ArticlePDF Available

Outage Probability of Cognitive Relay Networks with Interference Constraints

Authors:

Abstract and Figures

This paper evaluates the outage probability of cognitive relay networks with cooperation between secondary users based on the underlay approach, while adhering to the interference constraint on the primary user, i.e., the limited amount of interference which the primary user can tolerate. A relay selection criterion, suitable for cognitive relay networks, is provided, and using it, we derive the outage probability. It is shown that the outage probability of cognitive relay networks is higher than that of conventional relay networks due to the interference constraint, and we quantify the increase. In addition, the outage probability is affected by the distance ratio of the interference link (between the secondary transmitter and the primary receiver) to the relaying link (between the secondary transmitter and the secondary receiver). We also prove that cognitive relay networks achieve the same full selection diversity order as conventional relay networks, and that the decrease in outage probability achieved by increasing the selection diversity (the number of relays) is not less than that in conventional relay networks.
Content may be subject to copyright.
1
Outage Probability of Cognitive Relay Networks
with Interference Constraints
Jemin Lee, Hano Wang, Jeffrey G. Andrews, Senior Member,IEEE,
and Daesik Hong, Senior Member,IEEE
Abstract—This paper evaluates the outage probability of
cognitive relay networks with cooperation between secondary
users based on the underlay approach, while adhering to the
interference constraint on the primary user, i.e., the limited
amount of interference which the primary user can tolerate. A
relay selection criterion, suitable for cognitive relay networks, is
provided, and using it, we derive the outage probability. It is
shown that the outage probability of cognitive relay networks
is higher than that of conventional relay networks due to the
interference constraint, and we quantify the increase. In addition,
the outage probability is affected by the distance ratio of the
interference link (between the secondary transmitter and the
primary receiver) to the relaying link (between the secondary
transmitter and the secondary receiver). We also prove that
cognitive relay networks achieve the same full selection diversity
order as conventional relay networks, and that the decrease in
outage probability achieved by increasing the selection diversity
(the number of relays) is not less than that in conventional relay
networks.
Index Terms—cognitive relay networks, outage probability,
selection diversity.
I. INT ROD UC TI ON
In cognitive radio networks, unlicensed users (secondary
users) are permitted to use the licensed band so long as they
protect the data transmission of the licensed user (primary
user) using spectrum underlay, overlay and interweave ap-
proaches [1]. In the underlay approach, the secondary user
is allowed to use the spectrum of the primary user only
when the interference from the secondary user is less than the
interference level which the primary user can tolerate. Hence,
the transmission power of the secondary user is constrained not
to exceed the interference level. In the overlay approach, the
secondary user uses the same spectrum concurrently with the
primary user while maintaining or improving the transmission
of the primary user by applying sophisticated signal processing
and coding [1]. Otherwise, using the interweave approach,
the secondary user utilizes the spectrum not currently being
used by the primary user, known as a spectrum hole, after
performing detection on the spectrum.
Relay networks have been proposed as a way to enhance
the total throughput and coverage of wireless networks [2].
The advantage of relay networks lies in reducing the overall
path loss achieved by using a relay between a source and a
destination. Inspired by cognitive radio and relay networks,
cognitive relay networks (CRN) have recently been investi-
gated as a potential way to improve secondary user throughput
using one of two approaches: cooperation between primary
and secondary users [3], and cooperation between secondary
users [4]-[7].
For cooperation between secondary users, approximate [4]
and exact [5] outage probabilities of cognitive relay networks
have been presented considering the impact of the spectrum-
sensing accuracy in overlay coexistence. Also, it is shown that
full diversity cannot be achieved under imperfect spectrum
sensing [4]. Decentralized schemes for transmit power alloca-
tion for secondary relays have been proposed to minimize the
overall transmit power or to maximize the received signal to
noise-interference ratio (SINR) in [6]. In addition, the perfor-
mance of cognitive relay networks in licensed and unlicensed
bands is compared to that of conventional relay networks
[7]. Although the location of the relay and appropriate relay
selection are important [8], no prior work has considered
an appropriate relay selection procedure for cognitive relay
networks.
Our goal in this paper is to evaluate the performance of
cognitive relay networks using cooperation between secondary
users based on the underlay approach while adhering to the
interference constraint on the primary user. We first provide a
relay selection criterion suitable for cognitive relay networks
and then derive the outage probability of cognitive relay
networks. Our main contributions are to show that: 1) the
outage performance of cognitive relay networks is affected by
the distance ratio of the interference link (from the secondary
transmitter to the primary receiver) to the relaying link (be-
tween the secondary transmitter and the secondary receiver);
2) the outage probability of cognitive relay networks consists
of (or can be divided into) the conventional relay network
outage probability and the increase in outage probability
resulting from the interference constraint; and 3) cognitive
relay networks achieve the same relay selection diversity order
as conventional relay networks, but the decrease in outage
probability of cognitive relay networks achieved by increasing
the selection diversity is equal to or greater than that in
conventional relay networks.
II. SYSTEM MO DE L
The cognitive relay network model of interest to us is
described in this section. In this model, a primary user coexists
with secondary users as shown in Fig. 1. In the figure, P URX ,
SUS, and SUDrepresent a primary receiver, a secondary
source, and a secondary destination, respectively. In addition,
there are Kpotential secondary user relays which are denoted
by SUk(k= 1,· · ·, K ). The relay mode is regenerative mode,
2
SU
S
SU
D
SU
k
PU
RX
h
S
k
P
h
kD
h
kP
Inte rference links
Relaying links
Fig. 1. System model of cognitive relay networks; P URX,S US,SUD, and
SUkrepresent a primary receiver, a secondary source, a secondary destination,
and the kth potential relay, respectively.
so a relay decodes the received data and then forwards it to
a secondary destination. Let M={S, D, 1,2,· · · , K}be
the set of secondary user indexes. We assume that a primary
receiver occupies multiple primary spectra (frequency chan-
nels) spaced with greater frequency separation than coherence
bandwidth2, and each relay uses different frequency channel
among the primary spectra. On the ith frequency channel used
by SUi, the instantaneous channel of the link between SUi
and SUj, the relaying link in Fig. 1, is represented by hij .
The channels of the links from SUSand SUito P URX , the
interference links in Fig. 1, are denoted by hSiPand hiP ,
respectively. The channels are assumed to consist of path loss
and an independent fading effect as hij =χijdα/2
ij (i, j M)
where αand dij denote the pathloss exponent and the distance
between two users, respectively. The fading coefficient, χij,
is a complex Gaussian random variable with unit variance.
Hence, the channel gain |hij |2(i, j M)is an exponential
distributed random variable with the mean value 1ij, and
the average channel power is defined as 1ij =E|hij|2=
dα
ij where E[·]denotes expectation. Since the link distance
of hSiPis dSP for all iM,λSiPis the same as λSP . The
perfect channel information such as |hiP |2at the secondary
users is also assumed1.
In the underlay approach of this paper, the secondary
user can utilize the primary user’s spectrum so long as the
interference it generates on the primary receiver remains below
the interference threshold ( ¯
I), which is the maximum tolerable
interference level at which the primary user can still maintain
reliable communication [1]. For this reason, the secondary
user’s transmission power is constrained as Pk¯
I/|hkP |2,
where Pkis the transmission power of SUk; this constraint
1The channel information of |hiP |2can be obtained at secondary users by
direct reception from a primary receiver using some pilot signals [9], [10]
or by using the band manager, which can exchange the channel information
between primary and secondary users [10]. The channel information estimator
without feedback could be also used by the methodology in [11].
