en ts t hat s h ow tha t
modulation of integrin function can improve axon regeneration
in a CSPG-rich environment. One method is by increasing
the expression of compatible integrins in neurons. Transgenic
expression of α1 and α5 integrin subunits into adult DRG
neurons promoted axon growth in the presence of inhibitory
proteoglycans (109). Similarly, expressing α9 integrin subunit
via a viral vector in adult neurons markedly enhanced their
ability to extend axons on a substrate containing its binding
partner, tenascin-C, which is also upregulated post-injury at
lesion sites (112). However, a separate experiment expressing
α7 subunit in adult isolectin B4 (IB4)-labelled DRG and
retinal neurons did not produce any growth-promoting effect
(113). This suggests that the effect of over-expressing integrin
subunit may vary depending on the ligands available and/or
neuronal type. An alternative method is to enhance the ligand-
binding affinity of the available integrins by modifying
the activation state of the receptors. A few recent studies
demonstrated that increasing integrin activaton by either
manganese or an integrin-activating antibody promoted both
axon growth from cultured neurons and migration of glial
cells in the presence of CSPGs (111, 114).
G. Conclusion
There are many complex interactions between CSPGs,
CSPG ligands, CSPG receptors and the ECM environment in
controlling axon growth and regeneration. Another complex
set of interactions is involved in the control of plasticity by
PNNs. CSPGs have their effects in several ways, and
via
several pathways. However, a common theme is an effect
(109)。て、CSPGs
体の機能を直接阻害することが分かってきた。Zhou は、ア
グリカンが NGF 誘導す ERK リン酸化には影響するこ
く、し、
CSPGs ECM- インテグリンシグナル伝達を妨害することを
示唆した (110)。さらに、培養神経細胞にアグリカンを添加す
と、FAK 397 861 基、び、
Src 418 番目のチロシン残基のリン酸化といった、インテグ
ン受流にシグ達経され
(111)。
CSPGs
ろうか? RPTP
σ
とコンタクチン -1 以外に、CSPGs Rho/
ROCK 経路 (82)、PKC 経路 (84)、EGFR 経路 (85) を含んだい
くつかのシグナル伝達経路を活性化することが知られている。
らの伝達のひつ、は複
テグナルを引し、果と
長をあり、後、究が
必要である。
いくつかの研究から、インテグリンの機能を調節すること
で、CSPG に富んだ環境でも軸索再生が改善されることが示さ
る。一て、細胞リン
の発現を人為的に上昇させた研究がある。成体の DRG 神経細
で、イグリ
α
1
α
5 ユニを過現さ
ると、阻害的な CSPGs 存在下における軸索伸長の増加が見ら
(109)。た、
α
9 を、
ベクいて胞でせると、
部位昇がインン結ク質
るテイシ C を含基質での、伸長改善
(112)。しかし、別の研究では、インテグリンの
α
7 サブユニッ
トをイソレクチン B4 標識される成体 DRG および網膜神
胞でさせも、長をよう
果は見られなかっ (113)。これらの研究は、インテグリン受
の特ユニ発現は、そ
ンド神経類にるこして
る。テグ調するは、イン
テグリン受容体の活性化状態を制御することで、リガンド -
の結させきるる。最
では、もしグリする
り、インを増で、索伸
CSPGs 基質上でのグリア細胞の移動が促進することが示さ
れている (111、114) 。
G. 結 論
CSPGs とその受容体、もしくは、ECM 分子との複雑な相
によ生がる。た、こ
CSPGs は、PNNs
調る。CSPGs
て、る。し、
CSPGs よるインテグリンの機能制御は、それらに共通して
209
©2011 FCCA (Forum: Carbohydrates Coming of Age)
on integrin function. Because CSPGs have several effects
on preventing axon regeneration and inhibiting plasticity,
manipulation of these molecules and their binding function is
a attractive method for promoting CNS repair.
いるかもしれない。CSPGs は軸索再生の妨害や神経可塑性
阻害など多くの働きをもっており、CSPGs その結合分子の
機能を改変することで、CNS 傷からの回復に役立つ可能
がある。
神戸薬科大学 宮田真路訳
References
1. Song, H., and Poo, M. (2001)
Nat. Cell. Biol.
3
, E81–88.
2. Novak, U., and Kaye, A. H. (2000)
J. Clin. Neurosci
.
7
, 280–290.
3. Yamaguchi, Y. (2000)
Cell. Mol. Life Sci.
57
, 276–289.
4. Herndon, M.E., and Lander, A.D. (1990)
Neuron
4
, 949–961.
5. Fawcett, J.W., and Asher, R.A. (1999)
Brain Res. Bull
.
49
, 377–391.
6. Silver, J., and Miller, J. H. (2004)
Nat. Rev. Neuro
.
5
, 146–156.
