ArticlePDF Available

Bioaerosols in the Earth System: Climate, Health, and Ecosystem Interactions

Authors:

Abstract and Figures

Aerosols of biological origin play a vital role in the Earth system, particularly in the interactions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The sources, abundance, composition, and effects of biological aerosols and the atmospheric microbiome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of bioaerosol identification, characterization, transport, and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bioaerosols play in the Earth system.
Content may be subject to copyright.
Invited review article
Bioaerosols in the Earth system: Climate, health, and
ecosystem interactions
Janine Fröhlich-Nowoisky
a,
,ChristopherJ.Kampf
a,b
, Bettina Weber
a
, J. Alex Huffman
c
, Christopher Pöhlker
a
,
Meinrat O. Andreae
a
, Naama Lang-Yona
a
, Susannah M. Burrows
d
,SachinS.Gunthe
e
, Wolfgang Elbert
a
,
Hang Su
a
, Peter Hoor
f
, Eckhard Thines
g
,ThorstenHoffmann
b
, Viviane R. Després
h
,UlrichPöschl
a,
a
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
b
Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz, Germany
c
Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
d
Atmospheric Science and Global Change Division, Pacic Northwest National Laboratory, Richland, WA, USA
e
Department of Civil Engineering, IIT Madras, Chennai, India
f
Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
g
Institute ofMicrobiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
h
Institute ofGeneral Botany, Johannes Gutenberg University, Mainz, Germany
abstractarticle info
Article history:
Received 23 February 2016
Received in revised form 14 July 2016
Accepted 19 July 2016
Available online 9 August 2016
Aerosols of biological origin play a vital role in the Earth system, particularly in the interactions between atmo-
sphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles
are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or en-
hance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and
precipitation, thus inuencing the hydrological cycle and climate. The sources, abundance, composition, and
effects of biological aerosols and the atmospheric microbiome are, however, not yet well characterized and con-
stitute a large gap in the scientic understanding of the interaction and co-evolution of life and climate in the
Earth system. This review presents an overview of the state of bioaerosol research, highlights recent advances,
and outlinesfuture perspectivesin terms of bioaerosol identication,characterization, transport, and transforma-
tion processes, as well astheir interactions with climate,health, and ecosystems, focusing on the role bioaerosols
play in the Earth system.
© 2016 The Authors and Battelle Memorial Institute. Published by Elsevier B.V. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords:
Bioaerosol
Biological ice nuclei
Allergens
Bacteria
Fungi
Contents
1. Introduction.............................................................. 347
2. Identicationandcharacterizationofbioaerosols ............................................. 349
2.1. Biologicalcharacterization .................................................... 349
2.2. Chemicalandphysicalcharacterization............................................... 349
3. Transportandtransformationofbioaerosols................................................ 353
3.1. Emissionandtransport...................................................... 354
3.2. Physical,chemical,andbiologicaltransformation.......................................... 355
3.3. Cloudinteractionsandbioprecipitationcycle............................................ 355
4. Bioaerosol-ecosysteminteractions .................................................... 358
4.1. Terrestrialecosystems ...................................................... 358
4.2. Aquaticecosystems ....................................................... 359
4.3. Pathogensandallergens ..................................................... 361
5. Futureperspectives........................................................... 364
Acknowledgements ............................................................. 365
References ................................................................. 365
Atmospheric Research 182 (2016) 346376
Corresponding authors.
E-mail addresses: j.frohlich@mpic.de (J. Fröhlich-Nowoisky), u.poschl@mpic.de (U. Pöschl).
http://dx.doi.org/10.1016/j.atmosres.2016.07.018
0169-809 5/© 2016 The Authors and Battelle Memorial Institute. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Contents lists available at ScienceDirect
Atmospheric Research
journal homepage: www.elsevier.com/locate/atmosres
1. Introduction
Primary biological aerosols (PBA), in short bioaerosols, are a subset
of atmospheric particles, which are directly released from the biosphere
into the atmosphere. They comprise living and dead organisms
(e.g., algae, archaea, bacteria), dispersal units (e.g., fungal spores and
plant pollen), and various fragments or excretions (e.g., plant debris
and brochosomes; Ariya and Amyot, 2004; Brown et al., 1964; Castillo
et al., 2012; Cox and Wathes, 1995; Després et al., 2012; Graham,
2003; Madelin, 1994; Matthias-Maser et al., 1995; Rogerson and
Detwiler, 1999; Tesson et al., 2016; Womack et al., 2010). As illustrated
in Fig. 1, PBA particle diameters range from nanometers up to about a
tenth of a millimeter. The upper limit of the aerosol particle size range
is determined by rapid sedimentation, i.e., larger particles are too
heavy to remain airborne for extended periods of time (Hinds, 1999;
Pöschl, 2005).
Historically, the rst investigations of the occurrence and dispersion
of microorganisms and spores in the air can be traced back to the early
19th century (Ehrenberg, 1830;Pasteur, 1860a, 1860b). Since then, the
study of bioaerosol has come a long way, and air samples collected with
aircraft, balloons, and rockets have shown that PBA released from land
and ocean surfaces can be transported over long distances and up
to very high alt itudes, i.e., between continents and beyond the tropo-
sphere (Brown and Hovmøller, 2002; DeLeon-Rodriguez et al., 2013;
Elbert et al., 2007; Gregory, 1945; Grifn et al., 2001; Grifn, 2004;
Hallar et al., 2011; Hirst et al., 1967; Imshenetsky et al., 1978; Maki
et al., 2013; McCarthy, 2001; Pady et al., 1950; Polymenakou et al.,
2007; Pósfai et al., 2003; Proctor, 1934; Prospero et al., 2005;
Scheppegrell, 1924; Shivaji et al., 2006; Smith et al., 2013; Wainwright
et al., 2003).
Bioaerosols play a key role in the dispersal of reproductive units
from plants and microbes (pollen, spores, etc.), for which the atmo-
sphere enables transport over geographic barriers and long distances
(e.g., Brown and Hovmøller, 2002; Burrows et al., 2009a, 2009b;
Després et al., 2012; Womack et al., 2010). Bioaerosols are thus highly
relevant for the spread of organisms, allowing genetic exchange be-
tween habitats and geographic shifts of biomes. They are central ele-
ments in the development, evolution, and dynamics of ecosystems.
The dispersal of plant, animal, and human pathogens and allergens
has major implications for agriculture and public health (e.g., Adhikari
et al., 2006; Brodie et al., 2007; Brown and Hovmøller, 2002; Després
et al., 2012; Douwes, 2003; Fisher et al., 2012; Fröhlich-Nowoisky
et al., 2009; Gorny et al., 2002; Kellogg and Grifn,2006), and the poten-
tial impacts of airborne transmission of genetically modied organisms
are under discussion (e.g., Angevin et al., 2008; Folloni et al., 2012;
Kawashima and Hama, 2011). Moreover, bioaerosols can serve as nuclei
for cloud droplets, ice crystals, and precipitation, thus inuencing the
hydrological cycle and climate. Especially in pristine air over vegetated
regions, bioaerosols are likely to be an essential regulating factor in
the formation of precipitation and vice versa (e.g., DeLeon-Rodriguez
et al., 2013; Huffman et al., 2013; Möhler et al., 2007; Morris et al.,
2014a; Pöschl et al.,2010; Prenni et al., 2013; Sands et al., 1982; Schnell
and Vali, 1972; Sesartic et al., 2013; Tobo et al., 2013; Vali et al., 1976).
Also in marine environments, particulate matter of biological origin
may contribute substantially to the abundance of ice nuclei (Alpert
et al., 2011a; Burrows et al., 2013a; Knopf et al., 2010; Lee et al., 2015;
Parker et al., 1985; Schnell and Vali, 1976; Schnell and Vali, 1975;
Schnell, 1975; Wilson et al., 2015).
An overview of bioaerosol cycling and effects in the Earth system is
given in Fig. 2. Some organisms actively emit PBA particles, such as
wet-discharged fungal spores, which are emitted with the help of os-
motic pressure or surface tension effects, while the passive emission
of other PBA particles, like thallus fragments and dry-discharged fungal
spores, is mostly wind-driven (Elbert et al., 2007). In the atmosphere,
PBA undergo internal and external mixing with other aerosols, includ-
ing biogenic secondary organic aerosol (SOA) formed upon oxidation
and gas-to-particle conversion of biogenic volatile organic compounds,
which can inuence bioaerosol properties through SOA coatings on
PBA particles (Hallquist et al., 2009; Huffman et al., 2012; Pöhlker
et al., 2012b; Pöschl et al., 2010).
In the course of atmospheric transport, bioaerosols undergo further
chemical and physical transformation, stress, and biological aging
upon interaction with UV radiation, photo-oxidants, and various air
pollutants like acids, nitrogen oxides, aromatic compounds, and soot
(Estillore et al., 2016; Franze et al., 2005; Santarpia et al., 2012;
Shiraiwa et al., 2012b). Particle transformation and aging also occur
Fig. 1. Characteristic size ranges of atmosphericparticles and bioaerosols withexemplary illustrations: (A) protein, (B) virus, (C) bacteria, (D) fungal spore,and (E) pollen grain (adapted
from Pöschl and Shiraiwa, 2015). Image A is a model simulation of BetV1 (Koer et al., 2012; Xu and Zhang, 2009) created with PDB protein workshop 3.9 (Moreland et al., 2005).
Images (BE) are scanningelectron micrographs of representativeparticles from eachof the bioaerosol categories listed. Image B reprinted from Whonet al. (2012), copyright 2012 , with
permission from American Societyfor Microbiology. ImagesC and D reprinted fromWittmaack et al. (2005),copyright 2005,with permissionfrom Elsevier. ImageE reprinted fromValsan
et al. (2015), copyright 2015, with permission from Elsevier.
347J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
upon cloud processing, i.e., when cloud droplets or ice crystals form on
or scavenge bioaerosol particles. Most clouds re-evaporate and release
modied particles, but when they form precipitation that reaches the
Earth's surface, not only condensation and ice nuclei but also other aero-
sol particles are scavenged on the way to the surface and removed from
the atmosphere. This process of wet depositionis the major sink for
atmospheric aerosol particles. Dry depositionby sedimentation and
diffusion tends to be less important on global scales but is particularly
relevant with respect to local air quality and health effects (inhalation
and deposition in the respiratory tract). Depending on aerosol proper-
ties and meteorological conditions, the characteristic residence times
(lifetimes) of aerosol particles in the atmosphere range from hours to
weeks. After returning to the ground, viable bioparticles can continue
biological reproduction and metabolic activity that may generate fur-
ther emission of PBA particles and SOA precursors, thus closing a feed-
back loop and biogeochemical cycle of biologically-derived aerosols in
the Earth system (Andreae and Crutzen, 1997; Deguillaume et al.,
2008; Morris et al., 2014a; Pöhlker et al., 2012b; Pöschl, 2005; Pöschl
et al., 2010; Suni et al., 2015).
In most terrestrial environments, bioaerosols constitute a substantial
fraction of the atmospheric aerosol load (Tables 1a and 1b). With regard
to number and mass concentration in the coarse particle size range with
diameters larger than 1μm, bioaerosols typically account for around
30% in urban and rural air (Després et al., 2012; Huffman et al., 2013,
2010; Matthias-Maser and Jaenicke, 1995; Matthias-Maser et al., 2000a,
2000b; Monks et al., 2009; Schumacher et al., 2013; Sesartic et al., 2012)
andupto80% in pristine rainforest air (Graham, 2003; Huffman et al.,
2012; Martin et al., 2010; Pöhlker et al., 2012a; Pöschl et al., 2010). The
number and mass concentrations of PBA particles over vegetated regions
are typically in the order of 10
4
m
3
and 1μgm
3
, respectively
(Tables 1a and 1b; e.g., Bauer et al., 2002a, 2002b; Burrows et al., 2009a,
2009b; Després et al., 2012; Elbert et al., 2007; Heald and Spracklen,
2009; Huffman et al., 2013, 2012, 2010; Sesartic et al., 2012).
However, the actual identity, diversity, and abundance of different
types of bioaerosol particles as well as their temporal and spatial
variability are not well characterized. Recent studies suggest that the
average number uxes of emission of bacteria and fungal spores over
continental regions are in the order of 10
2
m
2
s
1
(Burrows et al.,
2009a, 2009b; Crawford et al., 2014; Elbert et al., 2007; Heald and
Spracklen, 2009; Lighthart and Shaffer, 1994; Lindemann et al., 1982;
Sesartic and Dallaor, 2011), reecting an intense and rapid exchange
of biological matter and genetic information between atmosphere and
biosphere. Estimates of globalbioaerosol mass emission rates, however,
vary widely (101000 Tg a
1
;Tables 1a and 1b;Després et al., 2012),
and the regional and temporal variations in the atmospheric abundance
and uxes ofemission and transport of different types of bioaerosol par-
ticles are poorly constrained (Bowers et al., 2012, 2010, 2009; Burrows
et al., 2009a, 2009b; Fröhlich-Nowoisky et al., 2012, 2009; Heald and
Spracklen, 2009; Jaenicke, 2005; Sesartic and Dallaor, 2011).
Overall, the role of bioaerosols in the atmosphere and their interac-
tion with terrestrial and marine ecosystems are not well described and
understood neither for the present state of the Earth system and
climate, nor with regard to past evolution and future change. Indeed,
the properties and interactions of atmospheric aerosols, including
bioaerosols, are among the largest uncertainties in the current under-
standing and prediction of climate change (Solomon et al., 2007;
Stocker et al., 2013). This lack of knowledge is particularly severe with
regard to the assessment, prediction, and management of global envi-
ronmental change in the Anthropocene as established by Paul Crutzen
(Crutzen and Stoermer, 2000; Crutzen, 2002), i.e., in the present era of
steeply increasingand globally pervasive human inuence on the diver-
sity, metabolic activity, and future development of life on planet Earth
Fig. 2. Bioaerosol cycling in the Earth system. After emission from the biosphere,
bioaerosol particles interact with other aerosol particles and trace gases in the
atmosphere and can be involved in the formation of clouds and precipitation. After dry
or wet deposition to the Earth's surface, viable bioparticles can contribute to biological
reproduction and further emission. This feedback can be particularly efcient when
coupled to the water cycle (bioprecipitation).
Adapted from schl and Shiraiwa (2015) and Pöschl (2005).
Table 1a
Estimates of global emissions and characteristic number and mass concentrations in near-
surface air for different types of primary biological aerosol(PBA) particles.
Adapted from Després et al. (2012) and references therein.
Global emissions
[Tg a
1
]
Number
concentration
[# m
3
]
Mass
concentration
[μgm
3
]
Bacteria 0.428 ~10
4
~0.1
Fungal spores 8190 ~10
3
10
4
~0.11
Fungal hyphal
fragments
~10
3
Pollen 4784 ~10 (up to ~ 10
3
)~1
Plant debris ~0.11
Algae ~100 (up to ~ 10
3
)~10
3
Fern spores ~10 (up to ~ 10
3
)~1
Viral particles ~10
4
~10
3
Total PBA b10 (dominated by plant
debris and fungal spores)
to ~1000 (includes cellular
fragments)
Table 1b
Estimates of global emissions and mass burdens for differenttypes of atmosphericaerosol
components including organic carbon from primary biological aerosol (PBA) particles.
Adapted from Andreae and Rosenfeld (2008) and Monks et al. (2009).
Global emissions
[Tg a
1
]
Mass burden
[Tg]
Carbonaceous aerosols
Primary organic (02μm) 95 1.2
Biogenic (PBA) 35 0.2
Biomass burning & fossil fuel 58
Black carbon (02μm) 10 0.1
Secondary organic 28 0.8
Biogenic 25 0.7
Anthropogenic 3.5 0.08
Sulfates 200 2.8
Nitrates 18 0.49
Sea salt 10,130 15
Desert/soil dust 1600 18 ± 5
Anthropogenic total 312 3.1
Biogenic total 117 2.1
348 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
(Pöschl and Shiraiwa, 2015; Williams and Crutzen, 2013). For example,
it is not clear how the ongoing global and regional changes in land use,
climate, and biodiversity will affect the abundance and properties of at-
mospheric bioaerosols that may inuence the spread of vegetation and
disease as well as the spatial and temporal patterns of precipitation,
which in turn may act as a positive or negative feedback on climate
(Morris et al., 2014a). These issues are closely linked to societally rele-
vant questions about how agriculture and other types of land use and
human activity may be developed to efciently mitigate or adapt to
climate change. For example, these scenarios are more pertinent to
the developing countries, especially densely populated South Asia,
where information about bioaerosol properties and abundance is
extremely limited.
In the following sections, this article will summarize the state of the
science, highlight recent advances and outline future perspectives re-
garding bioaerosols and their role in the Earth system in terms of their
identication and characterization, transport and transformation pro-
cesses, as well as their interactions with climate, health, and terrestrial
and marine ecosystems.
2. Identication and characterization of bioaerosols
A wide range of methods have been developed and applied for
bioaerosol sampling and measurement: lter, impactor, impinger, and
cyclone samplers; cultivation and staining techniques; immunological
methods; light and electron microscopy; optical spectroscopy and
mass spectrometry as well as chemical tracer analyses (Baron and
Willeke, 2001; Buters et al., 2012; Carestia et al., 2015; Caruana, 2011;
Cox and Wathes, 1995; Crook and Sherwood-Higham, 1997; De Linares
et al., 2014; DeCosemo et al.,1992; Després et al., 2012; Georgakopoulos
et al., 2009; Ghosh et al., 2015; Grifn et al., 2001; Grifths and
DeCosemo, 1994; Grifths et al., 1997; Grinshpun and Clark, 2005;
Grinshpun et al., 2005; Henningson and Ahlberg, 1994; Laskin et al.,
2016; Levetin, 2004; Miyajima et al., 2014; Oteros et al., 2015; Valsan
et al., 2015; West et al., 2016; Wittmaack et al., 2005; Xu et al., 2011;
and references therein). Most of this work has been presented in the
review by Després et al. (2012); therefore we focus in this section on
recent advances in the following areas: Analysis of ribonucleic acids
(DNA/RNA); uorescence detection, spectroscopy and microscopy;
X-ray microscopy and spectroscopy; and online and single-particle
mass spectrometry.
2.1. Biological characterization
Microbiology has experienced an especially strong transformation
over the last few decades. Most microorganisms cannot be grown read-
ily in pure culture, and earlier studies using traditional microbiological
cultivation techniques covered only small percentages of the species
present in the investigated samples and environments; e.g., 1% of bac-
teria, according to Lewis (2009),and17% of fungi, according to Bridge
and Spooner (2001). The entire spectrum of atmospheric microbial di-
versity, i.e., the atmospheric microbiome is now becoming accessible
through recent developments and applications of DNA- and RNA-
based methods (e.g., Boreson et al., 2004; Maron et al., 2005; Peccia
and Hernandez, 2006; Radosevich et al., 2002).
The identity of bioaerosols can be determined by DNA sequencing.
Many studies use the traditional Sanger sequencing approach, as this
provides sequences that are long enough to identify individual genera
or species by comparison with sequences available in online databases
like the National Center for Biotechnology Information (NCBI; Boreson
et al., 2004; Després et al., 2007; Fahlgren et al., 2011; Fierer et al.,
2008; Fröhlich-Nowoisky et al., 2009, 2012, 2014; Huffman et al.,
2013; Maron et al., 2005; Urbano et al., 2011).
The Sanger sequencing-based bioaerosol analysis is being slowly re-
placed by modern Next Generation Sequencing (NGS) technologies. In
the past, the length of the sequences has often been a limiting factor
for the identication to the species or genus level, as the reads were
much shorter than sequences obtained by Sanger sequencing. Next
Generation Sequencing technologies are continuously improving and
are currently able to provide sequences longer than 400 bp (Schmidt
et al., 2013; Sinclair et al., 2015). These technologies alsoallow the gen-
eration of millions of reads from air samples in order to analyze the ge-
nomics and transcriptomics (RNA analysis), and have been successfully
used in several recent bioaerosol related studies (e.g., Be et al., 2013;
Bertolini et al., 2013; Bowers et al., 2013, 2012, 2011, 2010, 2009; Cao
et al., 2014; DeLeon-Rodriguez et al., 2013; Franzetti et al., 2011;
Kraaijeveld et al., 2015; Seifried et al., 2015; Tringe et al., 2008; Womack
et al., 2015; Yooseph et al., 2013). In particular, metagenomic ap-
proaches enable comprehensive determination of the diversity and
metabolic potential of the organisms present in an aerosol sample.
Metagenomic techniques also allow the characterization of airborne
viral diversity and dynamics, as viruses are genetically highly variable
and do not possess conserved genes, which makes amplicon-based ap-
plications challenging (Prussin et al., 2014; Whon et al., 2012).
Fig. 3A shows an overview of the global atmospheric distribution
of fungal phyla derived from Sanger sequencing of air samples col-
lected at a wide range of geographic locations. The species richness
of Basidiomycota (BMC) vs. Ascomycota (AMC) exhibits distinct bio-
geographic patterns with higher BMC/AMC ratios in continental air
compared to marine air (Fröhlich-Nowoisky et al., 2012; Womack
et al., 2010). Fig. 3B shows the relative abundance of fungal phyla in
various soils and in tropical rainforest air, contrasting the total and met-
abolically active fungi determined by NGS sequencing of DNA and RNA
(Womack et al., 2015).
Although sequence data from NGS studies provide information of
the relative abundance of specic taxa, calculated as the fraction or
percentage of the sequences representing the taxa of interest to the
total amount of sequences, taxon-specic quantitative polymerase
chain reaction (PCR) is the most accurate reection of absolute concen-
trations (Dannemiller et al., 2014; Georgakopoulos et al., 2009). Quanti-
tative PCR (qPCR) has been successfully applied to air samples to
quantify individual species, genera, or groups of fungi, bacteria, or
archaea (Casabianca et al., 2013; DeLeon-Rodriguez et al., 2013;
Fröhlich-Nowoisky et al., 2014; Lang-Yona et al., 2012, 2014; Lee et al.,
2010; Müller-Germann et al., 2015; Schweigkoer et al., 2004; Zeng
et al., 2004, 2006). A promising new method for bioaerosol quantica-
tion is the droplet digital PCR (ddPCR) technique (Hindson et al.,
2011; Jones et al., 2014); it utilizes a water-oil emulsion system in
which the sample is fractionated into thousands of nanoliter droplets
to enable high-throughput digital PCR.
Preliminary estimates of total DNA concentrations of several nano-
gram per cubic meter in urban air suggest that the amount of DNA
inhaled by human adults may be as high as ~ 0.11μg per day, which
corresponds to ~10
14
10
15
bp and would be equivalent to as much bio-
logical information as ~10
7
10
8
bacterial genomes or ~10
4
10
5
human
genomes (Després et al., 2007). Due to the variability of atmospheric
aerosol composition and experimental difculties in the quantitative
extraction and measurement of the total DNA content of air lter sam-
ples, however, these preliminary estimates remain to be conrmed
and further specied for different environments and conditions.
2.2. Chemical and physical characterization
Recently, several new microscopy techniques have been developed
that bypass the resolution limit of optical microscopy (super-resolution
technologies) and allow the precise localization of intracellular com-
ponents (Best et al., 2013; Betzig et al., 2006; Cremer, 2012; Hell and
Kroug, 1995). Moreover, uorescence imaging and spectroscopy
techniques have also made tremendous progress in recent years.
Wavelength-dependent uorescence emission spectra, recorded as
a function of excitation wavelength, can be plotted as three-
dimensional landscapes, referred to as an excitation-emission matrix
349J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
(EEM). Such plots, accordingly, relay a broad collection of information
about the steady-state autouorescence properties of a sample and can
be regarded as a unique, sample-specicngerprint. Fig. 4Adisplaysa
conceptual overview EEM, illustrating the spectral zones of interest,
contour plots of three frequently investigated biological uorophores
(tryptophan, nicotinamide adenine dinucleotide phosphate [NADPH],
and riboavin), elastic scattering interferences, and operational
ranges of selected uorescence-detecting bioaerosol instruments
(Pöhlker et al., 2012a). Fluorescence microscopy is well established
and often used to study bioaerosols by taking advantage of either
the autouorescence of biological compounds or uorescent stains
specically binding to various biological molecules. Fig. 4BandC
shows uorescence microscopy images of selected pollen species.
Flow cytometry is also often employed to enumerate and character-
ize bioaerosols collected into water and then tagged with uorescent
stains (Chen and Li, 2005; Lange et al., 1997).
A number of instruments able to discriminate biological content in
real-time based on the emission of laser/light-induced uorescence
(LIF) have been developed over the last two decades, originally for the
rapid detection of biowarfare threat agents (Cheng, 1999; Crouzy
Fig. 3. Biodiversity and biogeographyof airborne fungidetermined by DNA and RNAanalysis: (A) biogeography ofairborne fungi over landand oceans: geographical location and relative
proportions of differentfungal phyla at continental, coastal, and marine sampling locations determined by Sanger sequencing and(B) relative abundances of fungal phyla in various soils
and in tropical rainforest air, demonstratingdifferences in thecomposition of totaland metabolicallyactive airbornefungi determinedby NGS sequencingof DNA and RNA (Womack et al.,
2015).
(A) Adapted from Fröhlich-Nowoisky et al. (2012).
350 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
et al., 2016; Ho, 2002; Huffman et al., 2016; Kaye et al., 2000; Manninen
et al., 2008; Pan et al., 2009; Pinnick et al., 1995; Sivaprakasam et al.,
2004). Recently, severalof these instruments have become commercial-
ly available and are among the most promising techniques for
bioaerosol analysis (e.g., Agranovski et al., 2003; Brosseau et al., 2000;
Hairston et al., 1997; Saari et al., 2014; Stanley et al., 2011). While
these instruments do not offer the molecular specicity or detailed im-
aging capabilities of microscopy, many of them are able to provide an
estimate of PBA properties in real-time, with high time and size resolu-
tion (Gabey et al., 2010; Healy et al., 2014; Huffman et al., 2010, 2012;
O'Connor et al., 2014; Perring et al., 2015; Pöhlker et al., 2012a, 2013;
Saari et al., 2015, 2016; Twohy et al., 2016; Ziemba et al., 2016).
Healy et al. (2014) compared measurements by two commercially
available real-time instruments for characterization of bioaerosols
using single particle uorescence spectroscopy (wideband integrated
aerosol sensor, WIBS-4, and ultraviolet aerodynamic particle sizer, UV-
APS) with results from optical microscopy of Sporewatch single-stage
impactor samples. As shown in Figs. 5 and 6, the different WIBS
channels exhibited variable distributions, size-resolved diurnal concen-
trations, and correlations with fungal spore concentrations. The uores-
cent particle number of the WIBS-4 channel FL3 and the UV-APS were
strongly correlated and the particle size distribution was dominated
by a 3 μmmode(Fig. 6). The diurnal plots show an increase in biological
or uorescent number concentration during the night and early morn-
ing hours, with daily minima occurring in the mid-afternoon, corre-
sponding to the diurnal trend in relative humidity, which peaks at
similar hours. Additionally, as displayed in Fig. 7, long-term UV-APS
measurements at two climatically very different sampling sites, a boreal
forest in Finland and a semi-arid site in Colorado, showed similar sea-
sonal patterns with higher concentrations of uorescent bioaerosols in
summer (Manninen et al., 2014; Schumacher et al., 2013). Perring
et al. (2015) used a WIBS-4 to detect uorescent aerosol properties on
a blimp transect across the whole of the southern United States, show-
ing that number concentrations of uorescent aerosol averaged up to
24% of the total aerosol number, with strong regional differences in
number and size.
The use of uorescence alone for detection of airborne biological
particles is complicated by non-biological entities that exhibit uores-
cence (e.g., certain SOA compounds, mineral dusts, and humic-like sub-
stances, HULIS) and by microorganisms that uoresce too weakly to be
detected by these techniques (Bones et al., 2010; Gabey et al., 2013;
Huffman et al., 2010, 2012; Lee et al., 2013; Pinnick et al., 2004;
Pöhlker et al., 2012a; Toprak and Schnaiter, 2013). Nonetheless, these
limitations are minimized in pristine environments, where most of the
ambient measurements to date have been recorded, and to a rst ap-
proximation uorescent bioaerosol particles (FBAP) can be considered
as a lower limit for the abundance of biological particles (Huffman
et al., 2010). Thus, time-resolved FBAP measurements contribute to im-
proved parameterizations for daily, seasonal, and annual cycles to better
reect PBA emissions and effects in atmospheric modeling. Based on
FBAP measurements at four locations in Europe, Hummel et al. (2015)
incorporated a new parameterization into a regional model. Fig. 8A
shows the FBAP emission uxes (F
FBAP
) simulated with this model for
late August 2010, horizontally distributed over a model domain cover-
ing Europe. Averaged over the land areas of the domain, the mean
F
FBAP
is 1 × 10
3
m
2
s
1
. During July and October, the average uxes
are to 1.4 × 10
3
and 0.4 × 10
3
m
2
s
1
, respectively. The horizontally
distributed near-surface (approximately 10 m above ground) FBAP/
fungal spore number concentration using F
FBAP
is shown in Fig. 8B.
Mass spectrometry (MS) is attractive for work in microbiology due
to its speed (Krásný et al., 2013). Aerosol mass spectrometry can deliver
single particle information to explore the spatial variability and dynam-
ics of bioaerosols (Bozzetti et al., 2016; Chen et al., 2009; Fergenson
et al., 2004; Kleefsman et al., 2007; Laskin et al., 2012; Pratt and
Prather, 2012; Schneider et al., 2011; Tobias et al., 2005; van
Wuijckhuijse et al., 2005). Another advantage of MS is that chemical
tracer molecules, which are not easily accessible by sequencing or uo-
rescence labeling techniques, canbe quantied on a single-particle basis
Fig. 4. Fluorescence spectroscopyand microscopy: (A) conceptual EEM displaying: uorescence dataarea (white), areas strongly inuenced by Rayleighand Tyndall light scattering (grey
diagonal bars), areas without meaningful data (grey stripes); contour lines for the uorophores tryptophan, NADPH, and riboavin; operational range of selected bioaerosol detectors
represented by horizontal colored lines: UV-APS (ultraviolet aerodynamic particle sizer), WIBS (wideband integrated bioaerosol sensor), BIO IN (Bioaerosol single particle detector for
the Fast Ice Nucleus CHamber (FINCH)), AIM (aerosol interrogation module), DPFS (Dual-excitation-wavelength Particle Fluorescence Spectrometer), Fabiola (Fluorescence Applied to
BIOLogical Agents detection), and AFS (aerosol uorescence sensor). Length of individual lines indicates measured emission band for a certain excitation wavelength shown as sharp
line for purpose of clarity. Single-wavelength detectors are represented by one line, dual-wavelength detectors by two lines (Pöhlker et al., 2012a). High-resolution microscopy images
of selected pollen species: (B) Pinus sylvestris, and (C) Betula fontinalis in bright eld (left, scale bar = 30 μm.) and uorescence mode (right). Fluorescence images shown as overlay of
three channels (Pöhlker et al., 2013).
351J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
(e.g., lipids, cellulose, or biogenic SOA components; Buiarelli et al., 2013;
Liang et al., 2013; Zhang et al., 2015). Recent developments in mass
analyzer techniques, which combine high resolution with high mass ac-
curacy (e.g., Orbitrap technology), are opening up new possibilities for
biomarker and proteomic analyses (Hernàndez et al., 2012; Liu et al.,
2016; Makarov and Scigelova, 2010; Pratt and Prather, 2012; Yates
et al., 2009). Vibrational spectroscopy (infrared and Raman scattering)
has also been utilized in a number of instances to characterize
bioaerosols (Ben-David and Ren, 2003; Huston et al., 2004; Rösch
et al., 2006; Thrush et al., 2012), and recently a Raman microscope for
real-time analysis of bioaerosols has become commercially available
(Ronningen et al., 2014).
Cell viability and vitality are other important aspects of bioaerosol
analysis (Urbano et al., 2011). Viability, transformation, and adaptation
are essential for the biological, ecological, and pathological roles of
bioaerosols. Evenbacterial ice nucleation hasbeen suggested to be high-
ly dependent on the status of cells, as proteins associated with intact
cells have been proposed to be more efcient ice nuclei than puried
proteins or proteins associated with disrupted cells (Möhler et al.,
2007; Morris et al., 2004). Thus, in addition to the taxonomic and chem-
ical identication of bioaerosols it is important to obtain information re-
garding their viability and metabolic activity to ascertain the role of
bioaerosols in atmospheric processes.
Cultivation methods have long been used to detect living microor-
ganisms. As pointed out above, only a small fraction of all species that
exist in nature can be grown in the laboratorywith the current culturing
techniques. Thus, culturing can be particularly useful for targeting indi-
vidual species or groups where culture conditions are known. In addi-
tion to culturing, bioluminescence-based techniques that detect the
presence of adenosine-5-triphosphate (ATP), the primary source of
Fig. 5. Relationship of themean uorescent coarseparticle concentration (N
F,C
) determinedby real-time instruments(WIBS-4 uorescence channelsFL1, FL2, and FL3; UV-APS) andspore
concentrations fromSporewatch impactor sampleanalysis. Crossesrepresent 2 h measurement points, colored bysampling date. Blacklines representunweightedlinearts (Healy et al.,
2014).
Fig. 6. Diurnal plots of spore number concentrations (a) and size-resolved numberconcentrations of uorescent particles (upper half of panels be) and integrated uorescent particle
number (N
F,c
,D
a
N1μm) as the black trace and relative humidity as the blue trace (lower half of panel be) (Healy et al., 2014).
352 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
energy in a living cell, allow a rapid but not species-specic assessment
of the viable microorganisms in air and cloud water samples (Amato
et al., 2007b; Lin et al., 2013; Park et al., 2014, 2015; Stewart et al.,
1997; Stopa et al., 1999).
