Ido Kanter

Ido Kanter
Bar Ilan University | BIU · Department of Physics and Brain Science Unit and

PhD

About

271
Publications
32,656
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,660
Citations
Additional affiliations
January 1989 - present
Bar Ilan University
Position
  • Professor (Full)

Publications

Publications (271)
Article
Full-text available
Recently, the underlying mechanism for successful deep learning (DL) was presented based on a quantitative method that measures the quality of a single filter in each layer of a DL model, particularly VGG-16 trained on CIFAR-10. This method exemplifies that each filter identifies small clusters of possible output labels, with additional noise selec...
Article
Full-text available
Learning classification tasks of $$({2}^{n}\times {2}^{n})$$ ( 2 n × 2 n ) inputs typically consist of $$\le n(2\times 2$$ ≤ n ( 2 × 2 ) max-pooling (MP) operators along the entire feedforward deep architecture. Here we show, using the CIFAR-10 database, that pooling decisions adjacent to the last convolutional layer significantly enhance accuracie...
Preprint
Full-text available
We study bi-directional associative neural networks that, exposed to noisy examples of an extensive number of random archetypes, learn the latter (with or without the presence of a teacher) when the supplied information is enough: in this setting, learning is heteroassociative -- involving couples of patterns -- and it is achieved by reverberating...
Preprint
Full-text available
Deep architectures consist of tens or hundreds of convolutional layers (CLs) that terminate with a few fully connected (FC) layers and an output layer representing the possible labels of a complex classification task. According to the existing deep learning (DL) rationale, the first CL reveals localized features from the raw data, whereas the subse...
Article
Full-text available
The realization of complex classification tasks requires training of deep learning (DL) architectures consisting of tens or even hundreds of convolutional and fully connected hidden layers, which is far from the reality of the human brain. According to the DL rationale, the first convolutional layer reveals localized patterns in the input and large...
Preprint
Full-text available
Learning classification tasks of (2^nx2^n) inputs typically consist of \le n (2x2) max-pooling (MP) operators along the entire feedforward deep architecture. Here we show, using the CIFAR-10 database, that pooling decisions adjacent to the last convolutional layer significantly enhance accuracy success rates (SRs). In particular, average SRs of the...
Article
Full-text available
Advanced deep learning architectures consist of tens of fully connected and convolutional hidden layers, currently extended to hundreds, are far from their biological realization. Their implausible biological dynamics relies on changing a weight in a non-local manner, as the number of routes between an output unit and a weight is typically large, u...
Article
Full-text available
In neural network's Literature, "Hebbian learning" traditionally refers to the procedure by which the Hopfield model and its generalizations "store" archetypes (i.e., definite patterns that are experienced just once to form the synaptic matrix). However, the term "learning" in Machine Learning refers to the ability of the machine to extract feature...
Preprint
Full-text available
Advanced deep learning architectures consist of tens of fully connected and convolutional hidden layers, which are already extended to hundreds, and are far from their biological realization. Their implausible biological dynamics is based on changing a weight in a non-local manner, as the number of routes between an output unit and a weight is typi...
Preprint
Full-text available
Power-law scaling, a central concept in critical phenomena, is found to be useful in deep learning, where optimized test errors on handwritten digit examples converge as a power-law to zero with database size. For rapid decision making with one training epoch, each example is presented only once to the trained network, the power-law exponent increa...
Preprint
Full-text available
The realization of complex classification tasks requires training of deep learning (DL) architectures consisting of tens or even hundreds of convolutional and fully connected hidden layers, which is far from the reality of the human brain. According to the DL rationale, the first convolutional layer reveals localized patterns in the input and large...
Article
Full-text available
Real-time sequence identification is a core use-case of artificial neural networks (ANNs), ranging from recognizing temporal events to identifying verification codes. Existing methods apply recurrent neural networks, which suffer from training difficulties; however, performing this function without feedback loops remains a challenge. Here, we prese...
Article
Full-text available
Synaptic plasticity is a long-lasting core hypothesis of brain learning that suggests local adaptation between two connecting neurons and forms the foundation of machine learning. The main complexity of synaptic plasticity is that synapses and dendrites connect neurons in series and existing experiments cannot pinpoint the significant imprinted ada...
Preprint
Full-text available
The gap between the huge volumes of data needed to train artificial neural networks and the relatively small amount of data needed by their biological counterparts is a central puzzle in machine learning. Here, inspired by biological information-processing, we introduce a generalized Hopfield network where pairwise couplings between neurons are bui...