7. Smith-Thomas, L. C., Stevens, J., Fok-Seang, J., Faissner, A., Rogers, J. H., and Fawcett, J. W. (1995)
J. Cell. Sci.
108
, 1307–1315.
8. Asher, R. A., Morgenstern, D. A., Fidler, P. S., Adcock, K. H., Oohira, A., Braistead, J. E., Levine, J.M., Margolis, R.U., Rogers, J.H., and
Fawcett, J.W. (2000).
J. Neurosci.
20
, 2427–2438.
9. Yamada, H., Fredette, B., Shitara, K., Hagihara, K., Miura, R., Ranscht, B., Stallcup, W.B., and Yamaguchi, Y. (1997)
J. Neurosci.
17
, 7784
–7795.
10. McKeon, R. J., Höke, A., and Silver, J. (1995)
Exp. Neurol.
136
, 32–43.
11. Zuo, J., Neubauer, D., Dyess, K., Ferguson, T. A., and Muir, D. (1998)
Exp. Neurol.
154
, 654–662.
12. Bradbury, E. J., Moon, L. D. F., Popat, R. J., King, V. R., Bennett, G. S., Patel, P. N., Fawcett, J. W., and McMahon, S. B. (2002)
Nature
416
, 636–640.
13. Yick, L.-W., So, K.-F., Cheung, P.-T., and Wu, W.-T. (2004)
J. Neurotrauma
21
, 932–943.
14. Yick, L.-W., Cheung, P.-T., So, K.-F., and Wu, W. (2003)
Exp. Neurol.
182
, 160–168.
15. Caggiano, A. O., Zimber, M. P., Ganguly, A., Blight, A. R., and Gruskin, E. A. (2005)
J. Neurotrauma
22
, 226–239.
16. Moon, L. D., Asher, R. A., Rhodes, K. E., and Fawcett, J. W. (2001)
Nat. Neurosci.
4
, 465–466.
17. Corvetti, L., and Rossi, F. (2005)
J. Neurosci.
25
, 7150–7158.
18. Härtig, W., Singer, A., Grosche, J., Brauer, K., Ottersen, O. P., and Brückner, G. (2001)
Brain Res.
899
, 123–133.
19. Frischknecht, R., Heine, M., Perrais, D., Seidenbecher, C.I., Choquet, D., and Gundelnger, E.D. (2009)
Nat. Neurosci.
12
, 897–904.
20. Härtig, W., Derouiche, A., Welt, K., Brauer, K., Grosche, J., Mäder, M., Reichenbach, A., and Brückner, G. (1999)
Brain Res.
842
, 15–29.
21. Brückner, G., Hausen, D., Härtig, W., Drlicek, M., Arendt, T., and Brauer, K. (1999)
NeuroScience
92
, 791–805.
22. Morawski, M., Brückner, M. K., Riederer, P., Brückner, G., and Arendt, T. (2004)
Exp. Neurol.
188
, 309–315.
23. Pizzorusso, T., Medini, P., Landi, S., Baldini, S., Berardi, N., and Maffei, L. (2006)
Proc. Natl. Acad. Sci. USA
103
, 8517–8522.
24. Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J. W., and Maffei, L. (2002)
Science
298
, 1248–1251.
25. Balmer, T.S., Carels, V.M., Frisch, J.L., and Nick, T.A. (2009)
J. Neurosci.
29
, 12878–85.
26. Gogolla, N., Caroni, P., Lüthi, A., and Herry, C. (2009)
Science
325
, 1258–1261.
27. Carulli, D., Pizzorusso, T., Kwok, J. C., Putignano, E., Poli, A., Forostyak, S., Andrews, M. R., Deepa, S. S., Glant, T. T., and Fawcett, J. W.
(2010)
Brain
133
, 2331–2347.
28. Tropea, D., Caleo, M., and Maffei, L. (2003)
J. Neurosci.
23
, 7034–7044.
29. Edgerton, V. R., Tillakaratne, N. J. K., Bigbee, A. J., de Leon, R. D., and Roy, R. R. (2004)
Annu. Rev. Neurosci.
27
, 145–167.
30. Barritt, A. W., Davies, M., Marchand, F., Hartley, R., Grist, J., Yip, P., McMahon, S. B., and Bradbury, E. J. (2006)
J. Neurosci.
26
, 10856–
10867.
31. Massey, J. M., Hubscher, C. H., Wagoner, M. R., Decker, J. A., Amps, J., Silver, J., and Onifer, S. M. (2006)
J. Neurosci.
26
, 4406–4414.
32. Galtrey, C. M., Asher, R. A., Nothias, F., and Fawcett, J. W. (2007)
Brain
130
, 926–939.
33. García-Alías, G., Barkhuysen, S., Buckle, M., and Fawcett, J. W. (2009)
Nat. Neurosci.
12
, 1145–1151.
34. Wang, D., Ichiyama, R.M., Zhao, R., Andrews, M.R., and Fawcett, J.W. (2011)
J. Neurosci.
31
, 9332–9344.
