ArticlePDF Available

Modeling of Two-dimensional Warranty Policy using Artificial Neural Network (ANN) Approach.

Authors:

Abstract and Figures

Modeling of two-dimensional warranty policy is an important but difficult task due to the uncertainty and instability of data collection. Moreover, conventional numerical methods of modeling a two-dimensional warranty policy involves complex distribution function and cost analysis. Therefore, this paper attempts to present an Artificial Intelligence (AI) technique, which is the Artificial Neural Network (ANN) approach in order to improve the flexibility and effectiveness of the conventional method. The proposed ANN is trained with historical data using multi-layer perceptron (MLP), feed forward back-propagation (BP) learning algorithm. The Logarithmic (logsig) and Hyperbolic Tangent (tansig) sigmoid functions are chosen as transfer function. Four popular training functions are adopted to obtain the best BP algorithm, that are, Levenberg-Marquardt (trainlm), Gradient Descent (traingd), Gradient Descent with momentum (traingdm), and Gradient descent with momentum and adaptive learning (traingdx) back propagation algorithm. This ANN model demonstrated a good statistical performance with the mean square error (MSE) values in this four training function, especially traingd. Finally, the adopted sensitivity analysis has revealed that the proposed model had successfully implemented.
Content may be subject to copyright.
Modeling of Two-dimensional Warranty Policy
using Artificial Neural Network (ANN) Approach
Hairudin A. Majid, Jun C. Ang, and Azurah A. Samah
Abstract— Modeling of two-dimensional warranty policy is an important but difficult task due to the uncertainty and instability of
data collection. Moreover, conventional numerical methods of modeling a two-dimensional warranty policy involves complex
distribution function and cost analysis. Therefore, this paper attempts to present an Artificial Intelligence (AI) technique, which is
the Artificial Neural Network (ANN) approach in order to improve the flexibility and effectiveness of the conventional method.
The proposed ANN is trained with historical data using multi-layer perceptron (MLP), feed forward back-propagation (BP)
learning algorithm. The Logarithmic (logsig) and Hyperbolic Tangent (tansig) sigmoid functions are chosen as transfer function.
Four popular training functions are adopted to obtain the best BP algorithm, that are, Levenberg-Marquardt (trainlm), Gradient
Descent (traingd), Gradient Descent with momentum (traingdm), and Gradient descent with momentum and adaptive learning
(traingdx) back propagation algorithm. This ANN model demonstrated a good statistical performance with the mean square error
(MSE) values in this four training function, especially traingd. Finally, the adopted sensitivity analysis has revealed that the
proposed model had successfully implemented.
Index TermsArtificial Intelligence, Artificial Neural Network, Two-dimensional Warranty.
—————————— ——————————
1 INTRODUCTION
twodimensionalwarrantyiseitheranimpliedoran
expresscontractbetweenthemanufacturerandcon
sumer.Underthiscontract,manufacturersagreetopro
videasatisfactoryserviceeitherrepairorreplaceitems
thatfailduringthespecifiedperiodorusage(whichever
comesfirst).Nowadays,consumersalwayscomparethe
productperformance,characteristicsofcomparablemod
elsofcompetingbrandsbeforepurchaseaproduct.So,
warrantybecomesamajornewdirectioninmanufactur
ingindustrysinceitplaysanimportantroleinproviding
aguidelinetocustomers.
Intheautomobileindustry,accuratepredictionofop
timalwarrantyperiodandwarrantycostsisoftensought
bythemanufacturer.LeBlanc[1]mentionedthatitisdif
ficulttoquantifytherisksandrewardsofofferingawar
ranty.Itisbecausethewarrantyperiodistooshort,as
wellastoolongwhichmaybeunprofitableforthemanu
facturers[2].Averyshortwarrantyperiodwillinterfere
withsales,whileaverylongonewillleadtolossesfrom
compensationofconsumerclaims.Hence,applicationof
ArtificialIntelligence(AI)inwarrantymarketismuch
moreinterestingrequisitetoaffirmtherationalityand
accuracyofwarrantypolicyprediction.
Vastresearchefforthasbeendevotedtotheuseof
ANNasapracticalforecastingtool[3]. Accordingto
KhasheiandBijari[4],ANNisoneofthemostaccurate
andwidelyusedforecastingmodelsthathaveenjoyed
fruitfulapplicationsinforecastingsocial,economic,engi
neering,foreignexchangeandstockproblems.Apart
fromthat,theusedofhistoricaldatainANNforpredic
tionorforecastingisverypopularanditsefficiencyis
provenbymanyresearcherssuchas[5][8].Forexample,
asurveythatwasconductedbyMarzietal.[5]hadused
twentyyeardatafromS&P500Europeanindexcallop
tionpricestoforecastthefinancialmarket,andXuand
Lim[8]hadusedrawandhistoricaldataintheirstudyto
forecastthenetflowofacarsharingsystem.
Inthispaper,wepresenttheapplicationofanANN
techniquetopredicttheminimumwarrantycostandop
timalinspectionintervalduringawarrantyperiod.This
paperstartswithsection1,whichintroducetwo
dimensionalwarrantyandresearchproblems.Thisisfol
lowedbySection2whichdescribestherelatedworkand
motivationofthisresearch.InSection3,theassumptions
fortheeasinessoftheimplementationoftheresearchand
resultwerepresented.Section4brieflydescribesthe
ANNapproach.Theframeworkisthoroughlydescribed
inSection5andisfollowedbySection6whichdiscussed
theeffectsofANNstructurestowardstheMSEvalues.
Thediscussionofthispaperendswiththeconclusion
whichispresentedinSection7.
————————————————
H.A.MajidiswithFacultyofComputerScienceandInformation
System,UniversitiTeknologiMalaysia,81310Skudai,Johor,Malaysia.
J.C.AngiswithFacultyofComputerScienceandInformationSystem,
UniversitiTeknologiMalaysia,81310Skudai,Johor,Malaysia.
A.A.SamahiswithFacultyofComputerScienceandInformation
System,UniversitiTeknologiMalaysia,81310Skudai,Johor,Malaysia.
A
© 2011 Journal of Computing Press, NY, USA, ISSN 2151-9617
http://sites.google.com/site/journalofcomputing/
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 12, DECEMBER 2011, ISSN 2151-9617
https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG
48
2 RELATED WORK AND MOTIVATION
Acompletehistoricaldataispivotalduringthe
developmentofwarrantypolicy.However,itisalwaysan
exhaustinganddifficultjobfortheautomobileworkshop
tohaveaccurateandcompletehistoricaldata.Historical
warrantyclaimandservicedatausuallycontainpartial
informationasitmayberecordedincorrectlyanddueto
uncertaintyandinstabilityofdatacollection.Hence,
predictionofanaccuratewarrantypolicybecomesavery
difficulttask.ThisviewissupportedbyYang [9]who
statedthatwarrantymodelingiscomplicateddueto
warrantycensoringespeciallyfortwodimensional
warranty.Thesevaguenessrealworldproblemsare
typicallytoocomplexforaformalmathematicalmodel
[10].