2This can be compatible with the assumption that multiple primary receivers
use different frequency channels, and each channel is occupied by a primary
receiver [12].
is called the interference constraint. In addition, there is also
the maximum transmission power constraint,Pk¯
Pwhere
¯
Pis the maximum transmission power [6]. By those two
constraints, the transmission power constraint of SUkbecomes
as follows [6], [9]:
Pkmin ¯
I
|hkP |2,¯
P.(1)
If the secondary source transmits data with the help of the
kth potential relay in dual-hop, known to be the most efficient
multi-hop transmission with respect to system capacity [8],
the capacity of the secondary user based on a unit bandwidth
becomes as follows [8]:
Ck=1
2min log21 + PSk|hSk|2
No,log21 + Pk|hkD|2
No.
(2)
In (2), 1/2 is from the dual-hop transmission in two time slots
and Nois the noise variance. In addition, any interference from
the primary transmitter is assumed to be neglected3.
III. OUTAG E ANALYSIS OF COGNITIVE RELAY NETWORKS
This section present an appropriate relay selection criterion
for cognitive relay networks. Also, we analyze the relay
transmission performance in terms of the outage probability,
and compare it to that of conventional relay networks.
A. Cognitive Relay Networks
We begin this subsection by reviewing an existing relay
selection criterion and conventional relay network outage
performance. A variety of criteria for relay selection have
been proposed as a way of maximizing capacity or minimizing
outage probability in conventional relay networks [15]-[17].
The max-min criterion, which maximizes the minimum of
signal-to-noise ratios (SNRs) of the source-relay link and
relay-destination link, has proven optimal for this purpose
[16]. Hence, a relay selection criterion in conventional relay
networks is defined as follows [16], [17]:
l= arg max
kmin |hSk |2,|hkD |2,(3)
where lis the selected relay index in conventional relay
networks. Thus, the relay is chosen based on the channel
gains of the relaying links. Hence, under the assumption that
all users use the maximum transmission power, the outage
probability based on the kth relay is defined as Po
Conv,k =
1e(λSk +λkD )·UT/¯
Pwhere UT=No22CT1and CT
is the target bandwidth efficiency [16]. Hence, the outage
probability in conventional relay networks when the relay
selection is applied becomes the following:
Po
Conv =
K
k=1 1e(λSk +λkD )·UT/¯
P.(4)
3This can be possible if the primary transmitter is located far away from
the secondary users [13], or the interference is represented by the noise term
under an assumption that the primary transmitter’s signal is generated by
random Gaussian codebooks [14].
3
From (4), we can see that Po
Conv is solely a function of the
distances of relaying links. Moreover, minimizing the outage
probability is equal to minimizing λSk +λkD , and the outage
probability has a symmetric form per λSk and λkD . Since the
selection criterion in (3) is to minimize the outage probability,
we can deduce from (4) that the relay located at exactly the
midpoint between the source and destination would be the one
most likely to be selected in average.
In contrast to conventional relay networks, an additional
transmission power constraint, the interference constraint,
exists in cognitive relay networks, making the conventional
relay selection criterion inappropriate. For instance, a relay
which has good channel conditions on its source-relay and
relay-destination links is likely to be selected in conventional
relay networks, but may be an inappropriate relay in cognitive
relay networks if the relay generates a lot of interference
at the primary receiver. Hence, as a max-min criterion for
maximizing relay transmission performance, the relay selec-
tion criterion must be redefined while considering both the
interference constraint and the maximum power constraint as
follows:
k= arg max
kmin min ¯
I
|hSkP|2,¯
P· |hSk |2,
min ¯
I
|hkP |2,¯
P· |hkD |2
= arg max
kmin {u1,k, u2,k }= arg max
kUk,
(5)
where kis the relay index selected for cognitive relay
networks.
Lemma 1. Using the outage probability of conventional relay
networks, Po
Conv,k = 1 e(λSk +λkD )UT/¯
P, the outage
probability for cognitive relay networks after applying the
relay selection described in (5) can be defined as follows:
Po
CR =
K
k=1 Po
Conv,k +βk,(6)
where βkis an increase in outage probability due to the
interference constraint, defined as (7), shown at the bottom of
the page, where n=¯
I/ ¯
P,γ1,k =λSP Sk = (dSP /dSk )α,
and γ2,k =λkP kD = (dkP /dkD )α.
Proof: In (5), due to the interference constraint, Uk=
min {u1,k, u2,k }is no longer an exponential random vari-
able. Hence, the first step is to define the distribution of
u= min ¯
I|hx|2,¯
P· |hy|2so as to derive the outage
probability, as follows:
Pr {uUT}=
x=¯
I/¯
Px·UT/¯
I
y=0
fxy(x, y)dydx
+¯
I/¯
P
x=0 UT/¯
P
y=0
fxy(x, y)dydx
=eγ·λy·¯
I/ ¯
P
γ¯
IUT+ 1 1eλyUT/¯
P+ 1
=gu(λx, λy),
(8)
where fxy(x, y ) = λx·λy·e(λx·x+λy·y)and γ=λx/λy.
Using (8), the outage probability based on the kth relay,
Po
CR,k = Pr {CkCT}= Pr {UkUT}, can be de-
fined as Po
CR,k = 1 Pr {u1,k UT}Pr {u2,k UT}=
1(1 gu(λSP , λSk)) ·(1 gu(λkP , λkD)). Hence, the
outage probability in cognitive relay networks is defined as
Po
CR = Pr {UkUT}, and presented as
Po
CR =
K
k=1 11eλSk γ1,k ¯
I/ ¯
P
γ1,k ¯
I/UT+ 1
×1eλkDγ2,k ¯
I/ ¯
P
γ2,k ¯
I/UT+ 1e(λSk +λkD )UT/¯
P.
(9)
From Lemma 1, we can see that the outage probability
when the kth relay is used in cognitive relay networks consists
of the outage probability in conventional relay networks,
Po
Conv,k , and an increase due to the interference constraint,
βk.βkbecomes zero as ¯
Pgoes to zero. Moreover, if ¯
P
goes to infinity, then βkbecomes {(γ1,k +γ2,k)¯
I/UT+
1}/{γ1,k ¯
I/UT+ 1γ2,k ¯
I/UT+ 1}so that βkbecomes
zero as ¯
Igoes to infinity, and one as ¯
Igoes to zero. Hence,
βkhas a range of 0βk1. Therefore, it can be said that
the outage probability in cognitive relay networks is always
equal to or greater than that in conventional relay networks.
Moreover, from (9), we can see that the outage probability
depends not on the distances of the interference links, but on
the distance ratio of the interference link to the relaying link.
This means that the relative distance of the interference link
based on the relaying link distance has more of an impact
on the outage probability than the absolute distance of the
interference link.