In summary, to gain a better understanding of the abundance,
sources, transport, and transformation of bioaerosols, it is crucial to
determine their chemical, genetic, and taxonomic composition as
well as their concentration, seasonal variation, vitality, regional di-
versity, and evolution. Sophisticated techniques in the eld of instru -
mental trace analysis (e.g., mass spectrometry) and microbiology,
especially DNA sequencing technologies, need to be further developed
and applied. Molecular probes for strain- to phyla-specicclassication
of microorganisms are necessary to open up new possibilities for the
study of biological particles in the atmosphere. Metagenomic and
metatranscriptomic analysesmay prove especiallyuseful to open a win-
dow on health-related issues, as the identity and activity of pathogens
can be determined. The comprehensive characterization and identica-
tion of airborne microbial communities will impact various disciplines,
including studies of microbial diversity and biogeography, public
health, and microbial roles in biogeochemical cycling and climate
processes.
3. Transport and transformation of bioaerosols
Since bioaerosols are released at the Earth's surface, they are typical-
ly most abundant in the lowest part of the atmosphere, the so-called
Fig. 7. Seasonal cycles of FBAP concentration measurements with the UV-APS at two climatically different sampling sites and key meteorological data (Schumacher et al., 2013).
Fig. 8. Regional scale simulations: (A) average simulated FBAP emission ux (F
FBAP
) in late August 2010 [m
2
s
1
] and (B) averaged horizontally distributed FBAP/fungal spore
concentration, emitted by F
FBAP
, in the lowest model layer, in late August 2010 [L
1
]. Circles indicate the locations of the different FBAPmeasurement time series and the color within
the white circles represents the mean emission ux calculated from FBAP measurements at each location (Hummel et al., 2015).
353J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
planetary boundary layer (PBL). From a biological perspective it is par-
ticularly important to understand the transport processes in the PBL,
since these transport processes affect the spread and the distribution
of organisms and species, the speed of evolution, the formation of new
species and microbialcommunities, and the adaptation to changingen-
vironmental conditions (Fröhlich-Nowoisky et al., 2012; Morris et al.,
2014b; Womack et al., 2010). In atmospheric processes, bioaerosols
play a role in the formation of cloud droplets, ice crystals, and precipita-
tion, and may thus affect the hydrological cycle as well as atmospheric
chemistry and physics (Amato et al., 2007a; Deguillaume et al., 2008;
Diehl and Wurzler, 2010; Diehl et al., 2001; Hoose and Möhler, 2012;
Huffman et al., 2013; Möhler et al., 2007; Morris et al., 2014a; Pöschl
et al., 2010; Pratt et al., 2009; Prenni et al., 2009, 2013; Sesartic et al.,
2012; Tobo et al., 2013). However, current knowledge on the vertical
distribution of bioaerosols and the factors controlling their atmospheric
transport over large scales and above the PBL based on observations is
limited (Després et al., 2012).
3.1. Emission and transport
Global and regional models have been used to improve the scientic
understanding of bioaerosol emission, transport, and atmospheric im-
pact (Fig. 9;Ansari et al., 2015; Burrows et al., 2009a, 2009b, 2013b;
Heald and Spracklen, 2009; Hoose et al., 2010; Hummel et al., 2015;
Sesarticet al., 2012; Spracklen and Heald, 2014). These models are high-
ly dependent on the correct representation of the emissions and the
particle properties and modications that might occur during transport,
as well as on the correct representation of thesmall-scale transport pro-
cesses themselves. Furthermore, these models do not address the bio-
logical consequences for the organisms concerning survival, vitality,
and metabolic activity. Emission estimates of PBA particles suffer from
large uncertainties (Elbert et al., 2007), which can range from 80 to
870% (Burrows et al., 2009a, 2009b). These uncertainties originate
from biological processes in the ecosystems, including seasonality, life
cycles, land cover changes, climatic dependencies, variation in microbial
populations, and species competition. In addition, alterations caused by
aging, chemical processing, and microphysics introduce additional chal-
lenges to estimating correctly global transport and effects of bioaerosols
in the atmosphere (Burrows et al., 2013b). The emission strengths of
bioaerosols and their interaction with atmospheric transport processes
thus need improved quantication.
Close to the ground, turbulent small-scale transport drives the distri-
bution of all particles emitted from the Earth's surface. The planetary
boundary layer is directly affected by emissions from the surface and
therefore also by the emission of bioaerosols. Depending on the geo-
graphic location and season, the thickness of the boundary layer un-
dergoes a diurnal cycle, typically spanning a few hundred meters
during nighttime, but extending up to 3 km during daytime. Diurnal
and seasonal cycles of solar radiation and temperature stimulate biolog-
ical activity, thereby constituting a strong link between biological activ-
ity, emissions, and atmospheric transport (Jones and Harrison, 2004;
Matthias-Maser et al., 1995; Toprak and Schnaiter, 2013). Small-scale
atmospheric processes, such as cloud processing in low-level clouds
and wet deposition, further affect the abundance of bioaerosols in the
atmosphere (Huffman et al., 2013). These atmospheric processes partly
limit the travel distances in the boundary layer and reduce the number
concentrations of non-biological as well as biological particles entering
the free troposphere above the boundary layer (Sesartic et al., 2012).
However, several processes like frontal uplift, convection, or turbulence
at the boundary layer top maylead to an uplift of these air masses across
the inversion capping the boundary layer into the free troposphere,
where biological particles can potentially travel large distances as part
of the tropospheric ow.
Direct measurements of bioaerosol abundance are mainly ground
based. Even observations at 50 m above ground level are very sparse
and only few measurements from aircraft (Andreeva et al., 2002;
DeLeon-Rodriguez et al., 2013; Fulton, 1966; Gruber et al., 1998;
Kourtev et al., 2011; Ziemba et al., 2016; Zweifel et al., 2012)orhighal-
titude stations are available (Crawford et al., 2016; Gabey et al., 2013;
Hallar et al., 2011; Matthias-Maser et al., 2000c). Consequently, global
and regional model estimates regarding possible effects of bioaerosols
on atmospheric processes also suffer from these uncertainties and
need to be better constrained by observations in the atmosphere. Nota-
bly, knowledge of bioaerosol emission quantities close to their sources
and of subsequent transformation processes is crucial for reliable esti-
mations of the effects of bioaerosols on the atmosphere.
Estimates of emissions based on measurements of particle concen-
tration also suffer from inherent uncertainties, as the removal rates of
Fig. 9. Modelresults for annual-mean near-surface concentrations of PBA:(A) fungi in ne mode aerosol [μgm
3
], (B) fungiin coarse mode aerosol[μgm
3
], and (C) number of bacteria
tracers [10
3
m
3
](Burrows et al., 2009a, 2009b), (D) bacteria, fungal spores, and pollen [m
3
](Hoose et al., 2010).
Images A and B reprinted from Heald and Spracklen (2009); copyright 2009, with permission of John Wiley and Sons, Inc.
354 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
particles from the atmosphere are not known and emissions must be in-
ferred indirectly using models or assumptions about emissions. Mea-
surements of bioaerosol emission uxes by more direct methods,
while less commonly performed, can provide valuable direct observa-
tional constraints. Possible methods for bioaerosol emission ux mea-
surements fall into two general classes, gradient methods and eddy
covariance-like methods. Gradient methods, such as the Bowen ratio
method assume that the transport of atmospheric trace constituents
in the boundary layer can be assumed to be analogous to the transport
of more readily measureable quantities, such as heat and moisture.
The Bowen ratio method and related gradient methods have been ap-
plied in many of theexisting studies including direct ux measurements
of bacteria and other bioaerosols (e.g., Crawford et al., 2014; Lighthart
and Shaffer, 1994). These methods require a large number of measure-
ments for statistical signicance and suffer from inherent uncertainties
due to the assumptions used to interpret the gradients.
Eddy covariance and related methods involve calculating the corre-
lations between high-frequency time-series measurements of particu-
late or trace gas concentrations and the vertical wind speed. The eddy
covariance method is regarded as the gold standardfor ux measure-
ments of trace gases and aerosol number uxes (e.g., Gallagher et al.,
1997; Norris et al., 2008; Pryor et al., 2007). This method requires fast-
response instrumentation (typically 10 Hz or faster) and sufciently
high concentrations for robust statistical analyses, which are difcult
to achieve for bioaerosols. In the absence of high-time-resolution mea-
surement capabilities, an adaptation of eddy covariance known as re-
laxed eddy accumulation(Businger and Oncley, 1990; Gaman et al.,
2004; Held et al., 2003, 2008), may be a more appropriate method for
the measurement of bioaerosol uxes. Relaxed eddy accumulation is
based on conditional sampling of updrafts and downdrafts, and can be
used with analysis methods that have much slower response times.
3.2. Physical, chemical, and biological transformation
The atmosphere not only acts as a passive transport medium, but
also modies the microphysical and chemical properties of living and
dead biological matter. Cellular responses are initiated in living matter,
whereas dead matter can be decomposed and become a source of cellu-
lar structures and smaller chemical compounds, which may inuence
the physical, chemical, and biological properties of the aerosols.
Bioaerosol particles can undergo fragmentation in the atmosphere,
and bioparticle fragments can be suspended from the Earth's surface
into the air. Altering the size distribution and other properties of
bioaerosol particles (surface and bulk composition, hygroscopicity,
etc.) in turn can affect their ability to act as cloud condensation nuclei
(CCN) or ice nuclei (IN), thus inuencing their atmospheric transport
and processing (Diehl et al., 2001; Morris et al., 2004; Schnell and Vali,
1972). Heterogeneous and multiphase chemical reactions can lead to
oxidation, nitration, oligomerization, and degradation of proteins and
other primary biological substances, modifying the molecular composi-
tion and biological activity of bioparticles. For example, reactions with
air pollutants (e.g., O
3
and NO
2
) have been shown to enhance the aller-
genic potential of airborne allergens, such as birch pollen, ragweed pol-
len, and Aspergillus spores (Franze et al., 2005; Gruijthuijsen et al., 2006;
Lang-Yona et al., 2016; Reinmuth-Selzle et al., 2014; Zhao et al., 2016).
Also, secondary organic and inorganic material can form a liquid or
solid coating on bioparticles inuencing their chemical, physical, and bi-
ological properties.
Certain types of bioparticles were specically shaped by evolution to
be transported by wind and use the atmosphere for their dispersal.
These comprise endo- or resting spores of bacteria, fungi, mosses and
ferns, pollen grains, and small plant seeds. These structures are gen-
erally found to have, on the one hand, thick cell walls sheltering
them effectively from environmental stresses and, on the other
hand, a minimal metabolism rate. These dispersal units are either ac-
tively emitted, such as wet-discharged fungal spores, or passively
emitted, such as dry-discharged fungal spores, small seeds, and most
pollen (Arditti and Ghani, 2000; Elbert et al., 2007; Jones and
Harrison, 2004; Marshall and Chalmers, 1997; Morris et al., 2014b;
Murren and Ellison, 1998). Besides such dedicated dispersal units,
many other organisms, such as algae, (cyano)bacteria, fungi, and virus-
es, can also become aerosolized and are transported passively through
the air. The vitality of these organisms is dependent on their adaptation
or ability to react actively to changing environmental conditions (resil-
ience). Moreover, also aggregation of cells, attachment to other aerosol
particles, or protective envelopes may inuence viability of bioaerosols
(Amato et al., 2015; Morawska, 2006; Tong and Lighthart, 1998). How-
ever, although the atmosphere is intensively discussed as a possible
habitat, hardly any studies exist that reveal the metabolic activity of mi-
croorganisms during their residence time in the atmosphere. Up to
now, metabolic activity has been shown almost exclusively in specic
small-scale environments like cloud droplets (Amato et al., 2005,
2007a, 2007b; Dimmick et al., 1975; Vaïtilingom et al., 2013).
The stresses induced in microorganisms while airborne inuence
their activity and vitality andthus their capability to colonizenew hab-
itats and to survive. Atmospheric stress can be considered an evolution-
ary force exposing airborne bioaerosols to selection pressure, thereby
affecting the dispersal and evolution of microorganisms. Among the
most signicant stress factors are temperature, humidity, oxidative
stress, starvation, radiation, and osmotic stress. Furthermore, it is
believed that phylogenetic aspects of primary biological particles in
the atmosphere lead to a selection of species becoming airborne or
transported as living matter to high altitudes (Alfreider et al., 1996).
How airborne transport affects different microorganisms and their abil-
ity to settle and then proliferate again is currently not well understood.
3.3. Cloud interactions and bioprecipitation cycle
The role of biological particles in cloud formation, precipitation, eco-
system interactions, and possible feedback cycles is a topic of increasing
interest (Amato et al., 2015; Andreae and Rosenfeld, 2008; Ariya et al.,
2009; Ariya and Amyot, 2004; Després et al., 2012; Haga et al., 2013;
Hoose and Möhler, 2012; Huffman et al., 2013; Joly et al., 2014; Mason
et al., 2015; Michaud et al., 2014; Möhler et al., 2007; Morris et al.,
2014a;Pöschletal.,2010;Prattetal.,2009;Sandsetal.,1982;Stopelli
et al., 2015; and references therein). Forplant pollen and many microor-
ganisms aerial dispersal is part of their life cycle (Brown and Hovmøller,
2002). To maintain viability in the atmosphere, microorganisms have
adapted to the conditionsin the atmosphere and evolved survival strat-
egies for long-distance dispersal or dispersal at high altitudes (Grifn,
2004; Imshenetsky et al., 1978; Joly et al., 2015; Kellogg and Grifn,
2006; Morris et al., 2011; Prospero et al., 2005; Womack et al., 2010).
As alreadymentioned above, microorganisms and other bioaerosols
are removed from the atmosphere either by dry or wet deposition,
i.e., incorporationinto cloud droplets or ice crystals, possibly inuencing
precipitation, the hydrological cycle, and climate (Fig. 2). Biological CCN
or IN may be present as living or deadcells, cell fragments, hyphae,pol-
len, spores, detached IN-active macromolecules, biogenic potassium-
salt particles, or associated with plant particles or soil organic matter
(e.g., Bauer et al., 2003; Conen et al., 2011; Després et al., 2012; Diehl
et al., 2001; Dingle, 1966; Franc and Demott, 1998; Fröhlich-Nowoisky
et al., 2015; Hill et al., 2016; Hiranuma et al., 2015; Huffman et al.,
2013; Kieft and Ahmadjian, 1989; Kieft, 1988; Maki and Willoughby,
1978; Möhler et al., 2007; O'Sullivan et al., 2016; Pöhlker et al., 2012b;
Pouleur et al., 1992; Pummer et al., 2012, 2015; Šantl-Temkiv et al.,
2015; Sattler et al., 2001; Schnell and Vali, 1976; Schnell and Vali,
1972; Tobo et al., 2014; Vali et al., 1976).
Cloud condensation nuclei can nucleate liquid cloud droplets. The
potential for a particle to act as CCN is ranked by the atmospheric
water vapor pressure required for it to nucleate and depends on both
its size and composition (Andreae and Rosenfeld, 2008; Farmer et al.,
2015). Some pollen, fungal spores, and bacteria can be activated as
355J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
CCN at relatively low supersaturation levels and are called giant CCN
due to their large size compared to other non-bioaerosol CCN-active
aerosols (e.g., Andreae and Rosenfeld, 2008; Bauer et al., 2003; Delort
et al., 2010; Franc and Demott, 1998; Hassett et al., 2015; Pope, 2010;
Sun and Ariya, 2006). For example, Bauer et al. (2003) isolated several
bacterial species from aerosol and cloud water samples that were acti-
vated as CCNat supersaturations between ~0.07 and 0.11%. In the atmo-
sphere, giant CCN represent a small fraction (0.0010.01%) of particles
(Posselt and Lohmann, 2008). Nevertheless, they are of special interest,
because they will be activated rst, grow readily and play a role in shap-
ing cloud cycles (Andreae and Rosenfeld, 2008). According to a global
modeling study, the incorporation of the giant CCN accelerates the hy-
drological cycle, so that clouds precipitate faster (but not more) and
less condensed water is accumulated in the atmosphere (Posselt and
Lohmann, 2008). Additionally, it has been shown that pollen grains
can rupture under humid conditions and release cytoplasmic material,
forming submicron particles that can act as CCN (Steiner et al., 2015;
Taylor et al., 2002, 2004).
Ice particles in the atmosphere can be formed via homogeneous or
heterogeneous ice nucleation. Homogeneous freezing of liquid water
droplets is a time-dependent stochastic process, which can be described
by the formation of an ice embryo with critical size, whose probability to
form ice increases with time (Pruppacher and Klett, 2010). In contrast,
heterogeneous freezing is triggered by foreign particles or macromole-
cules serving as IN (Hoose and Möhler, 2012; Pummer et al., 2015).
Bioaerosols had already been found in ice crystals in the late 1950s
(Ariya and Amyot, 2004; Schnell and Vali, 1976; Vali et al., 1976).
Fig. 10 shows that biological IN, such as bacteria, are much more
efcient IN for immersion freezing than mineral dust or soot, as they
can trigger ice formation at high subzero temperatures (Hoose and
Möhler, 2012). Thus, biological IN can be expected to be important for
clouds or cloud regions warmer than 15 °C (DeMott and Prenni,
2010; Morris et al., 2014a; Murray et al., 2012). Additionally, between
Fig. 10. Ice-nucleation-active site densities for Arizona test dust (ATD), kaolinite, natural
desert dusts, soot, and bioaerosols for immersion freezing, including deposition, and
condensation freezing experiments at or above water saturation. The lines are inserted
to guide the eye. The blue line refers to ATD, desert dusts, and clay minerals. The green
line refers to biological aerosols (Hoose and Möhler, 2012).
Fig. 11.Cumulative IN spectrabefore and after ltration for different fungalspecies and pollen:(A) Acremonium implicatum (now Sarocladium implicatum), Isaria farinosa,Mortierella alpina
(Pummer et al., 2015), (B) Fusarium avenaceum, and (C) pollen from Betula pendula (O'Sullivan et al., 2015).
356 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
temperatures of Cand8 °C, ice multiplication by the Hallett-
Mossop process might occur, leading to higher concentrations of ice
crystals by rime splintering of ice particles (Hallett and Mossop, 1974).
The best studied IN-active microorganisms are bacteria, which have
been found in the boundary layer and in the upper troposphere
(Lindemann and Upper, 1985; Lindemann et al., 1982). Many strains
of the genera Pseudomonas,Pantoea,andXanthomonas are IN-active
and express isoforms of the same IN-active protein (Hill et al., 2014a).
The proteins are anchored in the outer membrane and can form large
aggregates triggering ice nucleation at up to 1.5 °C (Kozloff et al.,
1991; Lindow, 1989). As shown in Fig. 10, IN-active bacteria, such as
some Pseudomonas syringae strains, reach IN-active surface site densi-
ties of N10
10
m
2
already at temperatures above 10 °C, whereas for
mineral dust, these values are typically reached only below 20 °C. Re-
cent investigation of the interaction of P. syringae with water molecules
demonstrated that the IN-active protein enhances ice nucleation by ar-
ranging water molecules into alternating stripes of higher and lower-
ordered molecules, and that latent heat is effectively removed from
the nucleation site (Pandey et al., 2016).
Ice nucleation activity has also been documented in pollen, algae,
fungi, lichen, insects, leaf litter, and plankton, as reviewed elsewhere
(Després et al., 2012; Moffett et al., 2015; Pummer et al., 2015; von
Blohn et al., 2005). For example, laboratory experiments examining
the IN activity of pollen in the immersion mode have shown that birch
pollen grains can induce freezing of droplets at temperatures as high
as C(Diehl et al., 2002). Recently, IN activity has been discovered
in several moss and liverwort species (Moffett, 2015; Weber, 2015).
Moreover, Mortazavi et al. (2015) isolated an IN-active bacterium pos-
sibly belonging to the genus Bacillus (96% similarity) from fresh snow.
There is also a growing interest in the IN properties of fungal species,
and IN activity above 20 °C has been found in several fungal species,
such as Boletus zelleri (Haga et al., 2014), Endocronartium harknessii
(Haga et al., 2013), Hemileia vastatrix (Morris et al., 2013), Isaria farinosa
(Huffman et al., 2013), Mortierella alpina (Fröhlich-Nowoisky et al.,
2015), Puccinia spp. (Haga et al., 2013; Morris et al., 2013), Sarocladium
(formerly Acremonium)implicatum (Huffman et al., 2013), and Ustilago
nigra (Haga et al., 2014).
Particularly interesting is the observation of detached nanometer-
sized IN-active macromolecules (INM) that are active at high tempera-
tures in fungal species of different phyla and in pollen (Fig. 11;
Fröhlich-Nowoisky et al., 2015; O'Sullivan et al., 2015; Pouleur et al.,
1992; Pummer et al., 2012, 2015). Associated with soil dust particles,
these INM may impact cloud glaciation indirectly, indicating a higher
contribution and importance of biological, in particular fungal, IN than
previously assumed (Fröhlich-Nowoisky et al., 2015; O'Sullivan et al.,
2015; Pummer et al., 2015). For proteinaceous INM from Fusarium
avenaceum it was recently demonstrated that they can be adsorbed
onto kaolinite, a common soil clay mineral, conferring their IN activity
to the mineral particles (O'Sullivan et al., 2016). Augustin-Bauditz
et al. (2016) presented similar ndings of illite-NX particles mixed
with birch pollen INM. Moreover, nanometer-sized particles of biologi-
cal and inorganic origin were found to be the most abundant particles in
snow samplesfrom different ecosystems (Rangel-Alvarado et al., 2015).
It is still an open question whether there are sufcient numbers of
CCN- and IN-active bioaerosols at cloud altitudes to affect cloud forma-
tion and evolution. However, in pristine air over vegetated regions or
under remote conditions, bioaerosols might represent a signicant frac-
tion of CCN and IN and are likely to be an essential regulating factor in
the formation of clouds and precipitation (Andreae and Rosenfeld,
2008; Healy et al., 2014; Huffman et al., 2013; Pöhlker et al., 2012b;
Fig. 12. Aerosol properties during dry periods and rain events: (A, B) uorescence microscope images of aerosol impactor samples, (C, D) size distributions of IN and of uorescent
bioparticles, and (E, F) number concentrations of IN plotted against uorescent bioparticles (Huffman et al., 2013).
357J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Pöschl et al., 2010). Moreover, Creamean et al. (2013) found by direct
cloud and precipitation measurements that long-range transported
dust mixed with biological residues plays an important role in cloud
ice formation and precipitation processes over the western United
States. Wright et al. (2014) proposed that increasing relative humidity,
due to a cold-frontal passage, could trigger the release of biological IN,
which in turn may seed the frontal cloud band. Increasing concentra-
tions of bioaerosols and IN during and after rain events have been
found in a forest ecosystem (Fig. 12;Huffman et al., 2013; Prenni
et al., 2013; Tobo et al., 2013).
Fig. 12A and B shows microscopic images of aerosol impactor sam-
ples highlighting the contrast between irregularly shaped dust in a sam-
ple collected during dry weather and cellular structures in a sample
collected during a rain event. During dry weather conditions dominated
by dust, the concentrations of IN at 15 °C were between 0.01 and
0.02 L
1
, and no correlation with FBAP concentration was found
(Fig. 12C and E). In contrast, during rain events, the size distribution of
IN exhibits a distinct peak in the range of 26μm that coincides with
the peak of the size distribution of FBAP (Fig. 12D). Furthermore, the
measured IN concentrations followed a close linear correlation with
FBAP concentration (Fig. 12F). The strong contrast between dry and
rainy periods suggests that the release of PBA during and after rain
may play an important role in the spread and reproduction of microor-
ganisms in certain environments, and it may also contribute to the at-
mospheric transmission of pathogenic and allergenic agents (Fig. 13A;
Huffman et al., 2013).
Additionally, long-term measurements of IN concentrations and
rainfall in Australia indicate strong links between microorganisms
and rainfall that persist over longer periods of time than previously
assumed (Bigg et al., 2015). Ice nucleation activity that promotes
the formation of precipitation would be a benecial adaptation for
microorganisms to return to the land surface under favorable condi-
tions (Fig. 13;Morris et al., 2008; Sands et al., 1982). A feedback cycle
involving the release of plant-associated microorganisms that are
transported to cloud altitudes, followed by microbial rainfall induc-
tion resulting in increased plant and microbial growth, was already
proposed in 1982 (Sands et al., 1982). This bioprecipitation feedback
mechanism and related biotic processes involved in the hydrological
cycle may have played an important role in the coevolution of life
and climate as well as in the future development of the Earth system
inthecourseoftheAnthropocene(Christner et al., 2008; Huffman
et al., 2013; Morris et al., 2014a; Pöschl and Shiraiwa, 2015). A
more detailed discussion linking the bioprecipitation feedback
cycle with Earth history and biological species evolution is given in
Morris et al. (2014a).
Primary biological aerosols also contribute to the abundance of IN in
marine environments. Ice nucleation activity has been identied in sev-
eral marine bacteria and phytoplankton species (Alpert et al., 2011a,
2011b; Knopf et al., 2010; Parker et al., 1985; Schnell and Vali, 1975;
Schnell, 1975). As summarized in section 4.2, particulate matter of bio-
logical origin can be emitted via sea spray from marine sources. Organic
matter from the sea-surface microlayer has been shown to be a source
of atmospheric IN (Wilson et al., 2015), and laboratory simulations
using real wave breaking in a laboratory ume showed an increase
of sea spray IN emissions associated with phytoplankton blooms
(DeMott et al., 2015).
Different model simulations suggest regional differences in the im-
portance of marine biogenic IN (Burrows et al., 2013a; Wilson et al.,
2015). As illustrated in Fig. 14, marine biogenic IN are likely to play a
dominant role in the near-surface air in remote marine regions, such
as over the Southern Ocean. These regions are less inuenced by long-
distance transport of continental dust and more affected by sea spray
generation due to strong winds.
Climate and land-use related changes in the atmospheric abundance
of bioaerosols and in consequence of biological CCN and IN could result
in previously unconsidered feedbacks that inuence the hydrological
cycle and the Earth's energy balance (Andreae and Rosenfeld, 2008;
Burrows et al., 2013a).
Integration and synthesis of experimental studies, measurement
data, and model calculations of biopa rticle emission, transport, trans-
formation, and deposition will be essential to achieve full understand-
ing of the atmospheric lifecycle of bioaerosols and to nd out if
bioprecipitation and related effects are important for the co-evolution
of climate and life on Earth.
4. Bioaerosol-ecosystem interactions
4.1. Terrestrial ecosystems
Terrestrial ecosystems are major sources of atmospheric bioaerosols.
Vascularplants and fungi are well known to produce and release pollen
and spores during reproduction, and fragments of plant and fungal tis-
sues can alsobe emitted into the atmosphere in the course of decay pro-
cesses (Després et al., 2012; Jaenicke, 2005; Matthias-Maser et al.,
2000b). Less well-known emission sources of bioaerosols are micro-
bial surface communities or cryptogamic covers consisting of
(cyano)bacteria, archaea, algae, fungi, lichens, and bryophytes in
varying proportions. As so-called cryptogamic ground covers they
occur on soil and rocks, forming biological soil and rock crusts as
Fig. 13. Bioprecipitation cycle. Terrestrial ecosystems are the major source of ice nucleation
active microorganisms; precipitation and humidity can enhance bioparticle emissions (rain
splash, active wet discharge, etc.); bioparticles serving as ice nuclei or giant cloud
condensation nuclei (IN/GCCN) can inuence the evolution of clouds and precipitation,
which provide water for growth of vegetation and for multiplication of microorganisms (A,
B). Deposition of pathogenic and allergenicspecies can trigger human, animal and plant
diseases (A; Huffman et al., 2013). Ice nucleation activity of microorganisms is positively
selected in various ecosystems, on frost damaged plants and with precipitation itself.
(B) Adapted from Morris et al. (2014a); copyright 2013, with permission from John Wiley
and Sons, Inc.
358 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
well as bryophyte and lichen carpets. Cryptogamic plant covers
spread over large portions of terrestrial plant surfaces, including
stems, branches, and leaves of treesand shrubs (Fig. 15). These crypto-
gamic covers have been estimated to cover about one third of the avail-
able and suitable ground surface area (i.e., 27.3 × 10
6
km
2
) and one
third of the suitable plant surface area (i.e., 57.3 × 10
6
km
2
; see Sup-
plementary Table S1 in Elbert et al., 2012). Thus, cryptogamic covers
have a total estimated projected surface area of 85 × 10
6
km
2
, being
larger than the surface area of Africa and the Americas combined, and
thereby contribute to the terrestrial bioaerosol formation. This also ex-
plains why microorganisms and bryophytes contribute large diversity
and number concentrations per unit surface area in various natural
and anthropogenically inuenced environments (Hantsch et al., 2013;
Lindow and Brandl, 2003; Morris and Kinkel, 2002; Yadav et al., 2005).
Plant pollen, fungal spores, bacteria, algae, and cyanobacteria
have been identied in bioaerosol samples (e.g., Bauer et al.,
2002a; Bowers et al., 2013; Brown et al., 1964; DeLeon-Rodriguez
et al., 2013; Delort et al., 2010; Després et al., 2012; Favero-Longo
et al., 2014; Fröhlich-Nowoisky et al., 2009; Marshall and Chalmers,
1997; Sesartic and Dallaor, 2011; Smets et al., 2016), but their inter-
actions with different habitats have not been resolved. In addition, the
relative importance of vascular plants and cryptogamic covers has not
been investigated across different biomes and ecosystems. Plants and
fungi also release volatile organic compounds (Kesselmeier et al.,
1999; Wilske and Kesselmeier, 1999; Wilske et al., 2001)andhave
been proposed as a source of small (100 nm) potassium salt particles
that can act as nuclei for the condensation of low-volatility organic
vapors in rainforest air (Pöhlker et al., 2012b). Thus, both vascular
plants and cryptogamic organisms can inuence the composition,
quantity, and chemical processing of bioaerosols. Apart from its role as
a source of bioaerosols, vegetation is also affected by the deposition of
bioaerosols from the atmosphere, inuencing the dispersal, genetic
mixing, and evolution of plants and microorganisms.
Both bioaerosol formation and the effects of bioaerosols on vegeta-
tion are inuenced by climate and habitat conditions. Land use change
is also known to affect the formation and dispersal of bioaerosols.
Once natural lands are converted to human use (e.g., agriculture and
construction), natural vegetation and cryptogamic covers are often
destroyed. As biological soil crusts are well known to stabilize the soil
surface, drastically reducing the erosive effects of wind (Belnap and
Gillette, 1998; Eldridge and Leys, 2003), their destruction, besides the
damage to vascular plant vegetation, causes increases in frequency
and strength of dust storms, as for example experienced in the western
United States during settlement in the 19th century (Neff et al., 2008).
But also recent dust storm events, as in China, are considered to be
largely caused by land use changes (Hill et al., 2014b). Soil dust particles
containing biogenic compounds, which are also expected to be emitted
during these events, have been described to be particularly potent dur-
ing ice nucleation processes (e.g., Schnell and Vali, 1972; O'Sullivan
et al., 2015). As the vitality of cryptogamic covers and organisms de-
pends strongly on the availability of water in their environment, they
are particularly susceptible to the bioprecipitation feedback mecha-
nisms outlined above (Sect. 3.3). Thus, bioaerosol emissions from cryp-
togamic covers may be strongly affected by global change and should be
further investigated and explicitly considered in regional and global
models of atmosphere, biosphere, and climate interactions.
4.2. Aquatic ecosystems
Compared to terrestrial ecosystems, much less is known about the
contribution of marine ecosystems as sources and sinks of bioaerosols,
although oceans cover N70% of the Earth's surface. On one hand,
bioaerosols over the oceans are inuenced by terrestrial sources
and long-distance transport of microbes, e.g., plant and human patho-
gens (Brown and Hovmøller, 2002; Cho and Hwang, 2011; Sharoni
et al., 2015). On the other hand, the oceans themselves are sources of
bioaerosols (Aller et al., 2005; Amato et al., 2007b; DeLeon-Rodriguez
et al., 2013; Després et al., 2012; Fahlgren et al., 2015; Leck and
Bigg, 2005; Matthias-Maser et al., 1999; Pósfai et al., 2003). Bacterial
cell concentrations in marine and freshwater environments are around
10
6
mL
1
, whereas virus particle concentrations are larger, at around
10
7
10
10
mL
1
(Cho and Hwang, 2011; Maranger and Bird, 1995;
O'Dowd et al., 2015). These microbes can become airborne by the erup-
tion of rising bubbles through the sea-surface microlayer as illustrated
in Fig. 16 (Aller et al., 2005; Blanchard, 1975; Blanchard et al., 1981;
Hultin et al., 2011; Veron, 2015; Wilson et al., 2015). Film and jet
drops are generated behind the breaking wave crest when bubbles
burst or when the bubble cavity collapses. Additionally, if the wind
speed is high enough, spume drops can be ejected from the breaking
wave crest (Veron, 2015). The bubble-bursting results in an enrichment
of microbes in the aerosol compared to subsurface water (Aller et al.,
2005; Wilson et al., 2015). Depending on the concentration of bacteria
Fig. 14. Global model simulations of marine biogenic IN: (A) simulated annual mean
relative contribution of marine biogenic IN to marine boundary layer IN concentrations
at 15 °C, given in percent (Burrows et al., 2013a), (B) simulated distribution of IN
(here displayed as ice nucleating particle (INP)) concentration active at 15 °C [m
3
]
and surface-level marine aerosol organic mass concentration [μgm
3
], and (C) modeled
distribution of marine biogenic IN concentrations active at 20 °C at 850 hPa
(corresponding to the altitude of high-latitude mixed-phase clouds).
Images B andC reprinted with permission from MacmillanPublishers Ltd.:Nature. Wilson
et al., 2015, copyright 2015.
359J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
in the surface water and the enrichment factor, the estimated global
emission of marine bacteria is between 2000 and 10,000 Gg a
1
(Burrows et al., 2009b). This estimate is based on a small number of
measurements, as most measurements of airborne bacteria have fo-
cused on urban or rural locations. Furthermore, until recently, marine
bioaerosol studies often relied on traditional culture-dependent tech-
niques, thusdetecting only the viable and culturable fraction of bacteria.