Preprint
Real-time sequence identification is a core use-case of artificial neural networks (ANNs), ranging from recognizing temporal events to identifying verification codes. Existing methods apply recurrent neural networks, which suffer from training difficulties; however, performing this function without feedback loops remains a challenge. Here, we prese...
Preprint
Full-text available
In neural network's Literature, {\em Hebbian learning} traditionally refers to the procedure by which the Hopfield model and its generalizations {\em store} archetypes (i.e., definite patterns that are experienced just once to form the synaptic matrix). However, the term {\em learning} in Machine Learning refers to the ability of the machine to ext...
Article
Full-text available
Refractoriness is a fundamental property of excitable elements, such as neurons, indicating the probability for re-excitation in a given time lag, and is typically linked to the neuronal hyperpolarization following an evoked spike. Here we measured the refractory periods (RPs) in neuronal cultures and observed that an average anisotropic absolute R...
Preprint
Full-text available
Refractoriness is a fundamental property of excitable elements, such as neurons, indicating the probability for re-excitation in a given time-lag, and is typically linked to the neuronal hyperpolarization following an evoked spike. Here we measured the refractory periods (RPs) in neuronal cultures and observed that anisotropic absolute RPs could ex...
Preprint
Full-text available
Refractory periods are an unavoidable feature of excitable elements, resulting in necessary time-lags for re-excitation. Herein, we measure neuronal absolute refractory periods (ARPs) in synaptic blocked neuronal cultures. In so doing, we show that their duration can be significantly extended by dozens of milliseconds using preceding evoked spikes...
Article
Full-text available
Refractory periods are an unavoidable feature of excitable elements, resulting in necessary time-lags for re-excitation. Herein, we measure neuronal absolute refractory periods (ARPs) in synaptic blocked neuronal cultures. In so doing, we show that their duration can be significantly extended by dozens of milliseconds using preceding evoked spikes...
Article
Full-text available
Power-law scaling, a central concept in critical phenomena, is found to be useful in deep learning, where optimized test errors on handwritten digit examples converge as a power-law to zero with database size. For rapid decision making with one training epoch, each example is presented only once to the trained network, the power-law exponent increa...
Article
Full-text available
This study investigates the dynamics of traffic containing human-driven vehicles along with a fraction of self-organized artificial intelligence (AI) autonomous vehicles (AVs) on multilane freeways. We propose guidelines for the development of AI agents, such that a small fraction of AVs forms local constellations that significantly accelerate the...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Attempting to imitate the brain’s functionalities, researchers have bridged between neuroscience and artificial intelligence for decades; however, experimental neuroscience has not directly advanced the field of machine learning (ML). Here, using neuronal cultures, we demonstrate that increased training frequency accelerates the neuronal adaptation...
Preprint
Full-text available
Attempting to imitate the brain functionalities, researchers have bridged between neuroscience and artificial intelligence for decades; however, experimental neuroscience has not directly advanced the field of machine learning. Here, using neuronal cultures, we demonstrate that increased training frequency accelerates the neuronal adaptation proces...
Article
Full-text available
Ultrafast physical random bit generation at hundreds of Gb/s rates, with verified randomness, is a crucial ingredient in secure communication and has recently emerged using optics-based physical systems. Here we examine the inverse problem and measure the ratio of information bits that can be systematically embedded in a random bit sequence without...
Preprint
Full-text available
Ultrafast physical random bit generation at hundreds of Gb/s rates, with verified randomness, is a crucial ingredient in secure communication and have recently emerged using optics based physical systems. Here we examine the inverse problem and measure the ratio of information bits that can be systematically embedded in a random bit sequence withou...
Article
Full-text available
Recently, deep learning algorithms have outperformed human experts in various tasks across several domains; however, their characteristics are distant from current knowledge of neuroscience. The simulation results of biological learning algorithms presented herein outperform state-of-the-art optimal learning curves in supervised learning of feedfor...
Article
Full-text available
Synchronization of coupled oscillators at the transition between classical physics and quantum physics has become an emerging research topic at the crossroads of nonlinear dynamics and nanophotonics. We study this unexplored field by using quantum dot microlasers as optical oscillators. Operating in the regime of cavity quantum electrodynamics (cQE...
Article
Full-text available
Experimental evidence recently indicated that neural networks can learn in a different manner than was previously assumed, using adaptive nodes instead of adaptive links. Consequently, links to a node undergo the same adaptation, resulting in cooperative nonlinear dynamics with oscillating effective link weights. Here we show that the biological re...