B. Comparison of Relay Selection Diversity
This subsection compares the relay selection diversity in
cognitive relay networks to that in conventional relay net-
works. For simplicity, it is assumed that each link has an
equal mean of channel gain, λSk =λSR ,λkD =λRD ,
and λkP =λRP for all k[17], [18], since this assumption
provides a simple form for the analysis without changing the
βk=e(λSk +λkD )UT/¯
Pe(λSk γ1,k +λkD γ2,k )n+γ2,k ¯
I/UT+ 1eλSkγ1,k n+γ1,k ¯
I/UT+ 1eλkDγ2,k n
γ1,k ¯
I/UT+ 1γ2,k ¯
I/UT+ 1.(7)
4
diversity order. With this assumption, Po
Conv,k and βkbecome
equal for all kas ¯
PConv and ¯
β. Thus, the outage probabilities
in conventional relay networks and cognitive relay networks
become Po
Conv =¯
PConv Kand Po
CR =¯
PConv +¯
βK=
¯
PCR K. Using binomial theorem [19], Po
CR can be redefined
as follows:
Po
CR =¯
PConv K+gI C (K),(10)
where
gIC (K) =
K
i=1 K
i¯
PKi
Conv ·¯
βi,
0¯
β1,0¯
PConv +¯
β1.
(11)
Hence, we can see that the outage probability of cognitive
relay networks with relay selection is divided into the outage
probability in conventional relay networks, Po
Conv , and the
increased outage probability arising from the interference
constraint, gIC (K).
If the outage probability is proportional to ρmas ρ
approaches infinity, the selection diversity order is mwhere ρ
is the SNR [20]. Then, the following lemma can be obtained.
Lemma 2. Cognitive relay networks achieve the full relay
selection diversity order of K.
Proof: In cognitive relay networks, we need to consider
two cases of SNR from the transmission power constraint in
(1). First, when Pk=¯
P(i.e., ¯
I/|hkP |2>¯
P), SNR is ρ1=
¯
P /No. In (6), ¯
PCR is proportional to ρ1
1as ρ1goes to infinity
since UT/¯
P= (22CT1)ρ1
1. So, Po
CR scales no slower than
O(ρK
1). Second, when Pk=¯
I/|hkP |2(i.e., ¯
I/|hkP |2¯
P),
the average SNR is ρ2=λkP ¯
I/No. From βkin Lemma 1,
we can see that ¯
PCR is proportional to ¯
I/No1as ¯
I/No
approaches infinity since ¯
I/UT= (22CT1)1¯
I/No. So,
Po
CR also scales no slower than O(ρK
2). Hence, the selection
diversity order is Kfor all cases of transmission power.
Note that this is the same as the selection diversity order in
conventional relay networks [18]. Hence, with full selection
diversity order, the outage probabilities for both cognitive and
conventional relay networks decrease as the number of relays
increases. However, the reduction in the amount of outage
probability achieved by adding a relay in cognitive relay
networks is different from what occurs in conventional relay
networks. We designate this the diversity gain. In the generally
considered range of the outage probability (i.e., ¯
PCR 0.5),
the following lemma on the diversity gain can be obtained.
Lemma 3. The diversity gain in cognitive relay networks is
always equal to or greater than that in conventional relay
networks when ¯
PCR 0.5.
Proof: The diversity gains achieved by increasing the
total number of relays from K1to Kin cognitive
and conventional relay networks are defined as GCR(K
1, K) = ¯
PCR K1¯
PCR Kand GConv (K1, K ) =
¯
PConv K1¯
PConv K, respectively. From (10), GCR (K
x
y
0.0 0.1 0.2 0. 3 0.4 0.5 0.6 0.7 0.8 0. 9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.6
0.2
0.4
0.3
0.5
1.6
0.4
0.8
1.2
1.8
Cognitive Relay
Networks Conventional Relay
Networks
Relays
SU
S
PU
RX
SU
D
Fig. 2. Percentages of relay selection in conventional relay networks (dotted
line), and in cognitive relay networks (solid line) (400 candidate relays are
distributed equidistantly over a square area and the secondary source, the
secondary destination and the primary receiver are located at the coordinates
(0,1), (1,0) and (1,1), respectively).
1, K)and GC onv (K1, K)have the following relation:
GCR (K1, K)GC onv (K1, K) = gI C (K1)gIC (K).
(12)
Assuming gIC (t),tR+, is a continuous
function, then the gradient is defined as gIC (t)=
ln ¯
PConv +¯
β¯
PConv th(t)where h(t) =
¯
P1
Conv ¯
PConv +¯
βtln ¯
PConv ln ¯
PConv +¯
β1.
Since ln ¯
PConv +¯
β0and h(t)0when
¯
PConv +¯
β0.5for t > 0,gIC (t)0. Hence,
gIC (k)is a monotonically decreasing function of kR+.1
Accordingly, gIC (K1) gIC (K)is not less than zero,
which implies GCR (K1, K)GConv (K1, K)0in
(12).
From Lemma 2 and Lemma 3, it can be seen that cog-
nitive relay networks have the same relay selection diversity
order as conventional relay networks, but that the decrease
in outage probability achieved by increasing the selection
diversity is larger. Hence, the outage probability of cognitive
relay networks, generally larger than that of conventional relay
networks, approaches that of conventional relay networks as
the number of relays increases.
IV. NUMERICAL RES ULT S
In this section, we examine the performance of cognitive
relay networks based on the outage probability. Simulations
were conducted to verify the derived outage probabilities in
(9) and (10), and the results closely match the analysis, as
shown in Figs. 3-5.
1gIC (t)0means gI C (t)is monotonically decreasing at any point
tR+, so gIC (k)is also a monotonically decreasing function with respect
to k,kN, since NR+.
5
10-1 100
10-2
10-1
100
Ratio of interference threshold to maximum transmission power
Outage Probability of Sec ondary User
Cog-Direct (Simulation)
Cog-Relay (Analy sis)
Cog-Relay (Si mualtion)
Conv-Relay (Analysis)
Conv-Relay (Simualtion)
Cognitive Relay
Networks:
PU
RX
=(1.5,1.5)
Cognitive Relay
Networks:
PU
RX
=(1.0,1.0)
Conventional Relay
Networks
/I P
Fig. 3. Comparison of outage probabilities of cognitive relay networks (Cog-
Relay), conventional relay networks (Conv-Relay), and direct transmission in
cognitive radio networks (Cog-Direct) according to the interference threshold
compared to the maximum transmission power, ¯
I/ ¯
P(In this simulation, ρ=
¯
P /No= 30dB, CT= 5 bps/Hz, and 20 potential relays are distributed
uniformly within a rectangular area described by the coordinates (0,0), (0,
1), (1,0), and (1,1)).
As discussed above, the relay selection criterion in cognitive
relay networks considers the interference constraint as well as
the maximum power constraint. Hence, the relay selected is
different from the one selected in conventional relay networks,
even in the same environment. Fig. 2 shows the distribution of
probabilities that a relay in a specific location will be selected
in cognitive relay and conventional relay networks. To obtain
more precise distributions, 400 potential relays are located
equidistantly (marked with ‘x’ in Fig. 2). The numbers on
the contour lines represent the probability that a specific relay
will be selected, and the relay that is most likely to be selected
is indicated by a square. In conventional relay networks, the
relay located exactly at the midpoint between source and
destination (near the coordinates (0.5,0.5)) is the one most
likely to be selected. However, in cognitive relay networks,
the relay located farthest from the primary receiver (near the
coordinates (0.35,0.35)), is the one most apt to be selected.
Accordingly, the conventional relay selection criterion is not
suitable in cognitive relay networks.
