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Preface

In order to keep people moving in times of rising traffic and limited resources,
science is challenged to find intelligent solutions. Over the past few years, con-
tributions from engineers, physicists, mathematicians, and behavioral psycholo-
gists have lead to a better understanding of driver behavior and vehicular traffic
flow. This interdisciplinary field will surely produce further advances in the future.
The focus is on new applications ranging from novel driver-assistance systems, to
intelligent approaches to optimizing traffic flow, to the precise detection of traffic
jams and the short-term forecasting of traffic for dynamic navigation aids.

This textbook offers a comprehensive and didactic account of the different
aspects of vehicular traffic flow dynamics and how to describe and simulate them
with mathematical models. We hope to make this fascinating field accessible to a
broader readership; to date, it has only been documented in specialized scientific
papers and monographs.

Part I describes how to obtain and interpret traffic flow data, the basis of any
quantitative modeling. The second and main part is devoted to the different
approaches and models used to mathematically describe traffic flow. The starting
point of most models are the basic concepts of physics—many-particle systems,
hydrodynamics, and classical Newtonian mechanics—augmented by behavioral
aspects and traffic rules. At the website1 accompanying this book, the reader can
interactively run a selection of traffic models and reproduce some of the simulation
results displayed in the figures. Part III gives an overview of major applications
including traffic-state estimation, fuel consumption, and emission modeling,
determining travel times (the basis of dynamic navigation), and how to optimize
traffic flow.

The book is written for students, lecturers, and professionals of engineering and
transportation sciences and for interested students in general. It also offers material
for project work in programming, numerical methods, simulation, and mathemat-
ical modeling at college and university level. The reference implementations in the

1 see: www.traffic-flow-dynamics.org
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multi-model open-source vehicular traffic simulator MovSim2 can be used as a
starting point for the reader’s own simulation experiments and model development.

This work originates from the lecture notes of courses in traffic flow dynamics
and modeling at the Dresden University of Technology, Germany; these have been
previously published, by the same publisher, in the German book ‘‘Verkehrsdy-
namik und Simulation’’. The English edition has been updated and significantly
extended to include new topics, e.g., on model calibration. To underline its text-
book character, it contains many problems with elaborated solutions.

We thank all colleagues at our Department for Traffic Econometrics and
Modeling at the Dresden University of Technology, particularly Dirk Helbing, for
various scientific discussions and stimulations. We would also like to thank
Marietta Seifert, Christian Thiemann, and Stefan Lämmer for suggestions and
corrections. Special thanks go to Martin Budden for reviewing the manuscript as a
native English speaker. He is also one of the main contributors to MovSim. Finally,
we would like to thank Martina Seifert, Christine and Hanskarl Treiber, Ingrid,
Bernd, and Dörte Kesting, Claudia Perlitius, and Ralph Germ who contributed to
the book with valuable suggestions.

Dresden, June 2012 Martin Treiber
Arne Kesting

2 see: www.movsim.org
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Chapter 1
Introduction

I was like a boy playing on the sea-shore, and diverting myself
now and then finding a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth lay all undiscovered
before me.

Isaac Newton

Abstract In this textbook, we describe the dynamics of vehicular traffic flow in
terms of mathematical models. In the field of natural sciences, the mathematical
approach has been eminently successful.

In this textbook, we describe the dynamics of vehicular traffic flow in terms of
mathematical models. In the field of natural sciences, the mathematical approach
has been eminently successful. Galileo Galilei is reported to have said “Mathematics
is the language with which God has written the universe.” In more recent times,
human decisions and actions have been described in mathematical terms as well.
At first sight, this appears to be paradoxical. After all, humans and their individual
decisions certainly cannot be described by a formula.

There are several aspects why a mathematical description of traffic flow dynam-
ics nevertheless makes sense. Firstly, a huge amount of traffic flow data is available
ranging from the acceleration characteristics of single drivers and vehicles to macro-
scopic data obtained by stationary detectors, supplemented by a rapidly growing
amount of data obtained by GPS, wireless LAN, and mobile phones inside the vehi-
cles. The associated measurements—corresponding to experiments in the fields of
the natural sciences—serve as the basis of any mathematical modeling (cf. Fig. 1.1).
By comparing a model’s predictions with the data and changing the values of the
model parameters to obtain a maximum fit, a model can be calibrated which is a
prerequisite for any meaningful application.

Secondly, traffic dynamics describes the interplay of many vehicles and drivers.
Moreover, the interaction of the vehicles and drivers, technically termed driver-
vehicle units, leads to new collective effects that do not depend on the details of
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Fig. 1.1 Traffic flow models describe the dynamics of vehicles and drivers in terms of mathematical
equations. Predictions are obtained by running the model simulation. The values of the model’s
parameters are chosen so that the simulation produces a best fit with the data (model calibration).
Once calibrated, the model can be used for traffic flow prediction and other applications

individuals. Examples include the formation of stop-and-go waves but also more
complicated spatiotemporal patterns of congested traffic. In all theses cases, indi-
vidual details average out and are, therefore, not relevant. The classical analog in
the field of physical sciences is the thermodynamic description of liquids and gases.
For example, in order to describe sound waves or the pressure-temperature diagram
of air, it is not necessary to know the motion and interactions of individual oxygen,
nitrogen, or CO2 molecules. In this sense, vehicles and drivers assume the role of
molecules in gases or liquids. There are even models that are explicitly based on this
analogy, see Chap. 9.

Finally, driving dynamics is subject to certain limitations. For example, drivers are
typically restricted to interacting with their direct neighbors—again in analogy with
gases. Furthermore, accelerations and decelerations are limited physically: After all,
vehicles (but not drivers) are physical objects in the classical sense.

Delimitation of traffic flow dynamics. One can distinguish traffic flow dynamics
from other fields of traffic science by the time scales given in Table 1.1. Traffic flow
dynamics includes time scales ranging from about one second to a few hours. Human
reaction times and the time gap between two vehicles following each other are of the
order of 1 s while braking and acceleration maneuvers typically take several seconds.
In city traffic, the period of one red-green cycle of traffic lights is of the order of
1 min while, on freeways, the period of traffic oscillations and stop-and-go waves
is between 5 and 20 min. Finally, the traffic demand serving as exogenous variable
(model input) for traffic flow models varies on time scales of one hour, as illustrated
by the term “rush hour”.

Longer time scales ranging from hours to years are the domain of transportation
planning. This includes the very long time scales of variations in traffic demand
caused by demographic change. Transportation planning and traffic flow dynamics
complement each other: The endogenous variables (model output) of the classical
four-step scheme of transportation planning1 and its modern dynamical variants are

1 The four steps are trip generation, trip distribution, mode choice, and route assignment.
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1 Introduction 3

Table 1.1 Delimitation of traffic flow dynamics from vehicular dynamics and transportation
planning

Time scale Field Models Aspect of traffic (examples)

<0.1 s Vehicle dynamics Sub-microscopic Control of engine and brakes
1 s Reaction time, time gap
10 s Traffic flow

dynamics
Car-following models Acceleration and deceleration

1 min Macroscopic models Cycle period of traffic lights

10 min Stop-and-go waves
1 h Peak hour
1 day Route assignment traffic

demand
Daily demand pattern

1 year Transportation
planning

Building/changing
infrastructure

5 years Statistics age pyramid Socioeconomic structure
50 years Demographic change

the traffic demand (vehicles per hour) on each link of the considered network. For
traffic flow simulations, in turn, these variables are exogenous (externally given),
typically in form of boundary conditions.

Transport logistics operates on the same time scales as traffic flow dynamics but
takes a different point of view: Freight transport operations are optimized while traffic
flow itself takes the role of a (typically disturbing) external condition.

Dynamics on time scales smaller than one second is the realm of vehicular dynam-
ics. This field is mainly relevant for car manufacturers. Typical applications include
the control of vehicle components such as engine, brakes, and transmission, the
dynamics of skidding, and the operation of various assistance systems such as elec-
tronic stability programs (ESP), airbags, and adaptive cruise control (ACC).

In the last few years, we have seen a growing overlap between these fields. For
example, models for agent-based dynamic traffic assignment combine the route
assignment step of classical transportation planning with traffic flow models. The
new generation of connected navigation systems inside cars couple the dynamics of
traffic flow (jam formation) with that of traffic demand (traffic-dependent routing).
Or, when modeling the effects of driver-assistance systems on traffic flow, one needs
to simultaneously model aspects of vehicular and traffic dynamics, see Sect. 21.5.

Applications. There are numerous applications for traffic flow dynamics and simu-
lation including the following:

• generation of surrounding traffic in driving simulators,
• model-based online traffic-state recognition and short-term prediction as input for

traffic information channels,
• determining the optimal routes in connected (traffic-dependent) navigation

systems,

http://dx.doi.org/10.1007/978-3-642-32460-4_21
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• planning and optimizing the logic of external traffic control such as variable mes-
sage signs or ramp metering,

• optimizing the logic behind the operation of traffic lights, e.g., enabling robust
“green traffic waves” by a progressive signal system,

• assessing traffic-related effects of advanced driver-assistance systems and telem-
atic applications in the field of Intelligent Transportation Systems (ITS),

• simulating in great detail the environmental effects of traffic operations such as
fuel consumption and CO2 emission.

Outline. The book consists of three parts. The first part deals with traffic data.
After introducing the main data categories, we present methods for reconstructing
the spatiotemporal traffic state and for combining heterogeneous data sources (data
fusion). Finally, we present a data-based overview of the phenomenology of traffic
flow dynamics.

The second part can be considered the core of the book. Here, we describe the
mathematics and simulation of traffic flow models. After an overview of the different
classes of models, we treat in detail the main categories, macroscopic and microscopic
models of longitudinal (acceleration) dynamics. While microscopic models describe
traffic flow from the point of individual drivers and vehicles, macroscopic models
describe the collective state in terms of spatiotemporal fields for the local density,
speed, and flow. For the microscopic model classes, we subsequently present models
for lane changes and other discrete-choice situations such as entering a priority
road. Finally, we present and comprehensively analyze the different kinds of traffic
instabilities.

In the third part, we present selected applications of the methods and models of
traffic flow dynamics. We discuss the factors of traffic breakdown and principles of
the spatiotemporal evolution of congested traffic, methods of traffic-state recognition
and travel-time estimation, modal emission models, and ITS applications.

The most important definitions, equations, and formulas are in highlight boxes.
Numerous figures illustrate the concepts. The small in-text questions and problems
act as an initial test of the reader’s understanding. Each chapter ends with suggestions
for further reading and a series of problems that are solved in the Appendix at the
end of the book.

Last but not least, the open-source simulation software Movsim2 provides refer-
ence implementations for many models presented in the book. Detailed information
is provided on the book’s website.3

2 Multi-model open-source vehicular traffic simulator written in Java, see: www.movsim.org
3 see: www.traffic-flow-dynamics.org

www.movsim.org
www.traffic-flow-dynamics.org
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Chapter 2
Trajectory and Floating-Car Data

Measure what is measurable, and make measurable
what is not so.

Galileo Galilei

Abstract Different aspects of traffic dynamics are captured by different measure-
ment methods. In this chapter, we discuss trajectory data and floating-car data, both
providing space-time profiles of vehicles. While trajectory data captures all vehicles
within a selected measurement area, floating-car data only provides information on
single, specially equipped vehicles. Furthermore, trajectory data is measured exter-
nally while, as the name implies, floating-car data is captured inside the vehicle.

2.1 Data Collection Methods

Traffic can be directly observed by cameras on top of a tall building or mounted
on an airplane. Tracking software extracts trajectories xα(t), i.e. the positions of
each vehicle α over time, from the video footage (or a series of photographs). If all
vehicles within a given road section (and time span) are captured in this way, the
resulting dataset is called trajectory data.

Thus, trajectory data is the most comprehensive traffic data available. It is also
the only type that allows direct and unbiased measurement of the traffic density
(see Sect. 3.3) and lane changes. However, camera-based methods involve complex
and error-prone procedures which require automated and robust algorithms for the
vehicle tracking, and thus are often the most expensive option for data collection. Fur-
thermore, a simple camera can cover a road section of at most a few hundred meters
since smaller vehicles are occluded behind larger ones if the viewing angle is too low.

A different method uses probe vehicles which “float” in the traffic flow. Such cars
collect geo-referenced coordinates via GPS receivers which are then “map-matched”
to a road on a map—the speed is a derived quantity determined from the spacing
(on a map) between two GPS points. This type of data is called floating-car data

M. Treiber and A. Kesting, Traffic Flow Dynamics, 7
DOI: 10.1007/978-3-642-32460-4_2, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 2.1 Trajectories with moving stop-and-go waves on a British motorway segment [Adapted
from: Treiterer et al. (1970)]

(FCD). Some more recent navigation systems also record (anonymized) trajectories
and send them to the manufacturer. The probe vehicles can be equipped with other
sensors (e.g. radar) to record distance to the leading vehicle and its speed (however,
such equipment is expensive). FCD augmented in this way are also referred to as
extended floating-car data (xFCD). One problem of FCD is that many equipped
vehicles are taxis or trucks/vans of commercial transport companies which, due to
their lower speeds, are not representative for the traffic as a whole. Fortunately,
this bias vanishes just when the FCD information becomes relevant: In congested
situations, free-flow speed differences do not matter.

Both trajectory and floating-car data record the vehicle location xα(t) as a function
of time, yet they differ substantially:

• Trajectory data records the spatiotemporal location of all vehicles within a given
road segment and time interval while FCD only collects data on a few probe
vehicles.

• Contrary to trajectory data, FCD does not record which lane a vehicle is using
since present GPS accuracy is not sufficient for lane-fine map-matching.

• FCD may contain additional information such as the distance to the leading vehicle,
position of the gas/brake pedals, activation of turning signals, or the rotation angle
of the steering wheel (xFCD). In principle, every quantity available via the CAN-
bus1can be recorded as a time-series. This kind of data is naturally missing in
trajectory data due to the optical recording method.

1 The CAN-bus is a micro-controller communication interface present in all modern vehicles.
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Fig. 2.2 Trajectories with moving stop-and-go waves on the California State Route 99 [From:
www.ece.osu.edu/~coifman/shock]

2.2 Time-Space Diagrams

Figures 2.1 and 2.2 are examples of trajectory data of a single lane visualized in a
space-time diagram. By convention, we will always plot time on the x-axis vs. space
on the y-axis. The following information can be easily read off the diagrams:

• The local speed at (front-bumper) position x and time t is given by the gradient of
the trajectory. A horizontal trajectory corresponds to a standing vehicle.

• The time headway, or simply headway, �tα between the front bumpers of two
vehicles following each other (see Sect. 3.1) is the horizontal distance between
two trajectories.2

• Traffic flow, defined as the number of vehicles passing a given location per time
unit, is the number of trajectories crossing a horizontal line denoting this time
interval. It is equal to the inverse of the time mean of the headways.

• The distance headway between two vehicles is the vertical distance of their trajec-
tories. It is composed of the distance gap between the front and the rear bumpers
plus the length of the leading vehicle.

• The traffic density, defined as the number of vehicles on a road segment at a given
time, is the number of trajectories crossing a vertical line in the diagram and thus
the inverse of the space mean of the distance headways (cf. Sect. 3.3).

• Lane changes to and from the observed lane are marked by beginning and ending
trajectories, respectively.

2 The time headway is composed of the (rear-bumper-to-front-bumper) time gap plus the occupancy
time interval of the leading vehicle.

www.ece.osu.edu/~coifman/shock
http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_3
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• The gradient of the boundary of a high-density area indicates the propagation
velocity of a traffic jam. The congestions in the Figs. 2.1 and 2.2 are stop-and-go
waves which are moving upstream and thus have a negative propagation speed.

If not only the longitudinal positions xα(t) (along the road) but also the lateral
positions yα(t) (across the lanes) are recorded, one can generate a two-dimensional
trajectory diagram from which one can deduce lateral accelerations and the duration
of lane changes.

Is it possible to estimate the time needed to pass through a given road segment
using trajectory data? How would you calculate the travel time increase caused
by a traffic jam? What additional assumption is needed to estimate the total
time loss of all persons driving through the congestion?

Problems

2.1 Floating-Car Data
Assume that some vehicles with GPS systems (accurate to approximately 20 m)
send their (anonymized) locations to a traffic control center in fixed time intervals.
Can this data be used to reconstruct (1) trajectories of single vehicles, (2) location
and time of lane changes, (3) traffic density (vehicles per kilometer), (4) traffic flow
(vehicles per hour), (5) vehicle speed, and (6) length and position of traffic jams?
Justify your answers.

2.2 Analysis of Empirical Trajectory Data
Consider the trajectory data visualized in Fig. 2.2:

1. Determine the traffic density (vehicles per kilometer), traffic flow (vehicles per
hour), and speed in different spatiotemporal sections, for example [10, 30 s] ×
[20, 80 m] (free traffic) and [50, 70 s] × [20, 100 m] (congested traffic).

2. Find the propagation velocity of the stop-and-go wave. Is it traveling with or
against the direction of traffic flow?

3. Estimate the travel time increase incurred by the vehicle that is at x = 0 m at
time t ≈ 50 s due to the stop-and-go wave.

4. Estimate the average lane-changing rate (lane changes per kilometer and per
hour) in the spatiotemporal area covered by the dataset. (Assume six trajectory
beginnings or endings within [0, 80 s] × [0, 140 m].)
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2.3 Trajectory Data of “Obstructed” Traffic Flow
Consider the trajectory data of city traffic shown in the diagram below:
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1. What situation is shown? What does the horizontal bar beginning at x = t = 0
mean?

2. Determine the traffic demand, i.e. the inflow for t ≤ 20 s.
3. Determine the density and speed in the free traffic regime upstream of the

“obstacle”.
4. Determine the density within the traffic jam.
5. Determine the outflow after the “obstacle” disappears. Also find the density and

speed in the outflow regime after the initial acceleration (the end of which is
marked by smaller blue dots).

6. Determine the propagation speed of the transitions “free traffic → jam” and “jam
→ free traffic”.

7. What travel time delay is imposed on a vehicle entering the scene at t = 20 s and
x = −80 m?

8. Find the acceleration and deceleration values (assuming they are constant). The
start of the deceleration phase and the end of the acceleration phase of each vehicle
are marked by dots.

Further Reading

• May, A.D.: Traffic Flow Fundamentals. Prentice Hall, Eaglewood Cliffs, N.Y.
(1990)

• Treiterer, J., et al.: Investigation of traffic dynamics by aerial photogrammetric
techniques. Interim report EES 278-3, Ohio State University, Columbus, Ohio
(1970)

• Thiemann, C., Treiber, M., Kesting, A.: Estimating acceleration and lane-changing
dynamics from next generation simulation trajectory data. Transportation Research
Record: Journal of the Transportation Research Board 2088 (2008) 90–101
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• Schäfer, R.P., Lorkowski, S., Witte, N., Palmer, J., Rehborn, H., Kerner B.S.:
A study of TomTom’s probe vehicle data with three-phase traffic theory. Traffic
Engineering and Control 52 (2011) 225–230



Chapter 3
Cross-Sectional Data

Nature loves to hide.
Heraklit

Abstract Cross-sectional data is captured by stationary induction loops, radar, or
infrared sensors. The collected information is provided either directly as single-
vehicle data or aggregated into macroscopic quantities. In this chapter we define
the measurable and derived quantities characterizing both data formats, with special
attention on the difference between temporal and spatial averages. Traffic density, a
spatially defined quantity, cannot be directly measured using cross-sectional detec-
tors, but several estimation methods are presented and discussed. Speed estimation
methods are introduced to overcome the inability of single-loop detectors to directly
measure vehicle speed.

3.1 Microscopic Measurement: Single-Vehicle Data

Cross-sectional data, measured at a fixed cross-section on the road, can be captured by
laying pneumatic tubes across the road, by radar, or optically with infra-red sensors
or light barriers. Most commonly, however, induction loops are installed beneath the
road surface. They detect whether a metallic object (such as a car) is above them
(Fig. 3.1). A single-loop detector can directly measure (only) the following quantities:

• The time tα = t0
α at which the front of vehicle α passes the detector (voltage drop

in Fig. 3.1).
• The time t1

α at which the rear end of the vehicle passes the detector (voltage rise
in Fig. 3.1).

It is impossible for single-loop detectors to measure vehicle speed, but we can obtain
an estimate in the case of relatively uniform speed values by assuming an average
vehicle length l. However, this estimate is prone to large errors, as we will see in
Sect. 3.4.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 13
DOI: 10.1007/978-3-642-32460-4_3, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 3.1 The induction loop is part of an LC circuit (complemented by an external capacitor and
an AC voltage source) tuned to be in resonance if the loop is “unoccupied”, yielding a high voltage
Ueff . The metallic parts of a vehicle will increase the inductance of the loop upon driving over it.
This puts the circuit out of tune and decreases the voltage Ueff
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Fig. 3.2 Single-vehicle data as measured by an induction loop (or any other cross-sectional detec-
tor). The shaded area indicate the “detector occupancy” at different times

Double-loop detectors are composed of two (or more) induction loops separated
by a fixed distance, e.g. 1 m. The time difference between passing the first and the
second loop yields a direct measurement of the vehicle speed vα .

From these directly measured quantities we can derive secondary microscopic
quantities (cf. Fig. 3.2):

• Length of each vehicle α,
lα = vα(t1

α − t0
α), (3.1)

• vehicle type (motorcycle, car, truck, etc.) by classifying the vehicle length,
• time headway (sometimes also called simply headway) between the front bumpers

of successive vehicles (the smaller index α − 1 denotes the leading vehicle),

Δtα = t0
α − t0

α−1, (3.2)

• time gap between the rear and front bumpers

Tα = t0
α − t1

α−1 = Δtα − vα−1

lα−1
, (3.3)
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• distance headway
dα = vα−1Δtα, (3.4)

• and distance gap between the rear and front bumpers (sometimes denoted simply
as gap)

sα = dα − lα−1. (3.5)

All spatial quantities (vehicle length, distances) are only exact if the speed is constant
during the measurement, which is a reasonable assumption.

3.2 Aggregated Data

Most detectors aggregate the microscopic single-vehicle data by averaging over fixed
time intervals Δt and transmit only the macroscopic data (aggregated data) to the
traffic control center. This saves both bandwidth in the transmission and disk space
when archiving the data, but of course all the microscopic information is lost. Time
intervals vary between 20 s and 5 min, the most common being Δt = 60 s. Averages
over a fixed number of vehicles (e.g. ΔN = 50 veh) are rarely used, even though
they are statistically more meaningful. One or more of the following quantities are
sent to the traffic control center:

Traffic flow. The traffic flow is defined as the number of vehicles ΔN passing the
cross-section at location x within a time interval Δt :

Q(x, t) = ΔN

Δt
. (3.6)

It is usually given in units of vehicles per hour (veh/h) or vehicles per minute.
In terms of the microscopic quantities, the traffic flow Q can be considered as the
inverse of the time mean of the headways, Q = 1/〈Δtα〉.1

Sometimes, the inverse of the headway is called microscopic flow,

qα = 1

Δtα
, (3.7)

and the scatter plot of qα versus vα the microscopic flow-density diagram2

We emphasize that the traffic flow Q can be considered as the harmonic mean of
the microscopic flow

Q = 1

〈Δtα〉 = 1

〈1/qα〉 , (3.8)

1 The notation 〈·〉 is used for the arithmetic average in the context of measurements and for the
expected value in the context of statistical considerations (Sect. 3.3).
2 Notice that the term microscopic fundamental diagram generally denotes the gap as a function of
the speed for steady-state traffic flow as given by microscopic models.
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Generally, the harmonic mean of a series of values xα is defined as the inverse of the
arithmetic mean of the inverse, XH = 1/〈1/xα〉.
Occupancy. The dimensionless occupancy is the fraction of the aggregation interval
during which the cross-section is occupied by a vehicle:

O(x, t) = 1

Δt

α0+ΔN−1∑

α=α0

(t1
α − t0

α). (3.9)

Arithmetic mean speed. The arithmetic mean speed is the average speed of the ΔN
vehicles passing the cross-section during the aggregation interval:

V (x, t) = 〈vα〉 = 1

ΔN

α0+ΔN−1∑

α=α0

vα. (3.10)

We use V for the macroscopic speed to distinguish it from the (microscopic) speed
vα of single vehicles. To emphasize that the speed is measured at a fixed location for
a time interval, V is sometimes called time mean speed.
Harmonic mean speed. The harmonic mean speed is defined as

VH(x, t) = 1〈
1
vα

〉 = ΔN
∑α0+ΔN−1

α=α0
1
vα

. (3.11)

When neglecting accelerations, VH corresponds approximatively to the (spatial) aver-
age of the speed at a fixed time instant (cf. Sect. 3.3.2). Therefore, VH is some-
times called (not completely correctly) space mean speed. One can show that always
VH ≤ V where the equal sign only holds if all speeds are identical. The harmonic
mean speed and the following two quantities are rarely available although they would
be useful for a less biased traffic density estimate (see Sects. 3.3 and 4.4).

Arithmetic time mean of microscopic flow. The arithmetic time mean of micro-
scopic flow is defined by

Q∗(x, t) = 〈qα〉 =
〈

1

Δtα

〉
= 1

ΔN

α0+ΔN−1∑

α=α0

1

Δtα
. (3.12)

As will be shown in Sect. 4.4, this quantity is very useful in estimating the density
when no microscopic data are available.

Speed variance. The speed variance

Var(v) = σ 2
v (x, t) = 〈(vα − 〈vα〉)2〉 = 〈v2

α〉 − 〈vα〉2 (3.13)

http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4
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is a measure of the spread of the speed values within the aggregation interval.
The spread is given by the standard deviation σv, the square root of the variance.
The dimensionless coefficient of variation σv/V quantifies the relative spread of the
speed values (cf. Fig. 9.7).

Considering the mean speed in a highly heterogeneous traffic flow, what is the
advantage of averaging over a fixed number of vehicles instead of over fixed
time intervals?

3.3 Estimating Spatial Quantities from Cross-Sectional Data

While the macroscopic quantities flow Q, occupancy O , and (in the case of double-
loop detectors) the arithmetic mean speed V are measured directly, other important
quantities can only be estimated by making some assumptions. The traffic density
is defined as a spatial average at a fixed time (the number of vehicles on a given
road segment) but cross-sectional detectors can only measure temporal averages at
a fixed location (the cross-section). Contrary to flow and density, the macroscopic
speed can be defined both as a temporal and a spatial average. However, these two
definitions are not equivalent.

3.3.1 Traffic Density

The traffic density ρ(x, t) can be estimated using the hydrodynamic relation

ρ(x, t) = Q(x, t)

V (x, t)
= flow

speed
. (3.14)

However, this equation implicitly assumes that the speed V is a spatial average
(because the density is defined as a spatial quantity). Using the temporal averages
obtained from cross-sectional detectors induces systematic errors: Faster vehicles are
“seen” more frequently by detectors than slower vehicles, yielding a bias towards
larger speed values. Figure 3.3 shows a two-lane road where vehicles on the left lane
drive twice as fast as vehicles on the right lane. The flow is equal on both lanes, thus
the detector “sees” the same number of vehicles during the aggregation interval and
reports the temporal mean speed 〈vα〉 =108 km/h. However, the space mean speed is

2

3
72 km/h + 1

3
144 km/h = 96 km/h.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
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Fig. 3.3 Vehicles on the left
lane drive twice as fast but
with the same time headway 144 km/h

72 km/h

60 m

Induction Double−Loop Detector

Thus, the density as obtained by the hydrodynamic relation (3.14) underestimates
the real density by a factor of 8/9.

We can obtain a better estimate for the density from its definition “vehicles per
distance”, which can be expressed in terms of microscopic quantities as the inverse
of the space mean of the distance headways,

ρ(x, t) = 1

〈dα〉 = ΔN∑
α dα

. (3.15)

Similarly, the flow (“vehicles per time”) can be written as the inverse of the time
mean of the headways. For a given fixed time interval

Δt =
α0+ΔN−1∑

α=α0

Δtα = ΔN 〈Δtα〉

the flow is given by

Q = ΔN

Δt
= 1

〈Δtα〉 . (3.16)

In the following section we discuss two different ways for expressing the density
in terms of the measurable quantities Δtα and vα .

3.3.1.1 Derivation from the Expected Value of Traffic Density

Inserting Eq. (3.4) into the definition of the expected density (3.15) yields

1

ρ
= 〈dα〉 = 〈vα−1Δtα〉
≈ 〈vαΔtα〉
= 〈vα〉〈Δtα〉 + Cov(vα,Δtα)

= V

Q
+ Cov(vα,Δtα),
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and solving for ρ gives us

ρ = Q

V

(
1

1 + Q
V Cov(vα,Δtα)

)
. (3.17)

Here Cov(·, ·) denotes the covariance, defined for two random variables x and y as

Cov(x, y) = 〈(x − 〈x〉)(y − 〈y〉)〉 = 〈xy〉 − 〈x〉〈y〉. (3.18)

The covariance is positive if both variables are positively correlated, i.e. larger values
of x tend to be accompanied by proportionally larger values of y. The significance
of such a linear relationship is quantified by the correlation coefficient

rx,y = Cov(x, y)

σxσy
. (3.19)

For uncorrelated x and y (that is, the variables have no linear relationship) the
coefficient is 0. Its value is bounded between−1 (x and y are perfectly anti-correlated,
x ∝ −y) and +1 (x and y are perfectly correlated, x ∝ y). The correlation coefficient
allows us rewrite Eq. (3.17) as Wardrop’s equation3:

ρ = Q

V

⎛

⎝ 1

1 + σV
V

Q
σQ

rvα,Δtα

⎞

⎠ . (3.20)

Thus, the real density equals the (widely used) estimate “flow divided by arithmetic
mean speed” multiplied by a correction factor that captures the correlation between
speed and headway, rv,Δt , as well as the (relative) variance of vehicle speed and
flow, σV /V and σQ/Q. In free traffic rv,Δt is near zero since every driver is able to
choose his or her speed independently. In congested traffic, however, the headwayΔtα
usually increases with decreasing speed and tends to infinity as the speed approaches
zero. Therefore rv,Δt is negative in this case and the correction factor is greater than 1.
Thus, the relation Q/V systematically underestimates the real density in congested
traffic (cf. Fig. 4.10).

3.3.1.2 Derivation from the Expected Value of Traffic Flow

A different approach to derive the density from measurable quantities combines the
expected value of the flow (3.16) with Eq. (3.4):

3 Not to be confused with the Wardrop equilibrium, a concept in transportation planning where
routes are chosen according to the user equilibrium, i.e., no user is better off when choosing a
different route.

http://dx.doi.org/10.1007/978-3-642-32460-4_4
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1

Q
= 〈Δtα〉 =

〈
dα

vα−1

〉
(3.21)

≈
〈

dα

vα

〉
= 〈dα〉

〈
1

vα

〉
+ Cov

(
dα,

1

vα

)
(3.22)

= 1

ρVH
+ Cov

(
dα,

1

vα

)
. (3.23)

Again solving for ρ we obtain

ρ = Q

VH

(
1

1 − Q Cov (dα, 1/vα)

)
(3.24)

where VH is the harmonic mean speed (3.11) that gives stronger weight to small speed
values. Since the distance headway dα usually increases with vα (and decreases with
1/vα), Cov(dα, 1/vα) is negative and the correction factor smaller than 1. Thus,
Q/VH generally overestimates the real density.

3.3.1.3 Discussion of the Two Approximations

In practice, the covariances in Eqs. (3.20) and (3.24) are usually assumed to be
zero and

ρ(1) = Q

V
or ρ(2) = Q

VH
(3.25)

is used to calculate the density (both relations can be applied to multi-lane traffic as
well). The following statements help in assessing the errors of the two estimates:

1. If all vehicle speeds vα are the same, then V = VH and thus ρ = ρ(1) = ρ(2).
2. If all headways Δtα are the same, then Cov(vα,Δtα) = 0 and thus ρ = ρ(1) =

Q/V holds exactly (cf. Fig. 3.3). Otherwise, ρ(1) most likely underestimates the
real density as Cov(vα,Δtα) is usually negative.

3. If all distance headways dα are the same, then Cov
(

dα, 1
vα

)
= 0 and thus ρ =

ρ(2) = Q/VH holds exactly (again, cf. Fig. 3.3). Otherwise, ρ(2) most likely

overestimates the real density since Cov
(

dα, 1
vα

)
is usually negative as well.

Why is it not possible to measure the density of stopped traffic using stationary
detectors of any kind?
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3.3.2 Space Mean Speed

The space mean speed (instantaneous mean) 〈V (t)〉 is the arithmetic mean of the
speed of all vehicles within a given road segment at time t (in Fig. 3.4 this is a
segment of length L around the detector),

〈V (t)〉 = 1

n(t)

n(t)∑

α=1

vα(t). (3.26)

In general (that is, with multiple lanes and arbitrary speeds and accelerations), aggre-
gated detector data is unsuitable for determining the space mean speed because the
number and identities of vehicles used in the average in Eq. (3.26) changes within
the aggregation interval Δt . Also, it is possible that n(t) = 0.

We get a more suitable definition by averaging the instantaneous mean over the
aggregation interval Δt . Furthermore, we choose the reference length L small enough
so that no vehicles are on the reference road segment at time t or t + Δt and the
vehicle speed does not change significantly during the time needed for passing the
segment, τα ≈ L/vα . Averaging Eq. (3.26) over time gives us4

〈V 〉 =
∫ t+Δt

t n(t ′)〈V (t ′)〉 dt ′
∫ t+Δt

t n(t ′) dt ′
=

∑
α

∫ tα+τα

tα
vα(t ′) dt ′

∑
α τα

≈
∑

α ταvα∑
α τα

≈ n L∑
α L/vα

= n
∑n

α=1
1
vα

,

Here n denotes the total number of vehicles that have passed the detector within the
interval Δt (not to be confused with n(t), the number of vehicles on the referenced
road segment). The speed values vα are those obtained from the detector (i.e., mea-
sured at the same location but different times, as opposed to measured simultaneously
at different locations).

Thus, the time-averaged (over an aggregation interval) and space-averaged (over
a road segment) speed is given by the harmonic mean,

〈V 〉 = VH. (3.27)

Although not exact, the harmonic mean VH of temporal speed data obtained at a
fixed location (stationary detectors) is often equated with the instantaneous mean,
also called space mean speed in the literature:

4 Note that the denominator equals the total travel time (vehicle-minutes) of all vehicles in the
referenced spatiotemporal interval.
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Fig. 3.4 Derivation of the
space mean speed (3.27)

L

Induction Double−Loop Detector

The harmonic time mean speed is approximately equal to the (arithmetic) space
mean speed.

3.4 Determining Speed from Single-Loop Detectors

Single-loop detectors only measure the entry and exit times t0
α and t1

α of each
vehicle α. If the vehicle length lα was known, we could obtain the speed from
vα = lα/(t1

α − t0
α). However, single-loop detectors cannot measure vehicle length.

Yet we can assume an average vehicle length 〈lα〉 and use the definition of the
occupancy (3.9) to derive an estimate of the average speed:

O = 1

Δt

∑

α

(t1
α − t0

α)

= 1

Δt

∑

α

lα
vα

= n

Δt

[
〈lα〉

〈
1

vα

〉
+ Cov

(
lα,

1

vα

)]

= Q

[
〈lα〉

〈
1

vα

〉
+ Cov

(
lα,

1

vα

)]
.

Solving for VH = 1/〈1/vα〉 we get

VH = Q〈lα〉
O

[
1 − Q

O Cov(lα, 1/vα)
] . (3.28)

For large densities the covariance Cov(lα, 1/vα) is nearly zero because all vehi-
cles drive with approximately the same speed. Thus, the estimate for VH simplifies
to Q〈lα〉/O . In free traffic, however, longer vehicles (trucks) usually drive more
slowly than shorter vehicles (cars), thus Cov(lα, 1/vα) > 0. In this case Q〈lα〉/O
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systematically underestimates the harmonic mean of the speed values. However,
since the harmonic mean is always less than the arithmetic mean for any data with
finite variance, Q〈lα〉/O may be a good estimate for the arithmetic mean. If all vehi-
cle lengths are equal, the simple relation between occupancy and harmonic mean
speed is exact (for arbitrary speed values). For all these cases the traffic density can
be easily estimated as well, yielding

VH = Q

ρ̃
with ρ̃ = O

〈lα〉 . (3.29)

To apply these equations only the average vehicle length 〈lα〉 must be known.

Problems

3.1 Data Aggregation at a Cross-Section
Consider the following 30 s excerpt from single-vehicle data of a cross-sectional
detector:

Time Speed Lane Vehicle length
(in s) (in m/s) (1 = right, 2 = left) (in m)

2 26 1 5
7 24 1 12
7 32 2 4
10 32 2 5
12 29 1 4
18 28 1 4
20 34 2 5
21 22 1 15
25 26 1 3
29 38 2 5

1. Aggregate the data and calculate the macroscopic traffic flow and speed (arith-
metic mean), separately for both lanes.

2. Calculate the traffic density in each lane assuming that speed and time headway
of two succeeding vehicles are uncorrelated (which is realistic for free traffic).

3. Determine the flow, speed, and density of both lanes combined.
4. What percentage of the vehicles on the right lane (and in total) are trucks?

3.2 Determining Macroscopic Quantities from Single-Vehicle data
On a two-lane highway all vehicles drive with distance headway 60 m. The vehicles
on the left lane all drive at speed 144 km/h, on the right lane at 72 km/h. A station-
ary detector captures single-vehicle data (cf. Fig. 3.3) and aggregates them using
Δt = 60s.
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1. What are the time headways Δtα on both lanes? What are the time gaps, assuming
all vehicles are 5 m long?

2. Find the traffic flow, occupancy, and average speed (both arithmetic and harmonic)
separately for both lanes (i.e., each lane is captured by its own detector) and also
for both lanes combined (i.e., one detector captures vehicles on both lanes). For
which type of averaging does the following statement hold: The average speed of
all vehicles in both lanes is equal to the arithmetic mean of the average speed of
each lane?

3. Calculate the speed variance. Show that the speed variance of all vehicles (on
both lanes) is

σ 2
V = p1

(
σ 2

V 1 + (V1 − V )2
)

+ (1 − p1)
(
σ 2

V 2 + (V2 − V )2
)

,

where p1 = Δn1/(Δn1 + Δn2) is the fraction of vehicles that are detected on
the right lane (within the time interval Δt). The speed variances of the single
lanes are denoted by σ 2

V 1 (right lane) and σ 2
V 2 (left lane), and V1 and V2 are the

corresponding arithmetic means. Finally, V = p1V1 + (1 − p1)V2 is the average
over both lanes. How does the equation simplify for p1 = 1/2?

Further Reading

• Leutzbach, W.: Introduction to the Theory of Traffic Flow. Springer, Berlin (1988)
• Helbing, D.: Traffic and related self-driven many-particle systems. Reviews of

Modern Physics 73 (2001) 1067–1141
• Cassidy, M.J.: Traffic Flow and Capacity. International Series in Operations

Research & Management Science. In: Handbook of Transportation Science.
Springer New York (2003) 155–191



Chapter 4
Representation of Cross-Sectional Data

The marvelous thing about traffic flow is the fact that you can
jam it anywhere at any time with so little effort.

Siegfried Wache

Abstract In this chapter we discuss different visualizations of microscopic and
macroscopic cross-sectional data and the possible conclusions that one can draw
from them. Time series of aggregated quantities such as speed, flow, and density
show temporal developments, while speed-density and flow-density diagrams allow
us to make statements about the average driving behavior on the observed road
segment. Particularly the flow-density diagram contains so much information about
the traffic dynamics that its idealized form is also called fundamental diagram of
traffic flow. If single-vehicle data is available, we can also obtain distributions of
microscopic quantities (vehicle speeds, time gaps, etc.).

4.1 Time Series of Macroscopic Quantities

One way of representation are time series of some aggregated quantity, which has
been measured at a cross-section. Flow, speed, and density time series of a few
hours’ data tell us about traffic breakdowns, types of traffic congestion (oscillatory
or essentially stationary), and the capacity drop after a breakdown (Fig. 4.1).

From the specific daily patterns of traffic demand (Fig. 4.2), the reader can easily
recognize whether it was recorded on a Monday, Tuesday/Wednesday/Thursday,
Friday or on a weekend.1 However, these daily traffic-demand plots are used primarily
in transportation planning and are beyond the scope of this book.

1 School and national holidays as well as holidays and associated “long weekends” are special cases
with their own characteristic patterns.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 25
DOI: 10.1007/978-3-642-32460-4_4, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 4.1 Time series during the morning peak-hour from one-minute data. From top to bottom:
arithmetic mean speed V , flow Q, and estimated density ρ = Q/V (see Sect. 3.3.1)
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Fig. 4.2 Typical daily time series of the traffic flow (demand) on a weekday (Wednesday)

It is very easy to draw incorrect conclusions when interpreting traffic jam dynamics
using single time series, as the following exercise illustrates:

Why is it wrong to conclude from the time series in Fig. 4.1 that the traf-
fic breakdown occurred at around 7 a.m.? Can we at least conclude (from
the figure) that vehicles near the cross-section at 7 a.m. decelerate, or that

http://dx.doi.org/10.1007/978-3-642-32460-4_3
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Fig. 4.3 Sketches of speed time series at a cross-section and possible spatiotemporal traffic patterns
causing them

vehicles near the cross-section at 8.30 a.m. accelerate? If not, what are alter-
native explanations for the observed patterns?

Solution. According to Fig. 4.3 the speed drop shortly before 7 a.m. is an upstream
jam front that is moving upstream. Alternatively, it could be a downstream jam front
moving downstream (with the driving direction) that is caused by a moving bottle-
neck, e.g., by an oversize load. However, this case is rather unlikely, so we assume
that it is an upstream jam front and vehicles are braking to avoid a rear-end collision.

The rise in speed at 8.30 a.m. can be explained by two different scenarios: (i)
It is a downstream-moving upstream front, i.e. the traffic jam shrinks. This would
imply that, after 8.30 a.m., vehicles are braking shortly after passing the detector,
while the time series indicates an acceleration. (ii) Alternatively, it could be an
upstream-moving downstream front, caused for example by a disappearing temporary
bottleneck (road block, traffic light, etc.) as the waiting vehicles subsequently start to
move again. In this case, the vehicles accelerate as indicated by the time series. For
both scenarios, we can estimate the jam front velocity directly from the fundamental
diagram (see Sect. 4.4 and Part II).

4.2 Speed-Density Relation

If we plot the aggregated vehicle speed over traffic density we obtain a speed-density
diagram (cf. Fig. 4.4). We see that the average speed is lower in denser traffic. Fur-
thermore, the diagram reflects the average behavior of a (typical) driver-vehicle
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Fig. 4.4 Speed-density relation obtained from one-minute data collected on the Autobahn A9 near
Munich, Germany, using the average over both lanes (top left), individual averages of both lanes (top
right), and individual lane averages conditioned on night (bottom left) and day hours (bottom right)

unit in different densities and external influences such as speed limits, weather
conditions, etc.

In very low-density traffic, the drivers are usually not influenced by other vehicles
and we obtain the average free speed V0 for ρ → 0 (cf. Fig. 4.5). This speed is the
minimum of (i) the actual desired speed of the drivers, (ii) the physically possible
attainable speed (especially relevant for trucks on uphill slopes), and possibly (iii) an
administrated speed limit (plus the drivers’ average speeding). However, V0 is often
directly referred to as the desired speed.

To approximatively obtain the distribution of desired speeds from empirical data,
we can use the speed distributions in single-vehicle data of low-density traffic (cf.
Sect. 3.1 and Fig. 4.6). In this case, there are few interactions between the drivers and
most of the drivers can be expected to drive at their desired speed. The distributions
of speeds on the left and middle lane are symmetric and approximately Gaussian,
while speeds on the right lane are distributed bimodally, showing the superposition
of the different speed distributions of trucks and passenger cars. Figure. 4.7 shows
average speed differences between lanes. In denser traffic, the speed difference tends
towards zero, leading to a speed synchronization of the lanes.

Speed-density diagrams might show heterogeneous traffic and different external
conditions, which has to be considered when interpreting them. Examples include a
varying percentage of trucks at different times of the day, different weather conditions

http://dx.doi.org/10.1007/978-3-642-32460-4
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Fig. 4.5 Speed-density dia-
grams, averaged over all lanes,
for segments of the Dutch A9
(Haarlem to Amsterdam) and
the German A8 (Munich to
Salzburg, Austria)
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Fig. 4.6 Probability distrib-
utions of the vehicle speed,
P(v), in low-density traffic
on the German Autobahn A3
(three lanes in each direction)
[From: Knospe et al., Physical
Review E 65, S. 56133 (2002)]
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(lighting, precipitation), and time-dependent speed limits issued by traffic control
systems. This also applies to the flow-density diagrams which will be discussed in
Sect. 4.4.

(1) In the upper left (V, ρ)-diagram of Fig. 4.4, the average speed decreases
again for very small densities. Does this imply that drivers are “afraid of the
free road”? Explain this observation statistically.
(2) The upper right panel of Fig. 4.4 shows two point clusters, around 100 km/h
and 125 km/h, in the left lane (red open circles). Give a possible explanation for
this bimodality. Consider the diagrams in the bottom panels (a traffic control
system issuing traffic-dependent speed limits by variable message signs is
installed on this road segment).
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Fig. 4.7 Difference in aver-
age speed between neigh-
boring lanes (A9-South near
Munich, Germany)
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4.3 Distribution of Time Gaps

Using single-vehicle data, we can also obtain the distributions of time gaps (cf.
Eq. 3.3), as shown in Fig. 4.8 for two different speed ranges corresponding to free
and congested traffic. The time-gap distributions exhibit the following properties:

1. Time gaps are broadly scattered—it is not unusual to see standard deviations
larger than the arithmetic mean 〈T 〉, i.e., a coefficient of variation greater
than 1.

2. The distributions are strongly asymmetric. Both in free and congested traffic we
observe time gaps longer than 10 s.

3. In free traffic (with speeds larger than some critical speed Vc) the most probable
time gap T̂ (the statistical mode) is significantly smaller than in congested traffic.
In both speed regimes, T̂ is significantly smaller than the recommended safe time
gap in the USA (“leave one car length for every ten miles per hour of speed”), or
in Europe (“safety distance (in meters) equals speed (in km/h) divided by two”,
corresponding to 1.8 s).

4. The arithmetic mean is also significantly smaller in dense free traffic than in
congested traffic.

The mean flow is equal to the inverse of the arithmetic mean of the time headways.
Thus, we can also determine the flow decrease after a traffic breakdown from the
distributions in Fig. 4.8. Traffic jams usually do not dissolve quickly once they have
emerged, due to this capacity drop.

Most of the observed time-gap distributions are not identical to the distribution of
the drivers’ desired time gaps, but provide an upper bound only. The real time gap is
larger in free traffic because most vehicles are not actually following another vehicle.
With a flow of, e.g., 360 veh/h per lane (corresponding to a mean headway of 10 s), the
mode of the time-gap distribution is still below 1 s. There are also dynamic influences,
since the followed vehicle might be “getting away” if the following vehicle cannot
accelerate any further (or its driver does not want to). These effects explain, at least
partially, the strong asymmetry of the distributions.

http://dx.doi.org/10.1007/978-3-642-32460-4
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Fig. 4.8 Distribution of the
time gaps in two speed regimes
(free and congested traffic),
measured on the Dutch A9
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4.4 Flow-Density Diagram

The flow-density diagram, i.e., plotting traffic flow against density, allows us to make
a number of statements on the macroscopic (i.e., average) behavior of a driver-vehicle
unit. In its idealized form, i.e., steady state equilibrium of identical driver-vehicle
units, it is also called fundamental diagram. The following quantities can be derived
from the fundamental diagram:

1. The desired speed equals the asymptotic gradient Q′(0) of the fit Q(ρ) for ρ = 0.
This quantity can be more accurately determined using speed-density diagrams
(cf. Sect. 4.2).

2. The actual mean speed for a defined density is given by the slope Q(ρ)/ρ of the
secant through (0, 0) and (ρ, Q(ρ)).

3. The maximum value of Q(ρ) is the road capacity per lane.
4. The inverse of the smallest nonzero density ρmax for which Q(ρmax ) = 0 equals

the average vehicle length plus the average gap between stopped vehicles.
5. The mean time gap T can be determined from the (negative) slope of Q(ρ) at

large densities (see Chap. 8).
6. The slopes of flow-density diagrams also allow to read off the propagation

velocities of jam fronts and variations of macroscopic quantities (this is also
discussed in Chap. 8).

Bias with respect to the fundamental diagram. It is important to carefully distin-
guish between measured flow-density data and the fundamental diagram.

The fundamental diagram describes the theoretical relation between density
and flow in stationary homogeneous traffic, i.e., the steady state equilibrium of
identical driver-vehicle units. The flow-density diagram represents aggregated
empirical data that generally describes non-stationary heterogeneous traffic,
i.e., different driver-vehicle units far from equilibrium.

http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_8
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Fig. 4.9 Flow-density dia-
gram (averaged over all lanes)
for sections of the Dutch A9
(Haarlem to Amsterdam) and
the German A8-East (Munich
to the Austrian border) near
Irschenberg
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There are multiple reasons for flow-density data not to coincide with the funda-
mental diagram:

• The measurements process induces systematic errors (Sect. 3.3).
• The traffic flow is not at equilibrium.
• The traffic flow has spatial inhomogeneities or contains non-identical driver-

vehicle units.

The statements on traffic jam dynamics and driving behavior derived in the above
enumeration are exact for the fundamental diagram, only. Since each of the afore-
mentioned factors can cause significant differences between the density obtained
from Eq. (3.14) and the theoretical expectation in the fundamental diagram (it is
not unusual to see discrepancies by a factor of two), deriving statements from flow-
density data is quite error-prone. In the following examples of empirical flow-density
relations shown in the Figs. 4.9, 4.11 and 4.12 (upper left panel), the maximum traffic
density obtained by extrapolation is unrealistically small, while the front propaga-
tion velocities derived from the trend of flow-density point clouds of congested
regions are too large in magnitude (and the point clouds do not always show a clear
trend).

To estimate the effects of the errors mentioned above, we can use traffic sim-
ulations that also simulate the measurement process using virtual cross-sectional
detectors. Fig. 4.10 shows that the flow-density diagram depends strongly on the
method of averaging for obtaining the macroscopic speed and the flow (cf. Sect. 3.2),
at least at large densities. Particularly, all methods yield estimated densities that
strongly deviate from the actual density, which is, of course, available in the simula-
tion. Remarkably, plotting the flow Q against the density estimate

ρ∗ = Q∗

VH
(4.1)

http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_3
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Fig. 4.10 a Microscopic simulation of a traffic breakdown and stop-and-go waves caused by an
on-ramp. Shown is the local speed. b–e flow-density data where the measurement process was
simulated using data of “virtual” detectors and different aggregation methods. b Flow Q = 1/〈�tα〉
versus density Q/V (the standard procedure), c flow Q versus density Q/VH , d flow Q∗ = 〈1/�tα〉
versus density Q∗/VH , e flow Q versus density Q∗/VH . For comparison, plot f displays the point
cloud obtaining by using the actual local values of flow and density, and the fundamental diagram
is plotted as solid line in b–f

(Fig. 4.10e) consistently yields the least biased result in the simulations although
the unbiased flow is given by the harmonic mean Q (Eq. 3.6) of the microscopic
flow, and not by the arithmetic average Q∗ (Eq. 3.12). In any case, the difference
between the true flow-density points (f) and the data shown in (b)–(e) is caused by
the measurement process. The difference between the flow-density data (f) and the
fundamental diagram, however, is due solely to non-equilibrium effects. This can
be concluded since identical driver-vehicle units were simulated (for details, see
Fig. 11.4 in Part II where this simulation is discussed in detail).

http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Fig. 4.11 Flow-density dia-
gram describing hysteretic
traffic dynamics. Time series
of these data are shown in
Fig. 4.1
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We finally notice that quantities that are derived purely from measurements of
the flow, such as the capacity and the hysteresis effects to be discussed in the next
paragraph, are less subjected to errors.

Capacity drop and hysteresis. Sometimes, a sudden drop of the maximum possi-
ble traffic flow (capacity drop) is observed with a traffic breakdown (cf. Fig. 4.11
and 4.12). In this case the traffic shows hysteresis effects, i.e., the dynamics does not
only depend on the traffic demand but also on the history of the system. When the
traffic breaks down, the system state switches from the “free branch” onto the “con-
gested branch”, lowering the maximum possible flow. This implies that once a traffic
jam has emerged, the traffic demand has to fall to a much lower value to dissolve the
jam. The flow-density diagram describing this phenomenon is also said to have an
inverse-λ form (due to its resemblance of a mirrored Greek letter lambda, λ).

Wide scattering. The strong variation of time gaps (cf. Sect. 4.3) partially explains
the strong scattering of the flow-density data in congested traffic: While in free traffic
the variations of density and time gaps both cause variations of the flow-density data
along the one-dimensional curve Q ≈ ρV0, variations of density in congested traffic
lead to changes in the flow-density data which are orthogonal to those caused by
variation in the time gaps. Both effects combined lead to a chaotic behavior of the
flow-density data in congested traffic (cf. Figs. 4.11 and 4.12).

Finally, variations in the time gaps are not only caused by heterogeneous traffic
(i.e., different desired time gaps of the individual drivers), but also by non-equilibrium
traffic dynamics (i.e., the actual time gap is not equal to the desired time gap) and
the systematic aggregation errors discussed above (Fig. 4.10).
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Fig. 4.12 Flow-density, speed-density, and speed-flow diagrams of the 1-minute data captured on
the Autobahn A5 near Frankfurt, Germany using harmonic mean speed. The lines show the fit of a
traffic-stream model (see Sect. 6.2.2)

4.5 Speed-Flow Diagram

Plotting vehicle speed against traffic flow is also possible, of course. However, this
diagram is not as fundamental for modeling as the flow-density diagram and not as
demonstrative as the speed-density diagram. It does have the advantage of showing
only directly observed quantities, Nevertheless, it is also affected by the systematic
errors in the speed aggregation. By the hydrodynamic relation Q = ρV , all three
diagram types are equivalent (cf. Fig. 4.12).

Problems

4.1 Analytical fundamental diagram
Derive and sketch both the speed-density diagram and the fundamental diagram,
subject to the following idealized assumptions: (i) All vehicles are of length l = 5 m.
(ii) In free traffic (speed does not depend on other vehicles), all vehicles drive at
their desired speed V0 = 120 km/h. (iii) In congested traffic (speed is the same as
the speed of the leading vehicle), drivers keep a gap of s(v) = s0 + vT to the leading
vehicle, with the minimum gap s0 = 2 m and the time gap T = 1.6 s.

4.2 Flow-density diagram of empirical data
Considering the speed-density diagram (Fig. 4.5) and flow-density diagram (Fig. 4.9)
of the German A8-East and the Dutch A9, determine the desired speed V0, time gap
T , maximum density ρmax, and the capacity drop on both highways from the fitted

http://dx.doi.org/10.1007/978-3-642-32460-4_6
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curves. Which statements can you make about the driving behavior of German and
Dutch drivers (at least on these specific highways at the time of measurement)?

Further Reading
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data of highway traffic: Microscopic description of traffic phases. Physical Review
E 65, 056133 (2002)



Chapter 5
Spatiotemporal Reconstruction
of the Traffic State

Amazement is the beginning of knowledge.
Plato

Abstract A detailed representation of the traffic state in space and time allows us
to analyze various aspects of traffic dynamics. However, since traffic data are only
available for a small subset of locations and times, the full traffic state can only be
reconstructed by spatiotemporal interpolation, which can be formulated in terms of
a convolution integral. Since naive “isotropic” interpolation is inadequate for traffic
data, we introduce a more refined interpolation method. This adaptive smoothing
method yields a detailed and plausible reconstruction of the traffic state. Finally, we
discuss the combination and weighting of multiple, heterogeneous data sources for
estimating the traffic state (data fusion).

5.1 Spatiotemporal Interpolation

The purpose of the two-dimensional spatiotemporal interpolation algorithm described
below is to estimate the speed field, i.e., the continuous function of local speed aver-
age V (x, t) given only discrete speed measurements vi at discrete locations xi and
times ti (Figs. 5.1 and 5.2). In most cases, data are available in the form of aggregated
minute by minute data of speed and flow recorded by stationary detectors. Further-
more, floating cars transmitting “data telegrams” of their positions and time-mean
speeds become increasingly relevant. The output is the traffic-state estimator in the
form of a continuous speed field (and possibly other fields) as a function of space and
time. Traffic-state reconstruction methods using interpolation techniques are useful
for offline analysis of historical highway traffic flow data. Real-time estimation is
described in Chap. 18

M. Treiber and A. Kesting, Traffic Flow Dynamics, 37
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Fig. 5.1 Color-coded visualization of the speed measured by stationary detectors (top) and the
speed field reconstructed by the adaptive smoothing method (Sect. 5.2). The data are from a section
of the Autobahn A5 near Frankfurt/Main, Germany (south-bound, recorded May 28, 2001). The
“active” bottlenecks causing congestions are the on-ramps of two highway junctions, and an accident
at location 478 km restricting the local capacity at this location between 10:00 and 11:30 am
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Fig. 5.2 Spatiotemporal interpolation as a way of reconstructing the traffic state at location x and
time t using the isotropic weighting kernel (5.2)
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The basis of spatiotemporal interpolation and smoothing is a discrete convolution
with a kernel φ0 that includes all data points i :

V (x, t) = 1

N (x, t)

∑

i

φ0 (x − xi , t − ti ) vi . (5.1)

In principle, we can use any function as the weighting kernel φ0(x, t). To avoid
artifacts, the kernel should have following properties:

• It should be localized, i.e., φ0(x, t) tends to zero for sufficiently large values of
|x | and |t |.

• The maximum of φ0(x, t) should be at x = 0 and t = 0.
• φ0(x, t) should be a continuous function of x and t .
• φ0(x, t) should be monotonically decreasing with |x | and |t |.

For our purposes, the symmetric exponential has proved itself useful1:

φ0(x − xi , t − ti ) = exp

[
−

( |x − xi |
σ

+ |t − ti |
τ

)]
. (5.2)

Here, σ and τ are the smoothing widths in the spatial and temporal coordinates,
respectively. The denominator N of Eq. 5.1 denotes the normalization of the weight-
ing function, given by the sum of all discrete weights:

N (x, t) =
∑

i

φ0(x − xi , t − ti ). (5.3)

The exponential function operates as a low-pass filter, smoothing temporal variations
on a scale smaller than τ and spatial fluctuations on a scale smaller than σ . For the
interpolation of detector data with aggregation intervals of 1 min, good values for τ

are between 30 and 60 s. The spatial smoothing with σ should be of the order of half
of the average distance between detectors.

If the distance between two detectors is larger than half of the spatial distance
between two stop-and-go waves, the isotropic kernel (5.2) produces artifacts such as
the “egg-carton pattern” in Fig. 5.3. These introduce ambiguities into the interpreta-
tion of stop-and-go waves (Fig. 5.4).

Why does the isotropic reconstruction of stop-and-go traffic produce artifacts
such as wrong propagation velocities, or even wrong propagation directions of
congestion waves, if the detectors are further apart than half of the wavelength?
Clarify the situation by drawing idealized, regular stop-and-go waves with
wavelength λ and multiple cross-sectional detectors (all separated by a distance
Δx) in a space-time diagram (cf. Fig. 5.4).

1 One could also use a bivariate Gaussian.
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Fig. 5.4 Ambiguity in the interpretation of stop-and-go waves using data from cross-sectional
detectors: Aside from the “true” stop-and-go waves (solid patches), a different interpretation is
possible (dotted outlines). Since stop-and-go waves always propagate upstream, we can rule out the
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5.2 Adaptive Smoothing Method

The wavelengths of stop-and-go waves are usually of the order of 2 km while most
stationary detectors or floating cars in the real world are separated by more than
1 km. Therefore isotropic smoothing using the kernel (5.2) is not suitable for typical
situations. In the following, we introduce a traffic-adaptive smoothing method for
the reconstruction of the spatiotemporal traffic dynamics, which is able to provide a
more detailed and plausible reconstruction than the isotropic method (Fig. 5.3).

Like the isotropic smoothing procedure, the adaptive smoothing method is based
on a two-dimensional interpolation in space and time. In contrast to the former, it
takes into account the two typical velocities of information propagation in free and
congested traffic.

First, the spatiotemporally averaged speeds (and other macroscopic quantities) are
calculated using two different weighting kernels (“filters”, Sect. 5.2.1) accounting for
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the different propagation velocities of macroscopic density and speed changes in free
and congested traffic.

Then, the two filters are used to determine the traffic state at the spatiotemporal
location (x, t) by calculating the “degree of congestion”, w, which can take values
between 0 and 1. The final speed field V (x, t) is a superposition of the two filters,
weighted by w (Sect. 5.2.2). To validate the smoothing method we will reconstruct
the traffic state from a reduced dataset (in which data from some detectors has
been omitted) and compare it to the reconstruction obtained from the full dataset
(Sect. 5.2.4). Finally, we investigate the robustness of the method (Sect. 5.2.5).

5.2.1 Characteristic Propagation Velocities

The adaptive smoothing method takes into account that all perturbations to the traf-
fic flow, i.e., “patterns” in the spatiotemporal speed diagram, are either stationary or
moving with one of two distinct (remarkably universal) velocities: (i) In free traffic it
has been observed that perturbations usually propagate with the traffic flow (down-
stream) at a characteristic velocity slightly below the local speed of the vehicles.
This is due to the weak interactions between the vehicles. (ii) In congested traffic,
perturbations propagate against the traffic flow (upstream) due to the reaction of the
drivers to their respective leading vehicles. Empirical data shows that the propagation
velocity of approximately ccong = −15 km/h is universal in congested traffic situa-
tions, see Fig. 2.1. This includes the propagation of downstream fronts of individual
stop-and-go waves (cf. Chap. 18), or the dissolution of a queue behind a traffic light
once it turns green (cf. the figure in Problem 2.3). The only exception to this rule is
the propagation velocity of upstream fronts of congestions which is above ccong.

To account for these fundamental properties of the traffics dynamics, two smoothed
speed fields with different propagation velocities in free and congested traffic, cfree
and ccong, are considered (cf. Fig. 5.5)2:

Vfree(x, t) = 1

Nfree(x, t)

∑

i

φ0

(
x − xi , t − ti − x − xi

cfree

)
vi , (5.4)

Vcong(x, t) = 1

Ncong(x, t)

∑

i

φ0

(
x − xi , t − ti − x − xi

ccong

)
vi . (5.5)

The normalization constants Nfree and Ncong are determined analogously to (5.3).
According to the reasoning above, the propagation velocity in free traffic is set slightly
less than the average free-flow vehicle speed, e.g., cfree = 70 km/h on highways.
The propagation velocity in congested situations, ccong = −15 km/h, represents

2 We use c to denote propagation velocities, and V and v for the macroscopic and microscopic
vehicle speeds, respectively.

http://dx.doi.org/10.1007/978-3-642-32460-4 _2
http://dx.doi.org/10.1007/978-3-642-32460-4_18
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Fig. 5.5 Speed filters of the adaptive smoothing method for the reconstruction of free and congested
traffic states at location x0 and time t0. The colored parallelograms indicate the spatiotemporal
region for which the weighting function φ0 is significantly different from zero. The shear of the
parallelograms is determined by the propagation velocities of perturbations in free and congested
traffic, respectively. The symbols along the dotted lines, which mark the positions of cross-sectional
detectors, show the (aggregated) data which are most influential in the interpolation

the movement of traffic waves moving against the traffic flow (indicated by the
negative sign). The space-dependent shifts of the time coordinate by (x − xi )/cfree
and (x − xi )/ccong given by Eqs. 5.4 and 5.5, respectively, represent the transitions
from a coordinate system comoving with the propagation velocities to a stationary
system. In effect, the transformations “shear” the smoothing kernel φ0(x − xi , t − ti )
with the gradients 1/cfree and 1/ccong. In the limit cfree = ccong → ∞ the adaptive
interpolation is equivalent to the isotropic interpolation (5.2).

5.2.2 Nonlinear Adaptive Speed Filter

The result of the adaptive smoothing method—the average speed V (x, t)—is a super-
position of the two speed fields Vfree and Vcong:

V (x, t) = w(x, t) Vcong(x, t) + [1 − w(x, t)] Vfree(x, t). (5.6)

The weight w(x, t) depends on both Vfree and Vcong. Obviously, we want w ≈ 1 for
low speeds and w ≈ 0 for high speeds. The continuous transition between the two
extremes is characterized by an s-shaped (sigmoid) nonlinear function:

w(x, t) = 1

2

[
1 + tanh

(
Vc − V ∗

ΔV

)]
. (5.7)



5.2 Adaptive Smoothing Method 43

Table 5.1 Parameters of the adaptive smoothing method (ASM) and typical values for highway
traffic

Parameter Value (highway traffic)

Spatial smoothing width σ Δx/2 (of the order of 1 km)
Temporal smoothing width τ Δt/2 (of the order of 30 s)
Propagation velocity of perturbations in free traffic cfree 70 km/h
Propagation velocity of perturbations in congested traffic ccong −15 km/h
Threshold between free and congested traffic Vc 50 km/h
Width of the transition between free and congested traffic ΔV 10 km/h

The predictor V ∗(x, t) = min
[
Vfree, Vcong

]
is defined such that congested traffic

states are represented more accurately than free traffic. The parameter ΔV determines
the transition width around Vc, which is the threshold between free and congested
traffic. Good parameters values are, for example, Vc = 55 km/h and ΔV = 10 km/h.

5.2.3 Parameters

Table 5.1 summarizes the six parameters of the adaptive smoothing method (ASM)
and suggests suitable values for highway traffic. Strictly speaking, the parameters
must be estimated by appropriate calibration techniques as described in Chap. 16
below. However, the ASM is very robust in the sense that the resulting speed field
is insensitive to the precise values as long as the order of magnitude is correct
(cf. Sect. 5.2.5). In particular, the values of Table 5.1 are expected to yield good
results for any highway traffic situation.

In the following, we show—using the ASM as an example—how one can test the
validity and robustness of methods for traffic-state reconstruction.

5.2.4 Testing the Predictive Power: Validation

Traffic-state recognition methods can be validated by applying them to a subset of
given detector data and comparing the results with the full dataset. Ideally, the full
data set serving as reference is so dense that it can be regarded as representing the
ground truth (Fig. 5.6).

The validation procedure consists in applying the ASM with standard parameters
of Table 5.1 to input data chosen from just a small selection of the available detectors.
The interpolated speed field V (x, t) is then compared to speed data at detectors
which are half way between those whose data has been used in the reconstruction.
For example, at a spacing of 1 km corresponding to Fig. 5.7a, the prediction quality
of the method is based on the differences between the predicted and measured data

http://dx.doi.org/10.1007/978-3-642-32460-4_16
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Fig. 5.6 Stationary detector data of traffic waves on the English motorway M42. The inter-detector
spacing of the stationary detectors is 100 m (40 m in the vicinity of x = 12 km). The data are
visualized as a spatiotemporal scatter plot. Each data point corresponds to the local speed aggregated
over all lanes and over 1 min. No further data processing has been applied

at x = 2.5 km, x = 3.5 km and so forth. Figures 5.7b–d display the reconstructed
traffic states with increasingly reduced sets of loop detectors. In summary, the most
important features are identified even when the detector spacing is increased to
4 km. Generally, the method can be considered as valid for inter-detector distances
at or below 2–3 km. At this distance, the ASM produces similar results as the naive
isotropic interpolation would do for inter-detector distances of 1 km (Fig. 5.3).

5.2.5 Testing the Robustness: Sensitivity Analysis

By varying the parameters listed in Table 5.1 we can check the “robustness” of the
traffic state reconstruction, i.e., the sensitivity of the result to changes in the parameter
values. Figure 5.8 shows the reconstructed speed field of traffic waves on the German
A9 when changing the transition parameters Vc and ΔV (top, right), or the propaga-
tion velocities cfree and ccong (bottom row). The resulting average speed, especially
the distinction between free and congested traffic, does not change strongly in either
case. The most important factor is the propagation velocity in congested traffic: Val-
ues less than −20 km/h or greater than −12 km/h produce artificial, discrete steps.
For Vc → ±∞, the ASM reverts to the isotropic smoothing method (Fig. 5.3 right).
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Fig. 5.7 Reconstruction of the reference situation of Fig. 5.6 by the adaptive smoothing method
applied on reduced data sets with detector spacings between 1 and 4 km. The locations of detectors
whose data has been used in the reconstruction are indicated by horizontal lines

5.3 Data Fusion

The term data fusion refers to the process of combining data from multiple, hetero-
geneous data sources such as cross-sectional data, floating-car data, “floating-phone
data”, police reports, etc. In general, each of these categories of data describes dif-
ferent aspects of the traffic situation and might even contradict each other. The goal
of data fusion is to maximize the utility of the available information (cf. Figs. 5.9
and 5.10).

Real-time applications of the traffic state estimation, e.g., information on current
traffic congestions, are a particular challenge, since data points in the future are, of
course, not available.
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Fig. 5.8 Influence of parameter variations when applying the adaptive smoothing method on the
detector data of Fig. 5.3

Fig. 5.9 Example of het-
erogeneous data sources:
cross-sectional detectors and
floating-car data
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Fig. 5.10 Another example of diverse data sources used in the spatiotemporal reconstruction of the
traffic state. The horizontal dotted lines represent two stationary detectors at locations x1 and x2,
which send data every minute (green circles: free traffic, yellow: dense traffic, red: traffic jam). Three
floating cars cross the road segment in question and also send data, though not in fixed intervals but
event-based. A camera on a bridge at location x3 reports trajectory data over a small road segment
(black curves). An accident was reported via cell phone (call1) but the caller was only able to give
the approximate location (vertical orange line). Caller 2 was standing on a bridge and observed free
traffic over some period of time. Caller 3 reported standing in a traffic jam at time 2:55 p.m. and
location 435.5 km. Finally, a helicopter (flying against the driving direction) observed free traffic

5.3.1 Model-Based Validation of a Data Fusion Procedure

The adaptive smoothing method introduced in Sect. 5.2 can be used as an algorithm
for data fusion if all data sources provide spatiotemporally resolved point measure-
ments of the local speed, i.e., data sets {xi , ti , vi }. This includes stationary detector
data (SDD) and floating-car data (FCD). To test and validate this application of the
adaptive smoothing method, one needs congested traffic situations where (i) SDD,
(ii) FCD, (iii) a sufficient approximation to the ground truth are available. To date,
such test cases are rarely available. We therefore demonstrate how to validate data-
fusion procedures based on models and simulations. For this purpose, we simulate
traffic waves with a model of human drivers that can reproduce the waves realistically
(Fig. 5.12a, see Chap. 12 for a model description). As input for the adaptive smooth-
ing method, we generate virtual SDD and FCD from the simulation (Fig. 5.11) and
apply the method with the standard parameters.

The prediction quality of the method is assessed by comparing the reconstructed
speed fields shown in Fig. 5.12b–d with the reference of Fig. 5.12a. It becomes evident
that both data sources contribute to the reconstruction.

http://dx.doi.org/10.1007/978-3-642-32460-4_12
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Fig. 5.11 Scatter plot of virtual floating-car and stationary detector speed data generated by sim-
ulating a bottleneck situation with a model for human drivers (described in Chap. 12)
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Fig. 5.12 Spatiotemporal speed profiles: a ground truth; b using stationary detector data (SDD)
only; c using floating-car data (FCD) only; d combining stationary detector and floating-car data.
The input data for the Adaptive Smoothing Method resulting in diagrams b–d is shown in Fig. 5.11

5.3.2 Weighting the Data Sources

When using multiple data sources, their relative weighting plays an important role.
However, in the Eqs. (5.4 and 5.5), the weights

http://dx.doi.org/10.1007/978-3-642-32460-4_12
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wi (x, t) = φ0

(
x − xi , t − ti − x − xi

c

)
(5.8)

(with c = cfree or ccong) depend only on the (spatiotemporal) distance between the
location in question (x, t) and the data points (xi , ti ). Consequently, all data points
are considered equally important. However, if the data originate from several detector
categories m (such as induction-loop detectors, infrared detectors, floating cars) with
different magnitude of the associated errors, it is sensible to include an additional
weight rm that represents the reliability of the data source to give the more reliable
sources a stronger influence on the result. Combining this with the weighting (5.8)
according to the spatiotemporal distance between data and interpolation points, all
spatiotemporal weights wi (x, t) in the above formulas have to be replaced by the
total weights

wtot
i (x, t) = wi (x, t)rm(i) = φ0

(
x − xi , t − ti − x − xi

c

)
rm(i). (5.9)

Here, m(i) denotes that the data source i is of type m with reliability weight rm .
In order to determine the reliability weights rm , let us assume that (i) the different

data sources m bear no systematic errors, (ii) the variance θm of the random errors
is known, and (iii) the errors of the different sources are uncorrelated.

Now, we assume that, for a given point (x, t), speed estimates vm from all data
types are available such that φ0(x − xi , t − ti − (x − xi )/c) = 1. Then, according
to a basic addition rule for a linear combination of independent random variables,
the error variance of the weighted arithmetic mean V (x, t) = ∑

m rmvm is given by
θ = ∑

m r2
mθm where

∑
m rm = 1 must be satisfied. Our objective is to minimize

this variance by varying the weights rm , or the weight vector r. This immediately
leads to following constrained optimization problem: Minimize

θ(r) =
∑

m

r2
mθm, (5.10)

subject to ∑

m

rm = 1 . (5.11)

Constrained optimization problems can be solved using Lagrange multipliers. The
procedure is as follows:

1. Formulate each constraint n as a constraint function equating to zero, Bn(r) = 0.
Here, the only constraint

∑
m rm = 1 results in the function B1(r) = ∑

m rm − 1.
2. Define the Lagrange function by adding to the objective function to be minimized

the constraint functions multiplied by Lagrange multipliers λn :
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L(r,λ) = θ(r) −
∑

n

λn Bn(r), (5.12)

where the vector λ represents the Lagrange multipliers which are unknown at this
stage. In our optimization problem, the Lagrange function is given by L(r, λ1) =∑

m r2
mθm − λ1(

∑
m rm − 1).

3. Find a necessary condition for the minimum of the Lagrange function with respect
to r:

∂L(r,λ)

∂r
= 0. (5.13)

This results in M equations if the weight vector r consists of M components. In
our application, we obtain

∂L

∂rm
= 2rmθm − λ1

!= 0 ⇒ rm = λ1

2θm
.

4. Determine the unknown Lagrange multipliers by applying the constraints. If there
are N constraints, (5.13) and the constraints constitute M + N equations for the
M + N unknown components of the vectors r and λ. In our optimization problem,
we obtain λ1 = 2/(

∑
m′ θ−1

m′ ) resulting in the final weighting

rm =
1
θm∑

m′
1
θ ′

m

. (5.14)

The weights should be proportional to the inverse of the variance of the errors in
the data source.

Problems

5.1 Reconstruction of the traffic situation around an accident
Different data sources provide information about a road segment of length 10 km
(0 ≤ x ≤ 10 km) indicating a road block caused by an accident: (i) At 4.00 p.m.,
a floating car enters the area and crosses it at 120 km/h. (ii) At 4.19 p.m., another
floating car, driving at the same speed, has to stop at the end of a traffic jam at
x = 5 km. (iii) Two stationary detectors at x = 4 and 8 km measure the traffic flow
(but not the speed). The detector at x = 4 km reports a flow of zero between 4.25 and
4.58 p.m.. The detector at x = 8 km reports zero flow between 4.14 and 4.51 p.m.
(iv) At 4.40 p.m., a driver reports (via cell phone) that he has been stuck in a traffic
jam at x = 5 km for a few minutes already. (v) At 4.30 p.m., another caller, driving
on the opposite lane, reports an empty road at x = 7 km.
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1. Visualize the available information in a space-time diagram. Mark all information
as one of (i) “free traffic”, (ii) “traffic jam”, (iii) “empty road”, (iv) “do not know;
either empty road or stopped traffic”.

2. Determine the location and time of the accident, assuming an immediate and total
road block causing a traffic jam that propagates upstream with constant velocity.
Also, determine the propagation velocity.

3. Determine the time at which the road block clears. (Keep in mind that downstream
jam fronts move with a universal propagation velocity of −15 km/h.)

5.2 Dealing with inconsistent information
When a floating car passes the location xD of a stationary detector at time tD , the
data for (xD, tD) from the two different sources is usually inconsistent. Assume that
the floating-car speed data V2 has a standard deviation of errors σ2 that is twice as
large as those of the stationary detectors (speed V1, variance σ 2

1 = 1
4σ 2

2 ), and that
the errors are independent and not systematic. How do the errors in the fused data
improve (or worsen) when using (i) equal or (ii) optimal weights (5.14)?

Further Reading

• Treiber, M., Helbing, D.: Reconstructing the spatio-temporal traffic dynamics from
stationary detector data. Cooper@tive Tr@nsport@tion Dyn@mics 1 (2002) 3.1–
3.24 (Internet Journal, www.TrafficForum.org/journal)

• Treiber, M., Kesting, A., Wilson, R.E.: Reconstructing the traffic state by fusion
of heterogeneous data Computer-Aided Civil and Infrastructure Engineering 26
(2011), 408–419

• van Lint, J., Hoogendoorn, S.P.: A robust and efficient method for fusing heteroge-
neous data from traffic sensors on freeways. Computer-Aided Civil and Infrastruc-
ture Engineering 24 (2009) 1–17
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Chapter 6
General Aspects

Politics is for the present, but an equation is for eternity.
Albert Einstein

Abstract In this chapter we present the general approach to traffic flow model-
ing and distinguish it from the methods of transportation planning. Furthermore,
we introduce model classifications with respect to the aggregation level and with
respect to mathematical and conceptional criteria. We also discuss how to model
non-motorized traffic.

6.1 History and Scope of Traffic Flow Theory

Traffic flow theory and modeling started in the 1930s, pioneered by the US-American
Bruce D. Greenshields (Fig. 6.1). However, since the 1990s, the field has gained
considerable attraction as overall traffic demand has increased and more data as well
as easy access to computing power has become available.

Both traffic flow modeling and transportation planning belong to the broader
field of traffic modeling. However, there are important differences between traffic
flow modeling and transportation planning:

• Temporal aspect: The timescale in traffic flow dynamics is of the order of minutes
to a few hours, while transportation planning covers periods from hours to several
days or even years.

• Objective aspect: Traffic flow dynamics assumes an externally given traffic demand
and fixed infrastructure. Transportation planning models the dynamics of the traffic
demand and effects of infrastructure changes.

• Subjective aspect: Traffic flow dynamics analyzes human (or automated) operatio-
nal driving behavior (accelerating, braking, lane-changing, turning) while higher-
level actions, e.g., activity choice (number and type of trips), destination choice,
mode choice, and route choice belong to the realm of transportation planning.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 55
DOI: 10.1007/978-3-642-32460-4_6, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 6.1 Traffic theory in the 1930s: Historical speed-density diagram and the experiment carried
out by Bruce D. Greenshields. [From: Greenshields, B.D., A study of traffic capacity. In: Proceedings
of the Highway Research Board, Vol. 14. Highway Research Board, Washington, D.C. (1935)]

Note that “dynamics”, i.e., explicit time evolution is not a distinguishing fea-
ture by itself: Transportation planning also includes the method of dynamic traffic
assignment (i.e., route choices that depend on traffic state and time). Furthermore,
supply (infrastructure) and demand are “dynamic” over timescales (years) routinely
considered in transportation planning.

The differences between the two fields are reflected in their approaches to tackle a
given problem. For example, the probability of traffic jams can be reduced by traffic
regulations such as speed limits, on-ramp metering, bans on passing for trucks, or
variable-message signs for alternate-route advises. The same effect can be achieved,
however, by building, modifying or removing infrastructure elements, creating incen-
tives to use different means of transportation, dispersing rush hours, or reducing
overall traffic demand (e.g., by political action). While the former solutions are sim-
ulated using traffic flow models, the latter refer to the field of transportation planning.
Of course, for a detailed assessment of a measure pertaining to transportation plan-
ning (e.g., redesigning a major intersection or building a new bridge), traffic flow
simulations come into play.

6.2 Model Classification

Traffic flow models can be categorized with respect to a number of aspects: Aggre-
gation level (the way reality is represented), mathematical structure, and conceptual
aspects. This section introduces important classes of models.

6.2.1 Aggregation Level

There are several ways to abstract real-world traffic events and model them, i.e.,
describe them mathematically (Fig. 6.2):
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ρ (x,t)
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Pedestrian Model (v    (t), v    (t))
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Fig. 6.2 Comparison of various model categories (with respect to the way they represent reality)
including typical model equations

Macroscopic models describe traffic flow analogously to liquids or gases in motion.
Hence they are sometimes called hydrodynamic models. The dynamical variables are
locally aggregated quantities such as the traffic density ρ(x, t), flow Q(x, t), mean
speed V (x, t), or the speed variance σ 2

V (x, t). Because the aggregation is local, these
quantities generally vary across space and time, i.e., they correspond to dynamic
fields. Thus, macroscopic models are able to describe collective phenomena such
as the evolution of congested regions or the propagation velocity of traffic waves.
Furthermore, macroscopic model are useful,

• if effects that are difficult to describe macroscopically need not to be considered
(e.g., lane changes, several driver-vehicle types),

• if one is interested in macroscopic quantities, only,
• if the computation time of the simulation is critical, e.g., in real-time applications

(due to increasing computing power, this aspect is becoming less important), or
• if the available input data come from heterogeneous sources and/or are inconsis-

tent, so data fusion is necessary.

Multiple real-time speed and the capability to incorporate heterogeneous data
sources are particularly important for traffic state estimations and predictions. In this
process, the future traffic state is predicted over a time horizon τ and the predictions
are updated over smaller time intervals Δt . The predictions are processed such that
they can be distributed via traffic message channel, variable-message signs, or serve
as input for connected navigation devices.1

Microscopic models including car-following models and most cellular automata
describe individual “driver-vehicle particles” α, which collectively form the traffic

1 Traffic flow modeling and transportation planning are intertwined in these applications: Traffic
flow models provide the basis for the route choice.



58 6 General Aspects

flow. These models describe the reaction of every driver (accelerating, braking, lane-
changing) depending on the surrounding traffic. In a broader context, microscopic
traffic flow models are examples of driven multi-particle models. The dynamical vari-
ables are vehicle positions xα(t), speeds vα(t), and accelerations v̇α(t). Microscopic
models are particularly suited for the following applications:

• Modeling how single vehicles affect traffic: This is becoming more and more
important as advanced driver-assistance systems (ADAS) such as adaptive cruise
control (ACC) or infrastructure-to-vehicle (I2V) and vehicle-to-vehicle commu-
nication (V2V) as well as other applications of Intelligent Transportation Systems
(ITS) see widespread use.

• Situations in which the heterogeneity of the traffic plays an important role, e.g.,
simulating the effects of speed limits or bans on passing for trucks: As we will see
in Chap. 21, this applies to any traffic control action since the general objective of
all measures for traffic optimization is the homogenization of the traffic.

• Describing human driving behavior, including estimation errors, reaction times,
inattentiveness, and anticipation: Microscopic models allow us to assess how dif-
ferent driving styles affect traffic capacity and stability.

• Visualization of interactions between various traffic participants (cars, trucks,
buses, cyclists, pedestrians, etc.).

• Generating the surrounding traffic for scientific driving simulators used for physio-
psychological studies of human drivers, or even for game simulators.

Mesoscopic models combine microscopic and macroscopic approaches to a hybrid
model: In local-field models, parameters of a microscopic model may depend on
macroscopic quantities such as traffic density or local speed and speed variance.
Conversely, in so-called master equations, the dynamics of a macroscopic quan-
tity (the number of vehicles in a traffic jam) is described in terms of microscopic
stochastic rate equations for in- and out-“flowing” vehicles. Gas-kinetic traffic models
use idealized “collisions” to describe the dynamics of a quantity called phase-space
density ρ̃(x, t, v) which includes traffic density and the local probability distribution
of vehicle speed. In the class of parallel-hybrid models, critical parts of a traffic net-
work (e.g., intersections and traffic lights) are described microscopically, and the rest
macroscopically (see below). Apart from these categories, there is a large spectrum
of further mesoscopic models which are beyond the scope of this book.

Aggregation and disaggregation. Macroscopic quantities (density, flow, local speed
and speed variance) can be obtained from microscopic quantities (vehicle positions
and speeds) by local aggregation (cf. Fig. 6.3). This is possible if we can define
spatiotemporal regions which are microscopically large, such that they contain a
significant number of vehicles for averaging (notice that some macroscopic quan-
tities such as traffic density or speed variance are only defined for many vehicles).
Simultaneously, these regions must be macroscopically small, that is, smaller than
the typical lengths and time scales of the traffic patterns of interest (jams, stop-and-go
waves, changes in the traffic flow). The standard method for aggregation is kernel-
based moving averaging, a technique for weighted averaging where vehicles near

http://dx.doi.org/10.1007/978-3-642-32460-4_21
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Fig. 6.3 Aggregation and
disaggregation connects
microscopic and macroscopic
models

Disaggregation

Aggregation

Macroscopic ModelMicroscopic Model

the spatiotemporal point in question are weighted more than more distant vehicles
and the weighting is defined by a localized kernel function.2 A special method of
aggregation is the simulation of the empirical measurement process by virtual detec-
tors with subsequent aggregation over time intervals to obtain “virtual one-minute
data”. The “measurements” of these detectors can be analyzed using the methods
introduced in the Chaps. 3 and 4.

The reverse operation, i.e., obtaining single-vehicle information from macro-
scopic quantities by disaggregation, is more difficult. Since the information content
of the microscopic configuration is higher than that of the macroscopic fields, this is
only possible by using ad-hoc assumptions which generally cannot be well justified.

One application of aggregation and disaggregation are parallel-hybrid models
in which, for example, critical road sections are modeled by a microscopic model
while the rest is being described by a macroscopic model. For this we need a fit
pair of a micro- and a macro-model, which both have the same model parameters.
The aggregated results of the microscopic model should correspond to the results of
the macro-model. Furthermore, we need a micro-macro link for the transition from the
microscopic model to the macroscopic model at a given location (aggregation), and
a macro-micro link for the corresponding disaggregation. One exemplary derivation
of a macroscopic model from a car-following model is shown in Sect. 9.4.1.

6.2.2 Mathematical Structure

We can also categorize traffic flow models by their mathematical structure.

Partial differential equations (PDE). In models of this class both location x and
time t are continuous and serve as the independent variables of continuous fields such
as the local speed V (x, t) or density ρ(x, t). The model equations contain these fields
and their derivatives with respect to either of the two variables. This is the distinctive
feature of PDEs. This mathematical form is suited to express macroscopic models or
gas-kinetic based mesoscopic models. PDE traffic flow models generally allow for
analytical steady-state solutions (fundamental diagram), and analytical expressions
for propagation velocities of traffic waves and stability properties. Furthermore, in

2 In this sense, the adaptive smoothing method described in Sect. 5.2 can be considered as a kernel-
based aggregation method for data points rather than vehicles.

http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_5
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spite of their inherent mathematical complexity, most PDE traffic flow models allow
for a fast numerical solution.

Coupled ordinary differential equations. In this mathematical class, the continuous
state variables (e.g., location xα(t) or speed vα(t) of vehicle α) depend on only one
variable, the time t . The model equations contain the state variables and their time
derivatives (the distinctive feature of ordinary differential equations) and are coupled
with the equations of the leading vehicle. This is the most natural form to describe
time-continuous microscopic models (car-following models).

Coupled iterated maps. If the model uses discrete time steps Δt instead of continu-
ous time while the state variables (e.g., speed) remain continuous, the mathematical
form is that of a coupled iterated map. The set of state variables at time t are given
as a function (the “map”) of these variables at time t − Δt (and possibly earlier time
steps).

Iterated maps are used for both microscopic and macroscopic models. In micro-
scopic models, the continuous state variables are the position, lane and speed of all
vehicles. In macroscopic iterated maps, space is discretized into cells and the contin-
uous state variables are traffic density and local speed. The maps are “coupled” since
the new state of the vehicles of microscopic models or the cells of macroscopic mod-
els depend not only on the old state but on the old state of the neighboring vehicles
or cells, respectively.

Formally, iterated maps are identical to differential equations that are numerically
solved by an explicit method. Conceptionally however, there is a difference: In iter-
ated maps, the duration Δt of one time step is a model parameter and the accuracy
of the numerical solution is only restricted by numerical rounding errors. In contrast,
the time step used when numerically integrating differential equations is not part of
the model, but an auxiliary variable of the numerical method. The mathematically
exact solution is obtained in the limit Δt → 0 (provided that the integration method
is consistent), while the numerical solution for finite Δt > 0 becomes necessarily
inaccurate.

Cellular automata. In models of this class, all variables are discrete. Space is divided
into fixed cells and time is updated in fixed intervals. The state of each cell is either 0
(“no vehicle”) or 1 (“vehicle” or “part of vehicle”). The occupation of the cells is
determined at every time step and depends on the occupation at the previous time
step. In the traffic context, cellular automata (singular: cellular automaton, CA) are
mainly used for microscopic models. However, macroscopic traffic flow models in
the form of a CA are conceivable as well.

Discrete state variables, continuous time. Most (sub-)models for lane changes use
this mathematical form, even in time-continuous microscopic models: The lane index
is an integer, i.e., the lane change is (unrealistically) modeled as an instantaneous
process. Mesoscopic models using master equations belong to this category as well.

Static models. This class of models, also known as traffic stream models, describe
pairwise relations between the macroscopic state variables (density, flow, speed or
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occupation). The speed-density relation V (ρ) and the fundamental diagram Q(ρ)

discussed in Part I are examples of these models. The classical route-choice step of
transportation planning (or the route calculation of simple navigation devices with-
out live-data feed) uses the speed-flow relation, transformed into a travel time versus
flow relation, for each link. This so-called capacity restraint function is an increas-
ing function of the traffic demand. Notice that steady-state solutions of dynamic
microscopic or macroscopic models can be considered as traffic-stream models as
well.

6.2.3 Other Criteria

Depending on the application, traffic flow models can be categorized with respect to
several other criteria.

Conceptional foundation. We can distinguish between heuristic models and first-
principles models.3 Heuristic models use a simple mathematical ansatz (e.g., multi-
variate-linear or polynomial in the exogenous variables) with the coefficients playing
the role of model parameters. They are fitted to the data by, e.g., regression techniques
and generally have no intuitive meaning. In contrast, first-principles models are
derived from certain postulates. For car-following models, this may be a driving
behavior that is determined by desired values for speed, acceleration, deceleration,
time gap, and minimum gap (bumper-to-bumper distance). Ideally, each of these
postulates is reflected by a model parameter the value of which thereby has an
intuitive meaning. Of course, first-principle models are calibrated against empirical
data, as well. In “good” first-principles models the calibrated parameter values will
assume reasonable values. For example, desired time gaps should be between 1 and
2 s, or accelerations within 0.8–2.5 m/s2.

Randomness. Random elements can be used to describe aspects of the traffic flow
which are unknown, immeasurable, impossible to model, or “genuinely” random.4

While models without any randomness are called deterministic models, those with
random elements (also known as noise terms or stochastic terms) are called stochas-
tic models. In a computer simulation, the stochastic terms are implemented using
(pseudo-)random number generators. Randomness can occur at different points in
the model:

• Acceleration noise phenomenologically models the unpredictability and irrational-
ity of human driving behavior (“man is not a machine”). Most cellular automata
need noise terms to produce meaningful results.

• Exogeneous noise added to the input data (gaps and speeds in microscopic models)
is a way to model perception and estimation errors of humans (or ACC sensors)

3 Since traffic flow models include describing the human behavior, the first principles are not as
universal and invariant as the first principles in, e.g., physics.
4 Some people say that introducing stochastic elements is tantamount to confessing ignorance.
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on a more fundamental level: In contrast to acceleration noise, the acceleration
function itself is deterministic while the exogenous variables (input) fluctuate
randomly over time.

• Parameter noise, i.e., changing the values of model parameters according to a
stochastic process is a means to describe unpredictable changes in the mood of
drivers leading to changes of the driving behavior.

• Heterogeneities in the composition of the vehicles and drivers are described by
assigning each driver-vehicle unit a different set of parameter values drawn from
given probability distributions (see below). This adds stochastic elements to the
initial and boundary conditions (inflow, outflow), and leads, e.g., to stochastically
changing road capacities.

Identical versus heterogeneous drivers and vehicles. Traffic models may use iden-
tical driver-vehicle units or describe heterogeneous traffic. In the latter case, the
vehicle pool consists of several vehicle types (motorcycles, cars, trucks, etc.) and the
model might incorporate inter-driver variability by using several parameter sets for
each type (cautious vs. agile drivers, loaded vs. empty trucks, etc.).

Constant versus variable driving behavior. The (usually constant) model para-
meters determine the driving behavior of a driver-vehicle type. If some of these
parameters become time-dependent, we can describe changes in driving behavior.
This intra-driver variability may be stochastic (see above), or deterministic as a
function of the past traffic condition describing, e.g., resignation effects after being
stuck in congested traffic for a while. Simulating variable driving behavior is crucial
in assessing how adaptations of human drivers or ACC systems to different traffic
situations may improve or deteriorate the performance and stability of traffic flow
(cf. Sect. 21.5).

Single-lane versus multi-lane models. If the traffic flow model describes several
lanes and changes between them, it consists of two components: Longitudinal dynam-
ics (acceleration model) and lateral dynamics (lane-changing model). Some models
intrinsically incorporate lateral dynamics while pure longitudinal models can be
extended by a suitable lane-changing model (see Chap. 14).

Which model categories are suited for each of the following applications?

1. Traffic state estimation for traffic reporting or routing applications
2. Modeling human drivers with different driving behaviors
3. Development of an adaptive cruise control systems (ACC)
4. Modeling the impact of ACCs and other driver-assistance systems on traffic
5. Models of large-scale traffic networks (e.g., a state-wide highway network)
6. Models of complex city traffic networks
7 Modeling the effects of traffic regulations such as speed limits or lane-

changing restrictions
8. Modeling roadworks or other bottlenecks

http://dx.doi.org/10.1007/978-3-642-32460-4_21
http://dx.doi.org/10.1007/978-3-642-32460-4_14
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6.3 Non-Motorized Traffic

Besides motorized traffic flow, the dynamics of non-motorized traffic is accessible
to the model framework developed above. Non-motorized traffic includes pedes-
trian, bicycle, and mixed traffic (particularly in developing countries, cf. Fig. 6.4).
Generally, the microscopic approach is most suitable. However, large events with uni-
directional traffic flow (e.g., the pedestrian streams at the yearly pilgrimage event of
Mecca) have also been modeled and simulated macroscopically. Similar to models of
vehicular traffic, microscopic pedestrian models can be categorized into models with
continuous variables, so-called social-force models, and cellular automata. Contrary
to vehicles, pedestrians can generally move freely in two spatial dimensions, i.e.,
there are two spatial coordinates x and y. In addition to the desired (walking) speed,
every pedestrian also has a desired direction. Consequently, the desired velocity is a
vectorial quantity.

Pedestrian models are used, for example, in the design of airports, public open
spaces, shopping malls, and for planning large-scale events, e.g., carnivals or other
processions, demonstrations, soccer matches, rock concerts, and other big events.
Furthermore, they are used to simulate evacuations from buildings, sports stadiums,
airplanes, and ships. A well-known example of pedestrian traffic flow modeling is
the simulation of pilgrims at the annual Hajj to Mecca, Saudi Arabia. At this event,
mass panic with catastrophic consequences caused by jams occurred frequently in
the past. With the help of pedestrian traffic simulations, the infrastructure of the site
has been modified and a routing of the pilgrim streams has been introduced which
significantly alleviated pedestrian crowding and jamming.

