J. Christensen-Dalsgaard

J. Christensen-Dalsgaard
Aarhus University | AU · Department of Physics and Astronomy

About

774
Publications
74,550
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
51,760
Citations

Publications

Publications (774)
Article
Full-text available
Solar-like oscillations have been detected in thousands of stars thanks to modern space missions. These oscillations have been used to measure stellar masses and ages, which have been widely applied in Galactic archeology. One of the pillars of such applications is the ν max scaling relation: the frequency of maximum power ν max , assumed to be pro...
Article
Full-text available
The theoretical oscillation frequencies of even the best asteroseismic models of solar-like oscillators show significant differences from observed oscillation frequencies. Structure inversions seek to use these frequency differences to infer the underlying differences in stellar structure. While used extensively to study the Sun, structure inversio...
Article
Full-text available
Hawking proposed that the Sun may harbor a primordial black hole (BH) whose accretion supplies some of the solar luminosity. Such an object would have formed within the first 1 s after the Big Bang with the mass of a moon or an asteroid. These light BHs are a candidate solution to the dark matter problem, and could grow to become stellar-mass BHs i...
Preprint
Full-text available
Gravity-mode asteroseismology has significantly improved our understanding of mixing in intermediate mass stars. However, theoretical pulsation periods of stellar models remain in tension with observations, and it is often unclear how the models of these stars should be further improved. Inversions provide a path forward by directly probing the int...
Article
Nuclear reaction rates are a fundamental yet uncertain ingredient in stellar evolution models. The astrophysical S-factor pertaining to the initial reaction in the proton–proton chain is uncertain at the 1% level, which contributes a systematic but generally unpropagated error of similar order in the theoretical ages of stars. In this work, we stud...
Preprint
Full-text available
Nuclear reaction rates are a fundamental yet uncertain ingredient in stellar evolution models. The astrophysical S-factor pertaining to the initial reaction in the proton-proton chain is uncertain at the 1% level, which contributes a systematic but generally unpropagated error of similar order in the theoretical ages of stars. In this work, we stud...
Article
Convective-core overshoot mixing is a significant uncertainty in stellar evolution. Because numerical simulations and turbulent convection models predict exponentially decreasing radial rms turbulent velocity, a popular treatment of the overshoot mixing is to apply a diffusion process with exponentially decreasing diffusion coefficient. It is impor...
Preprint
Full-text available
Convective-core overshoot mixing is a significant uncertainty in stellar evolution. Because numerical simulations and turbulent convection models predict exponentially decreasing radial rms turbulent velocity, a popular treatment of the overshoot mixing is to apply a diffusion process with exponentially decreasing diffusion coefficient. It is impor...
Preprint
Full-text available
The TESS space telescope is collecting continuous, high-precision optical photometry of stars throughout the sky, including thousands of RR Lyrae stars. In this paper, we present results for an initial sample of 118 nearby RR Lyrae stars observed in TESS Sectors 1 and 2. We use differential-image photometry to generate light curves and analyse thei...
Article
Asteroseismic measurements enable inferences of the underlying stellar structure, such as the density and the speed of sound at various points within the interior of the star. This provides an opportunity to test stellar evolution theory by assessing whether the predicted structure of a star agrees with the measured structure. Thus far, this kind o...
Article
Full-text available
The Sun provides a critical benchmark for the general study of stellar structure and evolution. Also, knowledge about the internal properties of the Sun is important for the understanding of solar atmospheric phenomena, including the solar magnetic cycle. Here I provide a brief overview of the theory of stellar structure and evolution, including th...
Preprint
We present occurrence rates for rocky planets in the habitable zones (HZ) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define $\eta_\oplus$ as the HZ occurrence of p...
Article
Full-text available
We present occurrence rates for rocky planets in the habitable zones (HZ) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define η⊕ as the HZ occurrence of planets with...