Fig. 3 depicts the outage performances versus ¯
I/ ¯
P. For
this simulation, we vary the interference threshold while ¯
P
is fixed, so that the outage performance of the conventional
relay network is not affected by the variation of ¯
I/ ¯
P. In
Fig. 3, if we compare the results when the primary receiver’s
locations are (1,1) (dotted lines) and (1.5,1.5) (solid lines), we
see that the outage performance of cognitive relay networks
improves when the primary receiver is located farther away
from the secondary users. In addition, the outage probability
of cognitive relay networks approaches that of conventional
relay networks as the interference threshold increases. In
general, we can see that the relaying transmission achieves
better outage performance than direct transmission. However,
2 4 6 8 10 12 14 16 18 20
10
-4
10
-3
10
-2
10
-1
10
0
Ratio of maximum transmis sion power to noise
Outage Probability of Sec ondary User
Cog-Relay (Analys is)
Cog-Relay (Simulati on)
Conv-Relay (Analysis)
Conv-Relay (Simulation)
K=4
K=2
/ (dB)
o
P N
( )
/
K
o
P N
A
A
Fig. 4. Comparison of outage probabilities of cognitive relay networks (Cog-
Relay) and conventional relay networks (Conv-Relay) according to the ratio
of the maximum transmission power to the noise, ¯
P /No(¯
I/No= 12dB,
and CT= 1.5bps/Hz).
direct transmission can outperform relay transmission when
the primary receiver is located close to the secondary users
or the interference threshold is low, as shown in Fig. 3. This
results from the fact that, in those cases, the loss from using
twice the resources (e.g., 1/2term in (2)) is more dominant
than the improved capacity achieved via relay transmission. In
addition, we note that the relay transmission is more sensitive
to any variation in the interference threshold or the location
of the primary receiver than direct transmission.
Figs. 4-6 are to show the diversity order and the gain when
the primary receiver is located at the coordinates (1.5,1.5),
and each channel’s mean is assumed to be equal, λSk =
λSR = 2α/2,λkD =λRD = 2α/2, and λkP =λRP = 2α/2
for all k, as described in Section III.B.
In Fig. 4, the curves obtained by ¯
P /NoKare included as
references to explicitly verify the diversity order. Comparing
the slopes of the results confirms that cognitive relay networks
indeed achieve full diversity order equivalent to conventional
relay networks. However, due to the transmission power
constraint in (1), the outage probability of cognitive relay
networks converges to a constant when ¯
Pis high, e.g., in
the area Ain Fig. 4. In this case, the transmission power is
¯
I/|hkP |2with high probability. So, the diversity order needs
to be verified according to ¯
I/Noas Fig. 5, which shows the
outage probability when ¯
Pis high, i.e., ¯
P /No= 40dB. In Fig.
5, the same slopes of the results also confirm the full diversity
order of cognitive relay networks. We can thus see that the
interference constraint in cognitive relay networks does not
change the diversity order.
In Fig. 6, both the outage probabilities of cognitive relay
networks and conventional relay networks decrease and be-
come similar to each other as the number of relays increases.
On comparing GCR (K1, K)and GConv (K1, K), we
can see that the diversity gain achieved by increasing the
number of relays is greater in cognitive relay networks than in
6
Fig. 5. Outage probability of cognitive relay networks (Cog-Relay) according
to the ratio of the interference threshold to the noise, ¯
I/No(¯
P /No= 40dB,
and CT= 2 bps/Hz).
conventional relay networks, as is discussed in Section III.B.
For instance, if the number of relays is increased from 3to 4,
the outage probability reduction amounts are 0.05 in cognitive
relay networks and 0.01 in conventional relay networks. We
can therefore achieve a greater reduction in outage probability
in cognitive relay networks than in conventional relay net-
works by providing additional relays.
V. CONCLUSIONS
The overall contribution of this paper is the evaluation of the
outage probability of cognitive relay networks when a suitable
relay selection criterion is applied. As opposed to conventional
relay networks, the outage probability in cognitive relay net-
works is affected by the distance-ratio of the interference link
to the relaying link, and not the absolute distances. Moreover,
it is always higher than that of conventional relay networks due
to the interference constraint, and the difference between them,
depending on the interference threshold and the maximum
transmission power, is quantified. The outage probability of
cognitive relay networks decreases with full selection diversity
order the same as conventional relay networks, but the de-
crease in outage probability achieved by increasing the number
of relays is greater than that of conventional relay networks.
These observations give quantitative insight into the effect of
the interference constraint and the number of potential relays
on the outage probability of cognitive relay networks.
REF ER EN CE S
[1] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “Breaking Spectrum
Gridlock With Cognitive Radios: An Information Theoretic Perspective,”
Proceedings of the IEEE, Vol. 97, No. 5, pp. 894 - 914, May 2009.
[2] C. Chang and J. Chang, “Optimal Design Parameters in a Multihop
Packet Radio Network using Random Access Techniques,” IEEE Global
Commun. Conf., Vol. 1, pp. 493-497, June 1984.
[3] O. Simeone, U. Spagnolini, and Y. Bar-Ness, “Stable Throughput of
Cognitive Radios With and Without Relaying Capability,IEEE Trans.
on Commun., Vol. 55, Issue. 12, pp. 2351-2360, Dec. 2007.
2345678
0.05
0.1
0.15
0.2
0.25
Number of Potential Relays K
Outage Probability of S econdary User
Cog-Direct (S imulation)
Cog-Relay (Analysis)
Cog-Relay (Simulation)
Conv-Relay (Analysis )
Conv-Relay (Simulation)
G
Conv
(K-1,K)
G
CR
(K-1, K)
Fig. 6. Comparison of outage probabilities of cognitive relay networks (Cog-
Relay), conventional relay networks (Conv-Relay), and direct transmission in
cognitive radio networks (Cog-Direct) according to the number of potential
relays, K.GCR (K1, K)and GC onv (K1, K )represent the outage
probability reduced by adding a relay from K1to Kin cognitive relay
networks and in conventional relay networks, respectively ( ¯
I/ ¯
P=10dB,
ρ=¯
P /No= 30dB, and CT= 5 bps/Hz).
[4] K. Lee and A. Yener, “Outage Performance of Cognitive Wireless Relay
Networks,” IEEE Global Commun. Conf., pp. 1-5, Nov. 2006.
[5] H. A. Suraweera, P. J. Smith, and N. A. Surobhi, “Exact Outage Probabil-
ity of Cooperative Diversity with Opportunistic Spectrum Access,IEEE
Intl. Conf. on Commun., pp. 79-84, May 2008.
[6] J. Mietzner, L. Lampe, and R. Schober, “Distributed Transmit Power Al-
location for Multihop Cognitive-radio Systems,IEEE Trans. on Wireless
Commun., Vol. 8, No. 10, pp. 5187-5201, Oct. 2009.
[7] S. Kim, W. Choi, Y. Choi, J. Lee, Y. Han, and I. Lee, “Downlink
Performance Analysis of Cognitive Radio based Cellular Relay Net-
works,” Int. Conf. on Cognitive Radio Oriented Wireless Networks and
Communications, pp. 1-6, May 2008.
[8] J. Lee, H. Wang, W. Seo, and D. Hong, “QoS-guaranteed Transmission
Mode Selection for Efficient Resource Utilization in Multi-hop Cellular
Networks,” IEEE Trans. on Wireless Commun., Vol. 7, No. 10, pp. 3697-
3701, Oct. 2008.
[9] T. W. Ban, W. Choi, B. C. Jung, and D. K. Sung, “Multi-User Diversity
in a Spectrum Sharing System,” IEEE Trans. on Wireless Commun., Vol.