Foraconventionalmathematicalmodeling,thefirst
steptopredictawarrantypolicyistomodeltheitems’
failuresandthecostsofrectificationactionsoverthewar
rantyperiod[11].Numerousfailureprobabilitymodels
suchasWeibull,ExponentialandLognormalhavebeen
developedforautomobilewarrantyclaimsdata[12][14].
Probabilitydistributionisamathematicalfunctionused
tomodelthefrequenciesandprobabilityofoccurrences
overatime.Thosemathematicalmodelinginvolvesever
alstages,soitmaytakealongtimetobetrulyproficient.
Thus,inthisresearch,anattemptismadetoapplyanAI
techniqueinwarrantyanalysistoreducetheuncertainty
problemsandspeedupthecomputingtime.
AIapproacheswerebroadlyadoptedinmanyareas
whereconventionalmathematicalmodelwerereplaced
withexpertsystemstoimproveflexibilityandeffective
nessofthecorrespondingsystem.However,inwarranty
research,theapplicationofAItechniqueisveryfewsuch
as[15][22].AmongtheAIsubjectarea,softcomputing
techniquewasfoundtobethemostpopulartechnique
thathasbeenintegratedwithwarrantyarea[23][27].The
applicationsofANNinwarrantydomainfromprevious
workarediscussedinvariousresearches[28][30].Hrycej
andGrabert[28]usedfailureprobabilityasgeneralfunc
tional.Inparticular,theauthorusedmultilayerperceptron
asafunctionalapproximation.Theparametersofmulti
layerperceptronweretrainedwithhelpofminimumcross
entropyruleinforecastingthewarrantycostofalterna
tivewarrantyconditionscenarios.Inotherwork,Leeat
al.[29]haddesignedanearlyclaimwarningsystemusing
neuralnetworklearning.Precisely,thesystemprotects
bothmanufacturersandconsumersbygiving“prior
warning”aboutabnormalincreaseofclaimsrateatacer
tainpointbasedontrendandestimationbymonitoring
variousclaimdata.Leeetal.[30]hadalsosuggested
neuralnetworklearningmodelindeterminingearly
warninggradeofwarrantyclaimsdata,whichincludes
AnalyticHierarchyProcess(AHP)analysisandknow
ledgeofqualityexperts.Inyear2008,Leeetal.[23]had
proposedadifferenttoolwhichisappropriateformodel
ingatwodimensionalwarrantyplan.
3 ASSUMPTION
Afewassumptionshavebeenmadetosimplifytheim
plementationoftheproposedalgorithm.First,theusage
conditionsareassumedtobestatisticallysimilarandthe
warrantyclaimswerereportedimmediately,withnode
lay.Second,theproposedANNapproachisconsideredto
besuitableforanymodelandmakeofautomobile.Third,
theinputandtargetedoutputdataoftheANNprocess
areassumedtobecompletelyknown.Fourth,although
thenumberofdatausedinthedevelopmentofANNis
small,itisassumedthatthedataissufficientenoughto
achievetheperformancegoalinthisresearch.
4 ARTIFICIAL NEURAL NETWORK (ANN): AN
INTRODUCTION
ANNorcommonlyneuralnetwork(NN)isanintercon
nectedgroupofartificialneuronsthatuseamathematical
orcomputationalmodelforinformationprocessingbased
onaconnectionistapproachtocomputation[31],[32].
AccordingtoPrincipleetal.[33],oneofthemostsignifi
cantstrengthofANNisitsabilitytolearnfromalimited
setofexamples.ANNhasbeensuccessfullyusedinsolv
ingcomplicatedproblemsindifferentdomainsuchas
patternrecognition,identification,classification,speech,
vision,andcontrolsystems[34].
AnANN,whichimitatesthehumanbraininproblem
solving,iscapableinmodelingthecomplexrelationship
betweeninputandoutputtofindpatternsindata.Typi
cally,anANNconsistsofasetofinterconnected
processingelementsornodescalledperceptrons.The
nodesareorganizedindifferentwaystoformanetwork
structurewhereeachANNiscomposedofacollectionof
perceptrongroupedinlayers.Eachperceptronisdesigned
tomimicitsbiologicalcounterpart,theneuronandto
acceptaweightedsetofinputandrespondwithanout
put[35].
AsophisticatedANNmayhaveseveralhiddenlayers,
feedbackloopsandtimedelayelements,whichdesigned
tomakethenetworksaseffectiveaspossibleindiscrimi
natingrelevantfeaturesorpatterns[35].Themostwell
knownANNisfeedforwardANN.AfeedforwardANN
consistsofasetofnonlinearneuronsconnectedtogether,
inwhichtheinformationflowsintheforwarddirection
[31].Amongthefeedforwardnetwork,multilayerPer
ceptron(MLP)isthemostwidelyandcommonlyused
modelfreeestimators.AMLPconsistsofatleastthree
layers,whicharetheinput,hiddenandoutputlayer.The
inputandoutputlayercontainacollectionofneurons
representinginputandoutputvariables.
TherearethreelearningtypesofANNmodels,which
aresupervised,unsupervisedandreinforcementlearning.
Thenetworkmodifiestheweightbasedonasequenceof
trainingvectorwithanassociatedtargetoutputnode,
knownassupervisedtraining.Ontheotherhand,unsu
pervisedtrainingreferstoanetworkthatmodifiesweight
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 12, DECEMBER 2011, ISSN 2151-9617
https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG
49
byassigningthemostsimilarinputvectorstoanoutput
unit.Andthethirdlearningtypeisreinforcementtrain
ing,whichliesbetweensupervisedandunsupervised
learning.Amongthevariousneuralnetworkmodels,
backpropagationisthebestgeneralpurposemodeland
isprobablythebestatgeneralization[36],[37].Theback
propagationistheclassicalalgorithmusedforlearning.It
isaniterativegradientdescentalgorithmwhichisde
signedtominimizethemeansquarederrorbetweenthe
desiredoutputandthegeneratedoutputforeachinput
pattern[38].Inthisresearch,focusisgiventothefeed
forwardandbackpropagationmodelwithmultilayer
perceptron.
5 ANN FRAMEWORK
Fourmainstageswereincludedintheframework.The
stagesaredatacollection,datadesignandpreprocessing,
backpropagationnetworkdesignandnetworkimple
mentation.Figure1showsthemainflowofthisresearch.