Models for other types of non-motorized traffic such as bicyclists, runners, or
inline skaters are nearly nonexistent in the literature, even though there are many
possible applications. For example, there is a huge demand for the modeling of
mixed traffic consisting of pedestrians, motorcycles, three-wheelers, horse and man-
powered carriages, cars, and trucks in developing and emerging countries (cf.
Fig. 6.4). Flow models of runners and skaters have the potential to anticipate and
optimize the operations of large-scale events such as marathons, skating events, or
cross-country ski races. For example, at the annual Vasaloppet cross-country ski
race in Sweden, significant traffic jams occur during the first kilometers due to its
popularity (about 15,000 skiers). As a consequence, the athletes in the last starting
groups are delayed by an hour or even more while the clock is ticking (Fig. 6.5).
Here, traffic flow models can assist in the redesign and planning process by simu-
lating several scenarios, including a staggered rather than a mass start, changing the
organization of the starting field (size and location of the starting groups), changing
the infrastructure by detecting and eliminating active bottlenecks or modifying the
routing. Finally, simulations may suggest imposing an upper bound for the number
of participants.
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Fig. 6.4 Mixed traffic in Hyderabad (India) (Courtesy of www.cepolina.com)

Fig. 6.5 Traffic jam of cross-country skiers at the Vasaloppet (Sweden) near the start

www.cepolina.com
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Problems

6.1 Speed limit on the German Autobahn?
Some people and organizations regularly ask for the introduction of a general speed
limit (of, say, 130 km/h) on the German Autobahn. The reasoning usually includes
the following points:

1. A speed limit reduces the number of accidents (safety effect).
2. Assuming a given traffic demand, the speed limit of 130 km/h increases the

dynamic highway capacity and reduces traffic jams (traffic effect).
3. By restricting vehicles to 130 km/h, fuel consumption, CO2 emissions, and noise

pollution are reduced (environmental effects).
4. The economic internal and external costs (cost of time and fuel, costs of accidents,

costs due to noise-related health problems, etc.) are reduced (macro-economic
effect).

For which of these effects can we find a quantitative description using traffic flow
models? If the answer is positive, which model category would be suitable?

Further Reading

• Greenshields, B.D.: A study of traffic capacity. In: Proceedings of the Highway
Research Board, Vol. 14. Highway Research Board, Washington, D.C. (1935)
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Modern Physics 73 (2001) 1067–1141
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and Control Engineering 215 (2001) 283–303
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• Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic.
Nature 40 (2000) 487–490



Chapter 7
Continuity Equation

Experience without theory is blind, but theory without
experience is mere intellectual play.

Immanuel Kant

Abstract The foundations of every macroscopic traffic model are the hydrody-
namic relation “flow equals density times speed” and the continuity equation, which
describes the temporal evolution of the density as a function of flow differences or
gradients. The macroscopic vehicle speed is defined such that it satisfies the hydrody-
namic relation, and the continuity equation is directly derived from the conservation
of vehicle flows. Thus, both equations are parameter-free and hold for arbitrary
macroscopic models. In this chapter, we derive the continuity equation for various
road geometries and illustrate it both from the point of view of a stationary observer
(Eulerian representation) and a vehicle driver (Lagrangian representation).

7.1 Traffic Density and Hydrodynamic Flow-Density
Relation

The continuity equation describes the conservation of vehicles in terms of the traffic
density and the hydrodynamic flow-density relation. Therefore, we will begin with
defining these quantities for multi-lane highways.

Traffic density is defined as the number of vehicles per unit length (cf. Sect. 3.3.1).
When describing traffic flow on highways with I > 1 lanes, we distinguish:

• The single-lane densities ρi (x, t) on lane i = 1, . . . , n.
• The total density ρtot(x, t) over all lanes.
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Fig. 7.1 Illustration of the hydrodynamic relation Q = ρV . The colored area contains Δn = ρΔx
vehicles. Within the time interval Δt = Δx/V , this area completely passes a fixed location x0.
Thus, at this location we have a vehicle flow of Q = Δn/Δt = ρΔx/Δt = ρV

• And the lane-averaged densityρ(x, t), also called effective density which is defined
by ρ(x, t) = ρtot(x, t)/I .

These definitions are related to each other by

ρtot(x, t) =
I∑

i=1

ρi (x, t) = Iρ(x, t). (7.1)

Notice that the effective density is defined as the simple arithmetic mean of all
single-lane densities. While the density definitions ρ and ρtot are equivalent and
interchangeable, one of them may be more useful than the other, depending on the
problem at hand. The continuity equation is most conveniently written for the total
density ρtot since vehicles are only conserved on the highway as a whole and not on
each lane. However, the speed-density and dynamic speed equations representing the
drivers’ behavior in first and second-order models, respectively, depend only weakly
on the number of lanes.1 Therefore, the complete macroscopic equations are better
formulated in terms of lane-averaged (effective) density and speed fields.

All densities in macroscopic models are to be understood as real spatial densities
according to the definitions above. Thus, the “hydrodynamic” flow-density relations

Qi (x, t) = ρi (x, t)Vi (x, t) , (7.2)

as illustrated in Fig. 7.1, hold exactly for each individual lane.2 In this equation,
Qi (x, t) is the flow of lane i at location x and time t , and Vi (x, t) the respective
local speed.

1 For example, the capacity per lane of a three-lane highway is a few percent larger than that of a
two-lane highway since the obstructing effects of slower vehicles (trucks) decrease with the number
of lanes.
2 If we neglect diffusion, cf. Sect. 8.6.
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The local speed Vi (x, t)on lane i , sometimes also denoted as space mean speed,
is defined as the arithmetic mean speed of all the vehicles in the interval [x −
Δx/2, x+Δx/2] (or [x, x+Δx]) at a given time t . The interval must be micro-
scopically large (containing several vehicles) and macroscopically small (see
page 56 for details). The same definition applies to other “space mean” quan-
tities such as the lane-averaged speed V (x, t) and the speed variance σV (x, t).

If we define the lane-averaged or effective speed V (x, t) using an arithmetic mean
that is weighted by the lane densities,

V (x, t) =
I∑

i=1

wi Vi (x, t), wi = ρi (x, t)

ρtot(x, t)
, (7.3)

and the average flow using the simple arithmetic mean,3

Q(x, t) = 1

I

I∑

i=1

Qi (x, t) = Qtot

I
, (7.4)

then the same hydrodynamic relation also holds for the averages and sums over all
lanes:

Q(x, t) = ρ(x, t)V (x, t) Hydrodynamic Flow Relation (7.5)

and
Qtot(x, t) = ρtot(x, t)V (x, t). (7.6)

7.2 Continuity Equations for Several Road Profiles

The continuity equation does not depend on the particular macroscopic model being
used, but on the geometry of the road infrastructure. We discuss the following cases
in order of increasing complexity: (i) homogeneous road section, (ii) highway with
on- or off-ramps, (iii) road section in which the number of lanes changes.

3 Flow and density are extensive quantities, i.e., they depend on the system size (here, the number
of lanes) and it is meaningful to use sums of these quantities (e.g., the sum of densities on all
lanes). The speed, however, is an intensive quantity and it is not meaningful to use sums of such
quantities. In general, appropriate averages of extensive and intensive quantities are simple and
weighted means, respectively.
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7.2.1 Homogeneous Road Section

Let us consider a road section of length Δx without any on- or off-ramps or other
geometric inhomogeneities such as changes in the number of lanes (Fig. 7.2 top).4

The definitions of the local densities and speeds imply that the length Δx must
be microscopically large, such that it contains sufficiently many vehicles to obtain
macroscopic quantities, and macroscopically small, such that densities and flow
gradients are approximately constant within the road section.5 Then, the number of
vehicles in the road section at time t is given by

n(t) =
x+Δx∫

x

ρtot(x ′, t)dx ′ ≈ ρtot(x, t)Δx . (7.7)

Since we assumed a homogeneous road section, changes to the number of vehicles
can only be caused by inflow Qin or outflow Qout at the section boundaries (cf.
Fig. 7.2 top). These boundary flows are given by Qtot(x, t) and Qtot(x + Δx, t),
respectively, resulting in the flow balance

dn

dt
= Qin(t) − Qout(t) = Qtot(x, t) − Qtot(x + Δx, t) .

Combining this relation with the time-derivative of Eq. (7.7), dn
dt ≈ ∂

∂t (ρtotΔx) =
Δx ∂ρtot

∂t , we obtain

∂ρtot(x, t)

∂t
= 1

Δx

dn

dt
= − Qtot(x + Δx, t) − Qtot(x, t)

Δx
≈ −∂ Qtot(x, t)

∂x
,

and finally, using the hydrodynamic flow-speed relation Qtot = ρtotV (omitting the
function arguments):

∂ρtot

∂t
+ ∂(ρtotV )

∂x
= 0 or

∂ρ

∂t
+ ∂(ρV )

∂x
= 0 . (7.8)

Since, for a homogeneous road section, the number I of lanes is constant, the conti-
nuity equation for the effective density ρ = ρtot/I has the same form.

If the macroscopic model has the form of a coupled iterated map, the road section
is divided into several cells k of length Δxk and the discrete version of the continuity
Eq. (7.8) applies:

4 Local changes in driving behavior caused, e.g., by gradients, speed limits, curves, or narrow lanes
(without a reduction of the number of lanes), are permitted and do not influence the continuity
equation as such. They come into play when closing the equations by speed-flow relations, see
Chap. 8.
5 For highways, both assumptions typically hold for sections of length Δx ≈ 100 m.
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Fig. 7.2 Sketch of the road geometries which yield the continuity Eqs. (7.8), (7.12) and (7.15),
respectively: (i) homogeneous road section, (ii) on- or off-ramps, (iii) changes to the number of
lanes

ρk(t + Δt) = ρk(t) + 1

Δxk

(
Qup

k − Qdown
k

)
Δt. (7.9)

Here, the inflows Qup
k and outflows Qdown

k depend on the respective neighboring
cells and are calculated using the supply-demand method introduced in Sect. 8.5.7.

7.2.2 Sections with On- and Off-Ramps

On- and off-ramps imply additional in- and outflows Qrmp(t), which have to be added
to those at the section boundaries (cf. Fig. 7.2 center). The balance now reads

dn

dt
= Qin(t) − Qout(t) + Qrmp(t).

The ramp flow Qrmp is positive for on-ramps, and negative for off-ramps. If the ramp
has more than one lane, Qrmp is the sum of the flow on all lanes of the ramp. Assuming
that the in- and outflows are evenly distributed along the length Δx = L rmp of the
ramp, we can define a constant flow density dQrmp/dx = Qrmp/L rmp. This term is
only active within the merging (diverging) sections of the on-ramp (off-ramp). Thus
the continuity equation reads

∂ρtot

∂t
+ ∂(ρtotV )

∂x
= Qrmp

L rmp
= Iνrmp(x, t) . (7.10)
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Here,

νrmp(x, t) =
{

Qrmp(t)
I Lrmp

if x is within merging or diverging zones,

0 otherwise
(7.11)

denotes the effective source density. By dividing Eq. (7.10) by the number of
lanes, we obtain the continuity equation in the presence of ramps for the effective
(lane-averaged) density:

∂ρ

∂t
+ ∂(ρV )

∂x
= νrmp(x, t) . (7.12)

With coupled iterated maps, it is easiest to model the ramp as one cell k whose
length is equal to the length of the acceleration/deceleration lane of the ramp. The
discrete continuity equation then becomes

ρk(t + Δt) = ρk(t) + 1

Δxk

(
Qup

k − Qdown
k + Qk,rmp

I

)
Δt. (7.13)

Drivers often change onto the continuous lanes immediately at the beginning
of an on-ramp, especially in free traffic. How can this behavior be captured by
changing the source term νrm(x, t) of the continuity equation?

On-ramps with very short acceleration lanes force vehicles to change onto
the highway at relatively low speeds. Discuss why it is possible to use the
continuity equation to describe the perturbations caused by the low speeds?

7.2.3 Changes in the Number of Lanes

When a lane ends, drivers usually merge into the other lane(s) very early, typically
200–1,000 m before the end (or blocking) of the lane on highways and somewhat
later in cities.6 In contrast, when a new lane opens, there are many “early adopters”

6 This is even the case in case of congested traffic and in countries (e.g., Germany) where, for such
situations, traffic regulations require “zipper merging” just before the lane ends. Zipper merging
makes full use of the road capacity and minimizes the occurrence of secondary traffic jams caused
by gridlock effects (the waiting queue obstructs vehicles driving in other directions).
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changing immediately to this lane such that, after a few hundred meters, it is used
the same way as the other lanes.

If one were to formulate individual continuity equations for each lane (multi-lane
macroscopic models), the equations would be coupled by source terms along the
lines of those in Eq. (7.10). In particular, a lane closure would have the same effect
on its neighboring lane as an on-ramp, and an opening lane would represent a traffic
sink to the through lanes similar to an off-ramp.

However, we are only interested in macroscopic models which describe the
dynamics of the effective (lane-averaged) density ρ(x, t) and effective speed V (x, t).
The lane changes before a lane closure or after the beginning of an additional lane
are modeled by using a non-integer, location-dependent number I (x) of lanes (cf.
Fig. 7.2 bottom). The averages of all extensive (additive) variables, i.e., flow and
density, are related to this continuous number of lanes:

Q(x, t) = Qtot(x, t)

I (x)
, ρ(x, t) = ρtot(x, t)

I (x)
. (7.14)

The average speed V (x, t), however, is still given by Eq. (7.3) and the hydrodynamic
relation (7.5), Q = ρV still holds everywhere.

For example, a value of I = 2.2 indicates that the third lane is seldom used
anymore (or yet), as the flow on this lane is only 0.2 times the average flow on the
other lanes. This shows the consistency of the average speed as defined in Eq. (7.3),
since (in this example) the local speed on the third lane is weighted by a factor of
0.2. Moreover, with I (x) tending to 2.0, the weighting of the third lane continuously
drops to zero, as expected. This also means that the length of the transition zone
associated with a non-integer number of lanes should be the same as the length of
the typical “merging zone” from or to the non-through lane(s).

The weighted mean speed (7.3) is consistent with continuous changes in the
number of lanes, if the upper limit of the sum over all lanes is the smallest
integer larger than I . Convince yourself that even though the upper limit of the
sum is discontinuous (e.g., 3 for I = 2.01 vs. 2 for I = 2), the lane-averaged
effective speed (7.3) is continuous.

The continuity equation for the total density ρtot is the same as Eq. (7.8), or
Eq. (7.10) if ramps are present. However, since the traffic state (free, dense, and
congested) and thus the modeled driving dynamics depends on flows and densities
per lane, we have to express the continuity equation for a changing number of lanes
in terms of effective densities, speeds and flows, ρ = ρtot/I (x) and Qtot/I (x),
respectively. We insert ρtot = I (x)ρ and Qtot = I (x)Q into Eq. (7.10) and obtain
the following continuity equation:
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∂(Iρ)

∂t
+ ∂(I Q)

∂x
= Iνrmp

I
∂ρ

∂t
+ Q

dI

dx
+ I

∂ Q

∂x
= Iνrmp

∂ρ

∂t
+ ∂ Q

∂x
= − Q

I

dI

dx
+ νrmp

And with Q = ρV :

∂ρ

∂t
+ ∂(ρV )

∂x
= −ρV

I

dI

dx
+ νrmp(x) Continuity Equation. (7.15)

The continuity equation (7.15) describes the most general case including ramps,
lane closings, and lane openings. In addition to the ramp term νrmp(x), there is another
source density νI (x) = − Q

I
dI
dx which describes the net flow from ending lanes and to

newly opening lanes. Of course, all terms on the right-hand side of the equation are
only nonzero within the merging zones of on- and off-ramps, or within the transition
zones where vehicles leave lanes that are about to end or enter new lanes.

In the case of coupled iterated maps, the merging zone is modeled similarly to
ramps by a cell k of length Δxk with Iup lanes at the upstream end of the cell and
Idown lanes at the downstream end (cf. Problem 7.6):

ρk(t + Δt) = ρk(t) + 1

Δxk

(
Qup

k − Qdown
k + Qk,rmp

Idown
+ Iup − Idown

Idown
Qup

k

)
Δt.

(7.16)

7.2.4 Discussion

Let us first stress the fundamental nature of the continuity equation for macroscopic
traffic flow models:

Since the continuity equation is derived solely from the conservation of vehi-
cles, it is a part of all macroscopic models. Its form only depends on the mod-
eled road infrastructure and on the mathematical form of the model (partial
differential equation, iterated map, or cellular automaton).

Continuity equation without sources. Without on- or off-ramps we have ∂ρtot/∂t =
−∂ Qtot/∂x : The number of vehicles can only change due to in- or outflows at the
boundaries of the considered road section. If more vehicles flow out than are flowing
in, i.e., ∂ Qtot/∂x > 0, the rate of change in density is negative. If the inflow is larger
than the outflow for a sufficiently long time, e.g., due to an accident at the downstream
end, then the positive rate of change in the density will eventually lead to a traffic
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jam. In the absence of ramps and with constant number of lanes, the same continuity
equation holds for the lane-averaged effective quantities, ∂ρ/∂t = −∂ Q/∂x .

Reduction in the number of lanes. If we define density and flow as the average over
the continuous lanes, the lane changes from the closed lane(s) to the continuous
lane(s) cause a net inflow. This is reflected by the source term − Q

I
dI
dx and causes an

increase in density. However, if we use the total density and flow, there will be no
“source terms” in the continuity equation.

On-and off-ramps. In addition to the flow gradients, the in- and outflow at ramps also
cause a rate of change in density on the highway at the merging or diverging zones.
The source terms are proportional to the ramp flows. The effective flow density
(source density) νrmp(x) is larger for shorter ramps (since more vehicles have to
merge per unit length) and smaller for a larger number of lanes on the highway
(since the ramp flow is distributed to more lanes).

7.3 Continuity Equation from the Driver’s Perspective

The continuity equation is usually formulated from the perspective of a stationary
observer in terms of a partial derivative of the density with respect to time while
keeping the location fixed. This is also called the Eulerian representation. From the
perspective of a driver “drifting” with the traffic, the perceived change in density has
an additional convective contribution caused by the vehicle motion in the presence
of spatial density variations (cf. Fig. 7.3):

Δρ ≈
(

∂ρ

∂t
+ V

∂ρ

∂x

)
Δt.

In the limit Δt → 0 and Δx = V Δt → 0 (assuming that the density function
ρ(x, t) is continuously differentiable), the rate of change in the density perceived by
a driver is given by the total time derivative

dρ

dt
= ∂ρ

∂t
+ V (x, t)

∂ρ

∂x
. (7.17)

In many publications, the total time derivative is also referred to as material deriva-
tive, convective derivative, or substantial derivative. It is composed of the local rate of
change ∂ρ

∂t , and the convective rate of change V ∂ρ
∂x due to spatial changes (see Fig. 7.3).

With ∂
∂x (ρV ) = ρ ∂V

∂x + V ∂ρ
∂x we can rewrite the continuity equation for homo-

geneous road sections as

dρ

dt
= ∂ρ

∂t
+ V

∂ρ

∂x
= −ρ

∂V

∂x
. (7.18)
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Fig. 7.3 From the perspective of a driver, the change Δρ = dρ
dt Δt in density over time is composed

of the local change Δρ1 ≈ ∂ρ
∂t (x1)Δt at the initial location x1 = x(t1) and the convective change

Δρ2 = ρ(x2, t2) − ρ(x1, t2) ≈ ∂ρ
∂x Δx ≈ V ∂ρ

∂x Δt due to spatial density variations when moving to
a new location x2

Equation (7.18) states that the density increases if the speed gradient ∂V
∂x is negative.

In the microscopic view, this means that the headway decreases when the leading
vehicle is driving at a lower speed (which will be made explicit when formulating the
Lagrangian view, see Sect. 7.4 below). Furthermore, the density can never be negative,
as ρ(x, t) = 0 implies dρ/dt = 0 (surely, negative vehicles would be inconsistent).

The two different perspectives are also illustrated in Fig. 7.4: The density profile
(different shades) and the speed profiles (the gradients of the five trajectories) describe
a stationary downstream jam front, i.e., the density and speed at any given location x
are constant, so the local derivatives ∂ρ(x, t)/∂t and ∂V (x, t)/∂t are zero. This can
also be seen by the stylized time series that would be measured by stationary loop
detectors at the positions x1 and x2 (Fig. 7.4 right). Each driver, however, perceives
a decrease in density since he or she is leaving the traffic jam: dρ

dt = V ∂ρ
∂x < 0

(cf. Fig. 7.4 bottom). With the (Eulerian) continuity equation for stationary traffic on
a homogeneous road being ∂

∂x (ρV ) = 0, the driver will of course observe ∂V
∂x =

− V
ρ

∂ρ
∂x = − 1

ρ
dρ
dt > 0.

The relation between local (partial) and substantial (total) derivatives as seen from
stationary and comoving observers, respectively, is not only valid for the density but
for arbitrary continuously differentiable fields F(x, t),

dF(x, t)

dt
= ∂ F(x, t)

∂t
+ V (x, t)

∂ F(x, t)

∂x
. (7.19)

Particularly, this relation holds for the speed V (x, t) itself, so the total speed derivative
(rate of change) as seen from the driver’s perspective is given by

dV

dt
= ∂V

∂t
+ V

∂V

∂x
= ∂V

∂t
− V

ρ

dρ

dt
. (7.20)
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Fig. 7.4 The rate of change in
the density, dρB

dt = dρ(x,t)
dt =

∂ρ
∂t + V dρ

dx , as perceived by
vehicle B (middle trajectory)
while driving through the
downstream front of a traffic
jam, i.e., leaving the jam.
Since the jam front shown
here is stationary, the local
(partial) derivative ∂ρ(x,t)

∂t is
equal to zero
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In the situation of Fig. 7.4, the partial time derivatives are zero, so dV
dt = − V

ρ
dρ
dt is

positive which, obviously, is a further signature of leaving the jam.
In Chap. 9, we will use relation (7.19) to formulate the speed equation of second-

order macroscopic models.

7.4 Lagrangian Description

In full consequence, the driver’s view leads to the Lagrangian formulation of the
continuity equation. In this view, the independent variable x is expressed in terms
of the vehicle index n. Assuming no sources and sinks, the transformation can be
expressed by7

x → n(x, t) = −
x∫

0

ρ(x ′, 0)dx ′ +
t∫

0

Q(x, t ′)dt ′. (7.21)

In this equation, we assume n(0, 0) = 0 and a vehicle numbering consistent with
that in Chap. 3, i.e., the first vehicle (with the largest x value) has the lowest index.

Furthermore, the dependent variable traffic density is given in terms of the distance
headway h = s + lveh from front bumper to front bumper (cf. Chap. 3),8

ρ(x, t) = 1

h(n(x, t), t)
. (7.22)

7 To distinguish the formulation from microscopic equations, we do not use the microscopic vehicle
index α.
8 In order to avoid confusion with differential operators, we denote the distance headway in this
section by h instead of the symbol d used in Chap. 3.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_3
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As a result, the fields relevant for the Lagrangian description are the distance headway
field h(n, t) and the Lagrangian speed field v(n, t) defined by

V (x, t) = v(n(x, t), t). (7.23)

With these definitions, the chain rule of differentiation allows us to transform the
continuity equation (7.18) into the Lagrangian form. The total time derivative of this
equation transforms as follows:

dρ

dt
= ∂ρ

∂t
+ V

∂ρ

∂x
=

(
∂

∂t
+ V

∂

∂x

) [
1

h
(
n(x, t), t

)
]

= − 1

h2

(
∂h

∂n

∂n

∂t
+ ∂h

∂t
+ V

∂h

∂n

∂n

∂x

)

= − 1

h2

(
ρV

∂h

∂n
+ ∂h

∂t
− ρV

∂h

∂n

)

= − 1

h2

∂h

∂t
. (7.24)

Here, we made use of the relations

∂n

∂t
= Q = ρV,

∂n

∂x
= −ρ (7.25)

derived from Eq. (7.21). With dx = −1/ρ dn (again obtained from Eq. (7.21)), we
obtain for the second term of Eq. (7.18) the transformation

ρ
∂V

∂x
= −ρ2 ∂v

∂n
= − 1

h2

∂v

∂n

and hence the continuity equation for homogeneous road sections in Lagrangian
form,

∂h

∂t
+ ∂v

∂n
= 0. (7.26)

Considering also ramps and a variable number I (x) of lanes, we obtain from
Eq. (7.15) the general continuity equation in Lagrangian formulation:

∂h

∂t
+ ∂v

∂n
= −h2

[
νrmp

(
x(n, t), t

) − v

I h
I ′(x)

]
(7.27)

where I = I (x(n, t)) and I ′(x) = dI
dx must be expressed in terms of n and t . To this

end, we express x as a function of n using the relation ∂x
∂n = −h(n, t). Assuming

that the vehicle numbers are defined such that vehicle n = 0 crosses x = 0 at time
t = 0 and that this reference vehicle is connected with the independent coordinate
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n = 0 for all times,9 we obtain

x(n, t) =
t∫

0

v(0, t ′)dt ′ −
∫ n

0
h(n′, t)dn′. (7.28)

Generally, the advantage of the Lagrangian description lies in the existence of
simpler and less nonlinear numerical integration schemes for the homogeneous part
(left-hand side) enabling a faster model calibration. However, this comes with the dis-
advantage of more complicated source terms (right-hand side): Since the fixed space
coordinate x is replaced by the moving vehicle number coordinate n, all infrastruc-
ture inhomogeneities are no longer stationary but move backwards in the direction
of increasing n according to Eq. (7.28). For illustration, the relation for steady-state
homogeneous flow (v(n, t) = const. and h(n, t) = const.) reads x(n, t) = −hn+tv.

Problems

7.1 Flow-density-speed relations
Prove that the hydrodynamics relations (7.5) and (7.6) hold. Furthermore, show
that they do not hold for per-lane speed averages, regardless of whether they are
unweighted or weighted by the flows of the lanes.

7.2 Conservation of vehicles
Using the continuity equation, show that the total number of vehicles on a closed ring
road with varying number of lanes I (x) (but no on- or off-ramps) never changes.

7.3 Continuity equation I
Consider a two-lane highway with an on-ramp of length L = 300 m, beginning at
x = 0. The inflow is 600 vehicles per hour. Write down the continuity equation for
the total traffic density for 0 ≤ x ≤ L as well as for x > L . (i) Assume that the
inflow of the on-ramp is evenly distributed across the full length L . (ii) How can we
model the common behavior of drivers merging early onto the highway if there is
free traffic and merging late (near the end of the ramp) in congested conditions?

7.4 Continuity equation II
Use the continuity equation to determine the traffic flow Q(x) in a stationary state,
i.e., ∂ρ/∂t = 0 and constant average per-lane demand Q(x, t) = Q0 at the upstream
boundary at x = 0. Distinguish the two following cases: (i) The road section has
no on- or off-ramps but a variable number of lanes, I (x). (ii) The road section has

9 In general, this is not true for the other vehicles. For example, a vehicle entering the highway
upstream of the reference vehicle between the vehicles n = n1 and n1−1 ≥ 0 will get the coordinate
n1, so the coordinates of all vehicles further upstream (n ≥ n1) need to be incremented by one to
avoid ambiguities. Likewise, any vehicle entering the highway downstream of the reference vehicle
will decrement the coordinate n of all vehicles further downstream by one.
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a constant number of lanes I , and an off-ramp between x = 300 and 500 m with
constant outflow Qout as well as an on-ramp between x = 700 and 1,000m with
constant inflow Qin. All ramps have constant differential entering (exiting) rates
over the length of the merging (diverging) lanes.

7.5 Continuity equation III
Consider a three-lane highway with constant traffic demand Qtot = 3600 veh/h. One
of the lanes is blocked due to roadworks and the merging zone is between x = 0 and
x = L = 500 m.

1. Find the average per-lane density ρ and the average flow Q with respect to the
two continuous lanes. Assume a uniform, density-independent vehicle speed of
108 km/h.

2. Compare the effects of the lane closure in the previous part to the effects of an
on-ramp of length L = 500 m on a two-lane highway. Find a ramp flow Qrmp
and a ramp term νrmp(x) (which may be variable within the 0 ≤ x ≤ 500 m) such
that the continuity equation is identical to the one found in part 1 of this problem.

7.6 Continuity equation for coupled maps
Show that the steady-state condition ρk(t + Δt) = ρk(t) for the coupled map (7.16)
leads to the flow balance

Qk,rmp = Qdown
k I down

k − Qup
k I up

k .

Show that this implies that the coupled map (7.16) is consistently defined even if
ramps and changes of the number of lanes occur simultaneously in a road cell.

7.7 Parabolic fundamental diagram
Consider the speed-density relation V (ρ) = V0(1−ρ/ρmax) where V0 is the desired
speed and ρmax the maximum density.

1. Write down the equation for the fundamental diagram Q(ρ).
2. Determine the maximum possible flow and the density at which it is obtained, as

a function of V0 and ρmax.



Chapter 8
The Lighthill–Whitham–Richards Model

There is nothing more powerful than an idea whose time has
come.

Victor Hugo

Abstract The continuity equation, which holds for all macroscopic models, describes
the rate of change of the density in terms of gradients (or differences) of the flow.
The model is closed by specifying flow or local speed. In this chapter we discuss the
simpler approach in which the flow is given as a static function of the density, i.e.,
by a fundamental diagram. The models of this class of first-order models which are
also called Lighthill–Whitham–Richards models differ only in the functional form of
the fundamental diagram and in their mathematical representation.

8.1 Model Equations

The continuity equation is a partial differential or difference equation for the macro-
scopic quantities ρ (density) and V (speed) or Q (flow). Due to the hydrodynamic
relation “flow equals density times speed” these two options are equivalent. While
the parameterless continuity equation is always valid, we need an additional equation
for the flow or speed to complete the model.

Since the continuity equation is completely determined by the geometry of the
road infrastructure, the macroscopic models differ in their modeling of speed
or flow, only.

In 1955 and 1956, Lighthill and Whitham, and independently also Richards, pro-
posed the following static relation to complement the continuity equation:

Q(x, t) = Qe(ρ(x, t)) or V (x, t) = Ve(ρ(x, t)). (8.1)

M. Treiber and A. Kesting, Traffic Flow Dynamics, 81
DOI: 10.1007/978-3-642-32460-4_8, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 8.1 Schematic example
of a static speed-density rela-
tion for Lighthill–Whitham–
Richards (LWR) models (see
also the empirical data in
Figs. 4.4 and 4.12)

V e

ρ
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This relation assumes that traffic flow Q(x, t) = ρ(x, t) V (x, t) or speed V (x, t)
is always in local equilibrium with respect to the actual density: Traffic flow and
local speed instantaneously follow the density, not only for steady-state traffic but in
all situations. The precise form of the speed-density relation Ve(ρ) (cf. Fig. 8.1) or
the fundamental diagram Qe(ρ) = ρVe(ρ) is usually determined by fitting against
empirical speed-density or flow-density data (see Fig. 4.12).1

Inserting the assumption (8.1) of local equilibrium into the continuity equation
(7.8) for homogeneous road sections and applying the chain rule ∂ Qe

∂x = dQe(ρ)
dρ

∂ρ
∂x

yield the simplest form of a Lighthill–Whitham–Richards model:

∂ρ

∂t
+ dQe(ρ)

dρ

∂ρ

∂x
= 0 LWR Model. (8.2)

This equation can also be written as

∂ρ

∂t
+

(
Ve + ρ

dVe

dρ

)
∂ρ

∂x
= 0. (8.3)

On- and off-ramps as well as changes in the number of lanes are described by the
corresponding additional terms in the generic continuity equation (7.15) assuming
local speed equilibrium V (x, t) = Ve(ρ(x, t)) wherever applicable. Since Eq. (8.2)
does not specify the functional form of the fundamental diagram Qe(ρ), and many
(more or less realistic) specific functions have been proposed, LWR refers to a whole
class of models. Thus the common usage of the plural, LWR models. All models
in this class only have one dynamic equation, the continuity equation. Therefore,
they are also referred to as first-order models. In contrast, the second-order models
discussed in Chap. 9 assume that the local speed is an independent dynamic quantity
which, consequently, is modeled by an additional dynamic equation.

1 Speed-density and flow-density plots are one of the most important visualizations of aggregated
traffic data and have already been discussed in Sects. 4.2 and 4.4. Strictly speaking, the fundamental
diagram describes the one-dimensional manifold of steady states parameterized as a function of the
density. However, in several publications, the (scattered) flow-density data itself is often incorrectly
referred to as the fundamental diagram as well.

http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_7
http://dx.doi.org/10.1007/978-3-642-32460-4_7
http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4
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8.2 Propagation of Density Variations

The partial differential equations (8.2) and (8.3) are nonlinear wave equations,
describing the propagation of kinematic waves. In the following, we derive the prop-
agation velocity c̃ of such waves, or smooth density variations in general, by using
the traveling-wave ansatz

ρ(x, t) = ρ0(x − c̃t). (8.4)

The function ρ0(x) = ρ(x, 0) defines the initial density distribution, which, accord-
ing to Eq. (8.4), uniformly moves with velocity c̃. Let ρ′

0(x) be the derivative of ρ0
with respect to its (only) argument. By invoking the chain rule, we obtain

∂ρ

∂t
= −c̃ρ′

0(x − c̃t) and
∂ρ

∂x
= ρ′

0(x − c̃t).

Substituting these partial derivatives into the LWR model equation (8.2) yields the
condition

−c̃ρ′
0(x − c̃t) + dQe

dρ
ρ′

0(x − c̃t) = 0

which should hold for all x and t . This is only possible if the propagation velocity c̃
depends on the density according to

c̃(ρ) = dQe

dρ
= d(ρVe(ρ))

dρ
, (8.5)

or, again with the notation f ′(x) = d f
dx ,

c̃(ρ) = Q′
e(ρ) = Ve(ρ) + ρV ′

e(ρ). (8.6)

Equation (8.5) states that the propagation velocity c̃(ρ) of density variations in a fixed
reference frame is proportional to the gradient of the steady-state flow-density rela-
tion (fundamental diagram). The density variations may propagate either in driving
direction (free traffic; left part of the fundamental diagram, cf. Fig. 8.2) or against
the driving direction (congested traffic; right part of the fundamental diagram).

To find the relationship between the propagation velocity and the vehicle speed v,
we define a relative propagation velocity from the point of view of a driver (comoving
coordinates, Lagrangian view) and insert Eqs. (8.5) and (8.6):

c̃rel(ρ) = c̃(ρ) − V = c̃(ρ) − Ve(ρ) = ρV ′
e(ρ).

Since V ′
e(ρ) is non-positive for all correctly specified models (cf. Figs. 8.1 and 4.12)

we have c̃rel ≤ 0. Thus, from the perspective of a driver, density variations always
propagate backwards (upstream), or are, at most, stationary if traffic is completely free

http://dx.doi.org/10.1007/978-3-642-32460-4_4
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Fig. 8.2 Propagation velocity
c̃ = Q′

e(ρ) of density and
speed variations in the LWR
model in comparison with
the local vehicle speed Ve(ρ).
In the fundamental diagram
(top), c̃ is given by the slope
of the tangent while V is given
by the slope of the secant
through the origin
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and no interactions between drivers are present. This is reflected in most microscopic
models by the fact that the (modeled) drivers only observe and react to the leading
vehicle and not to the following vehicle (see Chap. 10).

8.3 Shock Waves

8.3.1 Formation

Continuous LWR models of the form (8.2) describe density variations of constant
amplitudes but with varying local propagation velocities: the lower the local density,
the higher the propagation velocity. For illustration purposes, we can think of the
density profile (the plot of density vs. location for a given time instant) as a stack of
thin horizontal layers which move independently with a velocity given by evaluating
Eq. (8.5) for the corresponding density (proportional to the “vertical location” of
this layer). Thus, the “top” layers move more slowly (possibly even backwards)
compared to the “bottom” layers (cf. Fig. 8.3 top, see also Fig. 8.4). For a “stop-and-
go wave”, this means that the upstream front becomes steeper and the downstream
front disperses (Fig. 8.3 middle). Thus, from the driver’s perspective, the transition
free → congested traffic becomes more and more abrupt while the vehicles at the
transition congested → free traffic accelerate more and more slowly over time.2

Eventually, the gradient ∂ρ/∂x will tend to infinity at the upstream front. At
this point, Eq. (8.5) figuratively predicting “breaking waves”, breaks down (Fig. 8.3
bottom). After all, there can only be one unique density value at any given time
and location, so “breaking” waves are physically absurd. Instead, we will observe
a discontinuous transition indicated by the vertical line in Fig. 8.3 (bottom panel)
which is the defining feature of a shock wave or shock front. This is confirmed by
simulation: Fig. 8.4 shows how the gradient of the upstream front gradually increases

2 In the mathematical literature, this widening of the downstream transition zone is called a
dispersion fan.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Fig. 8.3 Emergence of shock
waves due to the density-
dependent local propagation
velocities in the LWR model
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until a discontinuity emerges at about t = 10 min and x = 4 km. Since shocks are
associated with infinite accelerations or decelerations, they do not reflect real-world
traffic, so LWR models are unrealistic in this respect.

In general, the evolution of the transition regions depend on mathematical prop-
erties of the flow-density relation (fundamental diagram) Qe(ρ):

• If the fundamental diagram is concave (the second derivative Q′′
e (ρ) < 0),

the transition lower → higher density steepens and develops to (or remains a)
discontinuous shock while the transition higher → lower density disperses
over time.

• If the fundamental diagram is locally convex in the considered density range,
a transition higher → lower density eventually becomes a shock while the
transition lower → higher density disperses.

• If the fundamental diagram has no curvature in the density range in question,
all transitions (whether continuous or shocks) propagate at constant velocity
Q′

e(ρ) while the shape of the transition remains unchanged.

This means, the qualitative dynamics shown in Fig. 8.4 is valid for concave fun-
damental diagrams, only.

Explain why density transitions evolve as described in the box above with the
help of Fig. 8.3.
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Fig. 8.4 Numerical solution to the LWR model with a continuous speed-density relation and
trapezoid-like initial density distribution (left upper boundary of the plot). The situation corre-
sponds to a localized region of congested traffic (red) surrounded by free traffic (blue) with initially
continuous transitions. The transition free → congested traffic evolves into a shock wave while the
transition congested → free traffic disperses. Outside of the actual shock forming at time t ≈ 10 min
and location x ≈ 4 km, the contours of equal density are straight lines. This corresponds to a uniform
motion of each layer of constant density

8.3.2 Derivation of the Propagation Velocity

While the details of the transitions free → congested and congested → free in the
LWR models are unrealistic,3 the propagation of the wave positions as a whole, and
also the motion of the transition zones to and from extended congested traffic, is
described realistically.

In order to derive the propagation velocities, we consider a discontinuous tran-
sition from state 1 (free traffic) to state 2 (congested traffic) as depicted in Fig. 8.5.
Without loss of generality, we consider a single-lane road.4 Within a sufficiently
small road section 0 ≤ x ≤ L fixed in the stationary coordinate system around the
instantaneous location of the shock front x12(t), we can assume constant flow and
density at both sides of the front, i.e,

3 Personal experience from the authors tells us that there is considerable dispersion in the downstream
front of the “mega-jam” that is formed by the participants of marathon, inline-skating or cross-
country skiing events after the starter’s gun. However, in vehicular traffic, this dispersion is very
limited.
4 In order to obtain the same result for I > 1 we would substitute n with n/I in the following
equations. Furthermore, we would replace all densities and speeds by their respective effective
values as defined in Sect. 7.1

http://dx.doi.org/10.1007/978-3-642-32460-4_7
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Fig. 8.5 A shock front at
location x12(t) with constant
flow and density within small
road sections on either side

12x   (t)
ρ1 ρ2

Q2Q1

x=0 x=L

ρ(x, t) =
{

ρ1 for x ≤ x12(t)
ρ2 for x > x12(t)

, Q(x, t) =
{

Q1 = Qe(ρ1) for x ≤ x12(t)
Q2 = Qe(ρ2) for x > x12(t)

.

The location x12(t) of the front itself, however, is time-dependent. To find the
velocity c12 = dx12

dt , we will express the rate of change in the number of vehicles, dn
dt ,

in two different ways. From the conservation of vehicles, we get the balance equation

dn

dt
= Q1 − Q2. (8.7)

With the definition of the density, we can also write the number of vehicles as

n = ρ1x12 + ρ2(L − x12). (8.8)

Taking the time derivative yields

dn

dt
= d

dt
(ρ1x12 + ρ2(L − x12))

= (ρ1 − ρ2)
dx12

dt
= (ρ1 − ρ2)c12.

Comparing both expressions for dn
dt gives us

c12 = Q2 − Q1

ρ2 − ρ1
= Qe(ρ1) − Qe(ρ2)

ρ2 − ρ1
Propagation of Shock Waves. (8.9)

Notice that we did not make use of flow-density relations in deriving the first equal
sign in Eq. (8.9). Therefore, the motion of sharp transitions is given by c12 = Q2−Q1

ρ2−ρ1
in any first-order or second-order macroscopic model.

8.3.3 Vehicle Speed Versus Propagation Velocities

The LWR model allows us to extract all relevant velocities directly from the funda-
mental diagram (Fig. 8.6):



88 8 The Lighthill–Whitham–Richards Model

Fig. 8.6 Visualization of how
to obtain vehicle speeds and
propagation velocities from
the fundamental diagram:
Shown are the propagation
velocity c̃(ρ) = dQe

dρ
of

density variations and vehicle
speed Ve = Qe/ρ for the
two states 1© and 2©, and the
propagation velocity c12 of a
shock front separating these
states
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1. The propagation velocity of density variations c̃(ρ) = Q′
e(ρ) is given by

the slope of the fundamental diagram.
2. The propagation velocity of shock fronts c12 is given by the slope of the

secant connecting points of the fundamental diagram corresponding to traf-
fic on either side of the front.

3. The vehicle speed Ve = Qe(ρ)/ρ is given by the slope of the secant
connecting the origin with the corresponding point on the fundamental
diagram.

Using Eq. (8.5), we can use these relations to distinguish free and congested traffic
by the sign of the propagation velocity c̃ of small density and speed variations:

• Free traffic is characterized by the left-hand side of the fundamental diagram,
i.e., by densities below the critical value ρC at static capacity C (state of
stationary flow). The propagation velocity is positive.

• Congested traffic is characterized by densities at the right-hand side of the
fundamental diagram, ρ > ρC, i.e., the propagation velocity is negative.

In a more complex situation such as that shown in Fig. 8.7, the various speeds and
velocities can be read off as the slopes of tangents, secants or lines through the origin
at (or along) the traffic states marked by the symbols 1©– 7© in Fig. 8.8. Particularly,
we can distinguish following situations:

• The temporary bottleneck A restricts the flow to its capacity CA = Qtot
2 . Since

Qin > CA, the traffic breaks down. Free traffic 2© emerges downstream of the
bottleneck, while a traffic jam 6© forms upstream. The congestion grows due to
its propagating upstream front (the secant between 3© and 6© has slope c36 < 0)
and stationary downstream front (slope c62 = 0). However, the vehicle speed
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Fig. 8.7 Spatiotemporal traffic dynamics of an LWR model with fundamental diagram as shown
in Fig. 8.8. The influx Qin corresponds to state 3© in the fundamental diagram, but decreases after
some time and then corresponds to state 2©. Furthermore, there are three temporary bottlenecks:
Bottleneck A (e.g., a traffic accident) has capacity CA = Qtot

2 , bottleneck B corresponds to a
temporary full road closure (e.g., to tow away vehicles involved in the accident), and bottleneck C
is a less severe obstruction with capacity CC = Qtot

3 . The slopes of the three trajectories (black)
indicate the local vehicle speed. The transitions from high to low density “soften” over time while
the others remain discontinuous, i.e., shocks

Fig. 8.8 Schematic funda-
mental diagram. The circles
correspond to the traffic states
illustrated in Fig. 8.7
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V6 = Q6/ρ6 inside the congested area is positive. The transition between 2© and
3© (in the top-left corner of Fig. 8.7) has a propagation velocity c23 that is only

slightly less than the local vehicle speeds V2 and V3.
• The full road closure (bottleneck B) reduces the flow to zero on either side of the

bottleneck. However, the road is empty on the downstream side (state 1©) while a
traffic jam with maximum density forms on the upstream side (state 7©). A number
of fronts emerge with velocities c67 < c37 < c36 < 0 and c71 = 0.
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• Re-opening the road creates a maximum-flow state 4© as the vehicles start moving
again. The transition between 4© and the maximum-density state 7© propagates
with velocity c74 ≈ c67 < 0. Note that only the transitions congested → free
traffic disperse (to an unrealistic degree) while the others remain discontinuous
shocks. This is a consequence of the concave fundamental diagram used here (i.e.,
the second derivative of Qe(ρ) is non-positive for all densities).

• Finally, the weakest temporary bottleneck C causes a flow Qtot
3 = Qtot

5 both
upstream and downstream, thus c53 = 0. Depending on the inflow, the slow-
moving traffic state 5© may grow (c45 < 0), shrink (c25 > 0), or be bounded by a
stationary upstream front (c35 = 0). When this bottleneck is removed, the situation
is similar to the clearing of the full road closure: A transition from slow-moving
traffic 5© to the maximum-flow state 4© propagates backwards (c54 < 0) until it
reaches the upstream front of 5©, marking the full resolution of the congestion.

8.4 Numerical Solution

With the exception of the section-based model (see Sect. 8.5) applied to very simple
situations, the LWR models, i.e., the continuity equation (7.8) or (7.10) with a steady-
state speed-density relation Ve(ρ), needs to be solved (“integrated”) numerically.
This is generally done by finite-difference methods: Space is divided into cells of
generally constant length Δx (although this is not required), and time in the index k
increasing in the downstream direction.5 All the dynamics at scales below Δx and Δt
is ignored. So, the density inside each cell k at time t can be characterized by a single
value ρk(t) (and by the speed Vk(t) = Ve(ρk(t))). Furthermore, the flow Qk,k+1(t)
between neighboring cells is constant during each time interval Δt . The equations
for the LWR models have the form of a so-called conservation law for which many
specialized explicit solution methods are available.6 In the simplest case, they take
on the form (7.9).

The most common integration method for LWR models is the Godunov scheme.
This method is based on an exact solution of the continuity equation for one time
step assuming stepwise initial conditions given by the actual densities {ρk} of the
cells. Such exact solutions exist if we make sure that neither information (car-
ried by the vehicles or by the propagation velocities) propagates over more than

5 This is in contrast to the vehicle index where the first (must downstream) vehicle has the lowest
index.
6 In explicit integration schemes, the new state, i.e., all densities ρk(t + Δt), are given in terms of
the old state {ρk(t)}. Implicit methods are characterized by relations between the old and new states
that cannot be easily solved for the new state. In traffic-flow models, only explicit methods play a
role.

http://dx.doi.org/10.1007/978-3-642-32460-4_7
http://dx.doi.org/10.1007/978-3-642-32460-4_7
http://dx.doi.org/10.1007/978-3-642-32460-4_7
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one cell during one time step. Since the vehicle speed is given by the gradient of
the secant connecting the origin with a point on the fundamental diagram, the max-
imum vehicle speed is smaller than, or at most equal to, the maximum propagation
speed |Q′

e(ρ)|. Thus, one arrives at the first Courant-Friedrichs-Lévy condition (CFL
condition) for LWR models,

Δt max
ρ∈[0,ρmax]

(|Q′
e(ρ)|) < Δx . (8.10)

The CFL condition restricts the time step to a value which is proportional to the cell
size, i.e., the numerical complexity increases with the inverse of the square of the
cell size (see Sect. 9.5 below for details).7 Although the Godunov method is based
on exact analytical solutions, it entails discretization errors since, after each time
step, the density structure inside each cell resulting from the analytical solution is
“flattened” to obtain the stepwise initial conditions for the analytical solution of the
next time step. These discretization errors lead to the phenomenon of numerical
diffusion which increases with the cell size (see Sect. 9.5 for details).

8.5 LWR Models with Triangular Fundamental Diagram

The simplest of the Lighthill–Whitham–Richards models uses a “triangular” funda-
mental diagram (cf. Fig. 8.9):

Qe(ρ) =
{

V0ρ if ρ ≤ ρC = 1
V0T +leff

(free traffic),
1
T (1 − ρleff) if ρC < ρ ≤ ρmax = 1

leff
(congested traffic).

(8.11)

As with the other LWR models, this model can be formulated in continuous and
discrete variables:

• The continuous version (8.2) is called section-based model.
• The discrete version is formulated as an iterated coupled map with time and space

discretized into time steps and cells, respectively, and supplemented by a special
“supply-demand” update rule. This model is known as cell-transmission model
(CTM), see Sect. 8.5.7.

Among the class of LWR models, the section-based model is the most efficient
in simulations. In particular, there is no need to numerically solve the hyperbolic
partial differential equation (8.2) with Eq. (8.11) defining this model. Due to the spe-
cific properties of the triangular fundamental diagram (only two distinct propagation

7 The numerical complexity C indicates the number of multiplications or other operations on a
computer which are necessary to obtain a certain approximate solution. Typically, the absolute value
is irrelevant and the numerical complexity is given in terms of a scaling relation, here C ∝ Δx−2.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_9
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Fig. 8.9 Triangular funda-
mental diagram, as used in the
cell-transmission model and
the section-based model
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velocities of density variations; one for free traffic and one for congested traffic), it is
possible to break down the road into road sections defined such that each section has
an inhomogeneity or bottleneck at the downstream end. In each road section, there
is at most one jam front. Then, instead of solving the model equation (8.2) for all
locations x , it is sufficient to solve a single integral for the motion of the jam front.
The inflow at the upstream end of each section is given either by the outflow of an
adjacent section or by the source boundary conditions of the simulated system.

The special shape of the fundamental diagram allows for efficient numeric update
rules for the cell-transmission model (CTM) as well. Moreover, it is straightforward
to generalize the CTM to road networks. The CTM is widely used in model-supported
traffic state estimation. Furthermore, it is the only macroscopic model for pedestrians
in common use.

Another implication of the fixed propagation velocities is the absence of dispersion
at the transitions from high to low density (Fig. 8.3, see also Figs. 8.7 and 8.11).8

Sometimes a weak dispersion is observed in reality; however, the absence of such
dispersion is certainly more realistic than the very strong dispersion caused by most
of the other fundamental diagrams.

8.5.1 Model Parameters

The three model parameters of the section-based and cell-transmission models are
shown in Table 8.1 with typical values for different situations including the large-
scale modeling of pedestrian flows.9 Since pedestrian flows are two-dimensional, the
units of T and ρmax and their meanings are different from those of vehicular traffic.
Specifically, the flow and the inverse of the time headway (time gap plus occupancy
time) is to be interpreted as flow density Q∗ (flow per unit width of the way) with the
unit 1 (ms)−1, so T has the unit second times meter, and can no longer be interpreted
as time gap (cf. Table 8.1).

8 With the exception of numerical diffusion caused by the discretization of the CTM, cf. Sect. 9.5.
9 A prerequisite for using LWR models for pedestrian flow are unidirectional pedestrian streams.
This is satisfied in the arguably most prominent application example, namely the model-assisted
planning and organization of the flow of pilgrims at the Hajj in Mecca, Saudi Arabia.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
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Table 8.1 Model parameters of the section-based model and the discrete cell-transmission model
(CTM), and their typical values for highway, city, and pedestrian traffic

Parameter Highway City traffic Pedestrian traffic

Desired speed V0 110 km/h 50 km/h 1.3 m/s
Time gap T 1.4 s 1.2 s 0.5 ms
Maximum density ρmax 120 vehicles/km 120 vehicles/km 4 pedestrians/m2

As in the case in all macroscopic models, the parameters are averages over the
individual vehicles (or pedestrians). For vehicular traffic, the maximum density cor-
responds to the inverse of the minimum distance headway leff, which is the average
vehicle length plus the average minimum gap s0 in stopped traffic:

leff = s0 + l = 1

ρmax
. (8.12)

8.5.2 Characteristic Properties

The numerical efficiency (and even analytical solvability of the section-based model,
for some cases) stems from a number of properties which make the LWR models
with a triangular fundamental diagram stand out from the rest of the LWR models.

Analytical inverse function of the fundamental diagram. The most important
input and control variable in real-world (i.e., open) systems is the traffic flow, while
local speed and density are dependent variables of the flow and the traffic state. Thus,
the density is described by the inverse function of the fundamental diagram, i.e., the
density-flow relation ρ(Q). However, this function is not unique since, for a given
flow Q, there are two possible density values: one from the so-called branch for
free flow, ρfree(Q) and one from the branch for congested traffic, ρcong(Q). In the
triangular fundamental diagram, these two density-flow relations are given by the
simple relations

ρfree(Q) = Q

V0
, (8.13)

ρcong(Q) = 1 − QT

leff
= ρmax(1 − QT ). (8.14)

Analytical expression for the capacity. The maximum flow Qmax, i.e., the effective
capacity C per lane on a homogeneous road section is given by the intersection of
the two branches,

C

I
= Qmax = 1

T + leff
V0

= 1

T
(

1 + |c|
V0

) (8.15)
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Fig. 8.10 Maximum effective
capacity Qmax per lane for
the triangular fundamental
diagram assuming an effective
vehicle length leff = 8 m
(ρmax = 125 vehicles/km).
The vertical bar at T = 1.8 s
corresponds to a rule of
thumb taught in German
driving schools: “Don’t come
closer (in meters) than half
of your speedometer reading
(in km/h)”
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where c is the propagation velocity of density changes in congested traffic (see
below). Notice that, as in other LWR models, there is no hysteresis, so the maximum
flow is unique.

Equation (8.15) shows that the capacity is always smaller than the inverse of the
mean time gap T , see Fig. 8.10.10 Furthermore, it can be shown that, for a given time
gap, the section-based model is the model with the largest capacity. The correspond-
ing density ρC at capacity is given by

ρC = 1

V0T + leff
. (8.16)

Constant propagation velocity of density variations in free traffic. The propaga-
tion velocities of flow, density, and speed variations in free traffic are given by the
rising slope of the fundamental diagram,

cfree = dQe

dρ

∣∣∣∣
ρ<ρC

= V0. (8.17)

Thus, the variations propagate along the vehicles at the desired speed V0. Conse-
quently, there are no interactions between the vehicles: Otherwise, drivers would
react to the behavior of the leading vehicles and perturbations would propagate
upstream relative to the vehicle motion, i.e., cfree < v0. This constant propagation
velocity is also true for larger perturbations and discontinuous jumps ρ1 → ρ2 as
long as the densities ρ1 and ρ2 are both smaller than the density ρC at capacity:
c12 = V0 if ρ1 ≤ ρC and ρ2 ≤ ρC.

10 The parameter T is not to be confused with the reaction time of microscopic models (see Sect. 12.2
below) even though the microscopic equivalent of the section-based model exhibits this reaction
time in congested situations (see Sect. 8.5.4).

http://dx.doi.org/10.1007/978-3-642-32460-4_12
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Fig. 8.11 Propagation of perturbations in a generic LWR model (left) and the special case of a
section-based model/CTM (right). Each column shows the fundamental diagram (top), an initial
density profile in congested traffic at time t1 (middle), and the density profile at a later time t2 > t1
(bottom). The perturbations propagate with constant velocity leading to an immutable form of the
transitions in the section-based model/CTM, only

Constant propagation velocity of density variations in congested traffic. In con-
gested traffic, the propagation velocities of flow, density, or speed variations are given
by the falling slope of the fundamental diagram:

ccong = c = dQe

dρ

∣∣∣∣
ρ>ρC

= − leff

T
= − 1

ρmaxT
. (8.18)

The same is true for discontinuities if the density on each side of the jump is larger
than ρC: c12 = c if ρ1 > ρC and ρ2 > ρC. The negative value of c means that speed
and density variations propagate backwards, not only relative to the other vehicles
but also for a stationary observer (cf. Fig. 8.11).

Equation (8.18) explains the main influencing factors of the propagation velocity:
Perturbations propagate by one effective vehicle length per time gap The absolute
value |c| is about 14–16 km/h in Europe, and 18–20 km/h in the United States.

Why is the propagation velocity c of density variations in congested traffic
slightly more negative in the U.S. than it is in Europe? Consider differences
between typical vehicles used in these regions.

Propagation velocities of transitions from free to congested traffic. Let us denote
the free traffic state upstream of the transition by the index 1 and the congested traffic
state by index 2. Then, the upstream jam front propagates with the velocity
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cup = c12 = Q2 − Q1

ρ2 − ρ1
= Q2 − Q1

ρmax(1 − Q2T ) − Q1/V0
. (8.19)

This velocity can take on any value between c and V0 and thus the front may move
in either direction (growing or shrinking traffic jams).

Constant propagation velocity of downstream jam fronts. First we notice that,
for all LWR models, the outflow at the downstream end of a moving traffic jam is
characterized by the maximum-flow state (ρC, Qmax). For a triangular fundamen-
tal diagram, the maximum-flow state corresponds to the top of the triangle, so the
downstream front propagates at the same velocity as small variations within the jam,

cdown = c = − 1

ρmaxT
= − leff

T
. (8.20)

If there is a bottleneck, the downstream front gets stationary and pinned at the bot-
tleneck, and the outflow is reduced to the capacity of the bottleneck (see Sect. 8.5.6).
We may summarize the propagation properties of LWR models with a triangular
fundamental diagram by following statements:

There are only two distinct propagation velocities of small perturbations which
are given by cfree = V0 and ccong = c = −leff/T for free and congested traffic,
respectively. The propagation velocities of discontinuous upstream or down-
stream fronts can be given analytically and lie in the range [c, V0]. Downstream
fronts are either stationary (at bottlenecks), or move upstream at velocity c
(homogeneous roads). In contrast to all other first-order models, neither front
shows dispersion.

8.5.3 Model Formulation with Measurable Quantities

In Eq. (8.11), we formulated the triangular fundamental diagram in terms of para-
meters directly describing properties of the vehicles and aspects of driving behavior:
Mean desired speed V0 in free traffic, mean desired time gap T in car-following situ-
ations, and mean effective vehicle length leff = 1/ρmax. However, we cannot directly
determine the time gap and the effective length with the most commonly available
aggregated stationary detector data. On the other hand, as discussed in Sects. 3.3.1
and 4.4, indirectly estimating T and leff by linear regression techniques of the con-
gested flow-density data leads to large and uncontrollable systematic errors. In order
to get a formulation in which the model can be better calibrated by stationary detector
data, i.e., its parameters can be estimated, we make use of the relations (8.18) and
(8.15) to express T and leff by the more easily accessible quantities effective capacity

http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_4
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Qmax per lane, and propagation velocity c in congested traffic:

1

leff
= ρmax = Qmax

(
1

V0
− 1

c

)
, T = 1

Qmax

(
1 − c

V0

) . (8.21)

We can approximatively estimate Qmax by the outflow of moving traffic waves.11

Notice that we cannot use the outflow at stationary fronts since these are always
connected with a bottleneck, and the outflow indicates the capacity of the bottle-
neck rather than the capacity at homogeneous sections. Alternatively, Qmax can be
estimated by the maximum average flow observed over sufficiently long periods
(10–30 min).12 To estimate the propagation velocity c, we determine the time inter-
val which is needed by the downstream front of a moving traffic wave or another
identifiable structure to pass two consecutive stationary detectors.

Using the new parameters, we can express the triangular fundamental diagram by

Qe(ρ) =
{

V0ρ if ρ ≤ Qmax
V0

(free flow),

Qmax

[
1 − c

V0

]
+ cρ if ρ >

Qmax
V0

(congested flow).
(8.22)

When applied to model-based traffic-state estimation, the CTM or the section-based
model will be used in this formulation.

8.5.4 Relation to Car-Following Models

By using the definitions of the density (inverse distance headway between two vehi-
cles) and the vehicle speed (slope of the tangent of the trajectory), we can generate
trajectories xi (t) of individual vehicles i reflecting the macroscopic density and local
speed fields (cf. Fig. 8.12). Assuming that the trajectory of vehicle i crosses the loca-
tion x0 at time t0, the trajectories are defined by

xi (t0) = x0,

xi (t0)∫

xi+1(t0)

ρ(x, t0)dx = 1, vi (t) = dxi

dt
= V (xi (t), t). (8.23)

This macro-micro relation is valid for arbitrary time-continuous macroscopic models.
So, providing a single point (x0, t0) crossed by a trajectory defines all trajectories

11 Strictly speaking, this determines the dynamic capacity which differs from the static capacity by
the capacity drop. However, LWR models do not describe the phenomenon of a capacity drop.
12 Since the evolution of a traffic breakdown takes 10 min and more, higher flows are possible over
shorter time periods. However, LWR models cannot describe traffic instabilities, so these flow peaks
are irrelevant for this model class.
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Fig. 8.12 Visualization of the macro-micro relation (8.23) for the section-based model and a
situation where a waiting queue behind a red traffic light dissolves as the light turns green. Shown
are the density field as solution of the section-based model (shaded; the darker, the higher the
density), and the trajectories generated for the “initial condition” x1(t0) = x0 (black bullet)

for all locations at all times (including the past) within the spatiotemporal interval
of the macroscopic data.

In the case of the section-based model and congested traffic (ρ(x, t) ≥ ρC),
these generated trajectories are the same as those produced by Newell’s model, a
car-following model discussed in Sect. 10.8:

vi (t + T ) = vi−1(t). (8.24)

This equation describes a behavior where the driver of vehicle i exactly copies the
speed profile of his or her leader i −1 at a constant delay T which is equal to the local
time gap (cf. Fig. 8.12). In this sense, the time gap parameter T may be interpreted
as a reaction time. However, this is only true within congested traffic or for the
maximum-flow state. For example, in Fig. 8.12, the first vehicle instantly accelerates
to its desired speed without any reaction time, after the traffic signal switches to
green.

Equation (8.24) can be derived by keeping in mind that, in congested traffic,
the section-based model describes density and speed variations propagating with
constant velocity c, so V (x, t) = V (x −ct, 0) for all times t . According to Eq. (8.23),
the speed profile of the leading vehicle i − 1 is given by the local speed field V (x, t)
along the trajectory:

vi−1(t) = V (xi−1(t), t) = V (xi−1(t) − ct, 0). (8.25)

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Furthermore, by means of the triangular fundamental diagram, the time gap of vehicle
i to the leading vehicle i − 1 is given by T for congested conditions (ρ > ρC) as
required here. Thus, the position of vehicle i at time t is xi (t) = xi−1(t) − vi−1T −
leff = xi−1(t − T ) − leff for any time. Then, its speed profile is given by

vi (t) = V (xi (t), t) = V (xi (t) − ct, 0)

= V (xi−1 (t − T ) − leff − ct, 0)

= V

(
xi−1(t − T ) − c

(
t + leff

c

)
, 0

)

= V (xi−1(t − T ) − c(t − T ), 0) = V (xi−1(t − T ), t − T )

= vi−1(t − T ), (8.26)

i.e., by Eq. (8.24). In the previous-to-last line, we made use of the relation c = −leff/T
for the propagation velocity in congested situations.

8.5.5 Definition of Road Sections

Both in the cell-transmission and section-based models, a unidirectional road stretch
is divided into several sections or cells k. We assume that the index k increases in
downstream direction.

8.5.5.1 Partitioning for the Section-Based Model

When defining the sections of the section-based model, we keep in mind that, with
the exception of the propagation of the upstream front, all propagation velocities of
continuous or discontinuous changes in free or congested traffic assume one of only
three values, namely c, V0, or zero. Thus, the only propagation requiring a numerical
update is that of the upstream jam fronts. We define the sections such that, in each
section, there is at most one upstream jam front:

A road section k of the section-based model is a homogeneous segment of
length L(k) and capacity C (k) (over all lanes) with an inhomogeneity or bottle-
neck of capacity C (k)

B (t) ≤ C (k) at its downstream end. A bottleneck is charac-
terized by a transition to a lower capacity. A general road inhomogeneity can
also represent a transition to higher capacity. In this case, two homogeneous
road segments are just joined together.

We emphasize that we define a bottleneck by the transition zone to a lower capac-
ity, not by the region of lower local capacity itself. For example, if the bottleneck is
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caused by road construction, the bottleneck is not the construction zone itself (which
constitutes the next homogeneous road segment) but it is located at the beginning
of the construction zone. By this partitioning, stationary downstream jam fronts can
only be found at the downstream boundary of a road section.13

8.5.5.2 Partitioning for the Cell-Transmission Model

When simulating with the a priori discretized CTM, one generally uses cells of
equal length Δx which are generally shorter (100–500 m) than the segments of the
section-based model (whose length may be 5 km, or more). There is no structure in
each cell of the CTM, i.e., the traffic variables ρ, V , and Q take on unique values. In
determining the appropriate cell size, one must take into account that the update time
step is limited by the first CFL condition (8.10) which, for the triangular fundamental
diagram, takes on the form

Δt <
Δx

V0
. (8.27)

8.5.6 Modeling Bottlenecks

The most important types of bottlenecks are sketched in Fig. 8.13. The bottlenecks
k = 1, 2, 5, and 6 are so-called flow-conserving bottlenecks while the on-ramp and
off-ramp bottlenecks contain additional sources and sinks.

• When passing flow-conserving bottlenecks all vehicles pass from road section k
to k + 1, no vehicle leaves section k or enters section k + 1 differently. From the
viewpoint of an economist, flow-conserving bottlenecks represent a change in the
supply (local road capacity).

• Non-flow-conserving bottlenecks contain sources and sinks constituted by
on-ramps, off-ramps, junctions, interchanges, intersections, and similar. From the
viewpoint of an economist, non-flow-conserving bottlenecks represent a change
in the traffic demand.

We can also distinguish the bottlenecks whether they are permanent on the time
scales of typical simulations (bottlenecks 1–4 of Fig. 8.13), or temporary such as
obstructions caused by accidents, or, on even shorter time scales, by traffic lights.14

Regardless of the type of bottleneck, the influence on traffic flow can be charac-
terized by a single property, at least within the class of LWR models: The bottleneck
strength (cf. Chap. 18). We state:

13 This agrees with most observations: Jams are observed at the begin or upstream of a bottleneck
but rarely within the zone of reduced capacity.
14 In a more coarse-grained picture, one would model a signalized intersection by a permanent
bottleneck whose capacity is given by the maximum number of passing vehicles per signal cycle.

http://dx.doi.org/10.1007/978-3-642-32460-4_18
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Fig. 8.13 Definition of the bottleneck types and the road sections of the section-based model. Each
section consists of a homogeneous road stretch with a bottleneck attached downstream

In LWR or other first-order macroscopic traffic flow models, bottlenecks are
characterized by the reduction of local capacity with respect to the homoge-
neous upstream road section. Only a single property is relevant for traffic flow
dynamics: The effective bottleneck strength ΔQ = ΔC/I , i.e., the capacity
reduction ΔC = C − Cbottl divided by the number I of lanes in this section.

In the following, we describe different types of bottlenecks and determine the
associated reduction ΔC of the total capacity, and the bottleneck strength ΔQ =
ΔC/I .

8.5.6.1 Classical Flow-Conserving Bottlenecks

This includes all flow-conserving bottlenecks that are caused by local changes of
the road attributes except changes in the number of lanes. Examples are uphill and
downhill gradients, curves, changes of the speed limits, entering or exiting the city
limits, and local narrowings, e.g., at road construction sites. Also included are local
capacity changes induced by a locally changed driving behavior, e.g., at entrances
and exits of tunnels, or even when passing a spectacular accident in the opposite
driving direction (behaviorally-induced bottleneck).15

The defining property of this type of bottleneck is a local reduction ΔQ of the
capacity per lane. In all microscopic and macroscopic traffic flow models, this type
of flow-conserving bottleneck is modeled by local changes of the model parameters,
i.e., by changing the average driving behavior.

In the LWR models with a triangular fundamental diagram, changing the drivers’
behavior implies changing the mean desired speed V and/or the time gap T while
the average vehicle length leff = 1/ρmax, obviously, should remain unchanged.

15 In Germany, there is anecdotic evidence that behaviorally-induced bottlenecks have caused traffic
breakdowns on otherwise completely homogeneous road sections.
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Fig. 8.14 Describing a clas-
sical flow-conserving bot-
tleneck by changing the
parameters T and V0 of
the triangular fundamental
diagram. The points indicate
steady-state traffic situations
after breakdown (see the main
text) ρ

Q

V ρ

V ρ

Δ C=I Δ Q 

ρ/ ρ

ρ/ ρ

ρ

I/ T  [1− 

I/ T  [1− ] 

] 

tot

tot

01

02
max

max

max

1

2

When describing the situation upstream and downstream of the local change with
the indices 1 and 2, respectively, the bottleneck strength is given by

ΔQcl = ΔCcl

I
= V01

V01T1 + leff
− V02

V02T2 + leff
. (8.28)

Notice that the bottleneck strength (8.28) can be positive (a true bottleneck), or nega-
tive (transition to a road segment with increased capacity). However, in the framework
of first-order models, only true bottlenecks can lead to a traffic breakdown.16

Figure 8.14 shows the situation when simultaneously reducing the desired speed
V0 (caused, e.g., by a change of the speed limit) and increasing the mean time gap
T (which may be caused by locally reduced visibility conditions near curves or
inside tunnels leading to a more defensive driving style). The thin gray lines show
the fundamental diagram, i.e., possible steady states of infinite homogeneous road
sections corresponding to the sections inside and outside the bottleneck. The thick
lines shows possible steady states of free traffic at and upstream of the bottleneck.
The three bullets indicate the situation after a breakdown:

• Free traffic downstream of the zone of capacity restriction is characterized by T1
and V01 (left bullet).

• Traffic in the range of the bottleneck or in downstream sections characterized by
T2 and V02 is characterized by the maximum-flow state (middle).

• Jammed or congested traffic upstream of the bottleneck is characterized by the
right-hand side of the fundamental diagram at the bottleneck capacity (right bullet).

Notice that the fundamental diagram Qtot
e (ρtot) for the total flow and density

(rather than that for lane-averaged effective quantities) is most useful to describe the
criteria for the breakdown while the dynamics after a breakdown has occurred is best
described by effective equations, i.e., by the effective (lane-averaged) fundamental
diagram. While this does not play a role here, it will be relevant for the next two
types of bottlenecks.

16 Remarkably, in models with dynamic speed (second-order macroscopic models and most micro-
scopic models), even a local increase of capacity can lead to a breakdown (“more is less”) which
is mediated by the speed perturbations associated with any local change together with traffic flow
instabilities.
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8.5.6.2 Lane-Drop Bottlenecks

This type of bottleneck plays an intermediate role. From a global viewpoint over
all lanes, it is a flow-conserving bottleneck (since there are no off- or on-ramps or
other sources and sinks). When formulating the effective continuity equation (7.15)
in terms of the lane-averaged effective flow Q and density ρ, however, the result
is mathematically equivalent to the effective continuity equation in the presence of
ramps.

Letting aside local changes of the driving behavior as described by the classical
flow-conserving bottlenecks, the fundamental diagram for the total flow and density
will be congruently inflated or deflated whenever the number I of lanes changes
(cf. Fig. 8.15). Particularly, when reducing the number of lanes from I1 to I2 < I1,
the total and effective capacities are reduced by

ΔClane drop = (I1 − I2)Qmax, ΔQlane drop = I1 − I2

I1
Qmax, (8.29)

respectively. Again, the congestion resulting from a traffic breakdown at the bottle-
neck is characterized by the bottleneck capacity, only, while other features of the
bottleneck (such as the length of the transition zone) are irrelevant for LWR mod-
els. Notice that, consistent with the general definition, the bottleneck is located at
the beginning of the section with a reduced number of lanes. Particularly, the LWR
models will not produce any congestion inside the section with a reduced number
of lanes (unless a congestion caused by a bottleneck further downstream propagates
into this region). This is in agreement with most observations: For example, road
constructions often produce congestions upstream of the construction site while the
actual roadworks zone is less congested.

Since most lane drops are connected with new speed limits and behavioral
changes, one typically combines lane-drop bottlenecks with classical flow-conserving
bottlenecks.

Notice that, in certain situations, the concept of lane-drop bottlenecks may be
extended to fractional lane drops. For example, many work zones include narrow
lanes with no physical separation to the opposite traffic flow which drivers avoid if
possible, and which are even forbidden for certain vehicles. If such a lane can take,
say, 70 % of the traffic of normal lanes, a transition from a normal to such a narrow
lane would be modeled by a lane drop by 0.3 lanes.

8.5.6.3 On-Ramps

In contrast to the previous bottleneck types, on-ramp bottlenecks are caused by
the increasing demand of the merging vehicles (additional flow Qrmp) rather than
by a decreasing supply (local capacity reduction by ΔC). If we assume that all
on-ramp vehicles can merge to the main-road regardless of traffic conditions, the
main-road traffic flow upstream of the on-ramp is restricted by the capacity C of all the

http://dx.doi.org/10.1007/978-3-642-32460-4_7
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Fig. 8.15 Change of the
fundamental diagram when
reducing the number of lanes
from I1 to I2. The bullets
denote the steady-state situ-
ation downstream (left) and
upstream (right) the lane
drop after the congestion has
formed
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main-road lanes at the location of the on-ramp minus the ramp flow Qrmp. Thus, we
can describe the effective reduction of the capacity ΔC and the bottleneck strength
ΔQ by

ΔCrmp = Qrmp, ΔQrmp = Qrmp

I
(8.30)

where I is the number of main-road lanes at and upstream of the on-ramp (cf.
Fig. 8.16). If the on-ramp consists of more than one lane, the on-ramp flow is to be
understood as the total flow over all ramp lanes. Notice that, in contrast to the flow-
conserving bottlenecks, the bottleneck strength of on-ramp bottlenecks is generally
time-dependent.

As for the other bottleneck types, the traffic flow immediately downstream of
the bottleneck is given by the maximum-flow state at this location (left bullet in
Fig. 8.16). Similarly to the situation at a lane-drop bottleneck, an on-ramp bottleneck
will often be combined with a classical flow-conserving bottleneck representing a
change in the driving behavior.

8.5.6.4 Off-Ramps

At first sight, off-ramps (or lane additions) do not constitute bottlenecks. After all,
off-ramps or additional lanes reduce the traffic demand per lane on the main-road,
i.e., the bottleneck strength is negative. However, near these inhomogeneities, the
lane-changing frequency and the speed variance between the vehicles, and thus per-
turbations, increase. Moreover, lanes are used less efficiently. So, even off-ramps or
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lane additions can constitute a bottleneck. This explains why one regularly observes
congestions behind off-ramps.17

This situation, however, brings us to the limits of first-order macroscopic mod-
els: Capacity reductions at off-ramps or near lane additions cannot be described
by LWR models without resorting to additional ad-hoc assumptions. A straightfor-
ward approach would be to increase the time-gap parameter T near the off-ramp
(in regions with increased speed variances, the non-equilibrium time gaps are, on
average, greater than that at steady state), or to introduce a fractional lane drop (less
effective lane usage). Thus, off-ramps are modeled by effective flow-conservative
bottlenecks immediately upstream of the diverge.

8.5.6.5 Traffic Lights

In the framework of macroscopic traffic flow models, traffic lights are modeled by a
time-dependent flow-conserving bottleneck: During the red (and part of the yellow)
phases, the bottleneck capacity is equal to zero while the bottleneck is nonexistent,
otherwise. This means, the time-dependent bottleneck strength of a lane controlled
by a traffic light is given by

ΔQTL =
{

Qmax red/yellow,
0 green.

(8.31)

8.5.7 Numerical Solution of the Cell-Transmission Model

8.5.7.1 Single Roads

As for the other LWR models, the appropriate numerical integration method for
the cell-transmission model (CTM) is the explicit Godunov scheme (see Sect. 8.4).
Because of the special properties of this model (constant propagation velocities and
no dispersion), the exact solution of the Godunov scheme in each update step is
given simply by displacing the stepwise initial conditions. Depending on the density
of each cell, the initial density jump between the cells propagates into the upstream
cell (propagation velocity c12 < 0) or downstream (c12 > 0), so we need a case
distinction. Summing up all steps of the Godunov scheme for the triangular funda-
mental diagram leads to the simple and intuitive supply-demand method: If supply
is the limiting factor, information travels upstream. If demand limits the traffic flow,
information travels downstream.

17 Part of off-ramp induced congestions, however, have a more trivial reason: If the off-ramp itself
is congested (caused, e.g., by an insufficient capacity on the secondary road network at junctions or
by congestion on the target highway at interchanges), the off-ramp queue can spill over and obstruct
a lane of the original road.
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The steps for the update rule of the supply-demand method for cell k are described
in the following (cf. the Figs. 8.17 and 8.18).

1. Determine the supply and demand at the cell boundaries. We first consider the
downstream boundary, i.e., the transition from cell k to k + 1. The supply Sk+1 is
given by the maximum flow the receiving cell k + 1 can accommodate. In any case,
it is restricted by the capacity Ck+1 of this cell. However, in case of congested traffic,
it is further restricted to the actual flow of this cell. This gives rise to the supply
function (cf. Fig. 8.17)

Sk+1(t) =
{

Qk+1(t)tot cell k + 1 congested, ρk+1(t) > ρC,
Ck+1 otherwise.

(8.32)

The demand Dk is given by the (potential) outflow from cell k at its downstream
boundary if there are no restrictions on the supply side. Obviously, for free traffic,
it is equal to the actual flow in this cell. If cell k is congested, we use the fact that,
in LWR models, the outflow from congested zones always takes on the maximum
value:

Dk =
{

Qtot
k free traffic in cell k, ρk ≤ ρC,

Ck otherwise.
(8.33)

The supply Sk and demand Dk−1 at the upstream boundary of cell k are defined
analogously by replacing k with k − 1.

2. Determine the flows through the cell boundaries. The mechanism is identical
to that in trading: Supply must meet demand, i.e., the number of traded goods cannot
be greater than either demand or supply. At the downstream boundary, the supply
(receiving potential of cell k +1) must meet the demand (sending potential of cell k)
while, at the upstream boundary, cell k provides the supply and cell k−1 the demand.
This gives rise to following boundary flows:
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Qup
k = Qdown

k−1 = min (Sk, Dk−1) , (8.34)

Qdown
k = Qup

k+1 = min (Sk+1, Dk) . (8.35)

3. Update the cells. The explicit, first-order update step is already given by Eq. (79):

ρtot
k (t + Δt) = ρtot

k (t) + 1

Δxk

(
Qup

k − Qdown
k

)
Δt, (8.36)

Qtot
k (t + Δt) = I Qe

(
ρtot

k (t + Δt)/I
)
. (8.37)

By applying the supply-demand method to the total instead of the effective lane-
averaged quantities, ρtot

k = Iρk , Qtot
k = I Qk , all sorts of flow-conserving bottlenecks

are taken care of by the associated capacity reductions. Non-conserving bottlenecks
are discussed in the following.

8.5.7.2 Road Networks

The true potential of the supply-demand method comes into effect when modeling
the road infrastructure in a whole region by a directed network consisting of nodes
and unidirectional links. The links correspond to one direction of single (possibly
inhomogeneous) roads which are treated as described above. In the following, we
describe how to apply the supply-demand method to the simplest node types, namely
two-to-one merges (e.g., on-ramps) and one-to-two diverges (off-ramps).

Merges. For the merging cell 3 of the geometry depicted in Fig. 8.19, we generalize
Eqs. (8.32)–(8.36) as follows:

S12,3 =
{

Qtot
3 if ρ3 > ρC,

C3 otherwise,
(8.38)

D12,3 =
{

Qtot
1 if ρ1 ≤ ρC,

C1 otherwise,
+

{
Qtot

2 if ρ2 ≤ ρC,

C2 otherwise,
(8.39)

Qup
3 = min(S12,3, D12,3), (8.40)

ρtot
3 (t + Δt) = ρtot

3 + 1

Δx3

(
Qup

3 − Qdown
3

)
Δt. (8.41)

The flow Qdown
3 at the downstream boundary of the merging cell is given by the

normal supply-demand rule (8.34) for the cells 3 and 4 of Fig. 8.19.
Notice that condition (8.40) only defines the sum Qtot

1 + Qtot
2 = Qup

3 through
the boundaries 1 → 2 and 1 → 3 while the flows Qtot

1 and Qtot
2 themselves are not

uniquely defined, at least, if the supply S12,3 rather than the demands restrict the
throughput such that jams propagate into at least one of the road segments 1 or 2.
In this case, we need additional assumptions such as cutting off the excess demand
from the outflow of road segment 1 (road segment 2 has priority or traffic from road

http://dx.doi.org/10.1007/978-3-642-32460-4_7
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Fig. 8.19 Simple cell geom-
etry for a merge as described
by Eqs. (8.38)–(8.41)

2

1

3 4

2 forces entry), or splitting the excess demand proportionally to the capacities C1
and C2 (both roads have same priority).

Diverges. To describe one-to-two diverges, we need to prescribe the fraction of the
traffic flow (splitting probability) entering each downstream road. As for merges, we
need additional information if one or both of the downstream links are congested.
This situation is nontrivial if only one of the diverging links, say, road segment 2,
is congested. Drivers who want to diverge onto road segment 2 generally are not
willing to use the uncongested alternative. As a consequence, they obstruct the road
segment upstream of the merge and reduce the flow to the uncongested branch as
well. This is also known as gridlock phenomenon.

Sources and sinks. The supply-demand method is applied to all cell boundaries that
are connected to other cells. In addition, we need external boundary conditions in the
form of sources and sinks for all but the most trivial networks (closed ring roads).
Typically, these boundary conditions are given in terms of inflows, e.g., obtained
from detector data or from the specification of the scenarios to be investigated. The
boundary flows are integrated into the supply-demand scheme with the additional
condition that the sources always represent virtual cells with free traffic. The sinks
are generally represented by a virtual cell of infinite capacity just sucking out the
complete demand of the last real cell. However, sinks may also be driven by external
flow data which, then, represent the time-dependent capacity of the virtual sink cell,
so they can cause congestions.

8.5.8 Solving the Section-Based Model

Following properties are the basis for the efficiency when analytically solving or
numerically simulating the section-based model:

1. Inside regions of free and congested traffic, density and speed variations propagate
uniformly at velocities V0 and c = −leff/T , respectively (cf. Fig. 8.11). Since
V0 > 0 and c < 0, free and congested traffic are exclusively controlled by the
upstream and downstream boundaries of a road section, respectively.

2. A possibly existing transition free → congested traffic is always discontinuous,
i.e., a shock front propagating according to the shock-wave formula (8.9). The
propagation velocity can assume values in the range between c and V0, i.e., the
upstream jam front can propagate in both the upstream and downstream direction.
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3. The transition congested → free is either stationary and fixed at a bottleneck, i.e.,
a downstream boundary of a road section, or it propagates uniformly upstream at
velocity c. However, since the outflow from moving jams of LWR models always
represents the maximum-flow state (which, in our case, is given by the top of the
triangular fundamental diagram), we can formally attribute the outflow to a form
of congested traffic.

This can be summarized by following rule for the internal structure of road sections:

There is at most a single transition free → congested traffic (upstream jam
front) in each road section. Transitions from congested → free traffic (down-
stream fronts) are always located at the downstream boundaries of the road
sections. Thus, each road section can assume exactly one of three qualitative
states: (i) completely free, (ii) completely congested, (iii) partly congested
with free (congested) traffic in the upstream (downstream) parts and a tran-
sition between these states at x∗

k (t). Other options (such as several jams or
transitions congested → free inside of sections) are nonexistent.

8.5.8.1 Dynamics Within a Road Section

From the above considerations it follows that we can describe the complete spatiotem-
poral dynamics inside each partly congested road section by an ordinary integral for
the upstream jam front while completely free or jammed sections are updated by
simply translating the initial state. Explicitly solving the continuity equation (i.e.,
a partial differential equation) is not necessary. In formulating update rules, we
assume that the inflow Qin(t) at the upstream boundary (located at xup) and the out-
flow Qout(t) at the downstream boundary (at xdown) are externally given in this stage
(cf. Fig. 8.13). For ease of notation, we omit the cell index k.

Qualitative state 1: Free traffic on the whole road section. Only the upstream
boundary flow is relevant in this situation. The flow field and the associated density
(8.13) propagate with the vehicles:

Qfree(x, t) = 1

I
Qin(t

′), t ′ = t − x − xup

V0
,

ρfree(x, t) = ρfree (Qfree(x, t)) . (8.42)

Qualitative state 2: Congested traffic. We treat this case analogously but take the
downstream boundary, the propagation velocity c and the congested branch (8.14)
of the fundamental diagram for calculating the density:
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Qcong(x, t) = 1

I
Qout(t

′) = 1

I
CB(t ′), t ′ = t − xdown − x

|c| ,

ρcong(x, t) = ρcong
(
Qcong(x, t)

)
. (8.43)

Qualitative state 3: Partly congested traffic. Here, both boundary conditions are
relevant, and the density and flow fields of the free and congested regions of the
cell are calculated by Eqs. (8.42) and (8.43), respectively. Additionally, we need
an equation for the time-dependent location x∗(t) of the upstream jam front. With
Eq. (8.19), we obtain

dx∗

dt
= Q∗

2 − Q∗
1

ρcong(Q∗
2) − ρfree(Q∗

1)
= Q∗

2 − Q∗
1

ρmax(1 − Q∗
2T ) − Q∗

1/V0
. (8.44)

Notice that, by means of the propagation rules (8.42) and (8.43), the equation of
motion (8.44) for the location of the front only depends on past values of the boundary
flows:

Q∗
1 = Qfree(x∗, t) = Qin

I

(
t − x∗ − xup

V0

)
, (8.45)

Q∗
2 = Qcong(x∗, t) = CB

I

(
t − xdown − x∗

|c|
)

= CB

I

(
t − ρmaxT

(
xdown − x∗)) . (8.46)

Since the boundary conditions can be taken from stationary detector measure-
ments and only past values are required, we can use the equation of motion
(8.44) for traffic-state estimation and short-term prediction.

In many cases, the detectors not only provide flow but also aggregated speed
values. Why should one, nevertheless, only use the flows in calculating
Eq. (8.44) (leaving the speed information only for the qualitative distinction of
free or congested) although using the speed would eliminate the necessity to
estimate the parameters of the fundamental diagram?

Figure 8.20 gives an example of the mechanism behind Eq. (8.44) for a road section
defined by the boundaries xup = 0 and xdown = L with a variable demand Qin(t)
(which may represent a rush hour) and a supply represented by the bottleneck capacity
CB = C − ΔC at the downstream boundary. We add an additional time dependence
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Fig. 8.20 Schematic traffic flow dynamics inside a partly congested road section of length L
as described by the section-based model. Free and congested traffic is painted in blue and red,
respectively. Both the upstream and downstream boundary flows (dotted lines in the upper diagram)
are time-dependent. For visualization, the graphics also shows some trajectories (blue and red solid
lines in the lower diagram) and the propagation of density changes (dotted lines). A jam forms
where the blue line of the upper diagram intersects the red line from below

by temporarily blocking the passage (CB = 0) which may represent an obstruction
caused by an accident.

As soon as the delayed demand (delay time L/V0) exceeds the bottleneck capac-
ity CB, a congestion with associated moving front x∗(t) forms (represented by the
boundary between the blue and red regions in Fig. 8.20). The propagation of the jam
front is then calculated by Eq. (8.44). After some time, the delayed demand decreases
while the supply CB is constant so that the jam front reverts its direction. However,
as soon as the information about the total blockage (CB = 0) has propagated to the
location x∗ of the upstream front, the jam increases once more. Finally, after the
blocking has been removed and this information has propagated to the jam front,
the latter reverts its direction for the last time and the jam dissolves at the time where
x∗(t) = L .

Figure 8.21 demonstrates how to apply Eq. (8.44) to model-based traffic-state esti-
mation or short-term prediction (see Sect. 5.2 for an offline method to reconstruct the
spatiotemporal speed fields). We first notice that the parallel structures of the local
speed fields in both the free and congested regions indicate constant propagation
velocities in these regions agreeing with the implications of a triangular fundamental
diagram. In this figure, we see how the propagation of the jam fronts (white lines)
according to Eq. (8.44) reflects the actual situation, at least, if the three parameters
of the model are correctly estimated.

It is crucial for potential real-time applications that this approach only requires
detector information from the past. For example, in the situation depicted in the top
left graphics of Fig. 8.21, the necessary downstream information from the detector at
x = 477.5 km lies in the past by up to 40 min, and the required upstream data lie in
the past as well. In the situations depicted in the top left graphics of Fig. 8.21, we also

http://dx.doi.org/10.1007/978-3-642-32460-4_5
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Fig. 8.21 Simulation of the jam front dynamics in Eq. (8.44) (white lines) for real data from the
German Autobahn A5. Shown is a situation with a temporary accident-induced bottleneck (top
left) and two situations with a permanent bottleneck (top right and bottom). The upstream and
downstream boundary conditions have been taken from stationary detectors positioned at the black
horizontal lines. The local speed field only serves for visualization and calibration purposes but
has not been used directly. The calibrated parameters of the triangular fundamental diagram are
V0 = 100 km/h, T = 2 s and ρmax = 100 vehicles/h (upper row), and V0 = 100 km/h, T = 1.5 s
and ρmax = 80 vehicles/h lower graphics)

see that the propagation of the jam front as described by Eqs. (8.44) and (8.45) works
for the maximum-flow state (around 21:00 h or 9:00 pm, respectively) as well. This
justifies the formal attribution of the maximum-flow state to the regime of congested
traffic.

8.5.8.2 Dynamics at the Boundaries

The boundary conditions of each road section mediate the coupling between neigh-
boring road sections and provide the boundary flows Qin(t) and Qout(t) assumed as
given up to now.

The basic dynamics is the same as for the cells of the CTM, i.e., given by the
supply-demand method with additional data-driven sources and sinks. Particularly,
the outflow Q(k)

out from road section k is equal to the inflow Q(k+1)
in of the downstream

road section.
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However, in contrast to the CTM, the elements of the section-based model are
generally structured and can assume a third state “partially congested” in addition to
the states “free” and “congested” of the CTM cells. This leads to following additions
to the supply-demand method:

1. If Dk(t) > Sk+1(t) and section k is in the state “free”, the new state of this
section changes to “partially congested”. The position of the jam front x∗

k is given
by integrating Eq. (8.44) with the initial condition xdown

k .18

2. If Dk−1(t) < Sk(t) and section k is in the state “congested”, the new state of this
section changes to “partially congested”. The position of the jam front x∗

k is given
by integrating Eq. (8.44) with the initial condition xup

k .
3. If section k is “partially congested” and the jam front x∗ reaches the upstream

boundary, this cell becomes “congested”.
4. If section k is “partially congested” and the jam front x∗ reaches the downstream

boundary, this cell becomes “free”.

8.5.9 Examples

The compact formulation (8.42)–(8.44) of the solutions to the section-based model
allows for an instructive insight into the dynamics of traffic jams in realistic open
systems in the presence of bottlenecks.

The general situation of Fig. 8.22 shows three road sections. The beginning of road
section 2 represents the bottleneck. The reduced local capacity C2 = CB = C1 −ΔC
of this road section can figuratively be interpreted as a capacity hole. Shown is the
situation where road section 1 is in the partially congested state, section 2 is in the
maximum-flow state, and section 3 is completely free. This means, there are four
traffic states denoted by 1©– 4© in this figure. Furthermore, we show a situation in this
figure where the demand Q1 exceeds the supply Q2 which is equal to the jam flow,19

so the gradient of the secant connecting the states 1© and 2© is negative corresponding
to an upstream moving jam front x∗

12. Traffic state 3© corresponds to the maximum-
flow state of road section 2, and state 4© to the free flow of section 3. Since, by the
supply-demand conditions, the flows Q2 = Q3 = Q4 of the states 2© to 4© are
equal, the locations of the corresponding transitions are stationary corresponding
to horizontal secants in the figure. In the following, we discuss the dynamics by
examples of increasing complexity.

18 In order to arrive at this rule, we must require the first CFL condition (8.27) to be satisfied. Since
the road sections generally are several kilometer long, this rarely is an issue.
19 Here and in the whole subsection, the indices of flows and densities refer to the traffic states,
and not to the road sections. Specifically, in Fig. 8.22, we have three road sections and four traffic
states.
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Fig. 8.22 Evolution of the traffic state for the section-based model for three road sections. The
capacity of section 2 is assumed to be lower than that of the other sections, so the beginning of this
section constitutes a flow-conserving bottleneck. Vehicles pass, in this order, the states 1© to 4©

8.5.9.1 Congestion at a Traffic Light

We consider a situation with a constant inflow Q(0, t) = Qin < C at the upstream
boundary of a road section. The downstream boundary at x = L is controlled by a
traffic light. The traffic light is red in the period t ∈ [t1, t2] and green, otherwise.20

The situation is modeled by two road sections 1 and 2 upstream and downstream of the
traffic light, respectively. Initially, we assume free traffic everywhere. Furthermore,
we assume free traffic in section 2 at any time, i.e. no queues from traffic lights
further downstream “spill over” to the location of the considered traffic light. This
means, the supply S(t) at the transition between the sections 1 and 2 is determined
solely by the time-dependent maximum throughput CTL(t) allowed by the traffic light
(cf. Fig. 8.23):

S(t) = CTL(t) =
{

0 if t1 < t < t2 (light is red),
C otherwise.

(8.47)

20 Yellow/amber phases are associated to the red or green phases as appropriate for the respective
country and average driving behavior.
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Fig. 8.23 Modeling a queue behind a single traffic light. The upper part shows the time-dependent
supply and demand at the section boundary formed by the traffic light. The lower part shows
the spatiotemporal evolution of free traffic (region 1©), the waiting queue (region 2©), and the
maximum-flow state (region 3©). Some vehicle trajectories (black lines) are drawn for purposes of
visualization

Phase 1: Free traffic. For t < t1 the traffic light is green and the supply S = C is
greater than the demand D = Qin. Consequently, free traffic persists.

Phase 2: Formation of a queue. For t1 ≤ t < t2, the traffic light is red, i.e., the
supply S = CB = 0. Consequently, section 1 gets partially congested. The motion
(8.44) of the upstream boundary of the queue (transition between the traffic states
1© and 2©) is given by

dx∗

dt
= c12 = −Qin

ρmax − Qin
V0

,

resulting, after integration, in x∗(t) = L + c12(t − t1). In this phase, the propagation
velocity can take on values between c12 = −leff/T = c (for the maximum possible
inflow Qin = C), and c12 = 0 (no inflow). At maximum inflow, the velocity of
the upstream front is equal to that of moving downstream fronts. Consequently, the
section-based model (and LWR models in general) can only describe sustained traffic
waves at maximum inflow.

Phase 3: Dissolution of the queue. For t ≥ t2, the traffic light is green and the
supply S(t) = C is given again by the capacity. Because of the queue (section 1 is
partly congested), the demand is equal to C as well. So, the maximum-flow state
3© develops. With Eq. (8.44), we calculate the propagation velocity of the transition

from state 2© (standing queue) and state 2© (maximum flow),

dx23

dt
= c23 = Q3 − Q2

ρ3 − ρ2
= Qmax − 0

ρcong − ρmax
= − 1

ρmaxT
= c. (8.48)
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In summary, we have two transitions in this phase:

• The transition 1© → 2© with the transition front given by x12(t) = L + c12(t − t1)
as in phase 2.

• The transition 2© → 3© with the transition front obtained by integrating Eq. (8.48)
resulting in x23(t) = L + c(t − t2). The queue dissolves completely at time t3
where the two fronts intersect:

t3 = c12t1 − ct2
c12 − c

= t1 +
( −c

c12 − c

)
(t2 − t1).

Microscopically, this means that the last vehicle being stopped by the traffic light
sets into motion at time t3 and at location x3 = L + c(t3 − t2).

Phase 4: Dissolution of the maximum-flow state and free traffic again. With the
intersection of the transitions 1© → 2© and 2© → 3©, we obtain a new transition
from state 1© to state 3©. Again we make use of Eq. (8.44) to arrive at a propagation
velocity

c13 = Qmax − Qin

ρcong(Qmax) − ρfree(Qin)
= V0,

i.e., the propagation velocity is equal to the vehicle speed V0. Hence, this transition
passes the stopping line x = L of the traffic light at time

t4 = t3 + x3

V0
= t2 + (t2 − t1)

Qin

Qmax − Qin

resulting in free traffic, everywhere. Notice that a periodic situation is only possible
if the next red phase of the traffic light begins at some time t5 ≥ t4. Otherwise, traffic
flow becomes over-saturated and the queue grows without bounds.

Verify that the limit for a cyclic (not oversaturated) situation at an isolated
traffic light is characterized by the relation

Qin = C

(
t4 − t2
t4 − t1

)
= C

(
duration of green

duration of total cycle

)
, (8.49)

i.e., the inflow Qin is equal to the mean capacity C averaged over one cycle.