8, No. 1, pp. 102-106, Jan. 2009.
[10] A. Ghasemi and E. S. Sousa, “Fundamental Limits of Spectrum-sharing
in Fading Environment,IEEE Trans. on Wireless Commun., Vol. 6, Issue
2, pp. 649-658, Feb. 2007.
[11] K. Hamdi, W. Zhang, and K. B. Letaief, “Power Control in Cognitive
Radio Systems based on Spectrum Sensing Side Information,” IEEE Intl.
Conf. on Commun., pp. 5161-5165, June 2007.
[12] H. Wang, J. Lee, S. Kim, and D. Hong, “Capacity of Secondary Users
Exploiting Multispectrum and Multiuser Diversity in Spectrum-Sharing
Environments,IEEE Trans. on Veh. Technol., Vol. 59, Issue 2, pp. 1030-
1036 , Feb. 2010.
[13] X. Kang, Y. C. Liang, and A. Nallanathan, “Optimal Power Allocation
for Fading Channels in Cognitive Radio Networks: Delay-Limited Capac-
ity and Outage Capacity,IEEE Vehicular Technol. Conf., pp. 1544-1548,
May 2008.
[14] R. Etkin, A. Parekh, and D. Tse, “Spectrum Sharing for Unlicensed
Bands,” IEEE J. Sel. Areas Commun., Vol. 25, Issue 2, pp. 517-528,
April. 2007.
[15] V. Sreng, H. Yanikomeroglu, and D. D. Falconer, “Relayer Selection
Strategies in Cellular Networks with Peer-to-peer Relaying,IEEE Ve-
hicular Technol. Conf, Vol. 3, pp. 1949- 1953, Oct. 2003.
[16] A. Muller and J. Speidel, “Relay Selection in Dual-Hop Transmission
Systems: Selection Strategies and Performance Results,” IEEE Intl. Conf.
on Commun., pp. 4998-5003, May 2008.
[17] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A Simple Cooper-
7
ative Diversity Method Based on Network Path Selection,” IEEE J. Sel.
Areas Commun., Vol. 24, Issue 3, pp. 659-672, March 2006.
[18] Y. Jing and H. Jafarkhani, “Single and Multiple Relay Selection Schemes
and Their Achievable Diversity Orders,IEEE Trans. on Wireless Com-
mun., Vol. 8, Issue 3, pp. 1414-1423, March 2009.
[19] M. Abramowitz and I. A. Stegun (Eds.). Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, 1972.
[20] C. K. Lo, S. Vishwanath, and R. W. Heath, “Relay Subset Selection
in Wireless Networks Using Partial Decode-and-Forward Transmission,”
IEEE Trans. on Veh. Technol., Vol. 58, Issue 2, pp. 692-704, Feb. 2009.
... Nhiều học giả tập trung vào vấn đề nguồn phân bổ công suất và chuyển tiếp trong các mạng hợp tác người dùng nhận thức [13][14][15]. Trước đây, Leila Musavian và cộng sự đã chỉ ra rằng công suất đỉnh giới hạn và công suất trung bình của người sử dùng nhận thức được giới hạn trong cả hai trường hợp kênh Rayleigh và khả năng có thể sử dụng suy luận giải pháp khép kín [10]; tài liệu [11] nghiên cứu dưới tiền đề hạn chế công suất đỉnh, việc lựa chọn mạng nhận thức phối hợp hoạt động gián đoạn truyền; thời gian gần đây ở tài liệu [12], các tác giả cũng cho rằng hạn chế công suất đỉnh người dùng chính có thể là một trong nhiều phương pháp tối ưu cho mạng vô tuyến nhận thức lớp lót. ...
... Theo phương trình (12), công thức để giải quyết xác suất gián đoạn có điều kiện được biểu thị bằng ...
Article
Full-text available
1. Mở đầu Ở mạng vô tuyến nhận thức, người dùng nhận thức được phép tương tác với người dùng chính miễn là việc truyền tải thông tin của người dùng nhận thức nhận được đáp ứng các giới hạn về mức độ gây nhiễu từ người dùng chính ngay ra, nghĩa là mức độ nhiễu của người dùng chính không cao hơn giá trị nhiệt độ gây nhiễu cụ thể là người dùng đồng thời sử dụng băng tần được cấp phép của người dùng chính để thực hiện phân chia phổ dưới dạng lớp lót (underlay) [1, 2]. Trong những năm gần đây, một số lượng lớn các nghiên cứu đã chỉ ra rằng việc đưa công nghệ chuyển tiếp hợp tác vào mạng nhận thức chia sẻ phổ dựa trên lớp lót có thể cải thiện hiệu năng truyền dẫn của người dùng nhận thức đồng thời đảm bảo chất lượng truyền thông của người sử dùng chính [3-9]. Kết quả cái gọi là mạng vô tuyến nhận thức chuyển tiếp đã xuất hiện cho phép chia sẻ khoảng cách lớp dưới dạng hợp tác [10]. Ở mạng này, người dùng nhận thức nhận nguồn truyền thông tin với sự trợ giúp của người dùng nhận thức khác chuyển tiếp và chuyển tiếp giới hạn công suất truyền của họ trong quá trình truyền dẫn để đảm bảo rằng giới hạn ngưỡng nhiễu của người sử dụng chính là không bị ảnh hưởng. Mạng vô tuyến nhận thức chuyển tiếp nhận được nhiều sự quan tâm, để ý của các nhà nghiên cứu. Nhiều học giả tập trung vào vấn đề nguồn phân bổ công suất và chuyển tiếp trong các mạng hợp tác người dùng nhận thức [13-15]. Trước đây, Leila Musavian và cộng sự đã chỉ ra rằng công suất đỉnh giới hạn và công suất trung bình của người sử dùng nhận thức được giới hạn trong cả hai trường hợp kênh Rayleigh và khả năng có thể sử dụng suy luận giải pháp khép kín [10]; tài liệu [11] nghiên cứu dưới tiền đề hạn chế công suất đỉnh, việc lựa chọn mạng nhận thức phối hợp hoạt động gián đoạn truyền; thời gian gần đây ở tài liệu [12], các tác giả cũng cho rằng hạn chế công suất đỉnh người dùng chính có thể là một trong nhiều phương pháp tối ưu cho mạng vô tuyến nhận thức lớp lót. Ở bài báo này, kết hợp các giới hạn về mức độ nhiễu và các vấn đề can thiệp chia sẻ phổ để xây dựng một mô hình mạng tiếp nhận nhận thức hoàn chỉnh và phân tích hiệu suất của mạng. Nội dung cụ thể được đề cập đến các giao thức hợp tác dựa trên lựa chọn chuyển tiếp tối ưu, có tính đến ảnh hưởng hoạt động của người dùng chính đối với mạng nhận thức, và tìm ra một giải pháp hình thức đóng của xác suất bị gián đoạn. Thông qua việc phân tích các kết quả mô phỏng, độ
... Nhiều học giả tập trung vào vấn đề nguồn phân bổ công suất và chuyển tiếp trong các mạng hợp tác người dùng nhận thức [13][14][15]. Trước đây, Leila Musavian và cộng sự đã chỉ ra rằng công suất đỉnh giới hạn và công suất trung bình của người sử dùng nhận thức được giới hạn trong cả hai trường hợp kênh Rayleigh và khả năng có thể sử dụng suy luận giải pháp khép kín [10]; tài liệu [11] nghiên cứu dưới tiền đề hạn chế công suất đỉnh, việc lựa chọn mạng nhận thức phối hợp hoạt động gián đoạn truyền; thời gian gần đây ở tài liệu [12], các tác giả cũng cho rằng hạn chế công suất đỉnh người dùng chính có thể là một trong nhiều phương pháp tối ưu cho mạng vô tuyến nhận thức lớp lót. ...