5.1 Data Collection
Sevenhundredhistoricaldatasetswerecollectedinthis
studyfromaMalaysiaautomobilecompany,knownas
MalaysianTruckandBus(MTB).Thedatasetscomefrom
thesameautomobileproductknownasHICOMPerkasa.
Eachdatasetscomprisedoftheelementsofdatewhen
theclaimwasmade,dateclaimreceived,enginenumber,
drivingmileageandagewhentheclaimwasmade,pro
ductiondateandfailureordefectdata.Thehistoricaldata
isoffiveyearsperiod,rangingfrom1998to2002.Precice
ly,thehistoricaldataconsistofinformationofa100ve
hicles.Fromthe100samples,onceamaintenanceservice
isdone,thevehiclestatusandinformationwillberecord
edasthehistoricaldata.
AccordingtoGeorgilakisetal.[39],thetaskofdeciding
whichoftheelementstobeselectedasinputvariableis
anarduoustask.Theselectedelementsmustcorrespond
toparameters,whichmeanthatitwilldirectlyorindirect
lyaffectthepredictionresult.Inthisresearch,fourmain
inputpatternswereproduced,whicharemileageandage
ofavehicleduringtheservicing,thedefectorfailurerate
forfortycomponentsofavehicle,andthedatarecorded
whichiseitherservicemaintenanceorrepairimmediate
ly.Thesehistoricaldataarepassedtothenextstage,the
datapreprocessing.
5.2 Data design and pre-processing
Datapreprocessingordatanormalizationhastobedone
beforeitcanbeusedintrainingthenetwork[40].Accord
ingtoBirbiretal.[41]andWang[42],normalizationof
datareferstoaprocessofscalingthenumbersinadata
settoimprovetheaccuracyofthesubsequentnumeric
computations.Theauthorsalsomentionedthatnormali
zationhelpsinshapingtheactivationfunctionduringa
trainingprocess.Basedonthisstatement,theelements
withhugedifferentiaamongthedatasuchasmileageand
ageintheinputandoptimalinspectionintervalandmin
imumcostinthetargetoutputarenormalizedinto[0,1]
bytheexpression:
  (1)

where
xiisanobservationvalueofthefactori;
xmaxisthemaximumvalueofthefactori;
xministheminimumvalueofthefactori;
Xiisthenormalizedvalueofxi.
Thenormalizeddatawerethendividedinto70groups
(10each)andthetargetoutputsfromeachgroupare
computedusingmathematicalmodel.Finally,thedata
aredividedintothreepartsfortraining,validatingand
testingprocess.
5.3 Back Propagation (BP) Network Design
ThestructureofaBPNetworkdesignincludeselements
asillustratedinFigure2.Eachofthestructureelementsis
thoroughlydiscussedinthissection.
Fig. 2. Structure of Network Design
5.3.1 Network Architecture Determination
Inthestageofanetworkarchitecturedetermination,the
numberoflayersandthenumberofprocessingelements
perlayerareofimportantconsideration[41].Multilayer
backpropagationneuralnetworkcompriseofinput,
hiddenandoutputlayer.Itsarchitectureisillustratedin
figure3.Inthisresearch,inputvariablesaretheageand
mileageduringtheservicing,defectorfaultycomponents
Fig. 1. Main flow of this research
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 12, DECEMBER 2011, ISSN 2151-9617
https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG
50
andinformationofmaintenancecheckingorimmediate
repair.Theminimumwarrantycostandoptimalinspec
tionintervalwereidentifiedtobetheoutputdatainthe
ANNprocess.
Fig. 3. Structure of back propagation ANN for two-dimensional war-
ranty
Inthisstage,thesetofdataweregroupedintotwo
setsi.e.inputandoutput.Thedatasetwerearrangedina
matrixformofx(input),andy(output)inacolumn.Fig
ure4showsthegenericformofinputandtargetoutput
design.ThedatawerekeyedinintoMs.Excelandsaveas
atextfilesothatitcanbeusedinMatlabtools.
(a) Inputdesign(b) Outputdesign
Fig. 4. Input and Output design
5.3.2 Hidden Neuron Number and Transfer Func-
tion Optimization
Thenumberofhiddenlayerandnodesineachofthe
hiddenlayeraffecttheperformanceofanANN.Ifthe
numberofhiddennodesistoosmall,itisnotenoughto
generalizetherulesoftrainingsample.Otherwise,the
ANNwilltakenoisydataintomemory.Todate,thereis
nospecificmethodtochoosetheoptimalnumberofhid
denlayerandthenumberofnodesinhiddenlayer[43].
Fauset[44]introducedaruletodeterminethenumberof
neuronnodesinhiddenlayerasillustratedinTable1.

Amongstthetransferfunctionsusedforhiddenand
outputlayerareLogarithmicSigmoidfunction(logsig)
andHyperbolicTangentSigmoidfunction(tansig).Both
Sigmoidfunctionsareoftenusedinhiddenlayerdueto
theirpowerfulnonlinearapproachcapability[45].Forthe
outputofactivationfunction,therangeoftansigis(1,1)
andlogsigis(0,1).Themathematicalequationsforboth
functionsare:
 (2)
 (3)
5.3.3 Training function optimization
Fourpopulartrainingfunctionsusedinthisstudyare
trainlm,traingd,traingdm,traingdx[46][48].
LevenbergMarquardtbackpropagationalgorithm
(trainlm)isanetworktrainingfunctionthatupdates
weightandbiasvaluesaccordingtoLevenberg
Marquardtoptimization.Itwasdesignedtoapproach
secondordertrainingwithouthavingtocomputethe
Hessianmatrix.Trainlmisthefastestbackpropagation
algorithminMatlabtoolbox,andishighlyrecommended
asafirstchoicesupervisedalgorithm,althoughitdoes
requiremorememorythanotheralgorithm.Thetraining
parametersfortrainlmareepochs,show,goal,time,
min_grad,max_fail,mu,mu_dec,mu_inc,mu_max,
mem_reduc.Thetrainingstatusisdisplayedforeveryshow
iterationofthealgorithm.Thetrainingwillterminatesin
fourconditionsi.e.ifthenumberofiterationsexceeds
epochs,iftheperformancefunctiondropsbelowgoal,ifthe
trainingtimelongerthantimeseconds,orifthemagni
tudeofthegradientislessthanmin_grad.Theparameter
muistheinitialvalueforμ.Iftheperformancefunctionis
reducedbyastep,themuvalueismultipliedbymu_dec.