8.5.9.2 Several Signalized Intersections: Progressive Signal System

For the sake of simplicity, we ignore the traffic flow of all secondary roads and
only consider one direction of the main-road which we model as a homogeneous
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Fig. 8.24 Simulating the traffic flow across two signalized intersections with the section-based
model. The duration of the red and green phases of the traffic lights is given by τr = 40 and
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characterized by the inflow region 1©, the queues 2©, the outflows 3©, and the empty regions 4©
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road of capacity C (if the lights are green). The traffic lights at each intersection
all have the same cycle time τcyc = τr + τg and the same durations τr and τg of

the red and green phases. By varying the relative phase shifts Δτk = t (k)
r − t (k−1)

r
of the beginning red phases at intersection k, we can optimize the traffic lights to a
progressive signal system, i.e., try creating “green waves” with platoons of moving
vehicles in sync. While the basic optimization is simple (at least, in this idealized
case), we need simulations to (i) check the stability of the resulting synchronization
against variations of the demand, (ii) assess the robustness against perturbations
of the signalization arising, e.g., by giving priority to the buses and trams of the
public transport system, or introducing an isolated pedestrian traffic light that is
not connected to the system,21 (iii) estimate the maximum demand at which the
synchronization breaks down, and (iv) determine how fast the system recovers from
over-saturation.

Figure 8.24 shows an example with two signalized intersections assuming a con-
stant inflow at the source (which would be a good approximation if this example
represents the first traffic light of a passage through a town or city). Since the limit
(8.49) is not yet reached, one could optimize this system such that queues only form
at the most upstream traffic light. However, if the relative phases are not optimized,
queues form further downstream as well. This is demonstrated in Fig. 8.24 showing
the result for relative phases Δτ = t (k)

r − t (k−1)
r = −10 s while the optimized phase

shift of adjacent traffic lights would be τ(x2 − x1)/V0 = 20 s. Generalizations to
less idealized situations are easy to implement and simulate.

21 This really happens as is observed by one of the authors in his home city.
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Fig. 8.25 On-ramp bottleneck during rush-hour conditions. The traffic breakdown is provoked by
the traffic peak during the rush hour (see the main text)

8.5.9.3 On-Ramp Bottleneck During Rush-Hour Conditions

We consider a road section of capacity C with I lanes to which an on-ramp (merging
length L rmp) leads at the main-road position x = L . The traffic demand (inflow)
of the ramp is constant and given by Qrmp while traffic inflow on the main-road
temporarily increases for a time interval t ∈ [tbeg, tend] representing the rush hour
(Fig. 8.25):

Qin =
{

Qrush tbeg < t < tend,

Q0 otherwise.

Furthermore, we assume a situation where the inflow Q0 allows for sustained free
traffic while Qrush exceeds the capacity of the on-ramp bottleneck:

Q0 < CB,rmp = C − Qrmp < Qrush.

Here, traffic evolves in following phases:

Phase 1: Free traffic, t < tbeg. Since we have demanded Qin = Q0 < CB,rmp in this
phase, the supply (the bottleneck capacity) is greater than the demand (inflow), so
there is free traffic everywhere. Since the resulting steady-state flow does not contain
any explicit time dependence, we can integrate the relevant continuity equation (7.12)
(multiplied by the number I of lanes) without resorting to any specification for the
speed. This results in

Qtot(x) =
⎧
⎨

⎩

Q0 x < L − L rmp/2,

Q0 + Qrmp x > L + L rmp/2,

Q0 + Qrmp
(
x − L + L rmp/2

)
otherwise,

http://dx.doi.org/10.1007/978-3-642-32460-4_7
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and with the free-flow branch of the fundamental diagram

Q(x) = Qtot(x)

I
, ρ(x) = Q(x)

V0
, V (x) = V0.

Phase 2: Rush hour and traffic breakdown, t1 ≤ t < t2. Traffic breaks down at
the on-ramp bottleneck as soon as the increased demand reaches the position of the
on-ramp. Since the “rush-hour” information travels downstream with the vehicles
(propagation velocity cfree = V0), this occurs at time

t1 = tbeg + L

V0
,

at least, if we neglect the physical length L rmp of the merging lane. The resulting
congested traffic upstream of the ramp is characterized by the effective bottleneck
capacity (bottleneck capacity per lane) CB/I :

Qcong = CB

I
= Qmax − Qrmp

I
, ρcong = ρmax(1 − QcongT ), Vcong = Qcong

ρcong
.

The region of free traffic downstream of the ramp is characterized by the maximum-
flow state: Q = C/I = Qmax, ρ = Q/V0, V = V0. Finally, the region of free traffic
further upstream can accommodate the demand during rush hour, at least for some
time until the congestion reaches the considered location:

Qfree = Qrush, ρfree = Qrush

V0
, Vfree = V0.

The propagation of the transition free → congested is, again, given by the shock-front
formula (8.44):

c12 = Q2 − Q1

ρ2 − ρ1
= Qcong − Qrush

ρmax(1 − QcongT ) − Qrush
V0

. (8.50)

Phase 3: Rush hour is over and jam dissolves, t2 < t ≤ t3. First, we determine
the time t2 where the upstream front of the congested zone reverts its propagation
direction, i.e., the congestion begins to shrink. To this end, we determine the inter-
section of the line x∗(t) = L + c12(t − t1) giving the spatiotemporal positions of
the upstream front with the line xend(t) = x∗(t) which describes how the informa-
tion (“rush hour is over”) propagates downstream. After some simple arithmetic, the
intersection condition x∗(t) = xend(t) provides the time

t2 = L − c12t1 + V0tend

V0 + c12
,
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and the maximum length of the congested region (cf. Fig. 8.22)

Lcong
max = L − x2 = L − x∗(t2) = −c12(t2 − t1).

After time t2, the propagation velocity of the jam front becomes positive:

c̃12 = Qcong − Q0

ρmax(1 − QcongT ) − Q0
V0

,

and, eventually, the jam front x̃∗(t) = x2 + c̃12(t − t2) reaches the ramp position at
time

t3 = t2 + Lcong
max

c̃12
= t2 − c12(t2 − t1)

c̃12

which coincides with the dissolution of the jam. Since c12 < 0 and c̃12 > 0, we have
t3 > t2 as required for reasons of consistency.

8.5.9.4 Reduction of Number of Lanes

When reducing the number of lanes from I1 to I2 < I1, the road capacity (8.29)
decreases by the amount ΔC = (I2 − I1)Qmax (cf. Fig. 8.15). As soon as the demand
Qin exceeds the new capacity

CB = C − ΔC = I2 Qmax, (8.51)

traffic breaks down at the location of the lane drop resulting in a jam which is
characterized by the flow variables (cf. Fig. 8.15)

Qcong = CB

I1
= I2

I1
Qmax, (8.52)

ρcong = ρmax(1 − QcongT ) = ρmax

(
1 − I2

I1
QmaxT

)
, (8.53)

Vcong = Qcong

ρcong
= Qcong

ρmax(1 − QcongT )
= I2V0

I1 + (I1 − I2)ρmaxV0T
. (8.54)

Relation (8.54) explains the observation that even a relatively mild bottleneck (e.g.
a lane drop from 3 to 2 lanes) leads to drastically reduced speeds upstream as soon
as there is congestion (while in the actual region of a reduced lane number the speed
remains at V0). We make this explicit by following calculation.
Example: For the model parameters V0 = 144 km/h, T = 1.5 s and leff = 1/ρmax =
7 m, we obtain following speed values.
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Drop from 3 to 2 lanes: Vcong = 0.17 V0 = 24.9 km/h,

Drop from 3 lanes to 1 lane: Vcong = 0.05 V0 = 7.1 km/h,

Drop from 2 lanes to 1 lane: Vcong = 0.09 V0 = 13.6 km/h.

Since these values depend only weakly on the model parameters (for V0 = 72 km/h
we obtain instead of the above results the values 19.8, 6.2, and 11.5 km/h, respec-
tively), the plain information of the average speed in jammed regions allows one
to conclude the kind of bottleneck (at least when knowing or assuming that it is a
lane-drop bottleneck).

Justify the observation that, when driving in congested traffic caused by a
successive lane drop from three lanes to two lanes to one lane, one can drive
more quickly after the first drop to 2 lanes although the local road capacity is
reduced.

8.6 Diffusion and Burgers’ Equation

Shock waves are not very realistic in describing traffic flow. After all, they imply
unbounded accelerations in the microscopic picture of Eq. (8.23). Furthermore, the
associated discontinuities turn out to be problematic for a numerical solution—at least
for non-triangular fundamental diagrams. As a simple phenomenological solution,
one may introduce diffusion to the continuity equation by adding a diffusion term
D∂2ρ/∂x2 with the diffusion constant D > 0:

∂ρ

∂t
+

[
Ve(ρ) + ρ

dVe

dρ

]
∂ρ

∂x
= D

∂2ρ

∂x2 LWR model with diffusion. (8.55)

Notice that, generally, this nonlinear partial differential equation is solved numer-
ically (cf. Sect. 9.5) while analytical solutions are only feasible for the simplest
situations as described below.

For the case of a linear speed-flow relation (i.e., a parabolic fundamental diagram,
see Problem 7.7) we can transform Eq. (8.55), which is then called Burgers’ equation
by the so-called Cole-Hopf transformation to a linear diffusion equation which can
be solved analytically.

Verify that Burgers’ equation is consistent with vehicle conservation.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
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Fig. 8.26 Solution to the
diffusions-transport equation
(8.56) in an infinite system for
an initial density profile ρ0(x)

depicted by the thick black
lines
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Linearizing Eq. (8.55) for small density intervals or assuming a triangular funda-
mental diagram (8.11) and keeping to the free or congested region, we obtain a linear
transport-diffusion equation

∂ρ

∂t
+ c̃

∂ρ

∂x
= D

∂2ρ

∂x2 , (8.56)

where the propagation velocity c̃ = Q′
e(ρ) is the same as in the section-based model.

Particularly, we obtain c̃ = cfree and ccong for the triangular fundamental diagram in
the free and congested regimes, respectively.

Figure 8.26 shows a solution to Eq. (8.56) corresponding to free traffic with ini-
tially 20 vehicles uniformly distributed in the region x ∈ [0, 1 km], and no traffic
outside. Notice that the density profile for D = 0 corresponds to the solution of the
section-based model, i.e., it is given by uniformly translating the rectangular initial
profile. This means, diffusion just “smears out” the solution to the original LWR
models without diffusion.

We can express the solution to the diffusion-transport equation (8.56) for general
initial density profiles ρ0(x) = ρ(x, 0) by an integral, at least, if the boundaries are
sufficiently far away so as to not influence the dynamics:

ρ(x, t) =
∫

ρ(x ′, t0)g(x − x ′, t − t0) dx ′. (8.57)

Here, the so-called Green’s function

g(x, t) = f (μ,σ 2)
N (x) = 1√

4π Dt
exp

[
− (x − c̃t)2

4Dt

]
(8.58)
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corresponds to the solution for an ideally (point-like) localized initial density distrib-
ution satisfying

∫
ρ(x, 0) dx = 1, i.e., representing a single vehicle on an otherwise

empty road. The Green’s function is given by a Gaussian with time-dependent expec-
tation μ(t) = c̃t and variance σ 2(t) = 2Dt .22

By inspecting Eq. (8.57), one sees immediately that the evolution of the rectan-
gular initial density profile shown in Fig. 8.26 can be expressed in terms of two
cumulative Gaussians (cf. Problem 8.7).

Why must we require D to be nonnegative for any sensible traffic flow model?
Discuss with the help of the solution (8.57).

Verify that Eq. (8.57) is a solution to the diffusion-transport equation (8.56) by
directly inserting the solution into Eq. (8.56).

Problems

8.1 Propagation velocity of a shock wave free → congested
Justify why the propagation velocity (8.9) takes on values between c and V0 for
LWR models with a triangular fundamental diagram. What are the conditions for
realizing the extreme values? What is the range of shock propagation velocities in
the parabolic fundamental diagram of Problem 7.7?

8.2 Driver interactions in free traffic
In the LWR with a triangular fundamental diagram, all continuous and discontinuous
density changes within free traffic propagate at velocity V0. Draw conclusions what
this means for the interactions between the drivers.

8.3 Dissolving queues at a traffic light
In the triangular fundamental diagram, the velocity c of moving downstream fronts of
congested traffic is given by c = −leff/T . Try to intuitively understand this relation
for a queue of standing vehicles behind a traffic light after it turns green.

8.4 Total waiting time during one red phase of a traffic light
Calculate the total waiting time of all vehicles caused by one red phase of duration τr

for the LWR model with a triangular fundamental diagram. Assume the conditions

22 Here, the limits of a collective macroscopic description become obvious: A single vehicle cannot
“smear out” by diffusion effects.
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of the example in Sect. 8.5.9.1, i.e., a constant inflow Qin, and sufficient capacity to
avoid over-saturation, i.e., the queue completely dissolves before the next red phase.
Express the solution as a function of τr , the maximum density, the propagation
velocities cup of the upstream boundary, and the universal propagation velocity ccong

of congested traffic.

8.5 Jam propagation on a highway I: Accident
Consider traffic flow on a two-lane highway between the road kilometers 0 and 10
during and after a closure of one lane at kilometer 10 at 15:00 h. In the considered time
period, the traffic demand (inflow at x = 0) is constant and given by 3024 vehicles/h.
The lane closure is effective for half an hour until 15:30 h.

Free
Traffic

Congested
Traffic

ρ
2

x=10 kmx=0 km

,ρ
1 1Q , ,ρ

3 3Q
2Q

Solve the following questions using the section-based model with the parameters
leff = 8 m, T = 1.5 s, and V0 = 28 m/s.

1. Calculate the total road capacity and the effective capacity (per lane) prior to the
lane closure. Does the capacity satisfy the demand? Calculate the traffic density
and the traveling time to traverse the 10 km long road stretch.

2. Show that, after the lane closure is active, the bottleneck capacity of the remaining
lane does not satisfy the demand. Calculate the effective and total traffic density
of the forming jam. Assume that the drivers symmetrically use both lanes (i.e.,
consider locations upstream of the transfer zone where people change lanes to
the through lane).

3. Calculate the growth rate of the jam by determining the velocity of its upstream
front. Hint: Distinguish carefully between total and effective (lane-averaged) den-
sities and flows.

4. After the lane closure has been lifted, the downstream front of the jam sets into
motion. Since it moves faster than the upstream front, the jam eventually dissolves.
Calculate the velocity of the moving downstream front and the time for complete
dissolution. Also calculate the position of the last vehicle to be obstructed by the
jam at obstruction time.

5. Visualize the spatiotemporal dynamics of the jam by drawing its boundaries in a
space-time diagram.

6. How much time does a vehicle need to traverse the 10 km long road section if it
enters at 15:30 h?
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8.6 Jam propagation on a highway II: Uphill grade and lane drop Consider
following highway section containing a three-to-two lane drop and an uphill grade
on parts of the two-lane region:

Q out

2 km
IVII III

0 km 4 km3 km

Grade

Uphill

I

The effective traffic flow is modeled with a triangular fundamental diagram. Because
of a high percentage of trucks, the mean free speed in the uphill region III is only
V03 = 60 km/h while V0 = 120 km/h applies elsewhere. Furthermore, assume an
increase of the time gap from T = 1.5 to T3 = 1.9 s in the gradient region III, and
an effective vehicle length leff = 10 m everywhere.

1. Show that the capacity per lane is given by 2,000 vehicles/h outside the uphill
region, and 1,440 vehicles/h in the uphill region.

2. Before the onset of the rush hour at 4:00 pm, assume free steady-state traffic
everywhere and a total inflow of 2,000 vehicles/h. Calculate the effective and
total densities and the speeds in all regions I–IV.

3. At 4:00 pm, the total traffic demand at x = 0 increases abruptly to 3,600
vehicles/h. Does this cause a breakdown? If so, at which time and where?

4. Assume now a breakdown at x = 3 km and consider two stages of the developing
congestion: (i) The upstream jam front is in region I at x = 1 km, (ii) the front is
in region II at x = 2.5 km. Calculate, for both stages, flows and densities of all
four regions of the considered road stretch.

5. At which velocity does the upstream jam front propagate in stages (i) and (ii) of
Part (4) of this problem?

8.7 Diffusion-transport equation
Solve the diffusion-transport equation (8.56) for a constant propagation velocity c̃
on an infinite homogeneous road for the initial conditions (cf. Fig. 8.26)

ρ(x, 0) =
{

ρ0 0 ≤ x ≤ L ,

0 otherwise.

Hint: Express the solution in terms of the (cumulative) distribution function �(z) of
the standard normal distribution.
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Chapter 9
Macroscopic Models with Dynamic Velocity

Real knowledge is to know the extent of one’s ignorance.
Confucius

Abstract In the macroscopic first-order (Lighthill-Whitham-Richards, LWR) mod-
els presented in the previous two chapters, the local speed and flow are statically cou-
pled to the density by the fundamental relation. This implies instantaneous adaptation
to new circumstances and leads to unbounded accelerations and other unrealistic con-
sequences such as the lack of hysteresis effects or traffic instabilities. In the second-
order models considered in this chapter, the local speed possesses its own dynamical
acceleration equation describing speed changes as a function of density, local speed,
their gradients, and possibly other exogenous factors. Second-order models are the
models of choice to macroscopically describe traffic-flow instabilities leading to
traffic waves, the capacity drop phenomenon, or scattered flow-density data. Besides
discussing representative models, this chapter describes approximative numerical
integration techniques which are more demanding than that of the LWR models.

9.1 Macroscopic Acceleration Function

The first-order LWR models considered in the previous chapters are characterized
by a single dynamical partial differential equation (or iterated coupled map) for the
density which, in essence, is a consequence of the conservation of the number of
vehicles. The local speed V (x, t) of these models does not possess any independent
dynamics since it is statically coupled to the density by a speed-density relation. Such
models can describe traffic breakdowns at bottlenecks due to insufficient capacity
and the propagation of the resulting congested regions. From a microscopic point
of view, the associated instantaneous speed adaptations imply unbounded accel-
erations which, clearly, is unrealistic. Moreover, finite speed adaptation times and
reaction times are the main factors leading to growing traffic waves and capacity-drop

M. Treiber and A. Kesting, Traffic Flow Dynamics, 127
DOI: 10.1007/978-3-642-32460-4_9, © Springer-Verlag Berlin Heidelberg 2013



128 9 Macroscopic Models with Dynamic Velocity

phenomena (see Chap. 18), or to traffic flow instabilities in general (see Chap. 15).
Consequently, LWR models cannot describe these observations.1

If such phenomena are required, one needs models where the local speed is treated
as a second independent field which is governed by a second dynamical acceleration
equation. Such an equation describes the local acceleration (in Lagrangian coordi-
nates, i.e., in a system comoving with the drivers) as a function of density, speed,
gradients thereof, and possibly other exogenous factors. Hence, this class of models
is also known as the class of second-order models, in contrast to the LWR models
which are also termed first-order models.

In time-continuous second-order models,2 the acceleration equation is a second
partial differential equation of the general form

dV (x, t)

dt
=

(
∂

∂t
+ V (x, t)

∂

∂x

)
V (x, t) = A[ρ(x, t), V (x, t)]. (9.1)

This equation implies that the rate of change of the local speed dV (x,t)
dt = ∂V

∂t +
V ∂V

∂x in (Lagrangian) coordinates is equal to an acceleration function A(x, t) =
A[ρ(x, t), V (x, t)].3 The total time derivative on the left-hand side is also referred
to as the material derivative, convective derivative, Lagrangian derivative, or substan-
tial derivative. It is composed of the local rate of speed change ∂V

∂t that a stationary
detector would measure, and the convective rate of change V ∂V

∂x due to moving to a
new location (Fig. 9.1).4

The different second-order models are solely distinguished by their acceleration
function characterizing the macroscopic acceleration as a function of the density
and speed field of the neighborhood. However, just a function A(ρ(x, t), V (x, t))
is not sufficient since this would correspond to very short-sighted drivers not taking
into account what happens in front of them. In fact, we will show in Sect. 15.4.2
that such a model would be unconditionally unstable. Consequently, we introduce
spatial anticipation, either by allowing density and speed gradients ∂ρ

∂x , ∂V
∂x (and

possibly higher-order gradients), or nonlocalities. To implement nonlocalities, we
take the density and speed fields at the spatial coordinate xa > x in front of the
actual position x (Fig. 9.2),

ρa(x, t) = ρ(xa, t), Va(x, t) = V (xa, t), xa > x . (9.2)

1 One can also add reaction times ad hoc to LWR models. This alone, however, does not lead to
traffic waves of growing amplitude or hysteresis effects.
2 We will not explicitly consider second-order models formulated as iterated coupled maps. Time-
continuous models assume this form as an approximation anyway at time of numerical integration
(Sect. 9.5).
3 The arguments of the acceleration function are enclosed in brackets instead of parentheses to
indicate a functional dependence including gradients and nonlocalities as described below.
4 For a further discussion, see Sect. 7.3.

http://dx.doi.org/10.1007/978-3-642-32460-4_18
http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_7
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Fig. 9.1 Visualization of the total (Lagrangian) time derivative along a trajectory (driver’s point of
view) in contrast to the partial (Eulerian) time derivative taken in a stationary coordinate system.
Along a trajectory, the rate of change is given by dV (x(t),t)

dt = ∂V
∂x

dx
dt + ∂V

∂t = V ∂V
∂x + ∂V

∂t . Here,

we show the situation of steady-state flow with a stationary downstream front
(

∂V
∂t = 0

)
with

accelerating vehicles
( dV

dt > 0, ∂V
∂x > 0

)
. This situation corresponds to that of Fig. 7.4
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Fig. 9.2 Effect of the speed adaptation and anticipation terms of the second-order model (9.11). The
points 1© to 3© characterize local situations (ρ, V ) in steady state (point 1©) and in non-equilibrium
( 2© and 3©). The arrows from the states 2© and 3© to 1© describe local speed adaptation, while the
arrows from 4© and 5© describe anticipative adaptation

Since both gradients and nonlocalities describe the same aspect (spatial anticipation),
they are interchangeable. Therefore, local macroscopic models can be written in the
general form

dV

dt
=

(
∂

∂t
+ V

∂

∂x

)
V = Aloc

(
ρ, V,

∂ρ

∂x
,
∂V

∂x

)
, (9.3)

while nonlocal second-order macroscopic models take on the general form

dV

dt
=

(
∂

∂t
+ V

∂

∂x

)
V = Anonloc (ρ, V, ρa, Va) . (9.4)

http://dx.doi.org/10.1007/978-3-642-32460-4_7
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At first sight, nonlocal macroscopic models look more complicated. After all, we have
to solve a set of two nonlocal partial differential equations. While this seems to be a
formidable task, approximative numerical solutions to nonlocal models are, in fact,
computationally faster and numerically more stable than local models (see Sect. 9.5).

9.2 Properties of the Acceleration Function

9.2.1 Steady-State Flow

As is the case for LWR models, most of the second-order models possess a unique
steady state on homogeneous roads described by the steady-state speed Ve(ρ) for a
given density. With the hydrodynamic relation Q = ρV , this results in a fundamental
diagram Qe(ρ).5

Since the left-hand sides of Eqs. (9.1), (9.3) or (9.4) are equal to zero for
stationary-homogeneous conditions, the same must apply to the acceleration func-
tions. Considering local and nonlocal acceleration functions as defined by Eqs. (9.3)
and (9.4), respectively, and taking into account stationarity

(
∂
∂t = 0

)
and homogene-

ity
(

∂
∂x = 0, xa = x

)
, we arrive at the steady-state conditions

Aloc (ρ, Ve, 0, 0) = 0, Anonloc (ρ, Ve, ρ, Ve) = 0. (9.5)

These are implicit equations for the steady-state speed-density relation Ve(ρ) and the
fundamental diagram Qe(ρ) = ρVe(ρ). The conditions for plausible speed-density
relations are the same as for the LWR models, namely V ′

e(ρ) ≤ 0, Ve(0) = V0 and
Ve(ρmax) = 0 (cf. Fig. 8.1).

9.2.2 Plausibility Conditions

In contrast to the LWR models, the local speed V (x, t) is generally not equal to the
steady-state speed Ve(ρ(x, t)). Nevertheless, the acceleration function should model
the desire of the drivers to approach the steady state. In homogeneous situations (no
speed or density gradients) this leads to following criteria for plausible acceleration
functions, i.e., plausible models:

A(ρ, V, . . .) < 0, if V > Ve(ρ),
∂ρ(x, t)

∂x
= 0, and

∂V (x, t)

∂x
= 0. (9.6)

5 There are a few models without unique steady states on homogeneous roads. Such models are
controversial and will not considered here.

http://dx.doi.org/10.1007/978-3-642-32460-4_8
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Analogously, A(ρ, V, . . .) > 0 if V < Ve(ρ). We can summarize both conditions
by demanding that the partial derivative of the acceleration functions with respect to
the local speed should be strictly negative:

∂ Aloc

(
ρ, V,

∂ρ
∂x , ∂V

∂x

)

∂V
< 0,

∂ Anonloc
(
ρ, V, ρa, Va

)

∂V
< 0. (9.7)

This condition states that, when increasing the local speed and leaving everything
else unchanged (ceteris paribus), the acceleration decreases. Notice that Eq. (9.7) is
valid for non-steady-state conditions as well, i.e., in the presence of gradients and
nonlocalities, so the constraints of Eq. (9.6) are no longer needed.

However, the existence of a steady-state, (Eq. 9.5) and drivers attempting to reach
it (Eq. 9.7) is not sufficient since this alone would result in unconditionally unstable
traffic flow: Models without additional negative feedback mechanisms would always
produce traffic waves, even in completely free traffic, which is even more unrealistic
than the total absence of such waves in the LWR models. In real traffic, instabilities
are only observed in a density range corresponding to congested traffic. It turns
out that anticipation, either in the form of gradients or by nonlocalities, provides
sufficient stabilization to restrict flow instabilities to realistic density ranges. In terms
of gradients, denser or more congested traffic ahead is characterized by a positive
density gradient. So, in anticipation, one would reduce the acceleration or increase
the braking deceleration. In contrast, positive speed gradients imply that the cars
ahead drive faster, so it is appropriate to accelerate. This leads us to the third set of
plausibility conditions:

∂ A
(
ρ, V,

∂ρ
∂x , ∂V

∂x

)

∂
(

∂ρ
∂x

) ≤ 0,
∂ A

(
ρ, V,

∂ρ
∂x , ∂V

∂x

)

∂
(

∂V
∂x

) ≥ 0 . (9.8)

When modeling anticipation by nonlocalities, a plausible driver’s behavior is even
more explicit (cf. Fig. 9.2): Reduce speed if the density ρa ahead is higher than the
local density ρ, increase speed if the speed Va ahead is higher than the local speed V .
Moreover, the degree of reaction should increase monotonically with the differences,
so we require

∂ A(ρ, V, ρa, Va)

∂ρa
≤ 0,

∂ A(ρ, V, ρa, Va)

∂Va
≥ 0 . (9.9)

Notice that a single of the four conditions summarized in Eqs. (9.8) and (9.9) is
enough to provide sufficient stability. Therefore, we did not formulate these condi-
tions as strict inequalities (in contrast to Eq. 9.7). One of these conditions, however,
must be satisfied as a strict inequality.
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9.3 General Form of the Model Equations

Here, we will formulate general forms for effectively single-lane and single-class
second-order macroscopic models.6 Since vehicle conservation is always valid,
second-order models obey the same continuity equations as LWR models, i.e.,
Eq. (7.15) in the most general case with ramps and changes of the number of lanes.
The acceleration equation is characterized by the exogenous factors (speed, density,
and gradients and nonlocalities thereof) imposed by the plausibility conditions dis-
cussed in Sect. 9.2.2. In order to arrive at a compact formulation, we express the speed
and density gradients in terms of a gradient of a traffic pressure P while the nonlo-
calities can be expressed in terms of a generalized targeted speed V ∗

e (ρ, V, ρa, Va)

that can be seen as a generalization of the steady-state speed Ve(ρ). Furthermore,
the acceleration equation may also contain diffusion terms—second-order spatial
derivatives—analogously to the LWR models with diffusion described in Sect. 8.6.
Finally, on road sections parallel to the acceleration and deceleration lanes of ramps,
the acceleration equation generally contains additional ramp terms describing the
influence of entering or exiting vehicles on the local speed of the main-road (cf.
Problem 9.1).

In summary, most local and nonlocal second-order models formulated by contin-
uous variables can be represented by following generic continuity and acceleration
equations:

∂ρ

∂t
+ ∂(ρV )

∂x
= ∂

∂x

(
D

∂ρ

∂x

)
− ρV

I

dI

dx
+ νrmp(x, t) (9.10)

∂V

∂t
+ V

∂V

∂x
= V ∗

e (ρ, V, ρa, Va) − V

τ
− 1

ρ

∂ P

∂x
+ 1

ρ

∂

∂x

(
η
∂V

∂x

)
+ Armp(x, t).

(9.11)

In the following subsections, we describe the different terms of this set of equations.

9.3.1 Local Speed Adaptation

In local models, the generalized targeted speed V ∗
e is equal to the local steady-state

speed Ve(ρ) and the first term on the right-hand side of Eq. (9.11), also denoted as
speed adaptation term or relaxation term describes the mean acceleration of the vehi-
cles in the local neighborhood in order to reach the steady-state speed corresponding
to the local density. In the simplest case, the speed adaptation time is constant (does
not depend on density or speed), and the acceleration is proportional to the difference

6 As this qualifying statement implies, there are also explicit multi-lane models with separate density
and speed fields for each lane, and multi-class models with partial densities and local speed fields
for each vehicle class (e.g., cars and trucks). Such models are beyond the scope of this book and
we refer to the references at the end of this chapter.

http://dx.doi.org/10.1007/978-3-642-32460-4_7
http://dx.doi.org/10.1007/978-3-642-32460-4_8
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of the local speed V to the steady-state speed Ve(ρ). Then, τ represents a charac-
teristic speed adaptation time in which the distance to the steady-state is 1/e times
the original distance. The speed-adaptation term ensures that the consistency condi-
tions (9.5) and (9.7) are satisfied. The effect of this term can be visualized by Fig. 9.2:
If one is outside of steady-state (local equilibrium), the adaptation term represents
an acceleration (vertical arrows) towards the steady-state speed. Depending of the
traffic context (city streets, minor and major roads, highways), the speed adaptation
τ is of the order of few seconds (city streets) and up to 20–30 s (highways).

9.3.2 Nonlocal Anticipation

In nonlocal models, the generalized targeted speed V ∗
e of the speed adaptation term

depends not only on the local density but on the density ρa = ρ(xa, t) at an antic-
ipated location ahead of the actual position, xa > x , and possibly on the actual
and anticipated speeds V and Va, respectively. In the simplest case, V ∗

e = Ve(ρa) is
directly given by the steady-state speed at the anticipated location resulting in the
nonlocal adaptation term. So, the relaxation and nonlocal anticipation terms can be
expressed by

Arelax+antic(x, t) = Ve(ρ(xa, t)) − V (x, t)

τ
. (9.12)

Thus, an anticipatory driving style is simply described by adapting the speed to the
steady-state speed as in local models, but taking the steady-state speed at a position
ahead. This satisfies the first plausibility condition of the set (9.9) as a strict inequality.

We can visualize the effect of this anticipation term again by Fig. 9.2: If denser
traffic or a congestion is ahead (ρa > ρ), a driver who already is in local steady-state
at point 1© , would nevertheless adapt his or her speed to the lower value of the
steady-state speed at the anticipated position, i.e., he or she reacts as if the traffic
state is given by the virtual point 4©. Conversely, if less congested traffic is ahead
(downstream jam front), the driver would react according to the virtual point 5©
resulting in a positive acceleration. Such anticipation terms are the direct equivalent
of anticipative local pressure terms (cf. Problem 9.3).

It is straightforward to generalize this anticipation concept. For example, to model
a direct reaction to faster traffic ahead (rather than taking the indirect route over the
density), one would make V ∗

e explicitly depend on Va = V (xa, t) thereby satisfying
the second plausibility condition of Eq. (9.9) as a strict inequality. In local models,
this corresponds to making the traffic pressure P(ρ, V ) dependent on the speed.

9.3.3 Limiting Case of Zero Adaptation Time

When multiplying the acceleration equation (9.11) with τ and taking the limit
τ → 0, one observes immediately that this equation reduces to the LWR condi-
tion V (x, t) = Ve(ρ(x, t)). This is plausible since the limit τ → 0 signifies that
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the speed is rigidly coupled to the density which is a defining feature of the class of
first-order (LWR) models.

9.3.4 Pressure Term

The pressure term − 1
ρ

∂ P
∂x introducing the traffic pressure P describes a response of

the local ensemble of vehicles or drivers on density gradients and, in some models,
speed gradients. The resulting dependence of the acceleration function on density
and speed gradients should satisfy the plausibility conditions (9.8).

Notice that we deliberately speak of the behavior of a “local ensemble of vehi-
cles or drivers” instead of directly referring to driver reactions: The name “pressure
term” has its origins in macroscopic models derived from gas-kinetic considerations
such as the GKT model (Sect. 9.4.3) where this term describes a purely kinematic
(statistical) effect of speed variance without a single vehicle accelerating or brak-
ing.7 Besides this first-principles interpretation, traffic pressure terms are also used
purely phenomenologically and then, indeed, describe the anticipation of the drivers
(cf. Problem 9.3). Therefore, the pressure term generally has both a behavioral and
a kinematic component:

− 1

ρ

∂ P

∂x
= − 1

ρ

∂ Pantic(ρ, V )

∂x
− 1

ρ

∂ Pkin(ρ, V )

∂x
. (9.13)

In most models using the behavioral interpretation of the traffic pressure, we can
write this term as

Aantic = −β1
∂ρ

∂x
+ β2

∂V

∂x
, β1 = 1

ρ

∂ Pantic

∂ρ
, β2 = − 1

ρ

∂ Pantic

∂V
(9.14)

with non-negative sensitivities β1 and β2 that may depend on ρ and V themselves.
The sensitivity β1 with respect to density gradients states that one accelerates less
(or brakes harder) when the density gradient is positive, i.e., denser traffic is ahead
(cf. Fig. 9.3). The sensitivity β2 describes that drivers tend to accelerate more (brake
less) when traffic flow ahead is faster. Notice that the behavioral pressure terms of
local models are equivalent to the nonlocal contributions of the targeted speed V ∗

e of
the nonlocal models.

In contrast to the behavioral part of traffic pressure representing anticipative driver
reactions, the kinematic part

Akin = − 1

ρ

∂ Pkin

∂x
, Pkin = ρσ 2

V (x, t) , (9.15)

7 Notice the analogy to the physical pressure as defined by statistical physics. There, pressure
is proportional to the velocity variance of the molecules, and forces are proportional to pressure
gradients.
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Fig. 9.3 Sensitivity to density gradients when entering a traffic jam. In addition to the adaptation
to the local steady-state speed, there is an additional negative contribution Aantic = −β1

∂ρ
∂x to the

acceleration

>t0t=t 1

t=t 0
V <V1 2
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x

Fig. 9.4 Effects of kinematic dispersion at a transition from higher to lower density assuming,
for simplicity, constant speed and speed variance everywhere. The convective speed change dV

dt =
∂V
∂t + V ∂V

∂x in the reference region moving with the average speed (hatched box) is determined
by the average of the slower vehicles downstream (moving more slowly than the reference) and
the faster vehicles upstream (moving more quickly). Since there are fewer vehicles downstream,
the fraction of faster vehicles inside the reference region, and thereby the local macroscopic speed,
increases without any acceleration of the vehicles

is a sole consequence of a finite speed variance

σ 2
V (x, t) = 〈

(vi − V (x, t))2
〉

(9.16)

of the vehicles i in the microscopically large and macroscopically small local neigh-
borhood. The vehicles contributing to the variance are exactly the same that contribute
to the local speed, V (x, t) = 〈vi 〉. The kinematic pressure term is only effective if
(i) the speed variance is nonzero, and (ii) there are density gradients (∂ Pkin/∂x 
= 0).
Then, it leads to a macroscopic speed change even if not a single vehicle accelerates.
As an illustrative example, we consider the downstream front of a region of decreased
density where ∂ρ

∂x < 0 (hatched region of Fig. 9.4). Since a finite variance implies
finite speed differences, the faster vehicles leave the region of increased density more
quickly than the slower vehicles. This has two consequences: (i) The width of the
transition between higher and lower density at the downstream front grows. This is
represented by a diffusion term in the continuity equation (see Sect. 9.3.5) below.8

8 The mechanism is different from the dispersion already present in the LWR models with a concave
fundamental diagram, although the effect is the same.
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(ii) The vehicles separate at the downstream transition according to their speed: The
faster vehicles move downstream relative to the center of the moving downstream
front while the slower vehicles move upstream. Since, because of the density gra-
dient, there are fewer vehicles downstream than upstream, the proportion of fast
vehicles increases at the transition zone. This is modeled exactly by the kinematic
macroscopic acceleration

Akin = − 1

ρ

∂

∂x

(
ρ(x, t)σ 2

V (x, t)
)

≈ −σ 2
V

ρ

∂ρ

∂x
> 0

assuming that the speed variance is constant.9

9.3.5 Diffusion Terms

Some macroscopic models contain diffusion terms, i.e., second-order derivatives
with respect to space, in the continuity or acceleration equations. Generally, they are
phenomenologically introduced to smooth sharp transitions and shocks. From the
point of view of statistical physics, a diffusion term in the continuity equation is a
consequence of erratic microscopic motion components (random walk of particles
described by their velocity variance which is proportional to the temperature of phys-
ical systems). Moreover, “speed diffusion”, i.e., a diffusion term in the acceleration
equation, is the consequence of a finite viscosity.10

In vehicular traffic, finite speed variances are caused by the drivers’ heterogeneity
(there are faster and slower drivers), and by the unsystematic erratic components
of the driver’s acceleration, e.g., caused by estimation errors or lack of attention.
However, the order of magnitude of the diffusion constant η11 exceeds the magnitude
caused by these effects, so speed diffusion terms do not reflect properties of single
drivers at a microscopic level. Nevertheless, speed diffusion may be useful (i) to
improve the numerical properties of a model, (ii) to eliminate shock waves, and
(iii) to investigate the effects of numerical diffusion which are unavoidable when
numerically integrating macroscopic models (cf. Sect. 9.5).

9 This is not exactly true since the variance decreases with the density which leads to an opposite
contribution. However, the direct effect of the density gradient prevails.
10 In one of his groundbreaking papers of the year 1905, Albert Einstein explained the old puzzle
of Brownian motion of particles in a fluid in terms of the fluid temperature. Microscopically, the
temperature is proportional to the velocity variance of the particles which is defined similarly as
in Eq. (9.16) for the vehicles. In this work, A. Einstein also uncovered the microscopic origin of
viscosity.
11 In physical systems, η is known as dynamic viscosity, and the speed diffusion coefficient ν = η/ρ

corresponds to the kinematic viscosity. Notice, however, that the viscosities in physical systems are
generally transverse viscosities (mediated by shear flows) while that of traffic flow models are of a
longitudinal nature.
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Show that a density diffusion term in the continuity equation does not vio-
late vehicle conservation by considering the dynamics of the total number of
vehicles

∫
ρ(x, t)dx in a closed system (“ring road”) of length L .

9.3.6 On- and Off-Ramp Terms

While, in the continuity equation, ramps and lane drops give rise to the same source
terms −ρV

I
∂ I
∂x and νrmp(x, t) as in the LWR models (Sect. 7.2), additional contribu-

tions Armp may appear in the acceleration equation. As is the case for the kinematic
pressure term, Armp describes changes of the macroscopic local speed by changes in
the vehicle composition rather than by microscopic accelerations. In order to derive
Armp one takes into consideration that the right-hand side of the acceleration equa-
tion describes the rate of change of the mean speed in microscopically large and
macroscopically small road elements comoving with the vehicles (hatched regions
in Fig. 9.5). We calculate this rate of change assuming that on-ramp vehicles merge
to the main-road at speed Vrmp < V . Conversely, we assume that drivers about to
leave the main-road reduce their speed, on average, to Vrmp before they diverge to
the off-ramp. For the case of on-ramps, new vehicles enter the hatched regions at a
negative relative speed. This leads to (i) an increase of the density as described by the
source term νrmp(x, t) of the continuity equation, and (ii) to a reduced mean speed as
described by Armp. In Problem 9.1 we show that both on-ramps and off-ramps lead
to following equation for the rate of change of the mean speed:

Armp(x, t) = (Vrmp − V )

ρ

∣∣νrmp(x, t)
∣∣ = (Vrmp − V )|Qrmp|

ρ I L
. (9.17)

Analogously to the source term of the continuity equation, this term is only nonzero
at main-road locations parallel to the merging or diverging sections of ramps. Finally,
we notice that lane drops do not give rise to a term in the acceleration equation, at
least, if there are no microscopic accelerations or decelerations.

9.4 Overview of Second-Order Models

In this section, we present three well-known representatives of second-order models.

http://dx.doi.org/10.1007/978-3-642-32460-4_7
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Fig. 9.5 Origin of the ramp term (9.17) of the acceleration equation. The main-road vehicles are
stationary relative to the hatched region in a coordinate system comoving with the vehicles while
the on-ramp vehicles enter the hatched region at a relative speed Vrmp − V

9.4.1 Payne’s Model

A simple representative of a local second-order macroscopic model is Payne’s model,
sometimes also called the Payne-Whitham model. Its acceleration equation is

∂V

∂t
+ V

∂V

∂x
= Ve(ρ) − V

τ
+ V ′

e(ρ)

2ρτ

∂ρ

∂x
Payne’s model. (9.18)

Payne’s model is a special case of the general macroscopic acceleration equa-
tion (9.11) for a constant speed relaxation time τ , zero diffusion η, and a den-
sity dependent traffic pressure P = −Ve(ρ)/2τ . As in the LWR models, different
equations for the steady-state speed-density relation Ve(ρ) (satisfying Ve(0) = V0,
V ′

e(ρ) ≤ 0, and Ve(ρmax) = 0) characterize a whole class of Payne-Whitham models.

Traffic pressure. The connection between the traffic pressure and driver interactions
can be made more explicit by augmenting the traffic pressure by the constant V0/(2τ)

resulting in

PPayne(x, t) = V0 − Ve(ρ(x, t))

2τ
. (9.19)

While this does not change the acceleration equation (where only the gradient of
the pressure is relevant), this form of the pressure term is directly proportional to
the difference between the desired and steady-state speeds, i.e., proportional to the
driver-driver interactions and tends to zero for ρ → 0, i.e., V = V0.

On the other hand, when interpreting the pressure as a purely kinematic effect,
we can relate the pressure PPayne to the speed variance according to Eq. (9.15)
resulting in

σ 2
V = PPayne

ρ
= V0 − Ve

2τρ
.



9.4 Overview of Second-Order Models 139

When formulating the pressure term as

− 1

ρ

∂ P

∂x
= − 1

ρ

∂

∂x

(
V0 − Ve(ρ(x, t))

2τ

)
= − 1

ρ

V ′
e(ρ)

2τ

∂ρ

∂x
= c2

0(ρ)

ρ

∂ρ

∂x
,

Payne’s model is formally identical to the equations describing a compressible
one-dimensional gas with generally density dependent sonic velocities ±c0 =
±√

V ′
e/2τ .12

Relation to a microscopic model. In Sect. 10.8, we will derive Payne’s model from
a simple car-following model, namely Newell’s model.

Parameters and simulation. Apart from the parameters of the steady-state relation
Ve(ρ), the only additional parameter is the speed relaxation time τ . From the micro-
scopic derivation it follows that τ is identical to the reaction time Tr while, in reality,
these characteristic times have different orders of magnitude: The speed adaptation
time is of the order of 10s (more in highway traffic, less in city traffic) while the
reaction time is about 1s. Typical values for τ adopted in the simulation are between
1 and 5 s. This corresponds to sonic velocities c0 of the order of ±10 m/s2.

Payne’s model is difficult to simulate and prone to physical and numerical insta-
bilities (cf. Chap.15). Dedicated numerical methods are necessary.

Limiting case of the adaptation time tending to zero. Since the speed relaxation
time enters not only the relaxation term of Payne’s model but also the pressure term,
we will not simply obtain V = Ve(ρ)—the LWR model—when multiplying the
acceleration equation by τ and setting τ = 0. Instead, we obtain

V = Ve(ρ) + V ′
e(ρ)

2ρ

∂ρ

∂x
.

This relation for the static local speed depends on the density and additionally on
density gradients. Inserting this in the applicable continuity equation, e.g., in Eq. (7.8)
for homogeneous roads, we obtain

∂ρ

∂t
+ ∂

∂x

(
ρVe(ρ) + V ′

e(ρ)

2

∂ρ

∂x

)
= 0 ,

i.e., the LWR model with diffusion. We can make this more explicit by writing this
equation as

∂ρ

∂t
+ ∂(ρVe(ρ))

∂x
= ∂

∂x

(
D(ρ)

∂ρ

∂x

)
(9.20)

12 This is a purely mathematical analogy, see Sect. 9.3.4.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_7
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with the density dependent diffusion coefficient

D = D(ρ) = − V ′
e(ρ)

2
.

9.4.2 Kerner–Konhäuser Model

The Kerner–Konhäuser model (KK model) is another well-known local second-order
model which is related to Payne’s model. Its acceleration equation is

∂V

∂t
+ V

∂V

∂x
= Ve(ρ) − V

τ
− c2

0

ρ

∂ρ

∂x
+ η

ρ

∂2V

∂x2 KK model. (9.21)

This model is purely phenomenological, i.e., it is not based on a microscopic model.
Instead, its equations are formulated analogously to that of a one-dimensional com-
pressible gas with sonic velocities ±c0 and a variable speed diffusion coefficient
Dv = η/ρ. In contrast to Payne’s model, the sonic velocities ±c0 (or, in another
interpretation, the speed variance c2

0) are constant, and there is an additional speed
diffusion term corresponding to a constant dynamic compression viscosity η. How-
ever, both terms have no microscopic foundation. As for Payne’s model, a whole class
of KK models can be formulated depending on the specific form of the steady-state
speed density relation Ve(ρ). Typical values for the three dynamic model parame-
ters are τ = 10 s, c2

0 = 200 m2/s2, and η = 150 m/s. This set of parameters is
supplemented by the parameters of the steady-state speed density relation.

The diffusion term has been introduced to prevent unrealistically sharp transitions,
particularly shocks. However, diffusion also impairs the numerical efficiency of sim-
ulations since it favors numerical instabilities. If such instabilities are present, the
dynamical quantities oscillate wildly and grow beyond all bounds until the simulating
program eventually crashes.13 Therefore, they must be avoided at all costs, in contrast
to physical instabilities which are desirable in a certain density range of congested
traffic — after all, physical instabilities are the cause of the observed traffic waves.
In Sect. 9.5 we show that diffusion restricts the numerical update time step Δt by the
so-called second Courant–Friedrichs–Lévy (CFL) condition Δt < (Δx)2/(2Dv),
i.e., the numerical complexity14 increases inversely proportional to the third power
of the cell size of the numerical grid indicating the resolution.

Example: Assume we want to simulate traffic of density ρ = 15 vehicles/km =
0.015 vehicles/m (free traffic) with the KK model using a spatial discretization (cell
size) of Δx = 50 m. Then, for a typical value of η = 150 m/s, we obtain a speed

13 Do not confuse this with a simulated crash of vehicles. The latter is characterized by densities
exceeding the maximum density ρmax.
14 The numerical complexity C indicates the number of multiplications or other operations on a
computer which are necessary to obtain a certain approximate solution.
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Fig. 9.6 Simulation of a highway section with an on-ramp (details in the main text). Left funda-
mental diagram (gray smooth line) and flow-density one-minute data of virtual detectors (jagged
lines); right spatiotemporal dynamics of the local speed

diffusion Dv = 10,000 m2/s. Thus, the second CFL condition implies the condition
Δt < 0.125s. In comparison, without diffusion, the first CFL condition (which
is discussed in Sect. 9.5) allows time steps of up to one second. Moreover, since
Dv → ∞ for ρ → 0, we have to introduce an additional cap for Dv.

Figure 9.6 shows a simulation of a highway section with the KK model. We have
assumed an on-ramp flow of 400 vehicles/h per main-road lane, and a main-road flow
initially increasing from 1,100 vehicles/h per lane to 1,800 vehicles/h/lane (0:20 h),
then linearly decreasing to 1,100 vehicles/h/lane at 2:00 h and keeping this inflow
afterwards. The parameters are τ = 30 s, c0 = 15 m/s, η = 150 m/s. Furthermore,
we have assumed the steady-state speed-density relation

Ve(ρ) = V0
1 − ρ/ρmax

1 + 200(ρ/ρmax)4

with v0 = 120 km/h, which is often used for this model. The left hand diagram f
Fig. 9.6 shows the theoretical fundamental diagram Qe(ρ) = ρVe(ρ) together with
flow-density data obtained from one-minute averages of virtual detectors at various
locations. As the name implies, virtual detectors simulate the measuring and data
aggregation process by recording the speed and passage times of all passing vehicles
and aggregating them by averaging the microscopic data (see Chap. 3). Notice that
the flow-density data do not lie on the fundamental diagram, not even on average.15

This is a signature of the speed being a dynamical variable rather than coupled rigidly
to the density.

15 Flow-density data of real traffic scatter even more distinctly in the congested regime. To simulate
this, we need to include further factors leading to scattered data points, particularly, a heterogeneous
traffic composition. To simulate this macroscopically, we can make the model parameters time
dependent. However, it is better to simulate heterogeneity microscopically (cf. Chap. 12).

http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_12
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Fig. 9.7 Observed coefficient of variation σV /V of the speed (bullets) and theoretical GKT curve√
α(ρ) according to Eq. (9.22) (curved line)

The spatiotemporal local speed profile of the right hand diagram of Fig. 9.6
shows growing traffic waves propagating against the direction of the traffic stream
in the stationary system. This corresponds to the observations, at least qualitatively
(cf. Fig. 5.1).

9.4.3 Gas-Kinetic-Based Traffic Model

The gas-kinetic based traffic model (GKT model) is one of few second-order macro-
scopic models that are derived from a microscopic model with explicit consideration
of vehicle-driver heterogeneities. The GKT model characterizes this heterogeneity
in terms of the empirically measurable speed variance depending on the density
according to (cf. Fig. 9.7)

σ 2
V (ρ) = α(ρ)[Ve(ρ)]2 (9.22)

with

α(ρ) = αfree + αcong − αfree

2

[
1 + tanh

(
ρ − ρcr

Δρ

)]
. (9.23)

The relative speed standard deviation
√

α(ρ) = σV /Ve (i.e., the coefficient of vari-
ation, cf. Sect. 3.2) has typical values between

√
αfree = 5–10 % (free traffic) and√

αcong = 20 % (congested traffic).
As its name implies, the microscopic model underlying the GKT model has prop-

erties of an idealized one-dimensional gas consisting of rigid particles. At any time,
the stochastic velocity components of the particle (vehicle) speeds are assumed to be
uncorrelated (molecular chaos) with a prescribed variance. Specific traffic-related
properties enter into this model as follows: (i) the particles are self-driven with a
driving force on particle i corresponding to the acceleration v̇i = (v0i − vi )/τ where
v0i is the desired (not the steady-state) speed, and τ is the speed adaptation time, (ii)
the interaction range (effective length) of the rigid particles increases with their speed

http://dx.doi.org/10.1007/978-3-642-32460-4_5
http://dx.doi.org/10.1007/978-3-642-32460-4_3


9.4 Overview of Second-Order Models 143

according to leff
i = li + vi T with T corresponding to a safety time gap, (iii) several

lanes are assumed, and the probability p of passing a slower vehicle without necessity
to brake is proportional to the fraction of free space on the road section (i.e., space
which is not occupied by the effective vehicle lengths) in relation to its total length,
(iv) the velocity variance depends on the local density according to Eq. (9.22), and
(v) the rigid-body interactions are anisotropic violating conservation of momentum:
Whenever the interaction range of a particle is about to intersect the range of the
slower particle ahead and no passing is possible (probability 1 − p), the particle
decelerates instantaneously to the speed of the slower particle ahead.

These specifications allow to derive a macroscopic model using the standard
methods of gas-kinetics. The resulting acceleration equation is

∂V

∂t
+ V

∂V

∂x
= V ∗

e (ρ, V, ρa, Va) − V

τ
− 1

ρ

∂ P

∂x
GKT model. (9.24)

The pressure term
P(x, t) = ρσ 2

V (ρ) (9.25)

is the sole consequence of the speed variance, i.e., a purely kinematic effect implying
no microscopic accelerations. Moreover, there is no speed diffusion. All acceleration
components corresponding to accelerations of single drivers (in order to reach the
desired speed or as a consequence of interactions) are contained in the generalized
targeted speed V ∗

e . This quantity depends on the local traffic state (ρ, V ) and on the
traffic state (ρa, Va) at the anticipated location xa > x , where

ρa = ρ(xa, t), Va = V (xa, t), xa = x + γ V (x, t)T . (9.26)

This means, the GKT model is a nonlocal model. The anticipation distance sa = γ V T
is a multiple γ (typical values are 1–1.5) of the safety gap V T . The generalized
targeted speed V ∗

e itself reads

V ∗
e (ρ, V, ρa, Va) = V0

[
1 − α(ρ)

α(ρmax)

(
ρaV T

1 − ρa/ρmax

)2

B

(
V − Va

σV

)]
. (9.27)

In this formula, the Boltzmann factor

B(x) = 2
[
x fN (x) + (1 + x2)Φ(x)

]
(9.28)

increases monotonically with the normalized speed difference x = (V − Va)/σV

and depends on the standard normal distribution Φ(x) = ∫ x
−∞ fN (x ′)dx ′ and its

density fN (x) = 1/
√

2π exp(−x2/2). In contrast to most other macroscopic traffic
flow models, the steady-state speed-density relation Ve(ρ) is not explicitly given but
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Table 9.1 Parameters of the gas-kinetic based traffic model (GKT model) with typical values

Parameter Typical value highway Typical value city traffic

Desired speed v0 120 km/h 50 km/h
Time gap T 1.2 s 1.2 s
Maximum density ρmax 160 vehicles/km 160 vehicles/km
Speed adaptation time τ 20 s 8 s
Anticipation factor γ 1.2 1.0
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Fig. 9.8 Simulation of a highway section with an intersection consisting of an off-ramp and an
on-ramp with the GKT model. Left fundamental diagram and flow-density one-minute data of
virtual detectors; right spatiotemporal profile of the local speed

results from the implicit steady-state condition (9.5), i.e., V ∗
e (ρ, Ve, ρ, Ve) = Ve

(cf. Problem 9.4).
Table 9.1 lists typical values of the five GKT model parameters (excluding the

parameters of the empirically determined variance-density relation (9.23)). The first
three parameters are the same as that of Payne’s model and the KK model when
assuming a triangular fundamental diagram 8.11 in these models.

In the simulations. the GKT model is robust in the sense that small parameter
changes generally lead to small changes in the simulation result.16 Moreover, this
model contains intuitive parameters which can be simulated with realistic values
(cf. Table 9.1).

In spite of its complex mathematical form, the GKT model is easier and more
effective to simulate than Payne’s model or the KK model. Figure 9.8 shows a
simulation of a highway section with an intersection consisting of an off-ramp
located 1.5 km upstream of an on-ramp. Both ramps have merging/diverging lengths
of 500 m and flows of 500 vehicles per hour and main-road lane. The simulated

16 Obvious and realistic exceptions include simulations on the verge of a traffic breakdown. In this
case, reducing the simulated capacity by increasing T will trigger congestion, i.e., the output is
discontinuous with respect to the input.

http://dx.doi.org/10.1007/978-3-642-32460-4_8
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traffic waves display a similar spatiotemporal dynamics to the real traffic waves
emerging from the intersection “Bad Homburg” on the German Autobahn A5-South
(Fig. 5.1).

9.5 Numerical Solution

9.5.1 Overview

Apart from very simple special cases, second-order macroscopic models can only
be solved approximatively by numerical integration.17 The methods of choice are
explicit finite differences which are applied nearly exclusively. In this method, the
highway stretch is subdivided into cells of generally equal length Δx , and time is
discretized into time steps with generally constant update time intervals Δt . When
simulating a whole network, all roads are updated simultaneously by the same global
time step. In each simulation time step, spatial derivatives are approximated by
suitable difference quotients (hence the name of this class of methods), and the new
traffic state at time t+Δt is estimated based on the old state at time t by approximating
the time derivatives by finite differences and solving for the new state. This is iterated
until the end of the simulated time is reached. In this sense, the cell-transmission
model (cf. Sect. 8.5) can be interpreted as a time-continuous model (the section-based
model) with a dedicated finite-difference integration method.

When numerically solving a model with a finite-difference method, we need to
distinguish between explicit and implicit methods. In the latter, the state and the
spatial derivatives are calculated using both the old and the new (yet unknown)
state, so, from the finite-difference approximation of the time derivative, we obtain
a coupled system of equations for the new state which needs to be solved separately.
In contrast, explicit methods give the new state explicitly in terms of the old state,
i.e., we arrive at an iterated coupled map. Generally, explicit methods are easier to
implement and numerically faster but they are also prone to numerical instabilities.
Implicit methods are not practical for all but the simplest road networks (i.e., simple
homogeneous roads), so explicit methods are applied nearly exclusively.18 In the
following, we will take a closer look at them.

To determine efficient integration schemes, we need to keep in mind that all
macroscopic traffic flow models include the continuity equation which is derived
from the conservation of the number of vehicles. Furthermore, without single-vehicle
accelerations (i.e., the vehicles represent passive particles instead of driven particles),

17 We will only discuss aspects of numerical integration that are directly relevant for application.
For a deeper insight, we refer to the literature at the end of this chapter.
18 This is valid more generally for the numerical integration of hyperbolic partial differential
equations, to which the continuous macroscopic models belong.

http://dx.doi.org/10.1007/978-3-642-32460-4_5
http://dx.doi.org/10.1007/978-3-642-32460-4_8
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global momentum is conserved as well.19 Therefore, it is essential that the schemes
are constructed in a way that these conservation conditions are satisfied exactly.
To this purpose, we reformulate the equations of the traffic flow models in terms of
conservation laws. In one dimension, pure conservation laws have the form

∂u

∂t
+ ∂ f

∂x
= 0

where u is the density of the conserved quantity, and f the associated flux. Because
momentum conservation is not valid for traffic flow and because ramps may be
present, macroscopic traffic flow models cannot be formulated as pure conservation
laws. Therefore, source terms s are added if necessary.

For the conservation of the number of vehicles, the associated density is sim-
ply the vehicle density ρ, and for the conservation of momentum, it is the flow
Q = ρV . When expressing the general continuity and acceleration equations
(9.10) and (9.11) in terms of ρ and Q by eliminating the local speed via the
relation ρ = QV (cf. Problem 9.5), we obtain following conservation laws with
sources:

∂ρ

∂t
+ ∂ Q

∂x
= νrmp − Q

I

dI

dx
, (9.29)

∂ Q

∂t
+ ∂

∂x

[
Q2

ρ
+ P − η

∂

∂x

(
Q

ρ

)]
= ρV ∗

e − Q

τ
+ Sinh , (9.30)

where the source term of the flow equation associated with road inhomogeneities
reads

Sinh = Q2

ρ I

dI

dx
− Qνrmp

ρ
+ ρ Armp . (9.31)

All vehicle accelerations not depending on gradients (the latter are part of the pres-
sure term) are contained in the generalized relaxation source term (ρV ∗

e − Q)/τ .
Notice that variable quantities outside of gradients (such as the advective term
V ∂V

∂x in the original acceleration equation) violate the conservation property and
are not allowed.20 In vector notation, the above equations can be written more
compactly as

∂u
∂t

+ ∂f(u)

∂x
= s(u) (9.32)

19 With driving forces, momentum is no longer conserved. However, it can be shown that the source
terms resulting from the individual accelerations are similarly innocuous as the source terms η(x, t)
of the continuity equation originating from ramps or lane drops, or the ramp source term Armp of
the acceleration equation.
20 In contrast, nonlocalities are allowed.
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where

u =
(

ρ

Q

)
, f =

(
Q

Q2

ρ
+ P − η ∂

∂x

(
Q
ρ

)
)

, s =
⎛

⎝
νrmp − Q

I
dI
dx

ρV ∗
e −Q
τ

+ Sinh

⎞

⎠ . (9.33)

Here, u denotes the components of the traffic state, and f and s the associated fluxes
and sources. For the Payne and KK models, the relaxation source term of the flow
equation reads (Ve(ρ)−V )/τ while, for the GKT model, this term contains additional
nonlocalities.

9.5.2 Upwind and McCormack Scheme

Two explicit integration methods turned out to be effective and useful for most
second-order macroscopic models. The simple first-order upwind method calculates
gradients as asymmetric upwind differences, i.e., it takes over the information com-
ing from the upstream direction. It is suitable for nonlocal models such as the GKT
model (9.24) since its nonlocalities handle downstream information propagating
upstream which is relevant for congested traffic (see Eq. (9.35) below). When apply-
ing this method to local methods, one has to determine the local traffic state (free
or congested), and switch to downwind finite differences for the case of congested
traffic (see below). However, the McCormack-Method is more suited for this model
class.

The McCormack method includes two steps: (i) calculating a “predictor” using
upwind finite differences, (ii) calculating a refinement, the “corrector” by using the
arithmetic means of the old and new traffic states for the temporal update with
downwind finite differences. While this is, strictly speaking, an implicit scheme
(Crank–Nicholson method) it becomes explicit when approximating the new state
with the predictor.

In order to formulate the integration schemes, we subdivide the road section
into cells of length Δx and time into time intervals Δt . Denoting the traffic state
u(x, t) at location jΔx and time nΔt by un

j = u( jΔx, nΔt) and defining fn
j and sn

j
analogously, the update from time t to time t + Δt (from n to n + 1) is specified by

un+1
j = un

j − Δt

Δx
(fn

j − fn
j−1) + Δt sn

j Upwind method,

ũn+1
j = un

j − Δt

Δx
(fn

j − fn
j−1) + Δt sn

j McCormack predictor,

un+1
j = 1

2

(
ũn+1

j + un
j − Δt

Δx
(f̃n+1

j+1 − f̃n+1
j ) + Δt s̃n+1

j

)
McCormack corrector.

(9.34)
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If the fluxes f contain gradients (which is true if the model contains diffusion terms),
these gradients are approximated by finite differences with the opposite asymme-
try (downwind differences for calculating the upwind scheme or the McCormack
predictor, upwind for calculating the McCormack corrector).

9.5.3 Approximating Nonlocalities

Generally, the anticipated position xa of the anticipated quantities Qa = Q(xa, t)
and ρa = ρ(xa, t) will not be a integer multiple j ′ of the cell width, so a numerical
approximation by interpolation is necessary. For the two methods above, a piecewise
linear interpolation has the same numerical consistency order as the other discretiza-
tions, so we will adopt it. If the model defines the anticipation distance sa = xa − x at
position x = jΔx , the piecewise linear interpolation is realized by following simple
yet efficient scheme:

(ua)
n
j = un

j+k +
(

un
j+k+1 − un

j+k

) ( sa

Δx
− k

)
, k =

⌊
sa

Δx

⌋
. (9.35)

Here, u = (ρ, Q)T are the variables of the flow-conservative formulation of the
model equations as above, and the floor function �x� denotes the largest integer not
greater than x . In most cases, the cell size is greater than the anticipation distance,
so k = 0, and Eq. (9.35) corresponds to a weighted arithmetic average between the
values of the actual and the neighboring downstream cell.

9.5.4 Criteria for Selecting a Numerical Integration Scheme

There are many other integration methods which may be more efficient for specific
models or applications. To give a guide for selecting them, we will now discuss some
relevant selection criteria.

Information flow. Due to its asymmetric finite-difference approximation for gradi-
ents, the upwind method considers only information of the actually considered (local)
cell and the neighboring cell in the upstream direction. Therefore, it is only suited
for local models whose velocity!characteristic always propagate in the downstream
direction (conversely, the “downwind” method would be suitable for information
flow propagating upstream). The characteristic velocities are generalizations of the
propagation velocity c̃ = Q′

e(ρ) of first-order models and will be considered in
the Sect. 9.5.5. In the GKT model, the characteristic velocities are always positive
while, for Payne’s model and the KK model, they become negative under congested
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conditions. Therefore, the upwind method is the method of choice for the GKT
model.21

If one intends to use simple asymmetric finite differences for the local models,
it is crucial to dynamically switch between upwind and downwind finite differences
depending on the local characteristic velocities. Exactly this switching is realized
by the supply-demand method for integrating the cell-transmission model described
in Sect. 8.5.7: If demand rules (free traffic), this corresponds to using upwind finite
differences while in supply-dominated regimes (congested traffic) downwind differ-
ences are selected. Generally, methods applying asymmetric finite differences with a
dynamical event-oriented switching are called Godunov schemes. For local second-
order models, the actual method is more complicated than this schematic description:
There are two characteristic velocities that may have different propagation directions,
and the corresponding eigenmodes have to be separated. So, for this model class, it
is better to apply schemes taking into account both upstream and downstream cells,
such as the McCormack method.

Consistency and convergence order. A numerical method for integrating ordinary
differential equations is consistent if the local discretization error tends to zero in
the limit Δt → 0. A consistent method has the consistency order p if the dis-
cretization error is proportional to (Δt)p for sufficiently small time steps Δt . These
definitions can also be applied to partial differential equations by demanding that the
spatial discretization Δx changes with Δt such that the quotient Δx/Δt is kept con-
stant (which is consistent with the first Courant–Friedrichs–Lévy condition (9.39)
described below). For smooth density and speed profiles, the upwind method has the
consistency order p = 1, and the McCormack scheme p = 2. This means, by halv-
ing Δx and Δt simultaneously, the local error is reduced by a factor of two and four
in the upwind and McCormack methods, respectively (at least if Δt is sufficiently
small where the criteria for “sufficiently” depend on the method).

Discretization errors. In the simulations, discretization errors typically result in an
artificial smoothing (numerical diffusion), or spurious high-frequency oscillations
(numerical dispersion), see Sect. 9.5.6. The consistency order specifies how the
numerical errors scale with Δt . However, nothing is said about the prefactors of
this scaling relation. For realistic update time intervals of, say, 0.5 s, a method of
consistency order 1 may result in smaller discretization errors than one with order 2.
Moreover, the consistency order is defined for a very fine discretization, and the
scaling may be different for realistic update time intervals (if there is a scaling at all).
So, it boils down to empirical tests to determine which method is most efficient for
actual simulations. Ultimately, such tests lead to the recommendations given above
(upwind for nonlocal second-order models with positive characteristic velocities,
McCormack for the rest).

21 The numerical approximation (9.35) of the nonlocalities of this model implies taking information
from downstream cells thereby ensuring the upstream information transport.

http://dx.doi.org/10.1007/978-3-642-32460-4_8
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Numerical instability. Besides discretization errors, explicit integration methods
also imply numerical instabilities when certain limits of the time step Δt are
exceeded. Since this topic is crucial, we discuss it in its own subsection.

9.5.5 Numerical Instabilities

Numerical instabilities typically result in wild oscillations growing beyond all bounds
and eventually leading to a crash of the simulation. Therefore, they must be avoided
at all costs. The artificial oscillations caused by numerical instabilities have to be dis-
tinguished from real traffic waves caused by physical instabilities that good second-
order models are able to reproduce. While numerical instabilities are clearly a bug
of the simulator, physical instabilities emerging under appropriate conditions are
a feature.22 Besides boundless growth, the signature of numerical instabilities are
oscillations whose spatial and temporal periods are two times (or a low multiple
of) the corresponding space and time discretizations. This can serve as a criterion
to distinguish them from physical instabilities which have much larger periods. For
traffic flow models, following categories of numerical instabilities are relevant.

(1) Convective instability. Numerical instabilities of this class appear if, in the exact
model, flow and density changes mediated by first-order spatial derivatives can enter
cells which have not been considered in the numerical update. Therefore, this kind
of instability is termed a convective instability.23 In asymmetric first-order methods,
this is already the case if the integration scheme uses the “wrong” kind of asymmetric
spatial finite differences, e.g., upwind finite differences when the information flow has
components pointing upstream (i.e., at least one characteristic velocity is negative).
However, there are also restrictions on Δt when choosing the correct method. To
derive a quantitative criterion, we define the characteristic velocities in the limit of
small perturbations by linearizing Eq. (9.32) for a homogeneous road and without
diffusion terms around the steady state ρ(x, t) = ρ0, Q(x, t) = Q0 = Qe(ρ0) and
express the result in terms of the perturbation vector w = (ρ(x, t) − ρ0, Q(x, t) −
Q0)

T :
∂w
∂t

+ C · ∂w
∂x

= L · w (9.36)

where

C =
(

0 1
−V 2 + ∂ P

∂ρ
2V + ∂ P

∂ Q

)
, (9.37)

22 For a model parameterization corresponding to unrealistically unstable traffic flow, the simulation
may lead to densities above the maximum density, i.e., to simulated physical rather than numerical
crashes.
23 This kind of numerical instability may not be confused with real physical convective instabilities
(traffic flow instabilities grow but propagate in only one direction) which play a significant role in
traffic flow dynamics, see Sect. 15.5.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
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L =
(

0 0
1
τ

(
Ṽe + ρ ∂ Ṽe

∂ρ

)
1
τ

(
ρ ∂ Ṽe

∂ Q − 1
)

)
. (9.38)

Here, Ṽe = Ve(ρ) for Payne’s model and the KK model, and Ṽe(ρ, Q) =
V ∗

e (ρ, Q, ρ, Q) for the GKT model. The characteristic propagation velocities can
be calculated as the eigenvalues of the matrix C:

• For Payne’s model, we obtain c1,2 = V ± √−V ′
e(ρ)/2τ ,

• for the KK model c1,2 = V ± √
θ ,

• and for the GKT model c1,2 = V (1 ± √
3α) plus negligible contributions propor-

tional to α(ρ)V .

If only neighboring cells are considered by the numerical update, the characteristic
velocities imply following stability condition which is also called the first Courant–
Friedrichs–Lévy (CFL) condition,

Δt <
Δx

max |c| (9.39)

where max |c| ≈ V0 for the Payne and GKT models, and max |c| = V0 + √
θ0 for

the KK model.

(2) Diffusive instability. The following consideration shows that diffusion terms
may lead to numerical instabilities as well: Assume a diffusion term in the continuity

equation of the form ∂ρ
∂t = · · ·+ D ∂2ρ

∂x2 . The simplest way to approximate the second-
order derivative by finite differences reads

∂2ρ

∂x2 ≈ ρn
j+1 − 2ρn

j + ρn
j−1

Δx2 .

In the simplest explicit integration scheme (Euler update), one calculates the new
density by calculating the changing rate based on the old state:

ρn+1
j ≈ ρn

j + · · · + D
dρn

j

dt
Δt ≈ ρn

j + · · · + DΔt
ρn

j+1 − 2ρn
j + ρn

j−1

Δx2 . (9.40)

Now we consider high-frequency oscillations of period 2Δx by setting ρn
j = ρe +

An(−1) j . Inserting this in Eq. (9.40) results in

ρn+1
j = ρe + A

(
1 − 4DΔt

(Δx)2

)
(−1) j .

This means that these high-frequency oscillations grow beyond any bounds if Δt >

(Δx)2/(2D). Both the upwind and McCormack methods apply the same explicit
time update as this simple example. So, we must require for these methods
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Δt <
(Δx)2

2Dv
, Δt <

(Δx)2

2D
. (9.41)

The conditions (9.39) and (9.41) are known as the first and second Courant–
Friedrichs–Lévy (CFL) conditions. Notice that other explicit integration schemes
may have different CFL conditions.

(3) Relaxation instability. If partial (or ordinary) differential equations have relax-
ation terms (which is true for the second-order models), explicit integration methods
will “overshoot” when approximating this relaxation unless

Δt <
1

max(|λ1|, |λ2|) , (9.42)

where λ1 and λ2 are the eigenvalues of the matrix L, Eq. (9.38).24 This is the “clas-
sical” instability mechanism for feedback-control systems: If the feedback response
time (here, the update time step Δt) is greater than the smallest intrinsic time scale of
the system to be controlled (here, the minimum of |1/λ1| and |1/λ2|), an oscillating
numerical instability arises.

For Payne’s model and the KK model, condition (9.42) results in

Δt < τ . (9.43)

For the GKT model, the condition is more restrictive. For general densities, we obtain
(cf. Problem 9.6)

Δt <
τ

1 + 2α(ρ)V0ρQe
αmax

(
T

1−ρ/ρmax

)2 . (9.44)

For densities near the maximum density ρmax, this simplifies to

Δt

(
1 + 2

V0

Ve

)
< τ. (9.45)

S, the condition becomes most restrictive for densities near the maximum density
(Ve → 0).

(4) Nonlinear instabilities. We have derived all previous instability sources for
small perturbations of density and flow, i.e., in the linear regime. For nonlinear
amplitudes, particularly when fully developed (physical) traffic waves are present,
further nonlinear instabilities may arise. Under most conditions, they cannot be
characterized or derived. Only Trial and Error helps.

24 Strictly speaking, this is valid for homogeneous roads, only. However, no significant changes
occur if sources, sinks, or lane drops are present.
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9.5.6 Numerical Diffusion

The most conspicuous consequence of discretization errors is the so-called numerical
diffusion: To second order O(Δt)2 in the time evolution, the numerical solution is
equivalent to the exact solution of a modified equation which contains additional
diffusion. Let us denote by u(x, t ′) = (ρ0, Q0)

T + w(x, t ′) the exact solution to
the linearized form (9.36) of the original model for t ′ ≥ t where the initial profile
u(x, t) at time t is equal to the discrete values at the grid points, u( jΔx, nΔt) =
un

j , and linearly interpolated, elsewhere. Then, the numerical diffusion terms are
characterized by a diffusion matrix D defined by

1

Δt

[
un+1

j − u( jΔx, t + Δt)
]

= D
∂2u
∂x2 + O(Δt)2 . (9.46)

This means, at time t +Δt , the difference between the numerical approximation un+1
j

and the exact solution u( jΔx, t+Δt) at the same location is, to first order inΔt , given
by integrating additional diffusion terms specified by D. The numerical diffusion
terms depend on the model, on the state (traffic density), and on the discretizations
Δx and Δt . For the two considered integration schemes, evaluating Eq. (9.46) yields

Dnum = Δx
2 C · (

1 − Δt
Δx C

)
Upwind-Method,

Dnum = 0 McCormack-Method.
(9.47)

When integrating the GKT model with the upwind method, we essentially obtain the
same scalar diffusions

D = V
Δx

2

(
1 − V

Δt

Δx

)
(9.48)

in both the density and flow equations. Notice that the diffusions become negative (or
more precisely, at least one eigenvalue of the diffusion matrix is negative) if and only
if the upwind method becomes convectively unstable (the first CFL criterion (9.39)
is violated).

The McCormack method has no numerical diffusion. Here, the discretization
errors lead to numerical dispersion and other errors of higher order. While a signature
of numerical diffusion is unnaturally smooth density and speed profiles, numerical
dispersion leads to spurious artificial high-frequency waves near high density or
speed gradients.

Problems

9.1 Ramp term of the acceleration equation
Derive the ramp term (9.17) for an on-ramp. Assume that the entering positions of
the merging vehicles are uniformly distributed over the whole length L rmp of the
merge section, and none of the vehicles accelerates.
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9.2 Kinematic dispersion
Consider a two-lane road with the same initial density profile on both lanes,

ρ(x, 0) =
⎧
⎨

⎩

15 x < 0,

15 − 100x 0 ≤ x ≤ 0.1,

5 x > 0.1.

Here, ρ is given in units of vehicles/km (per lane), and x in kilometers. All vehicles
on the right lane drive at 72 km/h and those on the left lane at 144 km/h, i.e., the
initial lane-averaged velocity is V (x, 0) = 108 km/h = const. Assume furthermore,
that no vehicles accelerate or brake.

1. Determine the local speed variance σ 2
V (x) at a given cross section of the road.

2. The speed variance corresponds to a kinematic pressure term Pθ = ρθ . Which
macroscopic acceleration A(x, 0) results from it at time t = 0 ?

3. Discuss using this example how a nonzero macroscopic acceleration may arise
even if no vehicles accelerate or brake.

4. In the presence of a heterogeneous traffic composition, different actual speeds
(as in this example) may be a consequence of distributed desired speeds. Find
one of the principle limits of modeling heterogeneous traffic with the single-class
macroscopic models (i.e., models having only one density field representing the
whole population) by discussing the qualitative traffic flow dynamics of the above
example for times t > 0.

9.3 Modeling anticipation by traffic pressure
We can model an anticipative driving style by evaluating the speed adaptation term
(dV/dt)relax = (Ve − V )/τ at a position xa = x + d one distance headway d ahead
of the actual position:

(
dV

dt

)

relax+antic
= Ve(ρ(xa, t)) − V (x, t)

τ
. (9.49)

1. Express d by a macroscopic quantity.
2. Show that the anticipative part of Eq. (9.49) can be approximated by the pressure

term − 1
ρ

∂ Pa
∂x with the “anticipative” pressure component

Pa = − Ve(ρ(x, t))

τ
.

Hint: Expand the adaptation term in a Taylor series to first order around x and
assume a constant density.

3. Assume a situation where the lane-averaged density increases, in a distance of
200 m, from 20 to 40 vehicles/km. Furthermore, assume the steady-state speed-
density relation

Ve(ρ) = V0

(
1 − ρ

ρmax

)
.
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Calculate the anticipative component of Eq. (9.49) when describing the anticipa-
tion (i) by the nonlocal part of the adaptation term, (ii) by the pressure term Pa.
Hint: The anticipative component is characterized by the full acceleration (9.49)
minus the local contribution obtained by setting xa = x in this equation.

9.4 Steady-state speed of the GKT model
Calculate the GKT steady-state speed-density relation for homogeneous roads. Hint:
“Steady-state” means stationary traffic flow, i.e., ∂

∂t = 0. Furthermore, homogeneous
traffic flow implies ∂

∂x = 0.

9.5 Flow-conserving form of second-order macroscopic models
Derive the conservation laws (9.29) and (9.30) resulting from the general second-
order model (9.10), (9.11) for D = 0. Hint: Eliminate V in the continuity equation
with the help of the definition Q = ρV for the flow. Multiply the acceleration
equation by ρ and substitute ρ ∂V

∂t = ∂ Q
∂t − V ∂ρ

∂t . Now, use the continuity equation

to eliminate ∂ρ
∂t and consolidate the resulting terms.

9.6 Numerics of the GKT model
Consider the numerical stability thresholds when integrating the GKT model with
the upwind method for a cell size of 50 m. Assume the parameters of Table 9.1
and a constant speed variation coefficient

√
α(ρ) = 10 %. Furthermore, assume

that, in the simulation, the density is always below 100 vehicles/km. Determine the
maximum time step Δt to avoid all sources of linear numerical instability. Calculate
the numerical diffusions at a local speed of 72 km/h and a time step Δt = 1 s.
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Chapter 10
Elementary Car-Following Models

Progress is the realization of Utopias.
Oscar Wilde

Abstract Microscopic models describe traffic flow dynamics in terms of single
vehicles. The mathematical formulations include car-following models, the topic
of this and the next two chapters, and cellular automata, which are described in
Chap. 13. This chapter begins with a discussion of general principles that apply to all
microscopic models of traffic flow, such as the microscopic steady-state equilibrium,
the micro-macro transition to the fundamental diagram, and heterogeneous traffic.
The next sections discuss Newell’s car-following model and the Optimal Veloc-
ity Model (and variants thereof) as the generic examples of simple car-following
models.

10.1 General Remarks

Car following models are the most important representatives of microscopic traffic
flow models (cf. Sect. 10.6). They describe traffic dynamics from the perspective of
individual driver-vehicle units.1 In a strict sense, car-following models describe the
driver’s behavior only in the presence of interactions with other vehicles while free
traffic flow is described by a separate model. In a more general sense, car-following

1 This technical term expresses the fact that the driving behavior depends not only on the driver but
also on the acceleration and braking capabilities of the vehicle.
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158 10 Elementary Car-Following Models

models include all traffic situations such as car-following situations, free traffic, and
also stationary traffic. In this case we say that the microscopic models is complete:

A car-following model is complete if it is able to describe all situations includ-
ing acceleration and cruising in free traffic, following other vehicles in station-
ary and non-stationary situations, and approaching slow or standing vehicles,
and red traffic lights.

Depending on the actions modeled, one distinguishes between acceleration
models models for longitudinal movement, lane-changing models for lateral move-
ment, and decision models for other discrete-choice situations such as entering a
priority road. The latter two classes will be described in Chap. 14. Furthermore,
more complex and realistic models describe the complex and often subtle interac-
tions between acceleration and discrete-choice situations such as acceleration to the
prevailing speed on the target lane in preparation of a lane change. This implies
that the longitudinal and transversal dynamics can no longer be separated but must
be part of a single complex model. Such models often form the simulation core of
commercial traffic simulation software.

The first car-following models were proposed more than fifty years ago by
Reuschel (1950), and Pipes (1953). These two models already contained one essen-
tial element of modern microscopic modeling: The minimum bumper-to-bumper
distance to the leading vehicle (also known as the “safety distance”) should be pro-
portional to the speed. This can be expressed equivalently by requiring that the time
gap should not be below a fixed safe time gap. We emphasize that, for obvious rea-
sons, the relevant spatial or temporal distances are the net, i.e., rear-bumper-to-front-
bumper, distances. In contrast, the commonly used term time headway generally
refers to the time interval between the passage times of the front bumpers of two
consecutive vehicles, i.e., including the occupancy time interval needed for a vehicle
to move forward its own length. Unfortunately, this distinction (which is essential for
vehicular traffic) is often ignored.2 To avoid confusion and in order to be consistent
with Sect. 2.2, we will refer to “gaps” if net quantities are meant and define gaps and
headways as follows (the modifiers in parentheses will be omitted if the meaning is
clear from the context):

distance headway = (distance) gap + length of the leading vehicle,
(time) headway = time gap + occupancy time interval of the leading vehicle.

2 This has essentially historic reasons. The term “time headway” originates from rail transport
indicating the succession time interval between two trains. Since this interval is measured in terms
of minutes or hours, a distinction between gross and net quantities is irrelevant, in this context.

http://dx.doi.org/10.1007/978-3-642-32460-4_14
http://dx.doi.org/10.1007/978-3-642-32460-4_2
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In this chapter, we will describe minimal models for the longitudinal dynamics that
do not describe realistic driving behavior. Particularly, they yield unrealistic acceler-
ation values. Nevertheless, they capture many essential features at a qualitative level
and can be implemented and simulated easily (sometimes even allowing an analyt-
ical solution). Therefore, they are suited to introduce the essential concepts. Real
applications require more refined models which will be presented in the subsequent
chapters.

Regarding the classification of Sect. 6.2, the minimal models, as well as the cellular
automata treated in Chap. 13, belong to the class of heuristic models. In contrast, the
strategy-based models of the Chaps. 11 and 12 can be considered as first-principles
models.

Examples of minimal models include the first ever car-following models of
Reuschel and Pipes in which the speed is varied instantaneously as a function of the
actual distance to the leading vehicle. Another class of minimal models are the Gen-
eral Motors (GM) based car-following models in which the acceleration depends on
the speed difference and the distance gap according to a power law while the driver’s
own speed is not considered as an influencing factor. These models are not complete
since they cannot describe either free traffic or approaches to standing obstacles. In
this chapter, we will therefore focus on other models.

10.2 Mathematical Description

Each driver-vehicle combination α is described by the state variables location xα(t)
(position of the front bumper along the arc length of the road, increasing in driving
direction), and speed vα(t)3 as a function of the time t , and by the attribute “vehicle
length” lα . Depending on the model, additional state variables are required, for exam-
ple, the acceleration v̇α = dv/dt , or binary activation-state variables for brake lights
or indicators. We define the vehicle index α such that vehicles pass a stationary
observer (or detector) in ascending order, i.e., the first vehicle has the lowest index
(cf. Fig. 10.1). Notice that this implies that the vehicles are numbered in descending
order with respect to their location x .4

From the vehicle locations and lengths, we obtain the (bumper-to-bumper)
distance gaps

sα = xα−1 − lα−1 − xα = xl − ll − xα (10.1)

3 To distinguish the vehicle speed in microscopic models from the local speed in macroscopic
models, we denote the speed of individual vehicles in lowercase (in analogy to the notation for
single-vehicle data). Generally, the relation V = 〈vα〉 applies.
4 There is no generally accepted convention for the vehicle numbering in the literature. The converse
numbering scheme (ascending in space, descending in time) is used as well, particularly in the
literature of traffic engineers.

http://dx.doi.org/10.1007/978-3-642-32460-4_6
http://dx.doi.org/10.1007/978-3-642-32460-4_13
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_12
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sα

vl vα−1=

vα

Fig. 10.1 Defining the state variables of car-following models

which (together with the vehicle speeds) constitute the main input of the microscopic
models. For ease of notation, we sometimes denote the index α − 1 of the leading
vehicle with the symbol l (see Fig. 10.1).

The minimal models (and many of the more realistic models of the subsequent
chapters) describe the response of the driver as a function of the gap sα to the lead
vehicle, the driver’s speed vα , and the speed vl of the leader. In continuous-time
models, the driver’s response is directly given in terms of an acceleration function
amic(s, v, vl) leading to a set of coupled ordinary differential equations of the form

ẋα(t) = dxα(t)

dt
= vα(t), (10.2)

v̇α(t) = dvα(t)

dt
= amic(sα, vα, vl) = ãmic(sα, vα,Δvα). (10.3)

In most acceleration functions, the speed vl of the leader enters only in form of the
speed difference (approaching rate)5

Δvα = vα − vα−1 = vα − vl . (10.4)

The corresponding models can be formulated more concisely in terms of the alter-
native acceleration function

ãmic(s, v,Δv) = amic(s, v, v − Δv). (10.5)

Taking the time derivative of Eq. (10.1), one can reformulate Eq. (10.2) by

ṡα(t) = dsα(t)

dt
= vl(t) − vα(t) = −Δvα(t). (10.6)

5 Again, there is no common consensus about the definition. Sometimes, the speed difference is
defined as vl − v, i.e., as the negative approaching rate.



10.2 Mathematical Description 161

The set of Eqs. (10.3) and (10.6) can be considered as the generic formulation of most
time-continuous car-following models. In this formulation, the coupling between the
gap sα and the speed vα as well as the coupling between the speed vα and the speed
vl of the leader becomes explicit.

There are also discrete-time car-following models, where time is not modeled as
a continuous variable but discretized into finite and generally constant time steps.
Instead of differential equations, one obtains iterated coupled maps of the general
form

vα(t + Δt) = vmic (sα(t), vα(t), vl(t)) , (10.7)

xα(t + Δt) = xα(t) + vα(t) + vα(t + Δt)

2
Δt. (10.8)

The driver’s response is no longer modeled by an acceleration function but by a speed
function vmic(s, v, vl) indicating the speed that will be reached at the end of the next
time step.

Compared to continuous models, discrete-time car-following models are generally
less realistic and less flexible but require less computing power for their numerical
integration. Most discrete-time car-following models have been proposed at times
where computing was more expensive. Nowadays, hundreds of thousand vehicles
can be simulated with time-continuous models on a PC in real-time, so this numerical
advantage becomes less relevant. Most commercial traffic simulation software uses
time-continuous models.

We emphasize that the Eqs. (10.2) and (10.6) represent kinematic facts that are
valid a priori—in analogy to the continuity equations of the macroscopic models.
Therefore, a specific time-continuous model is uniquely characterized by its acceler-
ation function amic. Similarly, a specific discrete-time model is completely character-
ized by its speed function vmic. When simulating heterogeneous traffic consisting of
a variety of driving styles and vehicle classes (such as cars and trucks), each driver-
vehicle combination is described by different acceleration functions aα

mic(s, v, vl) or
speed functions vα

mic(s, v, vl), respectively.

Numerical integration. In general, time-continuous models cannot be solved analyt-
ically and an integration scheme is necessary for an approximate numerical solution
of the system of Eqs. (10.3) and (10.6). For traffic flow applications, only explicit
update schemes with a fixed time step are practical. Furthermore, the performance
of the standard fourth order Runge-Kutta scheme is generally inferior to simpler
lower-order update methods.6

6 For typical single-lane simulations, the mixed first-order-second-order scheme (10.9), (10.10)
is more efficient by a factor of about two compared to the Runge-Kutta scheme, and by a factor
of about three with respect to the simple first-order Euler update, Eq. (10.9) combined with the
positional update xα(t + Δt) = xα(t) + v(t)Δt . For multi-lane simulations, the difference is less
pronounced. Ignoring bookkeeping costs, numerical efficiency is defined by the inverse of the
number of evaluations of the acceleration function for obtaining a numerical solution with given
accuracy.
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While this may seem surprising at first sight, it can be understood when consid-
ering the standard principles of numerical mathematics: Higher-order schemes are
guaranteed to be more effective than lower-order schemes only if the exact solu-
tion is sufficiently smooth and the update time is sufficiently small: Specifically, the
standard Runge-Kutta scheme has its nominal consistency order of four only if the
acceleration function is at least three times continuously differentiable with respect
to all independent variables and with respect to time. While this is satisfied for single-
lane simulations of some car-following models, it always breaks down for multi-lane
simulations: When lane changes occur, the acceleration function of the subject vehi-
cle (active lane change) and the old and new followers is not even continuous in
time. In this case, the accuracy of higher-order schemes may even be worse than that
of lower-order schemes for the same time step. Furthermore, the proposed scheme
(10.9), (10.10) has an intuitive meaning in the context of car-following models: It
corresponds to drivers that act only at the beginning of each time step but do nothing
in between (see Sect. 12.2 for details).

Assuming a constant update time step Δt , a simple but efficient explicit update
method is given by the “ballistic” assumption of constant accelerations during each
time step,

vα(t + Δt) = vα(t) + amic (sα(t), vα(t), vl(t))Δt, (10.9)

xα(t + Δt) = xα(t) + vα(t) + vα(t + Δt)

2
Δt. (10.10)

Consequently, the combination of a continuous-time model with the ballistic update
scheme (10.9), (10.10) is mathematically equivalent to discrete-time models if one
sets

amic(s, v, vl) = vmic(s, v, vl) − v

Δt
. (10.11)

However, there is a conceptual difference: For discrete-time models, the time step
Δt plays the role of a model parameter typically describing the reaction time, the time
headway, or the speed adaptation time. For time-continuous models, the update time
Δt is an auxiliary variable of the approximate numerical solution which preferably
should be small as the true solution is obtained in the limit Δt → 0 (at least if the
numerical method is consistent and stable).

10.3 Steady State Equilibrium and the Fundamental
Diagram

Since the driver-vehicle units of microscopic models are equivalent to driven particles
of physical systems, there is no equilibrium in the strict sense. Instead, there is
a stationary state where the forces and the entering and exiting energy fluxes are

http://dx.doi.org/10.1007/978-3-642-32460-4_12
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balanced. Strictly physically, this can be interpreted in terms of a balance of the
forces (the sum of friction, wind drag, and engine driving force equates to zero) or
energy fluxes (engine power equals change in potential and kinetic energy plus energy
dissipation rate by friction and wind drag). More relevant for traffic flow, however, is
the concept of balancing the social forces: The desire to go ahead generates a positive
(accelerating) social force while the interactions with other vehicles generally lead
to negative social forces in order to avoid critical situations and crashes.7 In any
case, such a balanced state is denoted as steady-state equilibrium. For microscopic
models, a consistent description of the steady-state equilibrium requires identical
driver-vehicle units on a homogeneous road.8 Technically, this implies that the model
parameters are the same for all drivers and vehicles, i.e., the acceleration or speed
functions characterizing the respective model do not depend on the vehicle index,
aα

mic(s, v, vl) = amic(s, v, vl), and vα
mic(s, v, vl) = vmic(s, v, vl), respectively. From

the modeling point of view, the steady-state equilibrium is characterized by the
following two conditions:

• Homogeneous traffic: All vehicles drive at the same speed (vα = v) and keep the
same gap behind their respective leaders (sα = s).

• No accelerations: v̇α = 0 or vα(t + Δt) = vα(t) for all vehicles α.

For time-continuous models with acceleration functions of the form amic or ãmic this
implies

amic(s, v, v) = 0, or ãmic(s, v, 0) = 0, (10.12)

respectively, while the condition

vmic(s, v, v) = v (10.13)

is valid for discrete-time models with the speed function (10.7). Depending on the
model, the microscopic steady-state relations (10.12) or (10.13) can be solved for

• the equilibrium speed ve(s) as a function of the gap (microscopic fundamental
diagram, see below),

• the equilibrium gap se(v) for a given speed.

Microscopic fundamental diagram. The Eqs. (10.12) and (10.13) allow for a one-
dimensional manifold of possible steady states that can be parameterized by the

7 The physical interpretation of forces becomes more relevant when simulating driven particles
where the available driving power is a major limiting factor. Examples include trucks going up a
steep hill, bicycle traffic, inline skating, and cross-country-skiing mass events.
8 One can conceive of microscopic models having no unique steady state even in this case. Such
models “without a fundamental diagram” have been postulated by some researchers. However, they
are controversial (see the KKW model in Sect. 13.3.2 for an example).

http://dx.doi.org/10.1007/978-3-642-32460-4_13
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distance gap s and described by the equilibrium speed function ve(s) which is also
termed the microscopic fundamental diagram.9

Transition to macroscopic relations. In order to obtain a micro–macro relation
between the distance gap s and the density ρ we directly apply the definition of the
density as number of vehicles per road length. For a given vehicle length l, we obtain

sα = s = 1

ρ
− l. (10.14)

Furthermore, the steady-state equilibrium implies that the speed of all vehicles is the
same and equal to the macroscopic speed

V (x, t) = 〈vα(t)〉 = ve(s). (10.15)

With these relations, we can derive the macroscopic steady-state speed-density dia-
gram and the macroscopic fundamental diagram:

Ve(ρ) = ve

(
1

ρ
− l

)
, Qe(ρ) = ρve

(
1

ρ
− l

)
. (10.16)

10.4 Heterogeneous Traffic

Microscopic models play out their advantages when describing different drivers and
vehicles, i.e., heterogeneous traffic. Including different drivers and vehicles is crucial
when modeling the effects of active traffic management such as variable message
signs, speed limits, or ramp metering, or when simulating traffic-related effects of
new driver-assistance systems as discussed in Chap. 21 of this book. Heterogeneous
traffic can be microscopically modeled in two ways:

1. All driver-vehicle units are described by the same model using different parameter
values. The heterogeneity can be applied on the level of vehicle classes (e.g.,
different parameters for cars and trucks), individually (distributed parameters),
or both (different parameter distributions for cars and trucks). The last combined
approach has the advantage that it automatically leads to realistic correlations
between the parameters.10

2. Different driver-vehicle classes can also be described with different models.
This allows us to directly represent qualitatively different driving characteris-
tics between, e.g., cars and trucks or between human driving and semi-automated
driving with the help of adaptive cruise control (ACC) systems.

9 Not to be confused with the data related microscopic flow-density diagram, i.e., a scatter plot of
the points (1/dα, 1/Δtα) that can be derived from single-vehicle detector data, see Chap. 3.
10 For example, trucks tend to drive more slowly than cars and they tend to accelerate more slowly
as well. Thus, speed and acceleration parameters are positively correlated.

http://dx.doi.org/10.1007/978-3-642-32460-4_21
http://dx.doi.org/10.1007/978-3-642-32460-4_3
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We emphasize that simulating heterogeneous traffic is only sensible in the context of
multi-lane traffic models. Otherwise, a single long queue will eventually form behind
the slowest vehicle, which is unrealistic. Finally, when parameterizing heterogeneous
traffic, it is favorable if the model parameters have an intuitive meaning (such as that
of the models presented in Chap. 11).

10.5 Fact Sheet of Dynamical Model Characteristics

In order to compare the properties of the different microscopic models introduced
in this chapter and the following Chaps. 11 and 12, we will provide, for each model,
simulation results for two example scenarios in form of a fact sheet. We consider
these characteristics for the different microscopic models as one of the core elements
of this book. Using the simulation tool on the book’s website11 the reader can inter-
actively reproduce the characteristics, and can also produce new simulation results
by changing the model parameters (see Fig. 10.2 for a screenshot).

In the following, we will describe the simulation scenarios with the help of
Fig. 10.3 displaying the essential characteristics of a given model in terms of a fact
sheet. The model itself (the Optimal Velocity Model) will be discussed in Sect. 10.6
below.