... Theo phương trình (12), công thức để giải quyết xác suất gián đoạn có điều kiện được biểu thị bằng ...
Article
1. Mở đầu Ở mạng vô tuyến nhận thức, người dùng nhận thức được phép tương tác với người dùng chính miễn là việc truyền tải thông tin của người dùng nhận thức nhận được đáp ứng các giới hạn về mức độ gây nhiễu từ người dùng chính ngay ra, nghĩa là mức độ nhiễu của người dùng chính không cao hơn giá trị nhiệt độ gây nhiễu cụ thể là người dùng đồng thời sử dụng băng tần được cấp phép của người dùng chính để thực hiện phân chia phổ dưới dạng lớp lót (underlay) [1, 2]. Trong những năm gần đây, một số lượng lớn các nghiên cứu đã chỉ ra rằng việc đưa công nghệ chuyển tiếp hợp tác vào mạng nhận thức chia sẻ phổ dựa trên lớp lót có thể cải thiện hiệu năng truyền dẫn của người dùng nhận thức đồng thời đảm bảo chất lượng truyền thông của người sử dùng chính [3-9]. Kết quả cái gọi là mạng vô tuyến nhận thức chuyển tiếp đã xuất hiện cho phép chia sẻ khoảng cách lớp dưới dạng hợp tác [10]. Ở mạng này, người dùng nhận thức nhận nguồn truyền thông tin với sự trợ giúp của người dùng nhận thức khác chuyển tiếp và chuyển tiếp giới hạn công suất truyền của họ trong quá trình truyền dẫn để đảm bảo rằng giới hạn ngưỡng nhiễu của người sử dụng chính là không bị ảnh hưởng. Mạng vô tuyến nhận thức chuyển tiếp nhận được nhiều sự quan tâm, để ý của các nhà nghiên cứu. Nhiều học giả tập trung vào vấn đề nguồn phân bổ công suất và chuyển tiếp trong các mạng hợp tác người dùng nhận thức [13-15]. Trước đây, Leila Musavian và cộng sự đã chỉ ra rằng công suất đỉnh giới hạn và công suất trung bình của người sử dùng nhận thức được giới hạn trong cả hai trường hợp kênh Rayleigh và khả năng có thể sử dụng suy luận giải pháp khép kín [10]; tài liệu [11] nghiên cứu dưới tiền đề hạn chế công suất đỉnh, việc lựa chọn mạng nhận thức phối hợp hoạt động gián đoạn truyền; thời gian gần đây ở tài liệu [12], các tác giả cũng cho rằng hạn chế công suất đỉnh người dùng chính có thể là một trong nhiều phương pháp tối ưu cho mạng vô tuyến nhận thức lớp lót. Ở bài báo này, kết hợp các giới hạn về mức độ nhiễu và các vấn đề can thiệp chia sẻ phổ để xây dựng một mô hình mạng tiếp nhận nhận thức hoàn chỉnh và phân tích hiệu suất của mạng. Nội dung cụ thể được đề cập đến các giao thức hợp tác dựa trên lựa chọn chuyển tiếp tối ưu, có tính đến ảnh hưởng hoạt động của người dùng chính đối với mạng nhận thức, và tìm ra một giải pháp hình thức đóng của xác suất bị gián đoạn. Thông qua việc phân tích các kết quả mô phỏng, độ
... Nhiều học giả tập trung vào vấn đề nguồn phân bổ công suất và chuyển tiếp trong các mạng hợp tác người dùng nhận thức [13][14][15]. Trước đây, Leila Musavian và cộng sự đã chỉ ra rằng công suất đỉnh giới hạn và công suất trung bình của người sử dùng nhận thức được giới hạn trong cả hai trường hợp kênh Rayleigh và khả năng có thể sử dụng suy luận giải pháp khép kín [10]; tài liệu [11] nghiên cứu dưới tiền đề hạn chế công suất đỉnh, việc lựa chọn mạng nhận thức phối hợp hoạt động gián đoạn truyền; thời gian gần đây ở tài liệu [12], các tác giả cũng cho rằng hạn chế công suất đỉnh người dùng chính có thể là một trong nhiều phương pháp tối ưu cho mạng vô tuyến nhận thức lớp lót. ...
... Theo phương trình (12), công thức để giải quyết xác suất gián đoạn có điều kiện được biểu thị bằng ...
Article
1. Mở đầu Ở mạng vô tuyến nhận thức, người dùng nhận thức được phép tương tác với người dùng chính miễn là việc truyền tải thông tin của người dùng nhận thức nhận được đáp ứng các giới hạn về mức độ gây nhiễu từ người dùng chính ngay ra, nghĩa là mức độ nhiễu của người dùng chính không cao hơn giá trị nhiệt độ gây nhiễu cụ thể là người dùng đồng thời sử dụng băng tần được cấp phép của người dùng chính để thực hiện phân chia phổ dưới dạng lớp lót (underlay) [1, 2]. Trong những năm gần đây, một số lượng lớn các nghiên cứu đã chỉ ra rằng việc đưa công nghệ chuyển tiếp hợp tác vào mạng nhận thức chia sẻ phổ dựa trên lớp lót có thể cải thiện hiệu năng truyền dẫn của người dùng nhận thức đồng thời đảm bảo chất lượng truyền thông của người sử dùng chính [3-9]. Kết quả cái gọi là mạng vô tuyến nhận thức chuyển tiếp đã xuất hiện cho phép chia sẻ khoảng cách lớp dưới dạng hợp tác [10]. Ở mạng này, người dùng nhận thức nhận nguồn truyền thông tin với sự trợ giúp của người dùng nhận thức khác chuyển tiếp và chuyển tiếp giới hạn công suất truyền của họ trong quá trình truyền dẫn để đảm bảo rằng giới hạn ngưỡng nhiễu của người sử dụng chính là không bị ảnh hưởng. Mạng vô tuyến nhận thức chuyển tiếp nhận được nhiều sự quan tâm, để ý của các nhà nghiên cứu. Nhiều học giả tập trung vào vấn đề nguồn phân bổ công suất và chuyển tiếp trong các mạng hợp tác người dùng nhận thức [13-15]. Trước đây, Leila Musavian và cộng sự đã chỉ ra rằng công suất đỉnh giới hạn và công suất trung bình của người sử dùng nhận thức được giới hạn trong cả hai trường hợp kênh Rayleigh và khả năng có thể sử dụng suy luận giải pháp khép kín [10]; tài liệu [11] nghiên cứu dưới tiền đề hạn chế công suất đỉnh, việc lựa chọn mạng nhận thức phối hợp hoạt động gián đoạn truyền; thời gian gần đây ở tài liệu [12], các tác giả cũng cho rằng hạn chế công suất đỉnh người dùng chính có thể là một trong nhiều phương pháp tối ưu cho mạng vô tuyến nhận thức lớp lót. Ở bài báo này, kết hợp các giới hạn về mức độ nhiễu và các vấn đề can thiệp chia sẻ phổ để xây dựng một mô hình mạng tiếp nhận nhận thức hoàn chỉnh và phân tích hiệu suất của mạng. Nội dung cụ thể được đề cập đến các giao thức hợp tác dựa trên lựa chọn chuyển tiếp tối ưu, có tính đến ảnh hưởng hoạt động của người dùng chính đối với mạng nhận thức, và tìm ra một giải pháp hình thức đóng của xác suất bị gián đoạn. Thông qua việc phân tích các kết quả mô phỏng, độ
... When the constraint I P for the network is fixed [49], we investigate cases in which (i) the PUs are located close to the secondary network, which is referred to as the near-CR asymptotic regime; and (ii) the PUs are located very far from the secondary network, which is referred to as the far-CR asymptotic regime. ...