Ontheotherhand,iftheperformanceisincreasedbya
step,thenthemuvalueismultipliedbymu_inc.However,
ifthevalueofmuisbiggerthanmu_max,thealgorithmis
terminated.
TABLE 1
NUMBER OF NEURONS OF HIDDEN LAYER
Formula Proposedby
h=nTangandFishwick
h=n/2Kang
h=2nWong
h=2n+1Lippmann
n=numberofneuronsintheinputlayer
h=numberofneuronsinthehiddenlayer
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 12, DECEMBER 2011, ISSN 2151-9617
https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG
51
Gradientdescentbackpropagationalgorithm(traingd)
isanetworktrainingfunctionthatupdatesweightand
biasvaluesinthedirectionofnegativegradientdescent
ofperformancefunction.Thetrainingparametersfor
traingdareepochs,show,goal,time,min_grad,max_fail,and
lr.Theparameter,learningrate(lr)inTraingdalgorithm,
ismultipliedwiththenegativeofgradienttodetermine
thechangesofweightandbiases.Thelargerthelearning
rate,thebiggerthestep.Ifthevalueoflearningrateistoo
large,thealgorithmbecomesunstable.Otherwise,ifthe
valueoflearningrateistoosmall,thealgorithmtakesa
longtimetoconverge.
Gradientdescentwithmomentumbackpropagation
algorithm(traingdm)allowsthenetworktorespondnot
onlytothelocalgradient,butalsotorecenttrendsinthe
errorsurface.Thetrainingparametersfortraingdmare
epochs,show,goal,time,min_grad,max_fail,lrandmc.The
momentum,mcactslikealowpassfilter,whichallowsthe
networktoignoresmallfeaturesinerrorsurface.Anet
workwithoutmomentumcangetstuckinashallowlocal
minimum,whileanetworkwithamomentum,canslide
throughsuchminimum.Theinteractionoflearningrate
andmomentumleadstoanacceleratedlearning[49].
Gradientdescentwithmomentumandadaptivelearn
ingbackpropagationalgorithm(traingdx)isanetwork
trainingfunctionthatupdatesweightandbiasesvalues
accordingtogradientdescentmomentumandanadap
tivelearningrate.Thetrainingparametersfortraingdxare
epochs,show,goal,time,min_grad,max_failmax_perf_inc,lr,
lr_inc,lr_dec,andmc.Adaptivelearningrate,lr_incand
lr_decattemptstokeepthelearningstepsizeaslargeas
possiblewhilekeepinglearningstable.Ifthenewerror
exceedsthepreviouserrorbymorethanapredefined
ratioi.e..max_perf_incinthenetworkwithmomentum,
thenthenewweightsandbiasesareabandoned.
5.4 ANN Implementation
Thisimplementationstageinvolvesthreeprocesseswhich
arenetworktraining,validatingandtesting.Figure5
showstheflowtodeterminethebestANNmodel.
Fig. 5. The flow to find the best ANN model
5.4.1 ANN Model Development
TheANNdevelopmentprocessstartswithnetworktrain
ing,followedbynetworkvalidating.Thetrainingprocess
mayconsumealotoftime.Atthebeginning,thenetwork
modelsaretrainedwithasetofinputandtargetoutput
data.Theparameterssettinginthetrainingfunctionare
changedorderlytofindoutthebestANNmodel.The
networkadjuststheweightcoefficients,whichusually
beginwitharandomset,sothenextiterationwillpro
duceaclosermatchbetweenthetargetoutputandactual
outputofANN.Thetrainingmethodtriestominimize
thecurrenterrorsfromallprocessingelements,andthe
globalerroriscalculatedbyaperformanceindex.
Iftheperformanceindexintrainingprocessachieves
thetargetedgoalwhichis0.01thenthevalidatingprocess
willbecontinuedbyanothersetofinputdataandtarget
outputdata.Similartothetrainingprocess,aglobalerror
iscalculatedbyperformanceindex.Thetargetedgoalset
inthevalidationstageisintherangeof0to0.07tobe
accepted.Thenetworkmodelhadundergonetraining
andvalidatingprocesscalleddevelopedsystem.Thede
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 12, DECEMBER 2011, ISSN 2151-9617
https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG
52
velopedsystemwithitsweightwillpassedtothenext
processwhichistestingprocess.
5.4.2 Model Performance Evaluation
Thenetworkperformancewasquantifiedbycalculating
MeanSquareError(MSE)forthedifferencebetweenthe
expectedandtargetedoutputdataset.Haganetal.[50]
highlightedthattheperformanceevaluationoftheback
propagationalgorithmformultilayerANNisMSE.The
learningalgorithmadjuststhenetworkparametersin
ordertominimizetheMSE.TheexpressionofMSEis:
 (4)
where 
zk isoutputpredicted,
yk isactualtargetoutputand
istheerrorofithoutputnumber1,2,,n.
5.4.3 Network Testing
Tes ti ngprocesscanonlystartoffifthetrainingandva
lidatingprocesseshadbeencarriedthroughbyachieving
theirgoal.Atthisstep,theneuralnetworkwiththesmal
lestMSEvalueisdefinedasthebestneuralnetwork
model.Inthisresearchaninterval(00.03)forMSEvalue
oftheoutputaredefinedasthesmallestvalue.
6 EXPERIMENTAL RESULT
AnoptimizedANNstructureisusedtoillustratetheper
formanceoftheproposedmodel.Sincetheneuralnet
workisanonlinearprocedureandthenetworkparame
terswillaffecteachotherthentheadjustmentofeachpa
rametertooptimizethewholenetworkisnotaneasytask
[51].ThissectiondiscussestheoptimizedANNstructure
whichproducedtheminimumMSEvalueineachtraining
function.Ananalysisispresentedtoverifytheaccuracy
oftheresult.
Table2and3displaythestructureofthebestANN
modelanditscorrespondingparameterssettingineach
trainingfunctionwhichachievedthesmallestMSEvalue
intestingprocess.