10.5.1 Highway Scenario

The left column of Fig. 10.3 shows the simulation of a highway with an on-ramp
during rush-hour conditions. In order to display the “pure” characteristics of the
acceleration models, we simulate a single freeway lane. Lane changes (see Chap. 14
for details) take place in the 1km long merging zone of the on-ramp centered at
x = 0, only. The traffic demand during the rush hour is modeled by prescribing
a time-varying inflow at the upstream end of the simulated main-road section with
a peak value of 2,200 vehicles per hour.12 The on-ramp inflow of 550 vehicles/h is
assumed to be constant. Furthermore, “free” boundary conditions are assumed at the
downstream end of the road: As soon as a vehicle crosses the downstream boundary,
it is taken out of the system. The next vehicle behaves as though there is an empty
road of infinite length until it leaves the system as well.

Due to the high traffic demand, traffic breaks down near the merging zone around
x = 0 at about t = 10 min. Fig. 10.3a depicts the spatiotemporal evolution of

11 see: www.traffic-flow-dynamics.org
12 The speed of the entering vehicles must be given as well. However, since the speed will reach
equilibrium during the first few hundred meters, its initial value is irrelevant as long as it allows
the vehicles to be inserted at the rate prescribed by the flow. Specifically, we determine the gap at
insertion time and set the speed to the equilibrium speed given by the microscopic fundamental
diagram for this gap.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_12
http://dx.doi.org/10.1007/978-3-642-32460-4_14
www.traffic-flow-dynamics.org
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Fig. 10.2 Screenshot of the interactive simulation tool on the book’s website. Shown is the city
scenario for the Optimal Velocity Model simulated with the standard parameters
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Fig. 10.3 Fact sheet of the Optimal Velocity Model with the OV function (10.21) and model
parameters according to Table 10.1. The left column displays results of the highway scenario with
an on-ramp: a Local speed, and b flow-density data of virtual detectors. The right column depicts
the city start–stop scenario where vehicles move from one traffic-light controlled intersection to the
next. See Sect. 10.5 for a detailed description of the simulation scenarios
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the congestion following the traffic breakdown by plotting the macroscopic local
speed V (x, t). The local speed is derived from the set {xα(t)} of simulated trajecto-
ries by a linear interpolation over space at fixed time according to

V (x, t) = x − xα(t)

xα−1(t) − xα(t)
vα−1(t) + xα−1(t) − x

xα−1(t) − xα(t)
vα(t). (10.17)

For a given spatiotemporal point (x, t), the vehicle index α is determined such that
xα(t) ≤ x < xα−1(t). This plot shows that the congested region caused by the
traffic breakdown grows for t < 60 min. Later on, it shrinks due to the decreasing
demand. The following aspects of the simulated traffic dynamics can be compared
with real-world traffic:

• Driving in free traffic.
• Braking characteristics when approaching the upstream jam front (in real traffic

flow, the deceleration profile is smooth and the deceleration rarely exceeds 2 m/s2).
• Acceleration characteristics when exiting the stationary downstream jam front near

the on-ramp bottleneck (again, the real acceleration is smooth and the accelerations
generally do not exceed 2 m/s2).

• Capacity of the activated bottleneck, i.e., the flow downstream of the bottleneck
after breakdown (observed values are of the order of 2,000 vehicles/h per lane).

• Stability of traffic flow in free and congested conditions (free traffic should be
stable and congested traffic unstable with respect to oscillations and stop-and-go
traffic, see Chap. 15 for details).

Finally, the simulated spatiotemporal dynamics of regions with traffic oscillations
can be compared with following observed facts (see Sect. 18.3 for details): All oscil-
lations and waves of a congested area propagate upstream at the same velocity (−20
to −15 km/h, depending only weakly on the country and the traffic composition).
Furthermore, the wavelength of contiguous stop-and-go waves varies between 1 and
3 km, and the wave amplitude grows during the upstream propagation. Finally, the
decelerations and accelerations of the vehicles entering and leaving the waves rarely
exceed 2 m/s2.

Figure 10.3b shows flow-density data at several locations. To enable a direct
comparison with real data, we simulate the data capturing process as well by means
of virtual detectors positioned at several locations. To this end, we create virtual
single-vehicle data by recording the passing times and speeds of each vehicle tra-
jectory when it passes one of the detectors. Furthermore, we generate aggregated
virtual data by determining, for each one-minute aggregation interval, the number
of passing vehicles (or, equivalently, the traffic flow), and the arithmetic mean speed
according to Sect. 3.2. Finally, flow and density is calculated and plotted as in the
Sects. 3.3.1 and 4.4, respectively. Following characteristics can be compared with
real observations (for example, that displayed in Sect. 4.4):

• The free branch of the flow-density data shows comparatively little scattering and
a negative curvature near capacity.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_18
http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4
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• The congested flow-density data shows wide scattering.13

• In many cases, real flow-density data are distributed according to an inverse-
λ shape corresponding to a capacity drop of typically 10–20 % and associated
hysteresis effects.

10.5.2 City Scenario

The right column of the fact sheet 10.3 shows a typical inner-city situation with
intersections and traffic lights. The simulation is initialized by a queue of 20 vehicles
waiting behind a red traffic light which turns green at t = 0. During the simulation,
the vehicle queue moves in single file to the next red traffic light 740 m further
downstream. Red traffic lights are simulated by a standing virtual vehicle of zero
length positioned at the stopping line which is removed when the light turns green.
Following driving characteristics can be compared with reality:

• Starting phase: The acceleration ranges between 1 and 2.5 m/s2 and smoothly
decreases to zero as cruising speed is approached. The first vehicle takes 3–4 s to
pass the stopping line of the traffic light. Afterwards, the cars pass at a rate of one
vehicle every 1.5–2 s.

• Cruising phase: In this phase, all vehicles should travel at close to the desired
speed. The vehicles should move as a platoon with time gaps of the order of 1–2 s
corresponding to distance gaps of about 15–30 m.

• Approaching phase: All vehicles should decelerate smoothly such that the values
for the jerk

J =
∣∣∣∣
dv̇

dt

∣∣∣∣ =
∣∣∣∣
d2v

dt2

∣∣∣∣ (10.18)

remain below 2 m/s3. The braking decelerations themselves generally do not
exceed 2 m/s2 and the braking becomes less pronounced for vehicles more at
the back of the platoon.

10.6 Optimal Velocity Model

The Optimal Velocity Model (OVM) is a time-continuous model whose acceleration
function is of the form amic(s, v), i.e., the speed difference exogenous variable is
missing. The acceleration equation is given by

13 We point to the fact that this difference is partly caused by the way of presentation. When plotting
flow-density, speed-density or speed-flow diagrams from the same data, only the flow-density data
show a distinct discrepancy of the amount of scattering on the free and congested branches, see
Fig. 4.12.

http://dx.doi.org/10.1007/978-3-642-32460-4_4
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Fig. 10.4 Optimal velocity functions (10.21) (left) and (10.22) (right) for the parameter values of
Table 10.1

v̇ = vopt(s) − v

τ
Optimal Velocity Model. (10.19)

This equation describes the adaption of the actual speed v = vα to the optimal velocity
vopt(s) on a time scale given by the adaptation time τ . Comparing the acceleration
equation (10.19) with the steady-state condition (10.12) it becomes evident that the
optimal velocity (OV) function14 vopt(s) is equivalent to the microscopic fundamental
diagram ve(s). It should obey the plausibility conditions

v′
opt(s) ≥ 0, vopt(0) = 0, lim

s→∞ vopt(s) = v0, (10.20)

but is arbitrary, otherwise. Thus, the acceleration equation (10.19) defines a whole
class of models whose members are distinguished by their respective optimal velocity
functions. The OV function originally proposed by Bando et al.,

vopt(s) = v0
tanh

( s
Δs − β

) + tanh β

1 + tanh β
, (10.21)

uses a hyperbolic tangent.15 Besides the parameter τ which is relevant for all optimal
velocity models,16 the OVM of Bando et al. has three additional parameters, the
desired speed v0, the transition width Δs, and the form factor β (see Fig. 10.4 and
Table 10.1).

A more intuitive OV function can be derived by characterizing free traffic by the
desired speed v0, congested traffic by the time gap T in car-following mode under
stationary conditions, and standing traffic by the minimum gap s0. In analogy to the
Section-Based Model of Sect. 8.5, we obtain

14 Strictly speaking, this is an “optimal speed function”. In order to be consistent with the literature
(and the model name), we will nevertheless stick to velocity instead of speed, in this context.
15 We have adapted the notation with respect to the original publication such that v0 = vopt(0)

strictly has the meaning of the desired speed if no other vehicles are present.
16 Sometimes, τ is replaced by the sensitivity parameter a = 1/τ .

http://dx.doi.org/10.1007/978-3-642-32460-4_8
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Table 10.1 Parameter of two variants of the Optimal Velocity Model (OVM)

Parameter Typical value Typical value
highway city traffic

Adaptation time τ 0.65 s 0.65 s
Desired speed v0 120 km/h 54 km/h
Transition width Δs [vopt according to Eq. (10.21)] 15 m 8 m
Form factor β [vopt according to Eq. (10.21)] 1.5 1.5
Time gap T [vopt according to Eq. (10.22)] 1.4 s 1.2 s
Minimum distance gap s0 [vopt according to Eq. (10.22)] 3 m 2 m

vopt(s) = max

[
0, min

(
v0,

s − s0

T

)]
. (10.22)

This relation is the microscopic equivalent to the triangular fundamental diagrams of
the macroscopic Section-Based and Cell-Transmission Models (cf. Fig. 10.4). The
simulation results are similar to that of the hyperbolic tangent OV function. Again,
typical parameter values are given in Table 10.1.

Model properties. For the simulations of the model fact sheet in Fig. 10.3, we have
assumed a speed adaptation time τ = 0.65 s. Obviously this is an unrealistically low
value since typical time scales for reaching a desired speed are of the order of 10 s.
As a consequence, the periods of the stop-and-go waves (about 1–2 min) are too low.
Furthermore, in the simulation of the city scenario, the accelerations and deceler-
ations of the vehicle platoon (up to 22 m/s2 and down to −10 m/s2, respectively)
differ from real accelerations by a factor of about ten.17 However, when increas-
ing the adaptation time τ by only 5 %, the simulations eventually lead to negative
distance gaps sα corresponding to accidents. On the other hand, when decreasing τ

by 5 %, we obtain absolute string stability even for congested freeway traffic. While
this agrees with the theoretical stability limits (see Chap. 15) it is at variance with
the observations. We conclude that the simulation outcome is qualitatively correct.
However:

• On a quantitative level, the OVM results are unrealistic.
• On a qualitative level, the simulation outcome has a strong dependency on the fine

tuning of the model parameters, i.e., the OVM is not robust.

These deficiencies are mainly due to the fact that the OVM acceleration function
does not contain the speed difference as exogenous variable, i.e., the simulated driver
reaction depends only on the gap but is the same whether the leading vehicle is slower
or faster than the subject vehicle. This corresponds to an extremely short-sighted
driving style.

17 In reality, accelerations above 4 m/s2 (corresponding to 7 s for accelerating from zero to 100 km/h)
and below −9 m/s2 (corresponding to an emergency braking maneuver on a dry road) are phys-
ically impossible. Furthermore, everyday accelerations (which the simulations should reproduce)
generally are only a fraction of the accelerations at these limits.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
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Fig. 10.5 Fundamental diagrams of the OVM for the OV functions (10.21) (left) and (10.22) (right)
for the parameter values of Table 10.1

Steady-state equilibrium. As already mentioned, the steady-state condition (10.12)
for the OVM leads to ve(s) = vopt(s), i.e., the microscopic fundamental dia-
gram Fig. 10.4 is given by the OV function. The macroscopic fundamental diagram
(Fig. 10.5) is obtained from the microscopic one using Eq. (10.16). In particular, the
OV function (10.22) results in the triangular macroscopic fundamental diagram

Qe(ρ) = min

(
v0ρ,

1 − ρ(l + s0)

T

)
.

10.7 Full Velocity Difference Model

By extending the OVM with an additional linear stimulus for the speed difference,
one obtains the Full Velocity Difference Model (FVDM):

v̇ = vopt(s) − v

τ
− γΔv Full Velocity Difference Model. (10.23)

As in the OVM, the steady-state equilibrium is directly given by the optimal velocity
function vopt. When assuming suitable values for the speed difference sensitivity γ

of the order of 0.6 s−1, the FVDM remains accident-free for speed adaptation times
of the order of several seconds. Furthermore, the fact sheet (Fig. 10.6) shows that the
waves in the congested region of the freeway scenario are more realistic than that of
the OVM, although the wavelengths remain too short. Furthermore, the accelerations
remain in a realistic range.

However, in contrast to the OVM, the Full Velocity Difference Model is not
complete in the sense defined at the beginning of Sect. 10.1, i.e., it is not able to
describe all traffic situations. The reason is that the term γΔv describing the sensi-
tivity to speed difference in Eq. (10.23) does not depend on the gap. Consequently, a
slow vehicle (or a red traffic light corresponding to a standing virtual vehicle) leads
to a significant decelerating contribution even if it is miles away. Thus, simulated
vehicles do not reach their desired speed even on a long road with no other vehicles.
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Fig. 10.6 Fact sheet of the Full Velocity Difference Models (FVDM), Eq. (10.23), with the OV
function (10.21), the sensitivity γ = 0.6 s−1, and the speed adaptation time τ = 5 s. The vehicle
length and the parameters v0, β and Δs of the OV function are given by Table 10.1. The simulation
scenarios are discussed in detail in Sect. 10.5

In fact, the maximum speed in the city scenario of the model fact Sheet of Fig. 10.6
is less than 15 km/h (see Problem 10.4 for a quantitative analysis).

Improved Full Velocity Difference Model. In the following, we show how a model
developer would proceed to resolve this problem. Obviously, the sensitivity to speed
differences must decrease with the gap s and tend to zero as s → ∞. This can be
realized by replacing the contribution −γΔv of Eq. (10.23) by a multiplicative term
−γ̃ Δv/s. However, now the sensitivity diverges for s → 0 which is unrealistic.
Furthermore, γ̃ has a different unit compared to γ (and, consequently, a differ-
ent numerical value) which should be avoided if possible.18 The arguably simplest
approach to resolve these new problems consists in applying the inverse proportion-
ality only if the gap is larger than the interaction length v0T . Hence, the resulting
acceleration equation of the new “complete” variant of the FVDM is given by

v̇ = vopt(s) − v

τ
− γ Δv

max[1, s/(v0T )] . (10.24)

Figure 10.7 displays the city scenario for this model variant. It turns out that
model (10.24) is able to realistically simulate the cruising phase, in contrast to the

18 Three principles for improving existing models are the following: (i) Introduce as few new
parameters as possible (ideally zero), (ii) do not change the meaning of existing parameters, (iii) keep
it as simple as possible, but not simpler.
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Fig. 10.7 The city scenario
of Fig. 10.6 for the “complete”
Full Velocity Difference
Model (10.24) with the OV
function (10.21). The model
parameters are the same as in
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original model (10.23), and produces realistic accelerations, in contrast to the OVM.
However, the robustness problem is not resolved.19

10.8 Newell’s Car-Following Model

Newell’s car-following model is the arguably simplest representative of time-discrete
models of the type (10.7). Its speed function is directly given by the optimal speed
function (10.22) corresponding to the triangular fundamental diagram (10.22) with
s0 = 0,

v(t + T ) = vopt(s(t)), vopt(s) = min
(

v0,
s

T

)
Newell’s Model. (10.25)

When restricting to the car-following regime, Newell’s model has two parameters:
The time gap or reaction time T , and the (effective) vehicle length leff. Since in this
regime the kinematic wave velocity is constant and given by

w = ccong = −leff/T,

the set of model parameters can alternatively be expressed by {T, w} or by {leff, w}.
The standard value for the time gap is T = 1 s while the wave speed should be within
the observed range w ∈ [−20 km/h,−15 km/h] corresponding to a plausible effec-
tive vehicle length leff of about 5 m. The minimum condition of the optimal velocity
function makes the model complete by defining a free-flow regime and introducing
the desired speed v0 as a third model parameter. It is straightforward to general-
ize Newell’s model by replacing Eq. (10.22) with other microscopic fundamental
diagrams.

Newell’s model can also be considered as a continuous-in-time model with a
time delay assuming that the drivers have a constant reaction time Tr = T . In this
interpretation, Eq. (10.25) has the mathematical form of a delay-differential equation

19 The reader can verify this by simulating the improved FVDM on the book’s website www.traffic-
flow-dynamics.org and changing the sensitivity γ .

www.traffic-flow-dynamics.org
www.traffic-flow-dynamics.org
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Fig. 10.8 Trajectory plot of the OVM with the triangular fundamental diagram (leff = 5 m, v0 =
10 m/s, T = τ = 1 s) with an update time Δt = 1 s, and using Eq. (10.26) for the positional update.
Shown are vehicles approaching a traffic light (red line) turning green at t = 4.5 s (end of the line).
The vehicle trajectories correspond to free traffic if drawn green, and to bound traffic, otherwise

which will be discussed in Chap. 12 in more detail. This model has several interesting
properties which we now investigate further.

Relation to the Optimal Velocity Model. According to Eq. (10.11), Newell’s model
is mathematically equivalent to the OVM (10.19) in the car-following regime (bound
traffic) if one sets τ = T and updates the OVM speed according to the explicit
integration scheme (10.9) and the vehicle positions by the simple Euler scheme20

xα(t + Δt) = xα(t) + vα(t + Δt) Δt. (10.26)

As a consequence, the parameter T of Newell’s model has the additional meaning
of a speed adaptation time τ .

Figure 10.8 shows that this equivalence only applies for the triangular fundamental
diagram and only in the bound traffic regime, i.e., for gaps s satisfying ve(s) < v0
or s < s0 + v0T . Otherwise, discretization errors are present.

Generally, the OVM is updated with time steps significantly smaller than the
adaptation time. However, this does not invalidate the reasoning above, at least,
qualitatively. In any case, the steady-state equilibria of the two models are equivalent.

20 We emphasize that the usual second-order “ballistic” update scheme (10.8) may not be applied,
here.

http://dx.doi.org/10.1007/978-3-642-32460-4_12
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Fig. 10.9 Relation between Newell’s model and the Section-Based Model: The shaded regions
represent the evolution of the macroscopic local density. The gradient ve(ρ) = (1/ρ − leff)/T
corresponds to the local speed

Relation to the macroscopic Section-Based Model. When disaggregating the solu-
tions of the Section-Based Model (8.2) with the function (8.11) by generating trajec-
tories from the density and speed fields of congested traffic using the macro-micro
relation (8.23), these trajectories are simultaneously solutions of Newell’s model
(as illustrated by Fig. 10.9).

Interpretation from the driver’s point of view. The trajectories corresponding to
the solution of Newell’s model for congested traffic shown in Fig. 10.9 are given by
the recursive relations

xα(t + T ) = xα−1(t) + wT = xα−1(t) − leff,

vα(t + T ) = vα−1(t). (10.27)

This means that the trajectory of the follower is completely determined by the
trajectory of the leading vehicle.

In Newell’s car-following model, the position of a vehicle following another
vehicle at time t + T is given by the position of the leader at time t minus
the (effective) vehicle length leff. As a corollary, the speed profile of a vehicle
exactly reproduces that of its leader with a time delay T .

The different meanings of the parameter T. From the above considerations we
conclude that the parameter T of Newell’s model can be interpreted in four different
ways:

1. As the reaction time when interpreting Eq. (10.25) as a time-delay differential
equation or when considering the trajectories (10.27).

http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_8
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2. As the time gap of the microscopic fundamental diagram (10.22).
3. As the speed adaptation time following from the equivalence between Newell’s

model and the OVM combined with speed update rule (10.9).
4. And as the numerical update time T = Δt when interpreting Eq. (10.25) as a

discrete-time model.

The interpretation in terms of a reaction time or a time gap can only be applied
for congested traffic. In contrast, the interpretation as a speed adaptation time or a
numerical update time is generally valid.

Relation to the macroscopic Payne’s model. Besides illustrating another interesting
property of Newell’s model, this paragraph shows how to derive macroscopic from
microscopic traffic flow models by the micro–macro relations between the vehicle
speed and the local speed field and between distance and local density, respectively,
and by first-order Taylor expansions.

Left-hand side of Newell’s model equation. In deriving a macroscopic equivalent of
vα(t + T ), we start with the expression (10.17) for the macroscopic local speed. For
points (x, t) lying on the trajectory of vehicle α, we have

vα(t) = V (xα(t), t) = V (x, t). (10.28)

Furthermore, the change in position and speed during one update time step Δt = T
is expressed in terms of local macroscopic fields by a Taylor expansion up to first
order,

vα(t + T ) = V (xα + vαT, t + T )

= V (xα, t) + ∂V (x, t)

∂x
vαT + ∂V (x, t)

∂t
t

= V (x, t) +
(

V (x, t)
∂V

∂x
+ ∂V

∂t

)
T . (10.29)

Right-hand side of Newell’s car-following model equation. First, we apply the micro–
macro relation between the optimal velocity function and the macroscopic speed-
density relation, vopt(s) = ve(s) = Ve(ρ). In a second step, the local density ρ

in the argument is determined such that the approximation error is minimal. Since
dα = sα + lα−1 = 1/ρ denotes the distance between the vehicles α and α − 1,
we evaluate ρ at the intermediate location xα + dα/2 = x + dα/2 (Fig. 10.10) and
consistently express everything up to first order by macroscopic local quantities,

vopt(sα(t)) = Ve (ρ (x + dα/2, t))

= Ve(ρ(x, t)) + V ′
e(ρ)

∂ρ

∂x

dα

2

= Ve(ρ(x, t)) + V ′
e(ρ)

2ρ

∂ρ

∂x
. (10.30)
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Fig. 10.10 Illustration of
the derivation of Payne’s
model from the (generalized)
Newell’s model. Shown are the
trajectories xα(t) and xα−1(t)
of the subject and leading
vehicles, respectively, and
the associated local density
(shaded). The error of the
micro–macro transition is
minimal when defining the
local density at as xα +dα/2 as
the inverse of the distance Δxα

tΔαvxα(t)
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In the second line we have applied the first-order Taylor expansion, and the chain
rule. In the third line, we have expressed dα/2 by 1

2ρ(x,t) .21 Equating (10.29) with
Eq. (10.30) leads to

∂V

∂t
+ V

∂V

∂x
= Ve(ρ) − V

T
+ V ′

e(ρ)

2ρT

∂ρ

∂x
. (10.31)

When identifying T = τ this corresponds to Payne’s model (9.18). We conclude
that Newell’s model and its extensions to other fundamental diagrams are always
approximatively equivalent to Payne’s model. Simultaneously, Newell’s model is
exactly equivalent to the Section-Based Model if restricting conditions apply (traffic
in the car-following regime, triangular fundamental diagram).

Relation of Newell’s model with anticipation to the FVDM. In order to compensate
for at least part of the reaction time delay described by Newell’s model, a driver would
try to predict the distance gap (the only exogenous stimulus of Newell’s model) by
a certain time interval Ta into the future. Using the rate of change ṡ = −Δv for
an estimate of the gap at this time, ŝ(t + Ta) = s(t) − TaΔv, this results in the
generalized Newell’s model

v(t + T ) = vopt (s(t) − TaΔv) ≈ vopt(s(t)) − v′
opt(s)TaΔv. (10.32)

According to Eq. (10.11) this is equivalent to a time-continuous model given by

dv

dt
= vopt(s) − v

T
− Tav′

opt(s)

T
Δv.

21 The displacement dα appears only in terms that are already of first order. Therefore, we only
need the zeroth order relation dα(t) = 1/ρ(x, t).

http://dx.doi.org/10.1007/978-3-642-32460-4_9
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This corresponds to a Full Velocity Difference Model with a gap dependent sen-
sitivity γ (s) = Tav′

opt(s)/T . From the OV plausibility conditions (10.20) it fol-
lows that lims→∞ v′

opt(s) = 0, i.e., the sensitivity tends to zero when the gap
becomes sufficiently large (for the triangular fundamental diagram it is exactly zero
for s > s0+v0T ). This means, the resulting FVDM-like model is complete, similarly
to the “improved” FVDM presented in Sect. 10.7.

Problems

10.1 Dynamics of a single vehicle approaching a red traffic light
A single car in city-traffic conditions can be described by the following time-
continuous acceleration model:

dv

dt
=

{ v0−v
τ

if Δv ≤ √
2b(s − s0),

−b otherwise.

Here, s denotes the distance to the next car or the next traffic light (whichever is
nearer), and Δv is the approaching rate. A red traffic light is modeled by a virtual
standing vehicle of zero dimension at the stopping line which is removed when the
light turns green.

L=500 m

1. What is the meaning of the model parameters v0, τ , s0, and b? Describe the
qualitative acceleration profile after the initially standing car starts moving, and
the deceleration profile when approaching a red traffic light. Which essential
human property is not taken care of by this model?

2. The first traffic light turns green at t = 0 s. Calculate the speed and the acceleration
as a function of time for general model parameters assuming that the second traffic
light is always green.

3. Consider now a situation where the subject car is approaching a red traffic light
with cruising speed v0 = 50 km/h assuming s0 = 2 m and b = 2 m/s2. At which
distance to the traffic light does the driver initiate his or her braking maneuver?
What is the braking deceleration and the final distance of the standing car to the
stopping line?

4. Calculate the trajectory and the speed profile of the car during the complete start-
stop cycle for a distance of 500 m between the stopping lines of the two traffic
lights assuming τ = 5 s and values for the other model parameters as above.
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Hint: There are two phases: The acceleration phase eventually going into cruising
mode, and the braking phase. As an essential step, you have to determine the
location and the time where the braking maneuver begins. You can assume that
the car has already reached its cruising speed at this time.

10.2 OVM acceleration on an empty road
Consider a single vehicle on an empty road whose acceleration is described by the
Optimal Velocity Model

dv

dt
= v0 − v

τ

assuming the initial conditions x(0) = 0, and v(0) = 0. (i) At which time does
the vehicle reach its maximum acceleration? What is its value? (ii) Determine the
parameter τ if the desired speed is given by 120 km/h and the maximum acceleration
by 2 m/s2. (iii) At which time does the vehicle reach a speed of 100 km/h?

10.3 Optimal Velocity Model on a ring road
Consider a closed ring road with identical vehicles. Initially (t = 0 s), all vehicles are
motionless and evenly positioned with a gap of 20 m between each other. Calculate the
speed profile of all vehicles for the OVM with the optimal velocity function (10.22)
assuming τ = 1 s, v0 = 72 km/h, s0 = 2 m, and T = 1.8 s.

10.4 Full Velocity Difference Model
When modeling the city scenario of the fact sheet with the FVDM (Fig. 10.6), neither
vehicle reaches, or at least approaches, its cruising speed v0 = 54 km/h although the
distance between the traffic light would allow for the cruising speed. In order to find
the underlying mechanism for this, calculate the stationary speed if there is a red
traffic light (modeled by a standing virtual vehicle) at an arbitrarily large distance
(i) for general parameters, (ii) for the values v0 = 54 km/h, τ = 5 s, and γ = 0.6 s−1.
Compare the result with the right column of Fig. 10.6.

10.5 A simple model for emergency braking maneuvers
Critical situations requiring emergency braking maneuvers can be described by
following microscopic model:

dv

dt
=

{
0 if t < Tr ,

−bmax otherwise.

1. Give an intuitive meaning of the parameters Tr and bmax.
2. Calculate the braking distance and the overall stopping distance for initial speeds

of 50 and 70 km/h assuming bmax = 8 m/s2 and Tr = 1 s.
Hint: The overall stopping distance is composed of the braking distance, i.e., the
vehicle displacement during the actual braking phase, and the reaction distance
the vehicle travels during the reaction time of the driver.

3. Imagine a situation where a child suddenly runs into the road from a hidden
position behind a vehicle. A driver driving according to the above model just
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manages to stop if his or her initial speed is 50 km/h. At what speed would this
driver collide with the child if the initial speed is 70 km/h and the situation is
otherwise unchanged?
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Chapter 11
Car-Following Models Based on Driving
Strategies

Ideas are like children: you always love your own the most.
Lothar Schmidt

Abstract The models introduced in this chapter are derived from assumptions about
real driving behavior such as keeping a “safe distance” from the leading vehicle,
driving at a desired speed, or preferring accelerations to be within a comfortable
range. Additionally, kinematical aspects are taken into account, such as the quadratic
relation between braking distance and speed. We introduce two examples: The sim-
plified Gipps model, and the Intelligent Driver Model. Both models use the same
input variables as the sensors of adaptive cruise control (ACC) systems, and produce
a similar driving behavior. Characteristics that are specific to the human nature, like
erroneous judgement, reaction time, and multi-anticipation, are discussed in the next
chapter.

11.1 Model Criteria

The models introduced in this chapter are formally identical to the minimal models
presented in the previous chapter. They are defined by an acceleration function amic
(see Eq. (10.3)) or a speed function vmic (see Eq. (10.7)). In contrast to the minimal
models, the acceleration or speed functions encoding the driving behavior should at
least model the following aspects:

1. The acceleration is a strictly decreasing function of the speed. Moreover, the
vehicle accelerates towards a desired speed v0 if not constrained by other vehicles
or obstacles:

∂amic(s, v, vl)

∂v
< 0, lim

s→∞ amic(s, v0, vl) = 0 for all vl . (11.1)
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2. The acceleration is an increasing function of the distance s to the leading vehicle:

∂amic(s, v, vl)

∂s
≥ 0, lim

s→∞
∂amic(s, v, vl)

∂s
= 0 for all vl . (11.2)

The inequality becomes an equality if other vehicles or obstacles (including “vir-
tual” obstacles such as the stopping line at a red traffic light) are outside the inter-
action range and therefore do not influence the driving behavior. This defines the
free-flow acceleration

afree(v) = lim
s→∞ amic(s, v, vl) = ≥ amic(s, v, vl). (11.3)

3. The acceleration is an increasing function of the speed of the leading vehicle.
Together with requirement (1), this also means that the acceleration decreases
(the deceleration increases) with the speed of approach to the lead vehicle
(or obstacle):

∂ ãmic(s, v,Δv)

∂Δv
≤ 0 or

∂amic(s, v, vl)

∂vl
≥ 0, lim

s→∞
∂amic(s, v, vl)

∂vl
= 0.

(11.4)

Again, the equality holds if other vehicles (or obstacles) are outside the interaction
range.

4. A minimum gap (bumper-to-bumper distance) s0 to the leading vehicle is main-
tained (also during a standstill). However, there is no backwards movement if the
gap has become smaller than s0 by past events:

amic(s, 0, vl) = 0 for all vl ≥ 0, s ≤ s0. (11.5)

By virtue of relation (10.11), these requirements (or plausibility conditions) for the
acceleration function naturally imply conditions for the speed function vmic of models
formulated in terms of coupled maps.

A car-following model meeting these requirements is complete in the sense that
it can consistently describe all situations that may arise in single-lane traffic. Par-
ticularly, it follows that (i) all vehicle interactions are of finite reach, (ii) following
vehicles are not “dragged along”,

amic(s, v, vl) ≤ amic(∞, v, v′
l) = afree(v) for all s, v, vl , and v′

l , (11.6)

and (iii) an equilibrium speed ve(s) exists, which has the properties already postulated
for the optimal-speed function (10.20):

v′
e(s) ≥ 0, ve(0) = 0, lim

s→∞ ve(s) = v0. (11.7)

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
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This means that the model possesses a unique steady-state flow-density relation, i.e.,
a fundamental diagram.1

These conditions are necessary but not sufficient. For example, when in the car-
following regime (steady-state congested traffic), the time gap to the leader has
to remain within reasonable bounds (say, between 0.5 and 3 s). Furthermore, the
acceleration has to be constrained to a “comfortable” range (e.g., ±2 m/s2), or at least,
to physically possible values. Particularly, when approaching the leading vehicle, the
quadratic relation between braking distance and speed has to be taken into account.
Finally, any car-following model should allow instabilities and thus the emergence of
“stop-and-go” traffic waves, but should not produce accidents, i.e., negative bumper-
to-bumper gaps s < 0.2

Which of the car-following models introduced in Chap. 10 satisfy the condi-
tions (11.1)–(11.5)?

11.2 Gipps’ Model

Gipps’ model presented here is a modified version of the one described in his original
publication. It is simplified, but conceptually unchanged. Although it produces an
unrealistic acceleration profile, this model is probably the simplest complete and
accident-free model that leads to accelerations within a realistic range.

11.2.1 Safe Speed

Accidents are prevented in the model by introducing a “safe speed” vsafe(s, vl),
which depends on the distance to and speed of the leading vehicle. It is based on the
following assumptions:

1. Braking maneuvers are always executed with constant deceleration b. There is no
distinction between comfortable and (physically possible) maximum deceleration.

2. There is a constant “reaction time” Δt .

1 If one were to weaken condition (11.1) to ∂amic/∂v ≤ 0, it is possible to formulate models
that do not have a fundamental diagram. Such models are proposed in the context of B. Kerner’s
three-phase theory.
2 Traffic-flow models are meant to describe normal conditions, while accidents are almost always
caused by exceptional driving mistakes that are not part of normal driving behavior and thus not
part of the intended scope of the model.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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3. Even if the leading vehicle suddenly decelerates to a complete stop (worst case
scenario), the distance gap to the leading vehicle should not become smaller than
a minimum gap s0.3

Condition 1 implies that the braking distance that the leading vehicle needs to come
to a complete stop is given by

Δxl = v2
l

2b
.

From condition 2 it follows that, in order to come to a complete stop, the driver of
the considered vehicle needs not only his or her braking distance v2/(2b), but also an
additional reaction distance v Δt travelled during the reaction time.4 Consequently,
the stopping distance is given by

Δx = vΔt + v2

2b
. (11.8)

Finally, condition 3 is satisfied if the gap s exceeds the required minimum final
value s0 by the difference Δx −Δxl between the stopping distance of the considered
vehicle and the breaking distance of the leader:

s ≥ s0 + vΔt + v2

2b
− v2

l

2b
. (11.9)

The speed v for which the equal sign holds (the highest possible speed) defines the
“safe speed”

vsafe(s, vl) = −bΔt +
√

b2Δt2 + v2
l + 2b(s − s0). (11.10)

11.2.2 Model Equation

The simplified Gipps’ model is defined as an iterated map with the “safe speed”
(11.10) as its main component:

v(t + Δt) = min [v + aΔt, v0, vsafe(s, vl)] Gipps’ model. (11.11)

This model equation reflects the following properties:

• The simulation update time step is equal to the reaction time Δt .

3 This condition is not present in the original paper, but is necessary to ensure an accident-free
model in the presence of numerical errors arising from discretization.
4 In contrast to the original publication, we assume the speed to be constant within the reaction
time.
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• If the current speed is greater than vsafe − aΔt or v0 − aΔt , the vehicle will reach
the minimum of v0 and vsafe during the next time step.5

• Otherwise the vehicle accelerates with constant acceleration a until either the safe
speed or the desired speed is reached.

11.2.3 Steady-State Equilibrium

The homogeneous steady state implies v(t + Δt) = vl = v, thus

v = min(v0, vsafe) = min
(

v0,−bΔt +
√

b2Δt2 + v2 + 2b(s − s0)
)

,

which yields the steady-state speed-gap relation

ve(s) = max

[
0, min

(
v0,

s − s0

Δt

)]
(11.12)

and, assuming constant vehicle lengths l, the familiar “triangular” fundamental
diagram

Qe(ρ) = min

(
v0ρ,

1 − ρleff

Δt

)
, (11.13)

where leff = (l + s0). As in the Newell model, the parameter Δt can be interpreted
in four different ways: (i) As the reaction time introduced in the derivation of vsafe,
(ii) as the numerical update time step of the actual model equation (11.11), (iii) as a
speed adaption time in Eq. (11.11) (at least, if v(t + Δt) is restricted by vsafe or v0),
or (iv) as the “safety time gap” (s − s0)/ve in congested traffic as deduced from the
fundamental diagram (11.12).

11.2.4 Model Characteristics

Unlike the minimal models described in the previous chapter, the Gipps’ model is
transparently derived from a few basic assumptions and uses parameters that are
easy to interpret and assign realistic values (Table 11.1). Furthermore, Gipps’ model
is—again, in contrast to the minimal models—robust in the sense that meaningful
results can be produced from a comparatively wide range of parameter values.
Highway traffic. The simulation of the highway scenario (Fig. 11.1, left) produces
more realistic results than the OVM or the Newell model: The speed field in panel

5 Strictly speaking, this means that deceleration (v − vsafe)/Δt is not restricted to b. In multi-lane
simulations, it can be greater if another vehicle “cuts in” in front of the considered vehicle.
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Table 11.1 Parameters of the simplified Gipps’ model and typical values in different scenarios

Parameter Typical value Typical value
Highway City traffic

Desired speed v0 120 km/h 54 km/h
Adaption/reaction time Δt 1.1 s 1.1 s
Acceleration a 1.5 m/s2 1.5 m/s2

Deceleration b 1.0 m/s2 1.0 m/s2

Minimum distance s0 3 m 2 m
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Fig. 11.1 Fact sheet of Gipps’ model (11.11), (11.10). Simulation of the two standard scenar-
ios “highway” (left) and “city traffic” (right) with the parameter values listed in Table 11.1. See
Chap. 10.5 for a detailed description of the scenarios

(a) exhibits small perturbations which are caused by vehicles merging from the
on-ramp and grow into stop-and-go waves while propagating upstream. The propa-
gation velocity ccong = −leff/Δt is constant and of the order of the empirical value
(≈ − 15 km/h). Furthermore, the wave length (of the order of 1–1.5 km) is not too
far away from the empirical values (1.5–3 km).

The flow-density diagram in Fig. 11.1b, obtained from virtual detectors, shows a
strongly scattered cloud of data points in the region of congested traffic, i.e., every-
where to the right of the straight line indicating free traffic. Such a wide scattering
is in agreement with empirical data (cf. Figs. 4.11 and 4.12). By looking at scatter
plots of individual detectors, one observes that detectors that are closer to the bot-
tleneck produce data points that are shifted towards greater densities and closer to
the fundamental diagram of steady-state traffic. Moreover, the data points of vir-
tual detectors positioned inside the region of stationary traffic immediately upstream

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4


11.2 Gipps’ Model 187

of the bottleneck (solid black squares) lie on the fundamental diagram itself. This
apparent density increase near the outflow region of a congestion, also known as
pinch effect, can be observed empirically. However, the systematic density under-
estimation, which conspicuously increases with the degree of the scattering of the
data points, suggests that the real density increase is smaller, or even nonexistent.
This means that the pinch effect is essentially a result of data misinterpretation, or,
more specifically, by estimating the density with the time mean speed instead of the
space mean speed (cf. Sect. 3.3.1). This interpretation is confirmed by simulation as
will be shown in Fig. 11.5b. We draw an important conclusion that is not restricted
to Gipps’ model (and not even to traffic flow models):

When using empirical data to assert the accuracy and predictive power of
models, one has to simulate both the actual traffic dynamics and the process
of data capture and analysis.

City traffic. Compared to the simple models of the previous chapter, the city-traffic
scenario (Fig. 11.1, right column) is closer to reality as well. However, the accel-
eration time-series is unrealistic. By definition, there are only three values for the
acceleration: Zero, a, and −b (cf. Panel (e)). The resulting driving behavior is exces-
sively “robotic” and the abrupt transitions are unrealistic.

Moreover, Gipps’ model does not differentiate between comfortable and max-
imum deceleration: Assuming that b in Eq. (11.10) denotes the maximum decel-
eration, the model is accident-free but every braking maneuver is performed very
uncomfortably with full brakes. On the other hand, when interpreting b as the com-
fortable deceleration and allowing for heterogeneous and/or multi-lane traffic the
model possibly produces accidents if leading vehicles (which might be simulated
using different parameters or even different models) brake harder than b.

In summary, Gipps’ model produces good results in view of its simplicity. Mod-
ified versions of this model are used in several commercial traffic simulators. One
example of such a modification is Krauss’ model which essentially is a stochastic
version of the Gipps model.

11.3 Intelligent Driver Model

The time-continuous Intelligent Driver Model (IDM) is probably the simplest com-
plete and accident-free model producing realistic acceleration profiles and a plausible
behavior in essentially all single-lane traffic situations.

http://dx.doi.org/10.1007/978-3-642-32460-4_3
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11.3.1 Required Model Properties

As Gipps’ model, the IDM is derived from a list of basic assumptions (first-principles
model). It is characterized by the following requirements:

1. The acceleration fulfills the general conditions (11.1)–(11.5) for a complete
model.

2. The equilibrium bumper-to-bumper distance to the leading vehicle is not less than
a “safe distance” s0 + vT where s0 is a minimum (bumper-to-bumper) gap, and
T the (bumper-to-bumper) time gap to the leading vehicle.

3. An braking strategy!intelligent controls how slower vehicles (or obstacles or red
traffic lights) are approached:

• Under normal conditions, the braking maneuver is “soft”, i.e., the deceleration
increases gradually to a comfortable value b, and decreases smoothly to zero
just before arriving at a steady-state car-following situation or coming to a
complete stop.

• In a critical situation, the deceleration exceeds the comfortable value until
the danger is averted. The remaining braking maneuver (if applicable) will be
continued with the regular comfortable deceleration b.

4. Transitions between different driving modes (e.g., from the acceleration to the
car-following mode) are smooth. In other words, the time derivative of the
acceleration function, i.e., the jerk J , is finite at all times.6 This is equivalent
to postulating that the acceleration function amic(s, v, vl) (or ãmic(s, v,Δv)) is
continuously differentiable in all three variables. Notice that this postulate is in
contrast to the action-point models such as the Wiedemann Model where accel-
eration changes are modeled as a series of discrete jumps.

5. The model should be as parsimonious as possible. Each model parameter should
describe only one aspect of the driving behavior (which is favorable for model
calibration). Furthermore, the parameters should correspond to an intuitive inter-
pretation and assume plausible values.

11.3.2 Mathematical Description

The required properties are realized by the following acceleration equation:

v̇ = a

[
1 −

(
v

v0

)δ

−
(

s∗(v,Δv)

s

)2
]

IDM. (11.14)

6 Typical values of a “comfortable” jerk are |J | ≤ 1.5 m/s3.
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The acceleration of the Intelligent Driver Model is given in the form ãmic(s, v,Δv)
and consists of two parts, one comparing the current speed v to the desired speed v0,
and one comparing the current distance s to the desired distance s∗. The desired
distance

s∗(v,Δv) = s0 + max

(
0, vT + vΔv

2
√

ab

)
(11.15)

has an equilibrium term s0 +vT and a dynamical term vΔv/(2
√

ab) that implements
the “intelligent” braking strategy (see Sect. 11.3.4).7

11.3.3 Parameters

We can easily interpret the model parameters by considering the following three
standard situations:

• When accelerating on a free road from a standstill, the vehicle starts with the
maximum acceleration a. The acceleration decreases with increasing speed and
goes to zero as the speed approaches the desired speed v0. The exponent δ controls
this reduction: The greater its value, the later the reduction of the acceleration when
approaching the desired speed. The limit δ → ∞ corresponds to the acceleration
profile of Gipps’ model while δ = 1 reproduces the overly smooth acceleration
behavior of the Optimal Velocity Model (10.19).

• When following a leading vehicle, the distance gap is approximatively given by
the safety distance s0 + vT already introduced in Sect. 11.3.1. The safety distance
is determined by the time gap T plus the minimum distance gap s0.

• When approaching slower or stopped vehicles, the deceleration usually does not
exceed the comfortable deceleration b. The acceleration function is smooth during
transitions between these situations.

Each parameter describes a well-defined property (Fig. 11.2). For example, tran-
sitions between highway and city traffic, can be modeled by solely changing the
desired speed (Table 11.2). All other parameters can be kept constant, modeling that
somebody who drives aggressively (or defensively) on a highway presumably does
so in city traffic as well.

Since the IDM has no explicit reaction time and its driving behavior is given
in term of a continuously differentiable acceleration function, the IDM describes
more closely the characteristics of semi-automated driving by adaptive cruise control

7 The maximum condition in Eq. (11.15) ensures that the conditions (11.1)–(11.5) for model com-
pleteness hold for all situations. Strictly speaking, this condition violates the postulate of a smooth
acceleration function. However, it comes into effect only in two situations: (i) For finite speeds if
the leading car is much faster, (ii) for stopped queued vehicles when the queue starts to move. The
first situation may arise after a cut-in maneuver of a faster vehicle. Since s 
 s0 for this case,
the resulting discontinuity is small. In the second case, the maximum condition prevents an overly
sluggish start and the associated discontinuous acceleration profile may even be realistic.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Fig. 11.2 By using intuitive model parameters like those of Gipps’ model or the Intelligent Driver
Model (IDM) we can easily model different aspects of the driving behavior (or physical limitations
of the vehicle) with corresponding parameter values

Table 11.2 Model parameters of the Intelligent Driver Model (IDM) and typical values in different
scenarios (vehicle length 5 m unless stated otherwise)

Parameter Typical value Typical value
Highway City traffic

Desired speed v0 120 km/h 54 km/h
Time gap T 1.0 s 1.0 s
Minimum gap s0 2 m 2 m
Acceleration exponent δ 4 4
Acceleration a 1.0 m/s2 1.0 m/s2

Comfortable deceleration b 1.5 m/s2 1.5 m/s2

(ACC) than that of a human driver. However, it can easily be extended to capture
human aspects like estimation errors, reaction times, or looking several vehicles
ahead (see Chap. 12).

In contrast to the models discussed previously, the IDM explicitly distinguishes
between the safe time gap T , the speed adaptation time τ = v0/a, and the reac-
tion time Tr (zero in the IDM, nonzero in the extension described in Chap. 12).
This allows us not only to reflect the conceptual difference between ACCs and
human drivers in the model, but also to differentiate between more nuanced driving
styles such as “sluggish, yet tailgating” (high value of τ = v0/a, low value for
T ) or “agile, yet safe driving” (low value of τ = v0/a, normal value for T , low
value for b).8 Furthermore, all these driving styles can be adopted independently
by ACC systems (reaction time Tr ≈ 0, original IDM), by attentive drivers (Tr

8 Obviously, the first behavior promotes instabilities which will be confirmed by the stability analysis
in Chap. 15.

http://dx.doi.org/10.1007/978-3-642-32460-4_12
http://dx.doi.org/10.1007/978-3-642-32460-4_12
http://dx.doi.org/10.1007/978-3-642-32460-4_15
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comparatively small, extended IDM), and by sleepy drivers (Tr comparatively large,
extended IDM).

11.3.4 Intelligent Braking Strategy

The term vΔv/(2
√

ab) in the desired distance s∗ (11.15) of the IDM models the
dynamical behavior when approaching the leading vehicle. The equilibrium terms
s0 + vT always affect s∗ due to the required continuous transitions from and to the
equilibrium state. Nevertheless, to study the braking strategy itself, we will set these
terms to zero, together with the free acceleration term a[1 − (v/v0)

δ] of the IDM
acceleration equation. When approaching a standing vehicle or a red traffic light
(Δv = v), we then find

v̇ = −a

(
s∗

s

)2

= −av2(Δv)2

4abs2 = −
(

v2

2s

)2
1

b
. (11.16)

With the kinematic deceleration defined as

bkin = v2

2s
, (11.17)

this part of the acceleration can be written as

v̇ = −b2
kin

b
. (11.18)

When braking with deceleration bkin, the braking distance is exactly the distance to
the leading vehicle, thus bkin is the minimum deceleration required for preventing a
collision. With Eq. (11.18), we now understand the self-regulating braking strategy
of the IDM:

• A “critical situation” is defined by bkin being greater than the comfortable deceler-
ation b. In such a situation, the actual deceleration is even stronger than necessary,
|v̇| = b2

kin/b > bkin. This overcompensation decreases bkin and thus helps to
“regain control” over the situation.

• In a non-critical situation (bkin < b), the actual deceleration is less than the kine-
matic deceleration, b2

kin/b < bkin. Thus, bkin increases in the course of time and
approaches the comfortable deceleration.

Hence, the braking strategy is dynamically self-regulating towards a situation in
which the kinematic deceleration equals the comfortable deceleration. One can show
(see Problem 11.4) that this self-regulation is explicitly given by the differential
equation

dbkin

dt
= v bkin

s b

(
b − bkin

)
. (11.19)
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Fig. 11.3 Acceleration time-
series of approaching the
stop line of a red traffic light
for different values of the
comfortable deceleration. The
initial speed is v = 54 km/h.
The traffic light switches to
red (at time t = 0) when the
vehicle is 60 m away
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Thus, the kinematic deceleration drifts towards the comfortable deceleration in any
situation.

In the above considerations, we have ignored parts of the IDM acceleration func-
tion. To estimate their effects, the time series of Fig. 11.4e display the complete IDM
dynamics when approaching an initially very distant, standing obstacle (bkin � b):
First, the deceleration increases towards the comfortable deceleration according to
Eq. (11.19). However, due to the defensive nature of the neglected terms, the comfort-
able value is never realized, at least for the first vehicle. Eventually, the deceleration
smoothly reduces until the vehicle stops with exactly the minimum gap s0 left between
itself and the obstacle. The following vehicles experience slightly larger decelerations
than the comfortable ones, but without having to perform any emergency braking or
being in danger of a collision.

Figure 11.3 shows the effects of the self-regulatory braking strategy in a situation
where the vehicle is suddenly forced to stop. Drivers with b = 1 m/s2 will perceive
this situation as “critical” (bkin = v2/(2s) = 1.9 m/s2) and overcompensate with even
stronger deceleration. In contrast, if the comfortable deceleration is given by b =
4 m/s2, the comfortable deceleration is initially well above the kinematic deceleration
and the simulated driver will brake only weakly, so that bkin increases. Again, due
to the other terms in the acceleration function, the actual deceleration will not reach
the value of comfortable deceleration.

Why do “IDM drivers” act in a more anticipatory manner for smaller values of
b? Yet why are very small values of b (less than about 1 m/s2) not meaningful?

Consider the situation of approaching a standing obstacle as described above
and convince yourself that the effect of the dynamical part of s∗ on the acceler-
ation prevails against all other terms. Furthermore, show that these other terms
are negative in nearly all situations, thus making the driving behavior more
defensive.
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Fig. 11.4 Fact sheet of the Intelligent Driver Model (11.14). The two standard scenarios “highway”
(left) and “city traffic” (right) are simulated with parameters as listed in Table 11.2. See Sect. 10.5
for a detailed description of the scenarios

11.3.5 Dynamical Properties

The fact sheet of the IDM, Fig. 11.4, shows IDM simulations of the two standard
scenarios “traffic breakdown at a highway on-ramp” and “acceleration and stopping
of a vehicle platoon in city traffic”.

Highway traffic. The speed field in the highway scenario (Fig. 11.4a) exhibits
dynamics similar to the one found in Gipps’ model (cf. Fig. 11.1): Stationary con-
gested traffic is found close to the bottleneck, while, further upstream, stop-and-go
waves emerge and travel upstream with a velocity of approximately −15 km/h. The
wavelength tends to be smaller than in real stop-and-go traffic, but the empirical
spatiotemporal dynamics are otherwise reproduced very well. The growing stop-
and-go waves in the simulations are caused by a collective instability called string
instability which will be discussed in more detail in Chap. 15. As we will see in
this chapter, the IDM is either unstable with respect to stop-and-go waves (string-
unstable) or absolutely stable, depending on the parameters and traffic density. The
model is free of accidents, however, except for very unrealistic parameters under
specific circumstances.

The flow-density diagram of virtual loop detectors in Fig. 11.4b reproduces typical
aspects of empirical flow-density data:

• Data points representing free traffic fall on a line, while data points from congested
traffic are widely scattered.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_15
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Fig. 11.5 a Fundamental diagram, c speed-density diagram, and d speed-flow diagram showing
data from a virtual detector in the highway simulation shown in Fig. 11.4 (positioned 1 km upstream
of the ramp). For comparison, empirical data from a real detector on the Autobahn A5 near Frankfurt,
Germany, is shown. Velocities have been calculated using arithmetic means in both the real data
and the simulation data. b Flow-density diagram with the same empirical data but using the real
(local) density for the IDM simulation rather than the density derived from the virtual detectors

• The free-traffic branch is not a perfectly straight line but is slightly curved, espe-
cially towards the maximum flow.

• Near the maximum flow, the points are arranged in a pattern that looks like a mirror
image of the Greek letter λ (inverse-λ form), meaning that for a range of densities
(here ≈18−25 veh/h), both free and congested traffic states are possible. Thus, the
IDM reproduces the empirically observed bistability and the resulting hysteresis
effects like the capacity drop (about 300 veh/h or 15 % in the present example).

Comparing the virtual detector data with the real data in Fig. 11.5a, c, and d, we find
almost quantitative agreement of the flow-density, speed-density, and speed-flow
diagrams. Contrary to Gipps’ model, the IDM also reproduces the curvature of the
free-traffic branch correctly. This agreement with the data allows us to scrutinize the
nature of the observed strong scattering of flow-density data points corresponding to
congested traffic. First, we compare the estimated density using the virtual stationary
detector data with the real spatial density which, of course, is available in the simu-
lation. The result displayed in Fig. 11.5b reminds us that one has to be very careful
when interpreting flow-density data. Moreover, even the scattering of the data points
itself is a matter of the way the data is plotted: While the congested traffic data is
much more scattered than the free-flow data in the flow-density data in Fig. 11.5a,
both branches show similar scattering in the speed-flow diagram 11.5d—in spite of
the fact that both diagrams show the same data.
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Fig. 11.6 Microscopic (left) and macroscopic (right) fundamental diagram of the IDM using the
parameters shown in Table 11.2

City traffic. In the city traffic simulation (Fig. 11.4c–e) we see a smooth, realis-
tic acceleration/deceleration profile, except in vehicle platoons with speed close to
v0 where followers do not accelerate up to the desired speed and thus the distance
between the vehicles does not reach a constant value before the braking maneuver
begins. This happens because, when approaching the desired speed, the free accel-
eration function decreases continuously to zero while the interaction (braking) term
s∗/s remains finite (reaching zero only in the limit s → ∞). Thus, for v � v0, the
actual steady-state equilibrium distance (where the free acceleration and the interac-
tion terms cancel each other) is significantly larger than s∗(v, 0). In the next section,
we will investigate this more closely and propose a solution in Sect. 11.3.7.

11.3.6 Steady-State Equilibrium

By postulating v̇ = Δv = 0 we obtain the condition for the steady-state equilibrium
of the IDM from the acceleration function (11.14):

1 −
(

v

v0

)δ

−
(

s0 + vT

s

)2

= 0. (11.20)

For arbitrary values of δ we can solve this equation in closed form only for s (cf.
Fig. 11.6),

s = se(v) = s0 + vT
√

1 −
(

v

v0

)δ
. (11.21)

This yields the equilibrium gap se(v) with the speed being the independent variable
(instead of the equilibrium speed ve(s) as a function of the gap). Using the micro-
macro relation (10.16), se = 1

ρe
− 1, v = V , and Qe = ρeV , we obtain the speed-

density and the fundamental diagrams shown in Fig. 11.6.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Note that due to the continuous transition between free and congested traffic,
the equilibrium gap se(v) is not given by s∗(v, 0) = s0 + vT . Instead, for v � v0
it is much larger which can be seen by looking at the denominator of Eq. (11.21).
Therefore the fundamental diagram is not a perfect triangle but rounded close to
the maximum flow. This causes the curvature in the macroscopic speed-density and
flow-density diagrams (Fig. 11.5), but also produces the mentioned unrealistic car-
following behavior in platoons with identical driver-vehicle units.

11.3.7 Improved Acceleration Function

Using the IDM as example, this section shows the scientific modeling process, aiming
at eliminating some deficiencies of a model while retaining the good and well-tested
features and keeping the model parsimonious, i.e., adding as few model parameters
as possible.9 The IDM is unrealistic in following aspects:

• If the actual speed exceeds the desired speed (e.g., after entering a zone with a
reduced speed limit), the deceleration is unrealistically large, particularly for large
values of the acceleration exponent δ.

• Near the desired speed v0, the steady-state gap (11.21) becomes much greater than
s∗(v, 0) = s0 + vT so that the model parameter T loses its meaning as the desired
time gap. This means that a platoon of identical drivers and vehicles disperses
much more than observed. Moreover, not all cars will reach the desired speed
(Fig. 11.4c, d).

• If the actual gap is considerably smaller than desired (which may happen if another
vehicle cuts too close when changing lanes) the braking reaction to regain the
desired gap is exaggerated as illustrated in Problem 11.3.

We will treat the first two aspects here while the third aspect (which is only relevant
in multi-lane situations) will be deferred to Sect. 11.3.8.

To improve the behavior for v > v0, we require that the maximum decelera-
tion must not exceed the comfortable deceleration b if there are no interactions with
other vehicles or obstacles. The parameter δ should retain its meaning also in the new
regime, i.e., leading to smooth decelerations to the new desired speed for low values
and decelerating more “robotically” for high values. Furthermore, the free accelera-
tion function afree(v) should be continuously differentiable, and remain unchanged
for v ≤ v0, i.e., afree(v) = lims→∞ aIDM(s, v,Δv) for v ≤ v0. Probably the simplest
free-acceleration function meeting these conditions is given by

afree(v) =

⎧
⎪⎨

⎪⎩

a

[
1 −

(
v
v0

)δ
]

if v ≤ v0,

−b
[
1 − ( v0

v

)aδ/b
]

if v > v0.

(11.22)

9 Ideally, no parameters are added as in this example.
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To improve the behavior near the desired speed, we tighten the second condition in
Sect. 11.3.1 by requiring that the equilibrium gap se(v) = s∗(v, 0) should be strictly
equal to s0 + vT for v < v0. However, we would like to implement any modification
as conservatively as possible in order to preserve all the other meaningful properties
of the IDM (especially the “intelligent” braking strategy). Thus, changes should only
have an effect

• near the steady-state equilibrium, i.e., if z(s, v,Δv) = s∗(v,Δv)/s ≈ 1,10

• and when driving with v ≈ v0 and v > v0.

We can accomplish this by distinguishing between the cases z = s∗(v,Δv)/s < 1
(the actual gap is greater than the desired gap) and z ≥ 1. The new condition requires
ãmic = 0 for all input values that satisfy z(s, v,Δv) = 1 and v < v0. The other
conditions in Sect. 11.3.1 and the conditions (11.1)–(11.5) are automatically satisfied
if ∂ ãmic/∂z < 0, and if ãmic(z) is continuously differentiable at the transition point
z = 1. Probably the simplest acceleration function that fulfills all these conditions
for v ≤ v0 is given by

dv

dt

∣∣∣∣
v≤v0

=
{

a (1 − z2) z = s∗(v,Δv)
s ≥ 1,

afree
(
1 − z(2a)/afree

)
otherwise.

(11.23)

For v > v0, there is no steady-state following distance, and we simply combine
the free acceleration afree and the interaction acceleration a(1 − z2) such that the
interaction vanishes for z ≤ 1 and the resulting acceleration function is continuously
differentiable:11

dv

dt

∣∣∣∣
v>v0

=
{

afree + a(1 − z2) z(v,Δv) ≥ 1,

afree otherwise.
(11.24)

This Improved Intelligent Driver Model (IIDM) uses the same set of model parame-
ters as the IDM and produces essentially the same behavior except when vehicles
follow each other near the desired speed or when the vehicle is faster than the desired
speed. Simulating the standard city traffic scenario with the IIDM shows that all vehi-
cles in the platoon now accelerate up to the desired speed (Fig. 11.7, left) while the
self-stabilizing braking strategy and the observance of a comfortable deceleration
are still in effect (Fig. 11.7, right).

However, the fundamental diagram is an exact triangle now. Thus, simulating
highway traffic will no longer produce curved free-traffic branches in the flow-
density, speed-flow, and speed-density diagrams (contrary to the unmodified IDM,
cf. Fig. 11.5). Problem 11.6 discusses an alternative cause of this curvature.

10 In fact, this condition is more general since it also includes continuations of the steady state to
nonstationary situations.
11 At v = v0 and z > 1, the full acceleration function (11.23), (11.24) is only continuous, but
not differentiable with respect to v. It would require a disproportionate amount of complication to
resolve this special case of little relevance.
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Fig. 11.7 Simulation of the city traffic scenario (left) and the situation shown in Fig. 11.3 (right)
using the Improved Intelligent Driver Model (IIDM) with the parameters listed in Table 11.2

11.3.8 Model for Adaptive Cruise Control

While ACC systems only automate the longitudinal driving task, they must also react
reasonably if the sensor input variables—the gap s and approaching rate Δv—change
discontinuously as a consequence of “passive” lane changes (another lane-changing
vehicle becomes the new leader), and also “active” lane changes (the ACC driver
changes lanes manually). This means, the third of the IDM deficiencies mentioned
in the previous Sect. 11.3.7—overreactions when the gap decreases discontinuously
by external actions—must be taken care of.

The reason for the overreactions is the intention of the IDM (and IIDM) devel-
opment to be accident-free even in the worst case, in which the driver of the leading
vehicle suddenly brakes to a complete standstill. However, there are situations char-
acterized by low speed differences and small gaps where human drivers rely on the
fact that the drivers of preceding vehicles will not suddenly initiate full-stop emer-
gency brakings. In fact, they consider such situations only as mildly critical. As a
consequence, a more plausible and realistic driving behavior will result when drivers
act according to the constant-acceleration heuristic (CAH) rather than considering
the worst-case scenario. The CAH is based on the following assumptions:

• The accelerations of the considered and leading vehicle will not change in the near
future (generally a few seconds).

• No safe time gap or minimum distance is required at any given moment.
• Drivers (or ACC systems) react without delay, i.e., with zero reaction time.

For actual values of the gap s, speed v, speed vl of the leading vehicle, and constant
accelerations v̇ and v̇l of both vehicles, the maximum acceleration max(v̇) = aCAH
that does not lead to an accident under the CAH assumption is given by

aCAH(s, v, vl , v̇l) =
⎧
⎨

⎩

v2ãl
v2

l −2sãl
if vl(v − vl) ≤ −2sãl ,

ãl − (v−vl )
2Θ(v−vl )
2s otherwise.

(11.25)

The effective acceleration ãl(v̇l) = min(v̇l , a) (with the maximum acceleration para-
meter a) has been used to avoid the situation where leading vehicles with higher
acceleration capabilities may cause “drag-along effects” of the form (11.6), or other
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artefacts violating the general plausibility conditions (11.1)–(11.5). The condition
vl(v − vl) = vlΔv ≤ −2sv̇l is true if the vehicles have stopped at the time the
minimum gap s = 0 is reached. The Heaviside step function Θ(x) (with Θ(x) = 1
if x ≥ 0, and zero, otherwise) eliminates negative approaching rates Δv for the case
that both vehicles are moving at the time t∗ of least distance. Otherwise, t∗ would
lie in the past.

In order to retain all the “good” properties of the IDM, we will use the CAH
acceleration (11.25) only as an indicator to determine whether the IDM will lead to
unrealistically high decelerations, and modify the acceleration function of a model
for ACC vehicles only in this case. Specifically, the proposed ACC model is based
on following assumptions:

• The ACC acceleration is never lower than that of the IIDM. This is motivated by
the circumstance that the IDM and the IIDM are accident-free, i.e., sufficiently
defensive.

• If both, the IIDM and the CAH, produce the same acceleration, the ACC acceler-
ation is the same as well.

• If the IIDM produces extreme decelerations, while the CAH yields accelerations
in the comfortable range (greater than −b), the situation is considered to be mildly
critical, and the resulting acceleration should be between aCAH − b and aCAH.
Only for very small gaps, the decelerations should be somewhat higher to avoid
an overly reckless driving style.

• If both, the IIDM and the CAH, result in accelerations significantly below −b, the
situation is seriously critical and the ACC acceleration is given by the maximum
of the IIDM and CAH accelerations.

• The ACC acceleration should be a continuous and differentiable function of the
IIDM and CAH accelerations. Furthermore, it should meet the consistency require-
ments (11.1)–(11.5).

Probably the most simple functional form satisfying these criteria is given by

aACC =
{

aIIDM aIIDM ≥ aCAH,

(1 − c) aIIDM + c
[
aCAH + b tanh

( aIIDM−aCAH
b

)]
otherwise.

(11.26)

This ACC model has only one additional parameter compared to the IDM/IIDM,
the “coolness factor” c. For c = 0 one recovers the IIDM while c = 1 corresponds to
the “pure” ACC model. Since the pure ACC model would produce a reckless driving
behavior for very small gaps, a small fraction 1 − c of the IIDM is added. It turns
out that a contribution of 1 % (corresponding to c = 0.99) gives a good compromise
between reckless and overly timid behavior in this situation while it is essentially
irrelevant, otherwise.

In contrast to the other models of this section, the ACC model has the accelera-
tion v̇l of the leading vehicle as additional exogenous factor (besides the speed, the
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Fig. 11.8 Response of an ACC and an IIDM vehicle (parameters of Table 11.2 and coolness factor
c = 0.99) to the lane-changing maneuver of another vehicle immediately in front of the considered
vehicle. The initial speed of both vehicles is 120 km/h (equal to the desired speed), and the initial
gap is 10 m which is about 30 % of the desired gap. This can be considered as a “mildly critical”
situation

speed difference, and the gap). This models a behavior similar to the human reactions
to brake lights, but in a continuous rather than in an off-on way.12

The Figs. 11.8 and 11.9 show the effect of this model improvement: In the mildly
critical situation of Fig. 11.8, a lane-changing car driving at the same speed as the
considered car cuts in front leaving a gap of only 10 m which is less than one third
of the “safe” gap s0 + vT = 35.3 m. While the IIDM (and IDM) will initiate a
short emergency braking maneuver in this situation, the ACC reflects a relaxed reac-
tion by braking at about the comfortable deceleration. In contrast, if the situation
becomes really critical (Fig. 11.9), both the (I)IDM and the ACC model will initiate
an emergency braking.

When implementing all these modifications, one needs to bear in mind that, in
most situations, the ACC model should behave very similarly to the IDM so as to
retain its well-tested good properties. To verify this, Fig. 11.10 shows the familiar fact
sheet for the two standard situations. As expected, there is little difference compared
to the IDM (and the IIDM) since the modified behavior kicks in only in the highway
scenario, and only at the merging region of the on-ramp.

In summary, the ACC model can be considered as a minimal fully operative control
model for ACC systems. With minor modifications, it has been implemented in real
cars and tested on test tracks as well as on public roads and highways.

12 Since the acceleration v̇l cannot be measured directly, it is obtained by numerical differentiation
of the approaching rate and the speed-changing rate. Care has to be taken to control the resulting
discretization errors.
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Fig. 11.10 Fact sheet of the ACC-model. The two standard scenarios “highway” (left) and “city
traffic” (right) are simulated with the parameter values listed in Table 11.2 and the “coolness factor”
c = 0.99. See Sect. 10.5 for a detailed description of the simulation scenarios

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Problems

11.1 Conditions for the microscopic fundamental diagram
Use the consistency conditions (11.1)–(11.5) to derive the conditions (11.7) that
have to be fulfilled by the steady-state speed-distance relation ve(s) (microscopic
fundamental diagram).

11.2 Rules of thumb for the safe gap and braking distance

1. A common US rule for the safe gap is the following: “Leave one car length for
every ten miles per hour of speed”. Another rule says “Leave a time gap of two
seconds”. Compare these two rules assuming a typical car length of 15 ft. For
which car length are both rules equivalent?

2. In Continental European countries, one learns in driving schools the following
rule: “The safe gap should be at least half the reading of the speedometer”. Trans-
late this rule into a safe time gap rule and compare it with the US rule stated above.
Take into account that, in Continental Europe, speed is commonly expressed in
terms of km per hour.

3. A rule of thumb for the braking distance says “Speed squared and divided by
100”. If speed is measured in km/h, what braking deceleration is assumed by this
rule?

11.3 Reaction to vehicles merging into the lane
A vehicle enters the lane of the considered car causing the gap s to fall short of
the equilibrium gap se by 50 %. Both vehicles drive at the same speed. Find the
resulting (negative) accelerations produced by the simplified Gipps’ model and the
IDM, assuming the parameter values Δt = 1 s, b = 2 m/s2, a = 1 m/s2, δ = 4, and
v = v0/2 = 72 km/h for all vehicles. (No other parameter values are needed for this
problem.)

11.4 The IDM braking strategy
Derive Eq. (11.19) for the explicit description of the self-regulating braking strategy
when approaching a standing obstacle (Δv = v). Assume that the IDM acceleration
can be reduced to the braking term v̇ = −b2

kin/b for this case. Hint: Keep in mind
that ṡ = −Δv.

11.5 Analysis of a microscopic model
Assume a car-following model that is given by the following acceleration equation:

dv

dt
=

⎧
⎨

⎩

a if v < min(v0, vsafe),

0 if v = min(v0, vsafe),

−a otherwise,
vsafe = −aT +

√
a2T 2 + v2

l + 2a(s − s0).

As usual, vl is the speed of the leading vehicle, and s the corresponding bumper-to-
bumper gap.
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1. Explain the meaning of the parameters a, s0, v0, and T by examining (i) the
acceleration on a free road segment, (ii) the driving behavior when following
another vehicle with constant speed and gap, and (iii) the braking maneuver
performed when approaching a standing vehicle.

2. Find the steady-state speed ve(s) as a function of the distance assuming v0 =
20 m/s, a = 1 m/s2, T = 1.6 s, and s0 = 3 m. Also, sketch the fundamental
diagram for vehicles of length 5 m.

3. Assume that a vehicle standing at position x = 0 for t ≤ 0 accelerates for t > 0
and then stops at a red traffic light at x = 603 m. Derive the speed function v(t)
for this scenario, assuming the parameter values v0 = 20 m/s, a = 1 m/s2, T = 0,
and s0 = 3 m. (Hints: The traffic light is modeled by a standing “virtual” vehicle;
the vehicle will reach its desired speed in this scenario.)

11.6 Heterogeneous traffic
For identical vehicles and drivers, the modified IDM with its strictly triangular fun-
damental diagram (IIDM) does not produce the pre-breakdown speed drop observed
in Fig. 11.5. Is it possible to produce the speed drop by introducing a combination
of different desired speeds or the possibility of passing maneuvers?

11.7 City traffic in the modified IDM (IIDM)
On a road segment with two traffic lights, a number of vehicles is standing in front of
the first traffic light. When the light turns green, the vehicles accelerate but have to stop
again at the second traffic light. The upper panel shows trajectories of all 15 vehicles
and the red lights (horizontal lines). The lower panel shows the corresponding speeds
of the two bold trajectories.

-100

0

 100

 200

 300

Lo
ca

tio
n 

(m
)

Red traffic light
Trajectories

Selected trajectories

0
 10
 20
 30
 40
 50
 60
 70
 80

-5 0 5  10  15  20  25  30  35  40  45  50  55  60

v 
(k

m
/h

)

Time (s)

First car
Fifth car



204 11 Car-Following Models Based on Driving Strategies

1. Estimate the capacity C of the free road segment (without traffic lights) by finding
the maximum possible flow.

2. How many vehicles are able to pass the traffic light at x = 0 if the green light is on
for (i) 5 s, (ii) 15 s, or (iii) 40 s? Find appropriate τ0 and β such that τ(n) = τ0+βn
is the time the light has to be green to let n vehicles pass.

3. Estimate the velocity ccong of the transition “standing traffic” → “starting to
move” from the shown trajectories.

4. Estimate the IDM parameters v0, leff = l + s0, T = 1/(ρmaxccong), a, and b
used in the simulation. Add appropriate tangents to the speed diagram to find the
accelerations.
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Chapter 12
Modeling Human Aspects of Driving
Behavior

It takes 8460 bolts to assemble an automobile, and one nut to
scatter it all over the road.

Author unknown

Abstract The driving characteristics described by the microscopic models of the
previous chapters correspond, from a formal perspective, to semi-automated driving
as realized by adaptive cruise control (ACC). On the one hand, human drivers are less
efficient than ACC systems since reaction times, attention time spans, and estimation
errors play a significant role. On the other hand, humans can take into account more
input stimuli than acceleration controllers, for example: brake lights, turning signals,
next-nearest neighbors, and external conditions. Moreover, in contrast to the present-
day ACC systems reflected by the previous models, they can anticipate the situation
for the next few seconds. All these specific human aspects will be formulated in
terms of psycho-physiological extensions to the previous car-following models, in
particular Gipps’ model and the Intelligent Driver Model. Another class of psycho-
physiological models explicitly take into account finite perception thresholds leading
to sudden changes in accelerations whenever the difference from the ideal acceler-
ation becomes significant. We present the Wiedemann model as a representative of
this model class.

12.1 Man Versus Machine

The exogenous (input) variables of the models presented in Chaps. 10 and 11 are the
own speed v, the (bumper-to-bumper) gap s to the leading vehicle, and its speed vl

(For the ACC model (11.26), the acceleration v̇l is an additional input). The model
output is the acceleration amic(s, v, vl) or the targeted speed vmic(s, v, vl) for time-
continuous or discrete models, respectively. Remarkably, both the input and the
output are essentially the same as that required by the acceleration controllers for
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semi-automated driving. Such driver-assistance systems, often called adaptive cruise
control (ACC), are already available for many makes of cars. ACC systems obtain
their input directly from the rotation rate of the tires (v), and by forward-looking
radar or infrared-laser range finders (s and vl ). The acceleration v̇l can be calculated
from the speed vl by taking the numerical time derivative (and smoothing the result).1

The acceleration output of the car-following models corresponds to the signals the
ACC system sends to the controllers for the engine and the brakes. The car-following
model itself corresponds to the core control logic of the ACC system.2

In summary, the ACC-like driving styles generated by the models of the previous
chapters are characterized by negligible estimation errors and response times, and an
unshakeable attention. However, the restriction to the three input variables v, s, and
vl corresponds to a certain shortsightedness (only the immediate leader is considered
but no vehicles driving further ahead), a tunnel vision (external circumstances as
well as vehicles driving on neighboring lanes or behind are ignored), and ignorance
brake lights, turning signals, horns, or headlight flashes are not taken into account).

In the following sections, we describe and model human driving characteristics
that have not been captured in the models of the previous chapters:

• Finite reaction time. For attentive drivers, it is about Tr = 1 s. Depending on the
driver and the situation, it can be significantly greater.

• Estimation errors. Gaps and speeds can only estimated with limited accuracy.
• Temporal anticipation. Experienced drivers can predict the traffic situation for the

next few seconds.
• Multi-vehicle anticipation or spatial anticipation. The driver takes into consider-

ation next-nearest and further vehicles ahead. Sometimes, vehicles on other lanes
(particularly when driving through highway work zones) or the vehicle behind
(when tailgating) play a role as well.

• More input signals like brake lights, direction indicators, horns.
• Context sensitivity. The driving style depends on the present and past overall traffic

situation (memory effect). For example, after driving for some time in congested
traffic, the time gap to the leading vehicle becomes greater and the driver’s alertness
wears down. In contrast, when approaching a lane closure and driving on one of
the through lanes, drivers react to vehicles squeezing into their lane in a more
relaxed manner, and drivers temporarily accept a smaller time gap than normal.

• Finite perception threshold. Humans cannot perceive small changes in exogenous
factors but only respond to significant changes.

• Courtesy and cooperation. This aspect of human drivers is particularly relevant
in situations with mandatory lane changes: Human drivers move out of the inside
lane to allow the vehicle from the on-ramp to enter, or they brake (or accelerate) to

1 In future, it may also be possible to directly measure accelerations with inertial sensors fused with
gyroscopic sensors and others.
2 This can be taken literally: During one of the authors’ projects with a car manufacturer, the ACC
model in Eq. (11.26) was implemented (with some modifications) as kernel of an ACC system of a
mid-range car, and was tested on public city streets and highways.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
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make space for other drivers. This will be discussed in Sect. 14.3.3 in the context
of modeling lane changes.

Because human driver models combine physiological restrictions (reaction times,
estimation errors, perception thresholds) and psychological aspects (anticipation
heuristic, context sensitivity, driving strategy in general), they are also referred to as
psycho-physiological car-following models.

Remarkably, it turns out that the destabilizing effects caused by human imperfec-
tions are essentially compensated for by the stabilizing effects of anticipation and
context sensitivity. In many situations this allows us to describe the traffic flow of
human drivers by “machine-like” acceleration models of the type (10.3).

On the other hand, when investigating the strengths and weaknesses of human
drivers and their influence on the efficiency and stability of traffic flow, the psycho-
physiological models to be described below become necessary tools. Similarly to the
lane-changing and decision models to be described in Chap. 14, we will formulate
the above aspects (with the exception of finite perception thresholds) in terms of
extensions to the ACC-like car-following models such as the IDM or the simplified
Gipps’ model. Another class of psycho-physiological model explicitly takes into
account finite perception thresholds. We will briefly describe the Wiedemann model
as most prominent representative of this model class.

12.2 Reaction Times

From the traffic flow modeler’s point of view the reaction time Tr is composed of
the following contributions:

• The mental processing time which, in turn, is composed of the sensation time
(“there is a moving object on the road”), the perception or recognition time (“the
object is a pedestrian”), the “situation awareness time” needed to recognize and
interpret the scene (“I am moving towards the pedestrian possibly resulting in a
crash”), and the decision time (“I will brake instead of do nothing or steering to
the left”).

• The movement or action time, e.g., to lift the foot from the throttle pedal, move it
to the brake pedal, and apply pressure.

• And the technical response time of the respective vehicle components (about
100 ms for the brakes, several 100 ms for the accelerator).3

The reaction time depends on many factors such as the age and experience of the
driver, visibility conditions, degree of surprise, and urgency of action. Nevertheless,
nearly all models and simulators assume a constant common value of the order of
1 s for all drivers in all situations.

In time-continuous models, the driver’s response is directly given by the acceler-
ation function amic. So it is straightforward to introduce a reaction time: One simply

3 The technical response time also applies to ACC systems.

http://dx.doi.org/10.1007/978-3-642-32460-4_14
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_14
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calculates the acceleration function with time delayed input stimuli (gap, own speed,4

and speed difference),

v̇(t) = amic
[
s(t − Tr ), v(t − Tr ), vl(t − Tr )

]
. (12.1)

From the mathematical point of view, the differential equations of the time-continuous
models become delay-differential equations. It is known from control theory that
systems become more unstable with increased dead times. In the traffic context this
means that traffic flow becomes more unstable with increased reaction times; this is
intuitively plausible.

Equation (12.1) cannot be integrated analytically, but it is straightforward to
approximatively solve it numerically. This is true even if the reaction time Tr is
not a multiple of the update time Δt of the numerical scheme (10.9), (10.10). One
simply approximates the quantity u(t − Tr ) (where u may stand for s, v, Δv, or vl )
in the update step i = t/Δt by linear interpolation:

u(t − Tr ) = rui− j−1 + (1 − r)ui− j , j = int

(
Tr

Δt

)
, r = Tr

Δt
− j. (12.2)

Here int(x) and r denote the integer and fractional parts of x , respectively. In order
to implement this formula, it is necessary to temporarily save the past j + 1 values
ui− j−1, . . . , ui of the dynamical variables u in a buffer. With this approach, it is
possible to model variations of the reaction time over the drivers and circumstances,
as discussed above.

When modeling traffic flow by time-discrete iterated coupled maps or cellular
automata (Chap. 13), the reaction time is often identified with the update time. How-
ever, this corresponds to another concept of the driver’s reaction: While Eq. (12.1)
represents a permanently attentive driver who (together with his or her vehicle)
always needs the same reaction time to put the input stimuli into action, the speed
function vmic together with the update rules (10.7) and (10.8) of the iterated maps
corresponds to a vehicle with zero response time and an instantly reacting driver
who, however, looks at the traffic situation only at fixed time instances which are an
attention span Δt apart. At all other times, the drivers are inattentive and do nothing,
i.e., do not change the acceleration.5

Both the proper reaction time Tr and the attention span Δt contribute to the
effective reaction time Teff. In order to compare the relative effects of these factors,
we reinterpret the numerical update time of time-continuous models as a model
parameter in its own right (instead of an auxiliary numerical quantity) which has the
same meaning as in the discrete-time models.

4 One can argue that the own speed is known a priori without delay, so the associated sensation and
recognition times are zero. However, as discussed above, these times make up only a fraction of the
reaction time, so the speed argument of the acceleration function should be given by v(t − T ′

r ) with
T ′

r < Tr . Some models nevertheless assume T ′
r = 0. In Eq. (12.1), we have assumed T ′

r = Tr .
5 This interpretation assumes that the acceleration is directly given by the pressure on the throttle
or brake pedals. For time intervals within Δt this is a good approximation.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_13
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Fig. 12.1 Influence of the reaction time Tr , the update time interval Δt , and the number na of
anticipated leading vehicles on the string stability (stability against the formation of traffic waves)
of a vehicle platoon. The thick solid lines of the central diagram show the limits of string stability
for na = 1, 2, and 5 anticipated vehicles. The curve for na = 1 corresponds to the IDM (see
Sect. 11.3) with time delay. Traffic is string stable in the region below the corresponding line, and
string unstable, otherwise. The diagrams at the four corners show the speed profiles of selected
vehicles responding to a braking maneuver of the leading vehicle (Car 1) for na = 2 anticipated
vehicles and values of Tr and Δt indicated by the arrows pointing to the central diagram

Figure 12.1 shows the reaction of a platoon of vehicles to a braking maneuver of a
leading vehicle (Car 1) that cannot be overtaken. The solid thick lines of the central
diagram of this figure shows the limits of string stability as a function of the reaction
time Tr and the attention span Δt . In a wide range, this limit is approximatively given
by the linear relation (thin solid lines)

Tr + Δt

2
= Teff = const. (12.3)

We conclude that the destabilizing effect of Tr is twice as large as that of Δt .
This can be understood by averaging the varying effective delaying effect Ta(t)
of the finite attention span over time: Immediately after an update, i.e., at times
t = i Δt, i = 1, 2, . . ., the acceleration response is instantaneous (Ta = 0). In con-
trast, the unchanged acceleration just before an update corresponds to a maximum
delay Ta = Δt , so the average delay 〈Ta〉 = Δt/2. Adding the reaction time Tr and
assuming that the destabilizing effect grows linearly with the average total response
time Tr + 〈Ta〉 = Tr + Δt/2 = Teff leads to the relation (12.3). The central diagram
in Fig. 12.1 shows that this relation is not satisfied for very large values of Δt where
the assumption of linearly growing destabilization effects breaks down.

We conclude that the update time of iterated maps (or of the numerical integration
method of time-continuous models) acts as an effective reaction time when consid-
ering its global effects. However, the value 〈Ta〉 = Δt/2 of the effective reaction
time is only half the numerical value of the update time.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
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12.3 Estimation Errors and Imperfect Driving Capabilities

Apart from the delay by reaction times, human driving behavior deviates from the
machine-like driving style modeled by the acceleration function amic in two further
ways: Firstly, humans make errors when estimating the input stimuli s, v, and vl of the
acceleration function. Secondly, the driving behavior is not completely rational, i.e.,
even if the same input stimuli are estimated for different times, drivers will behave
differently.

Here and in the following, we formulate the specific human driving elements
in terms of modifications of the acceleration function. This does not restrict the
analysis to time-continuous models: The considerations carry over to the speed
function vmic(s, v, vl) of time-discrete models by means of Eq. (10.11) mapping
the acceleration function to the speed function via the relation vmic(s, v, vl) =
v + Δt amic(s, v, vl).

12.3.1 Modeling Estimation Errors

When exclusively considering estimation errors, the acceleration function amic itself
remains unchanged while the true values of its independent variables s and vl are
replaced by the estimated values sest and vest

l , respectively. Since the driver’s own
speed v can be estimated with sufficient accuracy by looking at the speedometer, we
will neglect the associated errors.6 The magnitude of the estimating errors sest−s and
vest

l −vl depends on the driving situation, on the driver, and on external circumstances
such as illumination and visibility. It can be determined by traffic psychological
experiments in a driving simulator.7 In the following, we will consider how the
driving situation influences the errors when estimating the gap to and the speed of
the leader.

Estimation error of the gap. In most driving situations, the relative estimation error
for the gap, or, equivalently, the error of the logarithm of the gap, turns out to be
essentially constant:

ln sest − ln s = Vsws(t). (12.4)

The model parameter Vs describes the relative standard deviation of sest from the
true value s, also known as statistical variation coefficient. Typical values are of the
order of 10 %. The error is assumed to have no bias. The (0,1)-normally distributed
stochastic variable ws(t) describing the temporal evolution of the error will be dis-
cussed below.

6 In fact, the speed indicated by the speedometer can be greater than the true speed by up to 5 %.
Due to its systematic nature, this error will be taken care of automatically at model calibration time,
so there is no need to consider it explicitly in the model development.
7 Notice that generating and modeling surrounding traffic for driving simulators is one of the
applications of microscopic traffic flow models; the effects of the driver’s actions themselves (such
as steering or braking) are described by sub-microscopic models, cf. Table 1.1.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_1
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Estimation error of the speed of the leading vehicle. The driver estimates the speed
vl of the leader relative to his or her own speed (whose true value is assumed to be
known) by the change of the apparent optical angle φ ≈ wveh/s under which the
leading vehicle of width wveh is seen. Based on experiments, we assume the error of
the rate of relative angular change to be constant,

r = dφ/dt

φ
=

wveh
s2 Δv

wveh/s
= Δv

s
= 1

τTTC
. (12.5)

Interestingly, the rate r of relative change is the inverse of the time-to-collision τTTC =
s/Δv which is an important safety indicator.

The safety indicator time-to-collision (TTC) τTTC = s/Δv is defined by the
hypothetic time interval to a collision if neither vehicle accelerates or brakes.
Values in the range 0 < τTTC ≤ 4 s are generally considered as critical. TTC
is only meaningful for positive approach rates.

Assuming a constant standard deviation σr of the relative approach rate (of the
order of r = 0.01 s−1) we obtain

vest
l − vl = − (

Δvest − Δv
) = −s

(
1

τ est
TTC

− 1

τTTC

)
= −s σr wl(t). (12.6)

In analogy to the quantity ws(t), the stochastic quantity wl(t) describes the distribu-
tion of the error and its change in time. In the following, we will look more closely
how to model wl(t) and ws(t).

A model for the time dependence of estimation errors. The Eqs. (12.4) and (12.6)
reduce the estimation errors for the gap and the speed difference to the time-dependent
stochastic quantities ws(t) and wl(t). Each driver has his or her own set of stochastic
variables {ws(t), wl(t)}, which all are independent from each other.

Generally, time-dependent stochastic variables are defined by a stochastic process.
In the following, we will assume that both ws(t) and wl(t) are instances of a stationary
process w(t) which is defined by (i) the distribution function at a given time (which
is time independent), (ii) the autocorrelation function describing the correlation of
the stochastic process at different times as a function of the time difference. As
distribution function, we assume a standardized Gaussian

w(t) ∼ N (0, 1), 〈w(t)〉 = 0,
〈
w2(t)

〉 = 1. (12.7)

On average, the estimation errors are zero. This is no restriction since systematic
errors can be mapped to changes of the model parameters which will be taken care
of when calibrating the model.
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When describing the autocorrelation function, we take into account that human
errors are characterized by a certain persistence: If a driver, say, underestimates the
gap at a given time, he or she is likely to underestimate it in the next second as well.
In mathematical terms, the errors at two times are positively correlated for small time
differences of a few seconds up to one minute. This can be described by following
autocorrelation function:

〈
w(t)w(t ′)

〉 = exp

(
−|t − t ′|

τ̃

)
, (12.8)

where the persistence time τ̃ is a model parameter of the order of several seconds
(cf. Table 12.1 and Fig. 12.2). In Problem 12.1, we show that a stochastic process
{w(t)} satisfying the conditions (12.7) and (12.8) can be generated by following
stochastic differential equation also known as Wiener process:

dw

dt
= −w

τ̃
+

√
2

τ̃
ξ(t). (12.9)

The “standardized white noise” ξ(t) is characterized by

〈ξ(t)〉 = 0,
〈
ξ(t)ξ(t ′)

〉 = δ(t − t ′). (12.10)

Here, Dirac’s δ-function δ(t) is equal to zero for all t �= 0. For t = 0, the function
diverges in a way that any integral

∫ b
a δ(t)dt = 1 as long as the integration range

includes zero, a < 0 < b.8

8 Strictly speaking, δ[·] is a functional, i.e., a mapping of a function f (x) to a number: δ[ f (x)] =
f (0). This functional can be represented by a definite integral: δ[ f (x)] = ∫ ∞

−∞ δ(x) f (x)dx = f (0).
Consequently, the δ-function does only make sense inside an integral.
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The stochastic differential equation (12.9), (12.10) for the Wiener process allows
for a simple and efficient numerical integration scheme. The update rule to generate
the quantity wi = w(iΔt) of the i th step is given by

wi = e−Δt/τ̃ wi−1 +
√

2Δt

τ̃
ηi , (12.11)

where ηi are instances of computer-generated i.i.d. pseudo-random numbers with
expectation zero and unit variance.9 Since the prefactors exp(−Δt/τ̃ ) and

√
2Δt/τ̃

can be calculated in advance at the beginning of the simulation, this is a very efficient
numerical scheme. There are two independent Wiener processes ws(t) and wl(t) for
each driver which are initialized using the pseudo-random number generator as well,
w0 = η0.

Get yourself the idea that a persistence time going to infinity, τ̃ → ∞, cor-
responds to simulating heterogeneous traffic of deterministically behaving
drivers instead of homogeneous traffic of stochastically behaving drivers: Each
driver has his or her individual acceleration function which is defined by the
initialization of the two respective Wiener processes.

12.3.2 Modeling Imperfect Driving

Driving errors and irregularities in driving style result in erratic components of the
driver’s action, i.e., acceleration. This can be modeled by adding to the acceleration
function amic itself some acceleration noise of standard deviation σa whose time
dependence is modeled by a third Wiener process. Including the estimation errors,
the resulting acceleration is given by

v̇(t) = amic(s
est, v, vest

l ) + σawa(t). (12.12)

Besides modeling imperfections of the drivers, acceleration noise can also represent
corrections due to factors that are not explicitly considered, or due to deficiencies of
the model itself.10

In most stochastic models, the persistence of the acceleration noise is ignored and
its time dependence is modeled by white noise δ(t) (or a time-discrete version {ηi }
of it) rather than by a correlated Wiener process wa(t). Particularly, this ansatz is

9 The numbers may be normally distributed but it is not required. For τ̃ � Δt , the central limit
theorem guarantees that wi is Gaussian for any distribution of ηi satisfying 〈ηi 〉 = 0 and

〈
η2

i

〉 = 1,
for example, a uniform distribution.
10 In this sense, this random term represents an admission that not everything can be modeled
precisely. It has the same meaning as the additive stochastic term of econometric models.
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adopted for essentially all cellular automaton models (see Chap. 13) but also for some
stochastic variants of Gipps’ model such as Krauss’ model. However, since driving
errors have a certain persistence as well, this is unrealistic. For each application, one
has to decide whether the increased simplicity of using white noise compensates for
the deficiencies in describing the phenomena.

12.4 Temporal Anticipation

Figure 12.1 shows that simulating time-continuous ACC-like car-following models
with reaction-time delays of the order of the normal time gap, or even less, generally
leads to crashes. This is true even if none of the human imperfections described
above (Sect. 12.3) are applied. From this point of view, it is remarkable that humans
drive essentially accident-free in spite of reaction times of this order, and additional
estimation errors, and driving imperfections. Moreover, in dense but not yet con-
gested traffic, traffic is free of instabilities (traffic oscillations) even if the average
time gap s/v is smaller than the reaction time Tr (cf. Fig. 4.8). Simulations and the
analytical analysis of Chap. 15 show that this is only possible when considering sev-
eral leading vehicles (multi-anticipation, see Sect. 12.5) and when anticipating the
traffic situation for the next few seconds as described in the following. We can model
the anticipation ability of experienced drivers by assuming that they adopt following
simple heuristic:11

1. The own speed and acceleration is known. Furthermore, the acceleration will not
change during the anticipation time horizon assumed to be equal the reaction time
Tr to bridge the delay caused by the reaction time.12 This constant-acceleration
heuristic for the movement of the own vehicle corresponding to a linear forward
projection of the speed:

vprog(t) = vest(t − Tr ) + Tr v̇(t − Tr ). (12.13)

Here, v̇(t − Tr ) is the acceleration realized at time t − Tr .

2. The acceleration of the leading vehicle is difficult to estimate since only the
binary information “brake lights on or off” is available.13 Most models do not
consider brake lights as an exogenous factor at all (see Sect. 12.6 for an exception).

11 Heuristic refers to experience-based assumptions and strategies for finding a sufficiently good
solution to a problem with limited knowledge in a short time. Generally, a heuristic cannot be
justified or “proven” in any precise sense.
12 Regarding the driver’s actions, this essentially corresponds to the “do nothing” assumption: The
pressure on the throttle or the brake pedal remains unchanged.
13 In some cases, further information on the acceleration may be available from the situational con-
text (“truck approaching a hill”, “vehicle approaching an exit”, “roadworks ahead”), or from multi-
anticipation (“red brake lights several vehicle ahead”, “jam ahead”). These factors are described in
the Sects. 12.5 and 12.7.

http://dx.doi.org/10.1007/978-3-642-32460-4_13
http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_15
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Therefore, we adopt the constant-speed heuristic for the preceding vehicle (and
for all further vehicles if multi-anticipation is considered). To first order in the
reaction time, this also corresponds to a linear forward projection of the gap:

vprog
l (t) = vest

l (t − Tr ), sprog(t) = sest − Tr Δvest(t − Tr ). (12.14)

12.5 Multi-Vehicle Anticipation

Human drivers do not only form hypotheses about the traffic state in the near future
(temporal anticipation) but they take into account several vehicles ahead whenever
this is possible.14 This anticipation is also denoted as spatial anticipation or multi-
anticipation.

To express this in mathematical terms by a generalization of the existing model,
we divide the acceleration function amic(s, v, vl) of time-continuous models into
a free-flow acceleration afree and an interaction acceleration aint representing the
obstructions caused by other vehicles:

amic(s, v, vl) = afree(v) + aint(s, v, vl), afree(v) = lim
s→∞ amic(s, v, vl). (12.15)

By means of the relation vmic(s, v, vl) = v+Δt amic(s, v, vl), multi-anticipation can
be defined for time-discrete models in analogy. The general plausibility conditions
(11.1)–(11.5) imply that aint is non-positive. In this sense, the acceleration function
(and the speed function of time-discrete models) can be considered as a composition
of two social forces: The free-flow acceleration reflects the driver’s desire to drive at
a certain speed. The decelerating interaction aint exerted on the driver of the subject
vehicle by the leading vehicle reflects the necessity to avoid crashes and keep a
minimum time gap.

When considering na ≥ 1 leading vehicles α − 1, . . . , α − na , it is most straight-
forward to add the decelerating social forces caused by these vehicles as though the
vehicles in between do not exist.15 For vehicle α, this results into the acceleration
function16

14 Often, one can recognize vehicles further ahead through the windows of the immediate leader,
or by looking past the sides of vehicles when the road is curved. If this is not possible (e.g., when
driving behind trucks or SUVs), driving is perceived as less comfortable and the gap will be increased
measurably.
15 In physics, this corresponds to a linear superposition of all forces without shielding effects.
Examples include gravitational forces or electrostatic forces for non-polarizable particles.
16 In this context, the vehicle indices are relevant, so they will no longer be omitted as has been done
previously for readability. Notice that, when modeling heterogeneous traffic the acceleration func-
tions of each driver-vehicle unit (not only the function arguments) are different, so each functions
should have an index on its own. This index will still be omitted.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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v̇α = afree(vα) +
α−1∑

β=α−na

aint(sαβ, vα, vβ), sαβ =
α−β−1∑

j=0

sα− j . (12.16)

Since the vehicle lengths play no role in the dynamics, the total gap sαβ is calculated
by summing only over the individual gaps sα− j , i.e., the lengths of all vehicles in
between are excluded.

One should realize that, for accelerations satisfying the general plausibility
criteria of Sect. 11.1, the immediate leader exerts the largest decelerating social
force, in agreement with experience.