Article
Detailed modelling of stellar oscillations is able to give precise estimates for stellar ages, but the inferred results typically depend on the adopted model parameters used for the age inference. High-quality asteroseismic data with precise measurements of mixed modes are available for 36 Kepler subgiants. To obtain a handle on the robustness of t...
Article
Full-text available
The Transiting Exoplanet Survey Satellite (TESS) is an all-sky survey mission aiming to search for exoplanets that transit bright stars. The high-quality photometric data of TESS are excellent for the asteroseismic study of solar-like stars. In this work, we present an asteroseismic analysis of the red-giant star HD 222076 hosting a long-period (2....
Preprint
Detailed modelling of stellar oscillations is able to give precise estimates for stellar ages, but the inferred results typically depend on the adopted model parameters used for the age inference. High-quality asteroseismic data with precise measurements of mixed modes are available for 36 Kepler subgiants. To obtain a handle on the robustness of t...
Preprint
Full-text available
The Transiting Exoplanet Survey Satellite (TESS) is an all-sky survey mission aiming to search for exoplanets that transit bright stars. The high-quality photometric data of TESS are excellent for the asteroseismic study of solar-like stars. In this work, we present an asteroseismic analysis of the red-giant star HD~222076 hosting a long-period (2....
Article
Full-text available
Over the course of its history, the Milky Way has ingested multiple smaller satellite galaxies1. Although these accreted stellar populations can be forensically identified as kinematically distinct structures within the Galaxy, it is difficult in general to date precisely the age at which any one merger occurred. Recent results have revealed a popu...
Article
Full-text available
Since the onset of the "space revolution" of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archeology investigations. The launch of the NASA Transiting Exoplanet Survey Satellite (TESS) mission has enabled seismic-based inferences to go full sky-providing a clear advantage f...
Preprint
Full-text available
Over the course of its history, the Milky Way has ingested multiple smaller satellite galaxies. While these accreted stellar populations can be forensically identified as kinematically distinct structures within the Galaxy, it is difficult in general to precisely date the age at which any one merger occurred. Recent results have revealed a populati...
Book
These are the proceedings of a meeting celebrating Michael Thompson's seminal work on solar and stellar physics, as well as his major contributions to the development of the National Center for Atmospheric Research. The meeting also marked Michael J. Thompson’s untimely death in October 2018. Michael played a key role in the development of heliosei...
Preprint
Full-text available
Since the onset of the `space revolution' of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archaeology investigations. The launch of the NASA TESS mission has enabled seismic-based inferences to go full sky -- providing a clear advantage for large ensemble studies of the dif...
Article
We investigate the variation of the gravitational constant G over the history of the universe by modeling the effects on the evolution and asteroseismology of the low-mass star KIC 7970740, which is one of the oldest (∼11 Gyr) and best-observed solar-like oscillators in the Galaxy. From these data we find G ˙ / G = ( 1.2 ± 2.6 ) × 10 − 12 yr − 1 ,...
Article
The goal of stellar evolution theory is to predict the structure of stars throughout their lifetimes. Usually, these predictions can be assessed only indirectly, for example by comparing predicted and observed effective temperatures and luminosities. Thanks now to asteroseismology, which can reveal the internal structure of stars, it becomes possib...
Article
Full-text available
The Transiting Exoplanet Survey Satellite ( TESS ) is performing a near all-sky survey for planets that transit bright stars. In addition, its excellent photometric precision enables asteroseismology of solar-type and red-giant stars, which exhibit convection-driven, solar-like oscillations. Simulations predict that TESS will detect solar-like osci...
Article
Models of stellar structure and evolution are an indispensable tool in astrophysics, yet they are known to incorrectly reproduce the outer convective layers of stars. In the first paper of this series, we presented a novel procedure to include the mean structure of 3D hydrodynamical simulations on-the-fly in stellar models, and found it to signific...