TABLE 2
STRUCTURE OF THE BEST ANN MODEL IN EACH TRAINING
FUNCTION
ItemValue/Character
TraingdTrai ng dmTraingdxTrainlm
Number
ofhidden
layer
ThreeThreeThreeTwo
Input
node
43
nodes43nodes43nodes43
nodes
Output2nodes2nodes2nodes2nodes
nodelogsiglogsiglogsiglogsig
Hidden
node
1x86
nodes
tansig
1x86
nodes
logsig
1x22
nodes
tansig
1x86
nodes
tansig
1x43
nodes
logsig
1x43
nodes
tansig
1x43
nodes
tansig
1x22
nodes
logsig
1x22
nodes
tansig
1x22
nodes
tansig
1x22
nodes
logsig
MSEvalue(goal=0.01)
Training0.01000.01000.01000.0096
Validating0.04240.03690.04040.0580
Tes ti ng0.00980.01720.01940.0113
 
TheBestANNmodelamongthetrainingfunction
TABLE 3
THE PARAMETERS USED IN EACH TRAINING FUNCTION
ParameterValu e
TraingdTrai ng dmTraingdxTrainlm
epochs
300000
(goal
met=
206128)
300000
(goalmet
=106643)
300000
(goal
met=
174933)
300000
(goal
met=
811)
goal0.010.010.010.01
learningrate
(lr)0.30.60.9‐
learningdec
(lr_dec)‐‐ ‐‐ 0.7‐
learninginc
(lr_inc)‐‐ ‐‐ 1.05‐
max_fail5(de
fault)
5(de
fault)
5(de
fault)
5(de
fault)
max_perf_inc‐‐ ‐‐ 1.04‐
momentum
constant(mc)‐‐ 0.10.9‐
InitialMu
(mu)‐‐ ‐‐ ‐‐ 0.006
Mudecrease
factor
(mu_dec)
‐‐
‐‐ ‐‐ 0.1
Muincrease
factor
(mu_inc)
‐‐
‐‐ ‐‐ 10
Maximum
Mu
(mu_max)
‐‐
‐‐ ‐‐ 1.0000e
010
min_grad1.0000e
010
1.0000e
010
1.0000e
010
1.0000e
010
show100100100100
timeInfinityInfinityInfinityInfinity
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 12, DECEMBER 2011, ISSN 2151-9617
https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG
53
ThebestparameterssettingtoobtainthebestANN
model
6.1 Accuracy Analysis upon Experimental Result
Thederivedoutputandexpectedoutputshouldundergo
denormalizationbeforeanalysisprocess.Theoutputsare
denormalizedbytheexpression:
where 
X isthedenormalizedvalueofx
xisthederivedoutputorexpectedoutput
xmaxisthemaximumvaluederivedinnormalization
xministheminimumvaluederivedinnormalization
Thedenormalizedderivedoutputswhichweregen
eratedbythebestANNmodelarecomparedwiththede
normalizedexpectedoutputintermsofaccuracyusing
thefollowingequation:
wherezfisthederivedoutputandzeistheexpectedout
put.
Table4showsthedenormalizedoutputandtheaccuracy
oftheproposedANNmodelinderivingtheoptimum
warrantycostandinspectioninterval.
TABLE 4
THE ACCURACY OF THE PROPOSED MODEL
Expected
output
Derived
output
Accuracy
(%)
Inspection
interval
(Year)
0.58330.672384.74
1.41671.268889.56
1.08331.041996.17
War ra nty
Cost
(RM)
178.09169.1895.00
75.6489.1082.21
101.50107.9893.62
Fromthisaccuracyanalysis,itisrevealedthatanaver
ageof90percentofaccuracyisachievedbyusingthis
proposedmodel.Itcanbesummarizedthattheproposed
ANNmodelissuccessfullyappliedinderivingtheopti
mumwarrantycostandoptimuminspectioninterval.
6.2 Sensitivity Analysis: Statistic T-test
Ttestisahypothesistesttoinvestigatethesignificanceof
twosamplesfromanormallydistributedpopulation.The
Ttestisprobablythebestknowntechniqueandthemost
frequentlyusedstatisticaldataanalysismethodforhypo
thesistesting[52][53].
Inthisstudy,Ttestisconductedtoassesstheaccuracy
oftheresultswhichwereobtainedbytheproposedANN
model.Thenullhypothesisusedinthiscasestudyis:
H0: Thereisnosignificancedifferencebetween
thederivedoutput(x1)andtheexpectedout
put(x2),thatisx1=x2.
H1: Thereisasignificancedifferencebetweenthe
derivedoutput(x1)andtheexpectedoutput
(x2),thatiseitherx1≠x2,x1<x2,orx1>x2.
Table5and6showtheTtestprocessfromsteps2to6for
inspectionintervalandwarrantycost,respectively.
TABLE 5
T-TEST FOR THE INSPECTION INTERVAL
Derivedoutput
(x1)
Expectedoutput
(x2)
Replicate10.67230.5833
Replicate21.26881.4167
Replicate31.04191.0833
Σx2.98303.0833
Observation(n)33
Mean( )0.99431.0278
Σd2=Σx2‐((Σ
x)2/n)0.18130.3519
Variance,σ2=Σ
d2/(n1)0.09070.1760
pooledstan
darddeviation,
σ
0.3651
Tvalue0.1122
TABLE 6
T-TEST FOR WARRANTY COST
Derivedoutput
(x1)
Expectedoutput
(x2)
Replicate1169.18178.09
Replicate289.1075.64
Replicate3107.98101.50
Σx366.26355.23
Observation(n)33
Mean( )122.0867118.4100
Σd2=Σx2‐((Σ
x)2/n)3504.90035676.9234
Variance,σ
2=
Σd2/(n1)1752.45012838.4617
pooledstan
darddeviation,47.9109
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 12, DECEMBER 2011, ISSN 2151-9617
https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG
54
σ
Tvalue0.0940
Inthisstudy,95percentofconfidenceintervalisadopted.
Thesignificancelevelandcriticalregionarestatedasbe
low.
Significancelevel,α=0.05
CriticalRegion:Z<‐1.96orZ>1.96
BasedonthecalculationsinTable5and6,bothTvalue
forinspectionintervalandwarrantycostlieoutsidethe
criticalregion.Hence,thenullhypothesis,H0isaccepted
at5percentsignificancelevel.Itcanbeconcludedthat
thereisnosignificancedifferencebetweenthederived
outputandtheexpectedoutput.
7 CONCLUSIONS
Thispaperhaspresentedafasterandintelligentwayto
predictminimumwarrantycostandoptimalinspection
intervalduringawarrantyperiodbyusingartificialneur
alnetworks.Differentnetworkstructuresweretrained
andvalidatedwithanalyticalresultofmathematical
model.Themodelwasthentestedwithaseriesofhistori
caldata.Itwasfoundthatthemostefficientalgorithmfor
modelingthetwodimensionalwarrantypolicyisback
propagationlearningalgorithmwithGradientDescent.In
thisresearch,althoughtheamountofexperimentaldata
islimited,significantresultprovesthattheproposedal
gorithmiscapabletopredictthetwodimensionalwar
rantypolicy.Forfurtherresearch,itisrecommendedthat
otherAItechniquesisusedinmodelingthetwo
dimensionalwarrantypolicyinordertoreducethecom
plexityandtimeconsumingofconventionalmathemati
calmodel.