35. Mey, J., and Thanos, S. (1993)
Brain Res.
602
, 304–317.
36. Berkelaar, M., Clarke, D. B., Wang, Y. C., Bray, G. M., and Aguayo, A. J. (1994)
J. Neurosci.
14
, 4368–4374.
37. Challacombe, J. F., and Elam, J. S. (1995)
Neurochem. Res
.
20
, 253–259.
38. Dow, K. E., Levine, R. L., Solc, M. A., DaSilva, O., and Riopelle, R. J. (1994)
Exp. Neurol.
126
, 129–137.
39. Inatani, M., Tanihara, H., Oohira, A., Honjo, M., Kido, N., and Honda, Y. (2000)
Invest. Ophthalmol. Vis. Sci.
41
, 2748–2754.
40. Selles-Navarro, I., Ellezam, B., Fajardo, R., Latour, M., and McKerracher, L. (2001)
Exp. Neurol.
167
, 282–289.
41. Snow, D. M., Watanabe, M., Letourneau, P. C., and Silver, J. (1991)
Development
113
, 1473–1485.
42. Snow, D. M., and Letourneau, P. C. (1992)
J. Neurobiol.
23
, 322–336.
43. Lam, J. S., Wang, L., Lin, L., and Chan, S. O. (2008)
Neurosci. Lett.
434
, 150–154.
44. Bahr, M., Vanselow, J., and Thanos, S. (1988)
Exp
.
Brain Res.
73
, 393–401.
45. Aguayo, A. J., Rasminsky, M., Bray, G. M., Carbonetto, S., McKerracher, L., Villegas-Perez, M. P., Vidal-Sanz, M., and Carter, D. A. (1991)
Phil. Trans. Royal Soc. London
331
, 337–343.
46. Cui, Q., and Harvey, A. R. (2000)
Neuroreport
11
, 3999–4002.
47. Fischer, D., Pavlidis, M., and Thanos, S. (2000)
Invest. Ophthalmol. Vis. Sci.
41
, 3943–3954.
48. Yin, Y., Cui, Q., Li, Y., Irwin, N., Fischer, D., Harvey, A. R., and Benowitz, L. I. (2003)
J. Neurosci.
23
, 2284–2293.
49. Muller, A., Hauk, T. G., Leibinger, M., Marienfeld, R., and Fischer, D. (2009)
Mol. Cell. Neurosci
.
41
, 233–246.
210
©2011 FCCA (Forum: Carbohydrates Coming of Age)
50. Lingor, P., Teusch, N., Schwarz, K., Mueller, R., Mack, H., Bahr, M., and Mueller, B. K. (2007)
J. Neurochem
.
103
, 181–189.
51. Leaver, S. G., Harvey, A. R., and Plant, G. W. (2006)
Glia
53
, 467–476.
52. Fischer, D., Heiduschka, P., and Thanos, S. (2001)
Exp. Neurol.
172
, 257–272.
53. Leon, S., Yin, Y., Nguyen, J., Irwin, N., and Benowitz, L. I. (2000)
J. Neurosci.
20
, 4615–4626.
54. Lorber, B., Berry, M., and Logan, A. (2005)
Eur.
J. Neurosci.
21
, 2029–2034.
55. Pernet, V., and Di Polo, A. (2006)
Brain
129
, 1014–1026.
56. Fischer, D., He, Z., and Benowitz, L. I. (2004)
J. Neurosci.
24
, 1646–1651.
57. Fischer, D., Petkova, V., Thanos, S., and Benowitz, L. I. (2004)
J. Neurosci.
24
, 8726–8740.
58. Chung, K. Y., Shum, D. K., and Chan, S. O. (2000)
J. Comp. Neurol
.
417
, 153–163.
59. Brittis, P. A., Canning, D. R., and Silver, J. (1992)
Science
255
, 733–736.
60. Brittis, P. A., and Silver, J. (1995)
Mol. Cell. Neurosci
.
6
, 413–432.
61. Chung, K. Y., Taylor, J. S., Shum, D. K., and Chan, S. O. (2000)
Development
127
, 2673–2683.
62. Golding, J. P., Tidcombe, H., Tsoni, S., and Gassmann, M. (1999)
Dev. Biol
.
216
, 85–97.
63. Kwok, J.C.F., Yuen, Y.L., Lau, W.K., Zhang, F.X., Fawcett, J.W., Chan, Y.S., and Shum, D.K.Y. (2011)
Neural Dev
. (under review).
64. Oster, S. F., Bodeker, M. O., He, F., and Sretavan, D. W. (2003)
Development
130
, 775–784.
65. Kantor, D. B., Chivatakarn, O., Peer, K. L., Oster, S. F., Inatani, M., Hansen, M. J., Flanagan, J. G., Yamaguchi, Y., Sretavan, D. W., Giger, R.