Article
Full-text available
In this work, we investigate short-packet communications for multiple-input multiple-output underlay cognitive multihop relay networks with multiple primary users, where transceivers transmit and receive short packets to provide ultra-reliable and low-latency communications (uRLLCs). For performance evaluation, the closed-form expressions of the end-to-end (E2E) block error rate (BLER) for the considered systems are derived in a practical scenario under imperfect channel state information of the interference channels, from which the E2E throughput, energy efficiency (EE), latency, reliability, and asymptotic analysis are also studied. Based on the analytical results, we adapt some state-of-the-art machine learning (ML)-aided estimators to predict the system performance in terms of the E2E throughput, EE, latency, and reliability for real-time configurations. We also obtain the closed-form expressions for the optimal power-allocation and relay-location strategies to minimize the asymptotic E2E BLER under the proportional tolerable interference power and uRLLC constraints, which require negligible computational complexity and offer significant power savings. Furthermore, the ML-based evaluation achieves equivalent performance while significantly reducing the execution time compared to conventional analytical and simulation methods. Among the ML frameworks, the extreme gradient boosting model is demonstrated to be the most efficient estimator for future practical real-time applications.
... Using Nakagami-m fading channel, the outage performance of the dual-hop DF relaying network is analyzed with the interference constraint in [8]. Degradation in outage due to the distance ratio of the interference link is discussed in cognitive relay networks and it achieves the full selection diversity as conventional diversity [9]. The outage performance is improved in underlay cognitive relay network with interference power constraint in [10]. ...
Article
Full-text available
In this paper, Bit Error Rate (BER) of Orthogonal Frequency Division Multiplexing (OFDM) based cognitive radio network is analyzed in the presence of Primary User Interference (PUI). Since, the PUI signal affects only few subcarriers of the OFDM signal, it can be modeled as a sparsity vector. In this network model, half duplex Amplify and Forward (AF) relaying is considered in the absence of direct link. Further, it is assumed that the network is operating in the overlay mode, thus the primary user transmitted signal act as interference at secondary user relay and destination nodes. In this paper, the PUI is mitigated using convex optimization. Bit Error Rate (BER) is analyzed using Quadrature Phase Shift Keying (QPSK) Modulation and Quadrature Amplitude Modulation (16-QAM). Simulation results conclude that after primary interference suppression, the performance of the proposed system is significantly improved.
Article
Full-text available
The Internet-of-Things (IoT) has greatly facilitated our daily lives. Nevertheless, how to achieve higher spectral efficiency, large-scale device access, and lower latency for the next-generation IoT is still a challenge. Inspired by this, a non-orthogonal multiple access (NOMA) assisted cognitive radio (CR) IoT network is proposed in this paper, where the communication between the indoor secondary transmitter and secondary receivers is performed in the presence of an eavesdropper and under the constraint of secondary transmit power. In particular, we introduce simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) into the secondary network to assist the secondary transmitter to communicate with its receivers in different rooms. To characterize the reliability and security of the proposed system, we derive analytical approximate expressions for the outage probabilitys (OPs) and intercept probabilitys (IPs) by using Gaussian-Chebyshev quadrature. With the aim of providing a deeper understanding, we also explore the impacts of transmission signal-to-noise ratios (SNRs), power allocation coefficient and the number of STAR-RIS elements on the system performance. Presented numerical results show that: 1) the OPs of near and far users gradually decrease with SNRs until floors appear at high SNR, and the floors of near user is always lower than that of far user; 2) IPs increasing with SNRs and near user is always less than far user, which proves that near user has better security; 3) under appropriate parameters, the trade-off between reliability and security of the considered system can be arisen.
Article
Full-text available
Full-duplex (FD) communication is a potential game changer for future wireless networks. It allows for simultaneous transmit and receive operations over the same frequency band, a doubling of the spectral efficiency. FD can also be a catalyst for supercharging other existing/emerging wireless technologies , including cooperative and cognitive communications, cellular networks, multiple-input multiple-output (MIMO), massive MIMO, non-orthogonal multiple access (NOMA), millimeter-wave (mmWave) communications, unmanned aerial vehicle (UAV)-aided communication, backscatter communication (Back-Com), and reconfigurable intelligent surfaces (RISs). These integrated technologies can further improve spectral efficiency, enhance security, reduce latency, and boost the energy efficiency of future wireless networks. A comprehensive survey of such integration has thus far been lacking. This paper fills that need. Specifically, we first discuss the fundamentals, highlighting the FD transceiver structure and the self-interference (SI) cancellation techniques. Next, we discuss the coexistence of FD with the above-mentioned wireless technologies. We also provide case studies for some of the integration scenarios mentioned above and future research directions for each case. We further address the potential research directions, open challenges, and applications for future FD-assisted wireless, including cell-free massive MIMO, mmWave communications, UAV, BackCom, and RISs. Finally, potential applications and developments of other miscellaneous technologies, such as mixed radio-frequency/free-space optical, visible light communication, dual-functional radar-communication, underwater wireless communication, multiuser ultra-reliable low-latency communications, vehicle-to-everything communications, rate splitting multiple access, integrated sensing and communication, and age of information, are also highlighted.
Article
Reconfigurable intelligent surface (RIS) technology is considered one of the leading technologies for sixth-generation wireless communication, and it has also been revealed to be effective in enhancing secure and reliable communications. This article investigates using RIS to improve physical layer security and data transmission in underlay cognitive radio networks (CRNs). Because of its capability to control the wireless environment, RIS can enhance the security of the primary network (PN) and increase the reliability of the secondary network (SN) data transmission. This approach is practical and beneficial for both the PN and SN in terms of reliability and security. The study focuses on a scenario where the eavesdropper is passive and uses either selection or maximal ratio combining to combine the signals from the PN. Analytical expressions for the secrecy outage probability and the probability of nonzero secrecy capacity of the PN are derived. Additionally, an expression for the SN outage probability is also provided. The results from simulations and the numerical analysis confirm the benefits of the proposed system model and validate the accuracy of the derived expressions. This work provides valuable insights into the integration of RIS with CRNs and highlights the potential role of RIS in the future of wireless communication systems.
Article
Full-text available
Cognitive radios hold tremendous promise for increasing spectral efficiency in wireless systems. This paper surveys the fundamental capacity limits and associated transmission techniques for different wireless network design paradigms based on this promising technology. These paradigms are unified by the definition of a cognitive radio as an intelligent wireless communication device that exploits side information about its environment to improve spectrum utilization. This side information typically comprises knowledge about the activity, channels, codebooks, and/or messages of other nodes with which the cognitive node shares the spectrum. Based on the nature of the available side information as well as a priori rules about spectrum usage, cognitive radio systems seek to underlay, overlay, or interweave the cognitive radios' signals with the transmissions of noncognitive nodes. We provide a comprehensive summary of the known capacity characterizations in terms of upper and lower bounds for each of these three approaches. The increase in system degrees of freedom obtained through cognitive radios is also illuminated. This information-theoretic survey provides guidelines for the spectral efficiency gains possible through cognitive radios, as well as practical design ideas to mitigate the coexistence challenges in today's crowded spectrum.