The majority of the bacterial population remained undetected in these
studies, as the culturability of seawater bacteria is estimated to be be-
tween 0.001% and 0.1% (Amann et al., 1995). For a more detailed
discussion of the problem of culturability of airborne bacteria see
Burrows et al. (2009b). Recently, some studies used a combination of
culture-dependent and culture-independent methods such as cloning
and DGGE (denaturing gradient gel electrophoresis) and showed differ-
ent results for the same bacterial populations, with some overlapping
ndings (Cho and Hwang, 2011; Fahlgren et al., 2010; Urbano et al.,
2011). As these methods most likely reect only the most abundant
taxa due to the limited number of sequences obtained, 16S rRNA gene
pyrosequencing has been successfully used to study bacterial popula-
tions in marine bioaerosol samples, enabling a better coverage of the
Fig. 15. Cryptogamic covers(microbialsurface communities) growing on rock, plants, and soil: (A) cryptogamicrock cover: mosaic of lichens on granitic rock, CapePoint, South Africa,
(B) cryptogamic plant cover: epiphytic lichens (Teloschistes cap ensis), Cape Point, South Africa, and (C) biological soil crust dominated by the green-algal lichen Psora decipiens,
Soebatsfontein, South Africa. All scales = 5 cm.
Fig. 16. Aerosol generation and enrichment of surface organic material (green layer) at the air-sea interface by bubble bursting.
Reprintedwith permission from Macmillan Publishers Ltd.: Nature.Wilson et al. (2015), copyright 2015.
360 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
whole marine bacterial community (DeLeon-Rodriguez et al., 2013;
Seifried et al., 2015). Moreover, quantitative PCR has been applied to
quantify selected health-relevant cyanobacteria and dinoagellate spe-
cies in marine air samples (Casabianca et al., 2013; Lang-Yona et al.,
2014).
Other bioaerosol types like archaea, fungi, protozoa, and algae can
also be ejected from the oceans into the atmosphere (Després et al.,
2012; Elbert et al., 2007; Hamilton and Lenton, 1998; Mayol et al.,
2014). Measurements on South Atlantic Ocean aerosol showed that bi-
ological particlesaccount for 17% in number and 10% in volume concen-
tration (Matthias-Maser et al., 1999). For the North Atlantic Ocean, the
abundances of eukaryotic and prokaryotic microorganisms in the
boundary layer ranged between 6 × 10
4
and 1.6 × 10
7
m
2
ocean
surface,indicating a dynamic sea-air exchange with millions of microor-
ganisms leaving andenteringthe ocean per square meter everyday and
10% of microorganisms still airborne four days later (Mayol et al., 2014).
In addition, other non-cellular particles, such as waste products or exu-
dates of marine organisms, make up a large portion of microbially-
derived matter in marine waters and affect the composition of marine
atmospheric aerosol (Bigg and Leck, 2008; Burrows et al., 2013a,
2014; Wang et al., 2015). The global marine emissions of submicron pri-
mary organic aerosol particles by sea spray have been estimated to be
10 ± 5 Tg a
1
(Gantt and Meskhidze, 2013). Consequently, improving
observations and understanding of the size-resolved organic fraction
of sea spray emissions has been identied as high priority research
topic (Meskhidze et al., 2013). These emissions can inuence the num-
ber of cloud condensation nuclei available to marine clouds, which can
affect their properties and brightness (Karydis et al., 2012; Moore
et al., 2013). The resultant effects on clouds may be large enough to be
observable by satellites, allowing top-down observational constraints
on their magnitude. Recently, McCoy et al. (2015) analyzed seasonal
and spatial patterns in the satellite-observed cloud droplet number con-
centration over the Southern Ocean (3555°S latitude), where the
ocean is the dominant source of particulate matter, and inferred an an-
nual zonal mean radiative forcing of up to 12Wm
2
attributable to
the inuence of marine organic sea spray aerosol on cloud droplet num-
ber and, consequently, on cloud brightness.
Fungal spores and cell emissionsfrom the oceans have been estimat-
ed to be around 10 Mg a
1
, six orders of magnitude smaller than land
surface emissions (Elbert et al., 2007). Observed differences in fungal
species richness in marine and continental air clearly demonstrate the
presence of biogeographic patterns, and indicate that regional differ-
ences may be important for the effects of microorganisms on climate
and public health (Fröhlich-Nowoisky et al., 2012). These ndings also
suggest that airow patterns and the global atmospheric circulation
are important for the evolution of microbial ecology and for the under-
standingof global changes in biodiversity. There is a need for more mea-
surements of total concentration, uxes, and ice-nucleating properties
of all types of bioaerosols in the marine atmosphere to understand the
importance of bioaerosols for the maintenance of biodiversity, climate,
andhealthonaglobalscale(Burrows et al., 2009b; Mason et al., 2015;
Pöschl, 2005). Moreover, deposited PBA particles in marine sediments,
as well as in lake sediments and ice cores, can provide information
about climatic changes of the past (Combourieu-Nebout et al., 2013;
Kattel andSirocko, 2011;Liu et al., 1998; Mueller et al., 2010;Schmiedl
et al., 2010). For instance, pollen grains are well preserved in the sedi-
ment layers. They can be extracted from sediments and identied
based on morphology, which allows a reconstruction of past vegetation
patterns. Changes over time in the diversity and abundance of different
types of pollen grainscan indicate changes in vegetation that may be re-
lated to climate change or human inuence. However, it is necessary to
understand the source area of pollen, i.e., the inuence of long-distance
transported pollen, and the factors that inuence the preservation,
transport, and deposition of pollen grains in an aquatic environment
in order to accurately interpret the pollen record (Barreto et al., 2012;
Davis and Brubaker, 1973; Davis, 1968, 2000; Klemm et al., 2015;
Matthias and Giesecke, 2014; Pittam et al., 2006). As reviewed by
Davis (2000), different models have been developed to predict the
size of the relevant source areas, how the ratio of regional to local pollen
changes with lake size, or how landscape patterns will be reected in
pollen records. These models can help to choose lakes of appropriate
size and to calculate the size of the expected source area. In addition,
also biomarkers and DNA analysis can be used to investigate the rele-
vance of different organisms in the past (Domaizon et al., 2013; Kyle
et al., 2015; Okano et al., 2007; Romero-Sarmiento et al., 2011).
4.3. Pathogens and allergens
Bioaerosols can have infectious, allergenic, or toxic effects on liv-
ing organisms, impacting health and agriculture on local, regional,
and global scales. Many plant, animal, and human pathogens are
dispersed through the air; some can travel over long distances
spreading diseases across and even between continents (Brown
and Hovmøller, 2002; Fisher et al., 2012). Several plant pathogens,
including those causing rust, downy mildew, and powdery mildew
diseases are responsible for signicant economic losses in agriculture
worldwide (Aylor and Taylor, 1982; Brown and Hovmøller, 2002;
Burt, 1995; García-Blázquez et al., 2008; Lucas et al., 1992; Milgroom
et al., 1996). For example, coffee leaf rust caused by the fungus Hemileia
vastatrix is the most destructive disease of coffee in the world (Lucas
et al., 1992). Urediniospores from infected and fallen coffee leaves are
easily spread by wind or rain. Fig. 17 shows the symptoms of coffee
leaf rust that include the appearance of orange-yellow powdery spots
and early defoliation (Carvalho et al., 2011; Lucas et al., 1992).
Various major infectious diseases of humans and animals, like
anthrax, foot-and-mouth disease, tuberculosis, Legionnaire's disease,
inuenza, and measles could be spread by airborne bacteria or viruses
(Arzt et al., 2011; Langer et al., 2012; Riley, 1974; Shafazand
et al., 1999). The inhalation of pathogenic viable airborne fungi,
like Aspergillus,Cryptococcus,andPneumocystis spp., into the lungs can
cause invasive infections associated with mortality rates of up to 95%
in infectedpopulations, especially in individuals with impaired immune
function (Brown et al., 2012; Lin et al., 2001; Yu et al., 2010). In partic-
ular, the spread of airborne pathogens within hospitals represents a
permanent health challenge in infection control (Hoffman et al., 1999;
Schaal, 1991). The transmission of pathogens and other bioaerosols
between humans has long been a topic of research as humans harbor
diverse microbes (including pathogens) in and on their bodies. Par-
ticularly in indoor environments, the presence and activities of
humans can inuence bioaerosol concentration. The emission of par-
ticles by breathing, sneezing, coughing, talking, and movement, as
well as from resuspension of dust due to human activity, has been
the focus of numerous indoor bioaerosol studies (e.g., Adams et al.,
2015; Bhangar et al., 2014, 2015; Castillo et al., 2012; Hospodsky et al.,
2012; Meadow et al., 2014, 2015; Morawska, 2006; Nazaroff, 2015;
Noble, 1975; Qian et al., 2012, 2014; You, 2013). As discussed by
Bhangar et al. (2015), many studies have not differentiated between
direct emissions from the human body and resuspension of dust from
surfaces during human activity, thus providing only overall emission
rates. Chamber experiments offer a more controlled environment to
study direct human emission rates under varying conditions (Adams
et al., 2015; Bhangar et al., 2015; Hospodsky et al., 2012; Meadow
et al., 2015; Nazaroff, 2015; You, 2013). Recently, Bhangar et al.
(2015) found by measuring FBAPin a chamber study that approximate-
ly 10
6
human-associated particles are emitted into the surrounding air
per human and hour under seated conditions (Bhangar et al., 2015).
Other recent ndings indicate that the microbial clouds released by
humans are personalized and can be traced back to particular individ-
uals (Meadow et al., 2015).
Different modeling strategies have been used to simulate the spread
of human, animal, and plant pathogens, focusing on risk assessment and
disease forecasting (Aylor, 2003; Davis, 1987; Isard et al., 2005; Van
361J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Leuken et al., 2016; Yao et al., 1997). As suggested by Van Leuken et al.
(2016), risk assessment models simulating the dispersal of pathogens
need to be further improved by implementing well-quantied emission
and inactivation rates as well as doseresponse functions to better esti-
mate infection probabilities.
Moreover, the inhalation and deposition of bioaerosols in various
regions of the respiratory system can cause allergic or toxic responses
in humans and animals. The deposition of inhaled particles in the respi-
ratory tract depends on particle properties, airway morphology, and
breathing characteristics (Hofmann, 2011; Hussain et al., 2011).
Fig. 18 shows thesize-dependent particledeposition in different regions
of the respiratory tract. Particles larger than 0.5 μm are deposited by
sedimentation and impaction mainly in the head airways. Particles
smaller than 0.5 μm can reach the lower airways by diffusion. A more
detailed description of particle deposition in the respiratory tract and
lung deposition modeling can be found in related reviews and refer-
ences therein (Hofmann, 2011; Hussain et al., 2011; Nazaroff, 2015).
Allergenic and toxic bioaerosols need not to be viable, as also dead
cells or cell fragments may provoke the same adverse health effects. Ex-
amples for biological toxins found in air particulate matter are cell wall
components of bacteria (endotoxins) or secondary metabolites pro-
duced by bacteria (exotoxins) or fungi (mycotoxins).
Exposure to mycotoxins after inhalation of mycotoxin-containing
particles, such as fungal spores, is particularly relevant in farm environ-
ments or water-damaged buildings (Hintikka and Nikulin, 1998; Mayer
et al., 2007; Nielsen, 2003; Robbins et al., 2000). Mycotoxins are a struc-
turally diverse group of mostly low-molecular-weight compounds that
have no apparent function in the fungal metabolism, but can have a va-
riety of acute and chronic health effects in humans and animals, as re-
cently reviewed by Ashiq et al. (2014);Edite Bezerra da Rocha et al.
(2014),andMarroquín-Cardona et al. (2014).
Bacterial endotoxins are lipopolysaccharides (LPS), which are com-
ponents of the outer cell membrane of gram-negative bacteria that
can be released during cell lysis. They are of particular interest as they
can induce strong inammatory responses and symptoms like fever,
headache, coughing, and respiratory distress (Degobbi et al., 2011;
Douwes, 2003; Heederik and von Mutius, 2012; Longhin et al., 2013;
Ortiz-Martínez et al., 2015; Rylander, 2002; Soukup and Becker, 2001;
Vernooy et al., 2002). Elevated levels of endotoxins in air particulate
matter were found in indoor air (Gehring et al., 2002; Gereda et al.,
2000), in agriculture and related industries (Rylander, 2002; Spaan
et al., 2006), as part of PM10 (Cheng et al., 2012; Heinrich et al., 2003;
Morgenstern et al., 2005; Mueller-Annelling et al., 2004; Nilsson et al.,
2011; Traversi et al., 2011; Wheeler et al., 2011), connected to microbial
biomass (Woo et al., 2013), and to cyanobacteria and chlorophyll-a con-
centration (Lang-Yona et al., 2014).
In addition to LPS or endotoxin, bacteria can alsoproduce toxic sec-
ondary metabolites. These exotoxins are secreted by some bacterial
pathogens, such as some strains of Corynebacterium diphtheria (diph-
theria toxin) (Hadeld et al., 2000) and Bordetella pertussis (pertussis
toxin) (Mattoo and Cherry, 2005; Warfel et al., 2012), which can be
transmitted through the air. Moreover, of particular concern are toxins
produced by cyanobacteria. Cyanobacteria are widespread and abun-
dant organisms in terrestrial, as well as aquatic environments, which
produce neurotoxins, cytotoxins, dermatotoxins, and different types of
hepatotoxins (Codd et al., 1997, 1999; Cox et al., 2005; Kaasalainen
et al., 2012; Oberholster et al., 2004; Wiegand and Pugmacher,
2005). Whereas neurotoxins inhibit neurotransmission by a variety of
mechanisms, frequently causing death of the exposed organisms,
hepatotoxins, comprising the cyclic peptide groups of microcystins
and nodularins as well as the cyclic guanidine alkaloid cylindrospermin,
are hepatotoxic, causing severe and sometimes toxic health effects in
domestic and wild animals as well as in humans (Codd et al., 1997,
1999). Both neurotoxins and hepatotoxins are produced by someaquat-
ic genera, as e.g. Anabaena,Oscillatoria,Microcystis,andAphanizomenon,
and hepatotoxins are also produced by a variety of terrestrial lichens
with cyanobacterial photobionts (Kaasalainen et al., 2012). Exposure
to cyanotoxins has been described to occur via skin contact, inhalation,
ingestion, and haemodialysis (Backer et al., 2010; Benson et al., 2005;
Codd et al., 1999; Wood and Dietrich, 2011).
One neurotoxin produced by cyanobacteria, β-methylamino-L-ala-
nine (BMAA), is suspected to contribute to human neurodegenerative
Fig. 17. Symptoms of coffee leaf rust Hemileia vastatrix: (A) defoliation,(B) leaf symptoms (bar = 0.5 cm), and (C) detail of suprastomatal uredinial pustules coalescing over lower leaf
surface (bar = 0.5 cm).
Adapted from Carvalho et al. (2011).
362 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
diseases,as the same substance has been identied in the brain and ce-
rebrospinal uid of amyotrophic lateral sclerosis (ALS) and Alzheimer's
disease victims (Cervantes Cianca et al., 2012; Field et al., 2013; Metcalf
and Codd, 2009) and has been shown to cause neuronal changes in an-
imal experiments (Karlsson et al., 2012; Okle et al., 2013; Zhou et al.,
2010). The neurotoxin BMAA is produced by free-living and symbiotic
cyanobacteria, diatoms, and dinoagellates in marine, freshwater, and
terrestrial environments (Cervantes Cianca et al., 2012; Cox et al.,
2005; Jiang and Ilag, 2014; Jiang et al., 2014a, 2014b; Lage et al.,
2014). Uptake of BMAA has been suggested to happen via consumption
of contaminated food and exposure to water harboring cyanobacterial
blooms, as well as via aerosolization, which may happen in cooling
towers (Stommel et al., 2013).
Important sources of aeroallergens are wind-dispersed pollen from
trees, grasses, and weeds, fungal spores and hyphae, animal dander,
and house-dust mite excretions (Buters et al., 2015; D'Amato
et al., 2007; Esch et al., 2001; Green et al., 2003, 2005,2006, 2011;
Grinn-Gofrońand Rapiejko, 2009; Horner et al., 1995; Jochner
et al., 2015; Shiraiwa et al., 2012a; Twaroch et al., 2015; Vara
et al., 2016). Allergies and associated respiratory diseases represent a
Fig. 18. Deposition of inhaled particles: (A) human respiratory tract and (B) predicted total and regional particle deposition in relation to particle size, based on the International
Commission on Radiological Protection (ICRP) deposition model for nasal breathing and light exercise and deposition mechanisms. HA: head airways; TB: tracheobronchial region;
ALV: alveolar region.
(A) Reprinted from The Lancet 383, Guarnieri and Balmes (2014), copyright 2014, with permission from Elsevier.
363J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
serious health challenge of increasing importance in many countries
(D'Amato et al., 2007; Ring et al., 2001). Pollen allergies affect up to
40% of the population in industrialized countries and have become a
global problem (D'Amato et al., 2007; Shiraiwa et al., 2012a). Further-
more, up to 30% of atopic individuals are sensitized to one or more fun-
gal allergens (Esch et al., 2001).
A common type of allergy is mediated by the production of specic
IgE antibodies against otherwise harmless proteins, then called aller-
gens (Traidl-Hoffmann et al., 2009). Proteins account for up to 5% of
urban air particulate matter, and interactions of these proteins with
ozone, nitrogen dioxide, sulfur dioxide, and air particulate matter can
lead to modied proteins with modied allergenic potential (Franze
et al., 2005; Gruijthuijsen et al., 2006; Knox et al., 1997; Lang-Yona
et al., 2016; Shiraiwa et al., 2012a). Many studies have demonstrated
an increase in sensitization and allergic symptoms and correlations
with high levels of anthropogenic air pollution, but the underlying
mechanisms remain unclear (D'Amato, 2000; D'Amato et al., 2001,
2007, 2013; Gehring et al., 2010; Morgenstern et al., 2008).
The prevalence and severity ofallergic diseasesand asthma are likely
to increase further through anthropogenic air pollution and climate
change related factors. Effects of climate change on the physiology and
distribution of plants and fungi have been shown in several studies
(Cecchi et al., 2010; Reid and Gamble, 2009). For instance, increasing
temperature and CO
2
concentration can affect fungal fruiting patterns
and sporulation (Gange et al., 2007; Klironomos et al., 1997; Wolf
et al., 2010), pollen production and pollination periods in plants
(Zhang et al., 2014a, 2014b; Ziska and Caueld, 2000), the allergen con-
tent of spores and pollen (Lang-Yona et al., 2013; Singer et al., 2005),
and the distribution patterns of aeroallergens (Cecchi et al., 2010; Reid
and Gamble, 2009).
Moreover, both changes in climate and an intensication of land use
have been shown to cause an increase in dust storm frequency and in-
tensity (McLeman et al., 2014; Stanelle et al., 2014; Stocker et al.,
2013), and dust particles are known to carry biological and organic com-
ponents with pathogenic and allergenic properties (Chen et al., 2010;
Esmaeil et al., 2014; Goudie, 2014; Grifn, 2007; Hallar et al., 2011;
Kellogg and Grifn, 2006; Leski et al., 2011; Ortiz-Martínez et al.,
2015; Schlesinger et al., 2006) but possible synergistic effects of differ-
ent dust constituents on human health, the propagation of pathogenic-
ity along thedust event, and sources of health relevant PBA are still not
well characterized.
Anthropogenic air pollution, thunderstorms, and humidity have
been shown to inuence allergen release from pollen and spores
(Behrendt and Becker, 2001; Behrendt et al., 1997; Buters et al., 2015;
Cecchi et al., 2010; Grote et al., 2001; Motta et al., 2006; Ouyang et al.,
2016; Schäppi et al., 1997). During a thunderstorm, pollen and spores
may break by osmotic shock and release allergens into the atmosphere
leading to asthma outbreaks known as thunderstorm asthma (Behrendt
and Becker, 2001; Cecchi et al., 2010; Laskin et al., 2016; Taylor and
Jonsson,2004; Taylor et al., 2002). Thunderstorms also favor an incr ease
of fungal spore counts, further contributing to asthma epidemics
(Behrendt and Becker, 2001; Cecchi et al., 2010; D'Amato et al., 2007).
Furthermore, under humid conditions pollen grains release proin-
ammatory substances (Bacsi et al., 2006; Behrendt and Becker,
2001; Miguel et al., 2006). The release of these substances was
found to be higher for pollen collected near roads with heavy trafc
(Behrendt and Becker, 2001). Free allergens and related compounds
can bind to ne particulate matter, such as diesel exhaust particles,
leading to the generation of allergen-containing aerosols in the
submicrometer range that can be transported deep into the airways
(Knox et al., 1997; Namork et al., 2006; Ormstad, 2000). Additionally,
trafc-related pollutants can also modify the immune system response
to the allergen itself. Diesel exhaust particles can modify allergen pre-
sentation, whereas gaseous pollutants like O
3
,SO
2
,andNO
2
can en-
hance immune system response by enhanced antibody production
and late inammation (Saxon and Diaz-Sanchez, 2005). The impact of
air pollutants and environmental factors on PBA allergenicity still
needs to be better characterized. Especially, further investigation is
required in order to better understand the complex interactions of
modied allergens within the human body.
5. Future perspectives
Fig. 19 shows an overview of important and promising areas of fu-
ture research, which can be coarsely divided into the three main elds:
(1) bioparticle identication and characterization; (2) atmospheric
transport and transformation; and (3) ecosystem interactions of
bioaerosols. Studies within these elds could help to close or narrow
the large gaps of knowledge outlined in this review and toconstrain un-
certain parameters and assumptions, which will allow to improve
modeling of the effects of bioaerosols on climate, health, and ecosys-
tems on local, regional, and global scales.
(1) For comprehensive taxonomic and chemical identication,
characterization, and quantication of bioaerosol particles, their
viability and metabolic state, the wide range of advanced and in-
novative online and ofine measurement methods outlined in
Sect. 2 should be applied and further developed (NGS sequenc-
ing, uorescence detection, etc.). An important aspect is the cou-
pling of detailed biological analyses and information with the
real-time data of modern physical and chemical techniques, in-
cluding genomic, proteomic, and metabolomic approaches. The
development and application of standardized sampling andanal-
ysis techniques appears necessary to achieve consistency be-
tween different measurements and datasets.
(2) To understand the spatial and temporal dynamicsof atmospheric
bioaerosols, the pathways of emission, transport, and transfor-
mation in the atmosphere need to be analyzed from molecular
to global scales. Major challenges include the quantitative char-
acterization of exchange between surface, planetary boundary
layer, and free troposphere. For this purpose, ground based
measurements have to be combined with tall tower and aircraft
measurements as well with satellite remote sensing to obtain
information on the vertical and horizontal distribution of
bioparticles. Particularly interesting are the distribution patterns
of IN-active microorganisms and detached nanometer-sized IN-
active particle fragments and macromolecules (also called
nano-INPor INM), and their interactions with clouds and
precipitation. These have to be elucidated on microscopic as
well as regional and global scales to validate or discard the
bioprecipitation feedback hypothesis and its relevance for
the Earth system (Sect. 3.3). Other important aspects are the
effects of physical, chemical, and biological transformation,
aging, and stress upon exposure to atmospheric oxidants, ra-
diation, and changes of temperature, pressure, and humidity
(osmotic shock) on the emission, vitality, and viability of air-
borne bioparticles. These effects need to be quantied in
chamber and eld studies under relevant conditions to fully
understand the impact of atmospheric transport on the adapta-
tion and resilience of aerially disseminated organisms (wind-
pollinated plants, sporulating microbes) and their inuence on
the functioning of ecosystems.
(3) Representative measurements and climatologies of bioaerosols
in and above ecosystems along the climatic gradients from
tropical to polar and continental to marine regions are re-
quired to unravel the interdependence of biodiversity and
biogeography in the air and at the Earth surface, as well as
the impact of environmental conditions, climate, and land
use change on bioaerosol emission and deposition, related
biogeochemical cycles, and public health. Key aspects are the
roles of cryptogamic covers on ground and plant surfaces, nitro-
gen cycling microbes, and bioprecipitation feedbacks in the co-
364 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
evolution of life and climate, as well as the spread and effects of
pathogens and allergens interacting with air pollutants. To ad-
dress these issues, the results of comprehensive observations
and bioaerosol monitoring in today's atmosphere (e.g., by NGS
sequencing, uorescence detection, and chemical analysis)
should be compared and combined with climate archive analy-
ses (e.g., pollen, spores, biomarkers, and DNA in lake and ocean
sediments) and implemented in ecosystem and Earth system
models. Ecosystem and Earth system model descriptions and pa-
rameterizations of all bioaerosol properties and processes
outlined above are relevant for our understanding of the origins
and spread of life on Earthand for the modeling of ecosystem in-
teractions in Earth's history and future climate.
To tackle the wide range of open questions outlined above, it
will be necessary to further intensify collaboration and interdisciplinary
exchange across the elds of chemistry, Earth, and life science, in partic-
ular between the scientic communities of atmospheric chemistry and
physics, climate and aerosol science, biogeochemistry and ecology, air
quality and public health, forestry and agriculture, and geo- and
bioinformatics.
Acknowledgements
The authors gratefully acknowledge stimulating scientic exchange
and discussions with numerous members of the scienticcommunity,
in particular with the colleagues involved in the referenced studies, on
which this review and perspective article is building, and with members
of the Mainz Bioaerosol Laboratory (MBAL). J.F.-N., U.P., and C.J.K ac-
knowledge support from the Deutsche Forschungsgemeinschaft (DFG
FR3641/1-2, FOR 1525 INUIT and KA 4008/1-1, respectively) and B.W.
and S.S.G. acknowledge support from the Max Planck Society (Nobel
Laureate Fellowship and MPG Partner Group, respectively). N.L.-Y.
acknowledges support from the Max Planck Society and from the Weiz-
mann Institute of Science - National Postdoctoral Award Program for
Advancing Women in Science. J.A.H. acknowledges internal support
from the University of Denver. S.M.B. acknowledges support fromthe
U.S. Department of Energy, Ofceof Science Biological and Environmen-
tal Research Program.
References
Adams, R.I., Bhangar, S., Pasut, W., Arens, E.A., Taylor, J.W., Lindow, S.E., Nazaroff, W.W.,
Bruns, T.D., 2015. Chamber bioaerosol study: outdoor air and human occupants as
sources of indoor airborne microbes. PLoS One 10, e0128022. http://dx.doi.org/10.
1371/journal.pone.0128022.
Adhikari, A., Reponen,T., Grinshpun, S.A., Martuzevicius, D., LeMasters, G., 2006. Correla-
tion of ambient inhalable bioaerosolswith particulate matter and ozone: a two-year
study. Environ. Pollut. 140, 1628. http://dx.doi.org/10.1016/j.envpol.2005.07.004.
Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P.J., Morawska, L., 2003. Real-time
measurement of bacterial aerosols with the UVAPS: performance evaluation.
J. Aerosol Sci. 34, 301317. http://dx.doi.org/10.1016/S0021-8502(02)00181-7.
Alfreider, A., Pernthaler, J., Amann, R., Sattler, B., Glockner, F., Wille, A., Psenner, R., 1996. Com-
munity analysis of the bacterial assemblages in the winter cover and pelagic layers of a
high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62, 21382144.
Aller, J.Y., Kuznetsova, M.R., Jahns, C.J., Kemp, P.F., 2005. The sea surface microlayer as a
source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci. 36,
801812. http://dx.doi.org/10.1016/j.jaerosci.2004.10.012.
Alpert, P.A., Aller, J.Y., Knopf, D.A., 2011a. Ice nucleation from aqueous NaCl droplets with
and without marine diatoms. Atmos. Chem. Phys. 11, 55395555. http://dx.doi.org/
10.5194/acp-11-5539-2011.
Alpert, P.A., Aller, J.Y., Knopf, D.A., 2011b. Initiation of the ice phase by marine biogenic
surfaces in supersaturated gas and supercooled aqueous phases. Phys. Chem. Chem.
Phys. 13, 1988219894. http://dx.doi.org/10.1039/c1cp21844a.
Amann, R.I., Ludwig, W., Schleifer, K.H., 1995. Phylogenetic identication and in situ de-
tection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.
Amato, P.,Parazols, M., Sancelme, M., Laj, P., Mailhot,G., Delort, A.-M., 2007a. Microorgan-
isms isolated from the waterphase of troposphericclouds at the Puy de Dôme: major
groups and growth abilities at low temperatures. FEMS Microbiol. Ecol.59, 242254.
http://dx.doi.org/10.1111/j.1574-6941.2006.00199.x.
Amato, P., Parazols, M., Sancelme, M., Mailhot, G., Laj, P., Delort, A.-M., 2007b. An impor-
tant oceanicsource of micro-organisms for cloud water at the Puy de Dôme (France).
Atmos. Environ. 41, 82538263. http://dx.doi.org/10.1016/j.atmosenv.2007.06.022.
Fig. 19. Key aspects and areas of research required to determine and quantify the interactions and effects of biogenic aerosol particles in the Earth system,including primary biological
aerosols (PBA) directly emitted to the atmosphere and secondary organic aerosols (SOA) formed upon oxidation and gas-to-particle conversion of volatile organic compounds (VOC).
365J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Amato, P.,Joly, M., Schaupp, C., Attard, E., Möhler, O., Morris, C.E., Brunet, Y., Delort, A.-M.,
2015. Survival and ice nucleationactivity of bacteria as aerosols ina cloud simulation
chamber. Atmos. Chem. Phys. 15, 64556465. http://dx.doi.org/10.5194/acp-15-
6455-2015.
Amato, P., Ménager, M., Sancelme, M., Laj, P., Mailhot, G., Delort, A.-M., 2005. Microbial
population in cloud water at the Puy de Dôme: implications for the chemistry of
clouds. Atmos. Environ. 39, 41434153. http://dx.doi.org/10.1016/j.atmosenv.2005.
04.002.
Andreae, M.O., Crutzen,P.J., 1997. Atmospheric aerosols: biogeochemical sources androle
in atmospheric chemistry. Science 276, 10521058. http://dx.doi.org/10.1126/
science.276.5315.1052.
Andreae, M.O., Rosenfeld, D., 2008. Aerosol-cloud-precipitation interactions. Part 1. The
nature and sources of cloud-active aerosols. Earth Sci. Rev. 89, 1341. http://dx.doi.
org/10.1016/j.earscirev.2008.03.001.
Andreeva, I.S., Borodulin, A.I., Buryak, G.A., Zhukov, V.A., Zykov, S.V., Marchenko, Y.V.,
Marchenko, V.V., Olkin, S.E., Petrishchenko, V.A., Pyankov, O.V., Reznikova, I.K.,
Repin, V.E., Safatov, A.S., Sergeev, A.N., Raputa, V.F., Penenko, V.V., Tsvetova, E.A.,
Arshinov, M.Y., Belan, B.D., Panchenko, M.V., Ankilov, A.N., Baklanov, A.M., Vlasenko,
A.L., Koutsenogii, K.P., Makarov, V.I., Churkina, T.V., 2002. Biogenic component of at-
mospheric aerosol in the South of West Siberia. Chem. Sustain. Dev. 10, 523537.
Angevin,F., Klein, E.K., Choimet, C., Gauffreteau, A.,Lavigne, C., Messéan,A., Meynard, J.M.,
2008. Modelling impacts of cropping systems and climate on maize cross-pollination
in agricultural landscapes: the MAPOD model. Eur. J. Agron. 28, 471484. http://dx.
doi.org/10.1016/j.eja.2007.11.010.
Ansari, T.U., Valsan, A.E., Ojha, N., Ravikrishna, R., Narasimhan, B., Gunthe, S.S., 2015.
Model simulations of fungal spore distribution over the Indian region. Atmos. Envi-
ron. 122, 552560. http://dx.doi.org/10.1016/j.atmosenv.2015.10.020.
Arditti, J., Ghani, A.K.A., 2000. Tansley review no. 110: numerical and physical properties
of orchid seeds and their biological implications. New Phytol. 145, 367421. http://
dx.doi.org/10.1046/j.1469-8137.2000.00587.x.
Ariya, P.A.,Amyot, M., 2004. New directions: the role of bioaerosols in atmospheric chem-
istry and physics. Atmos. Environ. 38, 12311232. http://dx.doi.org/10.1016/j.
atmosenv.2003.12.006.
Ariya, P.A., Sun, J., Eltouny, N.A., Hudson, E.D., Hayes, C.T., Kos, G., 2009. Physical and
chemical characterization of bioaerosols implications for nucleation processes. Int.
Rev. Phys. Chem. http://dx.doi.org/10.1080/01442350802597438.
Arzt, J., Juleff, N., Zhang, Z., Rodriguez, L.L., 2011. Thepathogenesis of foot-and-mouth dis-
ease I: viral pathways in cattle. Transbound. Emerg. Dis. 58, 291304. http://dx.doi.
org/10.1111/j.1865-1682.2011.01204.x.
Ashiq, S., Hussain, M., Ahmad, B., 2014. Natural occurrence of mycotoxins in medicinal
plants: a review. Fungal Genet. Biol. 66, 110. http://dx.doi.org/10.1016/j.fgb.2014.
02.005.
Augustin-Bauditz, S., Wex, H., Denjean, C., Hartmann, S., Schneider, J., Schmidt, S., Ebert,
M., Stratmann, F., 2016. Laboratory-generated mixtures of mineral dust particles
with biological substances: characterization of the particle mixing state and immer-
sion freezing behavior. Atmos. Chem. Phys. 16, 55315543. http://dx.doi.org/10.
5194/acp-16-5531-2016.
Aylor, D.E., 2003. Spread of plant disease on a continental scale: role of aerial dispersal of
pathogens. Ecology 84, 19891997. http://dx.doi.org/10.1890/01-0619.
Aylor, D.E., Taylor, G.S., 1982. Aerial dispersal and drying of Peronospora tabacina conidia in
tobacco shade tents. Proc. Natl. Acad. Sci. 79, 697700. http://dx.doi.org/10.1073/pnas.
79.2.697.
Backer, L.C., McNeel, S.V., Barber, T., Kirkpatrick, B., Williams, C., Irvin, M., Zhou, Y.,
Johnson, T.B., Nierenberg, K., Aubel, M., LePrell, R., Chapman, A., Foss, A., Corum, S.,
Hill, V.R.,Kieszak, S.M., Cheng, Y.S., 2010. Recreational exposure to microcystins dur-
ing algal blooms in two California lakes. Toxicon 55, 909921. http://dx.doi.org/10.
1016/j.toxicon.2009.07.006.