Directly implementing this ansatz, however, leads to unwanted consequences: The
total social force appearing in Eq. (12.16) becomes more negative when increasing
the number of considered vehicles for a given configuration of the vehicle positions
and speeds. As a consequence, the fundamental diagram changes and the modeled
road capacity decreases. In order to directly compare the behavior with and without
multi-anticipation, we require that the fundamental diagram does not change. This
can be realized by multiplying all social forces with a common prefactor c ≤ 1
(which possibly depends on the speed) such that following condition for the steady-
state equilibrium vα = vβ = v, sα = sα− j = se(v) is satisfied:

c(v)
na∑

j=1

aint( jse(v), v, v) = aint(se(v), v, v). (12.17)

For the IDM, this leads to the speed independent reduction factor (see Problem 12.3)

cIDM =
⎛

⎝
na∑

j=1

1

j2

⎞

⎠
−1

. (12.18)

Even when considering infinitely many leading vehicles, c∞ = 6/π2 ≈ 0.61 is
nonzero reflecting the fact that the infinite sum of all social forces converges. In this
case, the immediate leader is responsible for 61 % of the total interactions, and all
other vehicles for the remaining 39 %.

In summary, the multi-anticipative acceleration function is given by

amulti(sα, vα, {sβ}, {vβ}) = afree(vα) + c
α−1∑

β=α−na

aint(sαβ, vα, vβ). (12.19)

http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Fig. 12.3 Fact sheet of the Human Driver Model (12.20). The reaction time Tr , the number of
considered vehicles, and error standard deviations and persistence times are given in Table 12.1.
The IDM parameters are that of Table 11.2. The simulation scenarios are discussed in detail in
Sect. 10.5

When simultaneously considering estimation errors, temporal anticipation, and reac-
tion times, one inserts into the acceleration function the estimated arguments sprog

α (t),
vprog
α (t), and vprog

β (t). The human-driver extensions (12.19), (12.13), and (12.14) can
be applied to the acceleration and speed functions of any time-continuous and time-
discrete model, respectively.

When applying the extensions to the IDM, we obtain the Human Driver Model
(HDM):

v̇ = aIDM
free (vα) + cIDM

α−1∑

β=α−na

aIDM
int (sprog

αβ , vprog
α , vprog

β ) HDM. (12.20)

The speed estimate vprog
α is evaluated using Eq. (12.13), and the gap and leading speed

estimates sprog
αβ and vprog

β by Eq. (12.14), respectively. The free-flow and interaction
accelerations are given by

aIDM
free (v) = a

[
1 −

(
v

v0

)δ
]

, aIDM
int (s, v, vl) = −a

(
s∗(v, v − vl)

s

)2

(12.21)

with s∗ from Eq. (11.15).
Figure 12.3 shows simulations of the HDM for the two standard scenarios dis-

cussed in detail in Sect. 10.5. The most notable change with respect to the original

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Table 12.1 Parameters of the
human driver extensions to
the acceleration function

Parameter Typical value

Reaction time Tr 0.6 s
Number of anticipated vehicles na 5
Variation coefficient of gap estimation error Vs 10 %
Estimation error for the inverse TTC σr 0.01 s−1

Magnitude of acceleration noise σa 0.1 m/s2

Persistence time of the estimation errors τ̃ 20 s
Persistence time of the acceleration noise τ̃a 1 s

IDM (cf. Fig. 11.4) is the increased wavelength of the traffic waves in the freeway
scenario, and the decrease of the maximum braking decelerations for the vehicles
further behind in the queue. Both are essentially caused by multi-anticipation. The
finite reaction time and the temporal anticipation essentially cancel each other while
the estimation errors (10 % for the gap and 0.01 s−1 for the relative approaching rate,
see Table 12.1) have little influence. Increasing the errors, however, will eventually
lead to drastic effects or even accidents.

Figure 12.1 demonstrates that the limit of string stability of a platoon of vehicles
as a function of the reaction time Tr and the attention span Δt depends strongly on
the number of considered vehicles. When considering na = 5 leaders, the critical
effective reaction time Tr + Δt/2 at the stability limit is about twice as large as
the corresponding critical value without multi-anticipation (na = 1). Particularly,
traffic can be stable even if the reaction time exceeds the average time headway. This
agrees with everyday observations but cannot be realized in simulations without
multi-anticipation. There are limits, however: Anticipating more than five vehicles
ahead will change the dynamics insignificantly.

We emphasize that, in accordance with the design principles presented in
Sect. 11.3.7, the model extensions have been formulated with as few additional para-
meters as possible. Apart from the specification of the estimation errors, there are
only two additional parameters which both have an intuitive meaning and plausible
values: reaction time and the number of anticipated vehicles.

12.6 Brake Lights and Further Exogenous Factors

Several cellular automata (see Chap. 13) and a few continuous models include brake
lights as a further binary input variable: Brake lights on or off:

zb =
{

1 v̇l < ac,

0 otherwise.
(12.22)

The parameter ac (typical values are around −0.2 m/s2) corresponds to the decel-
eration if neither the throttle nor the brake pedal are touched. If the lights are on
(zb = 1), the drivers adapt their driving style or their anticipation heuristic to a

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_13
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Table 12.2 Implementing changes of the driving mode for some simple models in response to
brake lights of the leader (zb = 1) or flashing headlights of the follower (zt = 1)

Parameter Reference Brake lights (zb = 1) Tailgating (zt = 1)

Desired speed v0 (all models) 120 km/h 120 km/h 140 km/h
Time gap T (OVM, FVDM, IDM) 1.0 s 1.5 s 1.0 s
Acceleration a (Gipps, IDM) 1.0 m/s2 1.0 m/s2 2.0 m/s2

Comfortable deceleration b 1.5 m/s2 1.0 m/s2 1.5 m/s2

(Gipps, IDM)

more defensive mode compared to the situation with “brake lights off” (zb = 0).
Table 12.2 shows a possible implementation of this behavioral change for some ele-
mentary models.17 Notice that zb can be considered as a discrete version of the
acceleration v̇l of the leading vehicle which is already an exogenous variable of the
ACC model (cf. Sect. 11.3.8).

Analogously, including direction indicators in the model allows one to simu-
late cooperative and anticipative lane changing strategies (see Chap. 14). Extending
multi-anticipation to include the rear vehicle allows one to simulate forward social
forces caused by tailgating drivers, e.g., by parameter changes as given in Table 12.2.
Tailgating can be characterized by the binary exogenous variable

zt =
{

1 sα+1/vα+1 < Tc or follower flashes headlamps,
0 otherwise.

(12.23)

This means a driver is subject to tailgating if the time gap sα+1/vα+1 < Tc of the
follower is below some critical value Tc or if the follower flashes headlamps. Beside
forward social forces, one can also include social forces urging a lane change if the
subject vehicle is on the faster lane.18

12.7 Local Traffic Context

After driving for some time in congested or jammed traffic, most drivers become
less alert, the accelerations decrease, and the time gaps increase. This resignation
effect implies a less efficient driving style which reduces the flow downstream of the
bottleneck compared to the situation before the breakdown. This so-called capacity
drop leads to a positive feedback of jam formation that is often observed in reality
(cf. Sects. 4.3 and 4.4). Figure 12.4 shows the result of modeling the resignation effect
with the IDM by gradually reducing its acceleration parameter a and increasing the

17 In Gipps’ model, the time gap is “hardwired” to the update time step and therefore is not available
to model a behavioral change of some vehicles.
18 In some countries and in some situations, it may be useful to include using the horn or displaying
rude gestures as further exogenous binary variables.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_14
http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4
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Fig. 12.4 Simulations of the standardized highway scenario using the IDM with memory effect.
When driving in a jam, the time gap parameter T is increased up to 140 %, and the IDM acceleration
parameter a decreased down to 50 % of the corresponding reference values on a time scale of
10 min. The reference parameters are given by Table 11.2. See Sect. 10.5 for a detailed description
of the highway scenario

time gap parameter T over time scales of several minutes. When comparing this
figure with the IDM simulation of Fig. 11.4a, one observes that the inverse-λ shape
of the flow-density data of the virtual detectors indicating the capacity drop is more
pronounced. The plot of the spatiotemporal local speed (Fig. 12.4a) shows more
congestions (red areas) than that for the IDM. This indicates that resignation effects
aggravate the congestion.

On the flip side, if it were possible to locally invert the sign of this effect near
bottlenecks, this would open the possibility to dynamically “fill” the local “capacity
holes” constituting the bottleneck. In Sect. 21.5, we will present simulations of a
future driver assistance system that makes use of this possibility by increasing the
agility near bottlenecks or when leaving a congested zone, and adopting a more
defensive driving style when approaching roadworks or jams.

More generally, one can interpret the influencing regions of variable speed limits
and other control measures as a local traffic context, or simply the distinction between
city and freeway traffic. By changing the model parameters, it is straightforward to
model or simulate a change of the driving mode caused by a new context. This can be
done gradually on time scales of several minutes as in the memory effect discussed
above or when lightning or weather conditions change. Other situations require an
instantaneous change such as passing a new speed limit sign, entering/leaving a
tunnel, approaching a zone of roadworks, or entering/leaving the city limits.

12.8 Action Points

In the previous models, drivers are assumed to react to the exogenous stimuli of the
traffic environment in a continuous way, no matter how small their changes. However,
it is well known from physio-psychological investigations that humans have finite
perception thresholds in discriminating different gaps, speeds, or speed differences.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_21
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Perception thresholds can be modeled by the concept of action-point models:
drivers react actively (by changing the pressure on the throttle or brake pedals or
switching the pedals) only if the current action deviates significantly from the action
considered as ideal for the given situation. For car-following models described by an
acceleration function this essentially amounts to a constant acceleration most of the
time until the actual acceleration differs significantly from the “ideal” acceleration
given by the acceleration function amic. Alternatively, one can describe the event trig-
gering a conscious action in terms of perceptible changes of the exogenous variables
s, v, or Δv.19 Once the threshold is exceeded, the driver reverts his or her accelera-
tion to the value of the acceleration function amic for the present situation and keeps
the new acceleration until the perception threshold is again exceeded. The thresh-
olds and the associated acceleration or behavioral changes at irregular time instances
define the action points. Trajectory data show that not only the time intervals between
two action points but also the thresholds and the actions itself (i.e., the acceleration
changes) are stochastic quantities. Generally, acceleration changes caused by action
points are hard to distinguish from the effects of correlated acceleration noise. To
date, the existence of action points in the data remains controversial.

12.9 The Wiedemann Car-Following Model

A model that considers both the local traffic context and action points is the time
continuous Wiedemann-Model. It serves as basis for some commercial traffic flow
simulators.20 This model describes the psycho-physiological aspects of the driving
behavior in terms of four discrete driving regimes: (i) free flow, (ii) approaching
slower vehicles, (iii) car-following near the steady-state equilibrium, and (iv) critical
situations requiring stronger braking actions. In each of these regimes k, different
acceleration functions a(k)

mic(s, v,Δv) apply. The boundaries between the regimes are
given by nonlinear equations of the form fk′(s, v,Δv) = 0 defining curved areas
in three-dimensional state space (s, v,Δv) spanned by the exogenous variables (see
Fig. 12.5). Additionally, acceleration noise of the type described in Sect. 12.3.2 is
superimposed. In accordance with the philosophy of action points, the acceleration
changes abruptly at the boundaries of the regimes to the new acceleration func-
tion representing the driving mode in the new regime. Nevertheless, the Wiedemann
model does not implement the concept of action points in its pure form: Firstly,
the regime boundaries, i.e., the conditions for action points, are deterministically
fixed by the conditions fk′(s, v,Δv) = 0 rather than stochastic. Secondly, the “do
nothing” philosophy between the action points is replaced by the acceleration

19 If the model includes binary exogenous factors, their changes (e.g., brake lights on or off) would
trigger a conscious action as well, see Sect. 12.6.
20 The actual acceleration functions of these simulators strongly deviate from the original formu-
lation of the Wiedemann model.



222 12 Modeling Human Aspects of Driving Behavior

Δvapproaching rate

free flow

collision

following approaching

SDV

CLDV

SDX

OPDV

critical situationABX

ga
p 

s

Fig. 12.5 Schematic and simplified representation of the regimes of the Wiedemann model in the
three-dimensional state space spanned by s, v, and Δv. Shown are the intersections of the regimes
and their boundaries with the plane vl = v −Δv = constant (the leader drives at constant speed vl ).
The blue line shows the trajectory of a vehicle approaching a slower vehicle in the projected state
space. The speed-difference thresholds CLDV (“closing in”), OPDV (“opening”), SDV (“sensitivity
threshold”), and the gap-related thresholds ABX and SDX (minimum and maximum gap in car-
following regime) are denoted as in the literature

functions a(k)
mic(s, v,Δv) of the different driving modes.21 In spite of its psycho-

physiological nature, the Wiedemann model does not contain explicit reaction times.
The model is complex since four acceleration functions, several nonlinear equations
for defining the boundaries of each regime, and the acceleration noise have to be
specified.

Simulating the Wiedemann model typically leads to oscillations in state space
with quasi-periodic transitions between different regimes as illustrated by the blue
trajectory of Fig. 12.5.22 This trajectory represents a car approaching a slower vehicle
that cannot be overtaken. Initially, the driver of the car is in the free-flow regime
(acceleration function afree(v)) cruising at his or her desired speed. This corresponds
to a constant approaching rate Δv > 0. Once the perception threshold of recognizing
the leading vehicle is crossed, the driver enters the approaching regime. The driving
mode in this regime reflects the strategy to simultaneously reach the speed of the
leader and the desired gap by braking accordingly. Here, this strategy is successful
and the driver enters the car-following regime. Once in this regime, the trajectory
oscillates around the ideal state Δv = 0 and s = se(vl). Depending on the model
variant, the boundaries of this regime may be reached or slightly exceeded (as in the
schematic Fig. 12.5).

For comparison, Fig. 12.6 shows the trajectory in state space (s,Δv) of a vehicle
approaching a slower vehicle as simulated with the original IDM and for an IDM

21 Notice that this implies a response to infinitesimal changes which is at variance to the pure idea
of action points.
22 In order to reflect basic kinematic constraints, the qualitative shape of the regime boundaries and
the vehicle trajectory have been modified with respect to the figure in the original publication.
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Fig. 12.6 Changes of the state space coordinates s and Δv of a simulated vehicle (desired speed
120 km/h) approaching a slower vehicle driving at constant speed vl = 80 km/h. The solid curve
is for the IDM with the parameters of Table 11.2 and a reaction time Tr = 2.8 s (no other HDM
elements added). The dotted line is for the reference IDM with no delay. The color-coded sur-
faces depicts the IDM acceleration function. The critical approaching regime is defined by IDM
accelerations below −2b = −3 m/s2

variant with finite reaction time (all other aspects of the HDM have been omitted).
The IDM trajectory shows two qualitative differences:

• There is no vertical part of the trajectory since the leader exerts a nonzero social
force on the follower even if the gap is significantly larger than the safety gap,

• There are no oscillations.23

When introducing instabilities by adding a large reaction time to the (otherwise
unchanged) IDM, the resulting trajectories in state space are qualitatively similar to
that of the Wiedemann model. Similar trajectories can also be observed for any car-
following model when simulating string unstable traffic flow (stop-and-go waves).
Again, this shows that it is hard to empirically determine whether action points and
discrete driving modes play a significant role in describing human-driven traffic
flow.

Problems

12.1 Statistical properties of the Wiener process
Verify that the stochastic differential equation (12.9) for the stochastic process w(t)
leads to the autocorrelation function (12.8) once stationary conditions are reached.
In order to show this, use the formal solution

23 In Chap. 15, we will show that traffic flow is strongly string unstable if even the slightest (and
strongly over-damped) oscillations appear in this situation.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_15
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w(t) =
√

2

τ̃

t∫

−∞
e−(t−t ′)/τ̃ ξ(t ′)dt ′

and evaluate
〈
w(t)w(t ′)

〉
for t ′ ≤ t making use of the relation 〈ξ(t1)ξ(t2)〉 = δ(t1−t2).

12.2 Consequences of estimation errors
Consider a platoon of several identical cars α (desired speed v0 = 120 km/h) driving
in steady-state equilibrium behind a truck at vα = 80 km/h. Assume that the cars
drive according to the Optimal Velocity Model with triangular fundamental diagram
with the parameters s0 = 0, T = 1.4 s, v0 = 120 km/h, and τ = 0.65 s. What are the
effects on the actual steady-state gap when all drivers constantly overestimate the gap
by Vs ws = 10 %? To illustrate this, calculate the steady-state gap with and without
this estimation error. What are the effects on the steady-state gap when there are
no estimation errors but a constant additional acceleration of 0.4 m/s2 (acceleration
noise for τ̃ → ∞)?

12.3 Multi-anticipation for the IDM
Derive Eq. (12.18) for the reduction factor c of the interaction part of the IDM accel-
eration. Furthermore, show that, instead of multiplying the interaction acceleration
by the reduction factor, one could multiply the model parameters s0 and T by a factor
of

√
c.
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Chapter 13
Cellular Automata

As far as the laws of mathematics refer to reality, they are not
certain, as far as they are certain, they do not refer to reality.

Albert Einstein

Abstract A cellular automaton (CA) describes traffic dynamics in a completely
discrete way: Space is subdivided into cells, time into time steps, and derived quan-
tities such as speed or acceleration are integer multiples of the corresponding basic
units. Cellular automata are easy and fast to simulate. However, due to their discrete
nature, they reproduce real-life traffic only in a schematic way. This is particularly
true for the Nagel-Schreckenberg Model as the simplest and most generic represen-
tative of traffic-related CA. Besides this model, two more refined cellular automata
are presented.

13.1 General Remarks

Cellular automata (CA) describe all aspects of dynamical systems by using (generally
small) integers. Space is subdivided into cells and time into time steps. At any time,
each cell is in one of a small number of states. In the simplest case, there are only
two states such as zero and one, black and white, or occupied and empty. In general,
the interaction is local, i.e., the new state of a cell is determined by only a few cells in
the neighborhood of this cell. Mathematically, CAs belong to the class where space,
time, and internal states are discrete. The connection to other mathematical model
classes is summarized in Table 13.1.1

1 This summary is not complete. For example, traffic flow can also be described by stochastic
queuing models which are discrete in the space and state variables and continuous or discrete in
time (master equations or Markov chains, respectively). These models are not discussed here.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 225
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Table 13.1 Mathematical model classes

Mathematical class Time Space State variables

Acceleration models Continuous Continuous Continuous
Lane changing rules for acceleration models Continuous Discrete Discrete
Iterated coupled maps Discrete Continuous Continuous
Cell-transmission model Discrete Discrete Continuous
Cellular automata Discrete Discrete Discrete

History. Cellular automata were already proposed in the 1940s by von Neumann.
In the 1970s, a two-state, two-dimensional CA named The Game of Life became
widely known among the early computing community. The basis of traffic-related
CAs was laid by Stephen Wolfram in 1983, who systematically investigated the
simplest nontrivial class of CAs called “elementary cellular automata”. This class
is defined by a one-dimensional string of cells where each cell has only two states
(since the context was pattern formation, they are denoted as “black and white”) and
interacts only with itself and its two next neighbors. Since the triplet within interaction
range has 23 = 8 possible states or patterns and each pattern can be mapped to one of
two possible new states of the center cell, there are 28 = 256 different rules defining
the class of elementary cellular automata.

One member of this class called, Rule 184, can be regarded as the most generic
traffic-related cellular automaton. It is defined as follows:

Current pattern 111 110 101 100 011 010 001 000

New state of the center cell 1 0 1 1 1 0 0 0

In the traffic context, the states 1 and 0 denote cells occupied by a car and empty
cells, respectively. In each time step, the cars move one cell to the right if the new
cell is empty (“free traffic”), and remain in their old cells, otherwise (“jam”). The
name Rule 184 becomes evident when looking at the bottom row of the table which
is just the binary representation of the decimal number 184.

Cellular automata for traffic flow. For traffic-flow related CAs, the relation
between the physical and the discrete-valued variables can be described as follows
(cf. Figs. 13.1 and 6.2):

• The physical position xphys along the arc length of the road is subdivided into cells
of length Δxphys. A given position along the road is denoted by the cell index i
(stationary frame of reference used for macroscopic models) or by the position xα

of the front bumper of vehicle α (microscopic models)2

2 Notice that, in the context of cellular automata, i = xα , t , and v are index-like integer quantities.
Consequently, equations such as x(t + 1) = x + v are formally correct although they may look
terribly erroneous to any physics teacher. Since this naming is a de-facto standard in the scientific
literature on microscopic traffic CA, we have adopted it although variable names such as iα for
xα and j for t would make the index-like nature of the variables more explicit. In order to avoid

http://dx.doi.org/10.1007/978-3-642-32460-4_6
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vα

gαl

=2

=2eff

α−1α

Fig. 13.1 Cellular automata describe the longitudinal and transverse logical coordinates of a road
section by dividing it into cells of a fixed size. Shown is the simplest case where one vehicle occupies
exactly one cell

xphys = i Δxphys, xphys
α = xα Δxphys.

For multi-lane models, the lane index l describes the lateral position.3 When sim-
ulating networks, a road index m is added for each link in each direction. In the
most general case, the position of the front bumper of a vehicle in physical space
is given by the functions mapping the arc length xphys and the lane index l (the
logical coordinates) of road m to geo-referenced coordinates.

• As for iterated maps, time is subdivided into time steps of constant duration. The
physical time tphys is related to the time index t by

tphys = t Δtphys.

• At each time step t , each cell i can be occupied (ρi (t)= 1), or empty (ρi (t)= 0).
In the traffic context, occupied cells typically have further integer-valued state
variables such as the speed v. The relation to the physical speed vphys is given by

vphys = v
Δxphys

Δtphys
.

This discretization carries over to other state variables. For example, possible
values for the accelerations are multiples of Δxphys/(Δtphys).

2

While most traffic-flow related CAs represent microscopic models, macroscopic
formulations are possible as well.

Macroscopic CA models. The update rules for macroscopic CAs are cell-based and
of the form of the first CA proposed by Von Neumann and Wolfram: The new state
Zi (t + 1) of cell i at the new time step t + 1 depends on the states Z j (t) of the
neighboring cells at the old time step t :

Zi (t + 1) = ZCA
({ρ j (t)}, {Z j (t)}, ξ(t)

)
. (13.1)

confusion, in this chapter, dimensional physical quantities are denoted with a sub- or superscript
“phys”.
3 Most continuous models describe the lateral position in a discrete way with a lane index, as well.
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Here, the function ZCA(·) mapping the integer states of the neighboring cells to the
new integer state defines the macroscopic CA in question. In contrast to the originally
proposed CA, traffic CA nearly always contain stochastic elements.4 To reflect this,
the mapping ZCA(·) contains an additional stochastic integer argument ξ(t). A way
to define this argument could be by setting ξ(t)= 1 with probability p, and ξ(t)= 0,
otherwise.

The state Z of a cell i reflects the local traffic flow properties: The density (occu-
pation number) ρi and, additionally, the speed index Vi for second-order models.
This information can be mapped to the integer state Z , e.g., by the coding Z = ρ

(first-order models), or Z = ρ + (ρmax + 1)V (second-order models).
When interpreted macroscopically, Vi Δxphys/Δtphys denotes the local speed

[V (x, t)]phys at position xphys = x Δxphys and time tphys = t Δtphys, and ρi/Δxphys
denotes the corresponding local density [ρ(x, t)]phys. Cells of macroscopic CAs
typically can be multiply occupied (ρ > 1). For example, when assuming a cell
length Δxphys = 100 m and a maximum dimensional density ρ

phys
max = 150 km−1, the

maximum occupation number is ρmax = 15.

Microscopic CAs models. When a CA represents a microscopic traffic flow model,
a cell can be occupied at most once. An occupied cell represents a vehicle (or parts of
it, cf. Sect. 13.3) driving at the physical speed vphys = v Δxphys/Δtphys. In contrast to
the classical cell-based formulation adopted for macroscopic models, microscopic
CAs are generally formulated in terms of particle-based update rules for the loca-
tion xα , speed vα , and further state variables zα of the driver-vehicle “particle” α

corresponding to occupied cells:

vα(t + 1) = vCA
({xα′(t)}, {vα′(t)}, {zα′(t)}, ξ(t)

)
,

xα(t + 1) = xα(t) + vα(t + 1), (13.2)

zα(t + 1) = zCA
({xα′(t + 1)}, {vα′(t + 1)}, {zα′(t)}).

In this particle formulation, the cell-based Rule 184 constituting the basis of all
microscopic CAs for traffic becomes

vα(t + 1) =
{

1 if xα−1(t) − xα(t) > 1
0 otherwise

(13.3)

xα(t + 1) = xα(t) + vα(t + 1).

As in the mathematical description of car-following models, the first vehicle has the
smallest index α. In many CAs, the cell length Δxphys = leff is equal to the (average)
effective vehicle length, i.e., the actual vehicle length plus the minimum gap. There
are also CAs where one vehicle may occupy several cells (Sect. 13.3). The interactions
are generally local, i.e., the set {α′} of interacting vehicles consists of a few vehicles.
If no multi-anticipation or lane changing is considered, we have {α′} = {α, α − 1}.
The integer state indicator zα codes internal state variables such as a switch for an

4 Simply because it is hard to obtain meaningful results, otherwise.
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active or defensive driving style, brake lights on or off, or direction indicators. The
variable zα and the associated third equation of (13.2) are not present for the simple
models discussed below, with the exception of the KKW model (Sect. 13.3.2).

Verify that the cell-based Rule 184 as given in the Table on page 226 is equiv-
alent to the particle-based formula (13.3).

Realize that, apart from the scaling of the variables, the particle-based formu-
lation of cellular automata is not conceptionally different from discrete-time
car-following models formulated as iterated maps (these can contain additional
state variables such as brake lights as well).

In each time step, the vehicles of microscopic CAs are moved by the distance
vα(t +1) rather than by the distance 1

2 [vα(t)+ vα(t +1)] corresponding to the
positional update of continuous car-following models. Why is this latter rule
not applied to cellular automata although it is of higher order?

13.2 Nagel-Schreckenberg Model

The first, most popular, and simplest CA which is actually used for traffic flow
simulations is the Nagel-Schreckenberg Model (NSM). This model generalizes Rule
184 to a stochastic model with more than two speed levels. In its basic form, it
describes single-lane traffic consisting of identical vehicles of effective length 7.5 m.
Since each vehicle occupies exactly one cell, this is also the cell length. The update
time step is Δtphys = 1 s and the update is performed by following equations of motion
(cf. Fig. 13.2):

1. Deterministic acceleration as a function of the rear-bumper-to-front-bumper gap
gα (number of empty cells),5 and the desired speed v0. The new speed is the mini-
mum of the speed v+1 obtained when accelerating with the free-flow acceleration,
the desired speed v0, and the safe speed vsafe = g:

v∗
α(t + 1) = min

(
vα(t) + 1, v0, gα

)
. (13.4)

2. Dawdling by not accelerating, or braking more than necessary, with a certain
dawdling probability p:

5 To be consistent with the literature, we denote the gap by g instead of s, in this chapter.
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Fig. 13.2 Visualization of the update rules of the Nagel-Schreckenberg model for v0 = 2. The
numbers in the boxes indicate the speed realized in the past time step. The vehicles painted in red
have dawdled at this time

Table 13.2 Parameters of the Nagel-Schreckenberg Model and the slow-to start extension by
Barlovic et al. (see Sect. 13.3.1)

Parameter Typ. value highway Typ. value city

Cell length Δxphys = leff 7.5 m 7.5 m
Time step Δtphys 1 s 1 s
Dawdling probability v0 5 2
Dawdling probability p 0.2 0.1
Dawdling probability p0 when stopped 0.4 0.2
(only for the Barlovic model)

vα(t + 1) =
{

max
(
v∗
α(t + 1) − 1, 0

)
with probability p,

v∗
α(t + 1) otherwise.

(13.5)

3. Driving:
xα(t + 1) = xα(t) + vα(t + 1). (13.6)

As indicated by the time indices, the update is performed simultaneously (parallel
update), i.e., all updates are based on the same old situation. While it is possible to
formulate consistent upstream or downstream sequential update rules for one link,
sequential updating becomes ill-defined for road networks, so it is rarely used.

Try to understand the meaning of the NSM equations of motion with the model
parameters of Table 13.2 from the viewpoint of a driver: Which values have
the desired speed and the maximum acceleration and deceleration, in physical
units? How many seconds is the typical time gap in car-following mode? Are
there reactions to the speed difference? Is the model accident free? What is the
maximum density in physical units?
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The discretization of space and time of the NSM is chosen such that one cell
corresponds to the effective vehicle length, and one time step to a typical time gap
in car-following mode (Table 13.2). These coarse discretizations do not allow for a
realistic description of single-vehicle dynamics since speed and acceleration can take
on only multiples of 7.5 m/s and 7.5 m/s2, respectively. Keeping aside the implicit
parameters Δxphys and Δtphys which are only relevant for the scaling and the physical
interpretation, the NSM has two parameters influencing the dynamics itself: The
dawdling probability p, and the desired speed v0.

Show that the NSM reduces to Rule 184 for p = 0 (deterministic limiting case)
and v0 = 1.

The fact sheet of the NSM shown in Fig. 13.3 displays the same two standard high-
way and city scenarios that have been simulated with the models of the previous chap-
ters. The desired speed v0 = 2 of the city scenario corresponds to 15 m/s = 54km/h,
while the value v0 = 5 for highways corresponds to 37.5 m/s = 126 km/h. From a
macroscopic perspective, the simulation of the highway scenario shows some plausi-
ble results: The speed field of Fig. 13.3a displays a congestion caused by the on-ramp
near road kilometer zero. Furthermore, the patterns inside the congested region move
upstream with a realistic velocity of about −15 km/h. In Problem 13.5, the reader
can verify that the propagation velocity is bounded from below by

cphys, NSM
cong = −(1 − p)

Δxphys

Δtphys
. (13.7)

Consequently, one can calibrate the propagation velocity by varying the dawdling
parameter p (and Δxphys and Δtphys). However, Fig. 13.3a shows significantly less
negative propagation velocities as well. As a consequence, the congestions simu-
lated by the NSM do not consist of persistent stop-and-go waves but of short-living
statistical structures. Moreover, some of these structures appear in regions of free
flow (downstream of the ramp at x > 0 and upstream of the congested region, e.g.,
at xphys ≈ −6 km and tphys ≈ 20 min) where they are never observed in reality, and
even cannot exist for purely kinematic reasons.6 Consequently, these structures are
model artifacts.

Although the stochastic component of the model is always active, the fundamental
diagram in Fig. 13.3b shows a strong scattering in congested traffic, only—in agree-
ment with observations. This can be explained by looking at the consequences of
dawdling: In free traffic, there are few interactions and the speed fluctuations of the
vehicles are independent from each other, with a variance p(1− p). The mean speed
over n vehicles passing a virtual detector within one aggregation interval has an even
smaller variance p(1 − p)/n which carries over to small fluctuations of the flow-
density data (cf. Sect. 4.4). In congested traffic, however, the dawdling may cause a

6 The propagation velocity of perturbations of free traffic is always positive.

http://dx.doi.org/10.1007/978-3-642-32460-4_4
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Fig. 13.3 Fact sheet of the Nagel-Schreckenberg Model for the parameters of Table 13.2. See
Sect. 10.5 for a detailed description of the simulation scenarios

breakdown implying greater and, moreover, correlated fluctuations. Both increase the
fluctuations of the mean speed and hence the fluctuation of the flow-density points.

Because of the stochastic nature of the NSM and other cellular automata, there
exist no steady-state equilibrium and, consequently, no fundamental diagram in the
strict sense. However, one can define steady states in the stochastic sense by calcu-
lating speed expectation values and variances (see Problems 13.4 and 13.5).

The simulation of the city scenario in the Fig. 13.3c–e shows the limits of the
NSM in simulating single vehicles. Due to its coarse-grained nature—there are only
three possible values for the speed and four values for the acceleration—the time
series of gap, speed, and acceleration are not realistic. In spite of being a microscopic
model, the NSM can only be used for describing the macroscopic dynamics. There
are many extensions and refinements to tackle this deficiency. One simple and one
more complex extension are presented in the next section.

13.3 Refined Models

13.3.1 Barlovic Model

A simple extension to make the behavior of the Nagel-Schreckenberg Model some-
what more realistic is to increase the dawdling probability of Eq. (13.5) for slow or

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Fig. 13.4 Simulation of
the highway scenario with
the Barlovic model for the
parameters of Table 13.2
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standing vehicles corresponding to a slow-to-start rule. In the simplest case first pro-
posed by Barlovic et al. the dawdling probability is increased for standing vehicles,
only:

p(v) =
{

p v > 0,

p0 > p v = 0.
(13.8)

This models a simple form of context sensitivity: If drivers are stuck in a jam, they
become less agile and start more slowly.7 Thus, this mechanism self-enforces the
spurious structures of the NSM such that more realistic long-living stop-and-go waves
can be expected for suitable values of p0 (cf. Table 13.2).

The speed field of the highway scenario in Fig. 13.4 displays the expected persis-
tence of the jam waves. However, since the mechanism for triggering the congested
structures is the same as in the NSM, the problem of the unrealistic jam structures
in free traffic (x > 0 in the figure) is not resolved. Moreover, the positive feedback
of the slow-to-start rule makes these structures long-living as well.

13.3.2 KKW Model

As an example of a more complex CA with a very fine cell discretization we present
the KKW model proposed by Kerner, Klenov, and Wolf.

The cells in this model are just 0.5 m long. Consequently, a single vehicle occu-
pies several cells. Generally, one simulates with an effective vehicle length of
15 cells corresponding to a physical value leff = 7.5 m as in the NSM. The time
step is Δtphys = 1 s as well. The resulting fine speed and acceleration steps of
0.5 m/s = 1.8 km/h and 0.5 m/s2, respectively, allow for a more differentiated and
realistic simulation of single vehicles. However, at a desired speed v0 = 67 for the
highway scenario (vphys

0 = 120 km/h), i.e., 68 speed levels, the KKW model is far
away from the original philosophy of cellular automata making sense for a small

7 Remember that cellular automata only make sense for aggregated phenomena. If p0 > p, the
average acceleration of stopped vehicles is lower than that of moving vehicles.
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number of internal states, only. Instead, it behaves de facto like a (coarse-grained)
time-discrete car-following model.

The model equations are outside the scope of this book and are therefore only
described in general terms.8 In contrast to the Nagel-Schreckenberg and Barlovic
models, the KKW model includes responses to speed differences. Moreover, in
contrast to all models presented up to now, there is a range of indifference for the time
gaps in congested traffic: When following a vehicle at the same speed and when this
speed is less than the desired speed (v = vl < v0), there are no deterministic acceler-
ations if the (rational-valued) bumper-to-bumper time gap T = g/v to the preceding
vehicle is in the range [1, k]. The model parameter k > 1 indicates the size k − 1 of
the range of indifference. Notice that this condition implies that, in physical units, the
minimum time gap is given by Tmin = 1 (in physical units of 1 s). Consequently, the
model does not possess a unique fundamental diagram, even for the deterministic
limiting case.

Furthermore, the model is consistent with the so-called “three-phase traffic the-
ory” proposed by Kerner. This theory essentially states that, in addition to free traffic,
there are exactly two qualitatively different “phases” of congested traffic flow, “syn-
chronized traffic”, and “jams”.9 The properties of the simulated synchronized traffic
essentially depend on the range factor k (defining the range of time gaps in this phase)
and on the speed threshold vp (indicating typical speeds in regions of synchronized
traffic). Like in other traffic-flow CAs, the deterministic acceleration is superseded
by stochastic elements. Here, they depend on v and vl and contain five probabili-
ties as model parameters, including the dawdling probability p and the slow-to-start
probability p0.

The simulation of the highway scenario shown in the left column of Fig. 13.5
reveals a clearly more realistic behavior than the Nagel-Schreckenberg and Barlovic
models. Particularly, the flow-density diagram shows a more realistic scattering of
the data points, and the stop-and-go waves emerging for t > 30 min have a correct
propagation velocity and a sufficient wavelength. However, the propagation velocities
c ≈ −40 km/h inside the synchronized traffic state (the yellow lightly congested
region with little structures appearing before the stop-and-go waves) and the velocity
of the transition zone between free and synchronized traffic are significantly too
negative.10

The simulation of the city scenario in the right column of Fig. 13.5 exempli-
fies the effect of the fine discretization and the similarity of the KKW model to
car-following models: The speed and acceleration profiles of single vehicles are
meaningful. However, the initial accelerations are too low (they are restricted to
Δxphys/(Δtphys)

2 = 0.5 m/s2), and the decelerations during the braking phase at the
red traffic light are unrealistically high. This behavior is due to the safe-speed rule

8 See pp. 411 in the book The Physics of Traffic by B.S. Kerner (Springer, 2004).
9 For details, the reader is referred to the two monographes of Kerner on this topic, “The Physics of
Traffic” (Springer, 2004), and “The Long Road to Three-Phase Traffic Theory” (Springer, 2009).
10 This artifact vanishes if the synchronized state is eliminated by reducing the range factor k from
its published value 2.55 to k = 1 or by setting vp = v0.
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Fig. 13.5 Simulation of the two standard scenarios “highway” (left) and “city traffic” (right) for the
KKW model with standard model parameters taken from Kerner’s books. For the highway scenario,
the desired speed has been changed to v0 = 67 (corresponding to 120 km/h). For the city scenario,
we set v0 = 28 (50.4 km/h) and change the speed threshold vp to the value 14. See Sect. 10.5 for a
detailed description of the simulation scenarios

inherited from the NSM which does not takes into account kinematic constraints.
The KKW model has no desired braking deceleration as a model parameter.

Introducing realistic deceleration characteristics to the KKW model. Let us
consider the following modification as an example for model development. One of
the rules of the KKW model restricts the maximum speed of a vehicle to the safe
speed vsafe = g of the Nagel-Schreckenberg Model. In the worst case, this leads to
decelerations of −v0 (corresponding to 14 m/s2 for the city scenario and even more
for highway parameters). It is plausible to introduce kinematic restraints by replacing
this safe speed rule by a discretized version of the safe speed (11.10) of Gipps’ model,

vsafe(s, vl) = floor

[
min

(
g,−b +

√
b2 + v2

l + 2bg

)]
. (13.9)

This rule gives the maximum speed given a reaction time of 1 (1 s in physical units),
and a braking deceleration of b. The minimum condition is necessary since, oth-
erwise, the stochastic terms of the KKW model may led to collisions for some
circumstances.

The simulation of the city scenario (right column of Fig. 13.6) shows, in fact,
realistic decelerations of the order given by the new model parameter b. The outcome
for the highway scenario (left column) has not changed qualitatively.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Fig. 13.6 Simulation of the two standard scenarios “highway” (left) and “city traffic” (right) for
the refined KKW model where the original safe speed rule vsafe = g is replaced by Eq. (13.9). The
KKW model parameters are the same as in Fig. 13.5. The new parameter b = 4 corresponds to a
deceleration v̇ = − 2 m/s2

13.4 Comparison of Cellular Automata and Car-Following
Models

The advantages and disadvantages of CAs with respect to other mathematical model
classes are essentially due to the discrete scaling of time, space, and state variables.

This leads to a few advantages. Firstly, because of their simplicity, cellular
automata are easier to implement, especially for complex road networks or if the
movements are truly two-dimensional as in pedestrian traffic.11

Secondly, simple CAs have a speed advantage over continuous models. However,
this advantage becomes less pronounced for the more elaborated models, especially
if they contain many rules, or if they are so fine-grained as the KKW model where
15 update steps correspond to a single update step of a continuous model. Moreover,

11 When implementing continuous social-force pedestrian models, the main problem is the book-
keeping to obtain references to the pedestrians of the local environment. This is typically solved by
a virtual grid such that, at any time, each pedestrian is associated with an element of this grid. Since
CAs are based on a fixed regular grid with predetermined neighboring relations, no such problems
arise for CAs.
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with ever-growing processor power and the increasing use of graphics processors for
the core calculations, this speed advantage is no longer relevant, for most purposes.12

The grid-like nature of cellular automata also has some disadvantages. Since CAs
are phenomenological rather than based on intuitive concepts or strategies, most
model parameters are not intuitive and their values are not realistic.13 Furthermore,
traffic CAs need ad-hoc stochastic terms (such as the dawdling term of the NSM)
to avoid artifacts or extreme sensitivities with respect to model parameters or initial
values. This lack of robustness makes them unsuitable for many applications. Finally,
because of their discrete nature, CAs are not suitable for modeling the movement of
individual vehicles which is necessary when investigating different driving styles or
assessing the influence of driver-assistance systems or infrastructure-based control
measures on traffic flow (see Chap. 21). Even refined models show unrealistic behav-
ior in some situations, especially when approaching slower or standing vehicles, or
red traffic lights.

Since many details are averaged out on grander scales, CAs can and are suc-
cessfully applied as kernel for a model-based short-term traffic state prediction (see
Chap. 18). However, macroscopic models such as the Cell-Transmission Model are
competitors for this type of applications.

Problems

13.1. Dynamic properties of the Nagel-Schreckenberg Model
The numerical value of v0 for the highway scenario given in Table 13.2 corresponds to
which physical value? How long does it take for an unimpeded vehicle to accelerate
from zero to 100 km/h (i) in the deterministic Nagel-Schreckenberg Model (p = 0)
and (ii) on average in the stochastic model with p = 0.4?

13.2. Approaching a red traffic light
Describe the approaching strategy of a driver modeled with the deterministic Nagel-
Schreckenberg Model (p = 0) when approaching a red traffic light if there are no other
influencing vehicles. Which braking decelerations are reached in physical units for
city traffic (v0 = 2)?

13.3. Fundamental diagram of the deterministic NSM
Draw the fundamental diagram of the deterministic NSM for v0 = 2 (cities) and
v0 = 5 (highways). What are the physical values of (i) the desired speed, (ii) the
propagation velocity of perturbations in congested traffic, (iii) the time gap, and (iv)
the maximum density? Which qualitative and quantitative changes can be expected
for the stochastic model (dawdling probability p > 0)?

12 Graphics processors are optimized for calculations with real numbers, so the speed advantage of
using integers is essentially lost.
13 When presenting CA simulations, many authors even do not bother to translate the results into
physical units.

http://dx.doi.org/10.1007/978-3-642-32460-4_21
http://dx.doi.org/10.1007/978-3-642-32460-4_18
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13.4. Macroscopic desired speed
Imagine completely free traffic flow (no interactions between vehicles) and a sta-
tionary situation where expectation values do not change with time. Show that, in
physical units, the macroscopic speed (vehicle speed averaged over many vehicles
and/or time steps) of the NSM is given by

V phys
max = (v0 − p)Δxphys

Δtphys
.

13.5. Propagation velocity of downstream jam fronts
The most negative propagation velocity is realized for the position of vehicles starting
from a queue of waiting vehicles (ρmax = 1) when the traffic light is green. Show that
the velocity of this “starting wave” is given by Eq. (13.7).
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Chapter 14
Lane-Changing and Other Discrete-Choice
Situations

Imagination is more important than knowledge.
Albert Einstein

Abstract Simulating any nontrivial traffic situation requires describing not only
acceleration and braking but also lane changes. When modeling traffic flow on entire
road networks, additional discrete-choice situations arise such as deciding if it is
safe to enter a priority road, or if cruising or stopping is the appropriate driver’s
reaction when approaching a traffic light which is about to change to red. This
chapter presents a unified utility-based modeling framework for such decisions at
the most basic operative level.

14.1 Overview

From the driver’s point of view, there are three main actions that directly influence
traffic flow dynamics: Accelerating, braking, and steering.1 The dynamics of steering
is part of the vehicle dynamics and therefore the domain of sub-microscopic models
(cf. Table 1.1). Traffic flow dynamics describes the dynamics one level higher by
directly modeling lane-changing decisions and the associated actions. At this level,
the set of possible actions is discrete, i.e., performing a lane change, or not. Details of
the lane-changing maneuver such as duration or lateral accelerations are not resolved,
and the lane-changing itself is assumed to take place instantaneously.2

1 Further actions such as using direction indicators, flashing headlights, or applying the horn, are
only considered in very detailed models.
2 In reality, the duration of a lane-changing maneuver is of the order of a few seconds. In many
microscopic traffic flow simulators, lane changes are represented graphically as a smooth process
but simulated as an instantaneous jump to the target lane. For the other drivers, the car is already
on the target lane when the visualized lane change begins.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 239
DOI: 10.1007/978-3-642-32460-4_14, © Springer-Verlag Berlin Heidelberg 2013
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Discrete decisions and actions can also pertain to the longitudinal dynamics, in
parallel to the continuous actions modeled by the acceleration function amic(s, v, vl):
When approaching a yellow traffic light which is about to turn red, the driver has
to decide whether it is safe to pass this traffic light without changing speed, or if it
is necessary to stop. Furthermore, lane changes generally influence the longitudinal
acceleration of the decision maker (e.g., preparing for a lane change) or that of
the other affected drivers (e.g., cooperatively making a gap to enable a change,
or restoring the safety gap afterwards). Discrete choices in the traffic-flow context
involve several levels:

1. The strategic level (destination choice, mode choice, and route choice) is modeled
within the domain of transportation planning (cf. Table 1.1).

2. The tactical level includes anticipatory measures to enable or facilitate operative
actions such as changing lanes or entering a priority road. This includes coopera-
tive behavior such as allowing another vehicle to merge at a point of lane closure
(zipper mode merging). Modeling the tactical level is notoriously difficult and is
only attempted in the most elaborate commercial simulators.

3. On the operative level, the actual decision is made.
4. Finally, in the post-decision phase, the actions pertaining to this decision are

simulated, e.g. performing the lane change or keeping to one’s lane, waiting or
entering a priority road, or cruising versus stopping at the traffic light.

In this chapter, we restrict the description to the operative level and the post-decision
phase. We model the different discrete-choice situations consistently in terms of
maximizing utility functions associated with each alternative. The utility of a given
alternative increases with the (hypothetical) longitudinal acceleration that would be
possible once this alternative had been adopted.

Using accelerations as utility ensures the compatibility between the accelera-
tion and discrete-choice models. Furthermore, this ansatz is parsimonious since it
minimizes the number of parameters and assumptions. For example, when the accel-
eration model is parameterized to simulate aggressive drivers, the lane-changing style
of these drivers becomes aggressive as well, without introducing further parameters.
Generally, any aspect considered in the longitudinal model carries over to the deci-
sion model. Specifically, the lane-changing considerations take into account speed
differences, brake lights, or anticipative elements if, and only if, these exogenous
factors are included in the acceleration model.

The approach reaches its limits when tactical and cooperative measures are crucial.
One example of such a situation is zipper-like merging, or, more generally, merges
to a congested target lane.

14.2 General Decision Model

We assume that, at a given moment, the driver can chose from a discrete set K of
alternatives k. In the context of lane changes, the alternatives would be the (active)
decisions to change to the left or right, and the (passive) decision not to change.

http://dx.doi.org/10.1007/978-3-642-32460-4_1
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When about to enter a priority road, the alternatives would be to initiate the merging,
or stopping and waiting for a sufficient gap between the main-road vehicles. We
assume that the drivers are aware of the consequences of their decisions, i.e., they
can anticipate, for each alternative, the speeds and gaps of all involved vehicles. This
allows us to calculate all relevant accelerations (i.e., the utilities) using the normal
acceleration functions of these vehicles. If the acceleration model is formulated as an
iterated map or cellular automaton, the acceleration is calculated using Eq. (10.11).

In the decision process, the driver maximizes his or her utility (incentive criterion)
subject to the condition that the action is safe (safety criterion). Both criteria are based
on the acceleration function as follows:

Safety criterion. None of the drivers β affected by the consequences of opting for
alternative k (including the decision maker α) should be forced to perform a critical
maneuver as a consequence of a decision for alternative k. A maneuver is deemed to
be critical, if it entails braking decelerations exceeding the safe deceleration bsafe:

a(β,k)
mic > −bsafe. (14.1)

The value of the model parameter bsafe (of the order of 2 m/s2) is comparable to the
comfortable deceleration b of the IDM or Gipps’ model. For reason of parsimony,
the safe deceleration can be inherited from these models (bsafe = b), if applicable.

Incentive criterion. Choosing among all safe alternatives k′, the driver α selects the
option of maximum utility U :

kselected = arg max
k′ U (α,k′). (14.2)

As in most other discrete-choice models, the incentive criterion is based on a rational
decision maker (also called homo oeconomicus) who maximizes his or her utility. In
the simplest case, the utility is directly given by the acceleration function,

U (α,k) = a(α,k)
mic . (14.3)

In contrast to the standard framework for discrete decisions (multinomial Logit and
Probit models and their variants) we do not assume explicit stochastic utilities unless
the acceleration model itself contains stochastic terms.3

For some discrete-choice situations such as discretionary lane changes, one needs
an additional threshold preventing all active decisions (e.g., a decision to change
lanes rather than to stay put) when the associated advantage is only marginal. Such
a threshold prevents unrealistically frequent withdrawals of an active decision taken
in the last time step which could, for example, lead to frantic lane-changing actions.

3 The rationale behind stochastic utilities is to include in a global way all uncertainties of the decision
process and contingencies in evaluating the utilities. In microscopic traffic flow simulations, there
are so many directly considered contingencies in form of the positions and types of the involved
vehicles influencing the decision process that further stochastic elements are superfluous.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Fig. 14.1 Notation for a lane
change of the center vehicle
α to the left. All quantities
with a hat pertain to the new
situation after the (possibly
hypothetical) lane change s f
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Traffic rules (such as a “keep right” directive) may also enter the utility. Finally, one
can include all consequences of a decision to other drivers by introducing a politeness
factor (Sect. 14.3.3).

14.3 Lane Changes

Figure 14.1 depicts the general situation. The vehicle α of the decision maker (speed
vα) is located in the center. There are three alternatives: Change to the right, change
to the left, and no change. Without loss of generality, we compare only the last two
alternatives. Here, and in the following, we denote the vehicle of the decision maker
with α, the leading vehicle with l, and the following vehicle with f . All accelerations,
gaps, or vehicle indices with a hat refer to the new situation after the lane change has
been completed while quantities without a hat denote the old situation.4

14.3.1 Safety Criterion

Assuming that the present situation (i.e., the alternative “no change”) is safe, the
safety criterion (14.1) refers to the acceleration â f̂ of the new follower (β = f̂ ) after
a possible change, and also to the new acceleration âα of the decision maker him or
herself (β = α). For the follower, this criterion becomes

â f̂ = amic(ŝ f̂ , v f̂ , vα) > −bsafe safety criterion. (14.4)

In order that this condition also prevents lane changes whenever there are follow-
ing vehicles on the target lane at nearly the same longitudinal position (the gap ŝ f̂ is

4 Examples: a f̂ denotes the acceleration of the new follower in the old situation, â f the acceleration
of the old follower in the new situation, and ŝα the gap of the decision maker’s vehicle in the new
situation. Notice that α̂ = α (the decision maker is the same before and after the lane change), and
v̂ = v (lane changes are modeled as instantaneous jumps without changes of the speed).
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negative, i.e., a change would result in an immediate accident), the acceleration func-
tion amic(s, v, vl) should return prohibitively negative values if s < 0. The parameter
bsafe indicates the maximum deceleration imposed on the new follower which is
considered to be safe (cf. Problem 14.2). If one simulates heterogeneous traffic with
individual acceleration functions, the acceleration function â f̂ of the new follower

f̂ is calculated with the function and parameters of this driver-vehicle unit.5

Regarding the safety of the decision maker him- or herself (β =α), condi-
tion (14.4) prevents changes if the new gap ŝα is dangerously low such that
âα = amic(ŝα, vα, vl̂)< −bsafe. Since this condition is less restrictive than the incen-
tive criterion to be discussed below, there is no need to explicitly check this condition.
In any case, the condition on the acceleration function to return prohibitively nega-
tive values for negative gaps guarantees that changes are prohibited if the leader on
the target lane is essentially at the same longitudinal position (ŝα < 0) which would
result in an immediate crash.

14.3.2 Incentive Criterion for Egoistic Drivers

Most lane-changing models formulate the incentive criterion exclusively from the
perspective of the decision maker ignoring the advantages and disadvantages to the
other drivers. Furthermore, the lane-changing behavior depends on the legislative
regulations of the considered countries. For example, a right-overtaking ban is in
effect on most European highways.6 Here, we will restrict to the simpler situations
of lane changes on highways in the United States, or more generally to lane changes
in city traffic, where lane usage is only mildly asymmetric.7 Then, the incentive
criterion for the egoistic driver reads

âα − aα > Δa + abias, (14.5)

where
aα = amic(sα, vα, vl) âα = amic(ŝα, vα, vl̂). (14.6)

The lane-changing threshold Δa prevents lane changes when the associated advan-
tage is only marginal (cf. Table 14.1). Furthermore, the constant weight abias intro-
duces a simple form of asymmetric behavior. If a keep-right directive is to be modeled,

5 One may object that—lacking mind-reading abilities—drivers do not know the acceleration func-
tion of others. However, the evidence allows for a coarse judgement. At the least, one can distinguish
between cars and trucks, and between normal and evidently very sluggish or agile drivers.
6 For asymmetric “European” lane-changing rules we refer to the literature (Kesting, A., Treiber,
M., Helbing, D.: General lane-changing model MOBIL for car-following models).
7 Often, a “keep to the right” directive is in effect in countries with right-hand traffic. Furthermore,
in the United States, one should preferably overtake on the left lanes. However, this is not enforced
and, de facto, overtaking takes place to the left and to the right.
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Table 14.1 Parameters of the lane-changing models 14.4–14.7

Parameter Typical value

Limit for safe deceleration bsafe 2 m/s2

Changing threshold Δa 0.1 m/s2

Asymmetry term (keep-right directive) abias 0.3 m/s2

Politeness factor p (MOBIL lane-changing model) 0.0–1.0

The parameters bsafe and Δa apply to any changing model, abias �= 0 only if asymmetric driving
rules are to be modeled, and p �= 0 if the drivers are not purely egoistic

abias would be positive for changes to the left, and reverses its sign for changes to
the right. This contribution should be relatively small (|abias| � bsafe) but greater
than Δa. Otherwise, vehicles would not change to the right lanes if the highway was
essentially empty (see Table 14.1).

Jamming paradox: The grass is always greener on the other side. A motivation
to change lanes in jammed situations is the observation that the other lanes are faster,
most of the time, suggesting that these lanes are “better”. In Problem 14.1 we show
that this is a fallacy: Even if the travel times on all lanes are the same, the fraction of the
time one finds oneself on the slower lane is greater than 50 % on any lane. The fallacy
is resolved by observing that, when the other lanes are slower, the active overtaking
rate (overtaken vehicles per time unit) is greater than the passive overtaking rate in
the periods where the other lanes are faster. Since the models presented here do not
include tactical components, the simulated drivers also succumb to this fallacy and
tend to change lanes unnecessarily often.

14.3.3 Lane Changes with Courtesy: MOBIL Model

The changing conditions (14.4) and (14.5) characterize purely egoistic drivers who
consider other drivers only via the safety criterion. If the lane change is mandatory as
in lane-closure or merging situations, this behavior is plausible (and, additionally, the
changing threshold Δp = 0). On the other hand, if the lane change is not necessary
(also termed a discretionary lane change), most drivers refrain from changing lanes if
their own advantage is disproportionally small compared to the disadvantage imposed
on others, even if the safety criterion is satisfied. This can be modeled by augmenting
the balance of the incentive criterion with the utilities of the affected drivers, weighted
with a politeness factor p,

âα − aα + p
(

â f̂ − a f̂ + â f − a f

)
> Δa + abias MOBIL incentive. (14.7)

For the special case when politeness p = 1 (corresponding to a rather altruistic driver),
no bias (abias = 0), and negligible threshold (Δa = 0), a lane change takes place if the
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sum of the accelerations of all affected vehicles increases by this maneuver.8 Hence
the acronym for this model:

MOBIL—Minimizing overall braking deceleration induced by lane changes.

The central component of the MOBIL criterion is the politeness factor indicating
the degree of consideration of other drivers if there are no safety restraints. Since
a degree of consideration amounting to p = 1 is rare (which would correspond to
“Love thy neighbor as thyself”), sensible values are of the order 0.2.9

What is your estimate for the politeness factor p of the two drivers sketched
in Fig. 11.2? Is it possible to describe by appropriate, possibly event-driven
values of the politeness p following situations: (i) purely altruistic drivers
(exclusively caring for the well-being of others), (ii) malign drivers (accepting
own disadvantages to obstruct others), (iii) self-righteous drivers (obstructing
other speeding drivers to “teach” them the traffic rules), (iv) timid drivers
quickly making way when tailgated by others?

14.3.4 Application to Car-Following Models

The general lane-changing criteria presented above return explicit rules only when
combined with a longitudinal acceleration model. In principle, the safety criterion
(14.4) and the incentive criteria (14.5) or (14.7) are compatible with any longitudinal
model providing the acceleration function amic either directly (time-continuous car-
following models) or indirectly via Eq. (10.11) (time-discrete iterated coupled maps,
see Sect. 10.2, or cellular automata, see Chap. 13).

When applying the safety criterion (14.4) to any acceleration model satisfying
the general plausibility conditions discussed in Sect. 11.1, we obtain a minimum
condition for the lag gap ŝ f̂ of the new follower behind the changing vehicle on the
new lane,

ŝ f̂ > ssafe(v f̂ , vα). (14.8)

The safe gap function ssafe(v f , v) is obtained by solving the equation defining mar-
ginal safety of the follower,

8 As always, the safety criterion must be satisfied unconditionally. However, safety is nearly always
given if the incentive criterion for p = 1 is satisfied.
9 On the interactive simulation website www.traffic-simulation.de, one can simulate traffic flow
with variable degree of politeness (altruism) which can be controlled by the user. The underlying
acceleration model is the IDM (see Sect. 14.3.4).

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_13
http://dx.doi.org/10.1007/978-3-642-32460-4_11
www.traffic-simulation.de
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amic
(
ssafe, v f , v

) = −bsafe, (14.9)

for the gap ssafe. Notice that a unique solution ssafe exists by virtue of the plausibility
condition (11.2) stating that, in the interaction range, the function amic increases
strictly monotonically with respect to s. This means, the safety criterion allows
changes if the following gap (lag gap) on the target lane is greater than some minimum
value depending on the speeds of the changing vehicle and the new follower f̂ , i.e.,
the safety criterion becomes a generalized gap-acceptance rule for the lag gap.

Similarly, the general incentive criterion (14.5) of egoistic drivers can be written
as a generalized gap-acceptance rule for the lead gap of the changing vehicle on the
new lane,

ŝlead = ŝα > sadv(sα, vα, vl , vl̂). (14.10)

The advantageous gap function sadv(s, v, vl , vl̂) is obtained by solving the equation

amic
(
sadv, v, vl̂

) − amic(s, v, vl) = Δa + abias (14.11)

defining a marginal change of utility, for sadv. Again, condition (11.2) ensures that a
unique solution sadv exists if amic(s, v, vl) + Δa + abias < afree(v) where afree(v) =
amic(∞, v, vl) is the free-flow acceleration function (11.3). In contrast to the safety
condition, however, this is not always satisfied. Then, sadv is not unique or even does
not exist. Obviously, this corresponds to an infinite advantageous gap reflecting the
fact that there is no need to change lanes because one can either drive freely on the old
lane, or there is an obstruction but it is so small that the finite threshold Δa + abias
prevents lane changing for marginal utility improvements, even if the target lane
is free. In the following, we discuss the application to three specific longitudinal
models.

Rules for the Optimal Velocity Model. Introducing the OVM acceleration v̇ =
(vopt(s)−v)/τ into the safety criterion (14.8) with Eq. (14.9), we obtain the condition

ŝ f̂ > sOVM
safe (v f̂ ) = se

(
v f̂ − τbsafe

)
(14.12)

for the minimum safe lag gap of the OVM driver. Here,

se(v) = vopt−1(s) (14.13)

is the inverse function of the optimal-velocity function indicating the steady-state
gap for a given speed, i.e., vopt(se(v)) = v (see the paragraph below Eq. (10.13)
for details). This means that, after the (yet hypothetical) change, the optimal veloc-
ity of the follower on the target lane must not be smaller than the actual speed of
this follower minus the safe deceleration multiplied by the speed adaptation time,
vopt(ŝ f̂ ) > v f̂ − τbsafe.

In analogy, the incentive criterion (14.10) for egoistic drivers with Eq. (14.11)
leads to a further gap-acceptance rule for the lead gap between the changed vehicle

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_10
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and its new leader:

ŝlead > sOVM
adv (sα) = se

[
vopt(sα) + τ(Δa + abias)

]
. (14.14)

For the special case of the optimal velocity function (10.22) corresponding to a
triangular fundamental diagram, and its inverse function se(v) = s0 +vT for v < v0,
we obtain the three conditions10

ŝ f̂ > s0 + T
(

v f̂ − bsafeτ
)

,

ŝlead > sα + T τ (Δa + abias) , (14.15)

sα < s0 + T [v0 − τ (Δa + abias)] .

Notice that the parameters T and τ are both of the order of 1 s (cf. Table 10.1,
and the accelerations bsafe and Δa are of the order of 1 m/s2 or less, respectively
(cf. Table 14.1). Consequently, all contributions in the conditions (14.15) containing
products of τT are of the order of 1 m or less, i.e., negligible compared to the gaps
sα , ŝα , and ŝ f̂ . Effectively, this results in

ŝ f̂ > se(v f̂ ), ŝlead > sα, vopt(sα) < v0. (14.16)

This means, there are three conditions for a lane change to be safe and desirable:
(i) the new lag gap is greater than the safe gap, (ii) the lead gap on the target lane
is larger than the actual lead gap, and (iii) an obstruction exists. We emphasize that,
for bsafe = Δa = 0, rules that are identical to the gap acceptance rules (14.16) can
be derived for any longitudinal model with a unique steady-state speed function if
the speed difference does not enter as an exogenous factor. This includes Newell’s
model (Sect. 10.8), and even some cellular automata such as the Nagel-Schreckenberg
Model (Sect. 13.2).

However, the gap-acceptance rules (14.16) are unrealistic since, in real situations,
the minimum lead and lag gaps depend crucially on speed differences: Given a certain
lag gap, it makes a big safety difference whether the new follower drives at about the
same speed or approaches quickly. Therefore, we now apply the general safety and
incentive gap-acceptance rules (14.8) and (14.10) to acceleration models taking into
account the speed difference. We expect that this new exogenous factor carries over
to the resulting lane-changing rules in a consistent way.

Rules for the Full Velocity Difference Model. The acceleration of the Full Veloc-
ity Difference Model (FVDM) is that of the OVM plus a contribution depending
linearly on the speed difference, aFVDM(s, v, vl) = aOVM(s, v) − γ (v − vl) (cf.
Sect. 10.7). Applying the safety condition (14.8) and the incentive criterion (14.10)
to this acceleration function gives

10 The third condition ensures that sadv is defined. Otherwise, there is never an incentive for changing,
see the text below (14.11) for details.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_13
http://dx.doi.org/10.1007/978-3-642-32460-4_10
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ŝ f̂ > sFVDM
safe (v f̂ , vα) = se

[
v f̂ − τbsafe + τγ (v f̂ − vα)

]
, (14.17)

ŝlead > sFVDM
adv (sα, vl , vl̂) = se

[
vopt(sα) + τ

(
Δa + abias + γ (vl − vl̂)

)]
. (14.18)

As a result, the minimum lead and lag gaps on the target lane allowing a change
depend on the speed difference, i.e., they are consistent with the acceleration law.

We emphasize that the speed difference contributions are significant as illustrated
by following example: With typical value of the FVDM speed adaptation time τ = 5 s
and the sensitivity γ = 0.6 s−1 for speed differences (cf. the caption of Fig. 10.6),11

we have γ τ = 3, i.e., the speed differences in the arguments of the equilibrium gap
function se(v) are weighted thrice with respect to the respective speeds themselves.
Assuming furthermore a linear steady-state gap function se(v) = s0 + vT (corre-
sponding to the congested branch of the triangular fundamental diagram) and bound
traffic on either lane (no gap is larger than s0 + v0T ), the above conditions become

ŝ f̂ > sFVDM
safe (v f̂ , vα) = s0 + T

[
v f̂ − τbsafe + γ τ(v f̂ − vα)

]
safety, (14.19)

ŝlead > sFVDM
adv (sα, vl , vl̂) = sα + T τ

[
Δa + abias + γ (vl − vl̂)

]
incentive.

(14.20)

With the steady-state time gap T = 1.4 s, the lane-changing threshold Δa = 0.1 m/s2,
and asymmetry abias = [0.3]m/s2 (cf. Tables 10.1 and 14.1), this leads to following
relations:

• The minimum lag gap implied by the safety rule increases by 1.4 m when all
affected drivers drive faster by 1 m/s. Furthermore, it increases by 4.2 m if only
the new follower drives faster by 1 m/s.

• If the old and new leaders drive at the same speed, the incentive criterion implies
that a lane change to the left is desirable if the new lead gap is larger than the
old one by at least 2.8 m while the asymmetry term makes changes to the right
desirable even if there is a smaller lead gap provided it is smaller by at most
1.4 m. Furthermore, every 1 m/s speed advantage on the new lane compensates for
a decrease of the new lead gap by 4.2 m.

Rules for the Intelligent Driver Model. In contrast to most versions of the OVM
or FVDM, the IDM safe gap function ssafe(v f̂ , vα) defining the gap-acceptance rule
(14.8) for the lag gap can be analytically calculated,

ŝ f̂ > sIDM
safe (v f̂ , vα) = s∗(v f̂ , v f̂ − vα)

√
1
a

(
afree(v f̂ ) + bsafe

) . (14.21)

11 Because of the additional anticipation introduced by the speed difference term, larger and more
realistic values of the speed adaptation time τ can be assumed for the FVDM compared to the OVM
which would lead to crashes if τ exceeds the order of 1 s.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Fig. 14.2 Minimum lag gap (14.21) of the IDM as a function of the speed vα of the changing
vehicle, and the speed difference Δv = v f̂ −vα of the new follower with respect to this vehicle. The
distance between two thin and thick lines correspond to a change of the minimum gap by 10 and
50 m, respectively

In the improved IDM (IIDM, Sect. 11.3.7), the condition becomes even simpler and
does not depend on the desired speed parameter,

ŝ f̂ > sIIDM
safe (v f̂ , vα) = s∗(v f̂ , v f̂ − vα)

√
1 + bsafe

a

. (14.22)

In any case, the denominators are of the order unity, so the minimum lag gap is
essentially given by the dynamical desired IDM gap s∗, Eq. (11.15), evaluated for
the new follower.

Figure 14.2 shows the minimum lag gap (14.21) for the highway IDM parameters
of Table 11.2 and bsafe = b = 1.5 m/s2. If, for example, both the changing vehicle
and the following vehicle on the target lane drive at 50 km/h, the minimum lag gap
according to the safety criterion is about 10 m. At this gap, the new follower would
have to brake with a deceleration bsafe in order to regain his or her safe gap which is
of the order of 17 m.12

If, however, the new follower drives at 70 km/h, i.e., approaches by a rate of
Δv = 20 km/h, the safety criterion displayed in Fig. 14.2 gives a minimum acceptable
gap of about 40 m amounting to an increase of about 6 m for every 1 m/s the follower
drives faster. As in the FVDM, the IDM minimum gap depends crucially on the speed
difference. In contrast to the former, the dependence is a nonlinear one and takes into
account kinematic facts such as the quadratic dependence of the braking distance on
the speed.

12 In fact, investigations on trajectory data show that drivers temporarily accept shorter gaps after
a change and only brake minimally such that the gap increases only gradually to the normal gap.
This is part of the tactical behavior which is not considered here.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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The minimum gap sadv(sα, vα, vl , vl̂) for an advantageous lane change appearing
in the incentive criterion (14.10) is also accessible to analytical treatment resulting in

ŝlead = ŝIDM
adv (s, v, vl , vl̂) = s∗(v, v − vl̂)√(

s∗(v,v−vl )
s

)2 − Δa+abias
a

. (14.23)

In agreement with intuition, the minimum advantageous gap depends strongly on the
speed difference between the actual and the new leader, i.e., essentially on the speed
difference driven on the new and old lanes: The higher the speed on the new lane,
the smaller the accepted gaps for a change to this lane (cf. Fig. 14.3). Notice that
the IDM gap-acceptance criterion accepts very small gaps if the leading vehicles are
significantly faster. Nevertheless, the situation remains safe: After all, it is certain
that the gaps will increase in the following seconds.13

14.4 Approaching a Traffic Light

When approaching a signalized intersection and the traffic light switches from green
to yellow, it is necessary to decide whether it is better to cruise over the intersection
with unchanged speed, or to stop (Fig. 14.4). This can be modeled within the general
discrete-choice framework of Sect. 14.2. Since incentives are not relevant for this

13 Such “close shaves” may not feel comfortable to most drivers, however. In order to suppress
such a behavior, it is most straightforward to modify the minimum condition of Eq. (11.15) for the
dynamical desired IDM gap s∗(v,Δv), e.g., by not allowing the dynamical IDM gap s∗ to be below
s0 + 1

2 vT .

http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Fig. 14.4 Illustration of the decision to stop or to cruise at a traffic signal about to go red

situation,14 the decisions are determined by the safety criterion alone: “Stop if it is
safe to do so”. In our general framework, the decision to stop is considered as safe
if the anticipated braking deceleration will not exceed the safe deceleration bsafe at
any time of the braking maneuver. For models with a plausible braking strategy, it
is sufficient to consider the braking deceleration for this option at decision time.15

To calculate this deceleration, we model the traffic light as a standing virtual
vehicle (vl = 0, Δv = v, desired speed v0 = 0) of zero extension such that s denotes
the distance of the front bumpers to the stopping line. This results in the simple rule

cruise if amic(s, v, v) < −bsafe ⇔ s < scrit(v),
stop otherwise.

(14.24)

Obviously, the critical distance scrit where the decision changes is a special case of
the safe gap function (14.8) of the safety criterion,

scrit(v) = ssafe(v, 0). (14.25)

It is particularly instructive to apply this rule to the IDM safe gap (14.21) for the
common situation when the driver approaches the signalized intersection at his or
her desired speed, and the IDM parameters satisfy approximatively a = b = bsafe. In
this case, scrit(v)= s∗(v, v) is equal to the dynamic desired IDM gap for Δv = v,
and condition (14.24) becomes

cruise if s < s∗ = s0 + v0T + v2
0

2b ,

stop otherwise.
(14.26)

14 Sometimes, one observes that drivers pass yellow traffic lights, or even accelerate, if they could
safely stop. Obviously, there are incentives at work. We will not attempt to model this behavior.
15 If larger decelerations are unavoidable for kinematic reasons, the drivers described by such
models will attempt to bring the situation under control as soon as possible, i.e., they will brake
hardest at the beginning. The IDM belongs to this model class.
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Fig. 14.5 Critical distance to the stopping line of a traffic light at decision time as a function of
the speed for the IDM with b = 2 m/s2, bsafe = 3 m/s2, and further IDM parameters taken from
Table 11.2. Also shown is the associated TTC value

When setting the desired time gap T equal to the driver’s reaction time, this means
that one stops if, at decision time, the distance to the stopping line is greater than the
stopping distance (11.8). This is perfectly consistent since this distance (which we
have already introduced when formulating Gipps’ model) is necessary to stop in a
controlled way taking into account reaction time.

Figure 14.5 shows that, also for more general parameter settings, the critical dis-
tance increases quadratically with the speed, while the critical time-to-collision
(TTC) (here defined as the time to reach the stopping line at unchanged speed)
increases essentially linearly. We emphasize that the critical TTC of 3 s for 50 km/h,
and 4 s for 70 km/h is consistent with European legislative regulations for the mini-
mum duration of yellow phases of traffic lights at streets with the respective speed
limits (Problem 14.2).

14.5 Entering a Priority Road

This situation can be considered as a special case of mandatory lane-changing deci-
sions:

• The (nearest lane of the) main-road corresponds to the target lane of the lane-
changing situation.

• The merging action to enter the road corresponds to the lane-changing maneuver.
• The speed of the merging/lane-changing vehicle is very low or zero (the latter is

true if there are stop signs, or the entering vehicle is already waiting).
• And the incentive criterion is always satisfied.16

In contrast to normal (discretionary) lane-changing decisions, entering a priority road
implies two safety criteria, one for the new follower and one for the merging vehicle

16 After all, a driver wants to enter the main-road as soon as it can be done safely.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Fig. 14.6 Illustration of the safety criterion for the decision “stopping/waiting or merging” when
entering a priority road

itself. The latter was not necessary for discretionary lane changes since, there, a
fulfilled incentive criterion automatically implies safety for the decision maker him
or herself (cf. the last paragraph of Sect. 14.3). When formulating the criteria, we
assume that the driver of the merging vehicle can anticipate his or her speed vα , the
speeds v f and vl of the follower and leader, and the corresponding gaps s f and sl ,
respectively, at merging time (Fig. 14.6)17

merge if s f > ssafe(v f , vα) AND slead > ssafe(vα, vl),

stop or wait otherwise.
(14.27)

Problems

14.1. Why the grass is always greener on the other side?
Give the reason why, when driving in congested conditions, one generally spends
more time in the slower lanes and that a lane change does not help. Consider following
situation:

V2>V1V1

V1
L L

The figure shows two-lane traffic with staggered traffic waves of length L con-
taining jammed traffic creeping at average speed V1, and the regions in between (of
length L as well) where traffic flows more quickly (V2 > V1) but yet not freely (the

17 Since there are no relevant cars to consider for the alternative “stop or wait”, we have dropped
all hats denoting the new situation, for simplicity.
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congested branch of the fundamental diagram remains relevant). Assume a trian-
gular fundamental diagram and negligible speed adaptation times (which is a good
approximation for the OVM or Newell’s model). Calculate the fraction pslow of the
time one drives inside a wave, i.e., the other lane is faster, as a function of V1, V2,
and the model parameters T and leff. Be astounded by the result!

Hint: You can solve this problem by calculating the relative velocity between the
driven speed and the wave velocity. Or simply count the vehicles.

14.2. Stop or cruise?
A decision strategy abiding traffic regulation and restricting braking decelerations to
minimal values while taking into account reaction times is the following [cf. the IDM
condition (14.26)]: Anticipate if you can pass the traffic light at unchanged speed
before it turns red. If so, cruise. Otherwise, brake smoothly with constant deceler-
ation so as to stop just before the stopping line. When the speed limit is 50 km/h,
the minimum duration of the yellow phase prescribed by law is τy = 3 s. What is
the maximum deceleration the legislative authority expects you to use, assuming a
complex reaction time of 1 s?

14.3. Entering a highway with roadworks
Assume a highway on-ramp whose merging section, due to roadworks, is nearly
nonexistent, i.e., one has to merge at essentially zero speed. The relevant safety
criterion is defined by the OVM with a triangular fundamental diagram (s0 = 0 s,
T = 1 s) assuming a safe deceleration threshold bsafe = 0 m/s2. The driver of the
considered car waits at the merging position while another car approaches on the
main-road at 72 km/h. At decision time, the safety condition is just satisfied (the lag
gap is only marginally greater than ssafe), so the driver begins to merge. Calculate
the minimum deceleration at which the driver of the main-road vehicle has to brake
in order to avoid a collision. Assume that the entering car accelerates with 2 m/s2 for
the first few seconds. Furthermore, assume that the driver on the main-road reacts
instantaneously and is able to anticipate the situation perfectly. Discuss whether the
OVM safe gap-acceptance criterion is really “safe”, particularly, when assuming
finite reaction times.

14.4. An IDM vehicle entering a priority road
Formulate the IDM safety criterion for merging into a priority road with a stop sign
(the initial speed of the merging vehicle is zero). Calculate the safe lead and lag gaps
for the IDM parameters a = b = bsafe = 2 m/s2, T = 1 s, v0 = 50 km/h, and s0 = 0 m
if the speed on the main road is 50 km/h.

Further Reading

• Ben-Akiva, M., Lerman, S.: Discrete choice analysis: Theory and application to
travel demand. MIT press (1993)

• Gipps, P.G.: A model for the structure of lane-changing decisions. Transportation
Research Part B: Methodological 20 (1986) 403–414



14.5 Entering a Priority Road 255

• Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for
car-following models. Transportation Research Record: Journal of the Transporta-
tion Research Board 1999 (2007) 86–94

• Nagel, K., Wolf, D., Wagner, P., Simon, P.: Two-lane traffic rules for cellular
automata: A systematic approach. Physical Review E 58 (1998) 1425–1437

• Thiemann, C., Treiber, M., Kesting, A.: Estimating acceleration and lane-changing
dynamics from next generation simulation trajectory data. Transportation Research
Record: Journal of the Transportation Research Board 2088 (2008) 90–101

• Redelmeier, D., Tibshirani, R.: Why cars in the next lane seem to go faster. Nature
401 (1999) 35.



Chapter 15
Stability Analysis

Mathematics is the key and door to the sciences.

Galileo Galilei

Abstract Second-order macroscopic models and most car-following models are
able to reproduce traffic waves or other observed instabilities of traffic flow. After an
intuitive introduction, we define the relevant instability concepts: Local instability,
convective string and flow instability, and absolute string and flow instability. We
give general analytic criteria for the occurrence of these instabilities for microscopic
and macroscopic models. The formulation is more comprehensive than the various
accounts in the specialized literature and can be evaluated for any traffic flow model
with a well-defined acceleration function. The stability criteria allow us to character-
ize the influencing factors of traffic flow instabilities and answer the question of if,
and in which way, the driving behavior (or new driver-assistance systems) influence
traffic flow stability.

15.1 Formation of Stop-and-Go Waves

Instabilities of traffic flow resulting in traffic waves, also termed stop-and-go waves,
are caused by the delays in adapting the speed to the actual traffic conditions. These
delays are the consequence of finite acceleration and braking capabilities, and also
result from finite reaction times of the drivers. If traffic density is sufficiently high, this
delay leads to a positive feedback on density and speed perturbations.1 We will now

1 Generally, delays in a feedback control system favor instabilities. This can be experienced intu-
itively when taking a shower and controlling the water temperature, particularly, if the response
time between the controlling action and the result (a change of the water temperature) is rather long.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 257
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Fig. 15.1 The vicious circle: In order to regain the safety gap, the driver of every following vehicle
needs to brake harder than his or her predecessor. The numbers beside the vehicles denote the
vehicle index

intuitively explain this vicious circle with the help of Fig. 15.1 (see also Fig. 15.8):

• The scenario starts with a platoon of cars initially in steady-state equilibrium at
speed ve. At time t = t0, the driver of car 1 brakes slightly (for whatever reason)
and continues driving at a slightly lower speed v1 < ve.

• As a result, the new optimal speed for car 2 is given by v1 as well. So the driver
of this car reduces his or her speed from ve to v1 in a finite time interval ending at
time t1.

• If traffic is sufficiently dense, or if the speed adaptation time is sufficiently long,
the gap of car 2 at time t1 is smaller than the steady-state gap se(v1) at the speed
of the leading car 1. In order to regain his or her desired gap, the driver of car 2
has to brake more, i.e., he or she decelerates temporarily to a speed v2 < v1
in the time interval between t1 and t2. The degree of this overreaction increases
with the sensitivity to changes of the gap which is given by |v′

e(s)| and V ′
e(ρ) for

microscopic and macroscopic models, respectively.
• Since the driver of the next car 3 also needs some time to adapt the speed, the

gap between car 2 and car 3 may become smaller than the steady-state gap se(v2).
Therefore, the driver of car 3 decelerates further to a minimum speed v3 < v2 at
time t2.

• This positive feedback continues when going to the next car 4 which has to stop
completely (time t3).

• The resulting traffic wave dissolves only if the number of new vehicles approaching
the wave from behind decreases.

As a result, a stop-and-go wave emerges “out of thin air” giving rise to the name
phantom jam for this phenomenon (see also Sect. 18.2 and the right diagram of

http://dx.doi.org/10.1007/978-3-642-32460-4_18
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Fig. 15.10). At sufficiently low traffic density, or when traffic consists predominantly
of agile drivers, the vicious circle is broken. In this case, the drivers have already
equilibrated their speed to the new situation at the time where a new vehicle comes
within interaction distance, so the stop-and-go mechanism is not effective. As a
result, all drivers following car 1 decelerate to v1 but not further (see the left diagram
of Fig. 15.10 for an example). From the qualitative consideration, it follows that
the stop-and-go mechanism is never effective in models describing instantaneous
speed adaptations and zero reaction times as in first-order macroscopic models (LWR
models), or in Newell’s microscopic model. As a result, density perturbations never
grow in such models, so they cannot describe traffic instabilities.2

In summary, the qualitative argumentation suggests that the tendency to traffic
flow instabilities increases with

• increasing speed adaptation time,
• increasing traffic density,
• and increasing sensitivity |v′

e(s)| or V ′
e(ρ) for changes of the gap.

The stability analysis expounded below agrees with this reasoning.3

15.2 Mathematical Classification of Traffic Flow Instabilities

We emphasize that all types of instabilities discussed in this chapter describe a ten-
dency to oscillations, traffic waves, stop-and-go traffic and the like. However, they
do not correspond to accidents (which would be characterized by negative gaps or
densities exceeding the maximum density ρmax in the microscopic and macroscopic
descriptions, respectively). Generally, simulated accidents only occur if the insta-
bility thresholds are exceeded extremely. However, in some models representing
“short-sighted” drivers (such as the OVM), accidents may happen even for parame-
ters corresponding to perfectly stable traffic.

Moreover, the physical instabilities of real traffic discussed below have to be
distinguished from numerical instabilities. The latter result from integration steps
being too large, or by applying an unsuitable numerical update method (see Sect. 9.5

2 The only way to generate a traffic breakdown in such models is by simulating a bottleneck and
assuming upstream boundary conditions corresponding to an inflow exceeding the bottleneck
(footnote 2 Continued) capacity. Then, as soon as the flow at the bottleneck exceeds its capacity, the
density immediately upstream of the bottleneck jumps to the congested branch of the fundamental
diagram at a flow corresponding to the bottleneck capacity (cf. Sect. 8.5).
3 Notice that, in some models, the speed adaptation time may depend on traffic density getting
shorter for increased density. This can more than compensate for the destabilizing effects of traffic
density itself, so congested traffic may be unstable for most densities but restabilize for high densities
near the maximum.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_8
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for details). In contrast, real traffic instabilities are the consequence of physical delays
due to finite accelerations and reaction times.4

In the following, we distinguish categories of traffic instabilities depending on
criteria for their existence and the type of resulting congestion pattern.

Number of involved vehicles: local versus string instability. Local instability
relates to the car-following dynamics of a single or a few vehicles following a leader
with a predetermined trajectory (typically introducing a perturbation by a temporary
speed drop while driving at constant speed for the rest of the time). This system
is locally unstable, if the gap and speed fluctuations of the follower(s) increase
with time, or, at least, do not decay (cf. Fig. 15.2). Otherwise, it is locally stable.
Since this definition refers to a platoon of a finite number of vehicles, one also
speaks of platoon (in)stability. Obviously, this stability concept is only applicable
for microscopic models. For practical purposes, it is relevant when developing the
feedback controllers of ACC systems.5

In contrast, the ubiquitous traffic waves are the result of string instability.
Traffic flow is string stable if local perturbations decay everywhere even in arbi-

trarily long vehicle platoons. Otherwise, it is string unstable. As illustrated by
Fig. 15.3, string stability is a much more restrictive concept compared to local sta-
bility: Traffic flow may be string unstable even if speed fluctuations within a vehicle
platoon of finite size decay quickly, or even if there are no local oscillations at all. An
example of this latter case is given in the two simulations displayed in the middle of
Fig. 15.2, and in Fig. 15.6 (cf. Problem 15.3). This has immediate practical implica-
tions for developers of ACC controllers: Even if the ACC is optimized to be perfectly
free of oscillations when following a “test hare vehicle” driving a prescribed speed
profile, traffic flow mainly consisting of such ACC vehicles may be absolutely string
unstable.

Since string instability is defined in terms of a collective phenomenon, it can be
applied to both microscopic and macroscopic models. To emphasize its macroscopic
nature, one also speaks of collective instability, or flow instability.6

4 In particular, both physical and numerical instabilities include so-called convective instabilities
which are discussed in the Sects. 9.5 and 15.5, respectively. Convective physical and numerical
instabilities have no commonalities, whatsoever.
5 At least, if the penetration rate of ACC equipped vehicles is sufficiently small. Otherwise, the
influence of ACC-driven vehicles on the string instability becomes relevant as will be discussed in
the main text below.
6 Some authors stress that there is a conceptual difference between string instability (relevant for
microscopic models), and flow instability (macroscopic models). However, observed differences are
merely a consequence of an imperfect equivalence between microscopic and macroscopic models
with respect to macroscopic phenomena (notice that microscopic models can describe macroscopic
phenomena but not vice versa). The unified instability criteria to be developed in the next sections
show that the concepts of string and flow instability are identical in a precisely defined sense: For
each microscopic model displaying string instabilities in a subset of the space spanned by the model
parameters and the steady-state traffic density, there exists a micro-macro relation to a macroscopic
model displaying flow instability for exactly the same subset.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
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Fig. 15.2 Schematic sketch of the different instability concepts in terms of speed time series of
single vehicles: If traffic flow is convectively string unstable, perturbations grow but propagate
only upstream. Consequently, all vehicles drive smoothly at the time they pass the location of the
initial perturbation (indicated by the thin black line). If traffic flow is absolutely string unstable, the
perturbation eventually spreads everywhere but any given vehicle eventually drives smoothly, i.e., it
can follow a vehicle with predetermined trajectory without sustained oscillations (platoon stability).
In the presence of local instabilities or platoon instabilities, even following a single vehicle leads
to sustained oscillations

Types of perturbation and asymptotic state: Ljapunov, asymptotic and struc-
tural stability. If we require that any sort of sufficiently small initial perturbations
remain small forever, we speak of Ljapunov stability. If we additionally require that
sufficiently small perturbations tend to zero for t → ∞, the system is asymptotically
stable. If we allow not only initial perturbations but also small persistent fluctua-
tions and all trajectories remain close to the unperturbed trajectories, the system is
structurally stable. These stability concepts are mainly used by mathematicians7 and
apply to arbitrary dynamical systems. For the traffic flow models with smooth accel-
eration functions considered here, Ljapunov and asymptotic stability are equivalent

7 We do not give the precise mathematical definitions.
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concepts.8 Since Ljapunov and asymptotic stability are defined in terms of suffi-
ciently small but otherwise arbitrary initial and asymptotic perturbations, these con-
cepts refer to linear string (or flow) stability when applied to traffic flow models.
When explicitly defining the latter in Eq. (15.2), we refer to asymptotic rather than
Ljapunov stability, i.e., we require that all small perturbations have negative growth
rates, i.e., they tend to zero.

Amplitude of perturbation: linear versus nonlinear instability. If arbitrarily small
perturbations increase in the course of time, one speaks of linear instability. If small
perturbations decay but sufficiently severe perturbations (caused, e.g., by hard brak-
ing maneuvers or inconsiderate lane changes) develop to persistent traffic waves, this
corresponds to nonlinear instability. As illustrated in Fig. 15.3, car-following models
or second-order macroscopic models generally have parameter ranges where, for a
certain range of steady-state densities, traffic flow is linearly stable and simultane-
ously nonlinearly unstable, i.e., small perturbations decay and larger ones develop
to stop-and-go waves. This is termed metastability. As a consequence of this type of
instability, the future dynamics depends not only on the present and future exoge-
nous conditions but also on the past—for arbitrarily long times. For example, given
the same traffic demand profile, there may be growing regions of congested traffic
(a traffic breakdown occurred in the past), or completely free traffic (no breakdown in
the past). This dependence on the past (“path dependence”) is also called hysteresis.

In order that a perturbation can develop to a persistent jam, the outflow from
the congested region must be smaller than the inflow, i.e., the bottleneck capacity
under congested conditions (also known as active or activated bottleneck) must
be smaller than the maximum possible flow through the bottleneck under free-flow

8 The distinction may become relevant for models with non-smooth or even non-continuous accel-
eration functions. Typically, this is the case when the model formulation involves several distinct
traffic regimes (e.g., Gipps’ model or the Wiedemann model). Such models may be Ljapunov but
not asymptotically stable.



15.2 Mathematical Classification of Traffic Flow Instabilities 263

conditions (static capacity). Observed values for the difference between the static and
dynamic capacities, the so-called capacity drop, are of the order of 10 % (cf. Chap. 4).
Consequently, the fundamental diagram is not unique for densities in the metastable
range. Instead, there are two values for the flow, a higher one for free traffic, and
a lower one for congested traffic. For the graph of the fundamental diagram, this
leads to the characteristic shape of a mirrored Greek λ, also referred to as the inverse
lambda shape,9 cf. Figs. 4.11 and 4.12.

Formally, we define linear and nonlinear string instability in macroscopic terms
by considering an infinite system initially in steady state at density ρe and looking at
the spatiotemporal development of the response U (x, t) of a temporary and localized
perturbation Uε(x, 0) of amplitude ε denoting, e.g., the difference between the actual
and steady-state local speed fields. If the initial perturbation corresponds to a sudden
change ε of speed of a single vehicle located at x = 0, the macroscopic initial
perturbation Uε(x, 0) of the speed field is

Uε(x, 0) = Uε(x) =
{

ε if |x | < 1
2ρe

, ε > 0, x ∈ IR,

0 otherwise.
(15.1)

This means, the speed field is changed by ε in a region whose width Δx = 1/ρe

corresponds to the distance between two vehicles, i.e., to the effective space attributed
to one vehicle. Traffic flow is linearly unstable if

lim
t→∞ max

x
U (x, t) > 0 for all ε > 0. (15.2)

It is nonlinearly unstable or metastable, if there exists a minimum perturbation ampli-
tude εnl > 0 such that

lim
t→∞ max

x
U (x, t) =

{
U0 > 0 if ε > εnl,

0 if ε ∈ [0, εnl]. (15.3)

As illustrated in Fig. 15.3, the limit between linear instability and metastability is
defined by εnl → 0, while the limit between metastability and absolute stability is
given by Eq. (15.3) for the limit of a maximum perturbation, e.g., |ε| = V (braking
to a complete stop).10

Propagation of the perturbation: absolute versus convective instability. If traffic
flow is (linearly or nonlinearly) string unstable, the region of perturbations as con-
sidered from a stationary observer can propagate in both directions (absolute string
instability), or exclusively upstream or downstream which is termed upstream and
downstream convective instability, respectively (see Fig. 15.4).

Convective instabilities were originally observed in open systems of fluid flows
such as water in pipes. In this case, the convective instability is of the downstream

9 Although this is not correct: The Greek λ is mirrored and not upside down.
10 To make the perturbation more massive, the duration of the perturbation must be increased such
that it results in a fully-formed initial jam.

http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4
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Fig. 15.4 Visualization of the spatiotemporal evolution of (a) convective upstream string instability,
and (b) absolute string instability by vehicle trajectories in a space–time plot. Shown are IDM
simulations with l = 5 m, v0 = 120 km/h, s0 = 2 m, and b = 1.5 m/s2, T = 1.5 s, and acceleration
parameters a = 1.1 m/s2 and a = 0.9 m/s2 for the plots (a) and (b), respectively. Shown are the
trajectories of every 20th vehicle

type: perturbations leave the system together with the fluid after some time, i.e., they
are convected out of the system.11

In traffic flow, however, one observes that perturbations generally grow against
the driving direction and leave the system, i.e., the road section under consideration,
by the upstream boundary. Of course, this is particularly true for stop-and-go traffic
waves moving backwards at a constant velocity (cf. Sect. 18.3). We emphasize that
this propagation direction is not obvious: While the asymmetric interactions of drivers
(reacting essentially to the leading and hardly to the following vehicle) ensure that,
when considering a system comoving with the drivers, string instability is always of
the upstream convective type12 (cf. Figs. 15.4a and 15.10) both types of convective
instability are theoretically plausible in the fixed system. In fact, both types can be
reproduced in simulations. However, downstream convective instability is not robust
against nonlinear effects (cf. Fig. 15.5), so only upstream convective instability is
actually observed.

The distinction between convective and absolute instability is relevant since traffic
flow relates to an open system where absolute and convective instability leads to
qualitatively different congestion patterns:

• If traffic flow is absolutely string unstable, the perturbed region will sooner or later
cover the whole road section under consideration.

• If traffic flow is convectively string unstable, the perturbations eventually will
leave the system. Thus, in a given section, oscillations resulting from temporary
perturbations are not persistent even in the presence of linear instability. If there
are persistent local perturbations (e.g., lane changes near ramps or lane closures),
the oscillations are, of course, persistent as well. However, they are small near the

11 This technical term originates from the Latin convehi: to move together.
12 At least, if traffic flow is locally stable which is safe to assume.

http://dx.doi.org/10.1007/978-3-642-32460-4_18
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Fig. 15.5 Speed response functions for the initial localized perturbation (15.1). Shown are IDM
simulations of (a) convective instability propagating upstream, (b) linear convective instability prop-
agating downstream which is destroyed by nonlinearities, and of (c) the limit between convective
and absolute instability

location of the perturbations (generally at a bottleneck), and increase in amplitude
further upstream. All this is markedly different in closed systems (ring roads)
where there is no qualitative long-term difference between these stability types.

Convective instability is a widespread phenomenon. For example, all oscillations and
traffic waves on the German highway A5 (Fig. 5.1) are the consequence of convective
instability driven by persistent perturbations near the bottlenecks. In contrast, city
traffic flow generally is stable and stop-and-go conditions are the trivial consequence
of the operations of traffic lights. In Sect. 15.5 we show that string instability always
starts as a convective instability (cf. Fig. 15.3). From a multitude of observations, we
conclude the following:

The vast majority of all instabilities of highway traffic flow is of the convective
type.

Formally, one can define convective instability in terms of the dynamics of the
perturbation field U (x, t) for a given localized and temporary initial perturbation
Uε(x) according to Eq. (15.1): Homogeneous flow is convectively unstable with
respect to this perturbation, if

lim
t→∞ max

x
U (x, t) > 0 and lim

t→∞ U (0, t) = 0. (15.4)

The first condition is true if traffic flow is (linearly or nonlinearly) string unstable,
i.e., the initial perturbation does not decay to zero, at least somewhere in the system.
The second condition states that the perturbations eventually vanish at the location
of the initial triggering point.13

13 More generally, the perturbations eventually vanish at any fixed location x for t → ∞.

http://dx.doi.org/10.1007/978-3-642-32460-4_5
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By analogy one can define absolute string instability by requiring the first condi-
tion to be true, and the second to be false. By suitably combining these conditions
with Eq. (15.3), one can define in a straightforward way convective and absolute
linear instability and metastability (nonlinear instability).

Stability in stochastic models. We can determine the behavior in the presence of
acceleration noise or other fluctuations described by stochastic models from the
above definitions of convective and nonlinear instability:

• If the noise is of sufficiently low amplitude to allow a linear analysis, we obtain
persistent fluctuations for any type of linear string or flow instability. In contrast, if
a deterministic model describes convectively unstable traffic flow in open systems,
all initial perturbations are eventually convected out of the system. This means,
small fluctuations change the qualitative behavior in such systems while they have
not much influence, otherwise.

• If the noise is of sufficient amplitude to warrant a nonlinear description, it can
trigger nonlinear instabilities. This means, larger-amplitude noise can change the
qualitative system behavior with respect to the deterministic description if the
system is convectively or absolutely metastable.

Wavelength of the perturbations. Since traffic flow represents an extended system
which can be abstracted to an infinitely long homogeneous road, there is, in principle,
an infinite multitude of perturbations leading to instabilities. In Sect. 15.4, we show,
that the perturbations can be arranged in two branches or “modes” of periodic per-
turbations with arbitrary real-valued wavelengths. However, we can only observe the
perturbations becoming first unstable when increasing the traffic density (or making
the model more unstable): Once nonlinearities become effective (saturation, capacity
drop, reversal of the propagation velocity), all other perturbations are suppressed.

Depending on the nature of the onset of the “first” instability, we distinguish two
categories: In the presence of short-wavelength instabilities, the first instability has a
finite and typically short wavelength of only a few vehicle distances, i.e., each wave
consists of only a few vehicles. In contrast, if there is a long-wavelength instability,
the wavelength of the “first” unstable perturbation tends to infinity. Since vehicle
conservation implies that the growth rate tends to zero when the wavelength tends
to infinity regardless of the degree of (in-)stability, the practically observed waves
originating from long-wavelength instabilities, i.e., the perturbations with maximum
growth rate, are large but finite (of the order of 1 km or more). Mathematicians have
shown that instabilities are always of the long-wavelength type

• for continuous-in-time car-following models containing no explicit reaction time
(such as the OVM or the IDM)

• for second-order local macroscopic models such as the Payne Model or the Kerner–
Konhäuser Model.