J., and Kolodkin, A. L. (2004)
Neuron
44
, 961–975.
66. Antonini, A., and Stryker, M. P. (1993)
Science
260
, 1819–1821.
67. Trachtenberg, J. T., and Stryker, M. P. (2001)
J. Neurosci.
21
, 3476–3482.
68. Wiesel, T. N. (1982)
Nature
299
, 583–591.
69. Dews, P. B., and Wiesel, T. N. (1970)
J. Physiol.
206
, 437–455.
70. Daw, N. W. (1998)
Arch. Ophthalmol
.
116
, 502–505.
71. Maurer, D., Lewis, T. L., Brent, H. P., and Levin, A. V. (1999)
Science
286
, 108–110.
72. Celio, M. R., Spreaco, R., De Biasi, S., and Vitellaro-Zuccarello, L. (1998)
Trends Neurosci.
21
, 510–515.
73. Hockeld, S., Kalb, R. G., Zaremba, S., and Fryer, H. (1990)
Cold Spring Harb. Symp. Quant. Biol.
55
, 505–514.
74. Cynader, M., and Mitchell, D. E. (1980)
J. Neurophysiol
.
43
, 1026–1040.
75. Mower, G. D. (1991)
Brain Res.
Dev
.
Brain Res.
58
, 151–158.
76. Fagiolini, M., Katagiri, H., Miyamoto, H., Mori, H., Grant, S. G., Mishina, M., and Hensch, T. K. (2003)
Proc. Natl. Acad. Sci. USA
100
,
2854–2859.
77. Grutzendler, J., Kasthuri, N., and Gan, W. B. (2002)
Nature
420
, 812–816.
78. Pyka, M., Wetzel, C., Aguado, A., Geissler, M., Hatt, H., and Faissner, A. (2011)
Eur
.
J. Neurosci.
33
, 2187–2202.
79. Vo, T., Carulli, D., Ehlert, E.M.E., Kwok, J.C.F., Asher, R.A., Fawcett, J.W., and Verhaagen, J. (2007)
Abstract from the Annual Meeting of
Society for Neuroscience
. Program No. 585.1/Q17.2007.
80. Borisoff, J. F., Chan, C. C. M., Hiebert, G. W., Oschipok, L., Robertson, G. S., Zamboni, R., Steeves, J. D., and Tetzlaff, W. (2003)
Mol.
Cell. Neurosci
.
22
, 405–416.
81. Duffy, P., Schmandke, A., Schmandke, A., Sigworth, J., Narumiya, S., Cafferty, W. B. J., and Strittmatter, S. M. (2009)
J. Neurosci.
29
,
15266–15276.
82. Monnier, P. P., Sierra, A., Schwab, J. M., Henke-Fahle, S., and Mueller, B. K. (2003)
Mol. Cell. Neurosci
.
22
, 319–330.
83. Snow, D. M., Atkinson, P. B., Hassinger, T. D., Letourneau, P. C., and Kater, S. B. (1994)
Dev. Biol
.
166
, 87–100.
84. Sivasankaran, R., Pei, J., Wang, K. C., Zhang, Y. P., Shields, C. B., Xu, X.-M., and He, Z. (2004)
Nat. Neurosci.
7
, 261–268.
85 Koprivica, V., Cho, K.-S., Park, J. B., Yiu, G., Atwal, J., Gore, B., Kim, J. A., Lin, E., Tessier-Lavigne, M., Chen, D. F., and He, Z. (2005)
Science
310
, 106–110.
86. Dill, J., Wang, H., Zhou, F., and Li, S. (2008)
J. Neurosci.
28
, 8914–8928.
87. Li, H., Leung, T. C., Hoffman, S., Balsamo, J., and Lilien, J. (2000)
J. Cell Biol
.
149
, 1275–1288.
88. Milev, P., Friedlander, D. R., Sakurai, T., Karthikeyan, L., Flad, M., Margolis, R. K., Grumet, M., and Margolis, R. U. (1994)
J. Cell Biol.
127
, 1703–1715.
89. Aricescu, A. R., McKinnell, I. W., Halfter, W., and Stoker, A. W. (2002)
Mol. Cell. Biol
.
22
, 1881–1892.
90. Fox, A. N., and Zinn, K. (2005)
Curr. Biol.
15
, 1701–1711.
91. Johnson, K. G., Tenney, A. P., Ghose, A., Duckworth, A. M., Higashi, M. E., Partt, K., Marcu, O., Heslip, T. R., Marsh, J. L., Schwarz, T. L.,
Flanagan, J. G., and Van Vactor, D. (2006)
Neuron
49
, 517–531.
92. McLean, J., Batt, J., Doering, L. C., Rotin, D., and Bain, J. R. (2002)
J. Neurosci.
22
, 5481–5491.
93. Thompson, K. M., Uetani, N., Manitt, C., Elchebly, M., Tremblay, M. L., and Kennedy, T. E. (2003)
Mol. Cell. Neurosci.