Bacsi, A., Choudhury, B.K., Dharajiya, N., Sur, S., Boldogh,I., 2006. Subpollen particles: car-
riers of allergenic proteins and oxidases. J. Allergy Clin. Immunol. 118, 844850.
http://dx.doi.org/10.1016/j.jaci.2006.07.006.
Baron, P.A., Willeke, K., 2001. Aerosol Measurement: Principles, Techniques, and Applica-
tions. second ed Wiley, New York.
Barreto,C.F., Vilela, C.G.,Baptista-Neto,J.A., Barth, O.M., 2012. Spatialdistribution of pollen
grains and spores in surface sediments of Guanabara Bay, Rio de Janeiro, Brazil. An.
Acad. Bras. Cienc. 84, 627644. http://dx.doi.org/10.1590/S0001-
37652012005000049.
Bauer, H., Kasper-Giebl, A., Löund,M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum,
H., 2002a. The contribution of bacteria and fungal spores to the organic carbon con-
tent of cloud water, precipitation and aerosols. Atmos. Res. 64, 109119. http://dx.
doi.org/10.1016/S0169-8095(02)00084-4.
Bauer, H.,Kasper-Giebl, A., Zibuschka, F.,Hitzenberger, R.,Kraus, G.F., Puxbaum,H., 2002b.
Determination of the carbon content of airborne fungal spores. Anal. Chem. 74,
9195. http://dx.doi.org/10.1021/ac010331+.
Bauer, H., Giebl, H., Hitzenberger, R., Kasper-Giebl, A., Reischl, G., Zibuschka, F., Puxbaum,
H., 2003. Airborne bacteria as cloud condensation nuclei. J. Geophys. Res. 108, 4658.
http://dx.doi.org/10.1029/2003JD003545.
Be, N.A., Thissen, J.B., Gardner, S.N., McLoughlin, K.S., Fofanov, V.Y., Koshinsky, H.,
Ellingson, S.R., Brettin, T.S., Jackson, P.J., Jaing, C.J., 2013. Detection of Bacillus anthracis
DNA in complex soil and air samples using next-generation sequencing. PLoS One 8,
e73455. http://dx.doi.org/10.1371/journal.pone.0073455.
Behrendt, H., Becker, W.M., 2001. Localization, release and bioavailability of pollen aller-
gens: the inuence of environmental factors. Curr. Opin. Immunol. 13, 709715.
http://dx.doi.org/10.1016/S0952-7915(01)00283-7.
Behrendt, H., Becker, W.M., Fritzsche, C., Sliwa-Tomczok, W., Tomczok, J., Friedrichs, K.H.,
Ring, J., 1997. Air pollution and allergy: experimental studies on modulation of aller-
gen release from pollen by air pollutants. Int. Arch. Allergy Immunol. 113, 6974.
Belnap, J.,Gillette, D.A., 1998.Vulnerability of desert biological soil crusts to wind erosion:
the inuences of crust development, soil texture,and disturbance. J. Arid Environ. 39,
133142. http://dx.doi.org/10.1006/jare.1998.0388.
Ben-David, A., Ren, H., 2003. Detection, identication, and estimation of biological aero-
sols and vapors with a Fourier-transform infrared spectrometer. Appl. Opt. 42,
48874900. http://dx.doi.org/10.1364/AO.42.004887.
Benson, J.M., Hutt, J.A., Rein, K., Boggs, S.E., Barr, E.B., Fleming, L.E., 2005. The toxicity of
microcystin LR in mice following 7 days of inhalation exposure. Toxicon 45,
691698. http://dx.doi.org/10.1016/j.toxicon.2005.01.004.
Bertolini, V., Gandol, I., Ambrosini, R., Bestetti, G., Innocente, E., Rampazzo, G., Franzetti,
A., 2013. Temporal variability and effect of environmental variables on airborne bac-
terial communities inan urban area of NorthernItaly. Appl. Microbiol. Biotechnol. 97,
65616570. http://dx.doi.org/10.1007/s00253-012-4450-0.
Best, G., Amberger, R., Cremer, C., 2013. Super-resolution microscopy: interference and
pattern techniques. In: Kubitscheck, U. (Ed.), Fluorescence Microscopy. Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 345374 http://dx.doi.org/10.
1002/9783527671595.ch9.
Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S.,
Davidson, M.W., Lippincott-Schwartz, J., Hess, H.F., 2006. Imaging intracellular uo-
rescent proteins at nanometer resolution. Science 313, 16421645. http://dx.doi.
org/10.1126/science.1127344.
Bhangar, S., Adams, R.I., Pasut, W., Huffman, J.A., Arens, E.A., Taylor, J.W., Bruns, T.D.,
Nazaroff, W.W., 2015. Chamber bioaerosol study: human emissions of size-resolved
uorescent biological aerosol particles. Indoor Air http://dx.doi.org/10.1111/ina.
12195.
Bhangar, S., Huffman, J.A., Nazaroff, W.W., 2014. Size-resolved uorescent biological aero-
sol particle concentrations and occupant emissions in a university classroom. Indoor
Air 24, 604617. http://dx.doi.org/10.1111/ina.12111.
Bigg, E.K., Leck, C., 2008. The composition of fragments of bubbles bursting at the ocean
surface. J. Geophys. Res. 113, D11209. http://dx.doi.org/10.1029/2007JD009078.
Bigg, E.K., Soubeyrand, S., Morris, C.E., 2015. Persistent after-effects of heavy rain on con-
centrations of ice nuclei and rainfall suggest a biological cause. Atmos. Chem. Phys.
15, 23132326. http://dx.doi.org/10.5194/acp-15-2313-2015.
Blanchard, D.C., 1975. Bubble scavenging and the water-to-air transfer of organic material
in the sea. Applied Chemistry at Protein Interfaces, pp. 360387 http://dx.doi.org/10.
1021/ba-1975-0145.ch018.
Blanchard, D.C., Syzdek, L.D.,Weber, M.E., 1981. Bubble scavenging of bacteria in freshwa-
ter quickly produces bacterial enrichment in air-borne jet drops. Limnol. Oceanogr.
26, 961964. http://dx.doi.org/10.4319/lo.1981.26.5.0961.
Bones, D.L., Henricksen, D.K., Mang, S.A., Gonsior, M., Bateman, A.P., Nguyen,T.B., Cooper,
W.J., Nizkorodov, S.A., 2010. Appearance of strong absorbers and uorophores in
limonene-O
3
secondary organic aerosol due to NH
4
+
-mediated chemical aging over
long time scales. J. Geophys. Res. 115, D05203. http://dx.doi.org/10.1029/
2009JD012864.
Boreson, J., Dillner, A., Peccia, J., 2004. Correlating bioaerosol load with PM2.5and PM10cf
concentrations: a comparison between natural desert and urban-fringe aerosols.
Atmos. Environ. 38, 60296041. http://dx.doi.org/10.1016/j.atmosenv.2004.06.040.
Bowers, R.M., Clements, N., Emerson, J.B., Wiedinmyer,C., Hannigan, M.P.,Fierer, N., 2013.
Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere.
Environ. Sci. Technol. 47, 1209712106. http://dx.doi.org/10.1021/es402970s.
Bowers, R.M., Lauber, C.L., Wiedinmyer, C., Hamady, M., Hallar, A.G., Fall, R., Knight, R.,
Fierer, N., 2009. Characterization of airborne microbial communities at a high-
elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ.
Microbiol. 75, 51215130. http://dx.doi.org/10.1128/AEM.00447-09.
Bowers, R.M., McCubbin, I.B., Hallar, A.G., Fierer, N., 2012. Seasonal variability in airborne
bacterial communities at a high-elevation site. Atmos. Environ. 50, 4149. http://dx.
doi.org/10.1016/j.atmosenv.2012.01.005.
Bowers, R.M., McLetchie, S., Knight, R., Fierer, N., 2010. Spatial variability inairborne bac-
terial communities across land-use types and their relationship to the bacterial com-
munities of potential source environments. ISME J. 5, 601612. http://dx.doi.org/10.
1038/ismej.2010.167.
Bowers, R.M., Sullivan, A.P., Costello, E.K., Collett, J.L., Knight, R., Fierer, N., 2011. Sourcesof
bacteria in outdoor air across cities in the midwestern United States. Appl. Environ.
Microbiol. 77, 63506356. http://dx.doi.org/10.1128/AEM.05498-11.
Bozzetti, C., Daellenbach, K.R., Hueglin, C., Fermo, P., Sciare, J., Kasper-Giebl,A., Mazar, Y.,
Abbaszade, G., El Kazzi, M., Gonzalez, R., Shuster-Meiseles, T., Flasch, M., Wolf, R.,
Křepelová, A., Canonaco, F., Schnelle-Kreis, J., Slowik, J.G., Zimmermann, R., Rudich,
Y., Baltensperger, U., El Haddad, I., Prévôt, A.S.H., 2016. Size-resolved identication,
characterization, and quantication of primary biological organic aerosol at a
European rural site. Environ. Sci. Technol. 50, 34253434. http://dx.doi.org/10.
1021/acs.est.5b05960.
Bridge, P., Spooner, B., 2001. Soil fungi: diversity and detection. Plant Soil 232, 147154.
http://dx.doi.org/10.1023/A:1010346305799.
Brodie, E.L., DeSantis, T.Z., Parker, J.P.M., Zubietta, I.X., Piceno, Y.M., Andersen, G.L., 2007.
Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad.
Sci. 104, 299304. http://dx.doi.org/10.1073/pnas.0608255104.
Brosseau,L.M., Vesley, D., Rice, N., Goodell, K., Nellis,M., Hairston,P., 2000. Differences in
detected uorescence among several bacterial species measured with a direct-
reading particle sizer and uorescence detector. Aerosol Sci. Technol. 32, 545558.
http://dx.doi.org/10.1080/027868200303461.
Brown, J.K.M., Hovmøller, M.S., 2002. Aerial dispersal of pathogenson the global and con-
tinental scales and its impact on plant disease. Science 297, 537541. http://dx.doi.
org/10.1126/science.1072678.
Brown, G.D., Denning, D.W., Gow, N.A.R., Levitz, S.M., Netea, M.G., White, T.C., 2012. Hid-
den killers: human fungal infections. Sci. Transl. Med. 4, 165rv13. http://dx.doi.org/
10.1126/scitranslmed.3004404.
366 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346
376
Brown, R.M., Larson,D.A., Bold, H.C., 1964. Airborne algae: their abundance and heteroge-
neity. Science 143, 583585. http://dx.doi.org/10.1126/science.143.3606.583.
Buiarelli, F., Canepari, S., Di Filippo, P., Perrino, C., Pomata, D., Riccardi, C., Speziale, R.,
2013. Extraction and analysis of fungal spore biomarkers in atmospheric bioaerosol
by HPLCMSMS and GCMS. Talanta 105, 142151. http://dx.doi.org/10.1016/j.
talanta.2012.11.006.
Burrows, S.M., Butler, T., Jöckel, P., Tost, H., Kerkweg, A., Pöschl,U., Lawrence, M.G., 2009a.
Bacteria in the global atmosphere part 2: modeling of emissions and transport be-
tween different ecosystems. Atmos. Chem. Phys. 9, 92819297. http://dx.doi.org/10.
5194/acp-9-9281-2009.
Burrows, S.M., Elbert, W., Lawrence, M.G., Pöschl, U., 2009b. Bacteria in the global atmo-
sphere part 1: review and synthesis of literature data for different ecosystems.
Atmos. Chem. Phys. 9, 92639280. http://dx.doi.org/10.5194/acp-9-9263-2009.
Burrows, S.M., Hoose, C., Pöschl, U., Lawrence, M.G., 2013a. Ice nuclei in marine air: bio-
genic particles or dust? Atmos. Chem. Phys. 13, 245267. http://dx.doi.org/10.5194/
acp-13-245-2013.
Burrows, S.M., Ogunro, O., Frossard, A.A., Russell, L.M., Rasch, P.J., Elliott, S.M., 2014. A
physicallybased framework for modeling the organic fractionation of sea spray aero-
sol from bubble lm Langmuir equilibria. Atmos. Chem. Phys. 14, 1360113629.
http://dx.doi.org/10.5194/acp-14-13601-2014.
Burrows, S.M., Rayner, P.J., Butler, T., Lawrence, M.G., 2013b. Estimating bacteria emis-
sions from inversion of atmospheric transport: sensitivity to modelled particle char-
acteristics. Atmos. Chem. Phys. 13, 54735488. http://dx.doi.org/10.5194/acp-13-
5473-2013.
Burt, P.J.A., 1995. The potato and the pathogen:the Irish potato famine of 1845. Weather
50, 342346. http://dx.doi.org/10.1002/j.1477-8696.1995.tb05502.x.
Businger, J.A., Oncley, S.P., 1990. Flux measurement with conditional sampling. J. Atmos.
Ocean. Technol. 7, 349352. http://dx.doi.org/10.1175/1520-0426(1990)007b0349:
FMWCSN2.0.CO;2.
Buters, J., Prank, M., Soev, M., Pusch, G., Albertini, R., Annesi-Maesano, I., Antunes, C.,
Behrendt, H., Berger, U., Brandao, R., Celenk, S., Galan, C., Grewling, Ł., Jackowiak, B.,
Kennedy, R., Rantio-Lehtimäki, A., Reese, G., Sauliene, I., Smith, M., Thibaudon, M.,
Weber, B., Cecchi, L., 2015. Variation of the group 5 grass pollen allergen content of
airborne pollen in relation to geographic location and time in season. J. Allergy Clin.
Immunol. 136, 87-95.e6. http://dx.doi.org/10.1016/j.jaci.2015.01.049.
Buters, J.T.M., Thibaudon, M., Smith, M., Kennedy, R., Rantio-Lehtimäki, A., Albertini, R.,
Reese, G., Weber, B., Galan, C., Brandao, R., Antunes, C.M., Jäger, S., Berger, U.,
Celenk, S., Grewling, Ł., Jackowiak, B., Sauliene, I., Weichenmeier, I., Pusch, G.,
Sarioglu, H., Uefng, M., Behrendt, H., Prank, M., Soev, M., Cecchi, L., 2012. Release
of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE
study. Atmos. Environ. 55, 496505. http://dx.doi.org/10.1016/j.atmosenv.2012.01.054.
Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., Jiang, J., Zhu, T.F., 2014. Inhalable
microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog
event. Environ. Sci. Technol. 48, 14991507. http://dx.doi.org/10.1021/
es4048472.
Carestia, M., Pizzoferrato, R.,Gelfusa, M., Cenciarelli, O., Ludovici, G.M., Gabriele,J., Malizia,
A., Murari, A., Vega, J., Gaudio, P., 2015. Development of a rapid method for the auto-
matic classicationof biological agents'uorescence spectral signatures. Opt. Eng.54,
114105. http://dx.doi.org/10.1117/1.OE.54.11.114105.
Caruana, D.J., 2011. Detection and analysisof airborne particles of biological origin: pres-
ent and future. Analyst 136, 46414652. http://dx.doi.org/10.1039/c1an15506g.
Carvalho, C.R., Fernandes, R.C., Carvalho, G.M.A., Barreto, R.W., Evans, H.C., 2011.
Cryptosexuality and the genetic diversity paradox in coffee rust, Hemileia vastatrix.
PLoS One 6, e26387. http://dx.doi.org/10.1371/journal.pone.0026387.
Casabianca, S., Casabianca, A., Riobó, P., Franco, J.M., Vila, M., Penna, A., 2013. Quantica-
tion of the toxic dinoagellate Ostreopsis spp. by qPCR assay in marine aerosol. Envi-
ron. Sci. Technol. 47, 37883795. http://dx.doi.org/10.1021/es305018s.
Castillo, J.A., Staton, S.J.R., Taylor, T.J.,Herckes, P., Hayes, M.A., 2012. Exploring thefeasibil-
ity of bioaerosol analysis as a novel ngerprinting technique. Anal. Bioanal. Chem.
403, 1526. http://dx.doi.org/10.1007/s00216-012-5725-0.
Cecchi, L.,D'Amato, G., Ayres, J.G., Galan, C., Forastiere, F., Forsberg, B., Gerritsen,J., Nunes,
C., Behrendt, H., Akdis, C., Dahl, R.,Annesi-Maesano, I., 2010. Projections of the effects
of climate change on allergic asthma: the contribution of aerobiology. Allergy 65,
10731081. http://dx.doi.org/10.1111/j.1398-9995.2010.02423.x.
CervantesCianca, R.C., Baptista, M.S.,Lopes, V.R., Vasconcelos, V.M., 2012. Thenon-protein
amino acid β-N-methylamino-l-alanine in Portuguese cyanobacterial isolates. Amino
Acids 42, 24732479. http://dx.doi.org/10.1007/s00726-011-1057-1.
Chen, P.-S., Li, C.-S., 2005. Bioaerosol characterization by ow cytometry with uoro-
chrome. J. Environ. Monit. 7, 950959. http://dx.doi.org/10.1039/b505224f.
Chen, Q., Farmer, D.K., Schneider, J., Zorn, S.R., Heald, C.L., Karl, T.G., Guenther, A., Allan,
J.D., Robinson, N., Coe, H., Kimmel, J.R., Pauliquevis, T., Borrmann, S., Pöschl, U.,
Andreae, M.O., Artaxo, P., Jimenez, J.L., Martin, S.T., 2009. Mass spectral characteriza-
tion of submicron biogenic organicparticles inthe Amazon Basin. Geophys. Res. Lett.
36, 15. http://dx.doi.org/10.1029/2009GL039880.
Chen, P.S., Tsai, F.T., Lin, C.K., Yang, C.Y., Chan, C.C., Young, C.Y., Lee, C.H., 2010. Ambient
inuenzaand avian inuenza virus during duststorm days and background days.En-
viron. Health Perspect. 118, 12111216. http://dx.doi.org/10.1289/ehp.0901782.
Cheng, Y.S., 1999. Detection of bioaerosols using multiwavelength UV uorescence
spectroscopy. Aerosol Sci. Technol. 30, 186201. http://dx.doi.org/10.1080/
027868299304778.
Cheng, J.Y.W., Hui, E.L.C., Lau, A.P.S., 2012. Bioactive and total endotoxins in atmospheric
aerosols in the Pearl River Delta region, China. Atmos. Environ. 47, 311. http://dx.
doi.org/10.1016/j.atmosenv.2011.11.055.
Cho, B.C.,Hwang, C.Y., 2011.Prokaryotic abundance and 16SrRNA gene sequencesdetect-
ed in marine aerosols on the East Sea (Korea). FEMS Microbiol. Ecol. 76, 327341.
http://dx.doi.org/10.1111/j.1574-6941.2011.01053.x.
Christner, B.C., Cai, R., Morris, C.E., McCarter, K.S., Foreman, C.M., Skidmore, M.L.,
Montross, S.N., Sands, D.C., 2008. Geographic, seasonal, and precipitation chemistry
inuence on the abundance and activity of biological ice nucleators in rain and
snow. Proc. Natl. Acad. Sci. 105, 1885418859. http://dx.doi.org/10.1073/pnas.
0809816105.
Codd, G., Bell, S., Kaya, K., Ward, C., Beattie, K., Metcalf, J., 1999. Cyanobacterial toxins, ex-
posure routes and human health. Eur. J. Phycol. 34, 405415. http://dx.doi.org/10.
1080/09670269910001736462.
Codd, G.A., Ward, C.J., Bell, S.G., 1997.Cyanobacterial toxins: occurrence, modes of action,
health effects and exposure routes. Arch. Toxicol. Suppl. 19, 399410.
Combourieu-Nebout, N., Peyron, O., Bout-Roumazeilles, V., Goring,S., Dormoy,I., Joannin,
S., Sadori, L., Siani, G., Magny, M., 2013. Holocene vegetation and climate changes in
the central Mediterranean inferred from a high-resolution marine pollen record
(Adriatic Sea). Clim. Past 9, 20232042. http://dx.doi.org/10.5194/cp-9-2023-2013.
Conen, F.,Morris, C.E., Leifeld, J., Yakutin, M.V., Alewell, C., 2011. Biological residues dene
the ice nucleation properties of soil dust. Atmos. Chem. Phys. 11, 96439648. http://
dx.doi.org/10.5194/acp-11-9643-2011.
Cox, C.S., Wathes, C.M., 1995. Bioaerosols Handbook. Lewis Publishers, Boca Raton.
Cox, P.A., Banack, S.A., Murch, S.J., Rasmussen, U., Tien, G., Bidigare, R.R., Metcalf, J.S.,
Morrison, L.F., Codd, G.A., Bergman, B., 2005. Diverse taxa of cyanobacteria produce
-N-methylamino-L-alanine, a neurotoxic amino acid. Proc. Natl. Acad. Sci. 102,
50745078. http://dx.doi.org/10.1073/pnas.0501526102.
Crawford, I., Lloyd, G., Herrmann, E., Hoyle, C.R., Bower, K.N., Connolly, P.J., Flynn, M.J.,
Kaye, P.H., Choularton, T.W., Gallagher, M.W., 2016. Observations of uorescent
aerosolcloud interactions in the free troposphere at the High-Altitude Research Sta-
tion Jungfraujoch. Atmos. Chem.Phys. 16, 22732284. http://dx.doi.org/10.5194/acp-
16-2273-2016.
Crawford, I., Robinson, N.H., Flynn, M.J., Foot, V.E., Gallagher, M.W., Huffman, J.A., Stanley,
W.R., Kaye, P.H., 2014. Characterisation of bioaerosol emissions from a Colorado pine
forest: results from the BEACHON-RoMBAS experiment. Atmos. Chem. Phys. 14,
85598578. http://dx.doi.org/10.5194/acp-14-8559-2014.
Creamean,J.M., Suski, K.J., Rosenfeld, D., Cazorla, A., DeMott, P.J., Sullivan, R.C., White, A.B.,
Ralph, F.M., Minnis, P., Comstock, J.M., Tomlinson, J.M., Prather, K.A., 2013. Dust and
biological aerosols from the Sahara and Asia inuence precipitation in the western
U.S. Science 339, 15721578. http://dx.doi.org/10.1126/science.1227279.
Cremer, C., 2012. Optics far beyond the diffraction limit. Springer Handbook of Lasers and
Optics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 13591397 http://dx.doi.
org/10.1007/978-3-642-19409-2_20.
Crook, B.,Sherwood-Higham, J.L., 1997.Sampling and assayof bioaerosols in thework en-
vironment. J. Aerosol Sci. 28, 417426. http://dx.doi.org/10.1016/S0021-
8502(96)00444-2.
Crouzy, B., Stella, M., Konzelmann, T., Calpini, B., Clot, B., 2016. All-optical automatic pol-
len identication: towards an operational system. Atmos. Environ. 140, 202212.
http://dx.doi.org/10.1016/j.atmosenv.2016.05.062.
Crutzen, P.J., 2002. Geology of mankind. Nature 415, 23. http://dx.doi.org/10.1038/
415023a.
Crutzen, P.J., Stoermer, E.F., 2000. The Anthropocene.. Glob. Chang. Newsl. 41, 1718.
D'Amato, G., 2000. Urbanair pollution and plant-derived respiratory allergy. Clin. Exp. Al-
lergy 30, 628636. http://dx.doi.org/10.1046/j.1365-2222.2000.00798.x.
D'Amato, G., Baena-Cagnani, C.E., Cecchi, L., Annesi-Maesano, I., Nunes, C., Ansotegui, I.,
D'Amato,M., Liccardi, G., Soa, M.,Canonica, W.G., 2013. Climatechange, air pollution
and extreme events leading to increasing prevalence of allergic respiratory diseases.
Multidiscip. Respir. Med. 8, 12. http://dx.doi.org/10.1186/2049-6958-8-12.
D'Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., Liccardi, G.,
Popov, T., Van Cauwenberge, P., 2007. Allergenic pollen and pollen allergy in Europe.
Allergy 62, 976990. http://dx.doi.org/10.1111/j.1398-9995.2007.01393.x.
D'Amato, G.,Liccardi, G., D'Amato, M., Cazzola, M.,2001. The role of outdoor air pollution
and climatic changes on the rising trends in respiratory allergy. Respir. Med. 95,
606611. http://dx.doi.org/10.1053/rmed.2001.1112.
Dannemiller, K.C., Lang-Yona, N., Yamamoto, N., Rudich, Y., Peccia, J., 2014. Combining
real-time PCR and next-generation DNA sequencing to provide quantitative compar-
isons of fungal aerosol populations. Atmos. Environ. 84, 113121. http://dx.doi.org/
10.1016/j.atmosenv.2013.11.036.
Davis, M.B., 1968. Pollen grains in lake sediments: redeposition caused by seasonal
water circulation. Science 162, 796799. http://dx.doi.org/10.1126/science.162.
3855.796.
Davis, J.M., 1987. Modeling the long-range transport of plant pathogens in the atmosphere.
Annu. Rev. Phytopathol. 25, 169188. http://dx.doi.org/10.1146/annurev.py.25.090187.
001125.
Davis, M.B., 2000. Palynology after Y2K understanding the source area of pollen in sed-
iments. Annu. Rev. Earth Planet. Sci. 28, 118.
Davis, M.B., Brubaker, L.B., 1973. Differential sedimentation of pollen grains in lakes.
Limnol. Oceanogr. 18, 635646. http://dx.doi.org/10.4319/lo.1973.18.4.0635.
De Linares, C., Postigo, I., Belmonte, J., Canela, M., Martínez, J., 2014. Optimization of the
measurement of outdoor airborne allergens using a protein microarrays platform.
Aerobiologia 30, 217227. http://dx.doi.org/10.1007/s10453-013-9322-2.
DeCosemo, G.A.L., Stewart, I.W., Grifths, W.D., Deans, J.S., 1992. The assessment of
airborne microorganisms. J. Aerosol Sci. 23, 683686. http://dx.doi.org/10.1016/
0021-8502(92)90504-O.
Degobbi, C., Saldiva, P.H.N., Rogers, C., 2011. Endotoxin as modier of particulate matter
toxicity: a review of the literature. Aerobiologia 27, 97105. http://dx.doi.org/10.
1007/s10453-010-9179-6.
Deguillaume, L., Leriche, M., Amato, P., Ariya, P.A., Delort, A.-M., Pöschl, U., Chaumerliac,
N., Bauer, H., Flossmann, A.I., Morris, C.E., 2008. Microbiology and atmospheric pro-
cesses: chemical interactions of primary biological aerosols. Biogeosciences 5,
10731084. http://dx.doi.org/10.5194/bg-5-1073-2008.
367J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
DeLeon-Rodriguez, N., Lathem, T.L., Rodriguez-R, L.M., Barazesh, J.M., Anderson, B.E.,
Beyersdorf, A.J., Ziemba, L.D., Bergin, M., Nenes, A., Konstantinidis, K.T., 2013.
Microbiome of the upper troposphere: species composition and prevalence, effects
of tropical storms, and atmospheric implications. Proc. Natl. Acad. Sci. 110,
25752580. http://dx.doi.org/10.1073/pnas.1212089110.
Delort, A.-M., Vaïtilingom, M., Amato, P., Sancelme, M., Parazols, M., Mailhot, G., Laj, P.,
Deguillaume, L., 2010. A short overview of the microbial population in clouds: poten-
tial roles in atmospheric chemistry and nucleation processes. Atmos. Res. 98,
249260. http://dx.doi.org/10.1016/j.atmosres.2010.07.004.
DeMott, P.J., Prenni,A.J., 2010. New directions: need for dening the numbers andsources
of biological aerosols acting as ice nuclei. Atmos. Environ. 44, 19441945. http://dx.
doi.org/10.1016/j.atmosenv.2010.02.032.
DeMott, P.J., Hill, T.C.J., McCluskey, C.S., Prather, K.A., Collins, D.B., Sullivan, R.C., Ruppel,
M.J., Mason, R.H., Irish, V.E., Lee, T., Hwang, C.Y., Rhee, T.S., Snider, J.R., McMeeking,
G.R., Dhaniyala, S., Lewis, E.R., Wentzell, J.J.B., Abbatt, J., Lee, C., Sultana, C.M., Ault,
A.P., Axson, J.L., Diaz Martinez, M., Venero, I., Santos-Figueroa, G., Stokes, M.D.,
Deane, G.B., Mayol-Bracero, O.L., Grassian, V.H., Bertram, T.H., Bertram, A.K., Moffett,
B.F., Franc, G.D., 2015. Sea spray aerosol as a unique source of ice nucleating particles.
Proc. Natl. Acad. Sci. 201514034. http://dx.doi.org/10.1073/pnas.1514034112.
Després, V.R., Huffman, J.A., Burrows, S.M., Hoose, C., Safatov, A.S., Buryak, G., Fröhlich-
Nowoisky, J., Elbert, W., Andreae, M.O., Pöschl, U., Jaenicke, R., 2012. Primary biolog-
ical aerosol particles in the atmosphere: a review. Tellus B 64. http://dx.doi.org/10.
3402/tellusb.v64i0.15598.
Després, V.R., Nowoisky, J.F., Klose, M., Conrad,R., Andreae, M.O., Pöschl, U., 2007. Charac-
terization of primary biogenic aerosol particles in urban, rural, and high-alpine air by
DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosci-
ences 4, 11271141. http://dx.doi.org/10.5194/bg-4-1127-2007.
Diehl, K., Wurzler, S., 2010. Air parcel model simulations of a convective cloud: bacteria
acting as immersion ice nuclei. Atmos. Environ. 44, 46224628. http://dx.doi.org/
10.1016/j.atmosenv.2010.08.003.
Diehl, K., Matthias-Maser, S., Jaenicke, R., Mitra, S.K., 2002. The ice nucleating ability of
pollen: part II. Laboratory studies in immersion and contact freezing modes. Atmos.
Res. 61, 125133. http://dx.doi.org/10.1016/S0169-8095(01)00132-6.
Diehl, K., Quick, C., Matthias-Maser, S., Mitra, S.K., Jaenicke, R., 2001. The ice nucleat-
ing ability of pollen: part I: laboratory studies in deposition and condensation
freezing modes. Atmos. Res. 58, 7587. http://dx.doi.org/10.1016/S0169-
8095(01)00091-6.
Dimmick, R.L., Straat, P.A., Wolochow, H., Levin, G.V., Chatigny, M.A., Schrot, J.R., 1975. Ev-
idence for metabolic activity of airborne bacteria. J. Aerosol Sci. 6, 387393. http://dx.
doi.org/10.1016/0021-8502(75)90054-3.
Dingle, A.N., 1966. Pollen as condensation nuclei. J. Rech. Atmosph. 2, 231237.
Domaizon, I., Savichtcheva, O., Debroas, D., Arnaud, F., Villar, C., Pignol, C., Alric, B., Perga,
M.E., 2013.DNA from lake sediments revealsthe long-term dynamics and diversity of
Synechococcus assemblages. Biogeosciences 10, 38173838. http://dx.doi.org/10.
5194/bg-10-3817-2013.
Douwes, J., 2003. Bioaerosol health effects and exposure assessment: progress and pros-
pects. Ann. Occup. Hyg. 47, 187200. http://dx.doi.org/10.1093/annhyg/meg032.
Edite Bezerra da Rocha, M., Freire, F.d.C.O., Erlan Feitosa Maia, F., Izabel Florindo Guedes,
M., Rondina, D., 2014. Mycotoxins and their effects on human and animal health.
Food Control 36, 159165. http://dx.doi.org/10.1016/j.foodcont.2013.08.021.
Ehrenberg, C.G., 1830. Neue Beobachtungen über blutartige Erscheinungen in Aegypten,
Arabien und Sibirien, nebst einer Übersicht und Kritik der früher bekannten. Ann.
Phys.Chem.94,477514.
Elbert, W., Taylor, P.E., Andreae, M.O., Pöschl, U., 2007. Contribution of fungi to prima-
ry biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohy-
drates, and inorganic ions. Atmos. Chem. Phys. 7, 45694588. http://dx.doi.org/
10.5194/acp-7-4569-2007.
Elbert, W.,Weber, B., Burrows, S., Steinkamp, J., Büdel,B., Andreae,M.O., Pöschl, U., 2012.
Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat.
Geosci. 5, 459462. http://dx.doi.org/10.1038/ngeo1486.
Eldridge, D.J., Leys, J.F., 2003. Exploring some relationships between biological soil crusts,
soil aggregation and wind erosion. J. Arid Environ. 53, 457466. http://dx.doi.org/10.
1006/jare.2002.1068.
Esch, R.E., Hartsell, C.J., Crenshaw, R., Jacobson, R.S., 2001. Common allergenic pollens,
fungi, animals, and arthropods. Clin. Rev. Allergy Immunol. 21, 261292. http://dx.
doi.org/10.1385/CRIAI:21:2-3:261.
Esmaeil, N., Gharagozloo, M., Rezaei, A., Grunig, G., 2014. Dust events, pulmonary diseases
and immune system. Am. J. Clin. Exp. Immunol. 3, 2029.
Estillore, A.D., Trueblood, J.V., Grassian,V.H., 2016. Atmospheric chemistryof bioaerosols:
heterogeneous and multiphase reactions with atmospheric oxidants and other trace
gases. Chem. Sci. 113 http://dx.doi.org/10.1039/C6SC02353.
Fahlgren, C., Bratbak, G., Sandaa, R.-A., Thyrhaug, R., Zweifel, U.L., 2011. Diversity of air-
borne bacteria in samples collected using different devices for aerosol collection.
Aerobiologia 27, 107120. http://dx.doi.org/10.1007/s10453-010-9181-z.
Fahlgren, C., Gómez-Consarnau, L., Zábori, J., Lindh, M.V., Krejci, R., Mårtensson, E.M.,
Nilsson, D., Pinhassi, J., 2015. Seawater mesocosm experiments in the Arctic uncover
differential transfer of marine bacteria to aerosols. Environ. Microbiol. Rep. 7,
460470. http://dx.doi.org/10.1111/1758-2229.12273.
Fahlgren, C., Hagström, A., Nilsson, D., Zweifel, U.L., 2010. Annual variations in the diver-
sity, viability, and origin of airborne bacteria. Appl. Environ. Microbiol. 76,
30153025. http://dx.doi.org/10.1128/AEM.02092-09.