In contrast, the instability may be (but need not to be) of the short-wavelength
type if

• time is discrete (iterated maps, e.g., Gipps’ model),
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• explicit reaction times are modeled (HDM, cf. Sect. 12.2),
• or nonlocal macroscopic models (such as the GKT model) are considered.

This means, the first instability may be of the short-wavelength type if the model
contains some nonlocalities in space or time. Since observed instabilities are always
of the long-wavelength type, one can restrict the further analysis to this category.
Conversely, if one observes short-wavelength instabilities in the simulations,14 this
must be considered as an artifact of the model, or the consequence of an erroneous
(or erroneously parameterized) numerical integration method.

15.3 Local Instability

We consider a situation where a leading vehicle drives at constant speed and inves-
tigate small changes y(t) and u(t) of the gap and speed of a single follower with
respect to the steady-state equilibrium:

s(t) = se + y(t), (15.5)

v(t) = ve + u(t). (15.6)

When analyzing local stability, it is essential that the leading vehicle does not exhibit
persistent perturbations since the question whether persistent perturbations are ampli-
fied when transferred to the following vehicles refers to string instability. Further-
more, instead of considering an initial perturbation of the leader, we can investigate
an unperturbed leader and an initial perturbation of the follower as specified above.
Inserting this ansatz into the general formulation (10.3), (10.6) of time-continuous
models, we obtain, in zeroth order of the perturbations (y = u = 0), the steady-state
conditions

amic(se, ve, ve) = 0 and ãmic(se, ve, 0) = 0 (15.7)

for the two forms amic and ãmic of the acceleration function, respectively (cf.
Sect. 10.3). These conditions define the microscopic fundamental diagram in terms
of the steady-state gap se for a certain constant speed ve which can be written as ve(se)

(steady-state speed for a given gap), or se(ve) (steady-state gap for a given speed).
In first order of the perturbations y and u of the follower, we obtain, for models

defined by the acceleration function amic, the following system of ordinary linear
differential equations:

dy

dt
= ul − u = −u, (15.8)

du

dt
= as y + avu + avl ul = as y + avu. (15.9)

14 For example, Gipps’ model in its original formulation exhibits a short-wavelength instability
with the smallest possible wavelength of two car distances.

http://dx.doi.org/10.1007/978-3-642-32460-4_12
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Notice that the assumed constant speed of the leading vehicle implies ul = 0. The
coefficients as , av, and avl of the linearization originate from a first-order Taylor
expansion of the acceleration function amic with respect to its three independent
variables around the steady-state equilibrium,

amic(s, v, vl) = amic(se, ve, ve) + as y + avu + avl ul + higher orders (15.10)

with the expansion coefficients

as = ∂amic

∂s

∣∣∣∣
e
, av = ∂amic

∂v

∣∣∣∣
e
, avl = ∂amic

∂vl

∣∣∣∣
e
. (15.11)

The subscript e denotes that the derivatives are evaluated at the steady-state point
s = se and v = vl = ve(se).

By virtue of condition (15.7) describing a one-dimensional manifold of steady-
state solutions ve(s), the three Taylor coefficients are not independent of each other.
Moving along the space of steady-state solutions by simultaneously changing s and
v = vl must not change the acceleration (which is always zero), i.e.,

asdse + (
av + avl

)
dve = asdse + (

av + avl

)
v′

e(se)dse = 0 (15.12)

resulting in
as = −v′

e(se)(av + avl ). (15.13)

Expanding the general acceleration equation (10.3) for the alternative acceleration
function ãmic(s, v,Δv) to first order leads to the linear system

dy

dt
= ul − u = −u, (15.14)

du

dt
= ãs y + (ãv + ãΔv) u − ãΔvul = ãs y + (ãv + ãΔv) u. (15.15)

with the Taylor expansion coefficients

ãs = ∂ ãmic

∂s

∣∣∣∣
e
, ãv = ∂ ãmic

∂v

∣∣∣∣
e
, ãΔv = ∂ ãmic

∂Δv

∣∣∣∣
e
. (15.16)

Comparing Eq. (15.9) with Eq. (15.15), it is evident that one needs to consider only
one formulation of the acceleration function which we chose to be amic(s, v, vl).
Formulations for the alternative acceleration function ãmic(s, v,Δv) can be obtained
from that for amic by the following set of replacements:

as = ãs, av = ãv + ãΔv, avl = −ãΔv. (15.17)

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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This is valid for all expressions in this chapter, including these for string instabil-
ity. As an example, when applying the replacement rules to the steady-state condi-
tion (15.13), we obtain

ãs = −v′
e(s)ãv (15.18)

for the interdependence of the expansion coefficients of ãmic.
Equations (15.8) and (15.9) describe a harmonic damped oscillator. To see this

explicitly, we write them as a single second-order differential equation by taking the
time derivative of Eq. (15.8) and inserting Eq. (15.9),

d2 y

dt2 + 2η
dy(t)

dt
+ ω2

0 y(t) = 0. (15.19)

The damping constant η and the angular oscillation frequency ω0 are given by

η = −av

2
= − (ãv + ãΔv)

2
, ω2

0 = as = ãs . (15.20)

Assuming the exponential ansatz

y = y0eλt (15.21)

we arrive at the quadratic equation

λ2 + 2ηλ + ω2
0 = 0 (15.22)

for the (generally complex) growth rate λ = σ + iω (i = √−1 is the imaginary unit)
with the solutions

λ1/2 = −η ±
√

η2 − ω2
0. (15.23)

The dynamics of the follower is locally stable if both solutions decay, i.e., the real
parts are negative, σ1/2 = Re(λ1/2) ≤ 0. This is satisfied if η > 0, or, with the
definitions (15.20)

av < 0 or ãv + ãΔv < 0 Local stability. (15.24)

Since, by virtue of condition (11.1), av < 0 for all plausible models, we conclude that
time-continuous car-following models without additional delay by explicit reaction
times are unconditionally locally stable.

As a more restrictive condition on the local behavior, we can require that all
deviations from the steady-state decay are without oscillations, not even damped
ones. This is the case if the imaginary parts of the growth rates are zero leading to

http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Fig. 15.6 Response of an OVM vehicle to a speed reduction of the leading vehicle (driving a fixed
speed profile) from 72 to 54 km/h. Left at the limit of an oscillation-free response (v′
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τ = 0.25 s). Right limit of string instability (v′

e = 1 s−1, τ = 0.5 s)

ω2
0 < η2, or as ≤ a2

v /4. Expressing as by the sensitivity v′
e(s) to changes of the gap,

we obtain the following no-oscillation conditions (cf. the left column of Fig. 15.6):

as ≤ a2
v

4
or v′

e(s) ≤ −ãv

4

(
1 + ãΔv

ãv

)2

No local oscillations. (15.25)

Here, the transformation rules (15.17) and (15.18) have been applied to arrive
at the second condition for models given in terms of the acceleration function
ãmic(s, v,Δv). In summary, we can make the following statements on local
instability:

• Since av < 0 for all sensible models and the above considerations are valid for time-
continuous car-following models without explicit reaction-time delay, such models
are always locally stable. However, this need not to be the case for iterated maps
(Gipps’ Model), or when considering explicit reaction times by delay-differential
equation as in the HDM.

• The more restrictive no-oscillation condition (15.25) is not always satisfied. For
example, we obtain for the Optimal Velocity Model15 the condition

v′
e(s)OVM <

1

4τ
. (15.26)

This condition is more restrictive as the condition v′
e(s)OVM < 1/(2τ) for string

stability to be derived in the following section. As can be seen by the derivation, this
relation between the thresholds of over-damped local stability and string stability

15 The partial derivatives of the acceleration function are av = −1/τ , avl = 0, as = −v′
e(s)av.
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Fig. 15.7 Left the two branches of the linear growth rate λ = σ + i ω according to Eq. (15.23)
for the conventional IDM with the standard highway parameters of Table 11.2 as a function of the
steady-state speed. Right most unstable branch of the solutions to Eq. (15.27) for the IDM with an
additional delay by the reaction time Tr = 2.0 s (no other human driver properties added)

is valid for any car-following model without sensitivity to speed differences that
is formulated by ordinary differential equations.

• Near the threshold to string instability, the oscillations of a single vehicle when
approaching the local steady state are hardly recognizable (cf. right column of
Fig. 15.6). Reasoning in the converse direction, we conclude that when a vehicle
driving with adaptive cruise control shows recognizable oscillations, it is nearly
certain that traffic flow consisting of such vehicles is string unstable, even if the
oscillations of the single vehicle are strongly damped. Considering models with
the speed difference as exogenous factor, the model may even be completely free
of oscillations in the local context, and simultaneously string unstable when con-
sidering traffic flow with many vehicles (cf. Problem 15.3).

In contrast to time-continuous models of the form (10.3) as discussed above, time-
continuous models with delay, i.e., delay-differential equations of the form (12.1)
modeling a finite reaction time, or time-discrete models (iterated maps) of the form
(10.7) may become locally unstable. Performing the same stability analysis as above
for models of the form (12.1), i.e., models whose acceleration equation is of the form
d
dt v(t + Tr ) = ãmic(s(t), v(t),Δv(t)), we obtain

λ2 + e−λTr
(

2ηλ + ω2
0

)
= 0. (15.27)

In spite of its simple appearance, solving this equation for the growth rate λ = σ +i ω
is nontrivial and can be done only numerically. For sufficiently high delay times (more
than 2.0 s for the IDM with the highway parameters of Table 11.2), the real part σ

of the most unstable solution becomes positive for some steady-state situations, i.e.,
the model becomes locally unstable (Fig. 15.7).

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_12
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_12
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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15.4 String Instability

Even if a system consisting of a single or a few vehicles following a leader with
a fixed speed profile is well within the stable range, the oscillations may increase
with each following vehicle, i.e., traffic flow is string unstable (cf. Figs. 15.1, 15.2
and 15.8).

Generally, the resulting oscillations or waves have a wavelength of 1 km or
more, i.e., a single wave contains many vehicles corresponding to a long-wavelength
instability This is fortunate since it allows compact analytical expressions for the sta-
bility thresholds of time-continuous car-following models and macroscopic models.

15.4.1 String Instability Conditions for Car-Following Models

We start with the general formulation (10.3), (10.6) of time-continuous car-following
models without delay and without multi-anticipation.16 Furthermore, we consider
identical driver-vehicles on a homogeneous infinite road, i.e., the same acceleration
functions and identical parameter sets for all vehicles. The set of coupled equations
for the gap sα and the speed vα reads

dsα

dt
= vα−1 − vα, (15.28)

dvα

dt
= amic (sα(t), vα(t), vα−1(t)) . (15.29)

As in the analysis for local instability, we assume, for all vehicles α, small deviations
yα and uα from the steady-state gap se and speed ve, respectively,

sα = se + yα(t), (15.30)

vα = ve + uα(t). (15.31)

In zeroth order with respect to yα and uα , we obtain the same result as for the
local analysis: The microscopic fundamental diagram ve(s) and the relations (15.13),
(15.17) and (15.18) remain valid.

In first order, we obtain the following system of coupled linear differential equa-
tions with constant coefficients:

dyα

dt
= uα−1 − uα, (15.32)

16 Including multi-anticipation, i.e., considering several leading (or trailing) vehicles, does not pose
any technical problem: Starting the investigation from Eq. (12.19) with Eq. (12.15) and proceeding
(footnote 16 Continued) along the following lines is straightforward. We restrict ourselves to a
single leader so as to not clutter the presentation.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_12
http://dx.doi.org/10.1007/978-3-642-32460-4_12
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Fig. 15.8 Interactive simulation of stop-and-go waves with the Intelligent Driver Model (IDM) on
the authors’ website

duα

dt
= as yα + avuα + avl uα−1, (15.33)

where the partial derivatives as , av, and avl are given by (15.11). We emphasize
that, in contrast to the local stability analysis, the perturbation uα−1 constituting
the coupling between the vehicles cannot be set to zero. The set of Eqs. (15.32)
and (15.33) can be solved using the Fourier-Ansatz

(
yα(t)
uα(t)

)
=

(
ŷ
û

)
eλt+iαk . (15.34)

This ansatz corresponds to linear waves of strict periodicity and contains the follow-
ing elements:

• i = √−1 is the imaginary unit.
• λ = σ + iω is the complex growth rate. The real part σ denotes the growth

rate of the oscillation amplitude while the imaginary part ω indicates the angular
frequency from the perspective of the driver. The driver passes a complete wave
in the time 2π/ω.
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• The dimensionless wave number k ∈ [−π, π ] indicates the phase shift of the
traffic waves from one vehicle to the next at a given time instant. Consequently,
the number of vehicles per wave is given by 2π/k. Since the steady-state distance
between the front bumpers of two vehicles is equal to se + l = 1/ρe, the physical
wavelength is given by (se + l)2π/k.

• The phase velocity is defined by the movement of points of constant phase, i.e.,
by a constant imaginary part ωt + αk of the exponent of Eq. (15.34). This gives
rise to following quantities:

– The passing rate

α̇ = −ω

k
(15.35)

denotes the vehicle flux through the waves in a coordinate system moving with
the waves,17 i.e., with points of constant phase ωt + αk.18

– In physical space, the relative propagation velocity in the system comoving with
the vehicles is given by19

c̃rel(k) = (se + l)
ω

k
= ω

ρek
. (15.36)

– In the fixed system of a stationary observer at the road side, the steady-state
speed of the vehicles has to be added to the relative velocity,

c̃(k) = ve(se) + c̃rel(k). (15.37)

This road-based propagation velocity is the one that can be derived from traffic
data. In order to be consistent with observations, the long-wavelength limit
c̃ = limk→0 c̃(k) should be of the order of −15 km/h, in congested situations.

• The traffic waves include periodic changes of both gap and speed. The fraction
û/ŷ of the prefactors indicates the relation between the respective amplitudes. For
example, a traffic wave described by ŷ = 0 would consist of speed changes, only.

Inserting the traffic wave ansatz (15.34) in the linear system (15.32), (15.33) results in

(
λ 1 − e−ik

−as λ − (
av + avl e

−ik
)
)

·
(

ŷ
û

)
= 0. (15.38)

17 This technical term has to be distinguished from passing in the sense of overtaking which is
completely unrelated.
18 Beware of the signs: Assuming positive wave numbers k and our convention to assign to the
first vehicle the lowest vehicle index, the angular frequency will generally be negative. This means,
the passing rate is positive: The waves propagate in the direction of increasing vehicle indices, i.e.,
opposite to the movement of the vehicles.
19 The sign is reversed with respect to Eq. (15.35), i.e., negative. The waves propagate upstream,
i.e., in negative x direction.
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Fig. 15.9 Linear growth rate λ(k) of the more unstable branch of perturbations (15.40) of a steady
state corresponding to congested traffic (ve = 48 km/h) for the Intelligent Driver Model (IDM) as
a function of the wave number (phase shift) k for three values of the IDM acceleration parameter a.
The remaining IDM parameters are v0 = 120 km/h, T = 1.5 s, s0 = 2 m, b = 1.3 m/s2, and the
vehicle length is l = 5 m

This linear-homogeneous 2 × 2 system for the amplitudes has only nontrivial solu-
tions if the determinant of the matrix of coefficients is equal to zero. The resulting
solvability condition assumes the form of a quadratic equation

λ2 + p(k)λ + q(k) = 0 (15.39)

for the complex growth rate λ with solutions given by (cf. Fig. 15.9)

λ1/2(k) = − p(k)

2

(
1 ±

√

1 − 4q(k)

p2(k)

)
, (15.40)

where

p(k) = −av − avl e
−ik, (15.41)

q(k) = as

(
1 − e−ik

)
.

For a given phase shift k between two consecutive vehicles, only two growth rates
are possible. For each of the growth rates, the actual solution (ŷ, û) (the eigenvector)
gives the amplitudes and the phases of the gap and speed oscillations. Since the
eigenvector is only defined up to a (complex) common factor, it essentially gives
the relation of the amplitudes and the relative phase between the speed and gap
oscillations. Typically, one solution is fast decaying (Re λ is strongly negative) while
the other decays more slowly, or even grows. The latter solution branch which is also
called the “slow mode” will be of interest. The model is string stable if the real parts
σ = Re λ are negative

• for both solution branches λ1(k) and λ2(k) and
• for all relative phase shifts (wave numbers) in the range k ∈ [−π, π ].
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Mathematically, one can prove that the first instability of time-continuous models
without delay times always occurs for phase shifts k → 0, i.e., for the limit of the
wavelengths and periods going to infinity. Since only waves of a finite wavelength
can have finite growth rates, the resulting wavelengths are finite but consist of many
vehicles. We illustrate this by Fig. 15.9. The middle curve corresponds to a maximum
of the growth rate at k0 ≈ 0.13 corresponding to 2π/k0 ≈ 50 vehicles per wave This
means, the instability is of the long-wavelength type, in agreement with observations
of real traffic waves.

Restrict the further investigations to wave numbers |k| 	 π , we expand the
coefficients of the quadratic equation for λ(k) in a Taylor series around k = 020:

p(k) = p0 + p1k + O(k2), (15.42)

q(k) = q1k + q2k2 + O(k3),

with

p0 = −(av + avl ) = −ãv,

p1 = iavl = −iãΔv,

q1 = ias = iãs = iv′
e(se)p0,

q2 = as

2
= ãs

2
= v′

e(se)

2
p0. (15.43)

The prefactors p0 and q2 are real-valued while p1 and q1 are purely imaginary.
Notice that the expressions for q1 and q2 on the right-hand sides of the last equal
sign follow from Eqs. (15.13) and (15.18). Since there are no zero-order terms of
q(k), and the general criteria for sensible microscopic models imply that p0 = −ãv

is strictly positive, the real part of λ can (in lowest order) become positive only for
the solution with the negative sign of the square root of Eq. (15.40). Expanding this
solution around k = 0 to quadratic order making use of the expansion

√
1 − ε = 1 − 1

2
ε − 1

8
ε2 + O(ε3) (15.44)

for complex-valued ε, we arrive at the general expression

λ = − q1

p0
k +

(
q1 p1

p2
0

− q2

p0
− q2

1

p3
0

)
k2 + O(k3), (15.45)

20 The “order” symbol O(·) defines how fast the symbolized contributions converge to zero.
Specifically, if a contribution f (k) is of the order O(kγ ), then limk→0 k−γ f (k) is finite, and
limk→0 k−γ+ε f (k) = 0 for any positive real-valued ε.
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which is also valid for the second-order macroscopic models to be discussed below.
Inserting into this expression the coefficients (15.43) for time-continuous micro-
scopic models finally gives

λ = −iv′
e(se) k + v′

e(se)

av + avl

[
1

2
(avl − av) − v′

e(se)

]
k2 + O(k3). (15.46)

The growth rate λ tends to zero for k = 0. This is a direct consequence of the
continuity equation. By virtue of the conservation of the number of vehicles, traffic
waves of infinite wavelength (or wave number k = 0) cannot dissolve since there is
simply no way for the vehicles to leave the wave.

The contribution linear in k is purely imaginary and therefore describes the prop-
agation properties of the waves for small phase shifts between consecutive vehicles.
Setting λ = σ + iω and writing ω = −v′

e(se)k + O(k3), we arrive at the following
simple expression for the relative propagation velocity (15.36) of the traffic waves:

c̃rel(k) = (se + l)
ω

k
= −(se + l)v′

e(se) + O(k2). (15.47)

Notice that, in this equation, the acceleration function of the model enters only
indirectly via the gradient v′

e(s) = −ãs/ãv of the microscopic fundamental diagram
ve(s). Since v′

e(s) ≥ 0 and, consequently, c̃rel ≤ 0, the waves propagate against the
direction of the flow, at least in the coordinate system comoving with the drivers.
This is plausible since the considered class of car-following models represents drivers
reacting only to the leading but not to the following vehicle. In the limit of completely
interaction-free traffic corresponding to ve = v0, v′

e(s) = 0, we have c̃rel = 0, i.e., the
waves move with the vehicles. In fact, the waves can be interpreted as independently
moving vehicle clusters, in this limiting case.

The second-order contribution of the growth rate (15.46) is purely real, and there-
fore describes the growth properties of the waves. In particular, traffic flow is string
stable if this term is negative. Since v′(se) ≥ 0 and av + avl = ãv < 0, string sta-
bility implies that the bracket of Eq. (15.46) is positive. This results in the following
criterion for string stability:

v′
e(se) ≤ 1

2

(
avl − av

)
String stability for v̇α = amic(sα, vα, vα−1). (15.48)

For models whose acceleration function is of the form ã(s, v,Δv), we apply the
replacements (15.17) and obtain the alternative condition

v′
e(se) ≤ − ãv

2
− ãΔv String stability for v̇α = ãmic(sα, vα,Δvα). (15.49)
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Discussion. The above criteria for string stability directly point to the three main
factors determining the stability of traffic flow with respect to collective perturbations.
It is most convenient to extract these factors from the formulation (15.49).

Firstly, a necessary condition for string instability is a sufficient sensitivity
v′

e(s) ≥ 0 to changes of the gap (left-hand side of Eq. 15.49): Without this sensi-
tivity, there is no feedback, and the instability mechanism discussed qualitatively in
Sect. 15.1 would break down already in the first step. The drivers simply ignore the
vehicles in front of them. Since this is a plausible behavior for low traffic densities,
only, it explains why a minimum traffic flux and density is necessary for generating
traffic flow instabilities.

Secondly, string instability implies that the sensitivity −ãv/2 > 0 to speed
changes, i.e., the first term of the right-hand side of Eq. (15.49) remains below a
certain threshold v′

e(se) + ãΔv. In terms of the driver’s behavior this means that
responsive or agile drivers corresponding to high values of −ãv tend to suppress
string instabilities.

Thirdly, string instabilities are only possible if the sensitivity −ãΔv to speed
differences remains below a certain threshold. In agreement with common sense,
drivers without any sensitivity to speed differences drive very short-sightedly and
tend to make traffic flow more unstable. Since future gaps can be estimated by speed
differences, one can conclude that −ãΔv describes a simple form of anticipation.

In summary, the stability analysis shows that the factors favoring string instability
are (i) sufficiently dense or congested traffic, (ii) drivers with little agility, and (iii) a
driving style characterized by little anticipation . This observation can be used as
a starting point for increasing traffic flow stability by driver-assistance systems (cf.
Sect. 21.5), or for formulating rules for effective driving to be taught in driving
schools. Even if stop-and-go conditions prevail, anticipative drivers (or suitable ACC
systems) react earlier to braking maneuvers of the preceding vehicles than their
more short-sighted peers thereby reducing the inflow to the traffic waves. Moreover,
responsive and anticipative drivers (or ACC-driven vehicles) leave traffic waves faster
than their more sluggish and short-sighted contemporaries. With less inflow and more
outflow, even existing traffic waves eventually will dissolve.

Interactive simulations. All three factors of string instability can be interactively
simulated at the authors’ website21 using the ring-road scenario depicted in Fig. 15.8.
In the default setting, traffic flow is unstable and traffic waves emerge after some time.
These waves can be suppressed by each of the following actions:

• Reducing the “average density” via the top scrollbar. This reduces the overall
interactions and thus the positive destabilizing feedback characterized by v′

e(s).
• Increasing the “acceleration a” by controlling the corresponding scrollbar. This

makes the drivers more agile and corresponds to increasing of the sensitivity −ãv

(see also Fig. 15.9).

21 see: www.traffic-simulation.de.

http://dx.doi.org/10.1007/978-3-642-32460-4_21
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• Decreasing the (comfortable) “deceleration b”. Since one needs to react earlier
in order to reduce decelerations, this corresponds to increasing the level of antici-
pation −ãΔv.

The latter two actions can also be applied to the other simulation scenarios.

15.4.2 Flow Stability of Macroscopic Models

For investigating macroscopic flow instability, i.e., the equivalent of the micro-
scopic string instability, we start from the general acceleration equation (9.1) of
second-order macroscopic models combined with the continuity equation (9.10) for
homogeneous road sections,22 including possible diffusion terms. We rewrite the
acceleration equation such that all partial derivatives and nonlocalities contributing
to actual accelerations appear explicitly as independent variables of the acceleration
function. Together with the continuity equation, this gives

∂ρ

∂t
+ ∂(ρV )

∂x
= D

∂2ρ

∂x2 , (15.50)

∂V

∂t
+ V

∂V

∂x
= A (ρ, V, ρa, Va, ρx , Vx , ρxx , Vxx ) . (15.51)

The partial derivatives and nonlocalities of the density field are given by

ρx = ∂ρ(x, t)

∂x
, ρxx = ∂2ρ(x, t)

∂x2 , ρa(x, t) = ρ(xa, t) with xa > x . (15.52)

The derivatives Vx , Vxx and nonlocalities Va of the speed field are defined in analogy.
As for the microscopic models, we expand Eqs. (15.50) and (15.51) around the

steady-state solution (ρe, Ve). The steady-state condition itself defines the funda-
mental speed-density relation Ve = Ve(ρ) by

A (ρ, Ve(ρ), ρ, Ve(ρ), 0, 0, 0, 0) = 0. (15.53)

Moving along the one-dimensional space of steady-states,

dA = (
Aρ + Aρa

)
dρ + (

AV + AVa

) dVe

dρ
dρ = 0, (15.54)

we obtain the following relation between the partial derivatives of the acceleration
function:

dVe(ρ)

dρ
= V ′

e = − Aρ + Aρa

Av + AVa

. (15.55)

22 Otherwise, Fourier modes cannot be used and the analysis becomes more complicated.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_9
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Here, the partial derivatives of the acceleration function (including these appearing
in Eq. 15.60 below) are given by

Aρ = ∂ A

∂ρ

∣∣∣∣
e
, Aρa = ∂ A

∂ρa

∣∣∣∣
e
, Aρx = ∂ A

∂ρx

∣∣∣∣
e
, Aρxx = ∂ A

∂ρxx

∣∣∣∣
e
. (15.56)

The derivatives AV , AVa , AVx , and AVxx are defined in analogy. The subscript
“e” denotes that the functions are evaluated at the steady-state point (ρe, Ve(ρe)).
Linearizing Eqs. (15.50) and (15.51) using the ansatz

ρ(x, t) = ρe + ρ̃(x, t), (15.57)

V (x, t) = Ve + Ṽ (x, t), (15.58)

leads to the linear partial (and possibly nonlocal) differential equations

∂ρ̃

∂t
= −ρe

∂ Ṽ

∂x
− Ve

∂ρ̃

∂x
+ D

∂2ρ̃

∂x2 , (15.59)

∂ Ṽ

∂t
= −Ve

∂ Ṽ

∂x
+ Aρρ̃ + AV Ṽ + Aρa ρ̃a + AVa Ṽa

+ Aρx

∂ρ̃

∂x
+ AVx

∂ Ṽ

∂x
+ Aρxx

∂2ρ̃

∂x2 + AVxx

∂2Ṽ

∂x2 (15.60)

which ρ̃a(x, t) = ρ̃(xa, t) and Ṽa(x, t) = Ṽ (xa, t).
The general ansatz to solve this system of equations consists of linear waves

(Fourier modes) of wave number k and a growth rate λ(k),

(
ρ̃k(x, t)
Ṽk(x, t)

)
∝

(
ρ̂

V̂

)
eλt−ikx =

(
ρ̂

V̂

)
e(σ+iω)t−ikx . (15.61)

In contrast to the microscopic ansatz (15.34), the macroscopic Fourier modes are
defined in the stationary (road) system. Furthermore, the quantity k is dimensional
with the unit m−1. Specifically:

• The wavelength is given by 2π/k, i.e., k is consistent with the physical definition of
a wave number. This has to be contrasted with the physical wavelength 2π(se+l)/k
of microscopic models.

• With I lanes, a wave contains Iρe2π/k vehicles.
• The points of constant phase φ = ωt − kx (the waves), move with the velocity

c̃(k) = ω/k in the stationary system. This has to be contrasted with the physical
propagation velocity c̃mic(k) = ve(se) + (se + l)ω

k of microscopic waves in the
stationary system.

Similarly to the analysis of car-following models, inserting the ansatz (15.61) into
Eqs. (15.59) and (15.60) results in an algebraic linear system of equations for the



15.4 String Instability 281

amplitudes ρ̂ and V̂ of the density and speed oscillations, respectively:

λρ̂ = (ikVe − Dk2)ρ̂ + ikρeV̂ ,

λV̂ =
(

Aρ + Aρa e−iksa − ik Aρx − k2 Aρxx

)
ρ̂

+
(

ikVe + AV + AVa e−iksa − ik AVx − k2 AVxx

)
V̂ .

Here, sa = xa − x is the anticipation distance of nonlocal models.
As in the analysis of the car-following models, the solvability condition for this

homogeneous linear system leads to a quadratic equation of the form (15.39) for λ.
The long-wavelength expansion of the more unstable branch (given by Eq. 15.40
with the negative sign of the square root) around k = 0 proceeds in exact analogy to
the analysis of car-following models in Sect. 15.4.1. Again, the result takes on the
general form (15.45) but now with the macroscopic expansion coefficients

p0 = −(AV + AVa ), (15.62)

p1 = i(AVx + sa AVa − 2Ve),

q1 = iVe(AV + AVa ) − iρe(Aρ + Aρa ) = −iQ′
e p0,

q2 = Ve(AVx + sa AVa ) − ρe(Aρx + sa Aρa ) − V 2
e − D AV .

To arrive at the second equality sign of the expression for q1, we have applied
Eq. (15.55):

q1 = −iVe p0 + iρe p0
Aρ + Aρa

AV + AVa

= −ip0(Ve + ρeV ′
e) = −iQ′

e p0.

In first order of the wave number k, the general long-wavelength expansion (15.45)
yields a purely imaginary contribution and results in the phase velocity

c̃(k) = ω

k
= − q1

p0
+ O(k2) = Q′

e + O(k2). (15.63)

As in the LWR models, the propagation speed of waves of low wave number (k 	 π )
is given by the gradient Q′

e of the fundamental diagram. In contrast to these models
where c̃ = Q′

e is valid for any perturbation, the wave velocity of second-order
macroscopic models changes with the wavelength and c̃ = limk→0 c̃(k) = Q′

e is
only a linear and long-wavelength approximation. In Problem 15.2 we will show
that expression (15.63) for the physical phase velocity in the road-based system also
applies to the considered car-following models.

The second-order term of Eq. (15.45) is purely real and provides the stability
properties. By demanding that this term is negative,

q1 p1

p2
0

− q2

p0
− q2

1

p3
0

< 0,
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and inserting the macroscopic expansion coefficient q1 = −i Q′
e p0, we obtain a

simple yet general macroscopic condition for flow stability (string stability) in terms
of the gradient Q′

e of the fundamental diagram and the remaining coefficients p1 and
q2 (p0 cancels out):

(Q′
e)

2 − ip1 Q′
e − q2 ≤ 0. (15.64)

Local models. Local macroscopic models are defined by Aρa = AVa = 0. Inserting
the macroscopic expansion coefficients (15.62) for p1 and q2 and replacing Q′

e =
Ve + ρeV ′

e , we obtain the stability condition

(ρeV ′
e)

2 ≤ −ρe
(
V ′

e AVx + Aρx

) − D AV

Flow stability for
local macroscopic
models.

(15.65)

We emphasize that this criterion does not depend on AVxx or Aρxx . So, contrary to
intuition, flow stability is not enhanced by diffusion terms in the equation for the speed
field. It is enhanced, however, by the diffusion term proportional to D in the den-
sity equation. If the macroscopic model can be written in the form (9.11), i.e., the
acceleration function does not contain speed gradients, and all other gradients can be
written in terms of a complete differential − 1

ρ
∂ P/∂x of a traffic pressure P(ρ(x, t))

depending on density, only, Eq. (15.65) assumes the form

(ρeV ′
e)

2 ≤ P ′
e − D AV where P ′

e = P ′(ρe). (15.66)

Nonlocal models. Since the nonlocal terms containing ρa(x, t) = ρ(x + sa, t) or
Va(x, t) = V (x +sa, t) constitute anticipative elements (sa = xa −x > 0), they play
the role of the gradient terms of the local models and it does not make sense to include
the latter in nonlocal models: After all, nonlocal models have been proposed to
overcome some conceptual and numerical problems that are inherent to the gradients
of local models.23 Therefore, we can set Aρx = 0, AVx = 0, and D = 0. However,
this applies to gradients related to accelerations of single vehicles, only. Gradients
arising from kinematic reasons (the advective term V ∂V

∂x ), or representing purely
statistical effects (pressure term −1/ρ ∂ P

∂x , cf. Sect. 9.3.4) are retained. Consequently,
the nonlocal models considered in the following (including the GKT model) have
acceleration equations of the form

∂V

∂t
+ V

∂V

∂x
+ 1

ρ

∂ P(ρ)

∂x
= A (ρ, V, ρa, Va) . (15.67)

23 Diffusion terms imply infinite speeds. Furthermore, in the presence of speed gradients, negative
speeds cannot be excluded. Moreover, local models are numerically more unstable than gradient-free
nonlocal models.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_9
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Evaluating the general stability condition (15.64) for this model class leads to

(ρeV ′
e)

2 ≤ P ′
e − ρesa

(
V ′

e AVa + Aρa

) Stability condition
for nonlocal macro-
models.

(15.68)

Discussion. As for the microscopic models, macroscopic models tend to become
more instable with increasing gap sensitivity |V ′

e(ρ)| representing the degree of
interaction between drivers, i.e., completely free traffic is never unstable. Further-
more, like in car-following models, anticipation in the form of gradients (AVx > 0,
Aρx < 0) or nonlocalities (AVa > 0, Aρa < 0) enhance stability. By comparing
the stability conditions (15.68) and (15.65) it becomes evident that the nonlocalities
Aρa , AVa of the nonlocal models directly correspond to the gradients Aρx , AVx of
the local models.

In contrast to microscopic models, the speed sensitivity AV alone does not influ-
ence stability since it appears only in combination with the density diffusion D which
is zero, in most macroscopic models. We conclude:

Without gradients or nonlocalities, macroscopic models are unconditionally
unstable.

Furthermore, linear stability does not depend on diffusion terms characterized
by Aρxx and AVxx but only on density diffusion characterized by the coefficient D.
Nevertheless, diffusion terms in the speed equation tend to stabilize perturbations
of higher amplitude and/or frequency that are outside the limits of this linear long-
wavelength analysis. Therefore, such terms are included into some local macroscopic
models, e.g., the Kerner–Konhäuser Model (9.21).

15.4.3 Application to Specific Models

In the following, we apply the general stability criteria to some of the car-following
and macroscopic models presented in the Chaps. 9 and 10, respectively.

Optimal velocity model and extensions. We analyze the Full Velocity Difference
Model (FVDM) presented in Sect. 10.7 which is a generalization of the Optimal
Velocity Model (OVM). Its acceleration function ãmic(s, v,Δv) = (vopt(s)− v)/τ −
γΔv is of the form ãmic(s, v,Δv), so Eq. (15.49) is the suitable criterion for string
stability. With ãv = −1/τ and ãΔv = −γ , we obtain

v′
e(s) ≤ 1

2τ
+ γ. (15.69)

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
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For bound and congested traffic, the left-hand side v′
e(s) is of the order of the inverse

of the time gap. Specifically, for the optimal-velocity relation (10.22), it is directly
given by the inverse 1/T of the desired time gap T .

Traffic flow modeled with the OVM (γ =0) is only string stable if τ < 1
2 v′

e(s), i.e.,
the speed adaptation time τ must be smaller than half the time gap of the order of 1–2 s.
Since this implies unrealistically agile drivers and unphysically high accelerations,
the OVM cannot describe realistic driving behavior. The speed difference sensitivity
γ of the FVDM partially resolves this problem since sensitivities γ of the order
of 1 s−1 are realistic in car-following mode if speed differences are not too large.
However, as discussed in Sect. 10.7, the FVDM is not complete since the sensitivity
to speed differences does not tend do zero when gaps tend to infinity.

Newell’s model. Newell’s model (10.25) is formulated in terms of an iterated coupled
map, so the results of Sect. 15.4.1 cannot be applied directly. Proceeding as in this
section, the resulting solvability condition for the growth rate λ contains algebraic
terms but also exponentials eλΔt , and therefore cannot be solved analytically.24 As
a consequence, no compact analytic stability criterion can be derived. Moreover, in
contrast to models formulated as differential equations but similarly to time-delay
differential equations, the first instability may be of a short-wavelength type.

If one assumes a priori that short-wavelength instabilities are not relevant, it
is a good approximation to replace difference quotients by time derivatives using
Eq. (10.11). Thus, Newell’s speed update rule vα(t + T ) = ve(sα(t)) can approxi-
matively be formulated by the time-continuous acceleration equation

aNewell
mic (s, v) = ve(s) − v

T
. (15.70)

It is identical to the OVM if one identifies the speed adaptation time τ with the
update (reaction) time T . We conclude that Newell’s model is stable with respect to
long-wavelength string instabilities if

v′
e(s) ≤ 1

2T
. (15.71)

Gipps’ model. As Newell’s model, Gipps’ model is formulated as an iterated map
and the same restrictions and caveats apply. Particularly, the first instability may
be of the short-wavelength type which is, in fact, true for the original formulation
of Gipps’ model. In the simplified version (11.11), (11.10) presented here, how-
ever, long-wavelength instabilities appear first, so the stability limits can approxi-
matively be investigated by the time-continuous version of Gipps’ model obtained
using Eq. (10.11). For congested traffic,25 its acceleration function is given by

24 The equation for λ is of a similar form as the condition (15.27) for local instability of time-delay
differential equations.
25 No instabilities are possible for free traffic since v′

e(se) = 0 in this case.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_10
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aGipps
mic (s, v, vl) = vsafe(s, vl) − v

T
=

√
b2T 2 + v2

l + 2bs − bT − v

T
. (15.72)

The gap sensitivity v′
e(s) pertaining to this acceleration function and the partial

derivatives are given by are

v′
e(s) = 1

T
, as = b

T (bT + ve)
, av = − 1

T
, avl = ve

T (bT + ve)
. (15.73)

The acceleration function is of the type amic(s, v, vl) and the suitable stability crite-
rion (15.48) results to the string stability criterion

1

T
≤ 1

2T

(
1 + ve

ve + bT

)
(15.74)

for congested traffic while free traffic is unconditionally stable. Since condition
(15.74) is never satisfied, congested traffic represented by this model is always unsta-
ble. However, the instabilities are always of the convective type (cf. Sect. 15.5).
Moreover, for reasonable values of the deceleration parameter b, the growth rates are
so small (1/σ is of the order of one hour) that the perturbations need several kilome-
ters of propagation to grow significantly (cf. Fig. 11.1). In many cases, the critical
road sections are shorter, so the perturbations leave these sections before growing
into fully developed traffic waves. As a result, the model is de facto marginally stable
if the deceleration parameter b is of the order of 1 m/s2 or less.

Intelligent driver model. The IDM acceleration function is of the type ã(s, v,Δv).
Since the partial derivative ãv with respect to the vehicle speed would result in a
markedly longer analytic expression than the derivative with respect to the gap s, we
make use of relation (15.18) and set ãv = −ãs/v′

e(se). Then, Eq. (15.49) reads

v′
e(se) ≤ ãs

2v′
e(se)

− ãΔv. (15.75)

With the partial derivatives

ãIDM
s = 2a

se

(
s0 + veT

se

)2

, ãIDM
Δv = −ve

se

√
a

b

(
s0 + veT

se

)
, (15.76)

we obtain the string stability criterion (Fig. 15.10)

(v′
e(se))

2 ≤ a(s0 + veT )

s2
e

[
s0 + veT

se
+ vev′

e(se)√
ab

]
. (15.77)

http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Fig. 15.10 String instability of the IDM visualized by the reaction of a sequence of vehicles driving
in steady-state equilibrium far below the desired speed (v0 = 120 km/h) behind a leading vehicle
whose driver reduces his or her speed from 60 to 40 km/h. Shown is the first, 10th, 20th, 40th, 60th
and 80th follower. Left traffic flow is string stable (T = 1 s, s0 = 2 m, a = b = 2 m/s2); right traffic
flow becomes unstable by reducing the acceleration parameter from traffic flow a = 2–0.6 m/s2

This condition reflects the three influencing factors for string stability discussed in
Sect. 15.4.1 on page 272:

• The tendency to instability increases with the sensitivity v′
e(s) to changes of the

gap fueling the feedback mechanism.
• The tendency to instability decreases with the driver’s agility characterized by the

acceleration parameter a.
• And it decreases with decreasing comfortable deceleration b, i.e., with increasing

level of anticipation.

Notice that v′
e(se) ≈ 1/T for v 	 v0, so the desired time gap T is the main influencing

factor to the gap sensitivity (besides the actual traffic state): Lower values of T lead to
higher sensitivities v′

e(se) and to a higher tendency to instabilities: In agreement with
common sense, traffic flow becomes more unstable if the time gaps in car-following
mode are comparatively short.26

For the limiting case ve → 0, or equivalently, se → s0 and v′
e(s0) = 1/T , we

obtain the simple explicit stability condition

a ≥ s0

T 2 . (15.78)

If the stability condition (15.78) is satisfied but traffic flow is string unstable for
congested traffic of finite steady-state speed ve, one speaks of restabilization. In
this case, mildly congested traffic resulting from comparatively small bottlenecks is

26 On the other hand, short gaps lead to a higher dynamic capacity, see Sect. 11.3.6.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
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unstable while nearly standing traffic behind severe bottlenecks is stable, creeping
slowly. This will be discussed in Sect. 17.2.

Payne’s model. The acceleration function of Payne’s model (9.18) is given by

A(x, t) = Ve(ρ) − V

τ
+ V ′

e(ρ)

2ρτ

∂ρ

∂x
.

With the partial derivatives Aρx = V ′
e/(2ρτ), AVx = 0 and D = 0, the macroscopic

stability condition (15.65) for local models gives

ρV ′
e

2 ≤ −Aρx = − V ′
e

2ρτ

and (watch the signs keeping in mind that V ′
e = V ′

e(ρ) < 0)

− V ′
e(ρ) = |V ′

e(ρ)| ≤ 1

2ρ2τ
. (15.79)

Again, stability of traffic flow increases with increasing agility of the drivers (decreas-
ing speed adaptation time τ ), and decreasing sensitivity |V ′

e(ρ)| to density changes
which is the macroscopic equivalent to the microscopic gap sensitivity v′

e(s).

LWR models. In the limiting case τ → 0, Payne’s model tends to the LWR model
with diffusion (cf. Sect. 9.4.1). According to Eq. (15.79), this model is uncondition-
ally stable. In contrast, the stability properties of the classical LWR model without
diffusion terms are undefined. However, since even the smallest finite diffusion makes
the model unconditionally stable and integration schemes typically introduce a finite
amount of numerical diffusion (cf. Sect. 9.5 on page 145), the LWR models can be
considered as unconditionally stable, for practical purposes.

Kerner–Konhäuser model. Since this model explicitly contains the “traffic
pressure” P(ρ) = ρθ0, it is convenient to apply the form (15.66) of the stability
criterion. With P ′(ρ) = θ0 and D = 0, we obtain

(
ρeV ′

e

)2 ≤ θ0. (15.80)

As in Payne’s model, flow stability is enhanced by decreasing the sensitivity |V ′
e(ρ)|

to density changes. Furthermore, stability grows with the drivers’ level of anticipa-
tion which is characterized by the prefactor θ0 of the traffic pressure.27 We empha-
size that, at variance with expectations, the model parameter τ representing the
driver’s agility drops out of the stability condition. This makes the model somewhat
counterintuitive.

27 In a statistical interpretation, θ0 formally denotes the speed variance in analogy to the corre-
sponding term θ = α(ρ)V 2 of the GKT model. However, in the Kerner–Konhäuser Model, θ0 is
usually interpreted as a purely phenomenological anticipation term.

http://dx.doi.org/10.1007/978-3-642-32460-4_17
http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_9
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GKT model. In spite of the more complex GKT acceleration function given by
the right-hand side of Eq. (9.24), the partial derivatives necessary for the nonlocal
stability criterion (15.68) can be expressed in a compact form,

Aρa = ∂ A

∂ρa
= −2(V0 − Ve)ρmax

τρe(ρmax − ρe)
, (15.81)

Ava = ∂ A

∂Va
= 2(V0 − Ve)

τσV (ρe)
√

π
. (15.82)

Here, the speed variance σ 2
V (ρ) = α(ρ)V 2

e (ρ) is given by Eq. (9.22). Inserting the
partial derivatives into the stability criterion results in the following condition for
GKT flow stability

(
ρeV ′

e

)2 ≤ P ′
e + 2sa(V0 − Ve)

τ

[
ρmax

ρmax − ρe
− ρeV ′

e

σV
√

π

]
(15.83)

with sa = γ VeT , and P ′
e = σ 2

V + ρα′(ρ)V 2
e is taken at steady-state conditions,

ρ = ρe. Notice that, in the limit of zero anticipation (γ → 0), the GKT flow stability
criterion reverts to that for the Kerner–Konhäuser Model but the stability increases
for increasing anticipation distance sa = γ veT and increasing driver agility 1/τ , in
agreement with the general qualitative discussion on the influencing factors of string
stability in Sect. 15.4.1 on page 272.

Near the maximum density, we can approximate this GKT stability criterion and
express it in terms of a simple condition for the anticipation factor γ (cf. Problem
15.6),

γ >
τ

2T 2ρmaxV0
(
1 + (αmaxπ)−1/2

) . (15.84)

This condition makes explicit that, in the GKT model, stability

• increases with γ characterizing the level of anticipation,
• decreases with increasing τ , i.e., reducing the driver’s agility,
• increases with increasing desired time gap T , i.e., reducing the aggressiveness,
• increases with the desired speed V0,
• and increases with the sensitivity to speed differences which is characterized

by α−1/2.

Notice that all influencing factors are plausible, i.e., change the stability in the
expected direction.

15.5 Convective Instability and Signal Velocities

In order to arrive at an approximate analytical criterion between convective and
absolute instability, we start directly with definition (15.4) and investigate whether
an initial transient and localized perturbation propagates in both directions (absolute

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_9
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instability), or only in one direction (upstream or downstream convective instability).
Since all considerations are based on Eq. (15.39) and this quadratic equation applies
equally to car-following and macroscopic models (cf. Eq. 15.41 and the solvability
condition derived from Eq. 15.62, respectively), the analysis to be developed below
applies to macroscopic flow stability as well as to microscopic string stability. The
macroscopic approach allows for a more compact analytical representation, so we
will use it in the following.

Equation (15.39) has two solution branches (linear complex dispersion relations)
λ1/2(k) of which one is always decaying. Since we are interested in growing pertur-
bations, we will consider the more unstable branch, only, by setting

λ(k) =
{

λ1(k) if Re(λ1(k)) > Re(λ2(k)),

λ2(k) otherwise.
(15.85)

Generally, the more unstable branch is given by Eq. (15.40) with the negative sign
of the square root.

In contrast to the investigations on the instability threshold, the growth rates
will no longer be expanded around the wave number k = 0 of the firstly unstable
perturbation but around the wave number

k0 = arg max
k

(Re λ(k)) (15.86)

of the fastest growing perturbation. Since this investigation only makes sense if there
is a linear instability at all, the associated maximum growth rate

σ0 = σ(k0) = Re λ(k0) (15.87)

is positive. Due to vehicle conservation, waves of infinite wavelength corresponding
to k = 0 always have a growth rate of zero, so the wave number k0 of the fastest
growing mode is nonzero as well. The qualitative picture is exemplified by Fig. 15.9
displaying the growth rate σ(k) = Re λ(k) for the IDM as a function of the wave
number k and the distance from the linear instability threshold (corresponding to an
IDM acceleration parameter a = 1.10 m/s2):

• For reasons of symmetry, not only σ(0) is 0 but also the tangent slope σ ′(0) = 0.
• At the instability threshold, the first unstable mode has a wave number k → 0, so

k0 → 0. Above the linear threshold, k0 grows with increasing distance.
• For reasonable parameter settings, the instability retains its long-wavelength nature

also above the threshold. In the example of Fig. 15.9, the wave number k0 of the
fastest growing mode at the limit between convective and absolute instability (cor-
responding to the middle curve) represents traffic waves of wavelength (lveh + se)

2π/k0 ≈ 1.3 km. In other words, each wave contains 2π/k0 ≈ 47 vehicles. Fur-
thermore, although significantly above the threshold, the associated growth rate
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σ0 = 0.0017 s−1 corresponds to a remarkably slow growth by a factor of e1 every
ten minutes.28

In order to determine the limits of convective instability, we determine the spatiotem-
poral evolution U (x, t) of the perturbation amplitude, and check whether it spreads
only upstream, only downstream, or in both directions. The amplitude U (x, t) is
defined by the system (15.59), (15.60) of linear partial differential equations to be
solved in the infinitely extended system with the localized initial perturbation (15.1),
or the corresponding microscopic linear equations. This initial-value problem is
approximatively solved in the following steps:

• The initial perturbation U (x, 0) is partitioned into linear waves by Fourier trans-
forming the initial condition with respect to space. Since the initial perturbation
is localized within the space available for one vehicle and the interesting Fourier
modes have much greater wavelengths, the integral over x determining the com-
plex amplitude of the modes (Fourier transform) is the same for all relevant modes,
and can be set to unity.

• The Fourier modes are evolved in time by the Eqs. (15.34) or (15.61) for micro-
scopic and macroscopic models, respectively

• In the case of microscopic models, the Fourier modes are transformed in a fixed
system with dimensional space coordinates. In any case, the development of the
complex speed components of the Fourier modes is now given by Ṽk(x, t) =
eλt−ikx (cf. Eq. 15.61).

• Summing over the speed components Ṽk(x, t) of the Fourier modes, i.e., perform-
ing an inverse Fourier transformation, gives the complex perturbation amplitude
Ũ (x, t) = ∫

Ṽk(x, t)dk. Taking the real part finally gives the spatiotemporal evo-
lution U (x, t) = Re Ũ (x, t).

While the first three steps are straightforward, the last step can only be evaluated
analytically if one expands the complex growth rate to second order around k = k0
and solves the resulting complex Gaussian integral. This rather lengthy calculation
results in (cf. Fig. 15.11)

U (x, t) = Re(Ũ (x, t)), (15.88)

Ũ (x, t) ∝ exp
[
i(kphys

0 x − ω0t)
]

exp

[(
σ0 −

(
vg − x

t

)2

2(iωkk − σkk)

)
t

]
. (15.89)

The expansion coefficients are summarized in the following table:

28 Notice that this is another hint that it may take some time until an initial perturbation develops
to high-amplitude traffic waves, or a traffic breakdown.
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Quantity in Eq. (15.89) Microscopic models Macroscopic models

kphys
0 ρek0 = ρearg max

k
Re λ(k) k0 = arg max

k
Re λ(k)

σ0 Re λ(k0) Re λ(k0)

ω0 veρek0 + Im λ(k0) Im λ(k0)

vg ve + Im λ′(k0)/ρe Im λ′(k0)

σkk Re λ′′(k0)/ρ
2
e Re λ′′(k0),

ωkk Im λ′′(k0)/ρ
2
e Im λ′′(k0).
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Fig. 15.11 Spatiotemporal propagation U (x, t) of a localized perturbation of the steady-state traf-
fic flow (speed ve = 48 km/h) as simulated with the IDM. The parameter settings of the left column
(acceleration parameter a = 1 m/s2, further IDM parameters as in Fig. 15.9) correspond to con-
vectively unstable traffic, the right column (a = 0.85 m/s2) to absolutely unstable traffic, and the
middle column (a = 0.93 m/s2) to the limit between convective and absolute instability. For each
parameter settings, the analytical result Eq. (15.89) (top row) is compared with an IDM simulation
(bottom row)

As visualized by Fig. 15.11, expression (15.89) represents a localized group of
waves with the following properties:

• Single waves propagate with the phase velocity vφ = c̃(k0) = ω0/kphys
0 (first

factor of Ũ (x, t)).
• The center of the perturbation propagates with the group velocity vg (second

factor).
• The amplitude at the center of the perturbation grows with the rate σ0.

Figures 15.12 and 15.13 show that phase and group velocity are different from each
other (and also different from the LWR propagation speed c̃ = limk→0 c̃(k)): Since
vg is larger (less negative) than vφ , the waves emerge at the downstream boundary of
the perturbation, propagate through the perturbed region, and vanish at the upstream
boundary.29 In spite of the many approximations made in deriving Eq. (15.89), this
analytical expression agrees with the simulation result in fine detail.

29 This is similar to a group of water waves triggered by a localized perturbation, e.g., by a stone
thrown at the water surface.
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Fig. 15.13 Propagation velocities of linear perturbations as a function of the steady-state density ρe.
Shown are the group velocity vg , the phase velocity vφ and, for comparison, the LWR propagation
velocity Q′

e(ρ) for the IDM. In Plot (a), traffic flow at capacity is unstable (stability class 1,
a = 0.8 m/s2, the other parameters are as in Fig. 15.9) while, in diagram (b), traffic flow at capacity
is linearly stable (stability class 2, a = 1.1 m/s2)

By applying the definition (15.4) of convective instability to the solution (15.89),
we finally arrive at the following analytic criteria for convective instability:

0 < σ0 ≤ v2
g

2D2
, D2 = −σkk

(
1 + ω2

kk

σ 2
kk

)
Convective
instability.

(15.90)

The first inequality sign states that traffic flow must be linearly (string or flow) unsta-
ble while the second inequality ensures that the perturbations propagate in only one
direction. Notice that Eq. (15.90) depends only on the square of the group velocity,
so it does not distinguish between upstream and downstream convective instabil-
ity. The latter information is directly contained in the analytical solution (15.89):
A steady-state flow satisfying Eq. (15.90) is convectively upstream unstable if vg < 0,
and convectively downstream unstable, otherwise.
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Remarkably, the range of growth rates corresponding to convective instability
increases with the square of the group velocity vg and with the inverse of the second-
order effective dispersion coefficient D2

30: If vg ≈ 0 (corresponding to the tran-
sition between free and congested traffic or to congested traffic of comparatively
low density, cf. Fig. 15.13a, the instability is always absolute. For congested traf-
fic sufficiently far away from the transition point, vg < 0 and the instabilities are
nearly always of an upstream convective nature. Finally, if the model parameter
settings imply linear instabilities on the left-hand side of the fundamental diagram
(“dense” but technically free traffic flow, vg > 0), Eq. (15.90) allows for convective
downstream instabilities, similarly to the original hydrodynamic systems where the
concept of convective instability comes from. However, unlike the upstream type,
downstream convective instabilities are not robust with respect to nonlinear effects:
Downstream propagating growing waves reverse their propagation direction once
nonlinearities kick in so the system effectively becomes absolutely unstable (cf.
Fig. 15.5). This reversal, also called the boomerang effect can also be observed in
traffic data (cf. Fig. 18.3). We conclude that, unlike upstream convective instabilities,
downstream convective instabilities are not relevant for traffic flow dynamics.

Signal velocities. The signal velocities are defined as the slopes of rays x = cst in
space–time along which the linear amplitude of instabilities triggered by a localized
and instantaneous perturbation at x = t = 0 neither grows nor shrinks. Generally,
there are two such velocities representing the motion of the two boundaries of the
instability region. In Fig. 15.4, these boundaries are indicated by solid black lines.

In order to extract the signal velocities from the perturbation field U (x, t), we
consider the amplitude of U (x, t) along rays x = cst and determine cs such that
the growth of the amplitude along this ray is equal to zero. This means, we replace
x = cst in the expression (15.88) for U (x, t) and set the real part of its exponent
equal to zero:

σ0 − Re

(
(vg − cs)

2

2(iωkk − σkk)

)
= σ0 −

(
(vg − cs)

2

2D2

)
= 0.

For σ0 > 0 (i.e., traffic flow is string unstable which we require anyway), this leads
to two signal velocities,

c±
s = vg ± √

2D2σ0. (15.91)

From this relation, we learn the following:

• The center of the region of significantly perturbed traffic flow propagates with the
group velocity.

• The perturbed region grows spatially at a constant rate 2
√

2D2σ0.
• As expected, the spatial growth rate increases with the overall level of instability

σ0 and with the effective dispersion coefficient D2.

30 This dispersion has the same unit, order of magnitude (100 m2/s), and effect, as the diffusion
terms of some macroscopic models.

http://dx.doi.org/10.1007/978-3-642-32460-4_18
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• The special case cs = 0 leads us to the threshold condition σ0 = v2
g/(2D2) between

absolute and convective instability which agrees with (15.90).

The latter point indicates that signal velocities are related to convective instability.
Moreover, they provide an intuitive, and yet mathematically stringent, approach to
distinguish between the upstream and downstream types of convective instability:

traffic flow is

⎧
⎨

⎩

absolutely string unstable c−
s < 0 < c+

s
upstream convectively unstable c−

s < 0, c+
s < 0

downstream convectively unstable c−
s > 0, c+

s > 0.

(15.92)

The upstream type of convective instability (Fig. 15.4a) is often observed in the traffic
flow context while the downstream type is related to the hyrodynamical context where
the very concept of convective instability originates.

15.6 Nonlinear Instability and the Stability Diagram

The analytical investigation of the previous sections refer to small perturbations,
i.e., to linear instability. Few analytical results are available for large-amplitude
perturbations or fully developed traffic waves.31 Instead, one investigates nonlinear
effects directly by simulations of well-defined systems that are as simple as possible.
The most popular of such toy systems is a closed single-lane ring road populated
which identical drivers and vehicles.32 In order to avoid finite-size effects, the system
should contain more than 500 vehicles. As a further abstraction, one can also consider
a ring road with a circumference tending to infinity or, equivalently, an infinitely
extended homogeneous road. The only control parameter is the global (average)
density ρe. By simulating the qualitative system dynamics in the full range [0, ρmax]
of possible values for the control parameter, one obtains a stability diagram.

We emphasize that a ring road does not represent a realistic abstraction of real road
networks: Real road networks are open, so the inflow (traffic demand) rather than
the density acts as control parameter. Furthermore, bottlenecks are missing on the
idealized ring road. Nevertheless, their investigation allows us to draw far-reaching
conclusions on more realistic open systems with bottlenecks. A big advantage of
stability diagrams derived from ring roads is that they reflect the dynamical properties
of a given model-parameter combination independently of the properties of the road
network, or the traffic state.

31 There is a large body of literature proposing and investigating solitary nonlinear waves which
can be investigated analytically. However, the conditions to derive equations for such waves (e.g.,
a modified Korteweg–de-Vries equation) are extremely restrictive and nearly never satisfied in real
traffic situations.
32 A ring road must not be confused with a roundabout which, in contrast to the former, represents
a comparatively complex network node.
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Fig. 15.14 (c) Class diagram of the IDM as a function of the time gap T and acceleration a.
The other IDM parameters and the vehicle length 5 m are the same as in Fig. 15.9. (a), (b), (d)
stability diagrams for three points of the class diagram corresponding to the classes 2a, 2b, and 1b,
respectively. (e) class diagram for city traffic (v0 reduced to 50 km/h, everything else unchanged)

To obtain stability diagrams as that of Fig. 15.14a, b, or d, we scan the whole
range of global densities ρe ∈ [0, ρmax]. For a given global density, we simulate
two scenarios: One is initialized with a very small perturbation, and one with the
maximum possible perturbation. Instead of the “linear” scenario initialized with the
small perturbation, one could also use the analytical results. However, simulating
them represents a good combined test of the simulator code, and of the approxi-
mations and assumptions made during the analytical derivations. For each scenario,
we check whether the initial perturbation dissolves, or evolves into persistent traffic
waves. Generally, the resulting stability diagram is subdivided into the following
regions:

• Absolute stability for global densities ρe below the lower nonlinear threshold ρ1.
• Metastability in a range ρ1 ≤ ρe < ρ2 between the lower nonlinear and lin-

ear thresholds. In this range, sufficiently small initial perturbations eventually
dissolve while higher-amplitude perturbations develop to persistent traffic waves
(Fig. 15.15, see also Fig. 15.8).

• Absolute linear instability in a range ρ2 ≤ ρe < ρcv.
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Fig. 15.15 Metastable traffic flow on a ring road with the global density ρ = 26 veh/km for IDM
parameters as in Fig. 15.14d. Small perturbations dissolve (left) while a larger initial perturbation
develops to a persistent traffic wave propagating around the ring road (right). Notice the different
scales of the z-axes

• Convective linear instability in the range ρcv ≤ ρe < ρ3.33

• Convective metastability in the range ρ3 ≤ ρe < ρ4 between the upper linear and
nonlinear density thresholds.

• And absolute instability for ρe ≥ ρ4.

Which subset of the above stability types is actually realized when scanning the global
density depends on the model-parameter combination. Since this determines the
qualitative behavior of congested states in real open road networks (and in particular
whether this behavior is realistic or not), the most relevant subsets are attributed to
stability classes that will be discussed in the next section.

15.7 Stability Classes

While the density regions for the different instability types appear (with few excep-
tions) always in the order ρ1 ≤ ρ2 ≤ ρcv ≤ ρ3 ≤ ρ4,34 not all density regions are
realized, in general. Particularly, there may be no restabilization for high densities
(Fig. 15.14a), no absolute instability (ρ2 = ρcv, Fig. 15.14a, b), or no instability at
all (ρ1 = ρ4 = ρmax). In principle, all ranges apart from the first one (ρ < ρ1) may
vanish independently from each other. It is hard, however, to find model-parameter
combinations showing metastable regimes but no linear instability at any density.

Analyzing real open systems with bottlenecks, it turns out that the qualitative
spatiotemporal behavior, i.e., the set of possible congestion patterns, depends on
only a few combinations of existing regimes. Additionally, the relative position of
the thresholds with respect to the density ρK at capacity (the density where the

33 Strictly speaking, convective instability is only well-defined in an infinite or open system. How-
ever, for practical purposes, the circumference of the ring must be sufficiently large such that no
vehicle drives around the complete ring during the simulation time.
34 For rare combinations of models and parameters, we obtain a region of absolute instability embed-
ded on both sides by regions of convective downstream and upstream instabilities, respectively.
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maximum flow is observed) plays an essential role. This leads to the definition of
the following stability classes:
Class 1a: When increasing the density, traffic flow becomes linearly unstable for den-
sities corresponding to dense but technically yet free traffic. Furthermore, it remains
unstable for all higher densities: ρ1 ≤ ρ2 < ρK , ρ3 = ρ4 = ρmax. Since the prop-
agation velocity vg is 0 for a steady-state density ρe ≈ ρK , Eq. (15.90) implies
that this class includes density ranges of absolute instability. Typically, the instabil-
ity remains absolute up to moderately congested traffic and becomes convective for
severe congestions near the maximum density.
Class 1b: Traffic flow restabilizes for high densities, i.e., traffic flow becomes
smoothly creeping rather than oscillatory if severely congested.35

Class 2a: Only congested traffic flow (on the “right-hand side” of the fundamental
diagram) can become unstable, and there is no restabilization: ρ2 > ρK , ρ3 = ρ4 =
ρmax. Typically, the instability is always of a convective nature. However, a small
range of absolutely unstable traffic is possible for congested traffic of comparatively
low density.
Class 2b: As Class 2a, but with restabilization, ρ3 < ρmax.
Class 3: Absolute stability everywhere, ρ1 = ρmax.

Comparing the patterns simulated in realistic open systems with observations (cf.
Chap. 18), we conclude the following:

Realistic model-parameter combinations for highway traffic flow correspond
to stability classes 2a or 2b.

Depending on the parameter set, one and the same model can belong to different
stability classes. Figure 15.14 shows that the IDM can assume all classes. With he
help of this model, we will now discuss the influencing factors leading to the different
classes.

Agility. Agility or responsiveness corresponds to the acceleration parameter a. Start-
ing with low agility and increasing the agility by increasing the parameter a, the
stability class changes from Class 1 (instabilities are possible even for dense but
uncongested traffic, to Class 2 (only congested traffic can become unstable to Class 3
(no instability anywhere). Notice that in some other microscopic or macroscopic
models, the agility corresponds to the inverse of the speed adaptation time τ .

Time gap. The capacity of traffic flow (maximum flow) increases with decreasing
time gap T in car-following mode. Simultaneously, reducing T also reduces the time

35 We are aware that, in vehicles with manual transmission, it is hard to drive smoothly at very low
speeds where the clutch must be operated even when driving in first gear. While this is considered
in sub-microscopic models, it is ignored for the models considered here. In effect, the difficulty to
drive very slowly leads to persistent noise at a sub-microscopic level. However, if traffic flow is
stable at a microscopic or macroscopic level, these perturbations are not collectively amplified, i.e.,
traffic data show strong fluctuations but no deterministic signal.

http://dx.doi.org/10.1007/978-3-642-32460-4_18
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margin of the drivers to react to changing situations, so traffic flow generally becomes
more unstable. Remarkably, this does not influence the transition between Classes 1
and 2 which essentially is determined by the acceleration a.

Anticipation. By scaling the IDM appropriately (cf. Problem 15.7), one can show
that the dynamics, and particularly the stability class, remains unchanged when simul-
taneously

• increasing the anticipation by decreasing the comfortable deceleration b by a factor
fb < 1,

• decreasing the agility by reducing a by a factor of fb,
• increasing the time gap T by a factor 1/

√
fb,

• decreasing the desired speed v0 by a factor of
√

fb, and
• leaving s0 unchanged.

As expected, this means that a decrease of agility is compensated for by increasing
the responsiveness. Moreover, exact compensation is reached if the ratio a/b remains
unchanged. Remarkably, the restabilization properties (subclasses 1a, 2a vs. 1b, 2b,
3) do not depend on the anticipation at all. To see this, we notice that the IDM
corresponds to stability subclass a (1a, or 2a) if and only if

a <
s0

T 2 (15.93)

(and to one of the classes 1b, 2b, or 3, otherwise), and that this distinction criterion
does not contain b as influencing factor.

15.8 Short-Wavelength Collective Instabilities

When discussing the collective instabilities discussed in the Sects. 15.4–15.7, we
have assumed long-wavelength instabilities, i.e., the first instability is always one
with respect to waves whose wave number tends to zero and the associated wave-
length tends to infinity. Mathematically, it can be shown that this is true for all time-
continuous car-following models without explicit reaction time formulated by cou-
pled ordinary differential equations, and for all macroscopic local second-order mod-
els, i.e., formulated by partial differential equations for the density and speed fields.

However, many popular models do not belong to one of these mathematical
classes. Examples include iterated coupled maps, time-continuous car-following
models with reaction times, or nonlocal macroscopic models. Figure 15.16 shows the
simultaneous occurrence of long-wavelength and short-wavelength collective insta-
bilities for the IDM with an explicit delay by a reaction time Tr = 1.2 s (but no other
human driving aspect of Chap. 12 added). We observe that the short-wavelength
instabilities propagate faster than the long-wavelength instabilities, so that they
“collide” into each other. However, neither these collisions nor the propagation veloc-
ity of the short-wavelength modes (about −30 km/h) are realistic. We conclude that

http://dx.doi.org/10.1007/978-3-642-32460-4_12
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Fig. 15.16 Simultaneous appearance of long-wave and short-wave instabilities in the IDM with
reaction time Tr = 1.2 s for initially steady-state traffic at ρe = 30 km−1 with a small perturbation.
The IDM parameters are v0 = 120 km/h, T = 1.5 s, a = 1 m/s2, b = 1.3 m/s2, s0 = 2 m, and the
vehicle length l = 5 m

short-wavelength instabilities should not occur for realistic model-parameter com-
binations.

Finally, we emphasize that, for realistic parameters, the first instability of models
including potential short-wavelength instabilities is generally of the long-wavelength
type. Since it is often not feasible to test or prove this mathematically, simulations
are necessary to check this property.

Problems

15.1. Characterizing the type of instability
Consider the dynamics schematically shown in Fig. 15.1. Is it a local or string insta-
bility? If the latter is true: Is the instability absolute or convective, linear or nonlinear?

15.2. Propagation velocity of traffic waves in microscopic models
Show that the long-wavelength limit (15.47) of the microscopic propagation velocity
corresponds macroscopically to the gradient c̃ = Q′

e(ρ) of the fundamental diagram.
To this purpose, scale the microscopic propagation velocity to dimensional physical
units, and transform it from the system comoving with the vehicles to a road-based
fixed system. Finally, express the microscopic quantities in terms of macroscopic
variables.

15.3. Instability limits for the full velocity difference Model
Consider the acceleration equation (10.23) of the FVDM with a speed adaptation
time τ = 5 s and a triangular fundamental diagram given by the microscopic relation

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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ve(s) = min(s/T, v0), T = 1 s. What is the minimum value of the sensitivity γ to
speed differences to ensure (i) local stability, (ii) no (damped) oscillations when a
single vehicle follows a leader with at a given speed profile, (iii) string stability?

15.4. Stability properties of the optimal velocity model compared to Payne’s
model
Consider the OVM and Payne’s model for general, but equivalent, optimal-velocity
(steady-state) relations and show that the conditions for collective (string or flow)
stability of both models are equivalent. Hint: Find the macroscopic equivalent Ve(ρ)

of the microscopic steady-state relation ve(s), derive a relation between the deriv-
atives v′

e(s) and V ′
e(ρ), express the OVM stability condition in macroscopic terms,

and compare it with the condition (15.79) for Payne’s model.

15.5. Flow instability in Payne’s model and in the Kerner–Konhäuser Model
Consider Payne’s model and the Kerner–Konhäuser Model with a triangular funda-
mental diagram Qe(ρ) = min(V0ρ, 1/T (1 − leffρ)) and the parameters leff = 6 m,
V0 = 144 km/h and T = 1.1 s. (i) Show that Payne’s model is unconditionally
linearly stable if τ < T/2, and flow unstable in the congested regions, otherwise.
(ii) For the Kerner–Konhäuser Model, determine the parameter θ0 such that this
model is string unstable in the density range ρ ∈ [20 vehicles/km, 50 vehicles/km].

15.6. Flow instability of the GKT Model
Consider sufficiently congested traffic such that the speed variation coefficient
σV /v = √

α(ρmax) can be considered as constant. Show that, in the local limit
of zero anticipation distance (γ = sa = 0), the GKT model is unconditionally
unstable in this situation for all reasonable parameter values. Furthermore, show that
anticipation stabilizes traffic flow by deriving the approximate Condition (15.84) for
densities near the maximum density.

15.7. IDM stability class diagram for other parameter values
Calculate the stability class diagram as in Fig. 15.14c but assume a comfortable
deceleration b∗ = 2 m/s2 instead of b = 1.5 m/s2, and v∗

0 = 139 km/h instead of
120 km/h. Is it possible to use this diagram without recalculating anything, just by
scaling the axes appropriately?

Hint: Formulate the IDM model equations in scaled units by scaling time in
multiples of the unit time

√
s0/b (of the order of 1 s), and space in multiples of the

minimum gap s0. Show that the scaled model depends on only three dimensionless
parameters

ṽ0 = v0√
bs0

, ã = a

b
, T̃ = T

√
b

s0
, (15.94)

and on the scaled vehicle length l̃veh = lveh/s0. Now use the fact that all dynamic
properties (and, in particular, the stability class) depend on the scaled parameters
and the scaled vehicle length, only. Find appropriate scalings for the two axes of the
class diagram.
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15.8. Fundamental diagram with hysteresis
Given are the following characteristics of highway traffic flow: Average vehicle
length l = 4.67 m, average gap in car-following situations s = s0 + vT where
s0 = 2 m and T = 1.6 s, average free-flow speed 120 km/h, and critical density at
traffic breakdown (free → congested) ρc = 20 veh/km per lane. From these data it
follows that two values of traffic flow are possible in a certain density range.

1. At which traffic flow does a breakdown occur, i.e., where does the free branch of
the fundamental diagram end?

2. Determine the “congested branch” of the fundamental diagram and the density
at which it intersects with the free branch. For which density range can free and
congested traffic exist simultaneously?

3. The outflowing region of congestions is characterized by the intersection
(ρout, Qout) of the free and congested branches of the fundamental diagram. Indi-
cate ρout and calculate Qout. Also calculate the capacity drop as the difference
between the maximum flow of free traffic and Qout

4. Make a graph of the fundamental diagram showing its mirrored λ-shape.
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Chapter 16
Calibration and Validation

With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.

Attributed to von Neumann

Abstract Drivers in different countries have different driving styles, drive different
types of vehicles, and are subject to different traffic regulations. This means, models
need to be adapted to the situations they are to describe by varying their parame-
ters (calibration). Furthermore, it must be verified that this procedure is successful
(validation). After introducing the mathematical principles behind calibration, we
discuss nonlinear optimization and give hints of how to run a calibration task. We
explain the various calibration methods by means of example and also discuss the
necessary data preparation. Finally, we introduce validation techniques and point to
interpretation pitfalls and the limits of the predictive power of models.

Microscopic traffic flow models describe the driving behavior, local traffic rules, and
possible restrictions of the vehicle. Macroscopic models additionally include the
driver-vehicle composition and how it changes the collective traffic flow dynamics.
This occurs on two levels:

• Selecting a specific model or model combination (e.g., a longitudinal and a lane-
changing model) determines the above aspects at a structural or qualitative level.
For example, mixed traffic of motorized and non-motorized vehicles without dis-
tinct lanes (cf. Fig. 6.4) requires a different model class than regular vehicular
traffic on lanes. On the other hand, there are situations where lane changes do not
play a role at all.

• Changing the model parameters “tunes” the above characteristics quantitatively,
e.g., by changing the free-flow speed or making the drivers more or less aggressive.

All these aspects vary with the country and with time. For example, drivers in the
United States and in Germany have different driving styles, drive different types
of vehicles and are subject to different traffic regulations. For drivers in China, the
differences are even more pronounced. Moreover, even on a given road in a given

M. Treiber and A. Kesting, Traffic Flow Dynamics, 303
DOI: 10.1007/978-3-642-32460-4_16, © Springer-Verlag Berlin Heidelberg 2013
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country, the traffic flow characteristics changes with time: In morning rush hours,
drivers are generally more alert and drive more effectively than in the evening. At
night, the driving styles are different again. The vehicle composition changes with
time as well, particularly if there are periods when trucks are not allowed (e.g., in
Germany on Sundays or public holidays).

Consequently, not even the best model reproducing the structural aspects can be
applied to a specific task with the default parameter set (e.g., that of Tables 8.1, 9.1,
11.1, 11.2, or 12.1). Instead, the traffic flow analyst must change the default values
to give a best fit to training data sets obtained from observations of situations that
are comparable to the problem at hand. This is called calibration:

Calibration is the estimation of parameters to maximize the model’s descriptive
power to reproduce local driver behavior and/or collective traffic-flow char-
acteristics. The descriptive power is specified by an objective function to be
applied to the test data.

This task is substantially more difficult than the problem cited in the introductory
quote of von Neumann: Calibrating a traffic flow model is tantamount to fitting a
herd of running elephants rather than a single standing elephant wiggling its trunk.

16.1 General Aspects

In this section, we discuss aspects that are relevant to all calibration problems: math-
ematical principles, nonlinear optimization, assessing models, and application hints.

16.1.1 Mathematical Principles

There are two main mathematical approaches to formulate the calibration problem:
Least squared errors and maximum likelihood. For online applications, a variant of
maximum likelihood is commonly applied: the Kalman filter.

Least squared errors (LSE). In this more intuitive method, also called regression,
one defines the objective function directly in terms of a sum of squared errors (SSE),
or, equivalently, the mean squared error (MSE) between the test data and the model
prediction. The MSE is treated as a function of the parameters while the data are
considered to be (and, in fact, are) fixed. In the following, we denote the parameters
in shorthand notation by a parameter vector β. For example, the complete IDM
parameter vector is βT = (l, v0, T, s0, δ, a, b) where δ = 4 is kept constant, in most
cases, and the vehicle length l is only relevant for macroscopic data.1 If there are n

1 The superscript T denotes transposition, i.e., a row rather than a standard column vector.

http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_12
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data points ydata
i , i = 1, . . . , n, to which to fit the simulation predictions ysim

i (often,
i denotes the time step), the simple SSE reads

S(β) =
n∑

i=1

(
ysim

i (β) − ydata
i

)2
. (16.1)

This reduces the calibration problem to a multi-variate nonlinear optimization
problem:

β̂ = arg min
β

S(β). (16.2)

The sought-after parameter estimates contained in β̂ are the arguments (arg) of S(β)

minimizing this function. Besides the simple (absolute) SSE, there are other SSE
objective functions such as relative, mixed, and hybrid SSE which will be discussed
in Sect. 16.2.2.

Maximum likelihood (ML) method. In contrast to LSE calibration, the ML method
is explicitly based on probabilities making it the more fundamental procedure. To
this end, we necessarily need stochastic elements with specified statistical properties,
either in the model, or in both model and data (as assumed in the Kalman filter
approach). If the model to be calibrated is deterministic, we may add a stochastic
term2, e.g., iid Gaussian acceleration noise3 for car-following models.

Because of the well-specified statistical properties of the stochastic terms, we can
define the probability (or probability density in case of continuous models) p(ysim

i |β)

that, at time ti , the model makes the predictions ysim
i subject to a given parameter

vector β and suitable data-driven conditions for the prior step ti−1 or the initial
state. The state yi to be predicted may include the speed and the gap of one or more
vehicles, but also detector counts, travel times, positions of jam fronts, or propagation
velocities of traffic waves. This enables us to define the likelihood function as the
joint probability that the model predicts all data points:

L(β) = prob
(

y1
sim(β) = y1

data, . . . , yn
sim(β) = yn

data
)

. (16.3)

In case of continuous models, L(β) is defined analogously by the multivariate prob-
ability density. In order to make the procedure mathematically tractable, one usually
assumes that there are no serial correlations, i.e., the deviations ei = ydata

i − ysim
i

caused by the stochastic terms at time ti do not depend on deviations at prior time
steps t j < ti .4 We allow, however, correlations of the components of the deviation

2 By this step, the ML method looses its first-principles nature and assumes the same ad-hoc nature
as the LSE calibration.
3 iid is an abbreviation for independently and identically distributed.
4 Obviously, this assumption is not fulfilled as explicitly described for the Human Driver Model by
serially-correlated estimation errors obeying Eq. (12.9). However, it can be shown that violation of
this assumption does not change the estimates β̂ but only their statistical properties.

http://dx.doi.org/10.1007/978-3-642-32460-4_12
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vector ei at any given time. This simplifies Eq. (16.3) to

L(β) =
n∏

i=1

p(ydata
i |β). (16.4)

The likelihood function is the product of the probabilities that the model reproduces
the data (i.e., ei = 0) at time step i , or, for continuous models, the corresponding
product of the probability densities at the data points. As the name implies, maximum-
likelihood calibration involves maximizing this function. Since the location of the
maximization remains unchanged when applying a strictly monotonously increasing
function to L , we can apply any such function with the intention of simplifying L .
Particularly suitable is the logarithm function, resulting in the log-likelihood

L̃(β) =
n∑

i=1

ln p(ydata
i |β). (16.5)

Now, we can mathematically state the problem of maximum likelihood
calibration:

β̂ = arg max
β

L̃(β). (16.6)

As in the LSE method, this reduces the calibration problem to a multi-variate nonlin-
ear optimization problem. Formally, the LSE and ML methods are equivalent when
defining the ML objective function by SML(β) = −L̃(β). If the model contains
additive iid Gaussian noise and the predictions are done from time step to time step
(local calibration, Sect. 16.2.3), then −L̃(β) is even identical to a suitably defined
SSE.

Online calibration: Extended Kalman filter. The above methods are suitable for
offline use, i.e., one estimates the model based on historical data of comparable
situations. However, when using models for real-time traffic-state estimation and
short-term prediction, we need to tackle the problem that the driving behavior may
change unexpectedly, i.e., the underlying model must be calibrated on the fly. A
suitable method is a variation of the ML method based on the extended (or nonlinear)
Kalman filter. While the mathematical exposition of this method is beyond the scope
of this book, the principle can be described as follows.

A Kalman filter is a statistical procedure to find the most probable value ŷi of the
true state vector yi (e.g., positions and speeds) at the present time ti given noisy mea-
surements ŷdata

i and noisy model predictions ŷsim
i with specified statistical properties

(generally obeying multi-variate Gaussian distributions). Originally, Kalman filters
are used for parameter-free estimates, e.g., when estimating the new vehicle position
xα of vehicle α based on noisy GPS measurements (the data) and noisy kinematics
(the model). Analogously to Eq. (10.8), the model may have the form

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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vα(ti ) = vα(ti − Δt) + v̇αΔt,
xα(ti ) = xα(ti − Δt) + vα(t − Δt)Δt + 1

2 v̇α(Δt)2 (16.7)

with a stochastic, Gaussian-distributed acceleration term v̇α . If available, gyroscopic
data, steering wheel angles, positions of throttle and braking pedals, or other infor-
mation available on the vehicle CAN-bus can be included to refine this “ballistic”
model.

To use Kalman filters for online calibration, we augment the state space with the
parameter vector.5 Then, the Kalman filter yields a best estimate for the new state
and the new parameters simultaneously.

16.1.2 Nonlinear Optimization

Both mathematical approaches to calibration, regression and maximum likelihood,
lead to a nonlinear objective function S(β) to be minimized with respect to the para-
meter vector β.6 Minimizing a nonlinear function of several variables, also known
as nonlinear optimization, is generally a difficult task and there is no unique “one-
size-fits-all” solution method. The suitability of a given method depends essentially
on the complexity of the objective function which we will now discuss.

Objective functions. The mathematical properties of the objective function depend
on the kind of data used for calibration: We distinguish following categories:

Type I: Smooth and unimodal. When calibrating single vehicle trajectories with
LSE or ML techniques and the data are complete in the sense that they contain all
relevant traffic situations (cf. Sects. 16.1.3 and 16.2.3), we generally obtain smooth
and unimodal objective functions, i.e., they are differentiable and have a single global
minimum (Fig. 16.1a). The same applies when calibrating parameters of desired
speed or time gap distributions to single-vehicle data of free and interacting traffic,
respectively.

Type II: Smooth but no unique minimum. When calibrating car-following models to
single vehicle trajectories with incomplete data, i.e., the data do not contain all traffic
situations the model can describe, the objective function remains smooth but it often
does not have a unique minimum. Instead, it is flat along some directions, or may
even contain secondary minima and saddle points (Fig. 16.1b).

Type III: Fluctuating and multimodal. When calibrating traffic flow (particularly
stop-and-go traffic) to stationary detector data by regression techniques and the SSE
is defined in terms of local speed or density differences, the “fitting landscape” gen-
erated by the objective function in parameter space contains many secondary minima

5 Of course, there are no measurements for the parameter vector. However, the Kalman filter does
not need empirical data for all state variables.
6 Since maximizing a function means minimizing the negative function, we will only speak of
minimization, henceforth.
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Fig. 16.1 Examples of a a smooth objective function with a single global minimum, b a smooth
function with no definite minimum, c an objective function with a rugged fitting landscape. Shown
are IDM objective functions in the parameter dimensions v0 and T for (a), (b) local trajectory ML
calibrations, and (c) a global LSE calibration to stationary detector data

and fluctuations (Fig. 16.1c). There are principal reasons for such “rugged” fitting
landscapes which are further discussed in Sect. 16.3. Furthermore, any explicitly sto-
chastic model will naturally lead to a stochastic objective function if evaluating the
objective function implies simulation.7 The calibration problem becomes even more
difficult if, additionally, the data are incomplete and the smoothed objective function
is locally flat as in Type II functions.

Methods. The “best” numerical scheme to find the global minimum in terms of speed
and robustness depends on the complexity of the objective function. In any case, the
success of the optimization depends crucially on the initial guess which should be
as near as possible to the expected optimum. In the following, we briefly discuss six
useful schemes for the calibration task.

The simpler deterministic Methods 1–4 require objective functions of Type I,
i.e., differentiable and unimodal. If the function is not differentiable, or if it is not
practical to calculate the derivatives, the methods may still work with numerical
instead of analytical derivatives provided the objective function is unimodal. There
are also dedicated methods for non-differentiable functions such as the amoeba
method which we will not discuss here. Objective functions of the Types II and III
are harder to tackle since the first four methods will not converge (Type II) or often
converge to a false minimum (Type III). While we can avoid functions of Type II by
restricting the calibration to parameters that are relevant for the data set in question,

7 In contrast, the objective function (negative log-likelihood) obtained by a local maximum-
likelihood calibration remains smooth.
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Type III may be unavoidable for certain approaches to macroscopic calibration (see
Sect. 16.3). Since any deterministic method is bound to get stuck in a local secondary
minimum, we need stochastic methods to escape such minima, e.g., Method 5 or 6
of following list.
1. Newton’s method. This deterministic method assumes that the objective function
is twice differentiable and not too far away from a quadratic form,

S(β) ≈ Smin + (Δβ)TH Δβ (16.8)

where Smin = S(β̂) is the global minimum sought after, Δβ = β − β̂, and H is the
Hessian (matrix of second derivatives) of S(β) calculated at β̂. Starting the iteration
with β(0) �= β̂, we have

S(β) ≈ S(β(0)) + g Δβ + 1

2
(Δβ)TH Δβ (16.9)

where Δβ = β − β(0). Both the gradient g = ∂S
∂β

and the Hessian H are calculated

at β(0). We calculate the next iteration, β = β(1), such that the gradient at β(1) is
equal to zero which is a necessary condition for an extremum:

g + H
(
β(1) − β(0)

)
= 0. (16.10)

This gives the Newton iteration step β(1) = β(0) − H−1g, or generally,

β(k+1) = β(k) −
(
H−1g

)(k)

, (16.11)

where H and g are calculated at β(k). Sufficiently near the optimum, this method
converges quadratically, i.e. very fast.8 Further away, however, it may not converge
at all, not even for the harmless objective function shown in Fig. 16.1a.
2. Gauss-Newton algorithm. This method is a modification of Newton’s method
specifically developed to minimize sums of squares. Advantageously, second deriv-
atives are no longer required. However, the robustness is similarly poor as that of
Newton’s method.
3. Method of gradient descent. In this scheme, also known as method of steepest
descent, the search path proceeds always along the gradient g at the last iteration
point. The minimum along this direction (which can be easily determined by a one-
dimensional line search) constitutes the new iteration point. This method is slower
but more robust than the Newton and Gauss-Newton methods.
4. Levenberg-Marquardt algorithm. This method tries to combine the advantages
of gradient descent (robustness) and Gauss-Newton (fast convergence) by making

8 It iterates to the exact minimum in one step if the function is purely quadratic, i.e., the Hessian H
does not depend on β.
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a smooth transition between these methods during optimization. The transition is
governed by an adaptive “trust region” preventing the Gauss-Newton method from
stepping “too far”. This is the most popular method for objective functions in form
of a differentiable sum of squares, i.e., for standard problems of calibration.
5. Genetic algorithms (GA). This method is inspired by evolutionary biology and
simulates the main mechanisms of evolution, inheritance, mutation, selection, and
recombination. A model with a certain parameter set represents an “individual” (it
has as many “genes” as there are model parameters) while the objective function
exerts “evolutionary pressure” on the “population” of N such parameter sets. There
are many GA schemes. A variant suitable for calibration proceeds as follows:

• Initialization. Start with a population of individuals whose parameter sets are
randomly selected from the space of plausible values.

• Evaluation of fitness. Calculate the objective function for all individuals.
• Selection and mating. Select (N − 1) pairs from the population such that fitter

individuals are chosen with a higher probability (obviously, an individual can be
part of more than one pair). Add to this selection the fittest individual.

• Offspring. Create one new individual per pair by randomly recombining the genes
(select each parameter individually from either “father” or “mother” parameter
set). Allow the fittest individual to reproduce itself on its own.

• Mutations. Randomly vary the parameters of all new individuals.
• Termination. Calculate at least a fixed minimum number of generations by repeat-

ing the four previous steps. Then stop if no further improvement can be found for
at least another fixed number of generations.

From this procedure it follows that even “inter-species breeding” is allowed pro-
vided the different “species” (models) have identical parameter sets such as the
IDM/IIDM/ACC model family.
6. Kernel-based cross-entropy method (CEM). This method belongs to the class
of Monte Carlo approaches where realizations of stochastic variables of a given
distribution are drawn during the procedure. Here, the intention is that the resulting
fluctuations drive the estimate out of secondary minima. The CEM is also a variant
of simulated annealing, a class of methods where the magnitude of the fluctuations
is reduced during the process to allow for fine-tuning in the last steps. This method
is effective when calculating the objective function is costly (as in the macroscopic
calibrations of Sect. 16.3.1) and the desire is to calculate it as few times as possible.
The method proceeds as follows:

• Initialization. Define a uniform sampling distribution of density f0(β) over the
“bounding box” including all combinations of reasonable parameter values.

• Selection. In each step k > 0, draw N parameter sets (e.g., N = 500) from the
distribution function fk−1(β) calculated in the previous step. Calculate their fitness
and select the best n sets β i . A good size of this “elite group” is n = 20.

• Determining the kernel density. For each member of the elite group, define an
orthogonal Gaussian kernel in the J -dimensional space spanned by the parameters
and add the kernels of all elite members to obtain the kernel density gk
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gk(β) = 1

n

n∑

i=1

J∏

j=1

g jik(β j ) (16.12)

where g jik(β j ) denotes the univariate Gaussian density for parameter j of set i
in iteration step k. Its expectation value β j ik equals the realized value for this
parameter in set i and step k, i.e., the kernel distribution functions are centered at
the values realized in the last elite sample. The heuristic expression for the standard
deviation,

σ jk = 1.06 n−0.2σ̂ j
(sample k) (16.13)

contains essentially the estimates of the standard deviations within the elite sample.
• New sampling distribution function. The distribution used to draw the elite sample

of the next step is a weighted average of the old distribution and the new kernel
density:

fk(β) = (1 − α) fk−1(β) + αgk(β). (16.14)

• Termination. Repeat until the distributions and, by virtue of Eq. (16.13), the
samples, are sufficiently localized. As halting condition, we may require that the
percentaged sample standard deviations drop below 1 % for all parameters.

This method has been applied to calibrate the five GKT model parameters to data
of oscillatory congested traffic comparable to that of Fig. 16.5. The method took
20 steps to converge corresponding to 20N = 10,000 evaluations of the objective
function. In view of the complexity of the task, this is a small number.

16.1.3 Assessing Models

Naturally, when calibrating different models to the same data, the value of the objec-
tive function can be used to rank models according to quality. However, this is subtle
and it is easy to draw misleading conclusions. The result depends strongly on the
objective function. Moreover, the fitting quality described by the value of the objec-
tive function is not the only criterion to assess models. After all, a “good” model is one
with a good predictive power rather than a good fitting power (see Sect. 16.4 below).
In the following, we briefly discuss some points that are relevant when assessing
models.

Robustness and sensitivity analysis. In spite of a good fit to test data, a model is not
suitable to analyze or predict other situations, if the outcome changes rapidly as a
result of minor changes of simulation details. This leads to the criterion of robustness.

A model is robust if the simulation outcome does not depend sensitively on
small changes of the parameters, the system, or the initial data.
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Of course, the outcome in a real traffic network (e.g., the degree of congestion
or travel time) depends on the parameters and system data. In order to understand
the influencing factors quantitatively and to assess solutions for improving the traffic
situation, it therefore makes sense to undertake a sensitivity analysis by investigating
how traffic flow properties change when changing the driving behavior (i.e., the para-
meters) or the system (i.e., investigating the effect of speed limits). Only for robust
models, does this lead to consistent results. Otherwise, the sensitivity coefficients,
i.e., first derivatives of the property to be investigated such as the total travel time,
vary wildly and may even assume unplausible signs (e.g., a higher total travel time
when demand is reduced).

Choosing the right data. There are a few situations, where the system itself depends
sensitively on the initial data or on minor changes in infrastructure details. Such a
“tipping point” is shown in the “fitting landscape” of Fig. 16.1c at the desired speed
v0 = 40 m/s when increasing the desired time gap T . For T < 1.1 s, no traffic
breakdown occurs resulting in a bad fit to the congested data (Fig. 16.5). At T ≈ 1.1 s,
traffic breaks down. Due to the nonlinearities of the traffic flow dynamics (capacity
drop), a significant congestion results whenever there is a traffic breakdown at all, so
there is a discontinuity in the fitting landscape with respect to the parameter T . Since
even the best model shows this kind of discontinuity (as real traffic flow does), the data
to be used for calibration should not contain such situations. This means, data should
either contain significant congestion, or no congestion at all. Furthermore, since it
is hard to predict the onset of congestions, it is better to focus on the propagation of
existing jams.

Parsimony. If two models have the same fitting quality and robustness, the more
parsimonious model is the one with fewer parameters. Generally, the predictive
power of a model increases with the level of its parsimony. This is plausible when
looking at the extreme case where a model has n parameters and there are n data
points to fit (cf. the quote introducing this chapter). Such a model fits exactly and,
nevertheless, has nil predictive power. After all, a simple polynomial of order n − 1
would do the same trick. There are statistical tests for parsimony which quantify
the balance “number of parameters versus fit quality” such as likelihood-ratio and
F-tests for ML and LSE calibration, respectively. However, both tests assume iid
distributed error contributions. Since this condition is rarely fulfilled because of serial
correlations, they grossly overestimate the contribution of a new parameter to the fit
quality which is tantamount to underestimating the negative effect of each additional
parameter on the predictive power. Such correlations are particularly pronounced in
high-frequency floating-car data as that considered in Sect. 16.2 (cf. Problem 16.1).

Parameter orthogonality. Ideally, each aspect of the driver’s behavior (such as
desired speed, time gap and accelerations, degree of experience/anticipation, aggres-
siveness, and agility) is associated with one model parameter, and changes of one
parameter affect other behavioral aspects as little as possible. For example, when
characterizing the typical free-flow accelerations indirectly by the speed relaxation
time τ via an acceleration term of the form (v0 − v)/τ , the maximum acceleration
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v0/τ depends on the parameter v0 for the speed. In contrast, when directly describ-
ing typical or maximum accelerations by a parameter a, it is decoupled from the
desired speed (which is approximatively true in real traffic). Notice that parameter
orthogonality does not mean that the errors of the parameter estimates, Eq. (16.37),
are uncorrelated.9

Intra-driver and inter-driver variations. Human drivers are not deterministic
automata, so even the best model cannot capture all aspects of real driving. Vari-
ations in driving behavior come in two forms:

Inter-driver variations describe differences between the driving styles of dif-
ferent drivers (e.g., relaxed versus aggressive) or driver-vehicle units (car and
truck drivers). Intra-driver variations reflect that a single individual can change
his or her behavior over time or as a result of the traffic environment.

It is possible to capture some of these variations by augmenting the model. By
introducing distributed parameter values, the traffic analyst can describe inter-driver
variations. By adding time-dependent or event-oriented parameter changes, he or she
can describe at least some of the intra-driver variations. For example, some models
describe frustration effects after being stuck in a jam for a while (see Sect. 12.7), or
increase a driver’s aggressiveness when a merging maneuver has been unsuccessful
for a time by making the drivers accept shorter and only marginally safe gaps.

The limits of calibration. Calibration studies show consistently that there is a resid-
ual error of the order of 20 % that not even the best model can beat. Moreover, in
some of the studies, even apparently unrealistic models such as the OVM show only
marginally worse results. While this is not yet completely understood, two factors
evidently play a role. Firstly, intra- and inter-driver variations constitute a baseline
that no model that does not include these variation can beat. Augmenting the model
does not necessarily help since this increases the number of parameters and possi-
bly worsens its predictive power. Secondly, the stalemate between the models may
be a result of choosing inappropriate fitting functions that lay too much weight on
irrelevant differences such as the phase shift of traffic waves.

16.1.4 Implementing and Running a Calibration

We conclude this general section and summarize the previous discussion on assessing
models and calibration methods with some hints for performing a specific calibration
task:

9 This is also a desirable property. However, orthogonality in the errors of the parameter estimates
depends more on the fitting data and on the objective function than on the model.

http://dx.doi.org/10.1007/978-3-642-32460-4_12
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• Verify that the data do not describe traffic flow near a “tipping point” (e.g., at
the verge of congestion or containing the onset of a traffic breakdown) which is
unsuitable for calibration.

• Select a model with intuitive parameters and plausible (published) values.
• Identify which parameters of a model are relevant for the traffic situations to be

found in the data. Keep the other parameters fixed at published values.
• Restrict the remaining parameter space by a bounding box containing all plausible

parameter combinations. At any stage of estimation, the space outside is off-limits.
• Avoid fitting criteria with a sensitive dependence on initial data or parameters since

this leads to objective functions of Type III.
• Choose the optimization method according to the objective function. Often, the

Levenberg-Marquardt algorithm (possibly with numerical differentiation) is a
good choice for unimodal functions, and evolutionary algorithms for functions
of Type III.