ACKNOWLEDGEMENT
TheauthorshonorablyappreciateMinistryofScience,
TechnologyandInnovation(MOSTI)forthefundingofE
SciencegrantandResearchManagementCenter(RMC),
UniversitiTeknologiMalaysia(UTM)forthesupportin
makingthisprojectasuccess.
REFERENCES
[1] LeBlancB.,“A n a l y s i s ofdecisionsinvolvedinofferingaprod
uctwarranty,”AnnualReliabilityandMaintainabilitySymposium,
2008.
[2] ChukovaS.S.,DimltrovB.N.,andRykovV. V. , “Warranty
Analysis(Review),”JournalofMathematicalSciences,vol67,no.
6,1993,34863508,doi:10.1007/BF01096273.
[3] Weigend,A.S.,D.E.Rumelhart,andB.A.Huberman,“Genera
lizationbyWei ghtEliminationwithApplicationtoForecast
ing,”AdvancesinNeuralInformationProcessingSystems3
(NIPS*90),1991.
[4] KhasheiM.andBijariM.,“A n artificialneuralnetwork(p,d,q)
modelfortimeseriesforecasting,”ExpertSystemswithApplica
tions37(2010),pp.479–489,2009.
[5] MarziH.andMarziE.,“UseofNeuralNetworksinForecasting
FinancialMarket,”IEEEConferenceonSoftComputinginIndus
trialApplication,SMCiaʹ08,pp.240245,2008.
[6] Tay lo rJ.W.andBuizzaR.,“NeuralNetworkLoadForecasting
WithWe atherEnsemblePredictions,”IEEETran sac tio nOnPow
erSystems,vol.17,no.3,2002.
[7] Wan gQ.,YuB.andZhuJ.,“ExtractRulesfromSoftwareQuali
tyPredictionModelBasedonNeuralNetwork,”Proceedingof
the16thIEEEInternationalConferenceonToolswithArtificialIntel
ligence,ICTAI1004,2004.
[8] XuJ.‐X.andLimJ.S.,“Anewevolutionaryneuralnetworkfor
forecastingnetflowofacarsharingsystem,”IEEECongresson
EvolutionaryComputation,CEC2007,pp.16701676,2007.
[9] YangG.andZaghatiZ.,“TwoDimensionalReliabilityModel
ingFromWarrantyData,”IEEEProceedingAnnualReliabilityand
MaintainabilitySymposium,pp.272278,2002.
[10] Kastner,J.K.,“Areviewofexpertsystems,”EuropeanJournalof
OperationalResearch,vol.18,pp.285292,1984.
[11] MurthyD.N.P.,andDjamaludinI.,“Newproductwarranty:A
literaturereview,”InternationalJournalofProductionEconomics
79(2002),pp.231–260,2002.
[12] Chattopadhyay,G.andA.Rahman,“Developmentoflifetime
warrantypoliciesandmodelsforestimatingcosts,”Reliability
Engineering&SystemSafety,vol93,no.4,pp.522529,2008.
[13] MajeskeK.D.,“Amixturemodelforautomobilewarrantyda
ta,”ProceedingsofReliabilityEngineeringandSystemSafety,pp.
7177,2003.
[14] AskarK.,DoughertyM.,andRocheT.,“Ag e n t rasedsystem
thatsupportreliabilitytransportengineering,”Proceedingsofthe
InternationalConferenceonApplicationsofAdvancedTech nol og i es
inTransportationEngineeringinBeijing,2004.
[15] DeepR.,etal.“BitMappingClassifierExpertSystemInWar
rantySelection,”ProceedingsoftheIEEEConferenceonNational
AerospaceandElectronicsinDayton,USA.
[16] Derr,J.H.andR.J.Louch,“Ad v a n c e d methodologyforproject
ingfieldrepairratesandmaintenancecostsforvehicleelectron
icsystems,”SAE(SocietyofAutomotiveEngineers)Tran sa c ti ons ,
1991.100(Sect2),pp.111,1991.
[17] Hyman,W.A.(1989).“Legalliabilityinthedevelopmentand
useofmedicalexpertsystems.”JournalofClinicalEngineering,
14(2):p.157163.
[18] KalerJr,G.M.“Expertsystempredictsservice,”HPACHeating,
Piping,AirConditioning,vol.60,no.11,pp.99101,1988.
[19] KasraviK.,“Improvingtheengineeringprocesseswithtext
mining.”ProceedingsoftheConferenceonASMEDesignEngineer
ingTechnicalinSaltLakeCity,UT,2004.
[20] Lee,S.andL.M.Chang,“Digitalimageprocessingmethodsfor
assessingbridgepaintingrustdefectsandtheirlimitations,”
Proceedingsofthe2005ASCEInternationalConferenceonCompu
tinginCivilEngineeringinCancun,2005.
[21] Lin,P. C . , J.Wan g,andS.S.Chin,“Dynamicoptimizationof
price,warrantylengthandproductionrate,”InternationalJour
nalofSystemsScience,vol.40,no.4,pp.411420,2009.
[22] LeeS.H.,J.H.Lee,etal.,“AFuzzyReasoningModelofTwo
dimensionalWarrantySystem,”7thInternationalConferenceon
AdvancedLanguageProcessingandWebInformationTe ch n ol ogy ,
Liaoning,PEOPLESRCHINA,IEEEComputerSoc,2008b.
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 12, DECEMBER 2011, ISSN 2151-9617
https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG
55
[23] LeeS.H.,LeeD.S.,etal.,“AFuzzyLogic‐ BasedApproachto
TwoDimensionalWarrantySystem,”4thInternationalConfe
renceonIntelligentComputing,Shanghai,PEOPLESRCHINA,
SpringerVerlagBerlin,2008c.
[24] Vujosevi eM.,MakajieNikolieD.,StrakM.(2004),“FuzzyPetri
netbasedreasoningforthediagnosisofbuscondition,”Seventh
SeminaronNeuralNetworkApplicationsinElectricalEngineering‐
Proceedings,NEUREL2004,Belgrade,2004.
[25] ZhouG.,CaoZ.,MengZ.,andXuQ.,“AGAbasedapproachon
arepairlogisticsnetworkdesignwithM/M/smodel,”Proceed
ingsInternationalConferenceonComputationalIntelligenceandSe
curity,CIS2008,Suzhou2008.
[26] HotzE.andNakhaeizadehG.,PetzscheB.andSpiegelberger
H.,“WAPS,aDataMiningSupportEnvironmentforthePlan
ningofWarrantyandGoodwillCostsintheAutomobileIndus
try.”ProceedingsofthefifthACMSIGKDDinternationalconference
onKnowledgediscoveryanddatamining,SanDiego,California,
UnitedStates,pp.417419,1999b.