Farmer, D.K., Cappa, C.D., Kreidenweis, S.M., 2015. Atmospheric processes and their con-
trolling inuence on cloud condensation nuclei activity. Chem. Rev. 115, 41994217.
http://dx.doi.org/10.1021/cr5006292.
Favero-Longo, S.E., Sandrone, S., Matteucci,E., Appolonia, L., Piervittori, R., 2014. Spores of
lichen-forming fungi in the mycoaerosol and their relationships with climate factors.
Sci. Total Environ. 466467, 2633. http://dx.doi.org/10.1016/j.scitotenv.2013.06.
057.
Fergenson, D.P., Pitesky, M.E., Tobias, H.J., Steele, P.T., Czerwieniec, G.A., Russell, S.C.,
Lebrilla, C.B., Horn, J.M., Coffee, K.R., Srivastava, A., Pillai, S.P., Shih, M.T.P., Hall, H.L.,
Ramponi, A.J., Chang, J.T., Langlois, R.G., Estacio, P.L., Hadley, R.T., Frank, M., Gard,
E.E., 2004. Reagentless detection and classication of individual bioaerosol particles
in seconds. Anal. Chem. 76, 373378. http://dx.doi.org/10.1021/ac034467e.
Field, N.C., Metcalf, J.S., Caller, T.A., Banack, S.A., Cox, P.A., Stommel, E.W.,2013. Linking β-
methylamino-l-alanine exposure to sporadic amyotrophic lateral sclerosis in Annap-
olis, MD. Toxicon 70, 179183. http://dx.doi.org/10.1016/j.toxicon.2013.04.010.
Fierer, N., Liu, Z., Rodríguez-Hernández, M., Knight, R., Henn, M., Hernandez, M.T., 2008.
Short-term temporal variability in airborne bacterial and fungal populations. Appl.
Environ. Microbiol. 74, 200207. http://dx.doi.org/10.1128/AEM.01467-07.
Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., Gurr, S.J.,
2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484,
186194. http://dx.doi.org/10.1038/nature10947.
Folloni, S., Kagkli, D.-M., Rajcevic, B., Guimarães, N.C.C., Van Droogenbroeck, B., Valicente,
F.H., Van den Eede, G., Van den Bulcke, M., 2012. Detection of airborne genetically
modied maize pollen by real-time PCR. Mol. Ecol. Resour. 12, 810821. http://dx.
doi.org/10.1111/j.1755-0998.2012.03168.x.
Franc, G.D., Demott, P.J., 1998. Cloud activation characteristics of airborne Erwinia carotovora
cells. J. Appl. Meteorol. 37, 12931300. http://dx.doi.org/10.1175/1520-
0450(1998)037b1293:CACOAEN2.0.CO;2.
Franze, T.,Weller, M.G., Niessner, R., Pöschl, U., 2005. Protein nitration by polluted air. En-
viron. Sci. Technol. 39, 16731678. http://dx.doi.org/10.1021/es0488737.
Franzetti, A., Gandol, I., Gaspari, E., Ambrosini, R., Bestetti, G., 2011. Seasonal variability
of bacteriain ne and coarse urban airparticulate matter. Appl. Microbiol. Biotechnol.
90, 745753. http://dx.doi.org/10.1007/s00253-010-3048-7.
Fröhlich-Nowoisky, J., Burrows, S.M., Xie, Z., Engling, G., Solomon, P.A., Fraser, M.P.,
Mayol-Bracero, O.L., Artaxo, P., Begerow, D., Conrad, R., Andreae, M.O., Després, V.R.,
Pöschl, U., 2012. Biogeography in the air: fungal diversity over land and oceans. Bio-
geosciences 9, 11251136. http://dx.doi.org/10.5194/bg-9-1125-2012.
Fröhlich-Nowoisky,J., Hill, T.C.J., Pummer, B.G.,Yordanova, P., Franc, G.D., Pöschl, U., 2015.
Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosci-
ences 12, 10571071. http://dx.doi.org/10.5194/bg-12-1057-2015.
Fröhlich-Nowoisky, J., Pickersgill, D.A., Despres, V.R., Pöschl, U., 2009. High diversity of
fungi in air particulate matter. Proc. Natl. Acad. Sci. 106, 1281412819. http://dx.
doi.org/10.1073/pnas.0811003106.
Fröhlich-Nowoisky, J., Ruzene Nespoli, C., Pickersgill, D.A., Galand, P.E., Müller-Germann,
I., Nunes, T., Gomes Cardoso, J., Almeida, S.M., Pio, C., Andreae, M.O., Conrad, R.,
Pöschl, U., Després, V.R., 2014. Diversity and seasonal dynamics of airborne archaea.
Biogeosciences 11, 60676079. http://dx.doi.org/10.5194/bg-11-6067-2014.
Fulton, J.D., 1966. Microorganisms of the upper atmosphere: III. Relationship between al-
titude and micropopulation. Appl. Microbiol. 14, 237240.
Gabey, A.M., Gallagher, M.W., Whitehead, J., Dorsey, J.R., Kaye, P.H., Stanley, W.R., 2010.
Measurements and comparison ofprimary biologicalaerosol above and below a trop-
ical forest canopy using a dual channel uorescence spectrometer. Atmos. Chem.
Phys. 10, 44534466. http://dx.doi.org/10.5194/acp-10-4453-2010.
Gabey, A.M.,Vaitilingom, M., Freney, E., Boulon, J., Sellegri, K., Gallagher, M.W., Crawford,
I.P., Robinson, N.H., Stanley, W.R., Kaye, P.H., 2013. Observationsof uorescent and bi-
ological aerosol at a high-altitude site in central France. Atmos. Chem. Phys. 13,
74157428. http://dx.doi.org/10.5194/acp-13-7415-2013.
Gallagher, M.W., Beswick, K.M.,Duyzer, J., Westrate, H., Choularton, T.W.,Hummelshøj, P.,
1997. Measurements of aer osol uxes to speulder forest using a micrometeorological
technique. Atmos. Environ. 31, 359373. http://dx.doi.org/10.1016/S1352-
2310(96)00057-X.
Gaman, A., Rannik, Ü., Aalto, P., Pohja, T., Siivola, E., Kulmala, M., Vesala, T., 2004. Relaxed
eddy accumulation system for size-resolved aerosol particle ux measurements.
J. Atmos. Ocean. Technol. 21, 933943. http://dx.doi.org/10.1175/1520-
0426(2004)021b0933:REASFSN2.0.CO;2.
Gange, A.C., Gange, E.G., Sparks, T.H., Boddy, L., 2007. Rapid and recent changes in fungal
fruiting patterns. Science 316, 71-71. http://dx.doi.org/10.1126/science.1137489.
Gantt, B., Meskhidze, N., 2013. Thephysical and chemical characteristics ofmarine prima-
ry organicaerosol: a review. Atmos. Chem. Phys. 13, 39793996. http://dx.doi.org/10.
5194/acp-13-3979-2013.
García-Blázquez, G., Göker, M., Voglmayr, H., Martín, M.P., Tellería, M.T., Oberwinkler, F.,
2008. Phylogeny of Peronospora, parasitic on Fabaceae, based on ITS sequences.
Mycol. Res. 112, 502512. http://dx.doi.org/10.1016/j.mycres.2007.10.007.
Gehring, U., Bischof,W., Fahlbusch, B., Wichmann, H.E.,Heinrich, J., 2002. House dust en-
dotoxin and allergic sensitization in children. Am. J. Respir. Crit. Care Med. 166,
939944. http://dx.doi.org/10.1164/rccm.200203-256OC.
Gehring, U., Wijga, A.H., Brauer, M., Fischer,P., de Jongste, J.C., Kerkhof, M., Oldenwening,
M., Smit, H.A., Brunekreef, B., 2010. Trafc-related air pollution and the development
of asthma and allergies during the rst 8 years of life. Am. J. Respir. Crit. Care Med.
181, 596603. http://dx.doi.org/10.1164/rccm.200906-0858OC.
Georgakopoulos, D.G., Després, V., Fröhlich-Nowoisky, J., Psenner, R., Ariya, P.A.,Pósfai, M.,
Ahern, H.E., Moffett, B.F., Hill, T.C.J., 2009. Microbiology and atmospheric processes:
biological, physical and chemical characterization of aerosol particles. Biogeosciences
6, 721737. http://dx.doi.org/10.5194/bg-6-721-2009.
Gereda, J., Leung, D., Thatayatikom, A., Streib, J., Price, M., Klinnert, M., Liu, A., 2000. Rela-
tion between house-dust endotoxin exposure, type 1 T-cell development, and aller-
gen sensitisation in infants at high risk of asthma. Lancet 355, 16801683. http://
dx.doi.org/10.1016/S0140-6736(00)02239-X.
Ghosh, B., Lal, H., Srivastava, A., 2015. Review of bioaerosols in indoor environment with
special reference to sampling, analysis and control mechanisms. Environ. Int. 85,
254272. http://dx.doi.org/10.1016/j.envint.2015.09.018.
368 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Gorny, R.L.,Reponen, T., Willeke,K., Schmechel, D., Robine, E., Boissier, M., Grinshpun, S.A.,
2002. Fungal fragments as indoor air biocontaminants. Appl. Environ. Microbiol. 68,
35223531. http://dx.doi.org/10.1128/AEM.68.7.3522-3531.2002.
Goudie, A.S., 2014. Desert dust and human health disorders. Environ. Int. 63, 101113.
http://dx.doi.org/10.1016/j.envint.2013.10.011.
Graham, B., 2003. Composition and diurnal variability of the natural Amazonian aerosol.
J. Geophys. Res. 108. http://dx.doi.org/10.1029/2003JD004049.
Green, B.J., Schmechel, D., Summerbell, R.C., 2011. Aerosolized fungal fragments. Fundame n-
tals of Mold Growth in Indoor Environments and Strategies for Healthy Living.
Wageningen Academic Publishers, Wageningen, pp. 211243 http://dx.doi.org/10.
3920/978-90-8686-722-6_8.
Green, B., Sercombe, J.K., Tovey, E., 2005. Fungal fragments and undocumented conidia
function as new aeroallergen sources. J. Allergy Clin. Immunol. 115, 10431048.
http://dx.doi.org/10.1016/j.jaci.2005.02.009.
Green, B.J., Tovey, E.R., Sercombe, J.K., Blachere, F.M., Beezhold, D.H., Schmechel, D., 2006.
Airborne fungal fragments and allergenicity. Med. Mycol. 44 (Suppl. 1), S245S255.
http://dx.doi.org/10.1080/13693780600776308.
Green, B.J., Zinovia Mitakakis, T., Tovey, E.R., 2003. Allergen detection from 11 fungal spe-
cies before and after germination. J. Allergy Clin. Immunol. 111, 285289. http://dx.
doi.org/10.1067/mai.2003.57.
Gregory, P.H., 1945. The dispersion of air-borne spores. Trans. Br. Mycol. Soc. 28, 2672.
http://dx.doi.org/10.1016/S0007-1536(45)80041-4.
Grifn, D.W., 2004. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmo-
sphere. Aerobiologia 20, 135140. http://dx.doi.org/10.1023/B:AERO.0000032948.
84077.12.
Grifn, D.W., 2007. Atmospheric movement of microorganisms in clouds of desert dust
and implications for human health. Clin. Microbiol. Rev. 20, 459477. http://dx.doi.
org/10.1128/CMR.00039-06 table of contents.
Grifn, D.D.W., Garrison, V.V.H., Herman, J.R.J., Shinn, E.A.E., 2001. African desert dust in
the Caribbean atmosphere: microbiology and public health. Aerobiologia 17,
203213. http://dx.doi.org/10.1023/A:1011868218901.
Grifths, W.D., DeCosemo, G.a.L., 1994. The assessment of bioaerosols: a critical
review. J. Aerosol Sci. 25, 14251458. http://dx.doi.org/10.1016/0021-
8502(94)90218-6.
Grifths, W.D., Stewart, I.W., Futter, S.J., Upton, S.L., Mark, D., 1997. The development of
sampling methods for the assessment of indoor bioaerosols. J. Aerosol Sci. 28,
437457. http://dx.doi.org/10.1016/S0021-8502(96)00446-6.
Grinn-Gofroń, A., Rapiejko, P., 2009. Occurrence of Cladosporium spp. and Alternaria spp.
spores in Western, Northern and Central-Eastern Poland in 20042006 and relation
to some meteorological factors. Atmos. Res. 93, 747758. http://dx.doi.org/10.1016/j.
atmosres.2009.02.014.
Grinshpun, S.a., Clark, J.M., 2005. Measurement and characterization of bioaerosols.
J. Aerosol Sci. 36, 553555. http://dx.doi.org/10.1016/j.jaerosci.2005.03.001.
Grinshpun, S.A., Mainelis, G., Trunov, M., Górny, R.L., Sivasubramani, S.K., Adhikari, A.,
Reponen, T., 2005. Collection of airborne spores by circular single-stage impactors
with small jet-to-plate distance. J. Aerosol Sci. 36, 575591. http://dx.doi.org/10.
1016/j.jaerosci.2004.06.078.
Grote, M., Vrtala, S., Niederberger, V., Wiermann, R., Valenta, R., Reichelt, R., 2001. Release
of allergen-bearing cytoplasm from hydratedpollen: a mechanism common to a va-
riety of grass (Poaceae) species revealed by electron microscopy. J. Allergy Clin.
Immunol. 108, 109115. http://dx.doi.org/10.1067/mai.2001.116431.
Gruber, S., Matthias-Maser, S., Brinkmann, J., Jaenicke, R., 1998. Vertical distribution of bi-
ologicalaerosol particles above the NorthSea. J. Aerosol Sci. 29, S771S772. http://dx.
doi.org/10.1016/S0021-8502(98)90568-7.
Gruijthuijsen, Y.K.,Grieshuber, I., Stöcklinger, A., Tischler, U., Fehrenbach, T., Weller, M.G.,
Vogel, L., Vieths, S., Pöschl, U., Duschl, A., 2006. Nitration enhances the allergenic po-
tential of proteins. Int. Arch. Allergy Immunol. 141, 265275. http://dx.doi.org/10.
1159/000095296.
Guarnieri, M., Balmes, J.R., 2014. Outdoor air pollution and asthma. Lancet 383,
15811592. http://dx.doi.org/10.1016/S0140-6736(14)60617-6.
Hadeld, T.L., McEvoy, P., Polotsky, Y., Tzinserling, V.A., Yakovlev, A.A., 2000. The pa-
thologyofdiphtheria.J.Infect.Dis.181,S116S120. http://dx.doi.org/10.1086/
315551.
Haga, D., Burrows, S., Iannone, R., Wheeler, M., Mason, R., Chen, J., Polishchuk, E., Pöschl,
U., Bertram, A., 2014. Ice nucleation by fungal spores from the classes
Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmo-
spheric transport of these spores. Atmos. Chem. Phys. 14, 86118630. http://dx.doi.
org/10.5194/acp-14-8611-2014.
Haga, D.I., Iannone, R., Wheeler, M.J., Mason, R., Polishchuk, E.A., Fetch, T., van der Kamp,
B.J., McKendry, I.G., Bertram, A.K., 2013. Ice nucleation properties of rust and bunt
fungal spores and their transport to high altitudes, where they can cause heteroge-
neous freezing. J. Geophys. Res. Atmos. 118, 72607272. http://dx.doi.org/10.1002/
jgrd.50556.
Hairston, P.P., Ho, J., Quant, F.R., 1997. Design of an instrument for real-time detection
of bioaerosols using simultaneous measurement of particle aerodynamic size and
intrinsic uorescence. J. Aerosol Sci. 28, 471482. http://dx.doi.org/10.1016/
S0021-8502(96)00448-X.
Hallar, A.G., Chirokova, G., McCubbin, I., Painter, T.H., Wiedinmyer, C., Dodson, C., 2011.
Atmospheric bioaerosols transported via dust storms in the western United States.
Geophys. Res. Lett. 38, 27. http://dx.doi.org/10.1029/2011GL048166.
Hallett, J., Mossop, S.C., 1974. Production of secondary ice particles during the riming pro-
cess. Nature 249, 2628. http://dx.doi.org/10.1038/249026a0.
Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen,
J., Donahue, N.M., George, C., Goldstein, A.H., Hamilton, J.F., Herrmann, H., Hoffmann,
T., Iinuma, Y., Jang, M., Jenkin, M.E., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W.,
McFiggans, G., Mentel, T.F., Monod, A., Prévôt, A.S.H., Seinfeld, J.H., Surratt, J.D.,
Szmigielski, R., Wildt, J., 2009. The formation, properties and impactof secondary or-
ganic aerosol: current and emerging issues.Atmos. Chem. Phys. 9, 51555236. http://
dx.doi.org/10.5194/acp-9-5155-2009.
Hamilton, W.D., Lenton, T.M., 1998. Spora and Gaia: how microbes y with their clouds.
Ethol. Ecol. Evol. 10, 116. http://dx.doi.org/10.1080/08927014.1998.9522867.
Hantsch, L., Braun, U., Scherer-Lorenzen, M., Bruelheide, H., 2013. Species richness and
species identity effects on occurrence of foliar fungal pathogensin a tree diversity ex-
periment. Ecosphere 4, art81. http://dx.doi.org/10.1890/ES13-00103.1.
Hassett, M.O., Fischer, M.W.F., Money, N.P., 2015. Mushrooms as rainmakers: how spores
act as nucleifor raindrops. PLoS One10, e0140407. http://dx.doi.org/10.1371/journal.
pone.0140407.
Heald, C.L., Spracklen, D.V., 2009. Atmospheric budget of primary biological aerosol
particles from fungal spores. Geophys. Res. Lett. 36, L09806. http://dx.doi.org/
10.1029/2009GL037493.
Healy, D.A., Huffman,J.A., O'Connor, D.J., Pöhlker, C., Pöschl, U., Sodeau, J.R., 2014.Ambient
measurements of biological aerosol particles near Killarney, Ireland: a comparison
between real-time uorescence and microscopy techniques. Atmos. Chem. Phys.
14, 80558069. http://dx.doi.org/10.5194/acp-14-8055-2014.
Heederik, D., von Mutius, E., 2012. Does diversity of environmental microbial exposure
matter for the occurrence of allergy and asthma? J. Allergy Clin. Immunol. 130,
4450. http://dx.doi.org/10.1016/j.jaci.2012.01.067.
Heinrich, J., Pitz, M., Bischof, W., Krug, N., Borm, P.J.A., 2003. Endotoxin in ne (PM2.5)
and coarse (PM2.5-10) particle mass of ambient aerosols. A temporo-spatial analysis.
Atmos. Environ. 37, 36593667. http://dx.doi.org/10.1016/S1352-2310(03)00467-9.
Held, A., Hinz, K.-P., Trimborn, A., Spengler, B., Klemm, O., 2003. Towards direct measure-
ment of turbulent vertical uxes of compounds in atmospheric aerosol particles.
Geophys. Res. Lett. 30, 2016. http://dx.doi.org/10.1029/2003GL017854.
Held, A., Zerrath, A., McKeon, U., Fehrenbach, T.,Niessner, R., Plass-Dlmer, C., Kaminski, U.,
Berresheim, H., Pöschl, U., 2008. Aerosol size distributions measured in urban, rural
and high-alpine air with an electrical low pressure impactor (ELPI). Atmos. Environ.
42, 85028512. http://dx.doi.org/10.1016/j.atmosenv.2008.06.015.
Hell, S.W.,Kroug, M., 1995. Ground-state-depletion uorscence microscopy: a concept for
breakingthe diffraction resolution limit. Appl. Phys. B Lasers Opt. 60, 495497. http://
dx.doi.org/10.1007/BF01081333.
Henningson, E.W., Ahlberg, M.S., 1994. Evaluation of microbiological aerosol samplers: a
review. J. Aerosol Sci. 25, 14591492. http://dx.doi.org/10.1016/0021-
8502(94)90219-4.
Hernàndez, F., Sancho, J.V., Ibàñez, M., Abad, E., Portolès, T., Mattioli, L., 2012. Current use
of high-resolution mass spectrometry in the environmental sciences. Anal. Bioanal.
Chem. 403, 12511264. http://dx.doi.org/10.1007/s00216-012-5844-7.
Hill, T.C.J., Moffett, B.F., DeMott, P.J.,Georgakopoulos, D.G., Stump,W.L., Franc, G.D., 2014a.
Measurement of ice nucleation-active bacteria on plants and in precipitation by
quantitative PCR. Appl. Environ. Microbiol. 80, 12561267. http://dx.doi.org/10.
1128/AEM.02967-13.
Hill, J., Stellmes, M., Wang, C., 2014b.Land transformationprocesses in NE China: tracking
trade-offs in ecosystem servicesacross several decades with Landsat-TM/ETM+ time
series. In: Manakos, I., Braun, M. (Eds.), Land Use and Land Cover Mapping in Europe,
Remote Sensing and Digital Image Processing. Springer, Netherlands, pp. 383409
http://dx.doi.org/10.1007/978-94-007-7969-3_23.
Hill, T.C.J., DeMott, P.J., Tobo, Y., Fröhlich-Nowoisky, J., Moffett, B.F., Franc, G.D.,
Kreidenweis, S.M., 2016. Sources of organic ice nucleating particles in soils. Atmos.
Chem. Phys. 16, 71957211. http://dx.doi.org/10.5194/acp-16-7195-2016.
Hinds, W.C., 1999. Aerosol Technology: Properties, Behavior, and Measurement of Air-
borne Particles. second ed John Wiley & Sons, Inc., New York.
Hindson, B.J., Ness, K.D., Masquelier, D.A., Belgrader, P., Heredia, N.J., Makarewicz, A.J.,
Bright, I.J., Lucero, M.Y.,Hiddessen, A.L., Legler, T.C., Kitano, T.K., Hodel,M.R., Petersen,
J.F., Wyatt, P.W., Steenblock, E.R., Shah, P.H., Bousse, L.J., Troup, C.B., Mellen, J.C.,
Wittmann, D.K., Erndt, N.G., Cauley, T.H., Koehler, R.T., So, A.P., Dube, S., Rose, K.A.,
Montesclaros, L., Wang, S., Stumbo, D.P., Hodges, S.P., Romine, S., Milanovich, F.P.,
White, H.E., Regan, J.F., Karlin-Neumann, G.A., Hindson, C.M., Saxonov, S., Colston,
B.W., 2011. High-throughput droplet digital PCR system for absolute quantitation of
DNA copy number. Anal. Chem. 83, 86048610. http://dx.doi.org/10.1021/
ac202028g.
Hintikka, E.-L., Nikulin, M., 1998. Airborne mycotoxins inagricultural and indoor environ-
ments. Indoor Air 8, 6670. http://dx.doi.org/10.1111/j.1600-0668.1998.tb00011.x.
Hiranuma, N., Möhler, O., Yamashita, K., Tajiri, T., Saito, A., Kiselev, A., Hoffmann, N.,
Hoose, C., Jantsch, E., Koop, T., Murakami, M., 2015. Ice nucleation by cellulose and
its potential contribution to ice formation in clouds. Nat. Geosci. 8, 273277. http://
dx.doi.org/10.1038/ngeo2374.
Hirst, J.M., Stedman, O.J., Hurst, G.W., 1967. Long-distance spore transport: vertical sec-
tions of spore clouds over the sea. J. Gen. Microbiol. 48, 357377. http://dx.doi.org/
10.1099/00221287-48-3-357.
Ho, J., 2002. Future of biological aerosol detection. Anal. Chim. Acta 457, 125148. http://
dx.doi.org/10.1016/S0003-2670(01)01592-6.
Hoffman, P.N., Bennettt, A.M., Scott, G., 1999. Controlling airborne infections. J. Hosp. In-
fect. 43, 203210.
Hofmann, W., 2011. Modelling inhaled particle deposition in the human lung-a review.
J. Aerosol Sci. 42, 693724. http://dx.doi.org/10.1016/j.jaerosci.2011.05.007.
Hoose, C., Möhler, O., 2012. Heterogeneous ice nucleation on atmosphericaerosols: a re-
view of results from laboratory experiments. Atmos. Chem. Phys. 12, 98179854.
http://dx.doi.org/10.5194/acp-12-9817-2012.
Hoose, C., Kristjánsson, J.E., Burrows, S.M., 2010. How important is biological ice nucle-
ation in clouds on a global scale? Environ. Res. Lett. 5, 024009. http://dx.doi.org/10.
1088/1748-9326/5/2/024009.
Horner, W.E., Helbling, A., Salvaggio, J.E., Lehrer, S.B., 1995. Fungal allergens. Clin.
Microbiol. Rev.
369J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Hospodsky, D., Qian, J., Nazaroff, W.W., Yamamoto, N., Bibby, K., Rismani-Yazdi,H., Peccia,
J., 2012. Human occupancy as a sourceof indoor airborne bacteria. PLoS One 7. http://
dx.doi.org/10.1371/journal.pone.0034867.
Huffman, J.A., Prenni, A.J., DeMott, P.J., Pöhlker, C., Mason, R.H., Robinson, N.H., Fröhlich-
Nowoisky, J., Tobo, Y., Després, V.R., Garcia, E., Gochis, D.J., Harris, E., Müller-
Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D.A., Andreae, M.O., Jimenez, J.L.,
Gallagher, M., Kreidenweis, S.M., Bertram, A.K., Pöschl, U., 2013. High concentrations
of biological aerosolparticles and ice nuclei during andafter rain. Atmos. Chem. Phys.
13, 61516164. http://dx.doi.org/10.5194/acp-13-6151-2013.
Huffman, J.A., Sinha, B., Garland, R.M., Snee-Pollmann, A., Gunthe, S.S., Artaxo, P., Martin,
S.T., Andreae, M.O., Pöschl, U., 2012. Size distributions and temporal variations of bi-
ological aerosol particles in the Amazon rainforest characterized by microscopy and
real-time UV-APS uorescence techniques during AMAZE-08. Atmos. Chem. Phys.
12, 1199712019. http://dx.doi.org/10.5194/acp-12-11997-2012.
Huffman, D.R., Swanson, B.E., Huffman, J.A., 2016. A wavelength dispersive instrument for
characterizing uorescence and scattering spectra of individualaerosol particles on a
substrate. Atmos. Meas. Tech. Discuss. 121. http://dx.doi.org/10.5194/amt-2016-
153.
Huffman,J.A., Treutlein, B.,Pöschl, U., 2010. Fluorescentbiological aerosolparticle concen-
trations and size distributions measured with an Ultraviolet Aerodynamic Particle
Sizer (UV-APS) in Central Europe. Atmos. Chem. Phys. 10, 32153233. http://dx.doi.
org/10.5194/acp-10-3215-2010.
Hultin, K.A.H., Krejci,R., Pinhassi, J., Gomez-Consarnau, L., Mårtensson, E.M., Hagström, Å.,
Nilsson, E.D., 2011. Aerosol and bacterial emissions from Baltic seawater. Atmos.Res.
99, 114. http://dx.doi.org/10.1016/j.atmosres.2010.08.018.
Hummel, M., Hoose, C., Gallagher, M., Healy, D.A., Huffman, J.A., O'Connor, D., Pöschl, U.,
Pöhlker, C., Robinson, N.H., Schnaiter, M., Sodeau, J.R., Stengel, M., Toprak, E., Vogel,
H., 2015. Regional-scale simulations of fungal spore aerosols using an emission pa-
rameterization adapted to local measurements of uorescent biological aerosol parti-
cles. Atmos. Chem. Phys. 15, 61276146. http://dx.doi.org/10.5194/acp-15-6127-
2015.
Hussain,M., Madl, P., Khan, A.,2011. Lung depositionpredictions of airborne particlesand
the emergence of contemporary diseases, part-I. Health 2, 5159.
Huston, A.L., Sivaprakasam, V., Scotto, C.S., Lin, H.-B., Eversole, J.D., Schultz, A., Willey, J.M.,
2004. Optical classication of bioaerosols using UV uorescence and IR absorption
spectroscopy. In: Carrano, J.C., Zukauskas, A. (Eds.), Proc. SPIE 5617, Optically Based
Biological and Chemical Sensing for Defence, pp. 300311 http://dx.doi.org/10.
1117/12.578062.
Imshenetsky, A.A., Lysenko, S.V., Kazakov, G.A., 1978. Upper boundary of the biosphere.
Appl. Environ. Microbiol. 35, 15.
Isard, S.A.,Gage, S.H., Comtois, P., Russo,J.M., 2005. Principles of the atmospheric pathway
for invasive species applied to soybean rust. Bioscience 55, 851. http://dx.doi.org/10.
1641/0006-3568(2005)055[0851:POTAPF]2.0.CO;2.
Jaenicke,R., 2005. Abundance of cellular material and proteins in the atmosphere. Science
308, 73. http://dx.doi.org/10.1126/science.1106335.
Jiang, L., Ilag, L.L., 2014. Detection of endogenous BMAA in dinoagellate (Heterocapsa
triquetra) hints at evolutionary conservation and environmental concern. PubRaw
Sci. 1, 18.
Jiang, L., Eriksson, J., Lage, S., Jonasson, S., Shams, S., Mehine, M., Ilag, L.L., Rasmussen, U.,
2014a. Diatoms: a novel source for the neurotoxin BMAA in aquatic environments.
PLoS One 9, 17. http://dx.doi.org/10.1371/journal.pone.0084578.
Jiang, L., Kiselova, N., Rosén, J., Ilag, L.L., 2014b. Quantication of neurotoxin BMAA (β-N-
methylamino-L-alanine) in seafood from Swedish markets. Sci. Rep. 4, 6931. http://
dx.doi.org/10.1038/srep06931.
Jochner, S., Lüpke, M., Laube, J., Weichenmeier, I., Pusch, G., Traidl-Hoffmann, C., Schmidt-
Weber, C., Buters, J.T.M., Menzel,A., 2015. Seasonal variation of birchand grass pollen
loads and allergen release at two sites in the German Alps. Atmos. Environ. 122,
8393. http://dx.doi.org/10.1016/j.atmosenv.2015.08.031.
Joly, M., Amato, P., Deguillaume, L., Monier, M., Hoose, C., Delort, A.-M., 2014. Quantica-
tion of ice nuclei active at near 0 °C temperaturesin low-altitude clouds at the Puyde
Dôme atmospheric station. Atmos. Chem. Phys. 14, 81858195. http://dx.doi.org/10.
5194/acp-14-8185-2014.
Joly, M., Amato, P., Sancelme, M., Vinatier, V., Abrantes, M., Deguillaume, L., Delort, A.-M.,
2015. Survival of microbialisolates from clouds toward simulated atmospheric stress
factors. Atmos. Environ. 117, 9298. http://dx.doi.org/10.1016/j.atmosenv.2015.07.
009.
Jones, A.M., Harrison, R.M., 2004. The effects of meteorological factors on atmospheric
bioaerosol concentrations - a review. Sci. Total Environ. 326, 151180. http://dx.doi.
org/10.1016/j.scitotenv.2003.11.021.
Jones, M., Williams, J., Gärtner, K., Phillips, R., Hurst, J., Frater, J., 2014. Low copy target de-
tection bydroplet digital PCRthrough application of a novel openaccess bioinformat-
ic pipeline, denetherain.. J. Virol. Methods 202, 4653. http://dx.doi.org/10.1016/j.
jviromet.2014.02.020.
Kaasalainen, U., Fewer, D.P., Jokela, J., Wahlsten, M., Sivonen, K., Rikkinen, J., 2012.
Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis.
Proc. Natl. Acad. Sci. 109, 58865891. http://dx.doi.org/10.1073/pnas.1200279109.
Karlsson,O., Berg, A.-L., Lindström, A.-K., Hanrieder, J., Arnerup, G., Roman, E., Bergquist, J.,
Lindquist, N.G., Brittebo, E.B., Andersson, M., 2012. Neonatal exposure to the
cyanobacterial toxin BMAA induces changes in protein expression and neurodegen-
eration in adult hippocampus. Toxicol. Sci. 130, 391404. http://dx.doi.org/10.1093/
toxsci/kfs241.
Karydis, V.A., Capps, S.L., Russell, A.G., Nenes, A., 2012. Adjoint sensitivity of global cloud
droplet number to aerosol and dynamical parameters. Atmos. Chem. Phys. 12,
90419055. http://dx.doi.org/10.5194/acp-12-9041-2012.
Kattel, G.,Sirocko, F., 2011. Palaeocladocerans as indicators of environmental, cultural and
archaeological developments in Eifel maar lakes region (West Germany) during the
Lateglacial and Holocene periods. Hydrobiologia 676, 203221. http://dx.doi.org/10.
1007/s10750-011-0872-4.
Kawashima, S., Hama, T., 2011. Pollen dispersal and hybridization model for risk assess-
ment of genetically modied crops. In: Steyn, D.G., Trini Castelli, S. (Eds.), Air Pollu-
tion Modeling and Its Application XXI, NATO Science for Peace and Security Series
C: Environmental Security. Springer, Netherlands, Dordrecht, pp. 723727 http://
dx.doi.org/10.1007/978-94-007-1359-8_118.
Kaye, P.H., Barton, J.E., Hirst, E., Clark, J.M., 2000. Simultaneous light scattering and intrin-
sic uorescence measurement for the classication of airborne particles. Appl. Opt.
39, 3738. http://dx.doi.org/10.1364/AO.39.003738.
Kellogg, C.A., Grifn, D.W., 2006. Aerobiology and the global transport of desert dust.
Trends Ecol. Evol. 21, 638644. http://dx.doi.org/10.1016/j.tree.2006.07.004.
Kesselmeier, J., Wilske, B., Muth, S., Bode, K., Wolf, A., 1999. Exchange of oxygenated vol-
atile organic compounds between boreal lichens and the atmosphere. In: Laurila, T.,
Lindfors, V. (Eds.), Biogenic VOC Emissions andPhotochemistry in the BorealRegions
of Europe - BIPHOREP. Ofce for Ofcial Publications of the European Communities,
pp. 5771.
Kieft, T.L.,1988. Ice nucleationactivity in lichens.Appl. Environ. Microbiol. 54, 16781681.
Kieft, T.L., Ahmadjian, V., 1989. Biological ice nucleation activity in lichen mycobionts and
photobionts. Lichenologist 21, 355362.
Kleefsman, I., Stowers, M.A., Verheijen, P.J.T., Van Wuijckhuijse, A.L., Kientz, C.E.,
Marijnissen, J.C.M., 2007. Bioaerosol analysis by single particle mass spectrometry.