Article
Full-text available
Introduction: rTMS has been proven effective in the treatment of neuropsychiatric conditions, with class A (definite efficacy) evidence for treatment of depression and pain (Lefaucheur et al., 2014). The efficacy in stimulation protocols is, however, quite heterogeneous. Saturation of neuronal firing by HFrTMS without allowing time for recovery may...
Article
Full-text available
Physical models typically assume time-independent interactions, whereas neural networks and machine learning incorporate interactions that function as adjustable parameters. Here we demonstrate a new type of abundant cooperative nonlinear dynamics where learning is attributed solely to the nodes, instead of the network links which their number is s...
Article
Full-text available
Neurons are the computational elements that compose the brain and their fundamental principles of activity are known for decades. According to the long-lasting computational scheme, each neuron sums the incoming electrical signals via its dendrites and when the membrane potential reaches a certain threshold the neuron typically generates a spike to...
Article
Introduction Repetitive transcranial magnetic stimulation (rTMS) has been found to be a promising noninvasive therapeutic tool for a variety of neuropsychiatric conditions. Therapeutic utility of rTMS was classified to have class A evidence for treatment of depression and chronic pain. In different stimulation protocols intervals have been introduc...
Article
Full-text available
Neural networks are composed of neurons and synapses, which are responsible for learning in a slow adaptive dynamical process. Here we experimentally show that neurons act like independent anisotropic multiplex hubs, which relay and mute incoming signals following their input directions. Theoretically, the observed information routing enriches the...
Article
Full-text available
We present an analytical framework that allows the quantitative study of statistical dynamic properties of networks with adaptive nodes that have memory and is used to examine the emergence of oscillations in networks with response failures. The frequency of the oscillations was quantitatively found to increase with the excitability of the nodes an...
Article
Full-text available
The neuronal response to controlled stimulations in vivo has been classically estimated using a limited number of events. Here we show that hours of high-frequency stimulations and recordings of neurons in vivo reveal previously unknown response phases of neurons in the intact brain. Results indicate that for stimulation frequencies below a critica...
Article
Full-text available
The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vi...
Article
Full-text available
Catastrophic failures are complete and sudden collapses in the activity of large networks such as economics, electrical power grids and computer networks, which typically require a manual recovery process. Here we experimentally show that excitatory neural networks are governed by a non-Poissonian reoccurrence of catastrophic failures, where their...
Article
Full-text available
The experimental study of neural networks requires simultaneous measurements of a massive number of neurons, while monitoring properties of the connectivity, synaptic strengths and delays. Current technological barriers make such a mission unachievable. In addition, as a result of the enormous number of required measurements, the estimated network...
Article
Full-text available
Chaos synchronization has been demonstrated as a useful building block for various tasks in secure communications, including a source of all-electronic ultrafast physical random number generators based on room temperature spontaneous chaotic oscillations in a DC-biased weakly coupled GaAs/Al0.45Ga0.55As semiconductor superlattice (SSL). Here, we ex...
Article
Full-text available
Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which were extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally a...
Article
Full-text available
Realizations of low firing rates in neural networks usually require globally balanced distributions among excitatory and inhibitory links, while feasibility of temporal coding is limited by neuronal millisecond precision. We experimentally demonstrate {\mu}s precision of neuronal response timings under low stimulation frequencies, whereas moderate...
Article
Periodic synchronization of activity among neuronal pools has been related to substantial neural processes and information throughput in the neocortical network. However, the mechanisms of generating such periodic synchronization among distributed pools of neurons remain unclear. We hypothesize that to a large extent there is interplay between the...
Article
Full-text available
Consistency and predictability of brain functionalities depend on the reproducible activity of a single neuron. We identify a reproducible non-chaotic neuronal phase where deviations between concave response latency profiles of a single neuron do not increase with the number of stimulations. A chaotic neuronal phase emerges at a transition to conve...
Article
Full-text available
In 1943 McCulloch and Pitts suggested that the brain is composed of reliable logic-gates similar to the logic at the core of today's computers. This framework had a limited impact on neuroscience, since neurons exhibit far richer dynamics. Here we propose a new experimentally corroborated paradigm in which the truth tables of the brain's logic-gate...
Article
Full-text available
We experimentally show that the neuron functions as a precise time integrator, where the accumulated changes in neuronal response latencies, under complex and random stimulation patterns, are solely a function of a global quantity, the average time lag between stimulations. In contrast, momentary leaps in the neuronal response latency follow trends...