[27] Hrycej,T.andM.Grabert,“WarrantyCostForecastBasedon
CarFailureData.”ProceedingsofInternationalJointConferenceon
NeuralNetworks,Orlando,Florida,USA,pp.108113,2007.
[28] LeeS.H.,SeoS.C.,etal.,“AStudyonWarning/DetectionDe
greeofWar ranty ClaimsDataUsingNeuralNetworkLearn
ing.”SixthInternationalConferenceonAdvancedLanguage
ProcessingandWebInformationTe ch n ol ogy (ALPIT),2007.
[29] LeeS.etal.,“Ondeterminationofearlywarninggradebased
onAHPanalysisinwarrantydatabase,”LectureNotesinCom
puterScience(includingsubseriesLectureNotesinArtificialIntelli
genceandLectureNotesinBioinformatics).2008,Shanghai,pp.84
89,2008a.
[30] DomingoM.,AgellN.andParraX.,“Connectionisttechniques
toapproachsustainabilitymodeling,”RevistaInternacionalDe
Tecnologia,SostenibilidadyHumanismo,diciembre2006,no.1,pp.
6173,2006.
[31] ZabiriH.andMazukiN.,“ABlackBoxApproachinModeling
Val ve Stiction,”InternationalJournalofMathematical,Physicaland
EngineeringSciences4:12010,2010.
[32] Principe,J.,NeuralNetworksandAdaptiveSystems,JohnWiley
andSons:NewYor k,NY,1999.
[33] SozenA,ArcakliogluE.,“SolarpotentialinTurkey,” Applied
Energy,80(1),pp.35–45,2004.
[34] OladokunV.O.,AdebanjoA.T.andCharlesOwabaO.E.,
“PredictingStudents’AcademicPerformanceusingArtificial
NeuralNetwork:ACaseStudyofanEngineeringCourse,”The
PacificJournalofScienceandTech nol og y ,vol.9,no.1,2008.
[35] LawrenceJ.,IntroductiontoNeuralNetwork:Design,Theoryand
Application,6thed.NevadaCity.CA:CaliforniaScientificSoft
ware,1994.
[36] MitchellT.,M.MachineLearning,1stedition,NewYor k:
McGrawHillScience/Engineering/Math,1997.
[37] RumelhartD.E.andMcClellandJ.L.,Paralleldistributed
processing:explorationsinthemicrostructureofcognition,Cam
bridge,Mass:MITPress,1986.
[38] GeorgilakisP. S.,HatziargyriouN.D.,DoulamisA.D.,Doula
misN.D.andKolliasS.D.,“ANeuralNetworkFrameworkfor
PredictingTra nsfor merCoreLosses,”Proceedingsofthe21st
1999IEEEInternationalConferenceonPowerIndustryComputer
Applications,PICAʹ99,pp.301308,1999.
[39] NorHaizanMohamedRadzi,HabibollahHaron,andTuan
IrdawatiTuanJohari,“LotSizingUsingNeuralNetworkAp
proach,”Proceedingofthe2ndIMTGTRegionalConferenceonMa
thematics,StatisticsandApplications,UniversitiSainsMalaysia,
Penang,pp.1315,June2006.
[40] BirbirY., NogayH.S.andTop uzV., “EstimationofTotal Har
monicDistortioninShortChordedInductionMotorsUsingAr
tificialNeuralNetwork,”Proceedingsofthe6thWSEASInterna
tionalConferenceonApplicationsofElectricalEngineering,Istan
bul,Turkey,pp.206210,2007.
[41] Wang,S.,NeuralNetworkApproachtoGeneratingtheLearning
Curve,INFOR.31(3),pp.136150,1993.
[42] GaoM.,SunF.,ZhouS.,ShiY.,ZhaoY.andWangN.,“Perfor
mancepredictionofwetcoolingtowerusingartificialneural
networkundercrosswindconditions,”InternationalJournalof
ThermalSciences48(2009),pp.583589,2009.
[43] FausettL.V.,FundamentalsofNeuralNetwork:Architecture,Algo
rithms,andApplications,N.J.:PrenticeHall,1994.
[44] ZhangY., LiW.,ZengG.M.,TangL.,FengC.L.,HuangD.L.
andLiY.P. , “NovelNeuralNetworkBasedPredictionModel
forQuantifyingHydroquinoneinCompostwithBiosensor
Measurements,”EnvironmentalEngineeringScience,vol.26,no.
6,pp.10631070,2009.
[45] MenH.,LiX.,WangJ.,andGaoJ.,AppliesofNeuralNetwork
toidentifygasesbasedonelectronicnose,”IEEEInternational
ConferenceonControlandAutomationFrC42Guangzhou,CHINA,
2007.
[46] SirajFadzilah,Yus of fNoorainiandKeeL.C.,“Emotionclassifi
cationusingneuralnetwork,”InternationalConferenceonCompu
ting&Informatics,ICOCIʹ06,pp.17,68June2006.
[47] ZhouM.,ZhangS.,WenJ.andWangX.,“ResearchonCVT
FaultDiagnosisSystemBasedonArtificialNeuralNetwork,”
IEEEVehi cl ePowerandPropulsionConference(VPPC),Harbin,
China,2008.
[48] KeJ.,LiuX.,andWan gG.,“TheoreticalandEmpiricalAnalysis
oftheLearningRateandMomentumFactorinNeuralNetwork
ModelingforStockPrediction,”AdvancesinComputationandIn
telligence.LectureNotesinComputerScience,vol.5370/2008,pp.
697706,2008,doi:10.1007/9783540921370_76.
[49] HaganM.T., DemuthH.B.andBealeM.H.,NeuralNetwork
Design,PWSPublishingCompany,1996.
[50] LeeT.L.Neuralnetworkpredictionofastormsurge.OceanEngi
neering33,pp.483–494,2006.
[51] Marryanna,L.,SitiAisahS.andSaifulIskandarK.,“Water
qualityresponsetoclearfellingtreesforforestplantationestab
lishmentatBukitTerek F.R.,Selangor,”JournalofPhysical
Science,18(1),pp.3345,2007.
[52] NeideenT.andBraselK.,“UnderstandingStatisticalTests,
JournalofSurgicalEducation,pp.9396,2007.