Part. Part. Syst. Charact. 24, 8590. http://dx.doi.org/10.1002/ppsc.200601049.
Klemm, J., Herzschuh, U., Pestryakova, L.A., 2015. Vegetation, climate and lake changes
over the last 7000 years at the boreal treeline in north-central Siberia. Quat. Sci.
Rev. http://dx.doi.org/10.1016/j.quascirev.2015.08.015.
Klironomos, J.N., Rillig, M.C., Allen, M.F., Zak, D.R., Pregitzer, K.S., Kubiske, M.E., 1997. In-
creased levels of airborne fungal spores in response to Populus tremuloides grown
under elevated atmospheric CO
2
. Can. J. Bot. 75, 16701673. http://dx.doi.org/10.
1139/b97-880.
Knopf, D.A., Alpert, P.A., Wang, B., Aller, J.Y., 2010. Stimulation of ice nucleation by marine
diatoms. Nat. Geosci. 4, 8890. http://dx.doi.org/10.1038/ngeo1037.
Knox, R.B., Suphioglu, C., Taylor, P., Desai, R., Watson, H.C., Peng, J.L., Bursill, L.A., 1997.
Major grass pollen allergen Lol p 1 binds to diesel axhaust particles: implications
for asthma and air pollution. Clin. Exp. Allergy 27, 246251. http://dx.doi.org/10.
1111/j.1365-2222.1997.tb00702.x.
Koer, S., Asam, C., Eckhard, U., Wallner, M., Ferreira, F., Brandstetter, H., 2012.Crystallo-
graphically mapped ligand binding differs in high and low IgE binding isoforms of
birch pollen allergen bet v 1. J. Mol. Biol. 422, 109123. http://dx.doi.org/10.1016/j.
jmb.2012.05.016.
Kourtev, P.S., Hill, K.A., Shepson, P.B., Konopka, A., 2011. Atmospheric cloud water con-
tains a diverse bacterial community. Atmos. Environ. 45, 53995405. http://dx.doi.
org/10.1016/j.atmosenv.2011.06.041.
Kozloff, L.M., Turner, M.A., Arellano, F., 1991. Formation of bacterial membrane ice-
nucleating lipoglycoprotein complexes. J. Bacteriol. 173, 65286536.
Kraaijeveld, K., de Weger, L.A.,Ventayol García, M., Buermans, H.,Frank, J., Hiemstra, P.S.,
den Dunnen, J.T., 2015. Efcient and sensitive identication and quantication of air-
borne pollen using next-generation DNA sequencing. Mol. Ecol. Resour. 15, 816.
http://dx.doi.org/10.1111/1755-0998.12288.
Krásný, L., Hynek, R., Hochel, I., 2013. Identication of bacteria using mass spectrometry
techniques. Int. J. Mass Spectrom. 353, 6779. http://dx.doi.org/10.1016/j.ijms.2013.
04.016.
Kyle, M., Haande, S., Sønstebø, J., Rohrlack, T., 2015. Amplication of DNA in sediment
cores to detect historic Planktothrix occurrence in three Norwegian lakes.
J. Paleolimnol. 53, 6172. http://dx.doi.org/10.1007/s10933-014-9807-1.
Lage, S., Costa, P.R., Moita, T., Eriksson, J., Rasmussen, U., Rydberg, S.J., 2014. BMAA in
shellsh from two Portuguese transitional water bodiessuggests the marine dinoa-
gellate Gymnodinium catenatum as a potential BMAA source. Aquat. Toxicol. 152,
131138. http://dx.doi.org/10.1016/j.aquatox.2014.03.029.
Lange, J.L., Thorne, P.S., Lynch, N., 1997. Application of ow cytometry and uorescent in
situ hybridization for assessment of exposures to airborne bacteria. Appl. Environ.
Microbiol. 63, 15571563.
Langer, V., Hartmann, G., Niessner, R., Seidel, M., 2012. Rapid quantication of bioaerosols
containing L. pneumophila by Coriolis® μair sampler and chemiluminescence antibody
microarrays. J. Aerosol Sci. 48, 4655. http://dx.doi.org/10.1016/j.jaerosci.2012.02.001.
Lang-Yona, N., Dannemiller, K., Yamamoto, N., Burshtein, N., Peccia, J., Yarden, O., Rudich,
Y., 2012. Annual distribution of allergenic fungal spores in atmospheric particulate
matter in the Eastern Mediterranean; a comparative study between ergosterol and
quantitative PCR analysis. Atmos. Chem. Phys. 12, 26812690. http://dx.doi.org/10.
5194/acp-12-2681-2012.
Lang-Yona, N., Lehahn, Y., Herut, B., Burshtein, N., Rudich, Y., 2014. Marine aerosol as a
possible source for endotoxins in coastal areas. Sci. Total Environ. 499, 311318.
http://dx.doi.org/10.1016/j.scitotenv.2014.08.054.
Lang-Yona, N., Levin, Y., Dannemiller, K.C., Yarden, O., Peccia, J., Rudich, Y., 2013. Changes
in atmospheric CO
2
inuence the allergenicity of Aspergillus fumigatus. Glob. Chang.
Biol. 19, 23812388. http://dx.doi.org/10.1111/gcb.12219.
Lang-Yona, N., Shuster-Meiseles, T., Mazar, Y., Yarden, O., Rudich, Y., 2016. Impact of
urban air pollution on the allergenicity of Aspergillus fumigatus conidia: outdoor ex-
posure study supported by laboratory experiments. Sci. Total Environ. 541,
365371. http://dx.doi.org/10.1016/j.scitotenv.2015.09.058.
Laskin, A., Gilles, M.K., Knopf, D.A., Wang, B., China, S., 2016. Progress in the analysis of
complex atmospheric particles. Annu. Rev. Anal. Chem. 9, 117143. http://dx.doi.
org/10.1146/annurev-anchem-071015-041521.
Laskin, A., Laskin, J., Nizkorodov, S.A., 2012. Mass spectrometric approaches for chemical
characterisation of atmospheric aerosols: critical review of the most recent advances.
Environ. Chem. 9, 163189.
370 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Leck, C., Bigg, E.K., 2005. Biogenic particles in the surface microlayer and overlaying atmo-
sphere in the central Arctic Ocean during summer. Tellus B 57, 305316. http://dx.
doi.org/10.1111/j.1600-0889.2005.00148.x.
Lee, H.J.(.J.)., Laskin, A., Laskin, J., Nizkorodov, S.A., 2013. Excitationemission spectra and
uorescence quantum yields for fresh and agedbiogenic secondary organic aerosols.
Environ. Sci. Technol. 47, 57635770. http://dx.doi.org/10.1021/es400644c.
Lee, S.-H.,Lee, H.-J., Kim, S.-J., Lee, H.M.,Kang, H., Kim, Y.P., 2010. Identication of airborne
bacterial and fungal community structures in an urban area by T-RFLP analysis and
quantitative real-time PCR. Sci. Total Environ. 408, 13491357. http://dx.doi.org/10.
1016/j.scitotenv.2009.10.061.
Lee, C., Sultana, C.M., Collins, D.B., Santander, M.V., Axson, J.L., Malfatti, F., Cornwell, G.C.,
Grandquist, J.R., Deane, G.B., Stokes, M.D., Azam, F., Grassian, V.H., Prather, K.A., 2015. Ad-
vancing model systems for fundamental laboratory studies of sea spray aerosol using
the microbial loop. J. Phys. Chem. A 119, 88608870. http://dx.doi.org/10.1021/acs.
jpca.5b03488.
Leski, T.A., Malanoski, A.P., Gregory, M.J., Lin, B., Stenger, D.A., 2011. Application of a
broad-range resequencing array for detection of pathogens in desert dust samples
from Kuwait and Iraq. Appl. Environ. Microbiol. 77, 42854292. http://dx.doi.org/
10.1128/AEM.00021-11.
Levetin, E., 2004. Methods for aeroallergen sampling. Curr. Allergy Asthma Rep. 4,
376383. http://dx.doi.org/10.1007/s11882-004-0088-z.
Lewis, K., 2009. Persisters, biolms, and the problem of cultivability. In: Epstein, S.S. (Ed.),
Uncultivated Microorganisms. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 203216 http://dx.doi.org/10.1007/978-3-540-85465-4_7.
Liang, L., Engling, G., He, K., Du, Z., Cheng, Y., Duan, F., 2013. Evaluation of fungal spore
characteristics in Beijing, China, based on molecular tracer measurements. Environ.
Res. Lett. 8, 014005. http://dx.doi.org/10.1088/1748-9326/8/1/014005.
Lighthart, B., Shaffer, B.T., 1994.Bacterial ux from chaparral into the atmosphere in mid-
summer at a high desert location. Atmos. Environ. 28, 12671274. http://dx.doi.org/
10.1016/1352-2310(94)90273-9.
Lin, S.-J., Schranz, J., Teutsch, S.M., 2001. Aspergillosis case-fatality rate: systematic
review of the literature. Clin. Infect. Dis. 32, 358366. http://dx.doi.org/10.
1086/318483.
Lin, C.J., Wang, Y.T., Hsien, K.J., Tsai, Y.I., Kung, P.Y., Chyan, J.M., 2013. In situ rapid evalu-
ation of indoor bioaerosols using an ATP bioluminescence assay. Aerosol Air Qual.
Res. 13, 922931. http://dx.doi.org/10.4209/aaqr.2013.01.0009.
Lindemann, J., Upper, C.D., 1985. Aerial dispersal of epiphytic bacteria over bean plants.
Appl. Environ. Microbiol. 50, 12291232.
Lindemann,J.,Constantinidou,H.A.,Barchet,W.R.,Upper,C.D.,1982.Plants as sources of air-
borne bacteria, including ice nucleation-active bacteria. Appl. Environ. Microbiol. 44,
10591063.
Lindow, S.E., 1989. Localization of ice nucleation activity and the iceC gene product in
Pseudomonas syringae and Escherichia coli. Mol. Plant-Microbe Interact. 2, 262272.
http://dx.doi.org/10.1094/MPMI-2-262.
Lindow, S.E., Brandl, M.T., 2003. Microbiology of the phyllosphere. Appl. Environ.
Microbiol. 69, 18751883. http://dx.doi.org/10.1128/Aem.69.4.1875-1883.2003.
Liu, F., Lai, S., Reinmuth-Selzle, K., Scheel, J.F., Fröhlich-Nowoisky, J., Després, V.R.,
Hoffmann, T., Pöschl, U., Kampf, C.J., 2016. Metaproteomic analysis of atmospheric
aerosol samples. Anal. Bioanal. Chem. 112. http://dx.doi.org/10.1007/s00216-016-
9747-x.
Liu, K.B., Yao, Z.J., Thompson, L.G., 1998. A pollen record of Holocene climatic changes
from the Dunde ice cap, Qinghai-Tibetan Plateau. Geology 26, 135138. http://dx.
doi.org/10.1130/0091-7613(1998)026b0135.
Longhin,E., Pezzolato, E., Mantecca, P.,Holme, J.A., Franzetti, A., Camatini, M., Gualtieri,M.,
2013. Season linked responses to ne and quasi-ultrane Milan PM in cultured cells.
Toxicol. in Vitro 27, 551559. http://dx.doi.org/10.1016/j.tiv.2012.10.018.
Lucas, G.B.,Campbell, C.L., Lucas, L.T., 1992. Diseases Caused by Airborne Fungi, in: Intro-
duction to Plant Diseases. Springer, US, Boston, MA, pp. 586594 http://dx.doi.org/
10.1007/978-1-4615-7294-7.
Madelin,T.M., 1994. Fungalaerosols: a review.J. Aerosol Sci. 25, 14051412. http://dx.doi.
org/10.1016/0021-8502(94)90216-X.
Makarov, A., Scigelova, M., 2010. Coupling liquid chromatography to Orbitrap mass spec-
trometry. J. Chromatogr. A 1217, 39383945. http://dx.doi.org/10.1016/j.chroma.
2010.02.022.
Maki, L.R., Willoughby, K.J., 1978. Bacteria as biogenic sources of freezing nuclei. J. Appl.
Meteorol. 17, 10491053. http://dx.doi.org/10.1175/1520-0450(1978)017b1049:
BABSOFN2.0.CO;2.
Maki, T., Kakikawa, M., Kobayashi, F., Yamada, M., Matsuki, A., Hasegawa, H., Iwasaka, Y.,
2013. Assessment of composition and origin of airborne bacteria in the free tropo-
sphere over Japan. Atmos. Environ. 74, 7382. http://dx.doi.org/10.1016/j.atmosenv.
2013.03.029.
Manninen, H.E., Bäck, J., Huffman, J.A., Pessi, A.-M., Hiltunen, V., Aalto, P.P., Hidalgo, P.J.,
Hari, P., Saarto, A., Kulmala, M., Petäjä, T., 2014. Patterns in airborne pollen and
other primary biological aerosol particles (PBAP), and their contribution to aerosol
mass and number in a boreal forest. Boreal Environ. Res. 19, 383405.
Manninen, A., Putkiranta, M., Rostedt, A., Saarela, J., Laurila, T., Marjamäki, M.,Keskinen, J.,
Hernberg, R., 2008. Instrumentation for measuring uorescence cross sections from air-
borne microsized particles. Appl. Opt. 47, 110115. http://dx.doi.org/10.1364/AO.47.
000110.
Maranger, R., Bird, D.F., 1995. Viral abundancein aquatic systems: a comparison between
marine and fresh waters. Mar. Ecol. Prog. Ser. 121, 217226. http://dx.doi.org/10.
3354/meps121217.
Maron, P.-A., Lejon, D.P.H., Carvalho, E., Bizet, K., Lemanceau, P., Ranjard, L., Mougel, C.,
2005. Assessing genetic structure and diversity of airborne bacterial communities
by DNA ngerprinting and 16S rDNA clone library. Atmos. Environ. 39, 36873695.
http://dx.doi.org/10.1016/j.atmosenv.2005.03.002.
Marroquín-Cardona, A.G., Johnson, N.M., Phillips, T.D., Hayes, A.W., 2014. Mycotoxins in a
changing global environment a review. Food Chem. Toxicol. 69, 220230. http://dx.
doi.org/10.1016/j.fct.2014.04.025.
Marshall, W., Chalmers, M., 1997. Airborne dispersal of Antarctic terrestrial algae and
cyanobacteria. Ecography 20, 585594. http://dx.doi.org/10.1111/j.1600-0587.1997.
tb00427.x.
Martin, S.T., Andreae, M.O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A.H.,
Guenther, A., Heald, C.L., Mayol-Bracero, O.L., McMurry, P.H., Pauliquevis, T., Pöschl,
U., Prather, K.A., Roberts, G.C., Saleska, S.R., Silva Dias, M.A., Spracklen, D.V.,
Swietlicki, E., Trebs, I., 2010. Sources and properties of Amazonian aerosol particles.
Rev. Geophys. 48, RG2002. http://dx.doi.org/10.1029/2008RG000280.
Mason, R.H., Si, M., Li, J., Chou, C., Dickie, R., Toom-Sauntry, D., Pöhlker, C., Yakobi-
Hancock, J.D., Ladino, L.A., Jones, K., Leaitch, W.R., Schiller, C.L., Abbatt, J.P.D.,
Huffman, J.A., Bertram, A.K., 2015.Ice nucleating particles at a coastal marine bound-
ary layer site: correlations with aerosol type and meteorological conditions. Atmos.
Chem. Phys. 15, 1254712566. http://dx.doi.org/10.5194/acp-15-12547-2015.
Matthias, I., Giesecke, T., 2014. Insights into pollen source area, transport and deposition
from modern pollen accumulation rates in lake sediments. Quat. Sci. Rev. 87, 1223.
http://dx.doi.org/10.1016/j.quascirev.2013.12.015.
Matthias-Maser, S., Jaenicke, R., 1995. The size distribution of primary biological aerosol
particles with radii N0.2 μm in an urban/rural inuenced region. Atmos. Res. 39,
279286. http://dx.doi.org/10.1016/0169-8095(95)00017-8.
Matthias-Maser, S., Bogs, B., Jaenicke, R., 2000a. The size distribution of
primary biological aerosol particles in cloud water on the mountain Kleiner
Feldberg/Taunus (FRG). Atmos. Res. 54, 113. http://dx.doi.org/10.1016/S0169-
8095(00)00039-9.
Matthias-Maser, S., Brinkmann, J., Schneider, W., 1999. The size distribution of marine at-
mospheric aerosol with regard to primary biological aerosol particles over the South
Atlantic Ocean. Atmos. Environ. 33, 35693575. http://dx.doi.org/10.1016/S1352-
2310(98)00121-6.
Matthias-Maser, S., Obolkin, V., Khodzer, T., Jaenicke, R., 2000b. Seasonal variation of pri-
mary biological aerosolparticles in the remote continental region of Lake Baikal/Sibe-
ria. Atmos. Environ. 34, 38053811. http://dx.doi.org/10.1016/S1352-
2310(00)00139-4.
Matthias-Maser, S., Peters, K., Jaenicke, R., 1995. Seasonal variation of primary biological
aerosol particles. J. Aerosol Sci. 26 (Suppl. 1), S545S546. http://dx.doi.org/10.1016/
0021-8502(95)97180-M.
Matthias-Maser, S., Reichert, K., Jaenicke, R., 2000c. Primary biological aerosol particles at
the high alpine site of Jungfraujoch/Switzerland. J. Aerosol Sci. 31 (Suppl. 1),
955956. http://dx.doi.org/10.1016/S0021-8502(00)90965-0.
Mattoo, S.,Cherry, J.D., 2005. Molecular pathogenesis, epidemiology, and clinical manifes-
tations of respiratory infections due to Bordetella pertussis and other Bordetella sub-
species. Clin. Microbiol. Rev. 18, 326382. http://dx.doi.org/10.1128/CMR.18.2.326-
382.2005.
Mayer, S., Curtui, V., Usleber, E., Gareis, M., 2007. Airborne mycotoxins indust from grain
elevators. Mycotoxin Res. 23, 94100. http://dx.doi.org/10.1007/BF02946033.
Mayol, E., Jiménez, M.A., Herndl, G.J., Duarte,C.M., Arrieta, J.M., 2014. Resolving the abun-
dance and air-sea uxes of airborne microorganisms in the North Atlantic Ocean.
Front. Microbiol. 5. http://dx.doi.org/10.3389/fmicb.2014.00557.
McCarthy, M., 2001. Dustclouds implicated in spread of infection. Lancet 358, 478. http://
dx.doi.org/10.1016/S0140-6736(01)05677-X.
McCoy, D.T., Burrows, S.M., Wood, R., Grosvenor, D.P., Elliott, S.M., Ma, P.-L., Rasch, P.J.,
Hartmann, D.L., 2015. Natural aerosols explain seasonal and spatial patternsof South-
ern Ocean cloud albedo. Sci. Adv. 1, e1500157. http://dx.doi.org/10.1126/sciadv.
1500157.
McLeman,R.A., Dupre, J., BerrangFord, L., Ford, J., Gajewski, K., Marchildon, G., 2014.What
we learned from the dust bowl: lessons inscience, policy, and adaptation. Popul. En-
viron. 35, 417440. http://dx.doi.org/10.1007/s11111-013-0190-z.
Meadow, J.F., Altrichter, A.E., Bateman, A.C., Stenson, J., Brown, G., Green, J.L., Bohannan,
B.J.M., 2015. Humans differ in their personal microbial cloud. PeerJ 3, e1258. http://
dx.doi.org/10.7717/peerj.1258.
Meadow, J.F., Altrichter, A.E., Kembel, S.W., Kline, J., Mhuireach, G., Moriyama, M., Northcutt,
D., O'Connor, T.K., Womack, A.M., Brown, G.Z., Green, J.L., Bohannan, B.J.M., 2014. In-
door airborne bacterial communities are inuenced by ventilation, occupancy, and out-
door air source. Indoor Air 24, 4148. http://dx.doi.org/10.1111/ina.12047.
Meskhidze, N., Petters, M.D., Tsigaridis,K., Bates, T.,O'Dowd, C., Reid, J., Lewis, E.R., Gantt,
B., Anguelova, M.D., Bhave, P.V., Bird, J., Callaghan, A.H.,Ceburnis, D., Chang,R., Clarke,
A., de Leeuw, G., Deane,G., DeMott, P.J., Elliot, S., Facchini, M.C., Fairall,C.W., Hawkins,
L., Hu, Y., Hudson, J.G., Johnson, M.S., Kaku, K.C., Keene, W.C., Kieber, D.J., Long, M.S.,
Mårtensson, M., Modini, R.L., Osburn, C.L., Prather, K.A., Pszenny, A., Rinaldi, M.,
Russell, L.M., Salter, M., Sayer, A.M., Smirnov, A., Suda, S.R., Toth, T.D., Worsnop,
D.R., Wozniak, A., Zorn, S.R., 2013. Production mechanisms, number concentration,
size distribution, chemical composition, and optical properties of sea spray aerosols.
Atmos. Sci. Lett. 14, 207213. http://dx.doi.org/10.1002/asl2.441.
Metcalf, J.S., Codd, G.a., 2009. Cyanobacteria, neurotoxins and water resources: are there
implications for human neurodegenerative disease? Amyotroph. Lateral Scler. 10
(Suppl. 2), 7478. http://dx.doi.org/10.3109/17482960903272942.
Michaud, A.B., Dore, J.E., Leslie, D., Lyons, W.B., Sands, D.C., Priscu, J.C., 2014.Biological ice
nucleation initiates hailstone formation.J. Geophys. Res. Atmos. 119, 12,18612,197.
http://dx.doi.org/10.1002/2014JD022004.
Miguel, A.G., Taylor, P.E., House, J., Glovsky, M.M., Flagan, R.C., 2006. Meteorological inu-
ences on respirable fragment release from Chinese elm pollen. Aerosol Sci. Technol.
40, 690696. http://dx.doi.org/10.1080/02786820600798869.
Milgroom, M.G., Wang, K., Zhou, Y., Lipari, S.E., Kaneko, S., 1996. Intercontinental popula-
tion structure of the chestnut blight fungus, Cryphonectria parasitica. Mycologia 88,
179190. http://dx.doi.org/10.2307/3760921.
371J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Miyajima, K., Suzuki, Y., Miki, D., Arai, M., Arakawa, T., Shimomura, H., Shiba, K.,
Mitsubayashi, K., 2014. Direct analysis of airborne mite allergen (Der f1) in the resi-
dential atmosphere by chemiuorescent immunoassay using bioaerosol sampler.
Talanta 123, 241246. http://dx.doi.org/10.1016/j.talanta.2013.11.033.
Moffett, B.F., 2015. Ice nucleation in mosses and liverworts. Lindbergia 38, 1416.
Moffett, B.F., Getti, G., Hill, T.C.J., 2015. Ubiquity of ice nucleation in lichen possible at-
mospheric implications. Lindbergia 38, 3943.
Möhler, O., DeMott, P.J., Vali, G.,Levin, Z., 2007. Microbiology and atmospheric processes:
the role of biological particles in cloud physics. Biogeosciences 4, 10591071. http://
dx.doi.org/10.5194/bg-4-1059-2007.
Monks, P.S., Granier, C., Fuzzi, S., Stohl, A., Williams, M.L., Akimoto, H., Amann, M.,
Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake, R.S., Carslaw, K., Cooper, O.R.,
Dentener, F., Fowler, D., Frag kou, E., Frost, G.J., Generoso, S., Ginoux, P., Grewe,
V.,Guenther,A.,Hansson,H.C.,Henne,S.,Hjorth,J.,Hofzumahaus,A.,
Huntrieser, H., Isaksen, I.S.A., Jenkin, M.E., Kaiser, J., Kanakidou, M., Klimont, Z.,
Kulmala,M.,Laj,P.,Lawrence,M.G.,Lee,J.D.,Liousse,C.,Maione,M.,McFiggans,
G., Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J.J., O'Dowd, C.D.,
Palmer, P.I., Parrish, D.D., Petzold, A., Platt, U., Pöschl, U., Prévôt, A.S.H., Reeves,
C.E.,Reimann,S.,Rudich,Y.,Sellegri,K.,Steinbrecher,R.,Simpson,D.,tenBrink,
H., Theloke, J., van der Werf, G.R., Vautard, R., Vestreng, V., Vlachokostas, C., von
Glasow, R., 2009. Atmospheric composition change global and regional air qual-
ity. Atmos. Environ. 43, 52685350. http://dx.doi.org/10.1016/j.atmosenv.2009.
08.021.
Moore, R.H.,Karydis, V.A., Capps, S.L., Lathem, T.L.,Nenes, A., 2013. Droplet number uncer-
tainties associated with CCN: an assessment using observations and a global model
adjoint. Atmos. Chem. Phys. 13, 42354251. http://dx.doi.org/10.5194/acp-13-4235-
2013.
Morawska,L., 2006. Droplet fate in indoor environments, or can we prevent thespread of
infection? Indoor Air 16, 335347. http://dx.doi.org/10.1111/j.1600-0668.2006.
00432.x.
Moreland, J.L., Gramada, A., Buzko, O.V., Zhang, Q., Bourne, P.E., 2005. The Molecular
Biology Toolkit (MBT): a modular platform for developing molecular visualiza-
tion applications. BMC Bioinforma. 6, 21. http://dx.doi.org/10.1186/1471-2105-6-21.
Morgenstern, V., Carty, C.L., Gehring, U., Cyrys, J., Bischof, W., Heinrich, J., 2005. Lack of
spatial variation of endotoxin in ambient particulate matter across a German metro-
politan area. Atmos. Environ. 39, 69316941. http://dx.doi.org/10.1016/j.atmosenv.
2005.08.022.
Morgenstern, V., Zutavern, A., Cyrys, J., Brockow, I., Koletzko, S., Krämer, U., Behrendt, H.,
Herbarth,O., von Berg, A., Bauer,C.P., Wichmann, H.-E., Heinrich, J., GINIStudy Group,
LISA Study Group, 2008. Atopic diseases, allergic sensitization, and exposure to
trafc-related air pollution in children. Am. J. Respir. Crit. Care Med. 177,
13311337. http://dx.doi.org/10.1164/rccm.200701-036OC.
Morris, C.E., Kinkel, L.L.,2002. Fifty years of phyllosphere microbiology: signicant contri-
butions to research in related elds. In: Lindow, S.E., Hecht-Poinar, E.I., Elliott, V.J.
(Eds.), Phyllosphere Microbiology. APS Press, Saint Paul, USA, pp. 365375.
Morris, C.E., Conen, F., Huffman, J.A., Phillips, V., Pöschl, U., Sands, D.C., 2014a.
Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and
land use through biological ice nucleators in the atmosphere. Glob. Chang. Biol. 20,
341351. http://dx.doi.org/10.1111/gcb.12447.
Morris, C.E., Georgakopoulos, D.G., Sands, D.C., 2004. Ice nucleation active bacteria and
their potential role in precipitation. J. Phys. IV 121, 87103. http://dx.doi.org/10.
1051/jp4:2004121004.
Morris,C.E.,Leyronas,C.,Nicot,P.C.,2014b.Movement of bioaerosols in the atmo-
sphere and its consequences on climate and microbial evolution. In: Colbeck, I.,
Mihalis, L. (Eds.), Aerosol Science: Technology and Applications. John Wiley &
Sons, Hoboken, NJ, pp. 393416.
Morris, C.E., Sands, D.C., Bardin, M., Jaenicke, R., Vogel,B., Leyronas, C., Ariya, P.A., Psenner,
R., 2011. Microbiology and atmospheric processes: research challenges concerning
the impact of airborne micro-organisms on the atmosphere and climate. Biogeosci-
ences 8, 1725.
Morris, C.E., Sands, D.C., Glaux, C., Samsatly, J., Asaad, S., Moukahel, A.R., Gonçalves, F.L.T.,
Bigg, E.K., 2013. Urediospores of rust fungi are ice nucleation active at N10 °C and
harbor ice nucleation active bacteria. Atmos. Chem. Phys. 13, 42234233. http://dx.
doi.org/10.5194/acp-13-4223-2013.
Morris, C.E., Sands, D.C., Vinatzer, B.A., Glaux, C., Guilbaud, C., Bufère,A.,Yan,S.,
Dominguez, H., Thompson,B.M., 2008. The life history of the plant pathogen Pseudo-
monas syringae is linked to the water cycle. ISME J. 2, 321334. http://dx.doi.org/10.
1038/ismej.2007.113.
Mortazavi, R.,Attiya,S., Ariya, P.A., 2015. Arctic microbialand next-generation sequencing
approach for bacteria in snow and frost owers: selected identication, abundance
and freezing nucleation. Atmos. Chem. Phys. 15, 61836204. http://dx.doi.org/10.
5194/acp-15-6183-2015.
Motta, A.C., Marliere, M., Peltre, G., Sterenberg, P.A., Lacroix, G., 2006. Trafc-related air
pollutants induce the release of allergen-containing cytoplasmic granules from
grass pollen. Int. Arch. Allergy Immunol. 139, 294298. http://dx.doi.org/10.1159/
000091600.
Mueller, A.D., Islebe, G.A., Anselmetti, F.S., Ariztegui, D., Brenner, M., Hodell, D.A., Hajdas,
I., Hamann, Y.,Haug, G.H., Kennett, D.J., 2010. Recovery of the forest ecosystem in the
tropical lowlands of northern Guatemala after disintegration of classic Maya polities.
Geology 38, 523526. http://dx.doi.org/10.1130/G30797.1.
Mueller-Annelling,L., Avol, E., Peters, J.M., Thorne, P.S., 2004. Ambient endotoxin concen-
trations in PM10 from Southern California. Environ. Health Perspect. 112, 583588.
http://dx.doi.org/10.1289/ehp.6552.
Müller-Germann, I., Vogel, B., Vogel, H., Pauling, A., Fröhlich-Nowoisky, J., Pöschl, U.,
Després, V.R., 2015. Quantitative DNA analyses for airborne birch pollen. PLoS One
10, e0140949. http://dx.doi.org/10.1371/journal.pone.0140949.
Murray, B.J., O'Sullivan, D., Atkinson, J.D., Webb, M.E., 2012. Icenucleation by particles im-
mersed in supercooled cloud droplets. Chem.Soc. Rev. 41, 6519. http://dx.doi.org/10.
1039/c2cs35200a.
Murren, C., Ellison, A.M., 1998. Seed dispersal characteristics of Brassavola nodosa
(Orchidaceae). Am. J. Bot. 85, 675680. http://dx.doi.org/10.2307/2446537.
Namork, E.,Johansen, B.V., Løvik, M., 2006. Detection of allergensadsorbed to ambient air
particles collected in four European cities. Toxicol. Lett. 165, 7178. http://dx.doi.org/
10.1016/j.toxlet.2006.01.016.
Nazaroff,W.W., 2015.Indoor bioaerosol dynamics. Indoor Air 6178 http://dx.doi.org/10.
1111/ina.12174.
Neff, J.C., Ballantyne, A.P., Farmer, G.L., Mahowald, N.M., Conroy, J.L., Landry, C.C.,
Overpeck, J.T., Painter, T.H., Lawrence, C.R., Reynolds, R.L., 2008. Increasing eolian
dust deposition in the western United States linked to human activity. Nat. Geosci.
1, 189195. http://dx.doi.org/10.1038/Ngeo133.
Nielsen, K.F., 2003. Mycotoxin production by indoor molds. Fungal Genet. Biol. 39,
103117. http://dx.doi.org/10.1016/S1087-1845(03)00026-4.
Nilsson, S., Merritt, A.S., Bellander, T., 2011. Endotoxins in urban air in Stockholm,
Sweden. Atmos. Environ. 45, 266270. http://dx.doi.org/10.1016/j.atmosenv.2010.
09.037.
Noble, W.C., 1975. Dispersal of skin microorganisms. Br. J. Dermatol. 93, 477485. http://
dx.doi.org/10.1111/j.1365-2133.1975.tb06527.x.
Norris, S.J., Brooks, I.M., de Leeuw, G., Smith, M.H., Moeman, M., Lingard, J.J.N., 2008. Eddy
covariance measurements of sea spray particles over the Atlantic Ocean. Atmos.
Chem. Phys. 7, 1324313269. http://dx.doi.org/10.5194/acpd-7-13243-2007.
O'Connor,D.J., Healy, D.a., Hellebust, S., Buters, J.T.M., Sodeau, J.R.,2014. Using the WIBS-4
(Waveband Integrated Bioaerosol Sensor) technique for the on-line detection of pol-
len grains. Aerosol Sci. Technol. 48, 341349. http://dx.doi.org/10.1080/02786826.
2013.872768.
O'Dowd, C., Ceburnis,D., Ovadnevaite, J., Bialek, J.,Stengel, D.B., Zacharias, M.,Nitschke, U.,
Connan, S., Rinaldi, M., Fuzzi, S., Decesari, S., Cristina Facchini, M., Marullo, S.,
Santoleri, R., Dell'Anno, A., Corinaldesi, C., Tangherlini, M., Danovaro, R., 2015.
Connecting marine productivity to sea-spray via nanoscale biological processes: phy-
toplankton dance or death disco? Sci. Rep. 5, 14883. http://dx.doi.org/10.1038/
srep14883.
O'Sullivan, D., Murray, B.J., Ross, J.F., Webb, M.E., 2016. The adsorption of fungal ice-
nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-
nucleating particles. Atmos. Chem. Phys. 16, 78797887. http://dx.doi.org/10.5194/
acp-16-7879-2016.
O'Sullivan, D., Murray, B.J., Ross, J.F., Whale, T.F., Price, H.C., Atkinson, J.D., Umo, N.S.,
Webb, M.E., 2015. The relevance of nanoscale biological fragments for ice nucleation
in clouds. Sci. Rep. 5, 8082. http://dx.doi.org/10.1038/srep08082.
Oberholster, P.J., Botha, A.-M., Grobbelaar, J.U., 2004. Microcystis aeruginosa: source of
toxic microcystins in drinking water. Afr. J. Biotechnol. 3, 159168. http://dx.doi.
org/10.4314/ajb.v3i3.14935.
Okano, K., Sawada, K., Takashima, R., Nishi, H., Okada, H., 2007. Depositional environ-
ments revealed from biomarkers in sediments deposited during the Mid-
Cretaceous Oceanic Anoxic Events (OAEs) in the Vocontian Basin (SE France). Orig.