23
, 681–692.
94. Sapieha, P. S., Duplan, L., Uetani, N., Joly, S., Tremblay, M. L., Kennedy, T. E., and Di Polo, A. (2005)
Mol. Cell. Neurosci.
28
, 625–635.
95. Fry, E. J., Chagnon, M. J., López-Vales, R., Tremblay, M. L., and David, S. (2010)
Glia
58
, 423–433.
96. Shen, Y., Tenney, A. P., Busch, S. A., Horn, K. P., Cuascut, F. X., Liu, K., He, Z., Silver, J., and Flanagan, J. G. (2009)
Science
326
, 592–
596.
97. Duan, Y., and Giger, R. J. (2010)
Sci. Signal
.
3
, pe6.
98. Mikami, T., Yasunaga, D., and Kitagawa, H. (2009)
J. Biol.Chem
.
284
, 4494–4499.
99. Coles, C. H., Shen, Y., Tenney, A. P., Siebold, C., Sutton, G. C., Lu, W., Gallagher, J. T., Jones, E. Y., Flanagan, J. G., and Aricescu, A. R.
(2011)
Science
332
, 484–488.
100. Sato, Y., Nakanishi, K., Tokita, Y., Kakizawa, H., Ida, M., Maeda, H., Matsui, F., Aono, S., Saito, A., Kuroda, Y., Hayakawa, M., Kojima, S.,
and Oohira, A. (2008)
J. Neurochem
.
104
, 1565–76.
101. Brückner, G., Hausen, D., Härtig, W., Drlicek, M., Arendt, T., and Brauer, K. (1999)
Neuroscience
92
, 791–805.
102. Morawski, M., Brückner, G., Jäger, C., Seeger, G., and Arendt, T. (2010)
Neuroscience
169
, 1347–63.
103. Yasuhara, O., Akiyama, H., McGeer, E.G., and McGeer, P.L. (1994)
Brain
Res.
635
, 269–282.
104. Härtig, W., Klein, C., Brauer, K., Schüppel, K.F., Arendt, T., Bigl, V., and Brückner G. (2001)
Neurobiol. Aging
22
, 25–33.
211
©2011 FCCA (Forum: Carbohydrates Coming of Age)
Prole of the Authors
105. Miyata, S., Nishimura, Y., and Nakashima, T. (2007)
Brain Res.
1150
, 200–206.
106. Carter, L.M., Starkey, M.L., Akrimi, S.F., Davies, M., McMahon, S.B., and Bradbury, E.J. (2008)
J. Neurosci.
28
, 14107–14120.
107. Hynes, R.O. (2002)
Cell
110
, 673–687.
108. Condic, M.L., Snow, D.M., and Letourneau, P.C. (1999)
J. Neurosci.
19
, 10036–10043.
109. Condic, M.L. (2001)
J. Neurosci.
21
, 4782–4788.
110. Zhou, F.Q., Walzer, M., Wu, Y.H., Zhou, J., Dedhar, S., and Snider, W.D. (2006)
J. Cell. Sci
.
119
, 2787–2796.
111. Tan, C.L., Kwok, J.C., Patani, R., Ffrench-Constant, C., Chandran, S., and Fawcett, J.W. (2011)
J. Neurosci.
31
, 6289–6295.
112. Andrews, M.R, Czvitkovich, S., Dassie, E., Vogelaar, C.F., Faissner, A., Blits, B., Gage, F.H., ffrench-Constant, C., and Fawcett, J.W. (2009)
J. Neurosci.
29,
5546–5557.
113. Leclere, P.G., Norman, E., Groutsi, F., Cofn, R., Mayer, U., Pizzey, J., and Tonge, D. (2007)
J. Neurosci.
27
, 1190–1199.
114. Afshari, F.T., Kwok, J.C., White, L., and Fawcett, J.W. (2010)
Glia
58
, 857–869.
... As described above, CS chains promote or inhibit neuronal extension depending on CS structure and the context. Furthermore, accumulating evidence indicates that extracellular CSPGs can affect several intracellular signaling pathways (Kwok et al. 2011b The GAG-mediated switch between counteracting PTPσ functions is reminiscent of the bifunctional guidance cue semaphorin 5A (Sema5A). Sema5A interacts with GAG moieties of both CSPGs and HSPGs, and its HSPG-mediated attraction can be converted to inhibitory by extrinsic CSPGs (Kantor et al. 2004 ). ...