Article
Full-text available
A classical view of neural coding relies on temporal firing synchrony among functional groups of neurons, however, the underlying mechanism remains an enigma. Here we experimentally demonstrate a mechanism where time-lags among neuronal spiking leap from several tens of milliseconds to nearly zero-lag synchrony. It also allows sudden leaps out of s...
Article
Full-text available
The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the co...
Article
Full-text available
We propose a new experimentally corroborated paradigm in which the functionality of the brain's logic-gates depends on the history of their activity, e.g. an OR-gate that turns into a XOR-gate over time. Our results are based on an experimental procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-sca...
Article
Full-text available
An all-electronic physical random number generator at rates up to 80 Gbit/s is presented, based on weakly coupled GaAs/Ga_{0.55}Al_{0.45}As superlattices operated at room temperature. It is based on large-amplitude, chaotic current oscillations characterized by a bandwidth of several hundred MHz and do not require external feedback or conversion to...
Article
Full-text available
Nonlinear networks with time-delayed couplings may show strong and weak chaos, depending on the scaling of their Lyapunov exponent with the delay time. We study strong and weak chaos for semiconductor lasers, either with time-delayed self-feedback or for small networks. We examine the dependence on the pump current and consider the question of whet...
Article
Full-text available
The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be d...
Article
The linear response of synchronized time-delayed chaotic systems to small external perturbations, i.e., the phenomenon of chaos pass filter, is investigated for iterated maps. The distribution of distances, i.e., the deviations between two synchronized chaotic units due to external perturbations on the transferred signal, is used as a measure of th...
Article
Full-text available
The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied, however, the interplay between these two phenomena, especially at the network level is unexplored. Here we experimentally compare chaos synchronization of laser networks with heterogeneous c...
Article
Full-text available
We report on electrically pumped quantum dot-microlasers in the presence of polarized self-feedback. The high-beta microlasers show two orthogonal, linearly polarized emission modes which are coupled via the common gain medium. This coupling is explained in terms of gain competition between the two lasing modes and leads to distinct differences in...
Article
Psychological and physiological considerations entail that formation and functionality of neuronal cell assemblies depend upon synchronized repeated activation such as zero-lag synchronization. Several mechanisms for the emergence of this phenomenon have been suggested, including the global network quantity, the greatest common divisor of neuronal...
Article
Full-text available
The scaling of transient times to zero-lag synchronization in networks composed of excitable units is shown to be governed by three features of the graph representing the network: the longest path between pairs of neurons (diameter), the largest loop (circumference) and the loop with the maximal average out degree. The upper bound of transient time...
Article
Full-text available
We show that the unavoidable increase in neuronal response latency to ongoing stimulation serves as a nonuniform gradual stretching of neuronal circuit delay loops and emerges as an essential mechanism in the formation of various types of neuronal timers. Synchronization emerges as a transient phenomenon without predefined precise matched synaptic...
Article
Full-text available
Parameter space of a driven damped oscillator in a double well potential presents either a chaotic trajectory with sign oscillating amplitude or a non-chaotic trajectory with a fixed sign amplitude. A network of such delay coupled damped oscillators is shown to present chaotic dynamics while the amplitude sign of each damped oscillator is randomly...
Article
Full-text available
An analogy between crowd synchrony and multi-layer neural network architectures is proposed. It indicates that many non-identical dynamical elements (oscillators) communicating indirectly via a few mediators (hubs) can synchronize when the number of delayed couplings to the hubs or the strength of the couplings is large enough. This phenomenon is m...
Article
Full-text available
In the field of network dynamics it has been suggested that statistical information of motifs, small subnetworks, can help in understanding global activity of the entire network. We present a counterexample where the relation between the stable synchronized activity modes and network connectivity was studied using the Hodgkin-Huxley brain dynamics...
Article
Studying cavity quantum electrodynamical effects is an emerging and important field of research for the understanding of the many body quantum theory as well as for the generation of a new type of efficient lasers. Here we report a dramatic change in the photon statistics of quantum dot based micropillar lasers where a finite fraction of the emissi...
Article
Full-text available
Synthetic reverberating activity patterns are experimentally generated by stimulation of a subset of neurons embedded in a spontaneously active network of cortical cells in-vitro. The neurons are artificially connected by means of conditional stimulation matrix, forming a synthetic local circuit with a predefined programmable connectivity and time-...