Evol. Nat. Divers. Proc. Int. Symp., Sapporo, pp. 233238.
Okle, O., Rath, L., Galizia, C.G., Dietrich, D.R., 2013. The cyanobacterial neurotoxin beta-N-
methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honey-
bees. Toxicol. Appl. Pharmacol. 270, 915. http://dx.doi.org/10.1016/j.taap.2013.04.
003.
Ormstad, H., 2000. Suspended particulate matter in indoor air: adjuvants and allergen
carriers. Toxicology 152, 5368. http://dx.doi.org/10.1016/S0300-483X(00)00292-4.
Ortiz-Martínez, M.G., Rodríguez-Cotto, R.I., Ortiz-Rivera, M.A., Pluguez-Turull, C.W.,
Jiménez-Vélez, B.D., 2015. Linking endotoxins, African dust PM10 and asthma in an
urban and rural environment of Puerto Rico. Mediat. Inamm. 2015, 114. http://
dx.doi.org/10.1155/2015/784212.
Oteros, J., Pusch, G., Weichenmeier, I., Heimann, U., Möller, R., Röseler, S., Traidl-
Hoffmann, C., Schmidt-Weber, C., Buters, J.T.M., 2015. Automatic and online pollen
monitoring. Int. Arch. Allergy Immunol. 167, 158166. http://dx.doi.org/10.1159/
000436968.
Ouyang, Y., Xu, Z., Fan, E., Li, Y., Zhang, L., 2016. Effectof nitrogen dioxide and sulfur diox-
ide on viability and morphology of oak pollen. Int. Forum Allergy Rhinol. 6, 95100.
http://dx.doi.org/10.1002/alr.21632.
Pady, S.M., Peturson, B., Green, G.J., 1950. Arctic aerobiology. III. The presence of spores of
cereal pathogens on slides exposed from airplanes in 1947. Phytopathology 40,
632641.
Pan, Y.-L.,Pinnick, R.G., Hill, S.C., Chang, R.K., 2009. Particle-uorescence spectrometer for
real-time single-particle measurements of atmospheric organic carbon and biological
aerosol. Environ. Sci. Technol. 43, 429434. http://dx.doi.org/10.1021/es801544y.
Pandey,R.,Usui,K.,Livingstone,R.A.,Fischer, S.A., Pfaendtner, J., Backus, E.H.G.,
Nagata, Y., Fröhlich-Nowoisky, J., Schmüser, L., Mauri, S., Scheel, J.F., Knopf,
D.A.,Pöschl,U.,Bonn,M.,Weidner,T.,2016.Ice-nucleatingbacteriacontrolthe
order and dynamics of interfacial water. Sci. Adv. 2, e1501630. http://dx.doi.
org/10.1126/sciadv.1501630.
Park, C.W., Park, J.W., Lee, S.H., Hwang, J., 2014. Real-time monitoring of bioaerosols via
cell-lysis by air ion and ATP bioluminescence detection. Biosens. Bioelectron. 52,
379383. http://dx.doi.org/10.1016/j.bios.2013.09.015.
Park, J.W.,Park, C.W.,Lee, S.H., Hwang, J., 2015. Fast monitoring of indoor bioaerosol con-
centrations with ATP bioluminescence assay using an electrostatic rod-type sampler.
PLoS One 10, 113. http://dx.doi.org/10.1371/journal.pone.0125251.
Parker,L.V., Sullivan, C.W.,Forest, T.W., Ackley,S.F., 1985. Ice nucleation activityof Antarc-
tic marine microorganisms. Antarct. J. 20, 126127.
Pasteur, L., 1860a. Expériences relatives aux generations dites spontanées. C. R. Hebd.
Seances Acad. Sci. 50, 303307.
372 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Pasteur, L., 1860b. Suite à une précédente communication relative aux generations dites
spontanées. C. R. Hebd. Seances Acad. Sci. 51, 675678.
Peccia, J., Hernandez, M., 2006. Incorporating polymerase chain reaction-based identica-
tion, population characterization, and quantication of microorganisms into aerosol
science: a review. Atmos. Environ. 40, 39413961. http://dx.doi.org/10.1016/j.
atmosenv.2006.02.029.
Perring, A.E., Schwarz, J.P., Baumgardner, D., Hernandez, M.T., Spracklen, D.V., Heald, C.L.,
Gao, R.S., Kok, G., McMeeking, G.R., McQuaid, J.B., Fahey, D.W.,2015. Airborne obser-
vations of regional variation in uorescent aerosol across the United States.
J. Geophys. Res. Atmos. 120, 11531170. http://dx.doi.org/10.1002/2014JD022495.
Pinnick, R.G., Hill, S.C., Nachman, P., Pendleton, J.D., Fernandez, G.L., Mayo, M.W., Bruno,
J.G., 1995.Fluorescence particlecounter for detecting airborne bacteria and other bi-
ological particles. Aerosol Sci. Technol. 23, 653664. http://dx.doi.org/10.1080/
02786829508965345.
Pinnick, R.G., Hill, S.C., Pan, Y.L., Chang, R.K., 2004. Fluorescence spectra of atmospheric
aerosol at Adelphi, Maryland, USA: measurement and classication of single particles
containing organic carbon. Atmos. Environ. 38, 16571672. http://dx.doi.org/10.1016/
j.atmosenv.2003.11.017.
Pittam, N.J., Mighall, T.M., Foster, I.D.L., 2006. The effect of sediment source changes on
pollen records in lake sediments. The Interactions Between Sediments and Water.
Springer Netherlands, Dordrecht, pp. 313319 http://dx.doi.org/10.1007/978-1-
4020-5478-5_32.
Pöhlker, C., Huffman, J.A., Pöschl, U., 2012a. Autouorescence of atmospheric bioaerosols
uorescent biomolecules and potential interferences. Atmos. Meas. Tech. 5, 3771.
http://dx.doi.org/10.5194/amt-5-37-2012.
Pöhlker,C., Wiedemann, K.T.,Sinha, B., Shiraiwa, M., Gunthe, S.S., Smith, M., Su, H.,Artaxo,
P., Chen, Q., Cheng, Y., Elbert, W., Gilles, M.K., Kilcoyne, A.L.D., Moffet, R.C., Weigand,
M., Martin, S.T., Pöschl, U., Andreae, M.O., 2012b. Biogenic potassium salt particles
as seeds for secondary organic aerosol in the Amazon. Science 337, 10751078.
http://dx.doi.org/10.1126/science.1223264.
Pöhlker, C., Huffman, J.A., Förster, J.-D., Pöschl, U., 2013. Autouorescence of atmospheric
bioaerosols: spectral ngerprints and taxonomic trends of pollen. Atmos. Meas. Tech.
6, 33693392. http://dx.doi.org/10.5194/amt-6-3369-2013.
Polymenakou, P.N., Mandalakis, M., Stephanou, E.G., Tselepides, A., 2007. Particle size dis-
tribution of airborne microorganisms and pathogens during an intense African dust
event in the Eastern Mediterranean. Environ. Health Perspect. 116, 292296. http://
dx.doi.org/10.1289/ehp.10684.
Pope, F.D.,2010. Pollen grainsare efcient cloud condensation nuclei. Environ. Res. Lett. 5,
044015. http://dx.doi.org/10.1088/1748-9326/5/4/044015.
Pöschl, U., 2005. Atmospheric aerosols: composition, transformation, climate and health
effects. Angew. Chem. Int. Ed. Eng. 44, 75207540. http://dx.doi.org/10.1002/anie.
200501122.
Pöschl, U., Shiraiwa, M., 2015. Multiphase chemistry at the atmospherebiosphere inter-
face inuencing climate and public health in the Anthropocene. Chem. Rev. 115,
44404475. http://dx.doi.org/10.1021/cr500487s.
Pöschl, U.,Martin, S.T., Sinha, B., Chen, Q.,Gunthe, S.S., Huffman, J.A., Borrmann, S., Farmer,
D.K., Garland, R.M., Helas, G., Jimenez, J.L., King, S.M., Manzi, A., Mikhailov, E.,
Pauliquevis, T., Petters, M.D., Prenni, A.J., Roldin, P., Rose, D., Schneider, J., Su, H.,
Zorn, S.R., Artaxo, P., Andreae, M.O., 2010. Rainforest aerosols as biogenic nuclei of
clouds and precipitation in the Amazon. Science 329, 15131516. http://dx.doi.org/
10.1126/science.1191056.
Pósfai, M., Li, J., Anderson, J.R., Buseck, P.R., 2003. Aerosol bacteria over the Southern
Ocean during ACE-1. Atmos. Res. 66, 231240. http://dx.doi.org/10.1016/S0169-
8095(03)00039-5.
Posselt, R., Lohmann, U., 2008. Inuence of Giant CCN on warm rain processes in the
ECHAM5 GCM. Atmos. Chem. Phys. 8, 37693788. http://dx.doi.org/10.5194/acp-8-
3769-2008.
Pouleur, S., Richard, C., Martin, J.G., Antoun, H., 1992. Ice nucleation activity in Fusarium
acuminatum and Fusarium avenaceum. Appl. Environ. Microbiol. 58, 29602964.
Pratt, K.A., Prather, K.A., 2012. Mass spectrometry of atmospheric aerosols-recent devel-
opments and applications. Part II: on-line mass spectrometry techniques. Mass
Spectrom. Rev. 31, 1748. http://dx.doi.org/10.1002/mas.20330.
Pratt, K.A.,DeMott, P.J., French, J.R., Wang, Z., Westphal, D.L.,Heymseld, A.J., Twohy, C.H.,
Prenni, A.J., Prather, K.A., 2009. In situ detection of biological particles in cloud ice-
crystals. Nat. Geosci. 2, 398401. http://dx.doi.org/10.1038/ngeo521.
Prenni, A.J., Petters, M.D., Kreidenweis, S.M., Heald, C.L., Martin, S.T., Artaxo, P., Garland,
R.M., Wollny, A.G., Pöschl, U., 2009. Relative roles of biogenic emissions and Saharan
dust as ice nuclei in the Amazon basin. Nat. Geosci. 2, 402405. http://dx.doi.org/10.
1038/ngeo517.
Prenni, A.J., Tobo, Y., Garcia, E., DeMott, P.J., Huffman, J.A., McCluskey, C.S., Kreidenweis,
S.M., Prenni, J.E., Pöhlker, C., Pöschl, U., 2013. The impact of rain on ice nuclei popula-
tions at a forested site inColorado. Geophys. Res. Lett. 40, 227231. http://dx.doi.org/
10.1029/2012GL053953.
Proctor, B.E., 1934. The microbiology of the upper air. I. Proc. Am. Acad. Arts Sci. 69,
315340. http://dx.doi.org/10.2307/20023053.
Prospero, J.M., Blades, E., Mathison, G., Naidu, R., 2005. Interhemispheric transport of via-
ble fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 21,
119. http://dx.doi.org/10.1007/s10453-004-5872-7.
Pruppacher, H.R., Klett, J.D., 2010. Microphysics of Clouds and Precipitation, Atmospheric
and Oceanographic Sciences Library. Springer, Netherlands, Dordrecht http://dx.doi.
org/10.1007/978-0-306-48100-0.
Prussin, A.J., Marr, L.C., Bibby, K.J., 2014. Challenges of studying viral aerosol
metagenomics and communities in comparison with bacterial and fungal aerosols.
FEMS Microbiol. Lett. 357, 19. http://dx.doi.org/10.1111/1574-6968.12487.
Pryor,S.C.,Larsen,S.E.,Sørensen,L.L.,Barthelmie,R.J.,Grönholm,T.,Kulmala,M.,
Launiainen, S., Rannik, Ü., Vesala, T., 2007. Particle uxes over forests: analyses
of ux methods and functional dependencies. J. Geophys. Res. 112, D07205.
http://dx.doi.org/10.1029/2006JD008066.
Pummer,B.G., Bauer, H., Bernardi, J., Bleicher, S., Grothe, H., 2012.Suspendable macromol-
ecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos.
Chem. Phys. 12, 25412550. http://dx.doi.org/10.5194/acp-12-2541-2012.
Pummer, B.G., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C.J.,
Huber, R.G., Liedl, K.R., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris,
C.E., Wex, H., Grothe, H., Pöschl, U., Koop, T., Fröhlich-Nowoisky, J., 2015. Ice nucle-
ation by water-soluble macromolecules. Atmos. Chem. Phys. 15, 40774091.
Qian, J., Hospodsky,D., Yamamoto, N., Nazaroff, W.W., Peccia, J., 2012. Size-resolved emis-
sion rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 22,
339351. http://dx.doi.org/10.1111/j.1600-0668.2012.00769.x.
Qian, J., Peccia, J., Ferro, A.R., 2014. Walking-induced particle resuspension in indoor envi-
ronments. Atmos. Environ. 89, 464481. http://dx.doi.org/10.1016/j.atmosenv.2014.
02.035.
Radosevich, J.L., Wilson, W.J.,Shinn, J.H., DeSantis, T.Z., Andersen, G.L., 2002. Development
of a high-volume aerosol collection system for the identication of air-borne micro-
organisms. Lett. Appl. Microbiol. 34, 162167.
Rangel-Alvarado, R.B., Nazarenko, Y., Ariya, P.A., 2015. Snow-borne nanosized parti-
cles: abundance, distribution, composition, and signicance in ice nucleation
processes. J. Geophys. Res. Atmos. 120, 1176011774. http://dx.doi.org/10.
1002/2015JD023773.
Reid, C.E., Gamble, J.L., 2009. Aeroallergens, allergic disease, and climate change: impacts
and adaptation. EcoHealth 6, 458470. http://dx.doi.org/10.1007/s10393-009-0261-
x.
Reinmuth-Selzle, K., Ackaert, C., Kampf, C.J., Samonig,M., Shiraiwa, M., Koer, S., Yang, H.,
Gadermaier, G., Brandstetter, H., Huber, C.G., Duschl, A., Oostingh, G.J., Pöschl, U.,
2014. Nitration of the birch pollen allergen Bet v 1.0101: efciency and site-
selectivity of liquid and gaseous nitrating agents. J. Proteome Res. 13, 15701577.
http://dx.doi.org/10.1021/pr401078h.
Riley, R.L., 1974. Airborne infection. Am. J. Med. 57, 466475. http://dx.doi.org/10.1136/
bmj.2.5597.105-b.
Ring, J., Krämer, U., Schäfer, T., Behrendt, H., 2001. Why are allergies increasing? Curr.
Opin. Immunol. 13, 701708. http://dx.doi.org/10.1016/S0952-7915(01)00282-5.
Robbins, C.A., Swenson, L.J., Nealley, M.L., Gots, R.E., Kelman, B.J., 2000. Health effects of
mycotoxins in indoor air: a critical review. Appl. Occup. Environ. Hyg. 15, 773784.
http://dx.doi.org/10.1080/10473220050129419.
Rogerson, A., Detwiler, A., 1999. Abundance of airborne heterotrophicprotists in ground
level air of South Dakota. Atmos. Res. 51, 3544. http://dx.doi.org/10.1016/S0169-
8095(98)00109-4.
Romero-Sarmiento,M.-F., Riboulleau,A., Vecoli, M., Laggoun-Défarge,F., Versteegh, G.J.M.,
2011. Aliphatic and aromatic biomarkers from Carboniferous coal deposits at Dunbar
(East Lothian, Scotland): palaeobotanical and palaeoenvironmental signicance.
Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 309326. http://dx.doi.org/10.1016/j.
palaeo.2011.06.015.
Ronningen, T.J., Schuetter, J.M., Wightman, J.L., Murdock, A., Bartko, A.P., 2014. Raman
spectroscopy for biological identication. Biological Identication. Elsevier,
pp. 313333 http://dx.doi.org/10.1533/9780857099167.3.313.
Rösch, P., Harz, M., Peschke, K.-D., Ronneberger, O., Burkhardt, H., Schüle, A., Schmauz, G.,
Lankers, M., Hofer, S., Thiele, H., Motzkus, H.-W., Popp, J., 2006. On-line monitoring
and identication of bioaerosols. Anal. Chem. 78, 21632170. http://dx.doi.org/10.
1021/ac0514974.
Rylander, R., 2002. Endotoxin in the environmentexposure and effects. J. Endotoxin Res.
8, 241252. http://dx.doi.org/10.1179/096805102125000452.
Saari, S., Järvinen, S., Reponen,T., Mensah-Attipoe, J., Pasanen, P., Toivonen, J., Keskinen, J.,
2016. Identication of single microbial particles using electro-dynamic balance
assisted laser-induced breakdown and uorescence spectroscopy. Aerosol Sci.
Technol. 50, 126132. http://dx.doi.org/10.1080/02786826.2015.1134764.
Saari, S., Mensah-Attipoe, J., Reponen, T., Veijalainen, A.M., Salmela, A., Pasanen, P.,
Keskinen, J., 2015. Effects of fungal species, cultivation time, growth substrate, and
air exposur e velocity on the uorescence properties of airborne fungal spores. Indoor
Air 25, 653661. http://dx.doi.org/10.1111/ina.12166.
Saari, S., Reponen, T.,Keskinen, J., 2014. Performanceof two uorescence-based real-time
bioaerosol detectors: BioScout vs. UVAPS. Aerosol Sci. Technol. 48, 371378. http://
dx.doi.org/10.1080/02786826.2013.877579.
Sands, D., Langhans, V., Scharen, A., De Smet, G., 1982. The association between bacteria
and rain and possible resultant meteorological implications. Idojaras 86, 148151.
Santarpia, J.L., Pan, Y.-L., Hill, S.C., Baker, N., Cottrell, B., McKee, L., Ratnesar-Shumate, S.,
Pinnick, R.G., 2012. Changes in uorescence spectra of bioaerosols exposed to
ozone in a laboratory reaction chamber to simulate atmospheric aging. Opt. Express
20, 2986729881. http://dx.doi.org/10.1364/OE.20.029867.
Šantl-Temkiv, T., Sahyoun, M., Finster, K., Hartmann, S., Augustin, S., Stratmann, F., Wex,
H., Clauss, T., Nielsen, N.W., Sørensen, J.H., Korsholm, U.S., Wick, L.Y., Karlson, U.G.,
2015. Characterization of airborne ice-nucleation-active bacteria and bacterial frag-
ments. Atmos. Environ. http://dx.doi.org/10.1016/j.atmosenv.2015.02.060.
Sattler, B., Puxbaum,H., Psenner, R., 2001.Bacterial growth in supercooled cloud droplets.
Geophys. Res. Lett. 28, 239242. http://dx.doi.org/10.1029/2000GL011684.
Saxon, A., Diaz-Sanchez, D., 2005. Air pollution and allergy: you are what you breathe.
Nat. Immunol. 6, 223226. http://dx.doi.org/10.1038/ni0305-223.
Schaal, K.P., 1991. Medical and microbiological problems arising from airborne infection
in hospitals. J. Hosp. Infect. 18, 451459. http://dx.doi.org/10.1016/0195-
6701(91)90056-E.
Schäppi, G.F., Suphioglu, C., Taylor, P.E., Knox, R.B., 1997. Concentrations of the
major birch tree allergen Bet v 1 in pollen and respirable ne particles in the
atmosphere. J. Allergy Clin. Immunol. 100, 656661. http://dx.doi.org/10.1016/
S0091-6749(97)70170-2.
373J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Scheppegrell, W., 1924. Airplane tests of hay fever pollen density in the upper air. Med.
J. Rec. 119, 185189.
Schlesinger, P., Mamane, Y., Grishkan, I., 2006. Transport of microorganisms to Israel during
Saharan dust events. Aerobiologia 22, 259273. http://dx.doi.org/10.1007/s10453-006-
9038-7.
Schmidt, P.-A., Bálint, M., Greshake, B., Bandow, C., Römbke, J., Schmitt, I., 2013. Illumina
metabarcoding of a soil fungal community.Soil Biol. Biochem. 65, 128132. http://dx.
doi.org/10.1016/j.soilbio.2013.05.014.
Schmiedl, G., Kuhnt, T., Ehrmann, W., Emeis, K.C., Hamann, Y., Kotthoff, U., Dulski, P.,
Pross, J., 2010. Climatic forcing of eastern Mediterranean deep-water formation and
benthic ecosystems during the past 22 000 years. Quat. Sci. Rev. 29, 30063020.
http://dx.doi.org/10.1016/j.quascirev.2010.07.002.
Schneider, J., Freutel, F., Zorn, S.R., Chen, Q., Farmer, D.K., Jimenez, J.L., Martin, S.T., Artaxo,
P., Wiedensohler, A., Borrmann, S., 2011. Mass-spectrometric identication of
primary biological particle markers and application to pristine submicron aerosol
measurements in Amazonia. Atmos. Chem. Phys. 11, 1141511429. http://dx.doi.
org/10.5194/acp-11-11415-2011.
Schnell, R.C., 1975. Ice nuclei produced by laboratory cultured marine phytoplankton.
Geophys. Res. Lett. 2, 500502. http://dx.doi.org/10.1029/GL002i011p00500.
Schnell, R.C., Vali, G., 1972. Atmospheric ice nuclei from decomposing vegetation.Nature
236, 163165. http://dx.doi.org/10.1038/236163a0.
Schnell, R.C., Vali, G., 1975. Freezing nuclei in marine waters. Tellus 27, 321323. http://
dx.doi.org/10.1111/j.2153-3490.1975.tb01682.x.
Schnell, R.C., Vali, G., 1976. Biogenic ice nuclei: part I. Terrestrial and marine sources.
J. Atmos. Sci. 33, 15541564. http://dx.doi.org/10.1175/1520-0469(1976)033b1554:
BINPITN2.0.CO;2.
Schumacher, C.J., Pöhlker, C., Aalto, P., Hiltunen, V., Petäjä, T., Kulmala, M., Pöschl, U.,
Huffman, J.A., 2013. Seasonal cycles of uorescent biological aerosol particles in bore-
al and semi-arid forests of Finland and Colorado. Atmos. Chem. Phys. 13,
1198712001. http://dx.doi.org/10.5194/acp-13-11987-2013.
Schweigkoer, W., O'Donnell, K., Garbelotto, M., 2004. Detection andquantication of air-
borne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two
California sites by using a real-time PCR approach combined with a simple spore
trapping method. Appl. Environ. Microbiol. 70, 35123520. http://dx.doi.org/10.
1128/AEM.70.6.3512-3520.2004.
Seifried, J.S., Wichels, A., Gerdt s, G., 2015. Spatial dist ribution of marine airb orne bac-
terial communities. MicrobiologyOpen 4, 475490. http://dx.doi.org/10.1002/
mbo3.253.
Sesartic, A., Dallaor, T.N., 2011. Global fungal spore emissions, review and synthesis of
literature data. Biogeosciences 8, 11811192. http://dx.doi.org/10.5194/bg-8-1181-
2011.
Sesartic, A., Lohmann, U., Storelvmo, T., 2012. Bacteria in the ECHAM5-HAM global cli-
mate model. Atmos. Chem. Phys. 12, 86458661. http://dx.doi.org/10.5194/acp-12-
8645-2012.
Sesartic, A., Lohmann,U., Storelvmo, T.,2013. Modelling theimpact of fungal sporeice nu-
clei on clouds and precipitation. Environ. Res. Lett. 8, 014029. http://dx.doi.org/10.
1088/1748-9326/8/1/014029.
Shafazand, S., Doyle, R., Ruoss, S., Weinacker, A., Rafn, T.A., 1999. Inhalational anthrax*.
Chest J. 116, 1369. http://dx.doi.org/10.1378/chest.116.5.1369.
Sharoni,S.,Trainic,M.,Schatz,D.,Lehahn,Y.,Flores,M.J.,Bidle,K.D.,Ben-Dor,S.,
Rudich, Y., Koren, I., Vardi, A., 2015. Infection of phytoplankton by aerosolized
marine viruses. Proc. Natl. Acad. Sci. 112, 66436647. http://dx.doi.org/10.
1073/pnas.1423667112.
Shiraiwa, M., Selzle, K., Pöschl, U., 2012a. Hazardous components and health effects of at-
mospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic com-
pounds and allergenic proteins. Free Radic. Res. 46, 927939. http://dx.doi.org/10.
3109/10715762.2012.663084.
Shiraiwa, M., Selzle, K., Yang, H., Sosedova, Y., Ammann, M., Pöschl, U., 2012b. Multi-
phase chemical kinetics of the nitration of aerosolized protein by ozone and ni-
trogen dioxide. Environ. Sci. Technol. 46, 66726680. http://dx.doi.org/10.
1021/es300871b.
Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G.S.N., Dutt, C.B.S., Wainwright, M., Narlikar,
J.V., Bhargava, P.M., 2006. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus
stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic
tubes used for collecting air samples from high altitudes. Int. J. Syst. Evol. Microbiol.
56, 14651473. http://dx.doi.org/10.1099/ijs.0.64029-0.
Sinclair, L., Osman, O.A., Bertilsson, S., Eiler, A., 2015. Microbial community composition
and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS
One 10, 118. http://dx.doi.org/10.1371/journal.pone.0116955.
Singer, B.D., Ziska, L.H., Frenz, D.A., Gebhard, D.E., Straka, J.G., 2005. Increasing Amb a 1
content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising
atmospheric CO
2
concentration. Funct. Plant Biol. 32, 667670. http://dx.doi.org/10.
1071/FP05039.
Sivaprakasam, V., Huston, A., Scotto, C., Eversole, J., 2004. Multiple UVwavelength excita-
tion and uorescence of bioaerosols. Opt. Express 12, 44574466. http://dx.doi.org/
10.1364/OPEX.12.004457.
Smets, W., Moretti, S., Denys, S., Lebeer, S., 2016. Airborne bacteria in the atmosphere:
presence, purpose, and potential. Atmos. Environ. 139, 214221. http://dx.doi.org/
10.1016/j.atmosenv.2016.05.038.
Smith, D.J., Timonen, H.J., Jaffe, D.A., Grifn, D.W., Birmele, M.N., Perry, K.D., Ward, P.D.,
Roberts, M.S., 2013. Intercontinental dispersal of bacteria and archaea by transpacic
winds. Appl. Environ. Microbiol. 79, 11341139. http://dx.doi.org/10.1128/AEM.
03029-12.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M.,
Miller, H.L., 2007. Climate change, 2007: the physical science basis, contribution
of working group I to the fourth assessment report of the intergovernmental
panel on climate change. IPCC Fouth Assessment Report: Climate Change 2007.
Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA.
Soukup, J.M., Becker, S., 2001. Human alveolar macrophage responses to air poll ution
particulates are associated with insoluble components of coarse material, includ-
ing particulate endotoxin. Toxicol. Appl. Pharmacol. 171, 2026. http://dx.doi.
org/10.1006/taap.2000.9096.
Spaan, S., Wouters, I.M., Oosting, I., Doekes, G., Heederik, D., 2006. Exposure to inhalable
dust and endotoxins in agricultural industries. J. Environ. Monit. 8, 6372. http://dx.
doi.org/10.1039/b509838f.
Spracklen, D.V., Heald, C.L., 2014. The contribution of fungal spores and bacteria to
regional and global aerosol number and ice nucleation immersion freezing
rates. Atmos. Chem. Phys. 14, 90519059. http://dx.doi.org/10.5194/acp-14-
9051-2014.
Stanelle,T., Bey, I., Raddatz,T., Reick, C., Tegen,I., 2014. Anthropogenically induced chang-
es in twentieth century mineral dust burden and the associated impact on radiative
forcing. J. Geophys. Res. Atmos. 119, 13,52613,546. http://dx.doi.org/10.1002/
2014JD022062.
Stanley, W.R., Kaye, P.H., Foot, V.E., Barrington, S.J., Gallagher, M., Gabey, A., 2011.
Continuous bioaerosol monitoring in a tropical environment using a UV uores-
cence particle spectrometer. Atmos. Sci. Lett. 12, 195199. http://dx.doi.org/10.
1002/asl.310.
Steiner, A.L., Brooks, S.D., Deng, C., Thornton, D.C.O., Pendleton, M.W., Bryant, V., 2015.
Pollen as atmospheric cloud condensation nuclei. Geophys. Res. Lett. 42,
35963602. http://dx.doi.org/10.1002/2015GL064060.
Stewart, I.W., Leaver, G., Futter, S.J., 1997. Theenumeration of aerosolised Saccharomyces
cerevisiae using bioluminescent assay of total adenylates. J. Aerosol Sci. 28, 511523.
http://dx.doi.org/10.1016/S0021-8502(96)00452-1.
Stocker,T.F.,Qin,D.,Plattner,G.-K.,Tignor,M.,Allen,S.K.,Boschung,J.,Nauels,A.,
Xia,Y.,Bex,V.,Midgley,P.M.,2013.IPCC, 2013: climate change 2013: the phys-
ical science basis. Contribution of working group I to the fth assessment
report of the intergovernmental panel on climate change. IPCC, 2013. Cam-
bridge University Press, Cambridge, United Kingdom and New York, NY, USA,
p. 1535.
Stommel, E.W., Field, N.C., Caller, T.A., 2013. Aerosolization of cyanobacteria as a risk fac-
tor for amyotrophic lateral sclerosis. Med. Hypotheses 80, 142145.http://dx.doi.org/
10.1016/j.mehy.2012.11.012.
Stopa, P.J., Tieman, D., Coon, P.A., Milton, M.M., Paterno, D., 1999. Detection of biological
aerosols by luminescence techniques*. Technology 3, 283290. http://dx.doi.org/10.
1002/(SICI)1520-6521(1999)3:4/5b283::AID-FACT7N3.0.CO;2-9.
Stopelli,E., Conen, F., Morris, C.E., Herrmann, E., Bukowiecki, N., Alewell, C., 2015. Ice nu-
cleation active particles are efciently removed by precipitating clouds. Sci. Rep. 5,
16433. http://dx.doi.org/10.1038/srep16433.
Sun, J., Ariya, P.A., 2006. Atmospheric organic and bio-aerosols as cloud condensation nu-
clei (CCN): a review. Atmos. Environ. 40, 795820. http://dx.doi.org/10.1016/j.
atmosenv.2005.05.052.
Suni, T., Guenther, A., Hansson, H.C., Kulmala, M., Andreae, M.O., Arneth, A., Artaxo, P.,
Blyth, E., Brus, M., Ganzeveld, L., Kabat, P., Noblet-Ducoudré, N., Reichstein, M.,
Reissell, A., Rosenfeld, D., Seneviratne, S., 2015. The signicance of land
atmosphere interactions in the Earth systemiLEAPSachievements and perspectives.
Anthropocene http://dx.doi.org/10.1016/j.ancene.2015.12.001.
Taylor, P.E., Jonsson, H., 2004. Thunderstorm asthma. Curr. Allergy Asthma Rep. 4,
409413.
Taylor, P.E., Flagan, R.C., Miguel, A.G., Valenta, R., Glovsky, M.M., 2004. Birch pollen rup-
ture and the release of aerosols of respirable allergens. Clin. Exp. Allergy 34,
15911596. http://dx.doi.org/10.1111/j.1365-2222.2004.02078.x.
Taylor, P.E., Flagan,R.C., Valenta, R., Glovsky, M.M.,2002. Release of allergens as respirable
aerosols: a link between grass pollen and asthma. J. Allergy Clin. Immunol. 109,
5156. http://dx.doi.org/10.1067/mai.2002.120759.
Tesson, S.V.M., Skjøth, C.A., Šantl-Temkiv, T., Löndahl, J., 2016. Airborne microalgae: in-
sights, opportunities, and challenges. Appl. Environ. Microbiol. 82, 19781991.
http://dx.doi.org/10.1128/AEM.03333-15.
Thrush, E., Salciccioli, N., Brown, D.M., Siegrist, K., Brown, A.M., Thomas, M.E., Boggs, N.,
Carter, C.C., 2012. Backscatter signatures of biological aerosols in the infrared. Appl.
Opt. 51, 18361842. http://dx.doi.org/10.1364/AO.51.001836.
Tobias, H.J., Schafer, M.P., Pitesky, M., Fergenson, D.P., Horn, J., Frank, M., Gard, E.E., 2005.
Bioaerosol mass spectrometry for rapid detection of individual airborne Mycobacteri-
um tuberculosis H37Ra particles. Appl. Environ. Microbiol. 71, 60866095. http://dx.
doi.org/10.1128/AEM.71.10.6086-6095.2005.
Tobo, Y., DeMott, P.J., Hill, T.C.J., Prenni, A.J., Swoboda-Colberg, N.G., Franc, G.D.,
Kreidenweis, S.M., 2014. Organic matter matters for ice nuclei of agricultural soil or-
igin. Atmos. Chem. Phys. 14, 85218531. http://dx.doi.org/10.5194/acp-14-8521-
2014.
Tobo, Y., Prenni, A.J., DeMott, P.J., Huffman, J.A., McCluskey, C.S., Tian, G., Pöhlker, C.,
Pöschl, U., Kreidenweis, S.M., 2013. Biological aerosol particles as a key determinant
of ice nuclei populations in a forest ecosystem. J. Geophys. Res. Atmos. 118,
10,10010,110. http://dx.doi.org/10.1002/jgrd.50801.
Tong, Y., Lighthart, B., 1998. Effect of simulated solar radiation on mixed outdoor atmo-
spheric bacterial populations. FEMS Microbiol. Ecol. 26, 311316. http://dx.doi.org/
10.1016/S0168-6496(98)00046-4.
Toprak, E., Schnaiter, M., 2013. Fluorescent biological aerosol particles measured with the
Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a
one year eld study. Atmos. Chem. Phys. 13, 225243. http://dx.doi.org/10.5194/
acp-13-225-2013.
Traidl-Hoffmann, C., Jakob, T., Behrendt, H., 2009. Determinants of allergenicity. J. Allergy
Clin. Immunol. 123, 558566. http://dx.doi.org/10.1016/j.jaci.2008.12.003.
374 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Traversi, D., Alessandria, L., Schilirò, T., Gilli, G., 2011. Size-fractionated PM10 monitoring
in relation to the contribution of endotoxins in different polluted areas. Atmos. Envi-
ron. 45, 35153521. http://dx.doi.org/10.1016/j.atmosenv.2011.04.020.