Preprint
Models of stellar structure and evolution are an indispensable tool in astrophysics, yet they are known to incorrectly reproduce the outer convective layers of stars. In the first paper of this series, we presented a novel procedure to include the mean structure of 3D hydrodynamical simulations on-the-fly in stellar models, and found it to signific...
Preprint
The goal of stellar evolution theory is to predict the structure of stars throughout their lifetimes. Usually, these predictions can be assessed only indirectly, for example by comparing predicted and observed effective temperatures and luminosities. Thanks now to asteroseismology, which can reveal the internal structure of stars, it becomes possib...
Preprint
Full-text available
The Transiting Exoplanet Survey Satellite (TESS) is performing a near all-sky survey for planets that transit bright stars. In addition, its excellent photometric precision enables asteroseismology of solar-type and red-giant stars, which exhibit convection-driven, solar-like oscillations. Simulations predict that TESS will detect solar-like oscill...
Article
2019. The American Astronomical Society. All rights reserved.. We present the discovery of HD 221416 b, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. HD 221416 b (HIP 116158, TOI-197) is a bright (V = 8.2 mag), spectroscopically classified subgiant...
Article
Full-text available
Measures of exoplanet bulk densities indicate that small exoplanets with radius less than 3 Earth radii ($R_\oplus$) range from low-density sub-Neptunes containing volatile elements to higher density rocky planets with Earth-like or iron-rich (Mercury-like) compositions. Such astonishing diversity in observed small exoplanet compositions may be the...
Article
We present the target list of solar-type stars to be observed in short-cadence (2 minute) for asteroseismology by the NASA Transiting Exoplanet Survey Satellite (TESS) during its 2 year nominal survey mission. The solar-like Asteroseismic Target List (ATL) is comprised of bright, cool main-sequence and subgiant stars and forms part of the larger ta...
Article
We model the oscillations of the SONG target |$\mu$| Herculis to estimate the parameters of the star. The ℓ = 1 mixed modes of |$\mu$| Her provide strong constraints on stellar properties. The mass and age given by our asteroseismic modelling are 1.10|$^{+0.11}_{-0.06}$| M⊙ and 7.55|$^{+0.96}_{-0.79}$| Gyr, respectively. The initial helium abundanc...
Article
Data from the newly commissioned Transiting Exoplanet Survey Satellite has revealed a "hot Earth" around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of 1.303 ± 0.022 R⊕ and orbits the star every 11 hr. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough (I...
Preprint
SONG aims at setting up a network of small 1m telescopes around the globe to observe stars uninterrupted throughout days, weeks and even months. This paper describes the fundamental aspects for putting up such a network and how we will operate each site as part of the full network. The SONG observatories will be working autonomously and automatic a...
Preprint
Full-text available
Asteroseismic analysis of solar-like stars allows us to determine physical parameters such as stellar mass, with a higher precision compared to most other methods. Even in a well-studied cluster such as the Hyades, the masses of the red giant stars are not well known, and previous mass estimates are based on model calculations (isochrones). The fou...
Article
Full-text available
We report the detection of a transiting planet around π Men (HD 39091), using data from the Transiting Exoplanet Survey Satellite (TESS). The solar-type host star is unusually bright (V = 5.7) and was already known to host a Jovian planet on a highly eccentric, 5.7 yr orbit. The newly discovered planet has a size of 2.04 ± 0.05 R⊕ and an orbital pe...
Preprint
We model the oscillations of the SONG target $\mu$ Herculis to estimate the parameters of the star. The $\ell$ = 1 mixed modes of $\mu$ Her provide strong constraints on stellar properties. The mass and age given by our asteroseismic modelling are 1.10$^{+0.11}_{-0.06}$ M$_{\odot}$ and 7.55$^{+0.96}_{-0.79}$ Gyr. The initial helium abundance is als...