• Take care to find a good initial guess. If in doubt, start with the published values.
• Check the resulting estimate for plausibility. Plot the fitness landscape around the

estimate to verify that there is a global minimum inside the bounding box.

16.2 Calibration to Microscopic Observations

Microscopic traffic flow observations include trajectory and extended floating-car
data (Sect. 2.1) and single-vehicle data (Sect. 3.1). Macroscopic observations include
aggregated detector data (e.g., one-minute values for flow and average speed) or
aggregated trajectory information such as travel times. While macroscopic data allow
us to calibrate both microscopic and macroscopic models, microscopic observations
are suitable for calibrating microscopic models only.

Single-vehicle stationary detector data allow us to simultaneously calibrate car-
following models and mathematical descriptions of inter-vehicle variations by esti-
mating whole distribution functions of desired speed v0 or desired time gaps T .
Notice that the corresponding observed distributions of speeds (Fig. 4.6) or time
gaps (Fig. 4.8) do not directly reflect these distributions: The data typically result
from a mix of freely driving (slower) and interacting (faster) drivers while the para-
meters for the desired speed and desired time gap pertain to purely free-flowing and
interacting traffic, respectively. Therefore, the distributions for v0 and T cannot be
estimated directly from the data but only as part of calibrating a complete model.

Trajectory or extended floating-car data allow us to calibrate car-following models
to a single driver thereby eliminating the effect of inter-driver variations. When
several trajectories are available, we can

• calibrate several trajectories independently to obtain parameter distributions reflect-
ing inter-driver variations,

• calibrate all trajectories simultaneously resulting in more robust estimates for the
aggregated driving style of the drivers represented by these trajectories.

http://dx.doi.org/10.1007/978-3-642-32460-4_2
http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4
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Since calibration to trajectory/floating-car data is more direct and more instructive
than calibration to single-vehicle data, we will it now discuss in more detail.

There are two basic approaches: In the global approach, we only use the tra-
jectory of the leader while the measured gaps and speeds only serve to initialize
the simulation, i.e., the model predicts the driver’s behavior for the whole simu-
lated time interval. In the local approach, the model only predicts the next time step
(or short time intervals) which is tantamount to directly estimating the acceleration
and speed functions amic(s, v, vl) and vmic(s, v, vl) of time-continuous and discrete
car-following models, respectively (cf. Sect. 10.2).

16.2.1 Data Preparation

Extended floating car data (xFCD) usually come in the form of time series for
the directly measurable quantities, i.e., the (arc-length) positions xdata

j = xdata(t j ),

speeds vdata
j = vdata(t j ), and gaps sdata

j at times t j = t0 + j Δtdata. Here, Δtdata

is the sampling interval (often, Δtdata = 1 s or 0.1 s) corresponding to a sampling
rate 1/Δtdata.10 Trajectory data provide the locations (and lanes) of all vehicles in a
given spatiotemporal region, so it is straightforward to extract the time series of the
considered vehicle xdata

j and that of its leader, xdata
l j = xdata

l (t j ). When using xFCD,
we calculate the trajectory of the leader assuming that the length ll of the leading
vehicle is equal to zero,11

xdata
l (t j ) = xdata(t j ) + sdata(t j ). (16.15)

Conversely, when calibrating to complete trajectory data, we calculate the gap by

sdata(t j ) = xdata
l (t j ) − xdata(t j ) − ll (16.16)

Notice that we require that the data contain the vehicle length of the leader and a
definition whether x denotes the position of the front bumper or another position (the
above relation is valid for the front bumper position).

Generally, the data are noisy and possibly have a sampling interval Δtdata that
is incompatible with possible simulation update time steps Δt of the model to be
calibrated. Then, it is necessary to de-noise and re-sample the data. Furthermore, the
data often show all sorts of inconsistencies. Since car-following model calibration
poses high quality demands on the data (as opposed to analyses of lane changes, for
example), a number of preparatory steps are necessary before using the data.

Check for inconsistencies. This includes negative speeds, negative gaps, unreason-
able values for accelerations, unreasonable frequency of sign changes for

10 For notational simplicity, we drop the vehicle index α.
11 The length drops out: Following the leading vehicle is equivalent to following its rear bumper.

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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accelerations12, and sudden “jumps” of vehicles forwards, backwards, or to the side.
Since we will calculate speeds and accelerations from the positions by ourselves,
only negative gaps and sudden jumps are relevant, at this stage. If negative gaps only
appear for very short periods they are likely to vanish after smoothing, so no action
is necessary at this stage.

Sudden jumps are more serious. They can be the result of active or passive lane
changes: During passive lane changes, the leader changes to another lane (cut-out)
or another vehicle changes to the considered lane becoming the new leader (cut-in).
During active lane changes, the driver of the considered vehicle changes lanes him-
or herself. In any case, the leader of the considered vehicle changes resulting in a
discontinuity in the gap and the leader’s position and speed. This can be easily tested
by checking for corresponding jumps in the data on other lanes. If this test result
is positive, the issue is resolved by identifying individual vehicles and reorganizing
the data into data for individual vehicles containing the lane index as additional
attribute.13 However, the jumps can also be real artifacts of the tracking method when
automatically generating trajectories from photographic material. Sometimes, this
can be traced back to errors in “stitching” images taken from several camera positions
into a single image, but there are other possible causes as well.14 A signature of jumps
caused by processing artifacts is that they generally occur at fixed locations. Once
such an artifact is identified (i.e., active or passive lane changes are excluded), it
can be removed by a “ballistic approach” such as Eq. (16.7), i.e., estimating the new
position after a jump from the old position and the old speed rather than using the
data.

Smoothing and re-sampling. The standard procedure to suppress noise is kernel-
based smoothing which we have already used in formulating the adaptive smoothing
method for traffic-state reconstruction (Sect. 5.2). Here, we use it to simultaneously
suppress the noise and adapt the sampling interval to a feasible simulation time
step.15

When the task is to smooth the raw data time series yraw
j sampled at times

t raw
j = t0 + jΔtdata over a smoothing region kΔtdata (with k a fixed integer) and

simultaneously re-sample it to the times ti = t0 + iΔt of the simulation steps, we
apply the transform

ydata
i = 1

Ni

k∑

j=−k

φ0

(
ti − t raw

j0+ j

)
yraw

j0+ j , (16.17)

12 In a popular test data set, the sign of the acceleration changes in 80 % of the 0.1-s time intervals.
13 Sometimes, the data are already organized in this form, as is the case of the data of the well-known
NGSIM initiative.
14 We could trace back such a jump in a common data set to the boundary of a shadow cast from a
tall building onto the road which obviously “bamboozled” the tracking software.
15 If the model allows for a simulation with the data time step, no re-sampling should be undertaken.
Otherwise, the simulation time step should be as near as possible to the time step of the data.

http://dx.doi.org/10.1007/978-3-642-32460-4_5
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where

Ni =
k∑

j=−k

φ0

(
ti − t raw

j0+ j

)
, j0 = round

(
iΔt

Δt raw

)
. (16.18)

The kernel function φ0(t) can be any localized function of range 2kΔt raw, e.g. the
(truncated) Gaussian 5.2

Calculating derived quantities. For calibration, we need the speed time series vdata
i

and vdata
li for the considered vehicle and its leader, and sometimes the accelerations

v̇data
i as well. Since we have suppressed high-frequency noise already, we can use

direct numerical differentiation,16 e.g., the symmetrical expressions

vdata(ti ) = vdata
i = xdata

i+1 − xdata
i−1

2Δt
, v̇data

i = xdata
i+1 − 2xdata

i + xdata
i−1

Δt2 , (16.19)

and a similar expression for vdata
li . Some data sets may contain pre-calculated speed

and acceleration time series. However, they are rarely documented and often lead to
inconsistencies as discussed below. Furthermore, one has no control over the smooth-
ing or other data manipulation methods to be applied. Therefore, we strongly recom-
mend calculating speeds and accelerations directly from the positions by Eq. (16.19),
or similar expressions.

Internal and platoon consistency. Generally, the original or processed data contain
redundant information, e.g., positions, speeds, accelerations and gaps which may
contradict each other. On the level of a single trajectory, the elementary definitions of
kinematics must be satisfied to exclude such contradictions. This results in following
criteria for internal consistency (for notational simplicity, we drop the superscript
“data”)

x(t) = x(0) +
t∫

0

v(t ′)dt ′, v(t) = v(0) +
t∫

0

v̇(t ′)dt ′. (16.20)

When the data set contains several trajectories of vehicles following each other, the
gaps need to obey their respective definitions for all times, i.e., the conditions for
platoon consistency must be additionally satisfied:

s(0) = xl(0) − x(0) − ll , s(t) = s(0) +
t∫

0

[
vl(t

′) − v(t ′)
]

dt ′. (16.21)

Since the data preparation operations (16.17) are based on non-redundant data and
Eqs. (16.19), (16.15), and (16.16) obey the kinematic principles, both consistency

16 Smoothing and differentiation are linear operators, so their order can be exchanged.

http://dx.doi.org/10.1007/978-3-642-32460-4_5
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conditions are automatically satisfied for xdata
i , vdata

i , v̇data
i , and sdata

i as defined
above.

16.2.2 Global Approach

When globally calibrating car-following models to trajectories, a single evaluation
of the objective function implies a complete simulation run. Since, due to integration
from the accelerations, serial correlations are always present in the position and
speed data. So, maximum-likelihood calibration is impractical (though technically
possible), and LSE calibration is the method of choice. A complete calibration task
consists of data preparation, simulation setup, calculating the objective function,
minimizing it, and checking the result for consistency. In the following, we show the
principle for estimating a model to a single driver following his or her leader. We
denote data values by the superscript “data” but omit the superscript for simulated
values, for notational simplicity.

Simulation setup. We initialize the location (the gap) and the speed of the simulated
vehicle by the data and let the vehicle follow the fixed trajectory xdata

l (t) of its leader:

dv

dt
= amic(s, v, vdata

l ;β), s(t0) = sdata(t0), v(t0) = vdata(t0). (16.22)

As already mentioned, the trajectory data may contain active or passive cut-in or
cut-out lane changes involving a change of the relevant leader and discontinuities of
the gap s(t) and the leader’s speed vl(t). As an example, the right column of Fig. 16.2
shows a passive cut-out lane change at t ≈ 145 s. We treat such discontinuities in the
same way as a range sensor of an adaptive cruise control (ACC) system detecting a
new target would do, i.e., by a discontinuity of the gap described by17

s(t+) = s(t−) + sdata(t+) − sdata(t−). (16.23)

Objective functions. The LSE calibration aims at minimizing the sum of squared
differences between the measured and simulated dynamic variables. In principle, any
dynamical variable representing aspects of the driving behavior can serve as an objec-
tive function. Candidates are the gap s, speed v, speed difference Δv, or acceleration
a (cf. Fig. 16.2). Furthermore, the differences can be formulated as absolute (simple),
relative (percent), or mixed differences. Denoting by y the dynamical quantity to be
investigated, we define these differences by

17 In fact, the central ACC control logic must provide consistent acceleration responses to cut-ins,
cut-outs, and active lane changes.
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Fig. 16.2 Two sets of extended floating-car data of a car driving in a German city during rush-hour
conditions. In the set labelled 3, the leader leaves the lane at t ≈ 145 s resulting in a discontinuity
in the time series for the gap

Sabs
y (β) =

∑n
i=1(yi (β) − ydata

i )2

∑n
i=1

(
ydata

i

)2 , (16.24)

Srel
y (β) = 1

n

n∑

i=1

(
yi (β) − ydata

i

ydata
i

)2

, (16.25)

Smix
y (β) =

∑n
i=1(yi (β) − ydata

i )2/|ydata
i |

∑n
i=1 |ydata

i | . (16.26)

The dynamical variable itself and the formulation as absolute, relative, or mixed
SSE determine the aspects of the data on which to focus. For example, the objective
function Srel

s (β) focusses on small gaps (slow and standing traffic), Sabs
s (β) on the

larger gaps (periods of cruising), while both traffic situations are relevant for Smix
s (β).

Similar considerations apply for speed and speed differences. Generally, the gap is
preferable since it contains the most degrees of freedom and therefore constitutes
the most challenging calibration task: While internal and platoon consistency imply
that the cumulated differences between vi and vdata

i or Δvi and Δvdata
i are zero in the

long run, on average, no such restrictions apply to the gap.
In principle, we can also devise hybrid multi-criteria objective functions contain-

ing more elements of the state vector yi , e.g.,
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Fig. 16.3 Calibrating the IDM globally to extended floating-car data (see Sect. 2) of a passage on
a city street (cf. Fig. 16.3) using the LSE method with the mixed objective function (16.26) for gap
differences. Shown is the “fitting landscape” in form of two-dimensional sections of the objective
function Smix

s (β) in five-dimensional parameter space around the estimate β̂ (see the main text).
The right upper graphics compares the observed versus the simulated gaps

Shybr(β) = γ1Smix
s (β) + γ2Smix

v (β) + (1 − γ1 − γ2)Smix
Δv (β) (16.27)

with the weights γ1 ≥ 0 and γ2 ≥ 0 satisfying γ1 + γ2 ≤ 1. Notice that we have
formulated all objective functions (including the absolute ones) in a dimensionless
form allowing a consistent formulation of multi-criteria objective functions such as
(16.27).

Calibrating the IDM to extended floating-car data of city traffic. In this example,
we calibrate the IDM to xFCD of a car driving through an inner-city street (see
Fig. 16.3). Since we want to calibrate the model to both stationary and cruising

http://dx.doi.org/10.1007/978-3-642-32460-4_2
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traffic, we use the mixed objective function Smix
s (β). We base it on the gaps since

other mixed objective functions such as Smix
v (β) or Smix

Δv (β) are not suitable for
calibrating the IDM gap parameters s0 and T . We now proceed to calibrate the IDM
to Set 3 (right column of Fig. 16.2). Since this xFCD set is complete in the sense
that it contains all the main dynamic situations (cruising, accelerating, braking, and
standing), we use the full five-dimensional parameter set

βIDM = (v0, T, a, b, s0)
T

for calibration.18 Minimizing Smix
v (β), e.g., by the Levenberg-Marquardt algorithm

with numerical derivatives, yields the parameter estimate β̂ with the values v̂0 =
16 m/s, T̂ = 1.3 s, â = 1.5 m/s2, b̂ = 0.6] m/s2, and ŝ0 = 1.5 m.

Figure 16.3 shows that the parameter estimate corresponds to a unique global
minimum of Smix

s (β) at plausible parameter values (only the parameter b is somewhat
lower than expected). Furthermore, the fitting to the data is robust in the sense that
small deviations from the optimal parameters do not significantly deteriorate the fit.

In contrast, calibrating the full IDM parameter set to data Set 2 (left column of
Fig. 16.2) would gives an indefinite estimate for v0 (not shown). This will be discussed
in the next subsection on local calibration.

16.2.3 Local Approach

There are three approaches that can be termed local calibration: (i) local linearization,
(ii) direct estimate of the acceleration function, and (iii) local maximum-likelihood
(ML) calibration.

Local linearization. This method is feasible for sections of trajectory or extended
floating-car data corresponding to car-following situations near a steady state. We
define deviations from the steady state (se, ve) as in Sect. 15.3 by y(t) = s(t) − se

and u(t) = v(t) − ve, respectively and consider car-following situations where a
single vehicle follows a leader with fixed trajectory xl(t), i.e., the speed vl(t) and
acceleration profiles v̇l(t) of the leading vehicle are externally fixed. Adapting the
linearized equations (15.8) and (15.9) for time-continuous car-following models to
this situation, we arrive at following driven damped harmonic oscillator for the gap
deviations y(t):

ÿ + 2η ẏ + ω2
0 y = F(t), (16.28)

where

2η = −av = −(ãv + ãΔv), (16.29)

ω2
0 = as = ãs, (16.30)

18 The vehicle length l drops out in calibrations to trajectory or extended floating-car data.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_15


322 16 Calibration and Validation

F(t) = v̇l(t) − (av + avl )(vl(t) − ve) = v̇l(t) − ãv(vl(t) − ve). (16.31)

The partial derivatives (sensitivity coefficients) as , av, avl and ãs , ãv, ãΔv of the
model acceleration functions amic(s, v, vl) and ãmic(s, v,Δv) are defined as in the
Eqs. (15.11) and (15.16), respectively. In the actual calibration procedure, the sensi-
tivity coefficients are calibrated to the data and associated with (combinations of) the
model parameters. Because of the assumption of small deviations from the steady
state, only small sections of the data can be calibrated at a time with this method.

Direct data-driven estimate of the acceleration function. When carefully prepar-
ing the data according to Sect. 16.2.1 it is feasible to represent the data by a four-
dimensional scatter plot (sdata

i , vdata
i , vdata

li , v̇data
i ) and directly estimate the implied

acceleration function adata(s, v, vl) by setting v̇data
i = adata(sdata

i , vdata
i , vdata

li ) and
minimizing an objective function based on the SSE of modeled and measured accel-
erations.

Maximum-likelihood calibration. At any time step ti , the model predicts a state
yi (β) which may contain gaps, speeds, and accelerations of one or several vehicles. In
the following, we restrict ourselves to one vehicle. In the simplest (and nearly exclu-
sively used) case, we assume zero-mean Gaussian multivariate noise with covariance
matrix � which is iid with respect to different time steps (no serial correlation). Then,
the log-likelihood (16.5) becomes

L̃(β,Σ) = const. − n

2
ln(det Σ) − 1

2

n∑

i=1

eT
i (β)Σ−1ei (β) (16.32)

where
ei (β) = ydata

i − ysim
i (β) (16.33)

denotes the vector of deviations. Since we have prescribed the statistical properties
of the deviations only qualitatively (multivariate Gaussian) but not quantitatively
(values of the covariance matrix), we estimate the matrix and the parameter vector
simultaneously by minimizing L̃ with respect to β and Σ . As an intermediate result,
this gives the estimate

Σ̂(β) = 1

n

n∑

i=1

ei (β) eT
i (β) (16.34)

for the covariance matrix. This allows us to formulate the log-likelihood

L∗(β) = L̃
(
β, Σ̂(β)

)
(16.35)

as a function of the parameter vector β alone. The resulting explicit log-likelihood
is the basis for parameter estimation:

β̂ = arg max L∗(β). (16.36)

http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_15
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Since the ML method is solidly based on statistics, we can also derive approximate
errors for the parameter estimates in form of a covariance matrix,

Cov(β̂) ≈ −H−1
L∗ (β̂), (16.37)

where HL∗ is the Hessian (matrix of second derivatives) of L∗(β) at the point β̂.
However, this derivation is only valid if the deviations ei are iid which is generally
not the case. If serial correlations are present, Eq. (16.37) underestimates the true
estimation errors. However, at least the estimates themselves as well as their error
correlations remain unaffected, in many cases.
Special case: Accelerations. In the simplest case, we let the model predict only one
simulation step i → i+1 at a time initializing it with the data for the gap and the speed
of the previous step i . Because of the numerical update rules (10.9) and (10.10), the
predicted speed vsim

i+1 and gap ssim
i+1 depend linearly on the model acceleration function

amic(s, v, vl) at time ti , i.e., this function completely determines the predicted state
ysim

i+1. This means, we can reduce the simulated prediction vector ysim
i+1 to a single

number, namely the value amic
i = amic(si , vi , vl,i ). Augmenting models of the form

(10.3) or (10.5) by iid acceleration noise,

dv

dt
= amic(s, v, vl;β) + ε, ε ∼ i id N (0, σ 2), (16.38)

and setting ysim
i = amic

i−1 and ydata
i = adata

i−1 for the predicted and measured states,
respectively, reduces the log-likelihood (16.32) to

L̃(β) = const − n

2
ln σ 2 −

n∑

i=1

(adata
i − amic

i )2

2σ 2 . (16.39)

Setting σ 2 ≈ σ̂ 2 = 1/n
∑

i (a
data
i − amic

i )2 gives the explicit log-likelihood (16.35)

L∗(β) = const∗ − n

2
ln

n∑

i=1

(adata
i − amic

i (β))2 (16.40)

where const∗ does not depend on β. Maximizing Eq. (16.40) is equivalent to mini-
mizing

Sabs
a (β) =

n∑

i=1

(
adata

i − amic
i (β)

)2
, (16.41)

so the local ML estimate reduces to the direct data-driven estimate of the acceler-
ation function, and also to the LSE calibration with respect to the sum of absolute
acceleration deviations. We emphasize that, in contrast to the global method dis-
cussed in Sect. 16.2.2, no simulation is necessary to evaluate Sabs

a (β). Furthermore,

http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
http://dx.doi.org/10.1007/978-3-642-32460-4_10
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Fig. 16.4 Calibrating the IDM locally to extended floating-car data (see Sect. 16.2.2) of a passage
on a city street using the maximum-likelihood method. Shown are two-dimensional sections of
the log-likelihood function L̃(β) in five-dimensional parameter space around the estimate β̂ (see
the main text). The right upper graphics compares the acceleration obtained from the extended
floating-car data with the IDM acceleration for the same exogenous variable values as in the data

it is easy to calculate analytical derivatives, so that minimizing methods such as the
Levenberg-Marquardt algorithm can be applied directly.

Calibrating the IDM to extended floating-car data of city traffic. In this exam-
ple, we use the same data as in Sect. 16.2.2 but calibrate the IDM by minimizing
Sabs

a (β) instead of Smix
s (β). Again, we estimate the full five-dimensional IDM para-

meter vector. As in the global estimate, the minimization reveals a unique global
minimum (Fig. 16.4). However, the parameter estimates v̂0 = 17 m/s, T̂ = 0.97 s,
â = 0.6 m/s2, b̂ = 1.4 m/s2, ŝ0 = 1.5 m show significantly differences with respect
to the global ML calibration. Particularly, the acceleration parameters a and b have
swapped their magnitude with a now being lower than expected. This is caused by
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a few data points producing high penalties when increasing a while the predictions
would become better for most of the other points. It also shows the limits of local cal-
ibration: Even an acceleration parameter a = 0 (the vehicle neither accelerates nor
decelerates and the leader is completely ignored) will lead to a reasonable fit while,
in the global simulation, such a vehicle could crash or stand all the time, depending
on the initialization.
It is instructive to calibrate the full IDM parameter set to the incomplete data Set 2
(Fig. 16.2, left column) lacking free-flow data. Figure 16.1b shows the resulting fitting
landscape for Sabs

a (β) applied to Set 2 with respect to v0 and T . We observe that the
objective function does not depend on the desired speed provided it is greater than
≈ 16 m/s. This can be understood intuitively: In congested city traffic, the speed
profile is essentially determined by the leader, so any desired speed significantly
above the maximum speed of the leader will produce the same simulated trajectory.
In contrast, Sabs

a (β), and also other objective functions such as Smix
s (β), show a global

minimum for data Set 2 with respect to the other parameters. This is plausible as well
since this set contains all traffic situations except for free traffic. A correct approach
for data Set 2 would be setting v0 to a plausible fixed value and minimizing with
respect to the other parameters. This also exemplifies why it is important to choose
a model whose parameters can be associated with certain traffic situations: Only in
this case, it is possible to exclude some parameters from estimation a priori, if the
corresponding situations are not contained in the data.

16.3 Calibration to Macroscopic Observations

Macroscopic traffic flow data for calibrating microscopic or macroscopic models
include aggregated stationary detector speed and flow data (Sect. 3.2), travel-time
information obtained from floating-car or floating-phone data (Sect. 16.2.2), and
trajectory data covering all vehicles on a road segment during a certain time interval.
While trajectory data are microscopic in nature, they allow all sorts of macroscopic
aggregation by calculating local densities, generating aggregated virtual detector
data, or determining travel times.

Calibration to macroscopic data is significantly more difficult than calibration to
single trajectories. As a minor complication, we have an additional parameter to cal-
ibrate which is irrelevant when calibrating car-following models to trajectories: The
vehicle length or, macroscopically, the maximum density. More importantly, how-
ever, when naively transferring the successful schemes for microscopic calibration
to the more complex macroscopic situations, we generally obtain objective functions
of Type III containing many secondary minima and fluctuations (Sect. 16.3.1). This
requires more sophisticated schemes for nonlinear optimization and makes the meth-
ods less robust. Therefore, it is often better to calibrate to global properties of traffic
flow that do not depend sensitively on minor details of the system (Sect. 16.3.2). As
well as travel times, this includes the propagation of jam fronts, or global attributes
of traffic waves.

http://dx.doi.org/10.1007/978-3-642-32460-4_3


326 16 Calibration and Validation

 20

 40

 60

 80

 100

 120
V [km/h]

 480

 482

 484

 486

 488

Lo
ca

tio
n 

[k
m

]

 480

 482

 484

 486

 488

 490

 9  10  11

Lo
ca

tio
n 

[k
m

]

Time [hours, am]

D22
D20
D18
D16
D14
D12

 20

 40

 60

 80

 100

 120

 9  10  11
Time [hours, am]

 480

 482

 484

 486

Lo
ca

tio
n 

[k
m

]

Data

IDM

Fig. 16.5 Calibrating the IDM to aggregated stationary detector data of a traffic jam on a German
Autobahn. Shown are the local speed reconstructed from the data (top left), the simulated local speed
(bottom left), and one-minute speed averages of some of the real and simulated virtual detectors
(right). Also shown are the positions of the detectors (thin black lines)

16.3.1 Fitting Local Properties of Traffic Flow

In this subsection, we proceed analogously to the calibration to microscopic data and
formulate objective functions in terms of deviations of simulated and locally mea-
sured quantities such as time series of speed and flow. Vehicle number conservation
implies that the integrated flow is fixed while no such restrictions apply for the speed.
Therefore, speed differences are generally more suitable.19

Calibrating car-following models to stationary detector time series. In the fol-
lowing, we present the procedure in form of an example and calibrate the Intelligent
Driver Model (IDM) to lane-averaged one-minute stationary detector data record-
ing a breakdown in oscillatory congested traffic on the German Autobahn A5-South
near Frankfurt (Fig. 16.5). The simulation is driven by the data of the most upstream
detector serving as in-flowing boundary condition and, near the downstream end of
the simulated region, by the flow data of an on-ramp. All other detectors (some of
which are indicated by the black lines in Fig. 16.5a) serve for calibration. Generaliz-
ing the microscopic definitions, we formulate the objective function in terms of the
speed readings of the real and simulated virtual detectors inside the simulated region

19 Notice that we gave the opposite recommendation when calibrating to extended floating-car
data or single trajectory data: There, the integrated speed is externally fixed by the leader while no
constraints apply to the gap, i.e., the microscopic density.
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by following sum of squared speed differences:

Sabs
v (β) = 1

nK

K∑

k=1

n∑

i=1

(
Vik(β) − V data

ik

)2
. (16.42)

Alternatively, we can formulate the relative objective function

Srel
v (β) = 1

nK

K∑

k=1

n∑

i=1

(
Vik(β) − V data

ik

V data
ik

)2

(16.43)

which is also amenable to a hybrid generalization containing both differences of
speed and flow, e.g.,

Shybr(β) = γ Srel
v (β) + (1 − γ )Srel

Q (β). (16.44)

In our example, K = 11 denotes the number of detectors that are available for cali-
bration. We consider n = 120 one-minute intervals from 9:01 to 11:00 h covering the
time interval where congestion occurs. Figure 16.5c shows the differences for six of
the eleven detectors. Because of the unavoidable systematic errors when determining
the speed by stationary detectors (cf. Sect. 3.2) it is crucial to simulate not only traffic
flow but the data aggregation procedure as well. To this end, we place virtual detec-
tors at the locations of the real detectors and record one-minute arithmetic speed
averages, i.e., exactly what the data provide. The plot of the measured and simulated
time series shows that the objective functions defined above sensitively depend on the
relative phase shift between the measured and simulated traffic waves. This means
they are contingent on minor details of the real and simulated systems shifting the
onset of the breakdown by few minutes.20 Even if a perfect model were able to pro-
duce the observed wave period exactly, these shifts would make a difference whether
the simulated waves are in or out of sync with the observations.

Figure 16.5c displaying a plot of the “fitting landscape” of Eq. (16.42) in the para-
meter subspace spanned by V0 and T shows that, in spite of being derived from an
integrated quantity, the objective function is fluctuating, i.e., of Type III. Moreover,
it turns out that some parameter settings producing homogeneous congested traffic
(i.e., no oscillations at all) lead to better fitting results than any setting correspond-
ing to traffic flow instabilities: While, visually, the spatiotemporal dynamics of the
simulation of Fig. 16.5 agrees well with the observations, the parameterization is far
away from the values that minimize Eq. (16.42). When lowering the desired speed to
unreasonable values, we expect even comparatively good fitting values for parameter
settings where the simulation does not produce any congestion.

20 This includes fluctuations of the inflow from one minute to the next, whether a driver entering
the freeway via the ramp is able to merge at once, or whether there are trucks overtaking each other,
or not.

http://dx.doi.org/10.1007/978-3-642-32460-4_3
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The fitting landscape Fig. 16.1c verifies this: While an indistinct and fluctuating
optimum is located at reasonable values (v0 ≈ 30 m/s and T ≈ 1.05 s corresponding
to Fig. 16.5), the objective function is nearly as good for desired speeds below 20 m/s
(72 km/h) and time gaps of ≈0.8 s corresponding to a simulation that does not produce
any breakdown.

While we cannot get rid of the fluctuations, we can, at least, eliminate the unwel-
come result that a qualitatively wrong dynamics leads to a good objective func-
tion: When adding more free-flow situations to the calibration (e.g., the data before
9:00 a.m or after 11:00 a.m), low values for the desired speed v0 will lead to high
penalties “elevating” the corresponding parts of the fitting landscape of Fig. 16.5c
resulting in a more distinct optimum.

Calibrating macroscopic models to detector time series. The calibration proceeds
similarly to the calibration of car following models: (i) formulate absolute, relative, or
hybrid objective function such as Eqs. (16.42)–(16.44) for speed, flow, or density, (ii)
run the simulation with the boundary conditions (and possible ramp source terms)
driven by detector data, (iii) estimate the parameters by minimizing the objective
function.

One difficulty arises because it is not possible to simulate the data aggregation
process (virtual detectors) macroscopically. The macroscopic model provides the
local density and space mean speed while the detectors provide the time mean speed
which is systematically biased towards lower values (cf. Sect. 3.2). The bias is ampli-
fied when calibrating the simulated density to the density estimate derived from the
speed and flow data (which we do not recommend). In this respect, macroscopic
models are harder to calibrate and may even lead to more strongly fluctuating objec-
tive landscapes than the car-following models. Therefore, it is essential to choose an
efficient nonlinear optimization method. It turns out that the kernel-based cross-
entropy method (see Sect. 16.1.2) is a good choice.

16.3.2 Calibration to Global Properties

As discussed in the previous section, calibrating microscopic or macroscopic models
directly to stationary detector data generally leads to fluctuating objective functions.
Furthermore, the calibration results are often neither plausible nor robust. Fortunately,
there are better approaches. As a common property, they compare some integrated
quantity rather than the original time series. This includes the travel time, the aggre-
gated number of vehicles, or the propagation of congestion fronts. In all these cases,
the integration eliminates most of the high-frequency components of the traffic flow
dynamics that are mainly responsible for the artifacts discussed above. However, by
construction, single traffic waves are eliminated so these methods cannot be used to
test the ability of models to describing stop-and-go traffic. We propose a dedicated
method based on wave attributes, for this purpose.

Jam front propagation. Consider the situation on the German Autobahn A5-North
depicted in Fig. 16.6: Traffic breaks down between road kilometer 481 and 482 at

http://dx.doi.org/10.1007/978-3-642-32460-4_3
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Fig. 16.6 Calibrating the macroscopic LWR model with a triangular fundamental diagram (section-
based model) to aggregated detector data on the German Autobahn A5 with respect to the prop-
agation of jam fronts (see the main text for details). a Result for the estimated parameters
V0 = 100 km/h, c = −17.5 km/h, and Qmax = 1 510 vehicles/h; b the jam propagation veloc-
ity is increased to c = −13 km/h; c the capacity per lane is reduced to Qmax = 1 400 vehicles/h;
d the desired speed is increased to V0 = 180 km/h. In the diagrams (b)–(d), only one parameter is
changed with respect to the reference

8:45 a.m, because of the ramps at an interchange. The resulting congestion, or more
precisely its upstream front where vehicles enter the jam, propagates upstream for
about one hour before the front reverses its propagation direction and crosses the
on-ramp bottleneck again at about 10:30 a.m signifying the end of the jam. Taking
the location of the jam front as the basis to formulate objective functions is promising
for several reasons:

• Models calibrated in this respect make useful predictions: In contrast to details of
traffic waves, every driver wants to know the location of a jam front in advance,
either to circumnavigate the jam or to carefully approach it.

• The situation involves both free traffic (upstream) and congested traffic (down-
stream), so parameters pertaining to both regimes can be calibrated.

• Since the position of the front is an integrated quantity (namely the time integral of
the propagation velocity), high-frequency fluctuations are damped, and we expect
the objective function to be well-defined.



330 16 Calibration and Validation

In essence, this approach allows us to calibrate all kinematic parameters determining
the fundamental diagram. However, it is not sensitive to dynamic parameters deter-
mining accelerations. Since first-order macroscopic models (LWR models) do not
contain such parameters, this approach is particularly suitable for calibrating models
of this class.

For the LWR model with a triangular fundamental diagram (section-based model,
see Sect. 8.5), the calibration is particularly effective since no explicit simulation is
necessary to determine the model predictions. The shock-wave formula (8.19) is all
we need. Expressing it in terms of the local flows Q1 and Q2 immediately upstream
and downstream of the front, respectively, and for the parameters desired speed V0,
congested propagation velocity c, and capacity Qmax per lane, we obtain

dx12

dt
= c12 = (Q2 − Q1)V0c

Q2V0 − Q1c + Qmax(c − V0)
. (16.45)

We drive the LWR model by the flows Qup
D (t) and Qdown

D (t) measured by a detector
pair at the boundaries of the modeled region at the locations x = 0 and x = L ,
respectively. Using relations (8.17) and (8.18) for the propagation velocities, we
arrive at following relation between the local and measured lane-averaged flows:

Q1(t) = Qup
D

(
t − x12

V0

)
, Q2(t) = Qdown

D

(
t − x12 − L

c

)
. (16.46)

Equations (16.45) and (16.46) constitute a one-dimensional delay-differential equa-
tion which is numerically easy to solve. Notice that both delays x12/V0 and
(x12 − L)/c are positive, so only past data are needed. Consequently, besides cali-
bration, this approach is also suitable for real-time traffic state estimation.21

In our case, we drive the section-based model with data from the upstream detec-
tor at road kilometer xu = 488.8 km and the downstream detector at xd = 422.2 km
and initialize the jam front to the downstream detector location, x12(0) = xd . Prior
to the breakdown, x12(t) remains essentially stationary.22 As soon as a congestion
front crosses xd , the front x12(t) estimated by Eq. (16.45) starts to propagate upstream
along with the real congestion front. Obviously, the fit quality depends on the estima-
tion errors for the location of the front at times where this information can be deduced
from the calibrating detectors. A suitable objective function is the root mean square
(rms) deviation

Sabs
δx (β) =

√√√√ 1

M

M∑

m=1

[
x12(tm) − xdata

12 (tm)
]2

. (16.47)

21 Even for state prediction rather than calibration, we do not recommend using speed detector data
to estimate densities and use them directly by calculating c12 = (Q2 − Q1)/(ρ2 − ρ1). The bias in
estimating the densities makes this approach impractical.
22 There may be a small drift as a consequence of systematic counting errors at the two detectors.
This can be taken care of by applying Eq. (16.45) only if the downstream detector indicates congested
traffic. However, this measure was not necessary in our example.

http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_8
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Fig. 16.7 Fitting landscape of the objective function (16.47) for the section-based model (fixed
V0 = 100 km/h) applied to the original (left) and smoothed detector data (right) shown in Fig. 16.6.
For the smoothing, we applied a Gaussian filter of width 2 min. The minimum corresponds to
Fig. 16.6a

Here, tm denotes the times where the front crosses one of the calibrating detectors
(thin black lines in Fig. 16.6) in either direction. Notice that the number M of such
events is not directly related to the number K of calibrating detectors (six, in our
example) but generally is limited to 2K .

A visual inspection of the results for different parameter combinations βT =
(V0, c, Qmax) shows that this approach is robust: Varying the parameters by 20 %
or more from their respective estimates results in moderate quantitative (but no
qualitative) changes. However, the procedure is insensitive to variations of V0 which,
therefore, cannot be estimated (see Fig. 16.6d).

Figure 16.7a displaying the fitting landscape in the dimensions c and Qmax shows,
however, that the objective function is fluctuating (Type III). This can be traced back
to the upstream free-flow flow data fluctuating wildly by up to 30 % from one minute
to the next. Since this is caused by microscopic dynamics (e.g., formation of vehicle
platoons following slower vehicles) which is not relevant here, smoothing the data
of the driving and calibrating detectors is unproblematic.

Figure 16.7b shows the result after applying a Gaussian smoothing of width
2 min: We obtain a smooth fitting landscape with a unique global minimum at
ĉ = −17.5 km/h and Q̂max = 1 510 vehicles/h (we kept V0 at a fixed value of
100 km/h). Inspecting the jam front dynamics for this estimate shows that the smooth-
ing does not change the result in any significant way.

The robustness of this method carries over to the question of which detector pair
to choose for driving the model. Generally, any detector pair is suitable as long as
the downstream detector is at or upstream of the bottleneck causing the congestion,
and the upstream detector is upstream of the maximum extension of the congestion.
Furthermore, no ramps are allowed at or between these detectors (Fig. 16.8).23

Attributes of traffic flow oscillations.
The above method only calibrates parameters that are related to the fundamental
diagram. This does not include parameters related to accelerations such as the speed
relaxation time τ of the Optimal Velocity Model and many second-order models,

23 Generalizing the method to include ramps is straightforward but requires ramp detector data
which are rarely available.
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Fig. 16.8 The upstream jam front as predicted by the section-based model driven by the smoothed
data (Gaussian filter, width 2 min) of the detectors at road kilometer 489 (upstream) and 482 (down-
stream). The parameters are the same as in Fig. 16.6a
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Fig. 16.9 Systematic properties of traveling jam waves that can be used for calibrating microscopic
and second-order macroscopic models to traffic flow oscillations

the speed difference sensitivity γ of the Full Velocity Difference Model, or the
acceleration parameters a and b of the IDM and Gipps’ model.

To calibrate these “dynamic” parameters by macroscopic measurements, we use
the fact that these parameters essentially determine the traffic flow instabilities. How-
ever, we saw in Sect. 16.3.1 that directly minimizing squared differences to detector
time series recording the oscillations is impractical. As an alternative, we define
quantitative attributes describing both the observed and simulated traffic waves and
construct objective functions out of them. The main attributes are (cf. Fig. 16.9):
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• The growth rate σ of developing waves as a function of the average speed V̄ at
the bottleneck.

• The wavelength Lw of not yet saturated oscillations as a function of V̄ .
• The wave propagation velocity c.

While this procedure is robust, it has the disadvantage that one instance of a con-
gestion only produces one data point (V̄ , σ, Lw, c). Furthermore, not all instances of
breakdowns are suitable. Finally, already the “measurements” (i.e., the data points
of Fig. 16.9) are noisy.

16.4 Validation

In the previous sections, we have discussed calibration, i.e., fitting a model to
“training data” by estimating its parameters. While this is useful on its own (for
example, it allows for a sensitivity analysis), the main intention when using traffic
flow models is to reliably predict or assess new situations rather than reconstruct past
events. Therefore, we attribute the quality of a model to its reliability or predictive
power rather than its fitting power. Unfortunately, a good fitting power (which is
characterized by a low absolute minimum of the objective function) does not auto-
matically carry over to a good predictive power. In the extreme case of estimating m
model parameters to fit m data points, the fitting power is 100 % while the predic-
tive power is zero. Therefore, besides calibration, we need additional procedures to
assess the reliability and predictive power. This is called validation:

Validation is the process of determining the reliability of a model, i.e., the
degree to which it is an accurate representation of the real world from the
perspective of the intended uses.

In fact, the reliability of a model (or a certain simulation technique) is more
connected to its robustness than to its fitting power: If the outcome of a simulation
does not change very much when changing the model parameters, it is likely that
this model performs well in a new situation where we expect changes of the inherent
model parameters (which only a new calibration could reveal, after the act).

Any validation technique must “simulate” the model predictions and compare
them with data that are already available. To this end, we split the available data
into training data on which to calibrate the model, and test data or validation data
on which to simulate predictions of the calibrated model. Ideally, the different data
subsets should represent identical situations. Otherwise, the validation results are
difficult to interpret since we have no means to separate the effects of model imper-
fections from differences in the real dynamics (see the second example below).
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To assess the prediction quality, we use the same objective function as that for
calibration. Depending on how the split into training and validation data is organized,
we distinguish following validation techniques:

• Holdout validation: One part of the available data is selected for calibration, the
other for validation.

• Cross validation: The available data are split into K subsets and the holdout
validation is repeated K times. In each round, a different subset becomes the test
data set while the other K − 1 subsets constitute the training data.

• Inverse cross-validation: As in cross validation, there are K rounds. In each round,
a different subset becomes the training set, and the other K − 1 subsets are used
for K −1 validations. For K = 2, this is equivalent to cross validation. Otherwise,
inverse cross validation is more demanding since the model has less training and
must predict more than in cross validation.

Cross validation makes maximal use of the available data while inverse cross-
validation allows to assess the variability of the parameter estimates when calibrating
to independent test data sets. In this way, we can approximate the parameter estima-
tion errors. For the maximum-likelihood method, we can test whether the analytical
expression (16.37) for these errors gives plausible values.

In the following, we describe the validation techniques by three examples: Holdout
validation of the LWR model on detector data, inverse cross-validation of the IDM
on extended FC data, and “synthetic cross-validation” to determine a similarity index
of a model pair.

Example 1: Holdout validation of the section-based model. In this example, we
test whether the good descriptive power of the section-based model (LWR model
with a triangular fundamental diagram) in describing jam fronts (Fig. 16.6) carries
over to new situations to which it has not been calibrated.

For this purpose, we interpret the data of the oscillatory congestion on the Auto-
bahn A5-North shown in Fig. 16.6 as training set and let the calibrated model pre-
dict the jam front of homogeneous congested traffic on the Autobahn A5-South
(Fig. 16.10). While the average deviation Srms

Δx ≈ 800 m is higher than in the training
set (about 300 m) and certainly could be calibrated to better results, the predictive
power is high considering that the model is driven by just two detectors (which are
12 km apart), and the model does not even “know” about the onset of congestion (we
started the integration of Eq. (16.45) at 0:00 h).

Using the two data sets of the A5-South and A-North, we can formulate further
validation procedures, e.g.,

• a K = 2 cross validation by calibrating the LWR model by the A5-South data and
using the A5-North data as test set,

• validation by using different upstream and downstream detector pairs on the same
or on the other freeway data set.

Example 2: Inverse cross-validation of the IDM. Table 16.1 shows how one could
proceed when validating the IDM to K = 3 sets of extended FCD. In each of the three
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Fig. 16.10 Validating the calibrated LWR-based jam propagation method on data of homogeneous
congested traffic (HCT) of the German Autobahn A5-South. We used the parameter values V0 =
100 km/h, c = −17.5 km/h, Qmax = 1 510 vehicles/h resulting from the calibration to data of
oscillatory congested traffic (OCT) of the German A5-North (Fig. 16.6a)

Table 16.1 Inverse cross validation of the IDM with respect to the mixed gap objective function
Smix

s (β) applied to three sets of extended FCD (two of which are shown in Fig. 16.2; the not displayed
Set 1 is similar to Set 2)

Calibration Calibration Calibration
FCD Set 1 FCD Set 2 FCD Set 3

v0 [m/s] 70.0 70.0 16.1
T [s] 1.12 1.44 1.31
s0 [m] 2.35 2.79 1.52
a [m/s2] 1.23 0.973 1.56
b [m/s2] 3.10 0.993 0.626
Validation Smix

s , FCD Set 1 20.8 % 28.7 % 28.6 %
Validation Smix

s , FCD Set 2 35.4 % 26.2 % 40.6 %
Validation Smix

s , FCD Set 3 41.2 % 26.9 % 13.0 %

The upper five data lines and the diagonal elements of the lower 3 × 3 part show the calibration
results while the off-diagonal elements show the validation results

calibration-validation rounds corresponding to the three data columns of this table, we
calibrate the IDM to one data set, and apply the calibrated IDM to the two remaining
sets. We observe that all parameter estimates except that of the desired speed for
Sets 1 and 2 are reasonable (the unrealistic values result from incomplete data, cf.
Sect. 16.1.2). Nevertheless, the parameter vectors differ considerably and most of the
validation results are significantly worse than the corresponding calibration fitness.
However, the three data sets represent different drivers and different situations, so
the validation results may reflect data heterogeneities (inter-driver variations) rather
than a low predictive power. For example, the low fit quality of the validations to
Set 3 are mainly caused by the high value of the desired speed when calibrating
to the Sets 1 or 2. This, again, underlines our general recommendation to exclude
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Fig. 16.11 Cross-comparing Gipps’ model with the Intelligent Driver Model (IDM). The IDM is
locally calibrated to a trajectory generated by Gipps’ model for the first vehicle of the city simulation
of Fig. 11.1 using the maximum-likelihood method for accelerations. Shown are the acceleration
profiles (right upper graphics) and three two-dimensional sections of the negative log-likelihood
function (16.40) in five-dimensional parameter space around the estimate β̂ (v̂0 = 15.9m/s, T̂ =
0.7s, â = 1.4m/s2, b̂ = 0.7m/s2, ŝ0 = 1.3m)

parameters from calibration if the calibrating data do not include the corresponding
situations, and to use standard values instead.

If we succeed in validating the model independently on other more homogeneous
data subsets (i.e., by splitting a long extended FCD time series of a single driver into
training and test sets), we can reverse the line of thought: Then, a poor validation
result does no longer mean a substandard model but differences of the driving style of
the two drivers associated with the calibration-validation pair. In the last example, we
adopt this reasoning to assess the limits of calibration and validation in a controlled
environment.

Example 3: Synthetic cross-calibration between models. In this example, we gen-
erate synthetic data by simulating a given car-following model and calibrate other
models to these data. Strictly speaking, this is no validation since we do not use
real data, nor test calibrated models on new data. However, this exercise shows the
theoretical limits of model validation due to inter-driver variations in a completely
controlled environment.

In all simulations, we assume an identical scenario, namely that depicted in
Fig. 11.1: A single vehicle starts at a traffic light, accelerating freely to 15 m/s, and
stops at the next traffic light 730 m ahead. Figure 16.11 shows the result when gener-
ating the synthetic trajectory by Gipps’ model (v0 = 15 m/s, T = 1.1 s, a = 1.5 m,
and b = 1 m/s2), and calibrate the IDM to this trajectory by maximizing the log-
likelihood (16.40). Since the situations are identical and there are no intra-driver

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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variations (we do not change parameters during a simulation), all residual deviations
are exclusively caused by inter-driver variations. The acceleration time series clearly
shows the incompatible driving styles represented by Gipps’s model and the IDM.
The “IDM driver” is forced to emulate “Gipps driving style” which is only partially
successful, even for the best fit. We conclude that each model represents an individual
driving style which other models are only partially able to reproduce. We can use
this to define a non-symmetric “commonality matrix” whose elements describe the
ability of model i to fit the driving style of model j .

Finally let us note that there is evidence that, generally, the driving styles of
different human individuals are described best by different models, i.e., on the road,
we encounter “Gipps’ model drivers”, “IDM drivers”, and so on. This also means
that there are fundamental limits of the predictive power of traffic flow models, at
least with respect to microscopic aspects.

Problems

16.1 Influence of serial correlations on measures of parsimony
Consider floating-car data captured at a sampling rate of ten data points per seconds.
Each data point is composed of the gap si and the speed vi sampled at time ti . To
“simulate” serial correlation, we assume that the data points are identical for all
time steps ti within each one-second interval. Now consider a LSE estimation of the
“models” (i) ŝ(v) = β0, (ii) ŝ(x) = β0 + β1v to 20 such data points and discuss why
the new parameter β1 explains many more additional data points than it would do if
the data were uncorrelated. Also explain why this means that parsimony measures
relying on iid errors underestimate the negative effects of the new parameter β1 on
the predictive power for a given fitting power.
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Chapter 17
The Phase Diagram of Congested Traffic States

A person with a new idea is a crank until the idea succeeds.
Mark Twain

Abstract In the previous chapter, we characterized the stability properties of traffic
flow models by stability diagrams of steady-state traffic as a function of density,
and by stability classes distinguishing the most relevant qualitative features of the
stability diagrams. Now, we show how this determines the spatiotemporal dynam-
ics of congestion patterns in realistic open systems with bottlenecks. Besides the
stability class, the influencing factors are the traffic demand, and the bottleneck
strength. We discriminate qualitatively different patterns by regions in a dynamic
phase diagram spanned by traffic demand and bottleneck strength and compare the
theoretical result with simulated and real congestions. It turns out that the observa-
tions are described by stability classes displaying instabilities for congested traffic,
only.

17.1 From Ring Roads to Open Systems

The stability diagram and the stability classes explored in Sect. 15.6 are valid for
ring roads and homogeneous infinite systems. For understanding real-world traffic
flow, we need to transfer these concepts to open inhomogeneous road networks with
bottlenecks. This is possible by combining the knowledge of how to model bottle-
necks with LWR models (Sect. 8.5.6) with the stability properties summarized in
the stability diagram. The starting point is the observation that, if traffic is congested,
the bottleneck determines the congested traffic flow by its capacity. However, unlike
the situation in LWR models, the relevant capacity is not given by the static bottleneck
capacity CB defined by the maximum steady-state flow (reduced by the on-ramp flow
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in case of on-ramp bottlenecks) but by the dynamic capacity Cdyn
B of the activated

bottleneck,

Cdyn
B = CB(1 − ε). (17.1)

A bottleneck is said to be activated once it has caused a traffic breakdown. As a
consequence, the maximum throughput is reduced by the so-called capacity drop
after the breakdown (“activation” of the bottleneck). Its observed relative value ε is
reported to vary wildly but it is of the order of 10 %. In empirical or simulated flow-
density data, this is reflected by the mirrored-λ shape, see Sect. 4.4 and Fig. 11.5. In
models, the relative capacity drop ε depends on the bottleneck strength and some
other properties of the bottleneck such as the length of the merging region in case of
on-ramp bottlenecks. It can only be determined numerically by simulation.

In any case, the steady-state of the congested traffic flow upstream of the bottleneck
is described by the congested branch ρcong(Q) at a flow characterized by the dynamic
bottleneck capacity per lane. For a congested road section with I lanes, we have

Qe = Cdyn
B

I
, ρe = ρcong(Qe) Steady-state of congested traffic in open systems.

(17.2)

The steady-state density ρcong(Q) of the congested branch of the fundamental
diagram plays a crucial role in the transition from closed to realistic open systems:

The dynamics of ring roads or homogeneous infinite roads, i.e., closed sys-
tems, is controlled by traffic density. The dynamics of realistic roads, i.e., open
systems with a bottleneck, is controlled by two flow-like quantities: The uncon-
gested road sections are controlled by the inflow per lane, and the congested
sections by the (dynamic) bottleneck capacity per lane.

The inversions of the free-flow and congested branches of the fundamental dia-
gram, ρfree(Q) and ρcong(Q), respectively, “translate” the control parameters by
expressing the inflow and the bottleneck capacity in terms of the density. They are
the central elements for applying the concepts developed for homogeneous roads
(stability diagram, stability classes) to realistic infrastructure.

17.2 Analysis of Traffic Patterns: Dynamic Phase Diagram

Relation (17.2) allows us to derive the set of theoretically expected spatiotemporal
patterns of congested traffic, i.e., the dynamic phase diagram, as a function of the
following two control parameters.

http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Traffic demand. The inflow Qin = Qdemand indicates the potential average traffic
flow on the main-road. It is only realized if the upstream boundaries of the network
are free. Otherwise, the realized inflow is lower.1

Bottleneck strength . The severity of the bottleneck is expressed by the difference
between the static capacity C = I Qmax on the homogeneous road sections upstream
of the bottleneck, and the dynamic bottleneck capacity, divided by the number of
lanes:

ΔQ = C − Cdyn
B

I
Bottleneck strength (17.3)

where Cdyn
B = CB(1−ε) indicates the maximum flow through the activated bottleneck

that is available for the main-road traffic.

On-ramp bottlenecks. By means of the above definition for Cdyn
B , the dynamic

capacity decreases and the bottleneck strength increases with increasing ramp
flow Qrmp. With the general definition (17.3) and the relations C = I Qmax and
CB = I Qmax − Qrmp, we obtain for the strength of an on-ramp bottleneck

ΔQ = C − Cdyn
B

I
= C − CB(1 − ε)

I
= Qrmp(1 − ε)

I
+ εQmax. (17.4)

For I = 1 lane, and negligible capacity drop ε ≈ 0, we obtain the simple relation

ΔQ ≈ Qrmp. (17.5)

However, since Qrmp is the influencing exogenous factor for the more general relation
(17.4) as well, the phase diagram of on-ramp bottlenecks is often given in terms of
the control parameters Qin and Qrmp.

Off-ramp bottlenecks. Off-ramp bottlenecks derive their obstructing power from the
higher speed variations and less efficient lane usage due to the lane-changing activity
and the decelerations of the vehicles about to leave the main-road. Therefore, the
actual bottleneck is located upstream of the exit lane of the off-ramp. Regarding
the congestion patterns, an off-ramp bottleneck is equivalent to a flow-conserving
bottleneck upstream of the actual off-ramp. Since a higher outflow leads to higher
perturbations due to lane changes and decelerations, the bottleneck strength of off-
ramps increases with the outflow, similarly to that of on-ramps.

Traffic flow upstream of an activated bottleneck. Using Eqs. (17.3) and (17.2),
we can write the steady-state density of the congested traffic upstream of the bottle-
neck by

1 If the accumulated difference between demand and actual inflow is stored in a virtual buffer and
this buffer is emptied once demand becomes lower than the maximum possible inflow, the realized
inflow may also become higher than the demand.
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Qe = Qmax − ΔQ, ρe = ρcong(Qmax − ΔQ). (17.6)

This relation shows that the flow, and not the density is the controlling factor. Now,
we derive the dynamical phase diagram by partitioning the two-dimensional space
spanned by the control variables Qin and ΔQ (or: Qin and Qrmp) into regions where
qualitatively equivalent patterns are observed.2

In the following, we will derive the phase diagrams for model-parameter combi-
nations corresponding to one of the stability classes discussed in Chap. 15.

17.2.1 Stability Class 1

This stability class is characterized by linear instability at static capacity, i.e., at
a density corresponding to the maximum of the fundamental diagram, ρ2 < ρC
(cf. Sect. 15.6). This property allows us to derive the following qualitative spatiotem-
poral patterns and the associated dynamic traffic phases as a function of the main
inflow Qin and the bottleneck strength ΔQ, and possibly history (cf. Fig. 17.1).
Bottlenecks of little obstructing power. Because of the low bottleneck strength
ΔQ, the traffic density ρe = ρcong(Qmax − ΔQ) [cf. Eq. (17.6)] after breakdown is
only a little bit higher than the density ρC at capacity. Furthermore, the instability for
this stability class and density range is generally absolute (rather than convective),
so oscillations propagate in both directions eventually covering the whole region at
and upstream of the bottleneck (left plot of Fig. 17.2).

Since the outflow Qout is only insignificantly higher than the bottleneck capacity,
the buildup of a new traffic wave upstream of the bottleneck takes some time until
it detaches and propagates upstream as a traffic wave (“stop-and-go wave”) and the
process repeats, so there is free traffic between the waves.3

Because of the role of the bottleneck, this type of traffic pattern is called trig-
gered stop-and-go waves (TSG). Typically, TSG patterns are triggered by significant
perturbations, e.g., passing traffic waves generated elsewhere. In the special case
of very weak bottlenecks, the bottleneck capacity can exceed the outflow Qout of
a moving traffic wave, and traffic waves generated elsewhere can pass the bottle-
neck without triggering new waves, i.e., activating the bottleneck. We call this state
(which includes the limiting case of no bottlenecks) moving localized clusters (MLC).
Strictly speaking, MLC is not a separate pattern since it cannot be locally distin-
guished from the isolated traffic waves of the TSG pattern generated elsewhere.

2 We emphasize that the phase diagram as discussed here is not related to physical phase diagrams
in the sense of equilibrium thermodynamics. It is just a way of representing qualitatively equivalent
patterns in the space of control variables. In a sense, the spatiotemporal patterns can be considered
as nonequilibrium dynamical phases, hence the name “dynamical phase diagram”.
3 Strictly speaking, stop-and-go waves violate the validity limits of Eq. (17.6) which assumes a
nearly stationary situation.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_15
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Fig. 17.2 IDM simulation of an on-ramp of inflow Qrmp/I =ΔQ = 100 veh/h for a parame-
terization corresponding to absolute instability (class 1, left) and convective instability (class
2, right). In the phase diagram of parameter space (Fig. 15.15), this corresponds to the points
(T = 1.5 s, a = 0.75 m/s2) for class 1 and (T = 1.5 s, a = 1.0 m/s2) for class 2

Significant bottlenecks. The greater the obstructing effect of the bottleneck (the
greater the bottleneck strength ΔQ or the lower its dynamic capacity), the lower is
the average traffic flow Qcong = Cdyn

B /I = Qmax−ΔQ and the higher is the associated
average traffic density ρe = ρcong(Qcong) as calculated with the congested branch of
the inverted fundamental diagram. Consequently, the difference between the outflow
Qout of the traffic waves and the effective bottleneck capacity CB/I (per lane) and
thus the frequency of the triggered waves increases until there is no longer free traffic
between the waves. This defines the traffic pattern oscillating congested traffic (OCT).

http://dx.doi.org/10.1007/978-3-642-32460-4_15
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Severe bottlenecks. When further increasing the bottleneck strength, i.e., reduc-
ing the bottleneck capacity CB and the average congested flow Qcong = CB/I
(in extreme cases to nearly zero), the resulting patterns depend on the stability sub-
class. If traffic flow remains unstable for congested traffic of any density provided
there is nonzero flow at all (class 1a), the pattern remains OCT, only the frequency of
the waves increases. Below a certain threshold flow Qcv, however, the instability is
no longer absolute but it becomes upstream-convective, i.e., the region of oscillating
traffic can only propagate upstream (cf. Fig. 15.15d). As a consequence, a range of
nearly homogeneous congested traffic forms near the bottleneck, and traffic waves
of growing amplitude emerge further upstream. The mechanism for generating the
waves is no longer the triggering mechanism at the bottleneck but the convective
instability. This is the typical pattern of traffic flow obeying class 2 dynamics and
will be discussed in more detail in Sect. 17.2.2.

If traffic flow obeys the dynamics of stability class 1b, traffic flow reverts to
metastable behavior for ρ > ρ3, or, equivalently, for bottleneck strengths satisfying

ΔQ > Qmax − Q3,

and to absolutely stable behavior for ρ > ρ4 or ΔQ > Qmax−Q4. This restabilization
leads to slowly creeping non-oscillatory flow, also called the pattern of homogeneous
congested traffic (HCT).

Traffic demand slightly below the bottleneck capacity. A common feature of the
TSG, OCT, and HCT patterns is their extended nature: Theoretically, they can cover
arbitrarily long road sections which is a consequence of the traffic demand exceeding
the bottleneck capacity, Qin/I > Cdyn

B /I = Qmax − ΔQ, so the excess demand
accumulates over time. If the demand Qin is slightly below the dynamic bottleneck
capacity, however, persistent extended patterns cannot occur. Nevertheless, nonlinear
effects allow the self-organized formation of localized and standing traffic waves.
Such waves are triggered by significant perturbations, e.g., moving traffic waves
(MLC) generated elsewhere that pass the bottleneck. Since these waves are “pinned”
at the location of the bottleneck, they are referred to as pinned localized clusters
(PLC).

Of course, conservation of the vehicles implies that the outflow of this mildest
type of traffic congestion is not characterized by the dynamic bottleneck capacity but
by the traffic demand Qin (in case of on-ramp bottlenecks by the sum Qin + Qrmp)
which is below the dynamic bottleneck capacity. Since the PLC pattern follows
from truly nonlinear effects, we cannot give analytic expressions for the minimum
demand Qin for sustained PLCs. Nevertheless, we can give following plausibility
argument for a variable dynamic capacity which is a prerequisite for persistent PLCs:
Consider an on-ramp bottleneck with a long merging region and let us assume that
the initially free traffic flow downstream of the merging region is metastable, so
a significant perturbation can trigger a breakdown with traffic waves propagating
upstream. When such a wave moves along the merging region, it passes regions
with less and less traffic flow (since an increasing fraction of on-ramp vehicles

http://dx.doi.org/10.1007/978-3-642-32460-4_15
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Fig. 17.3 Qualitative phase diagram of congestion patterns for models of stability class 2b as a
function of the main-road inflow Qin and on-ramp flow Qrmp (corresponding to the bottleneck
strength ΔQ for other types of bottlenecks). The patterns are homogeneous synchronized traffic
(HST), triggered stop-and-go waves (TSG), oscillating congested traffic (OCT), homogeneous con-
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flow of stability class 2a exhibits the same patterns except for HCT which is missing

enters downstream) until the local traffic flow becomes stable and, consequently, the
wave decreases its amplitude. However, in class 1 dynamics, the wave reverts its
direction before dissolving completely, so it can enter the metastable region again.
There, the wave grows again reverting its propagation once more. This process con-
tinues until the wave eventually settles as a standing wave at some position par-
allel to the merging lane. Similar considerations apply for other bottleneck types:
In any case, the wave gets pinned at the bottleneck. This is the defining feature
of a PLC.

17.2.2 Stability Class 2

In contrast to class 1, traffic flow of stability class 2 is stable or metastable at capac-
ity (ρ2 > ρC). So, moderately congested traffic caused by small bottlenecks can be
homogeneous in the density range ρe ∈ [ρC, ρ2] corresponding to Cdyn

B > Q2,
cf. Eq. (17.6). Such a pattern is called homogeneous synchronized traffic (HST) ,
cf. Fig. 17.3.4

The qualitative properties are the same as that of the HCT pattern. However,
HCT is caused by severe bottlenecks while HST forms behind weak bottlenecks.

4 Originally, the term synchronized traffic was coined to describe the situation where the speed at a
given longitudinal position is essentially the same on all lanes, i.e., it is “synchronized” across lanes.
However, since this is true for all types of congested traffic, this naming is not very descriptive.
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Moreover, in the phase diagram, these states are separated by the oscillatory states
TSG and OCT. If HST is metastable, significant perturbations can trigger a transition
to stop-and-go waves (MLC or TSG).5

For higher traffic densities ρe > ρ2, traffic flow is unstable and the resulting pat-
terns TSG, OCT, and HCT (the latter only for class 2b) are the same as that for
class 1. One qualitative difference remains: Since string and flow instabilities of
class 2 dynamics are nearly always of the convective type, spatial regions containing
traffic waves can only propagate upstream (cf. Sect. 15.2). This means we observe
essentially stationary traffic flow near the bottleneck (which may extend over several
kilometers), and significant traffic waves (OCT or TSG) further upstream (Fig. 17.2
right). This also means that stop-and-go waves can only form after a nearly station-
ary congested state upstream of the bottleneck has become sufficiently extended (see
Footnote 5). In contrast, if traffic flow is absolutely unstable as in class 1 for many
situations, oscillatory regions can propagate in both directions resulting in signifi-
cant oscillations over the complete congested region (Fig. 17.2 left). As in stability
class 1, there are two subclasses: In subclass 2b, traffic flow restabilizes for very
high densities resulting in HCT while in class 2a such a restabilization and the HCT
pattern are missing.

The majority of real congestions exhibit nearly stationary traffic near the bottle-
neck. For example, in the complex state of Fig. 5.1 showing two instances of OCT
patterns and two TSG waves, congested traffic flow is essentially homogeneous in
a 3 km long region, for all three instances. We conclude that real traffic flow is best
described by model-parameter combination exhibiting a class 2 dynamics.

Finally we notice that, in class 2, patterns with isolated moving or standing
waves (TSG, MLC, PLC) are only possible if flow at capacity (and in a small den-
sity range corresponding to free traffic) is metastable rather than stable, ρ1 < ρC.
Otherwise, these patterns are replaced by HST or by free traffic in the phase
diagram.

17.2.3 Stability Class 3

This class is characterized by stable traffic flow over the whole density range and
by a minimal or zero capacity drop ε [cf. Eq. (17.1)]. This means, the dynamics
is, in essential, the same as that of the LWR models, i.e., oscillatory or localized
congestion patterns (OCT, TSG, PLC, MLC) are nonexistent. Only free traffic and
the HCT/HST pattern (these two states can no longer be distinguished) survive.

5 This is consistent with a postulate of the so-called three-phase theory. According to this theory,
there are three phases: Free traffic, synchronized traffic, and stop-and-go waves. Furthermore, stop-
and-go waves only form via synchronized traffic as intermediate state. In reality, this is often but
not always the case: Counterexamples include the Figs. 18.2c and 18.3, and the OCT pattern of
Fig. 17.6.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_5
http://dx.doi.org/10.1007/978-3-642-32460-4_18
http://dx.doi.org/10.1007/978-3-642-32460-4_18
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17.3 Simulating Congested Traffic Patterns and the Phase
Diagram

In the previous sections, we developed the phase diagram starting from the stability
diagram, the stability classes, and the observation of a capacity drop. Since these
concepts apply to both microscopic and macroscopic models, we should also be able
to simulate the associated patterns with both model classes. To verify this, we simulate
open systems with a bottleneck for one representative of each model class: The
microscopic Intelligent Driver Model (IDM, Sect. 11.3) and the macroscopic GKT
model (Sect. 9.4.3). Both models can be parameterized to represent any of the stability
classes 1a, 1b, 2a, 2b, or 3 (cf. the class diagram of Fig. 15.15). Since stability class 2
represents best the observed patterns, we set the models to this class.6 For the IDM, we
use the parameters of Table 11.2 corresponding to class 2a. We parameterize the GKT
model by V0 = 120 km/h, T = 1.7 s, τ = 30 s, ρmax = 140 vehicles/km, γ = 1, and the
variance-density relation (9.23) by αfree = 0.012, αcong = 0.036, ρcr = 0.4ρmax, and
Δρ = 0.05ρmax which brings the GKT model to stability class 2b.

Inflow boundary conditions. The traffic demand Qin, i.e., the y-axis of the phase
diagram, is introduced into the simulations by following upstream boundary condi-
tions:

• Microscopic models (IDM): In case of free traffic at the boundary, introduce a vehi-
cle at a speed vfree(Qin) corresponding to the free branch of the speed-flow diagram
whenever the accumulated demand

∑
t Qin(t)Δt exceeds 1. In case of congested

traffic, introduce a vehicle at a speed corresponding to the equilibrium speed of
the available gap whenever the accumulated demand since the last insertion is
greater than unity and the available gap is equal to or greater than the steady-state
gap associated with the congested branch se(Qin) of the microscopic fundamental
diagram. In any case, decrement the accumulated demand

∑
t Qin(t)Δt by one

after each successful insertion.
• Macroscopic models (GKT): If there is free traffic at the boundary, or if traffic

demand is less than the flow at the boundary, impose fixed Dirichlet boundary
conditions Q = Qin and ρ = ρfree(Qin). Otherwise, implement homogeneous Von-
Neumann boundary conditions ∂ρ

∂x = 0, ∂ Q
∂x = 0.

A remark on these boundary conditions is in order: Programming and simulation
experience teaches us that upstream boundary conditions that reliably work in all
situations are notoriously difficult to formulate. Particularly, the boundary condi-
tions describe here may introduce artificial boundary-induced bottlenecks (cf. Prob-
lem 7.2). Depending on the situation and the numerical integration scheme, slightly
modified rules (e.g., allowing new vehicles if the available gap is greater than 0.8
times the steady-state gap) bring better results.

6 For simulated patterns of class 1a, we refer to the first two references in the “Further Reading”
list at the end of this chapter.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_9
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Fig. 17.4 Traffic patterns of stability class 2a as simulated with the microscopic IDM using the
parameters of Table 11.2

Modeling the merging process. According to Eq. (17.4), the strength of the on-ramp
bottleneck is essentially given by Qrmp, so it can be controlled by changing the ramp
inflow. We implement the on-ramp as follows:

• In the microscopic IDM simulation, we could have modeled the merging by
the decision model MOBIL (cf. Sect. 14.3.3). Instead, we opt here for the sim-
plest possible mechanism: Whenever the accumulated demand

∑
t Qrmp(t)Δt

exceeds 1 and the maximum of the gaps along the merging region exceeds
some minimum value, decrement the sum by one and introduce a new vehicle
at the center of the largest gap along the merging region at the speed of the new
predecessor.

• In the macroscopic GKT model, the on-ramp is realized by the corresponding
source term (7.12) of the continuity equation, and by a term Armp in the acceleration
equation according to Eq. (9.17) with Vrmp = 0.6 V (the ramp vehicles enter at an
average speed of 60 % of the speed of the main-road vehicles).

Generating the phase diagrams. We obtain the phase diagrams by a series of
simulations of open single-lane systems with on-ramp bottlenecks simulated with
unchanged parameters but different values of the inflow Qin and on-ramp flow Qrmp.
Since each point (Qin, Qrmp) of the phase diagram corresponds to a complete simula-
tion, the simulations to generate a phase diagram are quite extensive. Each dynamical
phase is defined by a region in phase space {(Qin, Qrmp)} producing qualitatively
the same pattern in the simulation.

Results. The simulated phase diagrams for the IDM (Fig. 17.4) and the GKT model
(Fig. 17.5) confirm that this concept can be applied to both microscopic and macro-
scopic models and that the boundaries of the dynamic phases are consistent with the

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_14
http://dx.doi.org/10.1007/978-3-642-32460-4_7
http://dx.doi.org/10.1007/978-3-642-32460-4_9
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Fig. 17.5 Traffic patterns of stability class 2b as simulated with the macroscopic GKT model. The
parameters are given in the main text

analytical considerations of Sect. 17.2. However, the reader might notice an appar-
ent discrepancy in Fig. 17.4: For severe bottlenecks, the IDM produces essentially
stationary congested traffic, although its parameter settings correspond to class 2a
where no HCT pattern exists. In reality, the IDM produces oscillatory traffic in this
situation. It appears to be nearly homogeneous in the plot (hence the name “pseudo-
HCT”) since the frequency of the oscillations is so high that it is of the order of the
temporal resolution of this figure (2 min).

In summary, we can characterize the traffic patterns shown in the plots (a) to (f)
of the Figs. 17.4 and 17.5 as follows:

Pinned localized cluster (PLC): A single localized standing traffic wave “pinned” at
a bottleneck. This pattern can emerge for a wide range of bottleneck strengths if the
inflow is below the critical value that would lead to extended patterns (TSG, OCT,
or HCT). It is triggered by a significant perturbation of the traffic flow.

Moving localized cluster (MLC): Isolated single moving traffic waves propagating at
a constant velocity against the direction of traffic. Here, the bottleneck is so insignif-
icant that the dynamics is essentially that of a homogeneous road. The wave itself is
triggered by a significant perturbation occurring elsewhere, e.g., as part of the TSG
pattern of a bottleneck further downstream.

Triggered stop-and-go (TSG): Isolated moving waves detach regularly from a locally
congested zone near the bottleneck.

Oscillating congested traffic (OCT): Extended congested zone with moving traffic
waves. The wavelength (about 1–3 km) depends strongly on the bottleneck strength
ΔQ (the larger ΔQ, the shorter the wavelength) while the propagation velocity is
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essentially a “traffic flow constant”. This is the most frequent pattern in real traffic.
OCT and TSG states are commonly referred to as “stop-and-go traffic”.

Homogeneous synchronized traffic (HST): As HCT, HST is an extended homoge-
neous congested traffic pattern. While HCT is caused by severe bottlenecks (e.g.,
accidents or roadworks with a lane closure), HST implies less significant bottle-
necks such as junctions. This state requires a traffic dynamics of class 2. Since HST
patterns are observed in real traffic, this is a strong indication that real traffic flow is
consistent with class 2 dynamics.

Homogeneous congested traffic (HCT): HCT is an extended homogeneous congested
traffic state. In contrast to HST, its density is significantly higher, and the associated
speed V lower. Notice that “homogeneous” only means “free of correlated macro-
scopic oscillations” but not “free of erratic fluctuations”. However, if the frequency of
the oscillations of an OCT pattern becomes so high that the period of the oscillations
is not significantly longer than the typical detector aggregation interval (1 min), the
oscillations can no longer be distinguished from noise resulting in “Pseudo-HCT”
(Fig. 17.4f).

17.4 Reality Check: Observed Patterns of Traffic Jams

The ultimate check of the concept of the phase diagram can only be a comparison of
the predicted (or modeled) patterns with the observed ones (cf. Chap. 18). As can be
seen in the Figs. 18.1 and 18.2, real congested traffic patterns are often more com-
plex than the generic “textbook” patterns HCT, OCT, TSG etc. as described above.
However, they usually can be decomposed into the generic patterns. Consistent with
this interpretation is the observation that congestion patterns generated by different
bottlenecks often interact with each other.

Moreover, there are also instances where real traffic congestion corresponds
directly to a single generic pattern. Figure 17.6 shows this with a collection of
observed jams on the German Autobahn A5. In this figure, the HCT pattern was
caused by an accident-induced partial closure while the other patterns are due to
intersection, on-ramp, and uphill bottlenecks.

Problems

17.1. Phase diagram for stability class 3
Sketch the phase diagram for LWR models and for model-parameter combinations

displaying stable steady-state traffic over the whole density range. Are there differ-
ences between small and large perturbations?

http://dx.doi.org/10.1007/978-3-642-32460-4_18
http://dx.doi.org/10.1007/978-3-642-32460-4_18
http://dx.doi.org/10.1007/978-3-642-32460-4_18
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Fig. 17.6 Textbook cases of the different congested traffic patterns as observed on the German
highway A5 near Frankfurt/Main

17.2. Boundary-induced phase diagram
We can also define boundary-induced phase diagrams where the downstream bound-
ary takes over the supply-limiting function of the bottleneck. In such diagrams, phase
space is spanned by the traffic demand Qin (as in the normal bottleneck-induced
phase diagram), and by the supply Qout which we define as the maximum flow
allowed at the downstream boundary. Obviously, at least partially congested traffic
flow arises if Qin > Qout. Besides congestion in the bulk, a so-called maximum-flow
state with a standing wave at the inflow boundary and free traffic, otherwise, emerges
for Qin > Cdyn and Qout > Cdyn if the upstream boundary conditions are defined as
in the main text.

Sketch the boundary-induced phase diagram for a single lane and traffic flow
dynamics corresponding to class 1b in the range (Qin, Qout) ∈ [0, Qmax]×[0, Qmax].
Assume a nonzero capacity drop C −Cdyn = Qmax −Cdyn and Cdyn sufficiently large
such that the TSG pattern exists in a certain region. Give a qualitative explanation
why standing waves may occur at the upstream boundary.
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Chapter 18
Traffic Flow Breakdown and Traffic-State
Recognition

Real knowledge is to know the extent of one’s ignorance.
Confucius

Abstract Flow and aggregated speed data from stationary detectors and trajectories
of floating cars allow us to investigate many aspects of traffic breakdown and jam
propagation. In the first two sections, we discuss the three main factors of traffic
breakdowns: High traffic flow, bottlenecks, and a disturbances in the traffic flow
itself. In the next two sections, we summarize the stylized facts of the spatiotemporal
evolution of congested traffic patterns, i.e., typical empirical findings that are repeat-
edly observed on various highways all over the world. In the last section, we apply
this knowledge to real-time traffic-state estimation and short-term prediction. While
the traffic breakdown as such is a stochastic process and therefore, in principle, only
predictable in terms of probabilities, the stylized facts allow a quasi-deterministic
forecast of the evolution of already congested traffic. The focus is on highways and
major roadways but the contents of this chapter is also applicable to other types of
roads.

18.1 Traffic Flow Breakdown: Three Ingredients
to Make a Traffic Jam

What are the reasons for traffic breakdown on highways and major roadways? Can
they be reproduced with traffic flow models? To discover systematic and reproducible
mechanisms, traffic flow researchers investigate stationary detector data and other
data sources recording instances of traffic breakdowns on many highways and in
many countries and reconstruct the spatiotemporal dynamics of congested regions
with dedicated methods such as the adaptive smoothing method. In order to apply
such methods, we need detectors at several consecutive road cross sections which
(i) are not farther than 3 km apart, and (ii) are positioned strategically upstream and
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downstream of permanent bottlenecks (cf. Sect. 5.2). Alternatively, the data can come
from floating cars, providing they are sufficiently frequent.

Analyzing these data, we observe that nearly all real-world traffic breakdowns are
caused by the simultaneous action of three factors: High traffic load, a bottleneck,
and disturbances of traffic flow caused by individual drivers. In the following, we
describe each of these three “ingredients to make a traffic jam”:

High traffic load. This factor is the most obvious one: If the traffic load on the
network is low enough then disturbances caused by bottlenecks or abrupt driving
maneuvers cannot grow and propagate since traffic is unconditionally stable for suf-
ficiently low densities (cf. Chap. 15). Nevertheless, even absolutely stable traffic will
break down if the inflow exceeds the static capacity of bottlenecks in the considered
road section (cf. Sect. 8.5.6). This, however, sets again a lower limit on the traffic
load required for a breakdown (at least when excluding the special case of a complete
road closure).

Bottlenecks. While phantom traffic jams are theoretically possible and occur regu-
larly when simulating string unstable traffic flow on a homogeneous road, they do not
occur on real road networks which are necessarily inhomogeneous (cf. Sect. 18.2).
On a real network, there is always a “weakest link” in form of a bottleneck leading
us to the following definition:

We define a bottleneck as a local reduction of the road capacity (cf. Fig. 21.6).
Bottlenecks can be permanent attributes of the infrastructure (e.g., on-ramps,
off-ramps, roadworks, etc.) or temporary, e.g., when caused by accidents.

In a figurative analogy, we can represent free and congested traffic by the gaseous
and liquid phases of fluids, respectively. In this analogy, the bottlenecks act as “con-
densation seeds” triggering the breakdown if the gas is supercooled (corresponding
to a sufficient demand) and if disturbances, e.g., in form of vibrations (corresponding
to abrupt driving maneuvers) are present.

Bottlenecks come in many forms. The most common instances on highways and
major roadways are the following1:

• On-ramps and off-ramps.
• Lane closures, road narrowings and curves (particularly at roadworks and road

construction sites).
• Uphill and downhill gradients.
• Temporary obstructions caused by accidents (including complete road closures).
• spectacular accidents or jammed traffic on the opposite side of the road.

1 In cities, traffic lights are the most common form of (temporary) bottlenecks.

http://dx.doi.org/10.1007/978-3-642-32460-4_5
http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_21
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Fig. 18.1 Spatiotemporal
local speed on the German
highways A9-South (during
the morning rush hour) and
A8-East (in the evening hours)
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The first three types are permanent bottlenecks while the bottlenecks caused by
accidents are temporary.2 All but the first bottleneck above are flow-conserving
bottlenecks. The last type is remarkable since this bottleneck consists of neither
permanent or temporary physical obstructions. Instead, this behaviorally induced
bottleneck is caused by a locally changed (and less effective) driving style due to
rubbernecking.

When traffic breaks down at the bottleneck and congested traffic has formed
upstream of it, one says that the bottleneck is activated. Typically, bottleneck acti-
vation is accompanied by a drop in the traffic flow through the bottleneck, i.e., the
bottleneck capacity, of the order of 10–20 %. This capacity drop from the static to
the dynamic bottleneck capacity is also observed in simulations of microscopic and
second-order macroscopic models (see, e.g., Fig. 11.4).

The Figs. 18.1a and 18.2 show instances of activated on-ramp bottlenecks. In
Fig. 18.1a, the on-ramps of two interchanges at road 511 and 525 km of the German
Autobahn A9-South produce oscillatory congested traffic (OCT). The interchange

2 Remember the time scales of traffic-flow investigations displayed in Table 1.1. On the scales of
months or years, roadworks bottlenecks are temporary as well.

http://dx.doi.org/10.1007/978-3-642-32460-4_18
http://dx.doi.org/10.1007/978-3-642-32460-4_1
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Fig. 18.2 Spatiotemporal
local speed on the German
highways A5-South and A5-
North to the north of Frank-
furt/Main
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(c)

at road 482 km on the German A5-South produces pinned local clusters (PLC) and
one moving localized cluster (MLC), Fig. 18.2b. In Fig. 18.2c, MLCs generated else-
where propagate through the PLC caused by the same bottleneck. An interchange in
Fig. 18.2c at road 482 km produces another instance of OCT.
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Fig. 18.3 Aggregated speed and flow data of a section of the German highway A5 showing the
three factors of traffic breakdown. In most cases, the effects of the flow disturbance cannot be seen
so clearly as in this “textbook case”

Figure 18.1b shows two instances of flow-conserving bottlenecks. An accident
at road 43.5 km leads to a temporary closure of one lane of the three-lane highway
between 17:40 h and 18:20 h. Furthermore, a hilly region (“Irschenberg”) at about
road 40 km produces another instance of OCT (the small junction at this location
plays a comparatively minor role, here).

Disturbances caused by individual drivers. The third factor that is necessary for
traffic breakdowns consists of perturbations in the traffic flow itself. While, theoret-
ically, an infinitesimal perturbation suffices if traffic flow is linearly unstable, this
does not apply to real traffic flow where non-congested traffic is, at most, metastable
(cf. Chap. 15).3 Disturbances in the traffic flow are realized, e.g., by inattentive drivers
braking abruptly, by speeding cars, lane changes, or by elephant races, i.e., trucks
overtaking each other at speed differences, particularly on roads with only two lanes
per direction.

Due to their single-vehicle nature, such disturbances cannot be seen directly in
aggregated detector data. However, they often lead to a platoon of vehicles following
each other at very small time gaps. These can be identified in the data as so-called
high-flow states: A flow peak lasting a few minutes which sometimes is associated
by a comparatively small drop in the average speed. Figure 18.3 shows an example:
At 7:05 h, the data show a high-flow state (right diagram) associated with a speed
drop (left) to about 75 km/h. Since the initial propagation velocity of the platoon is
equal to this speed, we conclude that the data show a vehicle platoon. When this
platoon reaches the interchange “Frankfurt NW-Kreuz” at road 488 km acting as a
bottleneck, the speed drop (and the platoon amplitude in terms of estimated density
Q/V ) increases and the platoon reverses its direction now propagating upstream at
a velocity c ≈ −16 km/h. Eventually, it becomes the first traffic wave of a triggered
stop-and-go (TSG) state.

3 This even applies to situations where a rush hour is about to increase the demand above the static
capacity CB of the bottleneck. So a jam is unavoidable whether traffic flow is unstable, nor not (the
case described by the LWR models): Even before the static capacity is reached, a disturbance in the
flow will activate the bottleneck reducing its capacity to the dynamical capacity Cdyn

B .

http://dx.doi.org/10.1007/978-3-642-32460-4_15
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Summary. The first two factors, high traffic demand and bottlenecks (except those
caused by accidents), are essentially deterministic effects and therefore predictable.
However, since disturbances of traffic flow are stochastic in nature, we cannot pre-
dict the time of a perturbation which is powerful enough to trigger a breakdown.
Moreover, in the worst case, such a perturbation can cause an accident with sub-
sequent lane or road closure. This means that even bottlenecks may be stochastic.
Consequently, we cannot make predictions about the location and time of individual
traffic breakdowns. Nevertheless, we can make statements about the probability that
a breakdown will occur on a given road section in a certain period.4

In contrast, once traffic has broken down, we can predict how the congested
regions will evolve, including the time the jam will dissolve. This will be discussed
in the Sects. 18.3 and 18.5 (cf. also Fig. 8.21 of Sect. 8), and in Problem 18.5.

The analysis of spatiotemporal local speed profiles shows that nearly all traffic
breakdowns on real road networks are caused by the simultaneous action of
three factors:

1. High traffic load (temporal aspect).
2. A bottleneck (spatial aspect).
3. Local disturbances in the flow (the trigger).

18.2 Do Phantom Traffic Jams Exist?

In the previous section, we showed that the evidence of traffic data suggests that
most (if not all) traffic breakdowns on real road networks are caused by a bottleneck
(together with a high traffic load and flow disturbances). This seems surprising since
both traffic flow simulations and the anecdotal experience of many drivers suggests
that jams without bottlenecks, so-called phantom traffic jams, do exist.

In simulations such as the “ring-road scenario” (see Fig. 15.8) of the authors’
website5 traffic waves form, in fact, without bottlenecks only at high traffic load
(corresponding to intermediate traffic densities in closed systems such as this sce-
nario), and by perturbations of the traffic flow caused by the different driving styles
of car and truck drivers. Even when eliminating the perturbations by setting the truck
percentage equal to zero, phantom traffic jams will form for appropriate densities

4 This is similar to forecasting the weather: It is impossible to exactly predict the times and loca-
tions of individual thunderstorms/rainfalls while it is standard to predict the probability of thunder-
storms/rainfalls in a certain spatiotemporal region.
5 see: www.traffic-simulation.de

http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_15
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and driving parameters after a sufficiently long time.6 Moreover, all this is theoret-
ically explained by the stability theory of Chap. 15. Nevertheless, the observations
can easily be explained by the weakest-link principle: If there were any bottlenecks
(such as in the on-ramp scenario of the authors’ simulation website), traffic flow
would break down at a lower traffic demand where no phantom traffic jam would be
possible. This makes true phantom traffic jams unobservable.

But how can we explain the anecdotal experience of phantom traffic jams? To
this end, we consider the spatiotemporal evolution of congested traffic caused by
bottlenecks such as those of the Figs. 18.1 and 18.2 from the viewpoint of a driver.
We generate virtual trajectories from the data (cf. Sect. 19.6 and Fig. 19.3 below).
Then, the reason of the driver’s impression becomes evident: Since traffic waves
propagate upstream and can become separated from “their” bottleneck by 10 km
or more, the effect (the waves) becomes spatially and separated from the cause (the
bottleneck). Moreover, causality seems to be violated since the driver first encounters
the effect (when passing the traffic waves), and later the cause (when he or she passes
the bottleneck). In case of temporary bottlenecks, the cause may even no longer exist
at the time the driver encounters a traffic wave. Such a situation arises in Fig. 18.1b
for road locations between 30 and 34 km and times between 8:30 and 19:00 h.

In spite of this evidence, the existence of phantom traffic jams in real traffic is
discussed controversially among traffic researchers. Firstly, it is not always easy to
identify a bottleneck since small inhomogeneities such as insignificant junctions or
inconspicuous gradient sections may constitute a bottleneck. Secondly, such small
bottlenecks typically emit triggered stop-and-go waves (TSG, see Sect. 17.2) that
become macroscopically visible only one or even more kilometers further upstream
providing the illusion of jams created “out of thin air” (cf. the waves triggered at
an interchange at 488 km in Fig. 18.2c). With the definition of the moving localized
clusters (MLC), phantom traffic jams even made it into the terminology of congested
traffic patterns. However, it can be argued that each MLC is part of a TSG pattern
with the source (bottleneck) outside of the investigated road section.. Finally, when
interpreting accidents as events “out of thin air”, there are, in fact, phantom jams.
However, since the site of an accident constitutes a bottleneck, this is not at variance
with our argumentation above.

18.3 Stylized Facts of Congested Traffic

Dedicated traffic-adaptive interpolation methods such as the adaptive smoothing
method presented in Chap. 5, realize a detailed reconstruction of the spatiotempo-
ral dynamics of the local speed. This allows us to extract the stylized facts of con-
gested traffic patterns, i.e., typical empirical findings that are persistently observed on

6 These are triggered either by initial conditions not perfectly representing steady-state conditions,
or, ultimately, by numerical rounding errors.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_19
http://dx.doi.org/10.1007/978-3-642-32460-4_19
http://dx.doi.org/10.1007/978-3-642-32460-4_17
http://dx.doi.org/10.1007/978-3-642-32460-4_5
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various highways all over the world.7 In the following, we summarize the relevant
findings.

(1) The congestion pattern is either localized or extended. Localized patterns
have constant extensions of the order of 1 km (cf. Fig. 18.2c at road 480 km)8 while
extended patterns have a time-dependent spatial extension of typically several kilo-
meters. For example, all congestion patterns of Fig. 18.1 are extended.

(2) The downstream front is either stationary or moves upstream at a fixed veloc-
ity ccong. We denote by “downstream front” the transition zone where drivers leave
the congested zone. Stationary downstream fronts are always fixed at a bottleneck
while moving downstream fronts correspond to jams propagating through an essen-
tially homogeneous road section. Moving fronts occur when (i) single waves (MLC
pattern) are emitted by a bottleneck (Fig. 18.1c), (ii) a fixed downstream front of an
extended state detaches itself from the bottleneck (Fig. 18.1a at 9:45 h), or (iii) the jam
front starts moving when a temporary bottleneck ceases to exist, Fig. 18.1b at road
43.5 km around 18:30 h). Combining the Stylized Facts 1 and 2, we conclude that
localized jams are either stationary or move upstream at velocity ccong (cf. Fig. 18.2c).

(3) The upstream front of spatially extended congestion patterns has no char-
acteristic speed. Depending on the traffic demand and the bottleneck capacity, it
can propagate upstream (if the demand exceeds the capacity) or downstream (if the
demand is below capacity) according to the shock-wave propagation formula (8.9).
This can be seen in all extended congestion patterns of Fig. 18.1. Traffic jams dis-
solve if the upstream jam front meets the downstream jam front. This either happens
if the upstream front propagates downstream until it reaches the stationary down-
stream front at the bottleneck (this is realized for two of the three traffic jams of
Fig. 18.1), or if the upstream front “collides” with the moving downstream front (as
in the congestion caused by the bottleneck at road 511 km in Fig. 18.1a).

(4) The propagation velocity ccong of all internal structures is unique. All varia-
tions of speed and density inside a congestion pattern, whether due to traffic waves,
variations of the bottleneck strength, or others, propagate at the same velocity as
that of isolated moving jams or that of moving downstream fronts. Consequently, in
graphical spatiotemporal representations of the local speed, all structures inside con-
gested patterns are parallel to each other. This can be seen in all congested patterns
of Figs. 18.1 and 18.2. This stylized fact is the empirical foundation of the adaptive
smoothing method (Sect. 5.2).

(5) The frequency of traffic waves increases with the bottleneck strength. Typ-
ical periods of the internal quasi-periodic oscillations vary between about 4 min
and 60 min, corresponding to wavelengths between 1 km and 15 km. In agreement

7 The authors’ website www.traffic-states.com offers a searchable image database of congested
traffic patterns.
8 Because details on scales below the distance of two detectors cannot be resolved, the extension of
stationary localized jams cannot be determined exactly. For moving localized jams, Stylized Fact 4
allows to infer the extension from the time period between two waves.

http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_5
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with theory and simulations, the frequency of stop-and-go waves increases with the
strength of the bottleneck producing them. Figure 18.1b shows an example: The acci-
dent at road 43.5 km produces traffic waves of a higher frequency than that caused
by the hills of the “Irschenberg” around road 40 km representing a comparatively
small bottleneck. Notice that, due to Stylized Fact 4, the wavelengths and the tem-
poral wave frequency are coupled: Increasing frequencies correspond to decreasing
wavelengths.

(6) The amplitude of traffic waves increases during propagation. As can be seen
in all empirical extended traffic states of this textbook, traffic waves grow (sometimes
to saturation) while they propagate upstream. The oscillations may already be visible
at the downstream boundary (such as the jam of Fig. 18.1a produced by the bottleneck
at road 511 km, or the accident-related congestion of Fig. 18.1b), or emerge further
upstream (such as the extended congestions of Fig. 18.2b). This fact gives strong
evidence that traffic flow inside extended congested patterns is convectively unstable
(cf. Chap. 15).

(7) Light or very strong bottlenecks may cause homogeneous extended traf-
fic patterns. The Fig. 17.6e, f show examples of homogeneous traffic caused by
light and severe bottlenecks, respectively. For strong bottlenecks (typically caused
by accidents), this empirical evidence is debated controversially. In particular, the
oscillation periods at high congested densities (i.e., bottleneck strengths) reach the
same order of magnitude as the detector aggregation interval and the smoothing time
window of the interpolation method (cf. Stylized Fact 5). This makes oscillations
hardly distinguishable from noise.9

18.4 Empirical Reality: Complex Patterns

Congested traffic flow patterns are rarely isolated from each other so well as in the
textbook cases of Fig. 17.6. In most cases, they interact with each other resulting in
complex traffic patterns such as these shown in Figs. 18.1 and 18.2. In the following,
we qualitatively describe typical interactions.

Moving jams may propagate through other congestions essentially unaffected.
The jam caused by an accident at road 43.5 km on the Autobahn A8-East (Fig. 18.1a)
propagates through the congested zone previously induced by the hilly region
(“Irschenberg”) near road 40 km. However, it is also possible that a moving traf-
fic wave gets “caught” by a deactivated or activated bottleneck (in the first case, the
bottleneck generally becomes activated).

Moving jams may activate permanent bottlenecks. In Fig. 18.2a–c, single MLC or
TSG waves interact with deactivated and activated bottlenecks (and the correspond-

9 Moreover, speed variations between “stop and slow” may result from problems in maintaining
low speeds (the accelerator and brake pedals are difficult to control in this regime), and thus are
different from the collective dynamics at higher speeds.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_17
http://dx.doi.org/10.1007/978-3-642-32460-4_17
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ing congestions) further upstream. The single MLC originating from the interchange
at road 488 km crosses a deactivated bottleneck at 482 km and activates it to produce
a PLC pattern (Fig. 18.2c). The moving jam itself propagates essentially unaffected.
In the picture of the three factors developed in Sect. 18.1, the moving jam represents
the perturbation of traffic flow and acts as the final trigger to create the PLC.

Congested traffic may cause new temporary bottlenecks. This is part of the com-
plex situation on the German Autobahn A5 depicted in Fig. 18.2b: An isolated traffic
wave detaches from a PLC state at the interchange “Bad Homburg” at about 8:30 h
and causes a temporary bottleneck at road 476 km (probably caused by a rear-end
crash). The new bottleneck generates an extended OCT state. Later on, both the
original MLC and the OCT of the temporary bottleneck intersect with an already
activated bottleneck (junction “Friedberg”) and its OCT pattern further upstream.

Bottleneck activation may alleviate the situation further downstream. This is
also shown in Fig. 18.2b: The capacity drop due to the temporary bottleneck at road
476 km reduces the flow downstream. As a consequence, the original PLC at road
482 km dissolves.

18.5 Fundamentals of Traffic State Estimation

Real-time traffic-state estimation and short-term prognosis is the basis of dynamic
routing and traffic-dependent navigation services, and of a growing number of new
Intelligent Transportation Systems (ITS) such as automated jam warnings. Such
applications need to estimate the present traffic situation and that of the near future
at a forecasting horizon of about 30 min based on data that are available in real-time.

Since the task is macroscopic in nature and requires robust and fast models, first-
order models with a triangular fundamental diagram are the model classes of choice,
i.e., section-based or cell-transmission models. As an example, simple integration of
the ordinary differential Eq. (8.43) for the locations of the upstream jam fronts of the
section-based model allows us to calculate the actual position of the jam front from
the flow data of two detectors on either side of the front. Due to the finite propagation
velocities, Eq. (8.43) even allows for a forecast of the order of 15 min without further
assumptions.

Since congestion patterns often are too complex to allow integration of Eq. (8.43)
in an automated way, real-world applications generally use the cell-transmission
model or dedicated methods based on it. In a typical application, the estimate of the
actual and future traffic state is refreshed with the latest data every five minutes using
a moving prediction horizon of, say, 30 min. Since each new estimation/prediction
implies simulations over at least this prediction time horizon, the simulations have
to run in multiple real-time speed.

In summary, the stylized facts and other regularities of the traffic flow dynamics,
implicitly contained in the traffic flow models, help overcome the problems posed
by the incomplete data situation:

http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_8


18.5 Fundamentals of Traffic State Estimation 365

• Most bottlenecks are infrastructure related and permanent, so the location of down-
stream fronts of congestions is often known a priori.