Tringe, S.G., Zhang, T.,Liu, X., Yu, Y., Lee, W.H., Yap,J., Yao, F., Suan, S.T., Ing, S.K., Haynes,
M., Rohwer, F., Wei, C.L., Tan, P., Bristow, J., Rubin, E.M., Ruan, Y., 2008. Theairborne
metagenome in an indoor urban environment. PLoS One 3, e1862. http://dx.doi.org/
10.1371/journal.pone.0001862.
Twaroch, T.E., Curin,M., Valenta, R., Swoboda, I., 2015. Mold allergens in respiratory aller-
gy: from structure to therapy. Allergy, Asthma Immunol. Res. 7, 205220. http://dx.
doi.org/10.4168/aair.2015.7.3.205.
Twohy, C.H., McMeeking, G.R., DeMott, P.J., McCluskey, C.S., Hill, T.C.J., Burrows, S.M.,
Kulkarni, G.R., Tanarhte, M., Kae, D.N., Toohey,D.W., 2016. Abundanceof uorescent
biological aerosol particles at temperatures conducive to the formation of mixed-
phase and cirrus clouds. Atmos. Chem. Phys. 16, 82058225.
Urbano, R., Palenik, B., Gaston, C.J., Prather, K.A., 2011. Detection and phylogenetic analy-
sis of coastal bioaerosols using culture dependent and independent techniques. Bio-
geosciences 8, 301309. http://dx.doi.org/10.5194/bg-8-301-2011.
Vaïtilingom, M., Deguillaume, L., Vinatier, V., Sancelme, M., Amato, P., Chaumerliac, N.,
Delort, A.-M., 2013. Potential impact of microbial activity on the oxidant capacity
and organic carbon budget in clouds. Proc. Natl. Acad. Sci. 110, 559564. http://dx.
doi.org/10.1073/pnas.1205743110.
Vali, G., Christensen, M., Fresh, R.W., Galyan, E.L., Maki, L.R., Schnell, R.C., 1976. Biogenic
ice nuclei. Part II: bacterial sources. J. Atmos. Sci. 33, 15651570. http://dx.doi.org/
10.1175/1520-0469(1976)033b1565:BINPIBN2.0.CO;2.
Valsan, A.E., Priyamvada, H., Ravikrishna, R., Després, V.R., Biju, C.V., Sahu, L.K., Kumar, A.,
Verma, R.S., Philip, L.,Gunthe, S.S., 2015. Morphological characteristics of bioaerosols
from contrasting locations in southern tropical India a case study. Atmos. Environ.
122, 321331. http://dx.doi.org/10.1016/j.atmosenv.2015.09.071.
Van Leuken, J., Swart, A., Havelaar, A., Van Pul, A., Van der Hoek, W., Heederik, D., 2016.
Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans
and livestock a review to inform risk assessment studies. Microb. Risk Anal. 1,
1939. http://dx.doi.org/10.1016/j.mran.2015.07.002.
van Wuijckhuijse, A.L., Stowers, M.A., Kleefsman, W.A., van Baar, B.L.M., Kientz, C.E.,
Marijnissen, J.C.M., 2005. Matrix-assisted laser desorption/ionisation aerosol time-
of-ight mass spectrometry for the analysis of bioaerosols: development of a fast de-
tector for airborne biological pathogens. J.Aerosol Sci. 36, 677687. http://dx.doi.org/
10.1016/j.jaerosci.2004.11.003.
Vara, A., Fernández-González, M., Aira, M.J., Rodríguez-Rajo, F.J., 2016. Fraxinus pollen and
allergen concentrations in Ourense (South-western Europe). Environ. Res. 147,
241248. http://dx.doi.org/10.1016/j.envres.2016.02.014.
Vernooy,J.H.J.,Dentener,M.A.,vanSuylen,R.J.,Buurman,W.A.,Wouters,E.M.F.,
2002. Long-term intratracheal lipopolysaccharde exposure in mice results in
chronic lung inammation and persistent pathology. Am. J. Respir. Cell Mol.
Biol. 26, 152159.
Veron, F., 2015. Ocean spray. Annu. Rev. Fluid Mech. 47, 507538. http://dx.doi.org/10.
1146/annurev-uid-010814-014651.
von Blohn,N., Mitra, S.K., Diehl, K., Borrmann, S., 2005. The ice nucleating ability of pollen:
part III: new laboratory studies in immersion and contact freezing modes including
more pollen types. Atmos. Res. 78, 182189. http://dx.doi.org/10.1016/j.atmosres.
2005.03.008.
Wainwright, M., Wickramasinghe, N.C., Narlikar, J.V., Rajaratnam, P., 2003. Microorgan-
isms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiol.
Lett. 218, 161165.
Wang,X.,Sultana,C.M.,Trueblood,J.,Hill,T.C.J.,Malfatti,F.,Lee,C.,Laskina,O.,
Moore, K.A., Beall, C.M., McCluskey, C.S., Cornwell, G.C., Zhou, Y., Cox, J.L.,
Pendergraft, M.A., Santander, M.V., Bertram, T.H., Cappa, C.D., Azam, F., DeMott,
P.J., Grassian, V.H., Prather, K.A., 2015. Microbial control of sea spray aerosol
composition:ataleoftwoblooms.ACSCent.Sci.1,124131. http://dx.doi.org/
10.1021/acscentsci.5b00148.
Warfel, J.M., Beren, J., Merkel, T.J., 2012. Airborne transmission of Bordetella pe rtussis.
J. Infect. Dis. 206, 902906. http://dx.doi.org/10.1093/infdis/jis443.
Weber, C.F., 2015. Polytrichum commune spores nucleate ice and associated microorgan-
isms increase the temperature of ice nucleation activity onset. Aerobiologia 19
http://dx.doi.org/10.1007/s10453-015-9395-1.
West, J.J., Cohen, A., Dentener, F., Brunekreef, B., Zhu, T., Armstrong, B., Bell, M.L., Brauer,
M., Carmichael, G., Costa, D.L., Dockery, D.W., Kleeman, M., Krzyzanowski, M.,
Künzli, N., Liousse, C., Lung, S.-C.C., Martin, R.V., Pöschl, U., Pope, C.A., Roberts, J.M.,
Russell, A.G., Wiedinmyer, C., 2016. What we breathe impacts our health: improving
understanding of the link between air pollution and health. Environ. Sci. Technol. 50,
48954904. http://dx.doi.org/10.1021/acs.est.5b03827.
Wheeler, A.J., Dobbin, N.A., Lyrette, N., Wallace, L., Foto, M., Mallick, R., Kearney, J., Van
Ryswyk, K., Gilbert, N.L., Harrison, I., Rispler, K., Héroux, M.-E., 2011. Residential in-
door and outdoor coarse particles and associated endotoxin exposures. Atmos. Envi-
ron. 45, 70647071. http://dx.doi.org/10.1016/j.atmosenv.2011.09.048.
Whon, T.W., Kim, M.-S., Roh, S.W., Shin, N.-R., Lee, H.-W., Bae, J.-W., 2012. Metagenomic
characterization of airborne viral DNA diversity in the near-surface atmosphere.
J. Virol. 86, 82218231. http://dx.doi.org/10.1128/JVI.00293-12.
Wiegand, C., Pugmacher, S., 2005. Ecotoxicological effects of selectedcyanobacterial sec-
ondary metabolites ashort review. Toxicol. Appl. Pharmacol. 203,201218. http://dx.
doi.org/10.1016/j.taap.2004.11.002.
Williams, J., Crutzen, P., 2013. Perspectives on our planet in the Anthropocene. Environ.
Chem. 407, 674675.
Wilske, B., Kesselmeier, J., 1999. The C1- and C2-organic acids and aldehydes exchange
between boreal lichens and the atmosphere. Phys. Chem. Earth B 24, 725732.
Wilske, B., Holzinger, R., Kesselmeier, J., 2001. Evidence for ethanolic fermentation in li-
chens during periods of high thallus water content. Symbiosis 31, 95111.
Wilson, T.W., Ladino, L.A., Alpert, P.A., Breckels, M.N., Brooks, I.M., Browse, J., Burrows,
S.M., Carslaw, K.S., Huffman, J.A., Judd, C., Kilthau, W.P., Mason, R.H., McFiggans, G.,
Miller, L.A., Nájera, J.J., Polishchuk, E., Rae, S., Schiller, C.L., Si, M., Temprado, J.V.,
Whale, T.F., Wong, J.P.S., Wurl, O., Yakobi-Hancock, J.D., Abbatt, J.P.D., Aller, J.Y.,
Bertram,A.K., Knopf, D.A.,Murray, B.J., 2015.A marine biogenic source of atmospheric
ice-nucleating particles. Nature 525, 234238. http://dx.doi.org/10.1038/
nature14986.
Wittmaack, K., Wehnes, H., Heinzmann, U., Agerer, R., 2005. An overview on bioaerosols
viewed by scanning electron microscopy. Sci. Total Environ. 346, 244255. http://
dx.doi.org/10.1016/j.scitotenv.2004.11.009.
Wolf, J., O'Neill, N.R., Rogers, C.A., Muilenberg, M.L.,Ziska, L.H., 2010. Elevated atmospheric
carbon dioxide concentrations amplify Alternariaalternata sporulation and total anti-
gen production. Environ. Health Perspect. 118, 12231228. http://dx.doi.org/10.
1289/ehp.0901867.
Womack, A.M., Artaxo, P.E., Ishida, F.Y., Mueller, R.C., Saleska, S.R., Wiedemann, K.T.,
Bohannan,B.J.M., Green, J.L.,2015. Characterization of activeand total fungal commu-
nities in the atmosphere over the Amazon rainforest. Biogeosciences 12, 63376349.
http://dx.doi.org/10.5194/bg-12-6337-2015.
Womack, A.M., Bohannan, B.J.M., Green, J.L., 2010. Biodiversity and biogeography of the
atmosphere. Philos. Trans. R. Soc. B 365, 36453653. http://dx.doi.org/10.1098/rstb.
2010.0283.
Woo, A.C., Brar, M.S., Chan, Y., Lau, M.C.Y., Leung, F.C.C., Scott, J.A., Vrijmoed, L.L.P., Zawar-
Reza, P., Pointing, S.B., 2013. Temporal variation in airborne microbial populations
and microbially-derived allergens in a tropical urban landscape. Atmos. Environ. 74,
291300. http://dx.doi.org/10.1016/j.atmosenv.2013.03.047.
Wood, S.A., Dietrich, D.R., 2011. Quantitative assessment of aerosolized cyanobacterial
toxins at two New Zealand lakes. J. Environ. Monit. 13, 1617. http://dx.doi.org/10.
1039/c1em10102a.
Wright, T.P., Hader, J.D., McMeeking, G.R., Petters, M.D., 2014. High relative humidity as a
trigger forwidespread release of ice nuclei.Aerosol Sci. Technol. 48, iv. http://dx.doi.
org/10.1080/02786826.2014.968244.
Xu, D., Zhang, Y., 2009. Generating triangulated macromolecular surfaces by Euclidean
distance transform. PLoS One 4, e8140. http://dx.doi.org/10.1371/journal.pone.
0008140.
Xu, Z., Wu, Y.,Shen, F., Chen, Q., Tan,M., Yao, M., 2011. Bioaerosol science, technology, and
engineering: past, present, and future.Aerosol Sci. Technol. 45,13371349. http://dx.
doi.org/10.1080/02786826.2011.593591.
Yadav, R.K.P., Karamanoli, K., Vokou, D., 2005. Bacterial colonization of the
phyllosphere of Mediterranean perennial species as inuenced by leaf structural
and chemical features. Microb. Ecol. 50, 185196. http://dx.doi.org/10.1007/
s00248-004-0171-y.
Yao, C., Pal Arya, S., Davis, J.M., Main, C.E., 1997. A numerical model of the transport and
diffusion of Peronospora tab acina in the evolving atmospheric boundary layer.
Atmos. Environ. 31, 17091714.
Yates, J.R., Ruse, C.I., Nakorchevsky, A., 2009. Proteomics by mass spectrometry: ap-
proaches, advances, and applications. Annu. Rev. Biomed. Eng. 11, 4979. http://dx.
doi.org/10.1146/annurev-bioeng-061008-124934.
Yooseph, S., Andrews-Pfannkoch, C., Tenney, A., McQuaid, J., Williamson, S., Thiagarajan,
M., Brami, D., Zeigler-Allen, L., Hoffman, J., Goll, J.B., Fadrosh, D., Glass, J., Adams,
M.D., Friedman, R., Venter, J.C., 2013. A metagenomic framework for the study of air-
borne microbial communities. PLoS One 8. http://dx.doi.org/10.1371/journal.pone.
0081862.
You, R., 2013. Measuring the short-term emission rates of particles in thepersonal cloud
with different clothes and activity intensities in a sealed chamber. Aerosol Air Qual.
Res. 13, 911921. http://dx.doi.org/10.4209/aaqr.2012.03.0061.
Yu, O.H.Y.,Keet, A.W.W.,Sheppard, D.C., Brewer, T., 2010. Articular aspergillosis: case re-
port and review of the literature. Int. J. Infect. Dis. 14, e433e435. http://dx.doi.org/
10.1016/j.ijid.2009.05.012.
Zeng, Q.-Y., Westermark, S.-O., Rasmuson-Lestander, A., Wang, X.-R., 2004. Detection and
quantication of Wallemia sebi in aerosols by real-time PCR, conventional PCR, and
cultivation. Appl. Environ. Microbiol. 70, 72957302. http://dx.doi.org/10.1128/
AEM.70.12.7295-7302.2004.
Zeng, Q., Westermark, S., Rasmuson-Lestander, Å., Wang, X., 2006. Detection and quanti-
cation of Cladosporium in aerosols by real-time PCR. J. Environ. Monit. 8, 153160.
http://dx.doi.org/10.1039/B509515H.
Zhang, Y., Bielory, L., Georgopoulos, P.G., 2014a. Climate change effect on Betula (birch)
and Quercus (oak) pollen seasons in the United States. Int. J. Biometeorol. 58,
909919. http://dx.doi.org/10.1007/s00484-013-0674-7.
Zhang,R.,Duhl,T.,Salam,M.T.,House,J.M.,Flagan,R.C.,Avol,E.L.,Gilliland,F.D.,Guenther,A.,
Chung, S.H., Lamb, B.K., VanReken, T.M., 2014b. Development of a regional-scale pollen
emission and transport modeling framework for investigating the impact of climate
change on allergic airway disease. Biogeosciences 11, 14611478. http://dx.doi.org/10.
5194/bg-11-1461-2014.
Zhang,Z.,Engling,G.,Zhang,L.,Kawamura,K.,Yang,Y.,Tao,J.,Zhang,R.,Chan,C.,Li,Y.,2015.
Signicant inuence of fungi on coarse carbonaceous and potassium aerosols in a trop-
ical rainforest. Environ. Res. Lett. 10, 034015. http://dx.doi.org/10.1088/1748-9326/10/
3/034015.
Zhao,F.,Elkelish,A.,Durner,J.,Lindermayr,C.,Winkler,J.B.,Ruioff,F.,Behrendt,H.,
Traidl-Hoffmann, C., Holzinger, A., Koer,W.,Braun,P.,VonToerne,C.,Hauck,
S.M.,Ernst,D.,Frank,U.,2016.Commonragweed(Ambrosia artemisiifolia L.): al-
lergenicity and molecular characterization of pollen after plant exposure to ele-
vated NO
2
. Plant Cell Environ. 39, 147164. http://dx.doi.org/10.1111/pce.
12601.
Zhou, X., Escala, W., Papapetropoulos, S., Zhai, R.G., 2010. β-N-methylamino-L-alanine in-
duces neurological decits and shortened life span in Drosophila. Toxins (Basel) 2,
26632679. http://dx.doi.org/10.3390/toxins2112663.
375J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
Ziemba, L.D., Beyersdorf, A.J., Chen, G., Corr, C.A., Crumeyrolle, S.N., Diskin, G., Hudgins, C.,
Martin, R., Mikoviny,T., Moore, R., Shook,M., Thornhill, K.L.,Winstead, E.L., Wisthaler,
A., Anderson, B.E., 2016. Airborne observations of bioaerosol over the Southeast
United States using a Wideband Integrated Bioaerosol Sensor (WIBS-4 A).
J. Geophys. Res. Atmos. http://dx.doi.org/10.1002/2015JD024669.
Ziska, L.H., Caueld, F.A., 2000. Rising CO
2
and pollen production of common ragweed
(Ambrosia artemisiifolia), a known allergy-inducing species: implications for public
health. Aust. J. Entomol. 27, 893898. http://dx.doi.org/10.1071/PP00032.
Zweifel, U.L., Hagström, Å., Holmfeldt, K., Thyrhaug, R., Geels, C., Frohn, L.M., Skjøth, C.A.,
Karlson, U.G., 2012. High bacterial 16S rRNA gene diversity above the atmospheric
boundary layer. Aerobiologia 28, 481498. http://dx.doi.org/10.1007/s10453-012-
9250-6.
376 J. Fröhlich-Nowoisky et al. / Atmospheric Research 182 (2016) 346376
... Primary biological aerosol particles (PBAP) are a subset of natural atmospheric aerosols, which are directly emitted into the atmosphere and contain complete or fragmented biological cells, for example, of algae, bacteria, fungal spores, or pollen (Deepak and Vali, 1992;Després et al., 2012;Fröhlich-Nowoisky et al., 2016). PBAP can be efficient INPs (Jayaweera and Flanagan, 1982;Pratt et al., 2009;Kanji et al., 2017;Huang et al., 2021), initiating the formation of ice crystals at temperatures above À15 C (Pöschl et al., 2010;Hoose and Möhler, 2012). ...
... Detecting and studying PBAP poses challenges due to their small fraction in the atmospheric aerosol number concentrations (Fröhlich-Nowoisky et al., 2016). Most Arctic PBAP studies rely on filter sampling with relatively low time resolution and offline analysis. ...
... Building on this prior knowledge and in the absence of airborne measurements of bacteria, fungal spores, and algae, we investigate 2 aspects more thoroughly to establish the link between observations and potential biological sources: (i) the FA size distribution and (ii) the co-occurrence of INP that are active at elevated temperatures. Biological particles have characteristic sizes (>0.5 mm) (Pöschl et al., 2010;Huffman et al., 2012;Fröhlich-Nowoisky et al., 2016), and warm INP are typically associated with PBAP (Després et al., 2012;Hartmann et al., 2020;Huang et al., 2021). Figure 7 shows the period-averaged particle size distributions of EA, FA, and HFA (panels a-c), of HFA A , HFA AB , and HFA ABC (panels d-f), and the fractions of HFA A , HFA AB , and HFA ABC (panels g-i). ...
Article
Full-text available
The Arctic is sensitive to cloud radiative forcing. Due to the limited number of aerosols present throughout much of the year, cloud formation is susceptible to the presence of cloud condensation nuclei and ice nucleating particles (INPs). Primary biological aerosol particles (PBAP) contribute to INPs and can impact cloud phase, lifetime, and radiative properties. We present yearlong observations of hyperfluorescent aerosols (HFA), tracers for PBAP, conducted with a Wideband Integrated Bioaerosol Sensor, New Electronics Option during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition (October 2019–September 2020) in the central Arctic. We investigate the influence of potential anthropogenic and natural sources on the characteristics of the HFA and relate our measurements to INP observations during MOSAiC. Anthropogenic sources influenced HFA during the Arctic haze period. But surprisingly, we also found sporadic “bursts” of HFA with the characteristics of PBAP during this time, albeit with unclear origin. The characteristics of HFA between May and August 2020 and in October 2019 indicate a strong contribution of PBAP to HFA. Notably from May to August, PBAP coincided with the presence of INPs nucleating at elevated temperatures, that is, >−9°C, suggesting that HFA contributed to the “warm INP” concentration. The air mass residence time and area between May and August and in October were dominated by the open ocean and sea ice, pointing toward PBAP sources from within the Arctic Ocean. As the central Arctic changes drastically due to climate warming with expected implications on aerosol–cloud interactions, we recommend targeted observations of PBAP that reveal their nature (e.g., bacteria, diatoms, fungal spores) in the atmosphere and in relevant surface sources, such as the sea ice, snow on sea ice, melt ponds, leads, and open water, to gain further insights into the relevant source processes and how they might change in the future.
... Biodiversity controls how ecosystems absorb pollutants, store carbon, or provide numerous natural resources. The regulation of water, gas, and energy fluxes, and the release and absorption of primary emitted particles (Fröhlich-Nowoisky et al., 2016;Sanaei et al., 2023) by functional and structural diversity and landscape heterogeneity, contributes to the regulation of land-surface climate feedbacks and can thereby affect local to global climate (Beugnon et al., 2024;Bonan, 2008;Duveiller et al., 2021;Graf et al., 2020;Miralles et al., 2019;Santanello et al., 2018;Ukkola et al., 2018). changes amplify the risk of weather and climate-related extremes? ...
... For example, BVOCs can initiate the formation of biological secondary organic aerosols (BSOA), altering the cloud condensation nuclei and possibly the ice nucleation properties of particles (Lehtipalo et al., 2018;Riccobono et al., 2014;Riipinen et al., 2011). Primary biogenic particles such as pollen, plant debris, spores and bacteria can additionally foster the heterogeneous freezing of super-cooled cloud droplets by acting as icenucleating particles at warmer temperatures than in their absence (Fröhlich-Nowoisky et al., 2016;Kretzschmar et al., 2023;O'Sullivan et al., 2018;Steinke et al., 2020). Since rain is predominantly formed via icecontaining clouds (Mülmenstädt et al., 2015), this implies more frequent rain above pollen-emitting forests (Kretzschmar et al., 2023). ...
Article
Full-text available
Climate extremes are on the rise. Impacts of extreme climate and weather events on ecosystem services and ultimately human well‐being can be partially attenuated by the organismic, structural, and functional diversity of the affected land surface. However, the ongoing transformation of terrestrial ecosystems through intensified exploitation and management may put this buffering capacity at risk. Here, we summarize the evidence that reductions in biodiversity can destabilize the functioning of ecosystems facing climate extremes. We then explore if impaired ecosystem functioning could, in turn, exacerbate climate extremes. We argue that only a comprehensive approach, incorporating both ecological and hydrometeorological perspectives, enables us to understand and predict the entire feedback system between altered biodiversity and climate extremes. This ambition, however, requires a reformulation of current research priorities to emphasize the bidirectional effects that link ecology and atmospheric processes.
... Certain pathogenic or opportunistic pathogens, as well as allergens, pose potential risks to human health (Shammi et al., 2021;Shen & Yao, 2023). Furthermore, the proliferation of plant and animal pathogens could compromise ecosystem security (Fröhlich-Nowoisky et al., 2016;Wang et al., 2021). Current research predominantly concentrates on the fungal community composition and concentration , particle size distribution (Shen et al., 2022), potential source, potential impact of air pollution, seasonal dynamics, meteorological change, and long-distance transmission on community structure (Cáliz et al., 2018;Qi et al., 2020), highlighting the atmospheric environment and public health implications of fungal aerosols. ...
Article
Full-text available
Fungal aerosols, as significant biocomponents of inhalable particulate matter, encompass a variety of allergens and pathogens. However, comprehensive knowledge regarding their composition, sources, and opportunistic pathogens present in severe air pollution remains limited. In this study, PM2.5 samples were collected from January to March 2018 in a northern Chinese city, during the winter heating and spring sandstorm seasons. The fungal community characteristics within three distinct haze and haze‐dust composite pollution were examined. The concentration of fungal aerosols was found to be significantly higher in dust samples. This was evidenced by a strong positive correlation with Ca²⁺, temperature, and wind speed (p < 0.05). Human and animal pathogens, such as Candida, were more prevalent in haze samples. Conversely, allergens and plant pathogens, like Alternaria, were found in higher concentration in dust samples. The primary ecological function shifted from being saprophytic to becoming human‐animal pathogenic or plant‐animal pathogenic. This shift was observed from non‐pollution, haze, to haze‐dust composite pollution. The dispersion of fungal aerosols was influenced by factors such as dust events and meteorological conditions, including increased temperature and wind speed. In the spring dust episodes, dust‐related pollutants, such as soil Ca²⁺ and PM10, accounted for 51.39% of the variation in the fungal community. This research explored the dynamics of fungal communities, potential pathogens, and factors influencing fungal communities in regional air pollution. The insights garnered from this research provide a robust foundation for subsequent human health exposure assessments.
Preprint
Full-text available
The Planetary Boundary Layer (PBL) is the lowest layer of the atmosphere that interacts with the Earth’s surface, and all major meteorology happens within this layer. This paper investigates the simulation of PBL Height (PBLH) and its sensitivity to meteorological parameters as a driver of aerosol dispersion and transport. Four simulations at 6 Km resolution using the Weather Research and Forecasting (WRF) model are run with two PBL schemes (ACM2 and YSU) combined with two Microphysics schemes (LIN and Morrison) for the year 2015 over the European domain. The simulated PBLH and other meteorological parameters that drive the PBL genesis, like temperature and wind speed, are analysed seasonally. In addition to the domain, a few locations from European Aerosol Lidar Network (EARLINET) representing various topography across the domain are chosen for analysis. The model performance in simulating the PBLH, temperature, and wind are examined using various statistical metrics involved in the Taylor diagram and Standard Deviation Error (STDE) methods. The study illustrates the comparisons of model performances for each variable over the domain and at selected station locations near the surface as well as the interfacial layer. We analyze how high (often overestimated) wind speeds affect the development of the Planetary Boundary Layer (PBL), particularly in complex terrains, on a seasonal scale. Our findings attribute unbalanced wind dynamics as a significant factor in this process. The STDE of microphysics schemes combination with YSU scheme shows a relatively 8-20% lesser error than other combinations across the seasons. Despite encountering notable errors over complex terrains, the YSU PBL scheme has performed better due to its ability to handle a wide range of atmospheric conditions.
Article
The scientific community warns that our impact on planet Earth is so acute that we are crossing several of the planetary boundaries that demarcate the safe operating space for humankind. Besides, there is mounting evidence of serious effects on people’s health derived from the ongoing environmental degradation. Regarding human health, the spread of antibiotic resistant bacteria is one of the most critical public health issues worldwide. Relevantly, antibiotic resistance has been claimed to be the quintessential One Health issue. The One Health concept links human, animal, and environmental health, but it is frequently only focused on the risk of zoonotic pathogens to public health or, to a lesser extent, the impact of contaminants on human health, i.e., adverse effects on human health coming from the other two One Health “compartments”. It is recurrently claimed that antibiotic resistance must be approached from a One Health perspective, but such statement often only refers to the connection between the use of antibiotics in veterinary practice and the antibiotic resistance crisis, or the impact of contaminants (antibiotics, heavy metals, disinfectants, etc.) on antibiotic resistance. Nonetheless, the nine Earth-system processes considered in the planetary boundaries framework can be directly or indirectly linked to antibiotic resistance. Here, some of the main links between those processes and the dissemination of antibiotic resistance are described. The ultimate goal is to expand the focus of the One Health concept by pointing out the links between critical Earth-system processes and the One Health quintessential issue, i.e., antibiotic resistance.
Article
Microorganisms released into the atmosphere by various disturbances can travel significant distances before depositing, yet their impact on community assembly remains unclear. To address this, we examined atmospheric and lithospheric bacterial communities in 179 samples collected at two distinct Icelandic volcanic sites: a small volcanic island Surtsey, and a volcanic highland Fimmvörðuháls using 16S rRNA amplicon sequencing. Airborne microbial communities were similar between sites while significant differences emerged in the communities on lava rocks after 1-year exposure. SourceTracker analysis revealed distinct bacterial populations in the atmosphere and the lava rocks with surrounding soil contributed more significantly to lava rock microbial composition. Nevertheless, shared genera among air, rocks, and local sources, suggested potential exchange between these environments. The prevalent genera shared between rocks and potential sources exhibited stress-resistant properties, likely helping their survival during air transportation and facilitating their colonization of the rocks. We hypothesize that the atmosphere serves as a conduit for locally sourced microbes and stress-resistant distant-sourced microbes. Additionally, bacterial communities on the lava rocks of Fimmvörðuháls showed remarkable similarity after 1 and 9 years of exposure, suggesting rapid establishment. Our study reveals that atmospheric deposition significantly influences bacterial community formation, potentially influencing ecosystem dynamics and microbial communities’ resilience.
Article
Full-text available
Bioaerosol samples are characterized by very low biomass, so culture-based detection remains a reliable and acceptable technique to identify and quantify microbes present in these samples. The process typically involves the generation of bacterial colonies by inoculating the sample on an agar plate, followed by the identification of colonies through DNA sequencing of a PCR-amplified targeted gene. The Sanger method is often the default choice for sequencing, but its application might be limited in identifying multi-species microbial colonies that could potentially form from bacterial aggregates present in bioaerosols. In this work, we compared Sanger and MinION nanopore sequencing techniques in identifying bioaerosol-derived bacterial colonies using 16S rRNA gene analysis. We found that for five out of the seven colonies examined, both techniques indicated the presence of the same bacterial genus. For one of the remaining colonies, a noisy Sanger electropherogram failed to generate a meaningful sequence, but nanopore sequencing identified it to be a mix of two bacterial genera. For the other remaining colony, the Sanger sequencing suggested a single genus with a high sequence alignment and clean electropherogram; however, the nanopore sequencing suggested the presence of a second less abundant genus. These findings were further corroborated using mock colonies, where nanopore sequencing was found to be a superior method in accurately classifying individual bacterial components in mock multispecies colonies. Our results show the advantage of using nanopore sequencing over the Sanger method for culture-based analysis of bioaerosol samples, where direct inoculation to a culture plate could lead to the formation of multispecies colonies.
Article
Full-text available
Inorganic soil materials (Isono et al., 1959; Mason, 1960) and extraterrestrial meteoritic particles (Bowen, 1956; Bigg, 1963) have been suggested as possible sources of atmospheric ice nuclei which play important roles in the production of precipitation. DOI: 10.1111/j.2153-3490.1975.tb01682.x
Article
The frequent discrepancy between direct microscopic counts and numbers of culturable bacteria from environmental samples is just one of several indications that we currently know only a minor part of the diversity of microorganisms in nature. A combination of direct retrieval of rRNA sequences and whole-cell oligonucleotide probing can be used to detect specific rRNA sequences of uncultured bacteria in natural samples and to microscopically identify individual cells. Studies have been performed with microbial assemblages of various complexities ranging from simple two-component bacterial endosymbiotic associations to multispecies enrichments containing magnetotactic bacteria to highly complex marine and soil communities. Phylogenetic analysis of the retrieved rRNA sequence of an uncultured microorganism reveals its closest culturable relatives and may, together with information on the physicochemical conditions of its natural habitat, facilitate more directed cultivation attempts. For the analysis of complex communities such as multispecies biofilms and activated-sludge flocs, a different approach has proven advantageous. Sets of probes specific to different taxonomic levels are applied consecutively beginning with the more general and ending with the more specific (a hierarchical top-to-bottom approach), thereby generating increasingly precise information on the structure of the community. Not only do rRNA-targeted whole-cell hybridizations yield data on cell morphology, specific cell counts, and in situ distributions of defined phylogenetic groups, but also the strength of the hybridization signal reflects the cellular rRNA content of individual cells. From the signal strength conferred by a specific probe, in situ growth rates and activities of individual cells might be estimated for known species. In many ecosystems, low cellular rRNA content and/or limited cell permeability, combined with background fluorescence, hinders in situ identification of autochthonous populations. Approaches to circumvent these problems are discussed in detail.
Article
The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase. Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world. Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health. The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world. Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases. Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual’s response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend only on the increased production of air pollution, but rather on atmospheric factors that favour the accumulation of air pollutants at ground level. Considering these aspects governments worldwide and international organizations such as the World Health Organization and the European Union are facing a growing problem of the respiratory effects induced by gaseous and particulate pollutants arising from motor vehicle emissions.
Article
The production of potent toxins by bloom-, scum- and mat-forming cyanobacteria, in fresh-, brackish and marine waters, appears to be a global phenomenon. Cyanobacterial toxins can also be produced by cyanobacteria from terrestrial sources. The range and number of known cyanobacterial toxins are increasing apace as associated poisoning incidents are investigated, and increasingly powerful analytical methods are applied to complement toxicity-based studies on both natural samples and laboratory isolates of cyanobacteria. Water quality management to reduce toxic cyanobacterial mass developments, and schemes to mitigate the potential effects of cyanobacterial toxins, require an understanding of the occurrence and properties of the toxins and of the exposure routes via which the toxins present risks to health. Here, we review advances in the recognition of cyanobacterial toxins and their toxicity, and of the exposure routes with reference to human health, namely via skin contact, inhalation, haemodialysis and ingestion (the oral route).
Article
The population structure of the chestnut blight fungus, Cryphonectria parasitica was analyzed using restriction fragment length polymorphisms (RFLPs). A total of 791 isolates were sampled from four regions, China, Japan, North America and Europe, and assayed for alleles at eight RFLP loci. Alleles at all eight loci segregated in simple Mendelian ratios, and most loci were unlinked. Gene diversity was decomposed hierarchically: 56% of gene diversity was attributable to diversity within subpopulations, compared to 7% among subpopulations within regions, and 37% among regions. Subpopulations of C. parasitica in China have distinctly different allele frequencies from subpopulations in other regions, including Japan. DNA fingerprint genotypes in China were also significandy different from those in the other regions. There was an average of 3.2 restriction fragments hybridizing to a DNA fingerprinting probe in Chinese isolates from 11 subpopulations compared to 8.6 in isolates from Japan; the exception was in one subpopulation in northeastern China where there was an average of 11.1 fragments per isolate. North American and European subpopulations were similar to each other, and more similar to Japan than to China, for both RFLP allele frequencies and DNA fingerprints. The results suggest that C. parasitica was introduced into North America from Japan, not China. The origin of C. parasitica for European subpopulations cannot be determined from these results, but eastern China was not a likely source. Analysis of population structure within China showed moderate differentiation, with 11% of gene diversity attributable to differences among subpopulations (ĜST = 0.11). Pairwise estimates of gene flow between sub-populations were negatively correlated to geographic distances between subpopulations in China. This result suggests that Chinese populations are in equilibrium, and that restricted gene flow and genetic drift shape these populations.