Chapter
Sialidases are glycosidases responsible for the removal of α-glycosidically linked sialic acid residues from carbohydrate portions of glycoproteins and glycolipids. They are found widely distributed in common in metazoan animals, from echinoderms to mammals, and also in viruses and other microorganisms. In mammals, there are four types of sialidase (NEU1, NEU2, NEU3, and NEU4), encoded by different genes differing in their major subcellular localization and enzymatic properties. They have been implicated to participate in the regulation of various cellular functions, with roles in cell differentiation, cell growth, and cell adhesion and motility, depending on their particular properties, whereas in microorganisms the same enzymes appear to play roles limited to nutrition and pathogenesis. Aberrant expression of mammalian sialidases has been demonstrated in cancer, causing dysregulation of cell homeostasis and contributing to tumor development. The present review aims to provide a brief overview of our recent investigations into the significance of mammalian sialidases and mechanisms underlying their actions relevant to neoplasia.
Chapter
Extracellular factors that surround cell surfaces play essential roles in a wide spectrum of neurobiological functions, including neuronal development and neuronal plasticity. Glycans are ubiquitous throughout the extracellular and pericellular spaces, and they may function as microenvironmental cues during neuronal development and remodeling. Recent advances in the field of glyco-neuroscience clearly indicate that distinct glycans, especially sulfated glycosaminoglycan (GAG) chains, are functionally relevant to neuronal plasticity. This chapter reviews current research findings on neuroregulatory glycans and focuses primarily on structural divergence among sulfated GAG chains and their unique and/or partially overlapping contributions to neuronal plasticity during development and during regeneration after central nervous system injury.
Article
Neural extracellular matrix (ECM) is different from the normal ECM in other organs in that it has low fibrous protein content and high carbohydrate content. One of the key carbohydrate components in the brain ECM is chondroitin sulfate proteoglycans (CSPGs). Over the last two decades, the view of CSPGs has changed drastically, from the initial regeneration inhibitor to plasticity regulators present in the perineuronal nets to the most recent view that certain CSPG isoforms may even be growth promoters. In this chapter, we aim to address a few current progresses of CSPGs in regulating plasticity and rehabilitation in various pathological conditions in the central nervous system.
Article
Full-text available
Chondroitinase ABC (ChABC) in combination with rehabilitation has been shown to promote functional recovery in acute spinal cord injury. For clinical use, the optimal treatment window is concurrent with the beginning of rehabilitation, usually 2-4 weeks after injury. We show that ChABC is effective when given 4 weeks after injury combined with rehabilitation. After C4 dorsal spinal cord injury, rats received no treatment for 4 weeks. They then received either ChABC or penicillinase control treatment followed by hour-long daily rehabilitation specific for skilled paw reaching. Animals that received both ChABC and task-specific rehabilitation showed the greatest recovery in skilled paw reaching, approaching similar levels to animals that were treated at the time of injury. There was also a modest increase in skilled paw reaching ability in animals receiving task-specific rehabilitation alone. Animals treated with ChABC and task-specific rehabilitation also showed improvement in ladder and beam walking. ChABC increased sprouting of the corticospinal tract, and these sprouts had more vGlut1(+ve) presynaptic boutons than controls. Animals that received rehabilitation showed an increase in perineuronal net number and staining intensity. Our results indicate that ChABC treatment opens a window of opportunity in chronic spinal cord lesions, allowing rehabilitation to improve functional recovery.
Article
Full-text available
Chondroitin sulfate proteoglycans (CSPGs) are upregulated after CNS lesions, where they inhibit axon regeneration. In order for axon growth and regeneration to occur, surface integrin receptors must interact with surrounding extracellular matrix molecules. We have explored the hypothesis that CSPGs inhibit regeneration by inactivating integrins and that forcing integrins into an active state might overcome this inhibition. Using cultured rat sensory neurons, we show that the CSPG aggrecan inhibits laminin-mediated axon growth by impairing integrin signaling via decreasing phosphorylated FAK (pFAK) and pSrc levels, without affecting surface integrin levels. Forcing integrin activation and signaling by manganese or an activating antibody TS2/16 reversed the inhibitory effect of aggrecan on mixed aggrecan/laminin surfaces, and enhanced axon growth from cultured rat sensory neurons (manganese) and human embryonic stem cell-derived motoneurons (TS2/16). The inhibitory effect of Nogo-A can also be reversed by integrin activation. These results suggest that inhibition by CSPGs can act via inactivation of integrins, and that activation of integrins is a potential method for improving axon regeneration after injury.
Article
Retinal axon pathfinding from the retina into the optic nerve involves the growth promoting axon guidance molecules L1, laminin and netrin 1, each of which governs axon behavior at specific regions along the retinal pathway. In identifying additional molecules regulating this process during embryonic mouse development, we found that transmembrane Semaphorin5A mRNA and protein was specifically expressed in neuroepithelial cells surrounding retinal axons at the optic disc and along the optic nerve. Given that growth cone responses to a specific guidance molecule can be altered by co-exposure to a second guidance cue, we examined whether retinal axon responses to Sema5A were modulated by other guidance signals axons encountered along the retinal pathway. In growth cone collapse, substratum choice and neurite outgrowth assays, Sema5A triggered an invariant inhibitory response in the context of L1, laminin, or netrin 1 signaling, suggesting that Sema5A inhibited retinal axons throughout their course at the optic disc and nerve. Antibody-perturbation studies in living embryo preparations showed that blocking of Sema5A function led to retinal axons straying out of the optic nerve bundle, indicating that Sema5A normally helped ensheath the retinal pathway. Thus, development of some CNS nerves requires inhibitory sheaths to maintain integrity. Furthermore, this function is accomplished using molecules such as Sema5A that exhibit conserved inhibitory responses in the presence of co-impinging signals from multiple families of guidance molecules.