Preprint
We present a comparison between Monte Carlo simulations and a semi-analytical approach that reproduces the theoretical probability distribution functions of the solar neutrino fluxes, stemming from the $pp$, $pep$, $hep$, $^7\mathrm{Be}$, $^8\mathrm{B}$, $^{13}\mathrm{N}$, $^{15}\mathrm{O}$, and $^{17}\mathrm{F}$ source reactions. We obtain good ag...
Preprint
Standard 1D stellar evolution models do not correctly reproduce the structure of the outermost layers of stars with convective envelopes. This has been a long-standing problem in stellar modelling affecting both the predicted evolutionary paths and the attributed oscillation frequencies, and indirectly biasing numerous quantities derived from stell...
Article
Stellar evolution codes play a major role in present-day astrophysics, yet they share common simplifications related to the outer layers of stars. We seek to improve on this by the use of results from realistic and highly detailed 3D hydrodynamics simulations of stellar convection. We implement a temperature stratification extracted directly from t...
Preprint
Full-text available
The Stellar Observation Network Group (SONG) is an initiative to build a worldwide network of 1m telescopes with highprecision radial-velocity spectrographs. Here we analyse the first radial-velocity time series of a red-giant star measured by the SONG telescope at Tenerife. The asteroseismic results demonstrate a major increase in the achievable p...
Article
Context. The Stellar Observation Network Group (SONG) is an initiative to build a worldwide network of 1m telescopes with high-precision radial-velocity spectrographs. Here we analyse the first radial-velocity time series of a red-giant star measured by the SONG telescope at Tenerife. The asteroseismic results demonstrate a major increase in the ac...
Article
Full-text available
We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching four years of Kepler time series photometry (Data Release 25, Q1--Q17). The catalog contains 8054 KOIs of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new in this catalog and include two new can...
Article
HARPS-N spectra with S/N > 250 and MARCS model atmospheres were used to derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B) selected to have metallicities in the range -0.15 < [Fe/H] < +0.15 and ages between 1 and 7 Gyr. Stellar gravities were...
Article
To better understand how planets form, it is important to study planet occurrence rates as a function of stellar mass. However, estimating masses of field stars is often difficult. Over the past decade, a controversy has arisen about the inferred occurrence rate of gas-giant planets around evolved intermediate-mass stars -- the so-called `retired A...
Article
I present evolutionary tracks and curves of constant central hydrogen abundance in diagrams based on frequencies of high-order, low-degree p modes. For stars with masses between 0.7 and 1.5 M ⊙ , a clean separation is obtained between the effects of varying mass and varying evolutionary state.
Article
The purpose of the present paper is to give an introduction to the nomenclature, and a few of the results, of helio- and asteroseismology. It is hoped that this may provide a useful background for the more specialized reviews, and the contributed papers, in these proceedings. Other recent, general reviews are, e.g. , Deubner & Gough (1984), Leibach...
Article
Deciphering the assembly history of the Milky Way is a formidable task, which becomes possible only if one can produce high-resolution chrono-chemo-kinematical maps of the Galaxy. Data from large-scale astrometric and spectroscopic surveys will soon provide us with a well-defined view of the current chemo-kinematical structure of the Milky Way, but...
Article
We present results of an on-going effort to identify the minimum level of systematic, purely numerical differences in low-mass stellar models on the Red Giant Branch, by comparing models in selected phases for pre-defined physical input assumptions.
Article
High-precision abundances of elements have been derived from HARPS-N spectra of F and G main-sequence stars having ages determined from oscillation frequencies delivered by the Kepler mission. The tight relations between abundance ratios of refractory elements, e.g., [Mg/Fe] and [Y/Mg], and stellar age previously found for solar twin stars are conf...
Article
Full-text available
The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-interrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars,...
Article
Full-text available
Deciphering the assembly history of the Milky Way is a formidable task, which becomes possible only if one can produce high-resolution chrono-chemo-kinematical maps of the Galaxy. Data from large-scale astrometric and spectroscopic surveys will soon provide us with a well-defined view of the current chemo-kinematical structure of the Milky Way, but...