Article
Full-text available
A cognitive radio network (CRN) is formed by either allowing the secondary users (SUs) in a secondary communication network (SCN) to opportunistically operate in the frequency bands originally allocated to a primary communication network (PCN) or by allowing SCN to coexist with the primary users (PUs) in PCN as long as the interference caused by SCN to each PU is properly regulated. In this paper, we consider the latter case, known as spectrum sharing, and study the optimal power allocation strategies to achieve the ergodic capacity and the outage capacity of the SU fading channel under different types of power constraints and fading channel models. In particular, besides the interference power constraint at PU, the transmit power constraint of SU is also considered. Since the transmit power and the interference power can be limited either by a peak or an average constraint, various combinations of power constraints are studied. It is shown that there is a capacity gain for SU under the average over the peak transmit/interference power constraint. It is also shown that fading for the channel between SU transmitter and PU receiver is usually a beneficial factor for enhancing the SU channel capacities.
Article
Full-text available
This paper considers the problem of selecting a subset of nodes in a two-hop wireless network to act as relays in aiding the communication between the source-destination pair. Optimal relay subset selection with the objective of maximizing the overall throughput is a difficult problem that depends on multiple factors, including node locations, queue lengths, and power consumption. A partial decode-and-forward strategy is applied in this paper to improve the tractability of the relay selection problem and the performance of the overall network. Note that the number of relays that are selected ultimately determines the performance of the network. This paper benchmarks this performance by determining the net diversity that is achieved using the relays that are selected and the partial decode-and-forward strategy. This framework is subsequently used to further transform relay selection into a simpler relay placement problem, and two proximity-based approximation algorithms are developed to determine the appropriate set of relays to be selected in the network. Other selection strategies, such as random relay selection and a greedy algorithm that relies on channel state information, are also presented. This paper concludes by showing that the proposed proximity-based relay selection strategies yield near-optimal expected rates for a small number of selected relays.
Conference Paper
This paper considers the problem of selecting a set of relay nodes to assist a transmitting node in a two-hop wireless network. Throughput-maximizing relay subset selection is a difficult problem that depends on variables such as node locations and power constraints. It is proposed that all relays employ partial decode-and-forward operations to improve the tractability of the relay selection problem. This allows relay selection to be transformed into a simpler relay placement problem which motivates two proximity-based relay selection algorithms. These algorithms are compared with a greedy algorithm based on relay channel gains to the sink and an algorithm that randomly selects relays. The diversity gain achieved by employing multiple relay nodes is derived. The proposed proximity-based algorithms offer good performance in terms of the expected achieved rate.
Conference Paper
Cognitive radio has been recently proposed as a promising technology to improve the spectrum utilization efficiency by intelligently sensing and accessing some vacant bands of licensed users. In this paper, we consider the coexistence between a cognitive radio and a licensed user in order to enhance the spectrum efficiency. We develop an approach to allow the cognitive radio to operate in the presence of the licensed user. In order to minimize the interference to the licensed user, the transmit power of the cognitive radio is controlled by using the side information of spectrum sensing. Numerical results will show that the quality of service for the licensed user can be guaranteed in the presence of the cognitive radio by the proposed approach.
Article
In spectrum-sharing environments, secondary users are permitted to share the primary user's spectrum only if limited interference to the primary user can be guaranteed. Hence, the capacity of the secondary link is limited by interference constraints given by the primary user. This fact motivated us to investigate selection diversity as a way of enhancing secondary link capacity. Selection diversity in conventional licensed wireless communication systems can be achieved only by selecting the user with the strongest channel gain. On the other hand, spectrum-sharing environments allow the secondary user to select not only the best secondary receiver with the strongest channel gain multiuser diversity (MUD) but the best primary spectrum with the weakest interference link gain multispectrum diversity (MSD) as well, thus doubling the opportunities for the secondary user. In this paper, we analyze the capacity gain of a secondary user exploiting MSD and MUD in spectrum-sharing environments in the form of a closed-form expression in a Rayleigh-fading channel. We then separately extract the MSD and MUD capacity gains, which results in an asymptotic capacity expression. Our results show that MSD and MUD play different roles in capacity enhancement in the spectrum-sharing environment, with capacity enhancement for secondary receivers as a whole and transmit capacity enhancement for the secondary transmitter.
Article
In this paper, we consider a relay-assisted wideband cognitive-radio (CR) system under the assumption that the frequency band chosen by the CR relay network for unlicensed spectrum usage overlaps with one or more bands dedicated to primary (e.g., licensed) narrowband links. Our objective is to optimize the performance of the CR system while limiting the interference in direction of the primary receivers, without requiring any adaptation of the transmitted signal spectra at the cognitive nodes. To this end, we study appropriate transmit power allocation (TPA) strategies among the cognitive relays. We first investigate the optimal centralized (OC) TPA solution and show that it can be formulated as a linear program. Since the OC-TPA solution requires a considerable amount of information exchange between the cognitive nodes, we develop two distributed TPA schemes, namely (i) a fully decentralized (FD) TPA scheme and (ii) a distributed feedback-assisted (DFA) TPA scheme. The FD-TPA scheme aims at maximizing the output signal-to-interference- plus-noise ratio (SINR) at the destination node of the CR network according to a best-effort strategy. It requires neither feedback information from the destination node nor an exchange of channel state information between the cognitive relays. The DFA-TPA scheme, on the other hand, utilizes feedback information from the destination node, in order to achieve a predefined target output SINR value, while minimizing the overall transmit power spent by the relays. Analytical and simulation-based performance results illustrate that notable performance improvements compared to non-cooperative transmission (i.e., without relay assistance) are achieved by the proposed schemes, especially when more than two hops are considered. In particular, the proposed distributed TPA schemes typically perform close to the OC-TPA solution.
Article
This paper is on relay selection schemes for wireless relay networks. First, we derive the diversity of many single-relay selection schemes in the literature. Then, we generalize the idea of relay selection by allowing more than one relay to cooperate. The SNR-optimal multiple relay selection scheme can be achieved by exhaustive search, whose complexity increases exponentially in the network size. To reduce the complexity, several SNR-suboptimal multiple relay selection schemes are proposed, whose complexity is linear in the number of relays. They are proved to achieve full diversity. Simulation shows that they perform much better than the corresponding single relay selection methods and very close to the SNR-optimal multiple relay selection scheme. In addition, for large networks, these multiple relay selection schemes require the same amount of feedback bits from the receiver as single relay selection schemes.
Conference Paper
We address the problem of selecting an appropriate relay station for forwarding data from a source to a destination node in dual-hop communication systems. In this regard, we focus on regenerative relays, which try to fully decode the messages received from the source before forwarding them to the actual destination. Several different scenarios are considered with different kinds of channel state information (CSI) available at the selecting entity. For all cases, we present the optimal selection strategies aiming at either maximizing the mean mutual information or minimizing the outage probability. The performance of all schemes is evaluated by means of numerical and simulation results and it turns out that with minimal CSI often almost the same performance as with perfect CSI can be achieved.