Article
Axonal regrowth and restoration of visual function were studied in adult rats. The optic nerve was completely cut behind the eye. The proximal and distal nerve stumps were realigned and the meninges sutured back together. During the same surgical procedure, the lens was lesioned in order to induce secondary cellular cascades, which are known to strongly support the survival of retinal ganglion cells (RGCs) and to promote axonal regeneration. The anatomical and topographic restoration of the visual pathway was assessed neuroanatomically with the aid of anterograde and retrograde tracing using fluorescent dyes. It appeared that the axons formed growth cones at the junction of the suture soon after injury, before glial cells and extracellular matrix proteins were able to cause local scar formation. Growth cones first entered the distal optic nerve stump 3 days after injury, grew through it to reach the optic chiasm approximately 3 weeks after the lesion was made, and terminated within the retinoreceptive layers of the superior colliculus 5 weeks after lesioning. Quantification of the retrogradely labeled cell bodies within the regenerating retina revealed that up to 30% of the RGCs, which includes all major cell types, were capable of regenerating their axons along the entire visual pathway. To assess whether topography was restored, double-labeling experiments were performed, revealing only crude topographic restoration during the initial stages of regeneration. However, visual-evoked potentials could be recorded, indicating that synaptic transmission in higher visual areas was relatively intact. The data show, in principle, that cut axons can regenerate over long distances within the white matter of a central nerve like the adult optic nerve, spanning over 11 mm to the chiasm and between 12 and 15 mm to the thalamus and midbrain. The findings suggest, for the first time, that lentogenic stimulation of RGCs is sufficient to induce the formation of growth cones that can override inhibitors at the site of injury, grow through the white matter of the optic nerve, pass through the optic chiasm, and make synaptic connections within the brain.
Article
Injury of the optic nerve has served as an important model for the study of cell death and axon regeneration in the CNS. Analysis of axon sprouting and regeneration after injury by anatomical tracing are aided by lesion models that produce a well-defined injury site. We report here the characterization of a microcrush lesion of the optic nerve made with 10-0 sutures to completely transect RGC axons. Following microcrush lesion, 62% of RGCs remained alive 1 week later, and 28% of RGCs, at 2 weeks. Optic nerve sections stained by hematoxylin-based methods showed a thin line of intensely stained cells that invaded the lesion site at 24 h after microcrush lesion. The lesion site became increasingly disorganized by 2 weeks after injury, and both macrophages and blood vessels invaded the lesion site. The microcrush lesion was immunoreactive for chondroitin sulfate proteoglycans (CSPG), and an adjacent GFAP-negative zone developed early after the lesion, disappearing by 1 week. Luxol fast blue staining showed a myelin-free zone at the lesion site, and myelin remained distal to the lesion at 8 weeks. To study the axonal response to microcrush lesion, anterograde tracing was used. Within 6 h after injury all RGC axons retracted back from the site of lesion. By 1 week after injury, axons regrew toward the lesion, but most stopped abruptly at the injury scar. The few axons that were able to cross the injury site did not extend further in the optic nerve white matter by 8 weeks postlesion. Our observations suggest that both the CSPG-positive scar and the myelin-derived growth inhibitory proteins contribute to the failure of RGC regeneration after injury.
Article
Several molecules inhibit axonal growth cones and may account for the failure of central nervous system regeneration, including myelin proteins and various chondroitan sulfate proteoglycans expressed at the site of injury. Axonal growth inhibition by myelin and chondroitan sulfate proteoglycans may in part be controlled by Rho-GTPase, which mediates growth cone collapse. Here, we tested in vitro whether pharmacological inhibition of a major downstream effector of Rho, Rho-kinase, promotes axonal outgrowth from dorsal root ganglia grown on aggrecan. Aggrecan substrates stimulated Rho activity and were inhibitory to axonal growth. Y-27632 treatment promoted the growth of axons by 5- to 10-fold and induced “steamlined” growth cones with longer filopodia and smaller lamellipodia. Interestingly, more actin bundles reminiscent of stress fibers in the central domain of the growth cone were observed when grown on aggrecan compared to laminin. In addition, Y-27632 significantly promoted axonal growth on both myelin and adult rat spinal cord cryosections. Our data suggest that suppression of Rho-kinase activity may enhance axonal regeneration in the central nervous system.