Article
Stellar evolution models are most uncertain for evolved massive stars. Asteroseismology based on high-precision uninterrupted space photometry has become a new way to test the outcome of stellar evolution theory and was recently applied to a multitude of stars, but not yet to massive evolved supergiants.Our aim is to detect, analyse and interpret t...
Article
The edge of a convective region inside a star gives rise to a characteristic periodic signal in the frequencies of its global p-modes (e.g. [1], [4]), such that the frequencies ω are then essentially a smooth function of the mode order n plus a periodic component . Here the amplitude is , with A 1 and A 2 being values that depend weakly on frequenc...
Article
We report the first asteroseismic results obtained with the Hertzsprung SONG Telescope from an extensive high-precision radial-velocity observing campaign of the subgiant muHerculis. The data set was collected during 215 nights in 2014 and 2015. We detected a total of 49 oscillation modes with l values from 0 to 3, including some l = 1 mixed modes....
Article
Full-text available
We present results of modelling of α Cen A. In order to estimate the physical parameters of this star, we modelled spectroscopic, interferometric, astrometric and asteroseismic data. To that effect we chose to use a Bayesian approach to parameter estimation, which allowed us, in particular, to define our prior knowledge on the parameters. An import...
Article
Full-text available
The LEGACY sample represents the best solar-like stars observed in the Kepler mission[5, 8]. The 66 stars in the sample are all on the main sequence or only slightly more evolved. They each have more than one year's observation data in short cadence, allowing for precise extraction of individual frequencies. Here we present model fits using a modif...
Article
Full-text available
The growing amount of seismic data available from space missions (SOHO, CoRoT, Kepler, SDO,…) but also from ground-based facilities (GONG, BiSON, ground-based large programmes…), stellar modelling and numerical simulations, creates new scientific perspectives such as characterizing stellar populations in our Galaxy or planetary systems by providing...
Article
Full-text available
The advent of space-based missions like $Kepler$ has revolutionized the study of solar-type stars, particularly through the measurement and modeling of their resonant modes of oscillation. Here we analyze a sample of 66 $Kepler$ main-sequence stars showing solar-like oscillations as part of the $Kepler$ seismic LEGACY project. We use $Kepler$ short...
Article
Full-text available
We use asteroseismic data from the Kepler satellite to determine fundamental stellar properties of the 66 main-sequence targets observed for at least one full year by the mission. We distributed tens of individual oscillation frequencies extracted from the time series of each star among seven modelling teams who applied different methods to determi...
Article
We analyse the effect on adiabatic stellar oscillation frequencies of replacing the near-surface layers in 1D stellar structure models with averaged 3D stellar surface convection simulations. The main difference is an expansion of the atmosphere by 3D convection, expected to explain a major part of the asteroseismic surface effect; a systematic ove...
Article
Full-text available
Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulatio...
Article
Full-text available
The Transiting Exoplanet Survey Satellite (TESS) is a NASA Astrophysics Explorer mission. Following its scheduled launch in 2017, TESS will focus on detecting exoplanets around the nearest and brightest stars in the sky, for which detailed follow-up observations are possible. TESS will, as the NASA Kepler mission, include a asteroseismic program th...
Article
The physical parameters of the retired A star HD 185351 were analysed in great detail by Johnson et al. (2014) using interferometry, spectroscopy and asteroseismology. Results from all independent methods are consistent with HD 185351 having a mass in excess of 1.5M⊙. However, the study also showed that not all observational constraints could be re...
Article
Binary star systems are important for understanding stellar structure and evolution, and are especially useful when oscillations can be detected and analysed with asteroseismology. However, only four systems are known in which solar-like oscillations are detected in both components. Here, we analyse the fifth such system, HD 176465, which was obser...