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 12, DECEMBER 2011, ISSN 2151-9617
https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG
56
Hairudin Abdul Majid has received Diploma and Bachelor of
Science in Computer Science-majoring Industrial Computing from
Universiti Teknologi Malaysia in 1993 and 1995 respectively. In
1998, he obtained his M.Sc. in Operational Research and Applied
Statistic from University of Salford, UK. His PhD thesis in Warranty
and Maintenance(Submited). Currently, he is a lecturer in Faculty of
Computer Science and Information System, Universiti Teknologi
Malaysia. His research interests focused on Image Processing, Op-
erations Management and Warranty and Maintenance. Mr. Hairudin
received Excellent Service Award by Universiti Teknologi Malaysia in
2004 and Excellent Staff Award by ISS Service in Manchester UK in
2006. Mr. Hairudin is the author of about 19 papers, 1 book chapter
entitled ‘Recent Operations Research Modelling and Applications
(Warranty Modelling)’ (UTM, 2009) and 1 text book entitled ‘Permo-
delan Simulasi’ (UTM, 2000). He has been a member of UK Opera-
tional Research Society and an active member of Operations and
Business Intelligence (OBI) Research Group.
Ang Jun Chin obtained her M.Sc. in Computer Science from Un-
iversiti Teknologi Malaysia in 2011 and Bachelor of Computer
Science in 2009. She is currently working as a system analyst in
Singapore.
Azurah A Samah has received the Diploma and Bachelor from Un-
iversiti Teknologi Malaysia in 1991and 1993 respectively. In 1996,
she obtained her M.Sc. from the University of Southampton, UK and
recently in 2010, she received her Ph.D from Salford university, UK.
Currently she is a lecturer in Faculty of Computer Science and In-
formation System, Universiti Teknologi Malaysia. Her research inter-
ests encompass Image Processing, Soft Computing Techniques and
Operational and Simulation Modeling.
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 12, DECEMBER 2011, ISSN 2151-9617
https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG
57
... However, soft computing models have been used by many researchers in the other research area which can provide some feasible solutions for the complex real-world problems. For warranty problem, there are several studies in warranty problem specifically by using soft computing model [1,7,8,9,10,13,14]. ...
... Four different models are used in predicting the warranty cost based on popular backpropagation training algorithms which are Lavenberg-Marquardt back propagation algorithm (trainlm), Gradient descent back propagation algorithm (traingd), Gradient descent with momentum back propagation algorithm (traingdm) and Gradient descent with momentum and adaptive learning back propagation algorithm (traingdx). According to [13] the best combination transfer function is Tansig-Logsig-Tansigwith three hidden layers. Therefore, this combination transfer function was used and tested with difference learning algorithm. ...
... ANN and multiple regressions are used in this study as the borderline or benchmark in investigating the prediction of data by comparing the soft computing modelwith one mathematical model. A number of researchers have employed ANN model as soft computing model in predicting warranty cost such as by [13] and [14]. ...
Article
Full-text available
Nowadays, warranty has its own priority in business strategy for a manufacturer to protect their benefit as well as the intense competition between the manufacturers. In fact, warranty is a contract between manufacturer and buyer in which the manufacturer gives the buyer certain assurances as the condition of the property being sold. In industry, an accurate prediction of warranty costs is often counted by the manufacturer. Underestimation or overestimation of the warranty cost may have a high influence to the manufacturers. This paper presents a methodology to adapt historical maintenance warranty data with comparison between Artificial Neural Network (ANN) and multiple linear regression approach.
Article
The benefits of knowledge-based systems in the HVAC industry have been previously demonstrated. This paper discusses a powerful expert system which has now been developed, imbedded into a 3.5 by 5.5 by 0.7 in. space, and implemented on a direct expansion heat pump. The expert system is performing real-time prediction of service intervals based on relative unit efficiency losses and operating stresses, diagnostic analysis, and warranty information recording. The deviceis currently available for customization to HVAC machines and has broken the size and price barrier to everyday applications of expert systems.
Article
Several valve stiction models have been proposed in the literature to help understand and study the behavior of sticky valves. In this paper, an alternative black-box modeling approach based on Neural Network (NN) is presented. It is shown that with proper network type and optimum model structures, the performance of the developed NN stiction model is comparable to other established method. The resulting NN model is also tested for its robustness against the uncertainty in the stiction parameter values. Predictive mode operation also shows excellent performance of the proposed model for multi-steps ahead prediction.
Book
Providing detailed examples of simple applications, this new book introduces the use of neural networks. It covers simple neural nets for pattern classification; pattern association; neural networks based on competition; adaptive-resonance theory; and more. For professionals working with neural networks.
Conference Paper
Accurate and objective rust defect assessment is required to maintain a good-quality steel bridge painting surfaces and make a decision whether a bridge shall completely or partially be repainted. For more objective rust defect recognition, digital image recognition methods have been developed for the past few years and they are expected to replace or complement conventional painting inspection methods. Efficient image processing methods are also essential for the successful implementation of steel bridge coating warranty contracting where the owner, usually a state agency, and the contractor inspect steel bridge coating conditions regularly and decide whether additional maintenance actions are needed based on the processed data. Previously developed image recognition methods for painting rust defect assessment can be summarized as two: the NFRA (Neuro-Fuzzy Recognition Approach) method and the SKMA (Simplified K-Means Algorithm) method. The NFRA method uses artificial intelligence techniques to separate rust pixels from background pixels. The SKMA method segments object pixels and background pixels in a digitized image using a statistical method, called the K-means algorithm. Even if both methods pass through different processing procedures, one common thing is that they first convert original color images to grayscale images and further process the grayscale images. This article presents the application of previously developed image processing methods for painting rust defect evaluations and discusses their limitations under several specific environmental conditions which are often encountered while acquiring digital images.
Conference Paper
The engineering process relies on extensive sources of knowledge in textual form, such as books, conference papers, product catalogs, and web pages. Leveraging the full value of the knowledge in textual data is difficult due to the length of time required to read and comprehend the documents. Text mining untaps the vast amounts of information buried in textual data. Text mining can process the content of large numbers of documents, semantically analyze and organize the content, and extract the useful information for downstream applications. Once analyzed, the informational content of documents can be indexed and accessed in multiple formats, such as summaries, key concepts, events, relationships, and visual representations. Applications of text mining in engineering are diverse and include predictive warranty analysis, quality improvements, patent analysis, competitive assessments, FMEA, and product searches.
Article
A neural network model for generating the learning curve is described. The model is superior to traditional learning curve models in cases where multiple factors are involved in modeling, and the relationships between the productivity and these factors are a priori unknown. An algorithm for generating the learning curve is proposed. An example in generating the learning curve using the neural network model is demonstrated.RésuméOn décrit un modèle de réseau de neurones pour la génération de la courbe d’apprentissage. Le modèle est supérieur aux modèles traditionnels dans les cas où plusieurs facteurs interviennent dans la modélisation et où les relations entre ces facteurs et la productivité sont inconnues a priori. On propose un algorithme pour la génération de la courbe d’apprentissage, L’algorithme est illustré à l’aide d’un exemple.