Article
After transection of the optic nerve (ON) in adult rats, retinal ganglion cells (RGC) progressively degenerate until, after two months, a residual population of only about 5% of these cells survives. In this study, we investigated the effect of regeneration-associated factors from sciatic nerve (ScN), BDNF, and CNTF on the survival of adult rat RGC after intraorbital ON transection. Neurotrophic factors were injected into the vitreous body. Rats were allowed to survive 3, 5, or 7 weeks, and the remaining viable RGC were then labelled by retrograde staining with the carbocyanine dye, 4Di-10Asp, which was applied onto the proximal nerve stump in vivo. The animals were sacrificed 3 days later and RGC counted in retinal whole mounts. Due to progressive degeneration following nerve transection the number of surviving RGC decreased to about 10% of the initially labelled population after 3 weeks, to about 8% after 5 weeks, and to about 5% after 7 weeks. Survival of axotomized cells could be prolonged using either of the neurotrophic factors: after 3 weeks a 2–3-fold increase in the number of viable RGC could be obtained compared to uninjected controls and to those which received injection of buffer. The prolonged survival effect vanished after 5 and 7 weeks, and no additive effect could be seen when combining brain-derived neurotrophic factor (BDNF) and ciliary neuronotrophic factor (CNTF) treatment. Morphometric analysis of labelled cells revealed that all neurotrophic factors supported predominantly large RGC with somal areas > 250 μm2. In retinae from rats that survived the ON transection for several months, a characteristic population of axotomy-resistant RGC remained alive. Their few, very large, and often curled dendrites showed signs of placticity in the depleted inner nuclear layer of the adult rat retina. We conclude that the intraocular injection of CNTF, BDNF, and ScN-derived medium, which retard the process of lesion-induced RGC degeneration, may be successfully used as a subsidiary strategy in transplantation protocols. This would result in larger populations of RGC which can be recruited to regenerate their axons and provide a basis for functional recovery.
Article
Perineuronal nets (PNs) consisting of chondroitin sulfate proteoglycans (CSPGs) and hyaluronic acid are associated with distinct neuronal populations in mammalian brain. Cortical areas abundant in PNs have been known to be less affected by neurotoxicity in human Alzheimer's disease. In the present study, we examined whether PNs protect the neurotoxicity caused by amyloid beta-protein (Abeta), a major constituent of senile plaques in Alzheimer's disease using cortical neurons of dissociated culture. Double labeling experiments using confocal microscopy showed that the neurons associated with PNs were visualized with the anti-CSPG antibody in dissociated cortical culture. The analysis of reverse transcription-polymerase chain reaction revealed that mRNA expression of chondroitin sulfotransferases, CSPG-specific enzymes, was detected in neuronal culture, indicating that cultured cortical neurons are able to synthesize CSPGs and construct PNs structure. The treatment of Abeta1-42 showed significant neurotoxicity on PNs-free cortical neurons, however, it did not reveal neurotoxicity on PNs-associated neurons. Moreover, it was shown that the treatment of Abeta1-42 was able to kill PNs-associated neurons after the removal of chondroitin sulfate (CS) glycosaminoglycans with chondroitinase ABC. The treatment of glutamate killed not only PNs-free cortical neurons but also PNs-associated neurons. These results suggest that CS glycosaminoglycans on PNs are responsible for protecting neurons from Abeta1-42 neurotoxicity.
Article
It has been shown that astrocyte-derived extracellular matrix (ECM) is important for formation and maintenance of CNS synapses. In order to study the effects of glial-derived ECM on synaptogenesis, E18 rat hippocampal neurons and primary astrocytes were co-cultivated using a cell-insert system. Under these conditions, neurons differentiated under low density conditions (3500 cells/cm(2) ) in defined, serum-free medium and in the absence of direct, membrane-mediated neuron-astrocyte interactions. Astrocytes promoted the formation of structurally intact synapses, as documented by the co-localisation of bassoon- and ProSAP1/Shank2-positive puncta, markers of the pre- and postsynapse, respectively. The development of synapses was paralleled by the emergence of perineuronal net (PNN)-like structures that contained various ECM components such as hyaluronic acid, brevican and neurocan. In order to assess potential functions for synaptogenesis, the ECM was removed by treatment with hyaluronidase or chondroitinase ABC. Both enzymes significantly enhanced the number of synaptic puncta. Whole-cell voltage-clamp recordings of control and enzyme-treated hippocampal neurons revealed that chondroitinase ABC treatment led to a significant decrease in amplitude and a reduced charge of miniature excitatory postsynaptic currents, whereas inhibitory postsynaptic currents were not affected. When the response to the application of glutamate was measured, a reduced sensitivity could be detected and resulted in decreased currents in response to the excitatory neurotransmitter. These findings are consistent with the interpretation that the ECM partakes in the regulation of the density of glutamate receptors in subsynaptic sites.