Article
Adiabatic oscillation frequencies of stellar models, computed with the standard mixing-length formulation for convection, increasingly deviate with radial order from observations in solar-like stars. Standard solar models overestimate adiabatic frequencies by as much as ~ 20 {\mu}Hz. In this letter, we address the physical processes of turbulent co...
Article
We present an asteroseismic analysis of 33 solar-type stars observed in short cadence during Campaigns (C) 1-3 of the NASA K2 mission. We were able to extract both average seismic parameters and individual mode frequencies for stars with dominant frequencies up to ~3300{\mu}Hz, and we find that data for some targets are good enough to allow for a m...
Article
New insights on stellar evolution and stellar interiors physics are being made possible by asteroseismology. Throughout the course of the Kepler mission, asteroseismology has also played an important role in the characterization of exoplanet-host stars and their planetary systems. The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will...
Article
Full-text available
\theta$ Cygni is an F3 spectral-type main-sequence star with visual magnitude V=4.48. This star was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were obtained during Quarter 6 (June-September 2010) and subsequently in Quarters 8 and 12-17. We present analyses...
Article
In this brief communication we provide the rationale for, and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIX-th General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of establishe...
Article
Context: Detailed oscillation spectra comprising individual frequencies for numerous solar-type stars and red giants are or will become available. These data can lead to a precise characterisation of stars. Aims: Our goal is to test and compare different methods for obtaining stellar properties from oscillation frequencies and spectroscopic constra...
Article
High-quality astrometric, spectroscopic, interferometric and, importantly, asteroseismic observations are available for α Cen A, which is the closest binary star system to earth. Taking all these constraints into account, we study the internal structure of the star by means of theoretical modelling. Using the Aarhus STellar Evolution Code (ASTEC) a...
Article
Full-text available
Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photo-evaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection. Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates obs...
Data
Supplementary Table 1 and Supplementary References.
Article
The angle ψ between a planet's orbital axis and the spin axis of its parent star is an important diagnostic of planet formation, migration, and tidal evolution. We seek empirical constraints on ψ by measuring the stellar inclination is via asteroseismology for an ensemble of 25 solar-type hosts observed with NASA's Kepler satellite. Our results for...
Article
Almost 100 years ago Sir Arthur Eddington noted that the interiors of stars were inaccessible to observations. The advent of helio- and asteroseismology has completely changed this assessment. Helioseismology has provided very detailed information about the interior structure and dynamics of the Sun, highlighting remaining issues in our understandi...
Article
Dipole mixed pulsation modes of consecutive radial order have been detected for thousands of low-mass red-giant stars with the NASA space telescope Kepler. Such modes have the potential to reveal information on the physics of the deep stellar interior. Different methods have been proposed to derive an observed value for the gravity-mode period spac...
Article
Full-text available
Stellar models provide a vital basis for many aspects of astronomy and astrophysics. Recent advances in observational astronomy -- through asteroseismology, precision photometry, high-resolution spectroscopy, and large-scale surveys -- are placing stellar models under greater quantitative scrutiny than ever. The model limitations are being exposed...
Article
Full-text available
Kepler-454 (KOI-273) is a relatively bright (V = 11.69 mag), Sun-like starthat hosts a transiting planet candidate in a 10.6 d orbit. From spectroscopy, we estimate the stellar temperature to be 5687 +/- 50 K, its metallicity to be [m/H] = 0.32 +/- 0.08, and the projected rotational velocity to be v sin i <2.4 km s-1. We combine these values with a...
Article
Full-text available
In this paper we study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from {\it Kepler} observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure which involves a combinat...
Article
Full-text available
Kepler has revolutionized our understanding of both exoplanets and their host stars. Asteroseismology is a valuable tool in the characterization of stars and Kepler is an excellent observing facility to perform asteroseismology. Here we select a sample of 35 Kepler solar-type stars which host transiting exoplanets (or planet candidates) with detect...