Article
Full-text available
Topologies of two, three and four time-delay-coupled chaotic semiconductor lasers are experimentally and theoretically found to show new types of synchronization. Generalized zero-lag synchronization is observed for two lasers separated by long distances even when their self-feedback delays are not equal. Generalized sub-lattice synchronization is...
Article
Chaotic networks have the potential to be applied for novel secure communication systems. In this regard, synchronization between coupled chaotic lasers is vitally important. This chapter gives an introduction and an overview of chaos synchronization with emphasis on the author’s recent work. For pedagogical reasons, it demonstrates the main result...
Article
Full-text available
Synchronization in networks with delayed coupling are ubiquitous in nature and play a key role in almost all fields of science including physics, biology, ecology, climatology and sociology. In general, the published works on network synchronization are based on data analysis and simulations, with little experimental verification. Here we develop a...
Article
Full-text available
We study chaotic synchronization in networks with time-delayed coupling. We introduce the notion of strong and weak chaos, distinguished by the scaling properties of the maximum Lyapunov exponent within the synchronization manifold for large delay times, and relate this to the condition for stable or unstable chaotic synchronization, respectively....
Article
Full-text available
A chaotic network of size $N$ with delayed interactions which resembles a pseudo-inverse associative memory neural network is investigated. For a load $\alpha=P/N<1$, where $P$ stands for the number of stored patterns, the chaotic network functions as an associative memory of 2P attractors with macroscopic basin of attractions which decrease with $...
Article
Full-text available
Topologies of two, three and four time-delay-coupled chaotic semiconductor lasers are experimentally and theoretically found to show new types of synchronization. Shifted zero-lag synchronization is observed for two lasers separated by long distances even when their self-feedback delays are not equal. Shifted sub-lattice synchronization is observed...
Article
We present the interplay between synchronization of networks with heterogeneous delays and the greatest common divisor (GCD) of loops composing the network. We distinguish between two types of networks; (I) chaotic networks and (II) population dynamic networks with periodic activity driven by external stimuli. For type (I), in the weak chaos region...
Article
Full-text available
Chaos presents a striking and fascinating phenomenon of nonlinear systems. A common aspect of such systems is the presence of feedback that couples the output signal partially back to the input. Feedback coupling can be well controlled in optoelectronic devices such as conventional semiconductor lasers that provide bench-top platforms for the study...
Article
We experimentally investigate the phase dynamics of laser networks with homogenous time-delayed mutual coupling and establish the fundamental rules that govern their state of synchronization. We identified a specific substructure that imposes its synchronization state on the entire network and show that for any coupling configuration the network fo...
Article
Full-text available
Networks of nonlinear units with time-delayed couplings can synchronize to a common chaotic trajectory. Although the delay time may be very large, the units can synchronize completely without time shift. For networks of coupled Bernoulli maps, analytic results are derived for the stability of the chaotic synchronization manifold. For a single delay...
Article
Full-text available
The interplay between the topology of cortical circuits and synchronized activity modes in distinct cortical areas is a key enigma in neuroscience. We present a new nonlocal mechanism governing the periodic activity mode: the greatest common divisor (GCD) of network loops. For a stimulus to one node, the network splits into GCD-clusters in which cl...
Article
Full-text available
We report that the accuracy of predicting the occurrence time of the next earthquake is significantly enhanced by observing the latest rate of earthquake occurrences. The observation period that minimizes the temporal uncertainty of the next occurrence is on the order of 10 hours. This result is independent of the threshold magnitude and is consist...
Article
Full-text available
We present the interplay between synchronization of unidirectional coupled chaotic nodes with heterogeneous delays and the greatest common divisor (GCD) of loops composing the oriented graph. In the weak chaos region and for GCD=1 the network is in chaotic zero-lag synchronization, whereas for GCD=m>1 synchronization of m-sublattices emerges. Compl...
Article
Full-text available
The emerging popular scheme of fourth generation wireless communication, orthogonal frequency-division multiplexing, is mapped onto a variant of a random field Ising Hamiltonian and results in an efficient physical intercarrier interference (ICI) cancellation decoding scheme. This scheme is based on Monte Carlo (MC) dynamics at zero temperature as...
Article
Full-text available
Random bit generators (RBGs) constitute an important tool in cryptography, stochastic simulations and secure communications. The later in particular has some difficult requirements: high generation rate of unpredictable bit strings and secure key-exchange protocols over public channels. Deterministic algorithms generate pseudo-random number sequenc...

Network

Cited By