Article
Full-text available
Astronomers commonly quote the properties of celestial objects in units of parameters for the Sun, Jupiter, or the Earth. The resolution presented here was proposed by the IAU Inter-Division Working Group on Nominal Units for Stellar and Planetary Astronomy and passed by the XXIXth IAU General Assembly in Honolulu. IAU 2015 Resolution B3 adopts a s...
Article
Full-text available
The XXIXth IAU General Assembly in Honolulu adopted IAU 2015 Resolution B2 on recommended zero points for the absolute and apparent bolometric magnitude scales. The resolution was proposed by the IAU Inter-Division A-G Working Group on Nominal Units for Stellar and Planetary Astronomy after consulting with a broad spectrum of researchers from the a...
Article
Full-text available
We present the first detections by the NASA K2 mission of oscillations in solar-type stars, using short-cadence data collected during K2 Campaign 1 (C1). We understand the asteroseismic detection thresholds for C1-like levels of photometric performance, and we can detect oscillations in subgiants having dominant oscillation frequencies around 1000...
Article
The increase in luminosity as a star evolves on the red-giant branch is interrupted briefly when the hydrogen-burning shell reaches the vicinity of the composition discontinuity left behind from the first convective dredge-up. The non-monotonic variation of luminosity causes an accumulation of stars, known as the `bump', in the distribution of star...
Article
Full-text available
The internal angular momentum distribution of a star is key to determine its evolution. Fortunately, the stellar internal rotation can be probed through studies of rotationally-split non-radial oscillation modes. In particular, detection of non-radial gravity modes (g modes) in massive young stars has become feasible recently thanks to the Kepler s...
Article
Full-text available
We present the first detections by the NASA K2 Mission of oscillations in solar-type stars, using short-cadence data collected during K2 Campaign\,1 (C1). We understand the asteroseismic detection thresholds for C1-like levels of photometric performance, and we can detect oscillations in subgiants having dominant oscillation frequencies around $100...
Chapter
Full-text available
The great success of Helioseismology resides in the remarkable progress achieved in the understanding of the structure and dynamics of the solar interior. This success mainly relies on the ability to conceive, implement, and operate specific instrumentation with enough sensitivity to detect and measure small fluctuations (in velocity and/or intensi...
Article
Full-text available
The detection of mixed oscillation modes offers a unique insight into the internal structure of core helium burning (CHeB) stars. The stellar structure during CHeB is very uncertain because the growth of the convective core, and/or the development of a semiconvection zone, is critically dependent on the treatment of convective boundaries. In this s...
Article
Full-text available
We present a study of 33 planet-candidate host stars for which asteroseismic observations have sufficiently high signal-to-noise ratio to allow extraction of individual pulsation frequencies. We implement a new Bayesian scheme that is flexible in its input to process individual oscillation frequencies, combinations of them, and average asteroseismi...
Article
Full-text available
With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations -- glitches -- in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in re...
Article
Full-text available
The first discoveries of exoplanets around Sun-like stars have fueled efforts to find ever smaller worlds evocative of Earth and other terrestrial planets in the Solar System. While gas-giant planets appear to form preferentially around metal-rich stars, small planets (with radii less than four Earth radii) can form under a wide range of metallicit...
Article
Full-text available
The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the Universe's history when metals were more scarce. We report Ke...
Article
Full-text available
We have constructed a grid of 3D hydrodynamic simulations of deep convective and line-blanketed atmospheres. We have developed a new consistent method for computing and employing T(τ) relations from these simulations, as surface boundary conditions for 1D stellar structure models. These 1D models have, in turn, had their mixing-length, α, calibrate...
Article
Full-text available
In this work we consider the sensitivity of gravity-mode period spacings to sharp changes in the inner structure of red giant stars, more specifically in the buoyancy frequency inside the g-mode propagation cavity. Based on a comparison between the solutions to the linear pulsation equations in the Cowling approximation for pure g-modes with result...

Network

Cited By