• The capacity C of homogeneous sections and the throughput of activated bot-
tlenecks (dynamic bottleneck capacity Cdyn

B ) varies little and in predictable time
patterns as a function of the average efficiency of the driving style (they are higher
in morning rush hours than on Sundays). This allows us to estimate the bottle-
neck strength �Q using Eq. (17.3) which, in turn, determines the predominant
congested pattern (cf. Chap. 17). For example, the interchanges on the German
Autobahn A9-South shown in Fig. 18.1a generally produce OCTs while the inter-
change “Bad Homburg” on the Autobahn A5 typically produces MLC or PLC
patterns (Fig. 18.2b, c).10

• Temporary bottlenecks, generally caused by accidents, have their own signatures
in the data which allows us to determine their location and duration, mainly by
using Stylized Fact 2 (downstream fronts) and the shock-wave formula (8.9), see
Problems 18.5 and 5.1.

• The propagation velocity ccong of moving downstream fronts and the correspond-
ing outflow Qmax per lane are constant for a given driver-vehicle composition
(cf. Stylized Fact 4) and can be determined from stationary detectors without bias.
Together with the mean desired speed V0, this allows a robust online calibration
of models with a triangular fundamental diagram when the latter are formulated
in terms of these quantities by Eq. (8.22). Furthermore, the dynamic bottleneck
capacities often are nearly constant which allows us to directly predict the future
travel times (cf. Chap. 19).

• The known two values for the propagation velocity of downstream fronts (Fact 2)
and the analytic relation (8.43) for the velocities of the upstream front allows a
short-term prediction for the evolution and possible dissolution of jams.

• Finally, by Stylized Facts 6 and 7, we can give qualitative statements on the quality
of congested flow, i.e., whether it is essentially homogeneous (near the bottleneck
or for very low or high bottleneck strengths), or oscillatory.

Difficult challenges are to automatically check the new data for consistency and
to fuse different data sources (cf. Sect. 5.3). There are several dedicated algorithms
to tackle these problems. One could also generalize the adaptive smoothing method
(cf. Sect. 5.3) which is only effective for offline reconstruction, to fit real-time appli-
cations. A detailed treatment of this topic is beyond the scope of this book.

Problems

18.1 Locating a temporary bottleneck
Figure 5.10 shows a situation where an accident leads to a temporary complete road
closure which has been recorded by different sorts of detectors. Besides the traffic

10 see: www.traffic-states.com
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http://dx.doi.org/10.1007/978-3-642-32460-4_17
http://dx.doi.org/10.1007/978-3-642-32460-4_8
http://dx.doi.org/10.1007/978-3-642-32460-4_18
http://dx.doi.org/10.1007/978-3-642-32460-4_19
http://dx.doi.org/10.1007/978-3-642-32460-4_18
http://dx.doi.org/10.1007/978-3-642-32460-4_5
http://dx.doi.org/10.1007/978-3-642-32460-4_5
http://dx.doi.org/10.1007/978-3-642-32460-4_5
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state (green data points correspond to free, yellow points to dense, and red points
to congested traffic), it is known that the stationary detector D1 records essentially
constant traffic flow during the displayed time period.

Determine the location and time at which the accident occurred, the time when
the road block was lifted, and the location and time when the jam due to the accident
dissolved. Hint: Use the stylized facts, the flow information, and the shock-wave
formula (8.9).
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highway. Transp. Res. Rec. J. Transp. Res. Board 1855 (2003) 49–59
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Technol. 12 (2004) 369–400

• Zang, Y., Papageorgiou, M.: Real-time freeway traffic state estimation based on
extended kalman filter: a general approach. Transp. Res. Part B Methodol. 39
(2005) 141–167

• Mihaylova, L., Boel, R., Hegyi, A.: Freeway traffic estimation within particle
filtering framework. Automatica 43 (2007) 290–300

• Treiber, M., Kesting, A., Helbing, D.: Three-phase traffic theory and two-phase
models with a fundamental diagram in the light of empirical stylized facts. Transp.
Res. Part B Methodol. 44(8–9) (2010) 983–1000

• Treiber, M., Kesting, A., Wilson, R.E.: Reconstructing the traffic state by fusion
of heterogenous data. Comput. Aided Civ. Infrastruct. Eng. 26 (2011) 408–419
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Chapter 19
Travel Time Estimation

The trouble with life in the fast lane is that you get to the other
end in an awful hurry.

John Jensen

Abstract For most persons, the individual travel time is the most relevant criterion
when planning a route from a given origin to a given destination. Road managers
and national economists are interested in the total travel time in a certain region over
a certain time interval. Of particular interest is the total delay caused by conges-
tion. The methods to estimate these quantities can be applied directly to stationary
detector and probe-vehicle data, or to microscopic and macroscopic models. While
microscopic models give the travel time directly in terms of the duration of trajecto-
ries, macroscopic models require additional evaluations, either integrating the flow at
fixed positions (“virtual detectors”), or generating virtual trajectories from the local
speed field V (x, t). Generally, the macroscopic estimation is more robust.

19.1 Definitions of Travel Time

We define the travel time τ12 in the obvious way as the time a vehicle needs to pass
a road section [x1, x2]. Generally, τ12 depends on x1, x2, and on time t itself. Since
τ12 is neither a local quantity (as the flow Q) nor an instantaneous quantity (as the
density ρ), the above definition is incomplete. Denoting the times when a vehicle
enters and leaves the considered section by t1 and t2, respectively, we disambiguate
the definition in two ways:

The realized travel time τ12(t) is the time a vehicle needs to travel from x1 to x2
when it leaves the considered road section at time t :

τ12(t2) = t2 − t1. (19.1)
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The expected travel time τ̃12(t) is the time a vehicle needs to travel from x1 to x2
when it enters the considered road section at time t :

τ̃12(t1) = t̂2 − t1, (19.2)

where t̂2(t) is the estimated passing time at location x2 if this vehicle passes the loca-
tion x1 at time t . It is evident that τ̃12 is the relevant quantity for routing applications.
Unfortunately, it requires a short-term traffic-flow forecast to estimate t2.

We define the total travel time as the cumulative time spent by all vehicles inside
the spatiotemporal region [x1, x2] × [t1, t2]. Denoting by n12(t) the number of vehi-
cles on the section [x1, x2] at time t , this results in the microscopic definition

τtot(x1, x2, t1, t2) =
t2∫

t1

n12(t) dt. (19.3)

Macroscopically, we use the density definition ρ = dn
dx to obtain

τtot(x1, x2, t1, t2) =
t2∫

t1

x2∫

x1

ρ(x, t)dx dt. (19.4)

The total travel time can be used as an objective function to minimize congestion by
traffic-flow optimization measures (cf. Chap. 21).

19.2 The Method of Trajectories

The following “microscopic” approach can be applied to microscopic simulations,
probe-vehicle data, and floating-phone data (FPD). In the following, we will denote
all data originating from vehicles “floating” with the traffic (probe-vehicle data and
FPD) as floating-car data (FCD).

Microscopic simulations. In microscopic simulations, the complete information on
any vehicle is available at any time, so the individual travel times can be directly
determined from the trajectories:

τ12(t) = tα2 − tα1 , τ̃12(t) = tβ2 − tβ1 , (19.5)

where α and β denote the last vehicles that have left and entered the investigated
road section, respectively, i.e., xα(t) ≥ x1 > xα+1 and xβ(t) ≥ x2 > xβ+1.

http://dx.doi.org/10.1007/978-3-642-32460-4_21
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Notice that we did not put a “hat” on tβ2 since nothing has to be estimated in the
simulations.1

Probe-vehicle and floating-phone data. This method can also be used to estimate
travel times from floating-car data. For real-time applications, however, the realized
travel time τ12(t) obtained in this way is generally more or less outdated if the pen-
etration rate of probe vehicles, and thus the frequency of passing equipped vehicles,
is very low. This problem aggravates when estimating the expected travel time since
an estimate t̂β2 of tβ2 implies a short-term traffic forecast. Therefore, if the penetration
rate is very low (e.g., below 0.2%), it is more useful to use FCD to initialize algo-
rithms based on stationary-detectors to obtain a continuously measured travel time
(cf. Sect. 19.4 below).

19.3 The Method of Accumulated Vehicle Counts

Since stationary detectors cannot discern individual vehicles,2 trajectory-based meth-
ods are out of the question when stationary detectors are the only data source.

Instead, one uses the complete coverage of all passing vehicles by stationary
detectors to estimate the vehicle number (rather than its identity) by cumulating
the vehicle count (integrating the flow) of at least two detectors over time. In the
following, we assume a common aggregation time interval �t for all detectors of the
investigated section, and a synchronized data delivery at times tk = k�t . Denoting
the location of detector i by xi and the flow and vehicle number measured by detector i
for the aggregation period ending at time tk by Qi (tk) and ni (tk), respectively, we
can calculate the cumulated vehicle number by

Ni (tk) = Ni (t0) +
tk∫

t0

Qi (t
′) dt ′ ≈ Ni (t0) +

k∑

k′=1

Qi (tk)�t, (19.6)

or, taking the vehicle numbers directly,

Ni (tk) = Ni (t0) +
k∑

k′=1

ni (tk′). (19.7)

The accumulated vehicle number as a function over time is called the N-curve of this
detector. If there is no possibility of changing lanes or overtaking (as on a single-lane
road with overtaking ban and without ramps), the accumulated vehicle numbers Ni

have a constant offset to the vehicle index α. By appropriately setting the initial

1 Unless one uses microscopic models for real-time applications which is rarely done.
2 Except, when special features such as video-based number plate recognition are implemented. In
most countries, however, this is not feasible due to privacy reasons.
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Fig. 19.1 Determining travel times between pairs of stationary detectors with the method of
N-curves. The length of horizontal lines between the intersecting points with the N-curves directly
gives the travel time

counting values Ni (t0), we can even identify the accumulated vehicle number with
the vehicle index:

Ni = α. (19.8)

The fact that the accumulated numbers of all detectors i relate to the same vehicle
can be used to determine the realized and expected travel times between any detector
pair. For the detectors 1 and 2 with x2 > x1, we obtain

N1(t − τ12(t)) = N2(t), N1(t) = N2(t + τ̃12(t)). (19.9)

When plotting the N-curves of several detectors in a diagram, we can directly read
off the travel times between the detectors by the length of horizontal lines connecting
the N-curves (cf. Fig. 19.1).
In real situations there are several reasons why Eq. (19.9) is not exact:

• Due to lane-changes and overtaking maneuvers.
• Due to on-ramps and off-ramps.
• Due to detecting and counting errors.
• Since the initialization of the N-curves is not feasible.

In principle, the N-curves can be initialized at time t0 by integrating over the density.
If we assume increasing detector numbers in driving direction, xi+1 > xi , we have

Ni (t0) = Ni+1(t0) +
xi+1∫

xi

ρ(x, t0) dx . (19.10)

However, this is only a theoretical solution since, generally, the local density field is
not known.

Moreover, in this basic form, the method of N-curves is very sensitive to systematic
detection faults since the resulting counting errors accumulate over time. We show
this by following example: Consider homogeneous dense traffic flow (Q = 2,000
vehicles per hour, speed V = 100 km/h) and two detectors that are L = 1 km apart
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from each other. Then, there are n = ρL = Q/V L = 20 vehicles between the
detectors. If detector 1 counts only 98 % of all vehicles and detector 1 99 %, there is
a systematic bias of 20 vehicles per hour leading to a drift of the relative positions of
the N-curves. Particularly, the N-curves of detector 1 and 2 intersect each other after
one hour, so the method of N-curves estimates a zero travel time between the detectors
(and a negative travel time afterwards). In the following section, we show how to use
floating-car data to initialize the N-curves and correct the drifts at later times.

19.4 A Hybrid Method

To tackle the problem of the drifting N-curves, we propose a hybrid method that
is based on the method of N-curves applied to the aggregated stationary detector
data of the total flow over all lanes (Sect. 3.2) and additionally uses floating-car data
(cf. Chap. 2) for initialization and drift compensation. In principle, the method of
N-curves can be applied to single lanes or to the sum of the traffic flow over all lanes.
The latter is more robust since drifts due to flow-conserving bottlenecks (e.g., a lane
drop) are automatically compensated for and errors due to lane changes/passing are
reduced (unless there are significant systematic speed differences between the lanes).

For usual relative counting errors of the order of 1 % and errors due to overtaking
and lane changes of the same order, we need a floating car every other half hour if
the road section between the detectors is sufficiently long (i.e., significantly longer
than in the example at the end of the previous section). The method uses following
information (cf. Fig. 19.2)

• At least two, preferably more stationary detector cross sections i providing vehicle
counts ni (tk) = ni (k�t) aggregated over time intervals �t and summed over all
lanes.

• Floating cars (FC) j , where the index j is ordered according to the passing times
t j1of the FCs at the first detector.3 The method needs the times t j i when FC j
passes detector i .

The accumulated counts are initialized/reset by the first floating car:

Ni (t1i ) = 0. (19.11)

In Fig. 19.2, this means N1(t11) = N2(t12) = N3(t13) = 0. A small complication
arises because the passage times t1i are not synchronized with the times tk where
the aggregation intervals of the detectors end, so the accumulated vehicle counts can
only be reset at the time tk where the next aggregation interval ends (tk−1 ≤ t1i < tk).
To avoid an unnecessary loss of precision due to the aggregation intervals (typically,
�t = 60 s while the passage times t1i are known to the second, at least), we reset the
accumulated vehicle counts at time tk not to zero but to a fraction of the last count
assuming a steady traffic flow within each aggregation interval:

3 Additional index-swapping routines are necessary for the case when two FCs overtake each other.

http://dx.doi.org/10.1007/978-3-642-32460-4_3
http://dx.doi.org/10.1007/978-3-642-32460-4_2
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Fig. 19.2 Using several floating cars j to reset accumulated counting errors at the FC passage
times t j i . Notice that, in contrast to Fig. 19.1, the vertical axis denotes the location of the detector
positions Di ) rather than the accumulated vehicle number (N-curves)

Ni (tk) = ni (tk)
t1k − tk−1

�t
, tk−1 ≤ t1i < tk . (19.12)

To estimate the realized travel times between detectors i and m (where m > i), we
can directly apply Eq. (19.9), i.e., Ni (t − τim(t)) = Nm(t). Specifically, one reads
off Nm(tk) at the time tk ≤ t of the last available interval and solves the condition
Ni (t ′) = Nm(tk) for the past time t ′ using linear interpolation between the times tk′ ,
k′ ≤ k.

To tackle the drift due to measuring errors, the accumulated counts of detector
i are reset whenever a floating car j crosses it (at time t j i ) by generalizing the
initialization (19.12):

Ni (tk) = ni (tk)
t jk − tk−1

�t
, tk−1 ≤ t j i < tk . (19.13)

Of course, this means, that, at a given time tk , some detector counts are reset by
more recent floating cars than others. To avoid inconsistencies when estimating the
travel time with formula (19.9), each detector needs to provide not only the cumulated
vehicle number after the last reset but also the accumulated vehicle numbers related to
resets by previous floating cars covering, say, the last hour. Furthermore, to determine
which accumulated vehicle numbers to use when evaluating Eq. (19.9), the identity
of the floating cars has to be stored as well.

Notice that the correction of the N-curve travel times estimates by floating cars
also provides a real-time quality control: The lower the magnitude of the jumps of the
estimates before and after a floating car has passed, the lower the average total error
of this method. The total error is composed mainly of detector counting errors, FC
data errors, discretization errors, time-stamp errors, and errors due to lane changing
and overtaking.
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The N-curves method does not work directly on sections containing on-ramps,
off-ramps, junctions, intersections, or other non-flow-conserving bottlenecks. If each
merging or diverging link is equipped with at least one stationary detector near
the merging/diverging point, the method can be generalized to include such flow-
violating bottlenecks, but this will not considered here.

19.5 Virtual Stationary Detectors

This method is mainly relevant for macroscopic traffic flow models since this model
class does not have output that can be directly linked to travel times. Besides the
method presented here, one can also construct virtual trajectories from the speed
field and determine the travel times with them (see Sect. 19.6).

In order to determine the travel times from location x1 to x2 > x1 (which must be
inside the simulated region) one “installs” two virtual detectors at these locations and
generates the N-curves N1(t) and N2(t) by directly counting the passing vehicles.
Since everything is known in the simulation, the initialization is straightforward and
follows directly from the definition of the local density (cf. Eq. (19.10)):

N1(t0) = 0, N2(t0) =
x2∫

x1

ρ(x, t0) dx .

Here, the integral denotes the number of vehicles between the virtual detectors at
time t0. Further corrections are not necessary unless there are merges or diverges on
the road section between x1 and x2. In the latter case, it is better to calculate travel
times by virtual trajectories instead of virtual detectors. This is discussed below.

19.6 Virtual Trajectories

If no trajectory data are available from probe vehicles or microscopic simulations
but the local speed field can be estimated, one can construct virtual trajectories out
of the speed field.

Trajectories from macroscopic simulation data. Since the complete speed field
V (x, t) is known in the simulated area including [x1, x2], it is straightforward to
generate virtual trajectories by demanding that the vehicle speed is identical to
the corresponding local speed, vFC(t) = V (xFC(t), t), and directly integrating the
defining equation for the speed of the virtual floating cars,

dxFC

dt
= V (xFC(t), t). (19.14)
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Fig. 19.3 Virtual trajectories generated from the speed field V (x, t) by integrating Eq. (19.14).
The speed field has been reconstructed from stationary detector data of a section on the German
Autobahn A5-South during the morning hours

In order to get the expected travel time at time t , one chooses the initial condition

xFC(t) = x1, (19.15)

and integrates numerically the inhomogeneous first-order ordinary differential equa-
tions until the trajectory reaches x2 at time t2. Then, τ̃12 = t2 − t . When the realized
travel time τ12(t) is relevant, one chooses the final condition xFC(t) = x2 and inte-
grates backwards in time until the trajectory reaches x1 at time t1. Then, τ12 = t − t1.
Trajectories from stationary detector data. In principle, one can estimate travel
times from speed data of real detectors via virtual trajectories in a two-step scheme
(cf. Figs. 19.3 and 19.4):

• Estimate the local speed field by dedicated methods, e.g., the adaptive smoothing
method (cf. Sect. 5.2).

• Generate virtual trajectories from the speed field using Eq. (19.14) and determine
the passing times of this trajectory.

The Figs. 19.3 and 19.4 illustrate this method by analyzing data of a series of
stationary detectors on a 20 km long section of the German Autobahn A5-South
near Frankfurt/Main. As a result, we estimate that the travel time for this section
increases in the morning rush hour from 10 min (corresponding to an average speed
of 120 km/h) to 30 min (40 km/h). Notice that the speed field and the travel times are
estimated from lane averages. When using only the detectors of the faster (slower)
lanes, one would obtain lower (higher) travel-time estimates for free traffic. Due to
speed synchronization across the lanes, there is no significant difference between the
lanes for congested traffic, however.

http://dx.doi.org/10.1007/978-3-642-32460-4_5
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Fig. 19.4 Times series of the realized travel times estimated from the virtual trajectories of
Fig. 19.3. A traffic jam in the morning rush hour leads to an increase of the travel time up to a
factor of three (at about 8:00 h)

When applying this method, one has to keep in mind that aggregated stationary
detector data only allow for a biased speed estimate (towards too high values, cf.
Sect. 3.3). This means, travel times estimated by this method are biased towards too
low values. Therefore, this method is less robust than N-curves and should only be
used as a last resort when the method of N-curves cannot be applied (which is the
case if the section contains on-ramps, off-ramps, or other inhomogeneities acting as
traffic sources or sinks).

19.7 Instantaneous Travel Time

It is sometimes instructive to display the travel time as the simulation runs, i.e., in
“real time”. This is especially relevant for pedagogical simulations as that on the
authors’ website.4 Rather than estimating t̂β2 , it is generally simpler and more robust
to display the instantaneous travel time.

The instantaneous travel time is the travel time of a hypothetical vehicle trav-
eling through the considered section at a speed profile identical to that of the
present local speeds.

It is more up-to-date than the realized travel time and can be calculated without
predictions. It does not, however, represent realized or future travel times of any
individual driver.5 Rather, it represents a robust estimate of a typical travel time in
this situation whose value is generally between τ12 and τ̃12.

Macroscopic models. In macroscopic models, the mathematical formulation follows
directly from the definition:

4 see: www.traffic-simulation.de
5 Then, the very concept of an “instantaneous travel time” would be semantically contradictory.

http://dx.doi.org/10.1007/978-3-642-32460-4_3
www.traffic-simulation.de
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τinst(t) =
x2∫

x1

1

V (x, t)
dx . (19.16)

If the model is numerically integrated on a regular grid of cell size �x and the
instantaneous travel time is calculated from the beginning of cell i1 to the beginning
of cell i2, then the integral becomes the sum

τinst(t) =
i2−1∑

i1

�x

V (xi , t)
. (19.17)

To avoid divisions by zero or a significant bias towards too high travel times one
introduces a finite lower limit for the vehicle speeds.

Microscopic models. Here, the fraction �x/V of Eq. (19.17) can be interpreted as
the time headway of individual vehicles, so the instantaneous travel time is the sum
of all time headways of the vehicles inside the investigated road section:

τinst(t) =
n12(t)∑

α=1

�tα =
n12(t)∑

α=1

�xα(t)

vα(t)
. (19.18)

As in Eq. (19.17), one introduces a finite lower limit for the vehicle speeds vα

when using the expression to the left of the second equal sign.

Problems

19.1. Criteria for estimating travel times by N-curves
Give the conditions under which the method of N-curves is exact provided that there
are no detector errors. Is it possible to approximatively initialize the accumulated
counts if there are no floating cars available? If so, under which conditions?

19.2. Estimating travel times from aggregated detector data
Two stationary detectors D1 and D2 are located 4 km apart and measure following
flow profile (summed over all lanes):

D1: Time < 16 : 42 16:42–16:50 16:50–16:58 > 16 : 58

Q(vehicles/h) 1,800 0 3,600 1,800
D2: Time < 16:00 16:00–16:30 16:30–17:00 > 17:00

Q (vehicles/h) 1,800 0 3,600 1,800

Furthermore, it is known that there was an accident with a temporary total road
closure.
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1. Estimate qualitatively the spatiotemporal evolution of the resulting congestion.
Sketch the congested pattern in a spatiotemporal diagram. Also draw into the
diagram the location and time of the accident, and the time where the road closure
ends. Hint: There are at least two possible scenarios leading to the measured time
series.

2. Determine the N-curves N1(t) and N2(t) of the two detectors as a function of
the time difference t in seconds between the actual time and 16:00 h. Initialize
the accumulated count at detector D2 by N2(0) = 0. To Initialize N1(0), use
the information that the two detectors measured steady state traffic flow of speed
120 km/h and flow 1,800 vehicles/h at and before 16:00 h, and that a floating car
passed detector D1 at 15:58 h and D2 at 16:00 h and that this floating car reduced
its speed sharply at the latter time.

3. Draw the N-curves in a diagram and determine the travel times τ12 and τ̃12 for
16:40 h, i.e., t = 2, 400 s.

4. Give the estimated travel time τ̃12(t) in a closed analytical form for the intervals
t < −120 s and −120 s ≤ t < 2,520 s. Also give τ12(t) for 1,800 s ≤ t <

3,000 s. Why does τ̃12(t) jump by 1,800 s at time t = −120 s?
5. Where and when does the accident leading to the road closure happen?
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Chapter 20
Fuel Consumption and Emissions

An investment in knowledge pays the best interest.
Benjamin Franklin

Abstract Calculating fuel consumption and emissions is a typical offline analysis
step that uses the data previously obtained by simulations or observations. Depending
on the aggregation level and level of detail, we distinguish several global, macro-
scopic, and microscopic approaches. The focus of this chapter is on a microscopic
physics-based model with a high level of detail. As a “modal” model, it takes speed
and acceleration profiles (as obtained from microscopic simulations or real trajec-
tory data) and the engine speed (as obtained from gear-shift schemes) as input and
is parameterized by vehicle and engine attributes. The outputs are instantaneous
fuel consumption and emission rates (CO2 and others) on a single-vehicle basis. To
what degree does traffic congestion increase fuel consumption? Under which condi-
tions are roundabouts more environmentally friendly than signalized intersections?
How much CO2 emission can be saved by novel intelligent traffic systems? These
are typical questions that such models—in connection with microscopic traffic flow
models—can answer.

20.1 Overview

Generally, models for fuel consumption and for emissions (CO2 but also CO, NOx ,
particulate matter, and others) have the same structure, so they can be discussed
together.1 In each case, the models constitute a map from the exogenous factors
(traffic demand, properties of traffic flow, vehicle composition and infrastructure) to
one of two sets of endogenous variables:

1 This becomes explicit for CO2 emissions since there exists a 1:1 relation between fuel consumption
and these emissions, see Sect. 20.1.3.
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Fig. 20.1 Overview of fuel consumption and emission models. Additionally, the models are gener-
ally disaggregated with respect to vehicle classes and contain external factors such as temperature

• Local emission factors (often simply called “emission factors”) describe fuel con-
sumption or emissions in kg per meter (or liters per meter).

• Instantaneous emission factors describe fuel consumption or emissions in terms
of kg per second per vehicle (or in liters per second per vehicle).2

Depending on the aggregation level and level of detail, there are several model
categories. In the following, we shortly describe the main classes in the order of
increasing level of detail and complexity (cf. Fig. 20.1).

20.1.1 Macroscopic Models

Area-wide models. In this simplest and most macroscopic approach, the only model
input is the total vehicle mileage (traffic volume integrated over the total link length
of the network and over time) in the investigated region in terms of vehicle kilometers
travelled (VKT). As output, these models deliver the global fuel consumption and
emissions in the investigated area. The VKT is usually disaggregated at least with
respect to passenger cars and heavy-duty vehicles (trucks). Each of these categories

2 As always, we will use the metric units kg, m, and s. In this context, this may lead to very small
numerical values (particularly for the instantaneous factors), so the model results may be presented
to the public in different units. However, a time-tested rule for simulator development states that
one should always use the same unit system for internal calculations. Satellites have missed Mars
because the navigation and controlling software used different units.
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may be further disaggregated into several vehicle classes. The model input can be
estimated by traffic demand models or by detector data. Since area-wide models are
related to transportation planning rather than traffic flow modeling (cf. Chap. 1), we
will not discuss them further.

Average-speed models. Besides the VKT disaggregated into several vehicle classes,
average-speed models use as input the average speed driven on a certain link of the
considered network. In addition, some of these models include external factors such
as the temperature. The standard tools to obtain the speed information (generally as a
function of time) are the traffic demand and route assignment models of transportation
planning together with a network description including attributes such as road type
and maximum speed for each link. Of course, one can also directly measure speed and
traffic volume by double-loop detectors or other stationary speed-detecting devices.
The model output are local emission factors, i.e., volume or mass of consumed fuel
or emitted pollutant per kilometer and per vehicle, on average. To date, the majority
of fuel consumption and emission investigations uses software implementing this
model class, e.g., COPERT, MOBILE, MOVES or EMFAC. Since this class is more
related to transportation planning than to traffic flow modeling and cannot determine
the effect of jams, we will not discuss it further.

Traffic-situation models. This model class is related to the average-speed models.
However, instead of a single continuous traffic-flow variable (the speed), the input
consists of several distinct driving patterns. Most traffic-situation models define the
set of driving patterns as a product set of the set of traffic-flow patterns (e.g., free,
congested, stop-and-go), and the set of driving situations (e.g., highway, rural road,
arterial road, residential street). The traffic-flow situation may also be defined in terms
of the level of service (LOS) assessing the traffic flow quality on an ordinal scale
from 1 (best) to 6 (worst, i.e., completely congested). As is the case for average-speed
models, classical models of transportation planning or direct measurements provide
the input in form of the traffic volume on a link relative to its capacity, and speed
time series. Additionally, one needs a map associating the traffic volume and the
speed data to a traffic flow pattern. This is straightforward if the traffic-flow patterns
are defined in terms of LOS but it is more tricky if stop-and-go traffic should be
distinguished from stationary situations. Software implementing this class includes
HBEFA, ARTEMIS, and some versions of MOBILE.

Traffic-variable models. In contrast to the traffic-situation models relying on a finite
set of qualitative (categorically scaled) traffic patterns, this model class takes as input
quantitative (i.e., metrically scaled) macroscopic factors related to traffic flow such
as traffic density, traffic volume relative to capacity, queue length, and, of course,
speed. This information is complemented by categorically and metrically scaled
infrastructure-related input such as road category, design speed, signal cycles, link
length, number of lanes, and type of intersection. In contrast to the model classes
above, the models of transportation planning are no longer sufficient to provide this
input but they have to be complemented by microscopic or macroscopic traffic flow
models. The output of this model are local emission factors, usually related to a single

http://dx.doi.org/10.1007/978-3-642-32460-4_1
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vehicle. Representatives of this class include Traffic Emissions and Energetics (TEE)
and the queue-based Matzoros Model.

20.1.2 Microscopic Models

As a common feature, microscopic consumption and emission models need speed
profiles of single vehicles at a high temporal resolution (of a few seconds or less)
which can only provided by microscopic traffic flow models or by floating-car or tra-
jectory data. As output, these models deliver local or instantaneous emission factors
of single vehicles of a certain vehicle class. While traffic-situation and traffic-variable
models already allow a coarse assessment to which degree congestions influence con-
sumptions/emissions, only microscopic consumption/emission models allow us to
answer questions related to individual vehicles and drivers such as the following:

• How much fuel/emissions can be saved by a fuel-efficient driving style? How does
this saving potential depend on different traffic conditions? Is it possible to imple-
ment a fuel-efficient behavior into driver-assistance systems for the longitudinal
driving task (adaptive cruise control)?

• What saves more fuel/emissions: Avoiding high accelerations/decelerations or
driving at low engine speeds?

• Are roundabouts or signalized intersections more fuel-efficient? Does it depend
on the type of roundabout, or on the origin–destination (OD) matrix characterizing
traffic demand and the topology of the intersection?

• Is the savings potential and/or the optimal driving style different when switching
from traditional combustion engines to modern developments such as hybrid or
all-electric cars?

• What is the savings potential of recent Intelligent Transportation Systems (ITS)
such as vehicle-to-vehicle or infrastructure-to-vehicle communication (e.g., a traf-
fic light communicating its switching times to equipped cars)? How do the effects
depend on the penetration rate of such ITS implementations?

Since microscopic consumption/emission models are strongly related to traffic flow
models and traffic flow dynamics in general, they will be discussed in their own
sections. Principally, one distinguishes two classes of microscopic models:

Speed-profile models. This model class does not use the instantaneous information
provided by the simulated or measured trajectories directly. Rather, it is aggregated
to several speed profile factors of a driving cycle which, in turn, determine the
instantaneous consumption and emission factors.

Modal emission models. This is the most detailed model class: Instantaneous con-
sumption and emission factors are given in terms of the instantaneous operating mode
of the vehicle and the engine. This includes speed, acceleration, and the engine oper-
ating point including, at least, the engine speed (the revolution rate of the crankshaft)
and the required power at the crankshaft.
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20.1.3 Relation Between Fuel Consumption and CO2 Emissions

While models for fuel consumption and emissions usually have the same form, they
require different parameter sets. An exception is CO2 emission: Due to the chemistry
of combustion, there exists a strict 1:1 relationship between fuel consumption and
CO2 emissions, so a fuel consumption model is simultaneously a CO2 emission
model. Specifically, we have:

• Gasoline (98 ROZ): 2.39 kg CO2/liter.
• Diesel fuel: 2.69 kg CO2/liter.3

20.2 Speed-Profile Emission Models

The input of speed-profile models, also known as cycle-variable models, are speed
profiles of single vehicles at a high temporal resolution which are obtained by
floating-car data, trajectory data, or by a microscopic traffic flow simulation. At
this level of detail, little infrastructure data is needed since the speed profiles implic-
itly contain most of this information (obvious exceptions include road gradients). As
in the other models, this information has to be complemented by attributes of the
considered vehicle classes and by external factors such as temperature and weather.
The outputs of speed-profile models are either local or instantaneous emission fac-
tors which are related to a single vehicle. In contrast to the modal models to be
discussed below, the instantaneous information of the speed profiles is not used
directly. Rather, it is aggregated into several speed profile factors of a driving cycle
which, in turn, determine the instantaneous consumption and emission factors. Most
models of this class (e.g. MEASURE or PKE) assume a linear multivariate mapping
between the speed profile factors x and the estimates e of the instantaneous emission
factors:

e = L · x. (20.1)

Here, the components of the instantaneous emissions vector e may contain the CO2
emission rate (which is strictly proportional to the fuel consumption rate), the rates
of CO, HC, NOx , PM, and others. The n ×m matrix L represents the linear relations
between the m speed profile factors and the n components of the instantaneous
emissions vector. The matrix L is the core of models of this type.

To specify the model (i.e., identifying the relevant speed profile factors and the
dimension of L) and calibrate it (i.e., estimating the elements of L), one needs

3 The difference is mainly due to the difference in specific masses. To a good approximation, the
mass of emitted CO2 is equal to 44/12 times the mass of carbon contained in the fuel. Each carbon
atom of the fuel (mass: 12 atomic units) produces one CO2 molecule (mass: 44 atomic units) while
other products containing carbon (such as CO or soot) eventually convert to CO2 or are negligible
regarding the mass balance.
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Table 20.1 A selection of common speed profile factors and their effect on CO2 emissions (−− ⇔
strongly negative, − ⇔ negative, + ⇔ positive, ++ ⇔ strongly positive)

Factor Effect on CO2 emissions

Constant of value 1 Reference (+++)
Fraction of time in speed class 0–25 km/h ++
Fraction of time in speed class 50–75 km/h – –
Fraction of time in speed class 75–100 km/h –
Fraction of time in speed class > 125 km/h ++
Standard deviation of speed +
Average and standard deviation of acceleration +
Average and standard deviation of deceleration –
Frequency of acceleration–deceleration cycles +
Fraction of time the vehicle is standing +
Fraction of time the vehicle needs power near its maximum power ++
Fraction of road gradients greater than 5 % +
Engine speed (crankshaft revolution rate) 1,000–2,000 rpm – –
Engine speed (crankshaft revolution rate) > 3,500 rpm ++

instrumented vehicles measuring all relevant instantaneous emissions while driving
various driving patterns. Typically, one starts by defining plausible speed profile
factors as nonlinear functionals mapping the speed profile {v(t)} to the real-valued
numerical value of the factor. An example of a candidate factor is the speed variance.
In the next step, one determines the n most relevant factors by a factorial analysis
(cf. Table 20.1), and calibrates the coefficients of the new factors by a multivariate
linear regression. Alternatively, if a microscopic traffic flow simulator and a validated
modal emissions model (see Sects. 20.3 and 20.4) are available, one can specify and
calibrate a speed-profile model by simulation.

Table 20.1 displays typical speed profile factors that are used by many models of
this class and their influence on consumption and emission varying from strongly
negative (– –) to strongly positive (++) with respect to the reference. Obviously,
neutral factors defining the reference4 do not “survive” the factorial analysis. Notice
that replacing the speed-class factors by a simple factor “average speed” would lead to
a mis-specified model since there is no approximatively linear relationship between
the average speed and consumption/emission rates. Figure 20.6 shows that, in terms
of CO2 emissions or fuel consumption per km, vehicles emit (and consume) least at
moderate speeds of 50–80 km/h, when using a continuous rather than acceleration-
dominated driving style, and when driving using low engine speeds. Similar relations
apply for other emission factors. The physics-based modal model of Sect. 20.4 will
make this explicit.

4 In this example, this includes the speed classes 25–50 and 100–125 km/h, and the engine speed
class 2,000–3,500 rpm.
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20.3 Modal Emission Models

20.3.1 General Remarks

While speed-profile models make use of the trajectory information (of floating-car
data or microscopic simulations) indirectly via the profile factors, modal emission
models use the instantaneous information directly (cf. Fig. 20.1).

At any moment, modal models calculate the vector e(t) of instantaneous emission
factors as a function of the instantaneous “mode” of vehicle operation, essentially
speed v(t) and acceleration v̇(t). In the more refined modal models, the vehicle
operation mode is complemented by a characteristic map describing the instanta-
neous operating mode of the engine. This mode is expressed by engine speed f (t)
(including the idling mode), power demand (or torque), and possibly other history-
related factors such as engine age and temperature. At this microscopic level, the
only infrastructure information that is used directly are road gradients and possibly
the road surface quality.5 Depending on the situation and model complexity, fur-
ther input is necessary including local road-related variables (e.g., uphill grade φ),
external variables (e.g., altitude, air temperature), and variables related to the engine
history (e.g., engine temperature). As is the case with other microscopic models,
each vehicle can be modeled individually with its own parameter set.

Models of this class are perfectly suited to be used in conjunction with time-
continuous microscopic traffic flow models: The models are linked such that the
endogenous variables of the traffic flow models (speed, acceleration) are exactly
the main exogenous variables of the modal emission models. Consequently, most
microscopic traffic flow simulators include a fuel consumption and emission module
which typically runs offline on trajectory data generated by a previous simulation.

While, as the most detailed model class, modal models have the potential to give
the most precise description, they also have the highest demand on data for cali-
bration, validation, and usage. Particularly, it is notoriously difficult to measure the
instantaneous emission rates on a continuous basis at a time resolution of seconds,
which would be appropriate for this class. These problems are least serious (and
the results most relevant) for fuel consumption rates. As a consequence, when we
describe a specific modal model in detail in the next section, we will limit ourselves
to fuel consumptions. Since there exists a strict 1:1 relationship between fuel con-
sumption and CO2 emissions (cf. Sect. 20.1.3), this also includes a model for CO2
emissions.

Conceptionally, we can distinguish two types of modal consumption/emission
models: Phenomenological models (cf. Sect. 20.3.2), and load-based models
(cf. Sect. 20.3.3).

5 When applying microscopic traffic flow simulations to calibrate, validate, or use modal models,
detailed infrastructure and traffic information is needed indirectly as input to the microscopic traffic
flow model.
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20.3.2 Phenomenological Models

Models of this subclass describe the instantaneous consumption and emission
rates without a recourse to the underlying physical principles. Consequently, the
model parameters have no intuitive meaning. They come in the following two
forms:

Statistical modal models express the consumption and emission rates as a mul-
tivariate linear function of several instantaneous ad-hoc factors that are related to
the instantaneous driving mode. The model structure is similar to that of the speed-
profile models, only that the factors are functions of the instantaneous speed and
acceleration rather than functionals of the speed profile over a driving cycle. In
the simplest case, the factors are formed by powers of the single-vehicle speed
v and acceleration v̇ = dv

dt . A simple example for the instantaneous fuel consump-
tion rate Ċ = e1 (the first component of the instantaneous emissions vector e)
reads

Ċ = max
(

0, β0 + β1v + β2v2 + β3v3 + β4vv̇
)

. (20.2)

Uphill gradients φ (angle in radians which is essentially 0.01 times the grade in
percent) may be incorporated by adding a term β5vφ. In order to avoid unphysical
results, it is necessary to restrict Ċ to non-negative values.6 Furthermore, it is useful
to treat the idling state by a separate equation Ċidle = β idle

0 . Later on, we will see that
the factors of Eq. (20.2) have a physical meaning which, however, is not explicit in
statistical models.

Because of their simple form and the small number of parameters, such models
are relatively easy to calibrate and to use. However, they describe the effects of
different driving styles only partially: While the effect of speed, acceleration, and
deceleration is included, the effect of engine speed f (i.e., the selection of gears)
is ignored. In principle, one could include engine speed. However, this entails a
multitude of relevant new factors of the form f nvmv̇k resulting in a model which
is difficult to calibrate and prone to over-fitting. Moreover, because the parameters
have no meaning, one cannot extrapolate from a database of vehicle types generated
at certain test conditions to similar vehicles or to other conditions, e.g., simulating
the effect of loading the vehicle with five instead of two persons, or turning on the
air conditioning (A/C).

Map-based modal models drive the phenomenological approach to its extremes.
Rather than on a function, such model are based on a two- or three-dimensional
look-up table, or vehicle operations map mapping the instantaneous driving mode
(v, v̇, f ) directly to the consumption rate. In principle, this results in a parameter-
free model.7 However, generating such maps for any vehicle type and all driving

6 One does not gain fuel when decelerating strongly or driving downhill.
7 In another interpretation, the number of model parameters is equal to that of the map entries.
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conditions is prohibitive. Even extensive measuring campaigns over many driving
cycles will only cover a small region of the whole space of exogenous variables
resulting in sparse look-up matrices.

20.3.3 Load-Based Models

In this subclass of modal consumption/emission models, the power demand or the
load (the power demand relative to the maximum engine power) plays a central
role. Firstly, the load is the most relevant influencing factor of instantaneous fuel
consumption and emissions. Secondly, it is well understood in physical terms and can
be analytically expressed as a function of speed, acceleration, and road gradient with
intuitive parameters such as total vehicle mass, friction coefficient, and aerodynamic
drag coefficient. Therefore, models of this type are also called physics-based modal
models.

Well-known representatives of this type are the comprehensive modal emission
model (CMEM), and passenger car and heavy-duty emission model (PHEM). Such
models come in the following two variants.

Purely analytical models assume a constant engine efficiency (ratio of mechanical
energy to chemical energy contained in the fuel) in all driving modes and essentially
lead to statistical models of the form (20.2). However, the parameters β j have an
intuitive meaning, now.

Hybrid models combine the physical approach for the power demand with an engine
characteristic map providing the engine efficiency (or emission rates) as a function of
the instantaneous engine operating mode expressed by engine speed, power demand,
and sometimes by additional history-related factors such as engine temperature and
age. Engine characteristic maps are measured on test benches. While they are labori-
ous to make, they require significantly less effort than the maps of the instantaneous
driving modes of the map-based modal models. Furthermore, they cover the com-
plete set of possible driving situations. A significant advantage of load-based models
is their versatility: Without changes to the model or re-calibration, models of this
class can describe different driving conditions, e.g., driving with one person or fully
loaded, driving with heavy use of electric appliances (seat heating, A/C) and without
(cf. Problem 20.6). Finally, load-based models can be easily adapted to describe vari-
ous established and novel fuel-saving drive-train solutions, e.g., overrun fuel cut-off,
automatic start/stop systems, and various implementations of energy recuperation
during braking or downhill driving. The power-demand and energy modules of these
models can even be applied to all-electric vehicles where conventional fuel consump-
tion/emission models do not make sense. In the next section, we will describe such
a model in detail.
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20.4 Physics-Based Modal Consumption Model

With respect to the power demand module, the model described in the following is
related to the PHEM/CMEM models. However, it is significantly simplified in the
other model components.

Figure 20.2 shows an overview of the model components. The main factor deter-
mining fuel consumption is the driving resistance F which essentially depends (via
friction, aerodynamic drag, and inertia) on the instantaneous speed v and accel-
eration v̇, i.e., on the quantities resulting from the simulation of time-continuous
car-following models.

Once the driving resistance is known, the required mechanical engine power to
provide the oppositely directed driving force results immediately from the formula
“power equals force times speed”,

Pdyn = F v. (20.3)

However, the overall vehicle operation requires additional power P0 to drive the
various electric appliances (radio, lights, A/C, seat heating) of modern cars, and to
compensate for losses in the drivetrain. This results in the overall power demand
P = Pdyn + P0. In the next step, the fuel consumption rate is calculated from the
energy density of the fuel assuming a certain efficiency factor γ . In the simple
analytic version of the physics-based model γ is constant (typical values are of
the order of 30 %) while it is read from the engine characteristic map in the more
sophisticated model variants. Finally, for purposes of presentation, the instantaneous
consumption can be extrapolated to calculate the fuel consumption per 100 km (or
100 miles) when always driving in this mode.8

In the following subsections, we present the model components in detail.

20.4.1 Driving Resistance

The driving resistance is the mechanical force (in Newtons) needed to maintain the
instantaneous vehicle dynamics (v, v̇) prescribed by the car-following model. We
formulate it using elementary physical principles:

F(v, v̇) = mv̇ + (μ + φ)mg + 1

2
cdρ Av2. (20.4)

8 This quantity is displayed (slightly low-pass-filtered) in many modern vehicles. When the vehicle
stops and the engine is idling, the display reverts to the instantaneous consumption rate.
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Fig. 20.2 Overview of the components of the physics-based modal consumption model

This expression contains following terms:

1. The inertial force mv̇ follows from Newton’s second law “force equals mass
times acceleration”. When decelerating (v̇ < 0), this force is negative and will be
balanced with the other forces.

2. The solid-state friction force mgμ is proportional to the friction coefficient μ

and the gravitational force mg cos φ ≈ mg perpendicular to the road surface
(with the gravitational acceleration g = 9.81 m/s2 and the uphill gradient φ of the
road). We assume that the dimensionless coefficient μ (which must be empirically
determined and generally depends on the road surface and the tires) is speed
independent. More complex models also assume an additional speed-proportional
contribution.

3. The uphill/downhill-slope force mg sin φ ≈ mgφ takes into account the additional
gravitational forces at road gradients. Here φ denotes the uphill angle in radians.
For our purposes, i.e., gradients tan φ less than 20 m elevation gain or loss per
100 m, we can assume sin φ ≈ tan φ ≈ φ, i.e., 100 φ directly denotes the gradient
in percent (meter in elevation gain per 100 m of projected road length). When
driving downhill, this contribution is negative and will be balanced with the other
forces.

4. The aerodynamic drag 1
2 cdρ Av2 is proportional to the density of air,9 to the

frontal cross section A of the vehicle (about 2 m2 for cars), and to its aerody-
namic drag coefficient cd indicating how streamlined the vehicle is. While, in

9 Density of air is ρ ≈ 1.3 kg/m3 at ocean level and ρ ≈ 0.65 kg/m3 at an altitude of 5,500 m
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the 1980s, typical cd values of cars were around 0.4–0.5 (the Volkswagen Beetle
in its original design had 0.48), most modern cars (excluding experimental cars)
have cd values between 0.24 and 0.35 (SUVs have higher values). Because of its
quadratic dependence on the speed, the aerodynamic drag becomes the dominant
contribution of the driving resistance for high speeds (above 100–130 km/h, cf.
Fig. 20.6 and Problem 20.6).

20.4.2 Engine Power

Besides the power Pdyn = Fv to overcome the driving resistance, an additional base
power or idling power P0 is needed for the rest of the vehicle operations. It is com-
posed of the power demand (i) of lights, radio, A/C and similar, (ii) to operate vari-
ous actuators and electrical motors for ventilation, electric window lift, windscreen
wipers etc., (iii) to compensate for electrical losses of the generator providing the
electrical power, (iv) to overcome the internal friction of the engine and drivetrain.10

When taking into consideration that all modern vehicles have overrun fuel cut-
off, i.e., no fuel is consumed if the driving resistance is negative (due to braking or
downhill driving), we obtain following formula for the overall power demand on
which the calculation of the instantaneous fuel consumption is based:

P(v, v̇) = max [P0 + vF(v, v̇), 0] . (20.5)

The maximum condition reflects a powertrain management where no mechanical
energy can be “recuperated” when the overall power demand P0 + vF is negative.
However, the resulting surplus of mechanical power can be used to provide the idling
power P0. In old vehicles without overrun fuel cut-off, the instantaneous consumption
is at least that of the idling mode, so the overall power demand is bounded from below
by P0,

P(v, v̇) = P0 + max [vF(v, v̇), 0] . (20.6)

In the ideal case of loss-free recuperation (storage) capabilities of mechanical energy
during braking and downhill driving, the power balance reads

P(v, v̇) = P0 + vF(v, v̇). (20.7)

To reflect the more realistic case of recuperation with losses which is relevant for
hybrid and all-electric vehicles, we generalize this balance equation to

P(v, v̇) =
{

P0 + vF(v, v̇) P0 + vF(v, v̇) ≥ 0,

(1 − r)[P0 + vF(v, v̇)] otherwise.
(20.8)

10 When driving rather than idling, the internal friction can be accounted for in the characteristic
engine map (Sect. 20.4.4).



20.4 Physics-Based Modal Consumption Model 391

Here, r denotes the relative round-turn losses for one complete charging/discharging
cycle. The Eqs. (20.5)–(20.8) demonstrate the flexibility of the physics-based approach
to describe different forms of engine power management. It should be noted, however,
that the real situation in hybrid and electric vehicles is more complex. In particular,
the recuperation capabilities and losses depend on history (particularly on the charg-
ing state of the battery), on temperature, and on other factors related to the power
management.

20.4.3 Consumption Rate

The translation of the required power to the fuel consumption rate is mediated by the
(calorimetric) energy density of the fuel, and by the efficiency factor of the engine.
Defining the energy density

wcal = ΔWchem

ΔC
(20.9)

as chemical energy ΔWchem per volume ΔC of the fuel, and the efficiency factor

γ = ΔWmech

ΔWchem
(20.10)

as the fraction of mechanical energy ΔWmech that can be converted from a certain
amount ΔWchem of chemical energy, we obtain the relation

ΔWmech = γ wcalΔC. (20.11)

A typical value for the energy density of gasoline is wcal = 39.6·106 J/l = 11 kWh/l.11

And the efficiency factor γ is of the order of 0.25−0.35. Taking the time derivative
of Eq. (20.11) and using the identity P = d

dt (ΔWmech), we obtain a relation between
the consumption rate and the overall power required according to Eq. (20.5):

Ċ = d(ΔC)

dt
= P

γ (P, f )wcal
. (20.12)

In purely analytical models, the efficiency factor γ is assumed to be constant. In the
more detailed hybrid models, γ (P, f ) depends on the overall power demand P and
the engine speed f and is read from the engine characteristic map (cf. Sect. 20.4.4).
The engine speed f depends directly on the driven speed v, the transmission ratio rt
of the selected gear (rotation rate of the engine shaft divided by the rotation rate of
the tires), and the dynamical radius Rdyn of the tires,

11 This is about fifty times larger than that of modern batteries for electric vehicles.
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f = rtv

2π Rdyn
. (20.13)

For a given gear and transmission, the efficiency factor γ depends on the speed and
the required power alone. Inserting Eq. (20.13) for the engine speed, Eq. (20.5) for
the power, and Eq. (20.4) for the driving force into Eq. (20.12) gives the instantaneous
consumption solely as a function of endogenous variables of the microscopic flow
model (speed and acceleration), the road gradient, and the characteristic map. We
will now discuss characteristic maps in detail.

20.4.4 Characteristic Map for Engine Efficiency

The engine efficiency, i.e., the conversion factor from the chemical energy of the
fuel to the delivered mechanical energy, depends in essential on the operating point
characterized by engine speed f and by the mean effective pressure p̄ (the pressure
difference at the cylinders during one cycle). We will not consider further dependen-
cies, e.g., on the engine and outside temperatures, here. The efficiency at different
operating points is measured on engine test benches and presented in form of a
two-dimensional (or multi-dimensional) table, the so-called (engine’s) characteris-
tic map. Characteristic maps come in different equivalent variants:

1. The exogenous variable can be defined as specific consumption relative to fuel
mass (kg/kWh) or volume (L/kWh, cf. Fig. 20.3), as efficiency factor γ (in
Fig. 20.4), or as the “fuel efficiency” which is defined as the inverse of the specific
consumption. The efficiency factor γ and the specific consumption Cspec relative
to volume are related by

1

γ wcal
= Cspec. (20.14)

When multiplying the volume-related specific consumption by the mass density
(about 0.8 kg/l for gasoline), we obtain the mass-related specific consumption.

2. The first exogenous variable is given nearly exclusively by the engine speed
f . Sometimes, this quantity is linearly transformed to the normalized engine
speed fnorm such that fnorm = 0 corresponds to idling, and fnorm = 1 to the engine
speed at maximum power (which generally is less than the maximum possible
engine speed).

3. The second exogenous variable of the characteristic map can be the engine
power P , its torque M , or the mean effective pressure p̄, or the position of the
throttle pedal.12 Elementary relations connect the first three quantities with each
other and with the engine speed f and the effective total cylinder volume Vzyl:

12 The degree to which the pedal is “pushed down” is a good indicator of the mean effective pressure.
Driving at “full throttle” corresponds to maximum values of p̄, M , and P for the actual engine speed.
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Fig. 20.3 Characteristic maps of various engines obtained from test benches. The horizontal axis
denotes engine speed f , and the vertical axis the mean effective pressure p̄. The contour lines
indicate lines of constant specific consumption C̃ in units of mL fuel per kWh

Fig. 20.4 Alternative repre-
sentation of the characteristic
map. The second exogenous
variable is now the deliv-
ered power calculated by
Eq. (20.15). The endogenous
variable is now the effi-
ciency factor γ calculated by
Eq. (20.14)
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. (20.15)

The second relation is valid for four stroke cycle engines, only. In Fig. 20.3, we
display the engine power since this is the most intuitive quantity which, moreover,
is directly connected with the simulation via Eq. (20.5).

We notice that the characteristic map reflects the general fuel saving recommen-
dations: Drive at the lowest possible engine speeds that can provide the necessary
power; when increasing speed, do so at a reasonable rate (do not accelerate too
slowly), and change to the highest compatible gear once cruising speed is reached.
In this way, one generally operates at the left part of the characteristic map near the
region of highest efficiency (cf. Problems 20.3 and 20.4).



394 20 Fuel Consumption and Emissions

Speed (km/h)
Acc

ele
ra

tio
n 

(m
/s
2 )

Mid-size car (1.8 liters, 118 kW)
Gear 1
Gear 2
Gear 3
Gear 4
Gear 5

not possible

0
 20

 40
 60

 80
 100

 120
 140

 160-1

-0.5

0

 0.5

1

 1.5

2

0

 10

 20

 30

Cx
(l/100 km)

Speed (km/h)
Acc

ele
ra

tio
n 

(m
/s
2 )

Subcompact car (1.4l diesel, 35 kW)
Gear 1
Gear 2
Gear 3
Gear 4
Gear 5

not possible

0
 20

 40
 60

 80
 100

 120
 140

 160-1

-0.5

0

 0.5

1

 1.5

2

0

 10

 20

 30

Cx
(l/100 km)

Fig. 20.5 Extrapolated consumption per 100 km according to Eq. (20.16) for the engine character-
istic maps of Figs. 20.3 or 20.4, and the attributes of the corresponding cars as a function of speed
and acceleration. The gears (color-coded) are selected to optimize fuel consumption. A black grid
denotes forbidden regions where the power demand exceeds the engine capabilities

20.4.5 Output Quantities

With the help of the modal consumption model presented above, we can calculate
intuitive quantities such as the fuel consumption or CO2 emission per kilometer or per
100 km for arbitrary driving cycles and driving conditions (cf. Problems 20.6–20.8).

20.4.5.1 Fuel Consumption per 100 km

From the instantaneous consumption rate (20.12), we can calculate the consumption
per 100 km when driving the whole stretch in the same operating mode by applying
the chain rule of differentiation, ∂C

∂t = ∂C
∂x

∂x
∂t = v ∂C

∂x :

C100 = 100km
dC

dx
= 100km

v

dC

dt
= 100000m

γ wcal

P

v
. (20.16)

For a given car and engine, this quantity depends on the speed, the gear, and, via
Eq. (20.5), on the acceleration.

The Figs. 20.5 and 20.6 show the vehicle modal consumption characteristics in
terms of the consumption C100 per 100 km, Eq. (20.16), calculated with the vehi-
cle parameters of Table 20.2 and the characteristic map of Fig. 20.3 using the most
efficient gear for the instantaneous driving mode (v, v̇) in question.

Figuratively, when going from the engine characteristic map to the vehicle modal
characteristics, one “installs” the engine into the vehicle. Formally, the modal charac-
teristics is equivalent to the core component of map-based modal models, the vehicle
operations map (cf. Sect. 20.3.2), only that it is derived from physical principles and
the engine characteristic map which is more “fundamental” and easier to determine.
This means, validated physics-based models can be used to specify, calibrate, and
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Fig. 20.6 Left Alternative presentation of the consumption per 100 km for the medium-class vehicle
type (118 kW). Right Consumption when cruising at constant speed for the most efficient gear (color-
coded). The engine characteristics used for this figure does not represent the state of the art. Modern
vehicles consume significantly less

Table 20.2 Vehicular and physical parameters of the physics-based consumption model

Quantity Symbol Typical value for cars

Idling power P0 3 kW
Total mass m 1,500 kg
Friction coefficient μ 0.02
cd value cd 0.3
Frontal cross section A 2 m2

Dynamic tire radius rdyn 0.286 m
Transmission factors (1st to 5th gear) rt 13.90, 7.80, 5.26, 3.79, 3.09
Specific consumption (if constant) Cspec 300 ml/kWh = 8.3 10−5 ml/J
Air density ρ 1.3 kg/m3

Gravitational acceleration g 9.81 m/s2

Fuel energy density wcal 39.6 106 J/l ≈ 11 kWh/l

validate phenomenological map-based models, which is easier than doing this by
driving-cycle experiments.

Figure 20.5 reflects following fuel-saving rule: Drive at the highest gear (i.e., at
lowest engine speeds) where the engine can provide the actually needed power. i.e.,
only “kick down” (change to lower gears and higher engine speeds) when more
power is needed (accelerating or driving uphill). From Fig. 20.6, we conclude that
40 km/h – 80 km/h is the most economic speed range regarding consumption.

20.4.5.2 Calculating the Cumulated Fuel Consumption

Most people guess that fuel consumption and CO2 emissions are significantly
increased in jams. Is this true, and if so, under which conditions? To answer this
question, we combine a microscopic traffic flow model with the physics-based
consumption model and simulate congested traffic (scenario I) and a reference
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scenario II without jams. Obviously, for a fair comparison, the same total num-
ber of vehicles must pass the considered road section in both scenarios. Therefore,
to avoid the jams in scenario II, we make the driving style more efficient instead
of reducing the inflow. To completely specify the scenarios we must provide the
following:

• Composition of the vehicle fleet.
• Specification of demand: traffic inflow over time.
• Specification of supply (bottleneck).
• A realistic car-following model with parameterizations for all vehicle classes of

the fleet for both scenarios.13

• Vehicle parameters and engine characteristic maps for all vehicle classes.
• A behavior rule to select the gears, e.g., always selecting the most efficient gear.

The first four items specify the traffic flow simulation, and the last two the subsequent
calculation of consumption and emissions. Apart from the parameters of the car-
following models, the specifications for both scenarios are identical. Making use
of the definition of the instantaneous consumption rate Ċα(vα(t), v̇α(t), gα(t)) for
vehicle α, we obtain for the total consumption in the simulated spatiotemporal region
[tstart, tend] × [x1, x2] the expression

Ctot =
tend∫

tstart

dt
α2(t)∑

α=α1(t)

Ċα(vα(t), v̇α(t), gα(t)). (20.17)

The lower and upper limits α1(t) and α2(t) indicate the range of vehicle numbers
which are inside the simulated region at a given time t . Figure 21.7 of Chap. 21
shows a calculated example. Generally, the additional percentaged increase in fuel
consumption/CO2 emissions due to jams is only a third of the percentaged increase
of travel time. In extreme situations, traffic congestions can even lead to less con-
sumption/emissions (cf. Problem 20.5).

Under which conditions for scenario I (congestion) and scenario II (free traffic)
will a traffic breakdown lead to (i) a maximal (b) minimal (or even negative)
increase of consumption and emissions?

13 Such a simulation can also serve as a “reality check” for car-following models. If the accelerations
become unrealistically high (as in the optimal velocity model), no consumption can be calculated
since the power demand exceeds the engine capabilities (regions with black grids in Fig. 20.4).

http://dx.doi.org/10.1007/978-3-642-32460-4_21
http://dx.doi.org/10.1007/978-3-642-32460-4_21
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20.4.6 Aggregation to a Macroscopic Modal Consumption Model

By aggregating over the vehicle trajectories, it is straightforward to generalize the
modal consumption/emission models to a macroscopic description:

Ċ(V (x, t), V̇ (x, t)) = 〈Cα(vα, v̇α, g)〉. (20.18)

The averaging 〈·〉 includes a local average over the region around x (V =〈vα〉,
V̇ = 〈v̇α〉, cf. Chap. 9), over the vehicle classes of the considered vehicle-driver com-
position, and over different gear-selection strategies.

By integrating over the vehicle number n = ∫
ρ(x, t)dx and over time, we obtain

the total consumption/emissions produced by the traffic in a certain spatiotemporal
region [tstart, tend] × [x1, x2] by the double integral

Ctot =
tend∫

tstart

dt

x2∫

x1

dx ρ(x, t)Ċ [V (x, t), A(x, t)] (20.19)

where A(x, t) gives the macroscopic acceleration in the comoving system (cf.
Eq. 9.1).

Finally, we mention that the macroscopic speed field V (x, t) can be used to deter-
mine the macroscopic factors of the traffic-variable models discussed in Sect. 20.1.1.
Thus, these models can be calibrated/validated by comparing their output with
expression (20.19) for the total consumption.

Problems

20.1 Coefficients of a statistical modal consumption model
A statistical modal model is characterized by following function of speed v, accel-
eration v̇ and uphill gradient φ (cf. Eq. 20.2):

Ċ = min
(

0, β0 + β1v + β2v2 + β3v3 + β4vv̇ + β5vφ
)

.

Determine the model parameters β0 to β5 from the physics-based modal model with
constant efficiency factor for cars described by the attributes of Table 20.2.

20.2 An acceleration model for trucks
For fully-loaded trucks, the conventional car-following models are not very useful
in free-flow acceleration situations since the acceleration is restricted by the engine
power. Formulate the acceleration component of a truck car-following model as a
function of speed v and gradient φ. Plot the acceleration for a truck characterized by
a total mass of 38 T, a cd value 0.8, a frontal cross section 10 m2, power components

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_9
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P = 310 kW and P0 = 10 kW, and other attributes as in Table 20.2. Restrict the accel-
eration to a maximum of amax = 1m/s2, and do not accelerate if v exceeds the desired
speed v0 = 80 km/h. Is the engine powerful enough to drive an uphill gradient of 2 %
at 80 km/h?

20.3 Characteristic map of engine speed and power
Consider the characteristic map of Fig. 20.4. What engine power results at “full
throttle” for an engine speed of 3,000 rpm? Which is the most efficient engine speed
for providing a power of 60 kW?

20.4 Characteristic map of engine speed and mean effective pressure
Consider the characteristic map displayed in Fig. 20.3. (i) What power results at
2,600 rpm and full throttle? (ii) Consider a driving situation requiring a total power
of 40 kW. Is it more efficient to drive at a higher gear (2,600 rpm) or at a lower gear
(4,000 rpm)? At which of these engine speeds must the throttle pedal be pressed
down further?

20.5 Does jam avoidance save fuel?
Why is the savings potential less when driving at high speed under non-congested
conditions?

20.6 Influencing factors of fuel consumption
The following list gives some rules of how to save fuel. However, the mischievous
author of this list has converted some rules to their opposite. Discuss which items
are correct by comparing them with the predictions of the physics-based modal
consumption model. If necessary, make a sensitivity analysis using the parameters
of Table 20.2 assuming a constant efficiency factor.

1. Switching on the A/C increases the fuel consumption per kilometer, particularly
in city traffic.

2. Mounting a roof rack (increases the cd value by 0.08) has adverse effects on fuel
consumption, particularly in city traffic.

3. When driving downhill, disconnecting the clutch or selecting the “neutral” mode
of automatic transmission) may have adverse effects on the brakes but it saves
fuel.

4. When you fill the tank only to half of its capacity, i.e., visit gas stations more
frequently, you will save more than 2 % of fuel (assume a tank of 60 l).

5. Reducing the speed limit from 50 to 30 km/h in cities helps save fuel.
6. Reducing the speed limit from 130 to 110 km/h on highways helps save fuel.

20.7 Highway versus mountain pass: Which route needs more fuel?
Two route alternatives are specified as follows: (1) A level highway with driving
speed of 150 km/h, (2) a mountain pass containing exclusively uphill and downhill
sections of equal length with gradients of ±8%, driving speed of 72 km/h, and overrun
fuel cut-off is active.
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20.8 Four-way-stops versus intersection with priority rules
Consider following two situations:

• Situation I: A city street with a series of four-way-stops.
• Situation II: Replacing the stops by a priority rule in the considered driving direc-

tion, i.e., drivers need not to decelerate or stop when going ahead.

L=500 m

Calculate the fuel consumption on the 500 m long stretch between two intersec-
tions using the purely analytical physics-based modal model with parameters from
Table 20.2 assuming (i) a free speed v0 = 16 m/s, (ii) acceleration stop → free speed
at 2 m/s2 and deceleration free speed → stop at −2 m/s2 in situation I, cruising at
v0 in situation II, (iii) no crossing traffic, i.e., immediate start after each stop in
situation I.

20.9 Under which conditions do all-electric cars save CO2 emissions?
Compare a conventional gasoline-driven vehicle characterized by a constant effi-
ciency factor and the parameters of Table 20.2 with an all-electric car whose engine
has a net efficiency factor γel (conversion of electric to mechanical energy including
powertrain) of 85 %, and which can recuperate kinetic energy at round-turn losses
1 − γrec = 20 % in following situations:

• Situation I: City traffic as in situation I of Problem 20.8.
• Situation II: Cruising on a highway at 130 km/h.

Calculate the total CO2 emissions per kilometer for both vehicle types in both
situations. Assume 2.39 kg CO2 per liter gasoline in the combustion process (cf.
Sect. 20.1.3), and a power-plant energy mix of 600 g CO2 per kWh electrical energy
(equalling the US average).

20.10 Fuel consumption for an OVM-generated speed profile
Consider a single vehicle entering a highway (desired speed v0 = 120km/h) and
accelerating according to the optimal velocity model (OVM) (cf. Sect. 10.6) at a
maximum acceleration of 2 m/s2.

1. Determine the OVM model parameter τ .
2. Calculate the required total power for the parameters of Table 20.2 as a function

of the instantaneous speed v and express the result as a polynomial of the form
A0 + A1v + A2v2 + A3v3. Give analytical and numerical expressions for the
coefficients A0 to A3.

3. Calculate the maximum power required during the acceleration phase. At which
speed this power is needed?

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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20.11 Trucks at uphill gradients
In order to avoid trucks driving too slowly on uphill gradients of highways, the uphill
gradients are restricted to φ = 4 %. Should a steeper gradient of 5 % be allowed if
the length L of the gradient is 500 m or less?

L

φ

For modeling this situation, we assume as worst case a fully loaded truck whose
engine just manages to maintain a speed of 80 km/h on a level road and whose
maximum power does not depend on speed (a truck has many gears). The truck driver
drives through the gradients at full throttle. Besides the physical parameters from
Table 20.2, the relevant parameters are the following: mass 38 T, friction coefficient
0.03, cd value 0.8, and a frontal cross section of 10 m2.

1. Determine the maximum engine power.
2. The truck enters the uphill gradient at an initial speed of 80 km/h. Give the initial

decelerations for 4 and 5 % gradients.
3. Calculate the terminal speeds for the two gradients if they are sufficiently long.

(You can neglect the aerodynamic drag in this calculation.)
4. We describe the decelerating process with an appropriately parameterized OVM

for free traffic,
dv

dt
= v∞ − v

τ
.

Determine the parameters v∞ and τ for the two gradients.
5. Calculate the speed and the covered distance as a function of time if the truck

enters the uphill section (x = 0) at time t = 0.
6. In which of these two situations does the truck end up driving more slowly: (i)

at the end of a 500 m long uphill gradient of 5 %, (ii) at the end of a 1,000 m
long uphill gradient of 4 %? Assume the previously obtained (rounded) results
v∞ = 37 km/h, τ = 24 s (uphill gradient 5 %) and v∞ = 42 km/h, τ = 26 s (uphill
gradient 4 %). Furthermore, assume that the ends of the uphill sections are reached
at 29.1 and 64.2 s in the situations (i) and (ii), respectively (these passing times
can only be determined numerically).
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Chapter 21
Model-Based Traffic Flow Optimization

When it is obvious that the goals cannot be reached, don’t adjust
the goals, adjust the action steps.

Confucius

Abstract By means of simulations of microscopic traffic flow models, we inves-
tigate measures to increase the efficiency and stability of traffic flow when the
infrastructure and the traffic demand are fixed. Road-based measures include vari-
able message signs (for traffic-adaptive speed limits and dynamic routing), ramp
metering, and selective overtaking bans for certain vehicle classes (trucks) in cer-
tain situations (gradients). Another class of optimization measures is vehicle-based
rather than road-based. At present, these measures have entered the market and are
expected to have a significant market penetration (and influence) in the near future.
They include semi-automated driving (adaptive cruise control), individual traffic-
adaptive navigation, traffic-light assistants, and other driver-assistance systems.

21.1 Basic Principles

From the analysis of the spatiotemporal dynamics on highways and freeways in
Chap. 18, we can conclude that most traffic breakdowns are caused by the simulta-
neous action of following three factors (cf. Sect. 18.1):

(A) High traffic load (demand in relation to road capacity).
(B) Local reduction of the road capacity (bottleneck).
(C) Local perturbations in the traffic flow itself, acting as the final trigger.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 403
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Consequently, traffic-flow optimization measures aim to remove or weaken at least
one of these factors. This is tantamount to homogenizing traffic flow:

Golden Rule of Traffic Flow Optimization:
Try to homogenize traffic flow (i) with respect to time, (ii) spatially, and
(iii) with respect to local speed differences.

There are several ways of implementing this principle: By road-based or vehicle-
based measures focussing on different aspects of traffic homogenization, and acting
on different spatial and temporal scales.

Static control of the spatial and temporal traffic demand. Measures of this class
typically belong to the field of transportation planning and act mainly over longer
timescales on the influencing factor (A) of the above list. Examples include con-
structing new roads, improving or removing existing roads, or implementing new
traffic regulations.1 Other, more politically influenced measures include vehicle tolls
to enter the inner-city limits (congestion charge, as in London, Stockholm, or San
Francisco), high-occupancy vehicle (HOV) lanes reserved for vehicles occupied by
two or more persons, or initiatives to shift the modal split away from vehicular traffic,
e.g., constructing new bicycle lanes or improving public transport (introducing new
bus, tram, or train lines, increasing the frequency of service, or prioritizing public
transport at intersections). Most measures in this category are simulated with traffic-
stream models which are briefly described in Sect. 6.2.2 and which are the core of
most commercial software for traffic assignment. They will not be considered here.

Dynamic control of traffic volume. In contrast to static (possibly time-dependent)
control, dynamic control measures depend on the traffic situation. They include
dynamic routing, i.e., rerouting by road signs or mobile devices if the principal route
is congested (Sect. 21.4). Another control measure in this category is ramp metering:
If traffic flow on the main-road is on the verge of traffic breakdown, one temporarily
reduces or blocks the incoming traffic on on-ramps by traffic lights on the access
lanes (cf. Sect. 21.3). Strategies in this category mainly act on the jam factor (A),
but ramp metering can also be used to “level off” short-term flow peaks thereby
controlling factor (C) of the above list.

Eliminating or alleviating static bottlenecks. By adding new lanes to gradient
sections or redesigning interchanges and intersections, traffic engineers can reduce
infrastructure-related bottlenecks thereby influencing factor (B) of the above list.
Measures of this category also include more dynamic concepts such as a traffic-
dependent operations management at road construction sites: Shifting the main

1 The effects may be counter-intuitive. In an extreme case known as Braess’s paradox, the con-
struction of a new link may lead to longer travel times on all routes from a given origin to a given
destination after the new user equilibrium has settled.

http://dx.doi.org/10.1007/978-3-642-32460-4_6
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constructing activities to periods with low traffic volume will alleviate the construc-
tion bottleneck when it is relevant to do so.2 Such measures will not be considered
here.

Dynamic reduction of the bottleneck strength. The decisive property of a bottle-
neck characterizing its obstructing effect is the local reduction of the dynamic capac-
ity. This allows to optimize traffic flow with respect to influence factor (B) by not
only infrastructure-based measures but also by influencing the driving style to make
it temporally and locally more effective. This includes rules for efficient behavior to
be taught in driving schools as well as traffic-adaptive semi-automated driving (cf.
Sect. 21.5). It also includes other driver-assistance systems from the emerging fields
of traffic telematics and vehicle-based Intelligent Transportation Systems (ITS).

Homogenizing traffic flow. Measures in this category aim to reduce the traffic
breakdown factor (C)—perturbations in the traffic flow itself—by suppressing local
disturbances that may be caused, e.g., by abrupt lane changes, braking maneuvers,
or other un-anticipated actions. The most widespread measures in this category are
speed limits (Sect. 21.2), ramp metering (Sect. 21.3), and overtaking bans for trucks
(Sect. 21.6) which are applied in a selective way, i.e., only, if there is high traffic
volume [factor (A)] and a bottleneck is nearby [factor (B)].

In the following sections, we discuss a selection of optimization measures that
are related to traffic flow modeling. Generally, suitable measures include dynamic
traffic flow control rather than measures based on infrastructure or traffic demand.

21.2 Speed Limits

As a direct effect, speed limits homogenize traffic flow with respect to the speed dis-
tribution. For example, on German highways, trucks are allowed to drive at 80 km/h
while there is no general speed limit for cars. This means, speed differences can
reach values of 80 km/h and more, particularly between lanes (cf. Fig. 4.6). At the
other extreme, imposing a global speed limit of 80 km/h leads to a very sharp speed
distribution around 80 km/h since few drivers choose speeds below this value.3

As an indirect effect, speed limits reduce the frequency of lane changes: The
majority of discretionary lane changes are no longer made since most of them are no
longer associated with a significant incentive. Furthermore, the perturbations result-
ing from the remaining discretionary and the mandatory lane changes are weaker
since fewer acceleration/braking actions are necessary to change lanes. This means,

2 Nevertheless, this belongs to the category of static measures: Because roadworks have to be
planned in advance, they can only take into account historical demand profiles, without feedback
from the actual situation.
3 In fact, Fig. 4.6 shows that the sharp “truck peak” of the speed distribution is at 89 km/h rather
than 80 km/h. Obviously, no consequences threaten truck drivers up to this speed in Germany so
that speed limiters are set accordingly.

http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_4
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speed limits help prevent or delay traffic breakdowns by reducing the traffic jam
factor (C): Perturbations in the flow itself.

It is straightforward to incorporate speed limits and other vehicle-related factors
limiting the speed into microscopic traffic flow models by letting the desired speed
vα

0 of vehicle α depend on location and time according to

vα
0 (x, t) = min

[
vdriver

0 , v
speedlimit
0 (x, t), vmotorization

0 (x)
]
. (21.1)

This means, the effective desired speed is the minimum of the driver’s actual desired
speed, speed limits (generally depending on the vehicle type, the location, people’s
propensity to obey speed limits, and, in case of dynamic traffic regulations, on time),
and limits due to the motorization of the vehicle at uphill gradients (cf. Sect. 4.2).
Notice that this interpretation of the desired speed means that the microscopic models
are used as a multi-class model, i.e., every vehicle α has its own set of parameters.

When simulating speed limits and other speed-reducing factors, traffic engi-
neers/model developers need to bear in mind the following:

• Only microscopic models are suited to reliably model the effect of speed limits.
In principle, multi-class macroscopic models or mesoscopic gas-kinetic based
models containing the speed distribution as part of the phase-space density are
able to model speed limits. In practice, this is rather indirect and cumbersome.

• Suitable microscopic models should contain the desired speed as a model
parameter.

• To avoid artificial perturbations in form of abrupt braking maneuvers caused by
the speed limits themselves, they should be implemented as a continuous function
of space. For example, when a general speed limit of 80 km/h is imposed for x ≥ 0
while cars are allowed to drive at 120 km/h for x < 0, the speed-limit component
of the desired speed function (21.1) may read

v
speedlimit
0 (x, t) =

⎧
⎨

⎩

120 km/h for cars if x < −100 m,
(100 + 0.2x) km/h for cars if |x | < 100 m,
80 km/h in all other situations,

(21.2)

where x is given in units of meters. This represents the usual driver’s behavior of
starting braking before passing the new speed limit sign but passing the sign before
the new speed is reached. If significant speed reductions are necessary (e.g., when
approaching a roadworks site the speed signalization itself reflects this objective
in form of so-called speed funnels, i.e., a series of speed limits with consecutively
lower values, e.g., the sequence 120 → 100 → 80 → 60 km/h.

The reader can verify the jam-reducing effect of speed limits by interactive simula-
tions on the authors’ website.4 When selecting the simulation scenario “lane closing”,
the simulation starts by default with a global speed limit of 80 km/h (Fig. 21.1, left).
Since there are only insignificant speed differences between the vehicles on either

4 see: www.traffic-simulation.de.

http://dx.doi.org/10.1007/978-3-642-32460-4_4
www.traffic-simulation.de
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Fig. 21.1 Screenshots of microscopic simulations of speed limits. Left a global speed limit of
80 km/h is imposed. Right No speed limit for cars (desired speed 140 km/h). The traffic demand
(inflow: 1,500 vehicles/h) and the lane-closing bottleneck (visualized in black) are the same in both
simulations

lane, lane changes are easy and the drivers on the left lane manage to change lanes
before arriving at the location where the left lane ends. In contrast, when interactively
changing the speed limit to higher values or removing it (Fig. 21.1, right), it is harder
to change lanes safely and, sooner or later, a driver gets stuck on the left lane behind
the bottleneck. When this driver finally manages to change to the through lane and
start at initially very low speed, he or she is likely to trigger a breakdown by this
action.

We emphasize that imposing speed limits to prevent or delay breakdowns is only
effective if the other two factors for a jam are present, i.e., during times of high traffic
demand [rush hours, factor (A)], and near bottlenecks [factor (B)]. Therefore, speed
limits for performance reasons should be imposed only temporarily and locally.5 We
can summarize the effect of speed limits as follows:

Jam-reducing effect of speed limits: “Slower is sometimes faster.”

21.3 Ramp Metering

Besides reducing speed differences by speed limits, traffic engineers can homogenize
traffic flow on highways or other principal roads by temporarily reducing or closing
on-ramp flows via access traffic lights when a flow peak arrives at the main road

5 As a matter of fact, there are other reasons for speed limits, e.g., traffic safety or noise pollution.
This will not be considered here.
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Fig. 21.2 Screenshot of the “ramp metering game” developed with the “Multi-model open-source
vehicular Simulator” (MovSim). The player can control the access traffic light. Here, he or she did
very badly and produced a traffic breakdown on the main-road as well as a spillover of the ramp
queue onto the secondary network

(Fig. 21.2). This optimization measure, also known as ramp metering, is widespread
in the USA while it is rarely used in most of the European countries. Although
ramp metering temporarily reduces the traffic throughput, it helps increase it at later
times by preventing a traffic breakdown and the associated capacity drop. We can
summarize the “philosophy” behind ramp metering as follows:

Effects of ramp metering: “Less is sometimes more.”

When implementing ramp metering schemes, it is crucial to prevent artificial
flow peaks once the flow peak on the main-road is over and the access traffic
light is switched to green. Therefore, the duration of the green phases must be
sufficiently short to allow only one or a few vehicles to pass during each green
phase.

Choosing an efficient switching strategy for the access traffic light is a difficult
task. Firstly, the traffic situation is incompletely known in real time. Secondly, it
takes several minutes for a certain controlling action (switching the traffic light) to
have a significant effect on the traffic flow. Finally, it is easy to make things worse
than the situation without control.

Microscopic traffic flow simulations such as the simulation game of Fig. 21.2 help
understand the dynamics.6 In the depicted run, the player kept the controlling traffic
light red for a too long period. This leads to two adverse effects: Firstly, as soon as
the player switched the light to green (displayed state), the accumulated queue of
waiting ramp vehicles starts as a platoon, merges to the main-road, and initiates a

6 see: www.movsim.org.

www.movsim.org
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n max

Q c

Controlled Flow

t

t

Traffic Flow

Waiting Vehicles

Demand

Fig. 21.3 Visualization of the capping strategy for ramp metering. Top Demand curve Qin + Qrmp
for the total flow that would be realized without ramp metering (jagged line). If the total flow
exceeds the limit Qc, it is capped to this value by the access traffic light, so a queue of n waiting
vehicles forms at the on-ramp (bottom curve). As long as 0 < n < nmax, the ramp metering is
active restricting the ramp flow to Qrmp = max(0, Qc − Qin)

breakdown on this road. Furthermore, before the queue of waiting vehicles dissolved
completely, it “spilled over” onto the secondary road thereby obstructing even the
drivers who did not want to enter the highway. This forced inefficient usage of road
space is also called the gridlock phenomenon.

While a multitude of strategies has been proposed, the arguably simplest ramp-
metering strategy restricts the total flow to a certain value (cf. the schematic illustra-
tion in Fig. 21.3):

Capping strategy:
Control the on-ramp flow Qrmp such that the total flow Qin + Qrmp is restricted
by a certain threshold Qc. If the on-ramp queue threatens to spill over to the
secondary network (number of waiting vehicles n ≥ nmax), discontinue ramp
metering.

Figure 21.4 shows a microscopic simulation of traffic flow with the Intelligent
Driver Model (Sect. 11.3) near an uphill bottleneck at road kilometer 40 without
(left) and with ramp metering (right) according to the capping strategy. The on-ramp
to be metered is at the upstream boundary of the simulation (road kilometer 32). The
metering simulated traffic light at the on-ramp is set up to allow single passes of
vehicles during one green phase, if necessary. To simulate realistic flow profiles, we
have used stationary detector data of an instance of a real jam to feed the simulation.
Instead of using the parameter values of Table 11.2, we have calibrated the IDM
to produce a congestion that is comparable with the observations when no ramp
metering is active (top left image of Fig. 21.4). The speed profile displayed in the top

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Fig. 21.4 Microscopic simulation of the ramp metering capping strategy (for details see the main
text)

right image shows the “best case” that can be realized by optimizing the threshold
flow Qc for this particular case with respect to the total travel time of all vehicles on
the main-road and on the ramp (cf. Sect. 21.7).

The time series in the lower left part of Fig. 21.4 shows the realized travel times
of the main-road vehicles and, if ramp metering is active, the waiting times on the
on-ramp. Obviously, the reduced travel times on the main-road more than compensate
for the additional waiting times due to ramp metering. The lower right diagram of
Fig. 21.4 shows the total number of vehicles on the main-road and on-ramp for a
given time. In this diagram, the objective function “total traffic time” is represented
by the area below the red curve plus the area below the blue curve. Here, it is explicit
that the time saved by the main-road vehicles (area between the thick and thin red
curves) more than compensates the total waiting time (area between the thick and
thin blue curves). We emphasize that, in spite of waiting times by the metering traffic
light, even most ramp vehicles benefit individually from the ramp metering: Except
for a small time interval around 17:00 h, the waiting time is less than the time saved
for covering the main-road section.

Finally, we mention that the practically applied strategies are significantly more
involved than this simple capping strategy. In essence, ramp metering strategies are
nonlinear functions mapping the exogenous variables (e.g., the records of nearby
stationary detectors for the last fifteen minutes, the detector positions, the time of
day, the past states of the traffic light) to the present state (red or green) of the
metering traffic light. In order to prevent follow-up breakdowns and gridlocks in
the secondary network, ramp metering is generally deactivated in oversaturated
situations.
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Fig. 21.5 Screenshot of the “routing game” developed with the open-source traffic simulator
MovSim. The player can reroute the drivers on the right lane of the main-road over a deviation
on the secondary network to prevent a breakdown at the lane-closing bottleneck. Here, the player
adopted a sub-optimal strategy and caused jams on both routes

21.4 Dynamic Routing

One of the most obvious methods to homogenize traffic flow is distributing the traffic
demand more efficiently over the network, also called dynamic routing and load
balancing. Because this strategy may prevent traffic breakdowns by more efficient
road usage, even a detour may lead to a shorter travel time although it would be
longer in normal situations. This can be paraphrased as follows:

Effects of dynamic routing: “Longer is sometimes shorter.”

Traditional infrastructure-centered concepts are based on stationary detectors.
The logic of such systems extracts traffic information from the detector data, esti-
mates optimal routes for the main traffic flow directions, and transmits corresponding
recommendations to the drivers via variable message signs (VMS). At present, alter-
native vehicle-based or mobile dynamic routing concepts in form of traffic-dependent
navigation devices are becoming more and more relevant. Typically, these connected
navigation devices not only receive traffic information but also send their positions
in form of floating-car data in anonymized form to the traffic center of the data
provider. There, the present and near-future traffic state is continuously estimated
and sent back to the devices for a recalculation of the fastest routes. In future hybrid
navigation applications, optimal routes are also (pre-) calculated directly on the
server.

In contrast to forecasting the weather, dynamic routing and short-term traffic
forecasts are plagued by a conceptual difficulty: The prophecy is self-destructing.
The interactive “routing game” (Fig. 21.5) depicts this phenomenon in a situation
where a bottleneck (lane closure) on the main road can be circumnavigated over
the secondary network. The arguably simplest strategy a player can adopt is the
naive and short-sighted greedy algorithm: Select the detour whenever it yields, at
present, the shortest realized travel time. It is easy to see that this strategy, to put
it mildly, is suboptimal. Firstly, the roads of the secondary network are less effi-
cient and traffic jams are unavoidable after some time when adopting this greedy
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Efficient driving behavior

x

Capacity C

e.g. roadworks

Fig. 21.6 Homogenizing the local road capacity profile and reducing the bottleneck strength by
a traffic-adaptive driving style (human driving) or a space-dependent parameterization of the core
acceleration controller of an ACC (semi-automated driving)

strategy. Moreover, as the reader can verify by playing this game on the web,7 the
delay of many minutes between the decision (“main-road or detour”) and its conse-
quences (traffic jams on either route) makes the greedy algorithm inherently unsta-
ble. This may even lead to a worse performance compared to ignoring the detour
altogether.

Since both the penetration rate of connected dynamic navigation devices and the
percentage of drivers following the recommendations are currently low, such routing
instabilities are not yet relevant. Nevertheless, their existence suggests the need to
adopt more refined routing strategies in the near future.

21.5 Efficient Driving Behavior and Adaptive
Cruise Control

In which ways can changes of the (human or semi-automated) driving style influ-
ence traffic flow? To find answers we notice that the most relevant influencing factor
determining the static capacity is the preferred time headway T in car-following sit-
uations (cf. Sect. 4.3). Furthermore, the stability analysis of Chap. 15 shows that an
agile (responsive) driving style increases stability. Indirectly, this increases the capac-
ity once more since an agile driving style tends to reduce the capacity drop (Eq. 17.1),
i.e., it brings the relevant dynamic capacity nearer to its theoretical maximum, the
static capacity.

This suggests that it should be possible to dynamically reduce the “capacity holes”
of bottlenecks by temporarily reducing the time gap T and increasing the agility when
passing a bottleneck (cf. Fig. 21.6). However, in order to ensure that this dynamic
“filling up” of capacity holes does not impair safety, drivers need to be more atten-
tive during the time they drive with reduced time gaps. Consequently, this kind of
traffic flow optimization is most suited when realized by semi-automated driving via
adaptive cruise control (ACC) rather than by the human driver.

By means of microscopic traffic flow simulations, we can investigate the con-
sequences of different human driving styles or ACC settings near bottlenecks.
Simulations of ACC-driven vehicles are expected to be particularly predictive since

7 see: www.movsim.org.

http://dx.doi.org/10.1007/978-3-642-32460-4_4
http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_17
www.movsim.org
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suitable car-following models can directly serve as the core controller of ACC sys-
tems.8

The challenge in setting up an ACC-based driver-assistance system to enhance
traffic flow efficiency consists in combining efficiency with a safe, comfortable, and
understandable driving style (since, otherwise, such systems will not be accepted
and used): While a comfortable and safe driving entails comparatively large time
gaps and low accelerations, increasing traffic flow efficiency and stability involves
reducing time gaps and increasing accelerations.

These contradictory objectives can be handled best when restricting the effective
driving style to situations where this is necessary, e.g., when passing a bottleneck. If
the temporary discomfort associated with the effective driving style helps prevent a
traffic breakdown, then even less comfortable driving situations (stop-and-go traffic)
can be avoided.

Philosophy behind driving efficiently in certain situations:
“Less driving comfort at present can lead to more comfort in the long run.”

When implementing such a traffic-adaptive driving strategy in a semi-automated
way using adaptive cruise control, the parameters of the core acceleration controller
of the ACC systems are changed according to the information about the local traf-
fic situation. Estimating the local traffic state in real-time is a major challenge.
Besides autonomous range detectors to determine the immediate input of the ACC
car-following model, the vehicle must communicate by different channels to obtain
the necessary external information. This includes:

• Infrastructure-to-vehicle (I2V) communication, e.g., stationary detectors broad-
casting their data to equipped vehicles, or traffic lights broadcasting future switch-
ing times.

• Vehicle-to-vehicle (V2V) communication, e.g., equipped vehicles broadcasting
FC data of their past trajectories, or serving as relay to transmit detector or FC
data generated elsewhere).

• Local infrastructure-to-infrastructure communication by means of road-side units.9

• Communications from and to traffic information centers (FCD are transmitted to
the center, and dynamical maps are passed back).

All these options are examples of Intelligent Traffic Systems (ITS). This field is
expected to have a significant impact on traffic flow in the near future.

Realization of a traffic-adaptive driving strategy. As an example, we will now
specify a concrete strategy. This strategy distinguishes five different local traffic

8 The ACC model (Sect. 11.3.8) has actually been implemented into the ACC systems of test cars
to investigate the traffic-adaptive strategy to be described below.
9 Vehicles pass their information via short-range communication to a road-side unit (V2I) which
transmits them to a further road-side unit in the upstream direction (I2I). The latter, in turn, passes
the information back to equipped vehicles (I2V).

http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Table 21.1 Strategy matrix for the Intelligent Driver Model (11.14), the ACC model (11.26) and
related models

Situation λT λa λb Objective

Free traffic 1 1 1 Driving comfort (reference)
Approaching a jam 1 1 0.7 Avoiding rear-end collisions
Jammed traffic 1 1 1 Nothing can be done, so relax
Exiting a jam 0.5 2 1 Increasing the dynamic capacity
Bottleneck 0.7 1.5 1 Proactively preventing a breakdown

The matrix contains multipliers of the default parameters reflecting the reference for a given driver
and vehicle

situations as seen from the vehicle: (i) free traffic, (ii) approaching congested traffic,
(iii) congested traffic, (iv) leaving a congested region, and (v) passing a bottleneck.

In each state, the ACC model is parameterized in view of the major objective in
the respective situation. While driving comfort has priority in free-traffic situations,
a traffic-efficient driving style with not too large gaps is crucial when passing a
bottleneck (whether congested or not) as depicted in Fig. 21.6. When leaving a jam,
an agile driving style reduces the capacity drop thereby increases the throughput
(dynamic capacity) which helps dissolve stationary and moving jams. Notice that
even small relative changes of the characteristics of the traffic flow (such as an
increase of the dynamic capacity by 10 %) may have significant effects since inherent
nonlinearities (traffic breakdown with associated capacity drop or no breakdown)
leverage these changes (cf. Fig. 21.7).

To realize the different driving styles in the ACC system, the underlying ACC
model is parameterized differently for each of the five situations. In order to preserve
the overall driving characteristics set by the driver,10 we formulate strategy changes
differentially by multiplying the default parameters for a given driver and vehicle with
a state-dependent factor. When using the ACC model (11.26) [or the Intelligent Driver
Model (11.14)] as the underlying car-following model, the driving style is encoded
by the parameters T (increasing values reflect decreasing aggressiveness and a more
conservative style), a (increasing values reflect increasing agility/responsiveness),11

and b (increasing values reflect decreasing anticipation/risk awareness). In any case,
the driver sets the speed directly.

In this way, the overall driving strategy, i.e., the adaptation of the driving behavior
to each of the five traffic situations, is encoded by a 5 × 3 strategy matrix as shown
in Table 21.1. The line i of this matrix contains the multipliers λT , λa , and λb of the
parameters T , a, and b, respectively, that apply to situation i . For example, inside a
bottleneck, the displayed strategy reduces the preferred time gaps in car-following
mode to 70 % of the reference for free traffic to “fill” the “capacity hole”. Furthermore,

10 In ACC systems, drivers can not only set the maximum speed but also the time gap in car-following
mode. Some car manufacturers also offer more “sportive” or more comfort-oriented overall settings.
11 This must not be confused with the reaction time which is insignificant in modern ACC systems,
and not contained in the ACC model.

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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Fig. 21.7 Simulation of the jam-reducing effects of a traffic-adaptive driving style according to
the strategy matrix of Table 21.1. The reference simulation (0 % equipped vehicles) has been cali-
brated to reflect an observed congestion on the German highway A8-East near the uphill bottleneck
“Irschenberg” (cf. Fig. 18.1)

this strategy increases the agility to 150 % of the reference value to avoid traffic-flow
instabilities induced by the reduced gaps (cf. Chap. 15).

Figure 21.7 shows a simulation with this strategy matrix for variable percentages
of equipped vehicles (the other vehicles are simulated with all multipliers set to unity).
The result show that even 10 % of vehicles driving with this strategy significantly
reduce the duration and size of the congestion and, as a consequence, the travel times
and the overall fuel consumptions (cf. Sect. 21.7). When running the simulation with

http://dx.doi.org/10.1007/978-3-642-32460-4_18
http://dx.doi.org/10.1007/978-3-642-32460-4_15
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a penetration rate of 20 % equipped vehicles, we observe only a short and insignificant
congestion for the given traffic demand.

In order to assess the global utility of jam reducing measures, we compare the
total difference of travel time and fuel consumption for the whole spatiotemporal
window of this simulation with and without congestion, i.e., the potential which
can be realized by introducing 20 % of equipped vehicles. Compared to free traffic
(penetration rate 20 %), the jam resulting without equipped vehicles increases the
total travel time by about 400 h (more than 50 %) and the total fuel consumption by
1.200 liters (about 15 %). Obviously, the potential in saved travel time is significantly
greater than that of saved fuel.12

We emphasize that there is a statistical pitfall when presenting the results of such
simulations which we call the filtering dilemma: The percentaged savings of any
optimization measure in terms of travel time, fuel, or any other quantity depends on
the considered spatiotemporal reference. For example when considering one year
and the whole road network of a country, the percentaged savings may be minimal
since, most of the time and on most roads, there is no congestion, i.e., there is nothing
to optimize. Besides the potential for semi-automated driving, the simulations also
point to rules for efficient driving which all non-ACC drivers can adopt, and which
can be taught in driving lessons:13

How each of us can contribute to optimize traffic flow:
(i) Do not leave unnecessarily large gaps when passing bottlenecks.
(ii) Adopt an agile driving style when leaving jammed traffic.

21.6 Further Local Traffic Regulations

Besides speed limits, other local regulations can contribute to homogenize and opti-
mize traffic flow. In the following, we will discuss some options for roads with two
or more lanes per driving direction.

Truck overtaking bans. This regulation prevents so-called elephant races, i.e.,
trucks overtaking each other at slow speed differences. If an elephant race takes
place, faster cars accumulate behind the trucks constituting a flow peak which can
serve as trigger for a breakdown (cf. Fig. 18.3). This is particularly relevant in uphill
or downhill sections and if the road has only two lanes per direction.

Regulations on minimum speeds. Like speed limits, such “reverse” speed limits
aim to homogenize traffic flow by reducing speed differences. They are particularly

12 As a general rule, the relative savings in travel time are about three times greater than that of fuel.
13 Of course, safety comes always first, so the time gap should never be lower than a critical
value which is necessary to avoid rear-end collisions (cf. Sect. 4.3). Furthermore, drivers should be
particularly attentive in such situations.

http://dx.doi.org/10.1007/978-3-642-32460-4_18
http://dx.doi.org/10.1007/978-3-642-32460-4_4
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Fig. 21.8 Local ban on changing from the right to the middle (faster) lane upstream of merging
lanes of major interchanges. The length of the changing ban is not to scale (it is longer in reality)

effective on the faster lanes of uphill sections and in combination with conventional
speed limits and truck overtaking bans.

Stay-in-lane recommendations. This measure directly reduces perturbations caused
by lane changes.

Selectively prohibiting lane changes. In certain situations, particularly upstream
of on-ramps from the lane adjacent to the merging region to other lanes, this mea-
sure prevents ineffective usage of the available road space. This regulation requires
sufficiently long on-ramps, so all on-ramp vehicles manage to merge in spite of the
vehicles on the neighboring main-road lane. (cf. Fig. 21.8). As net effect, this mea-
sure makes sure that long acceleration lanes are used in their full length rather than
merging on the first third of the acceleration lane which reduces the effective length
of the merging lane thereby increasing the bottleneck strength.

Zipper merging rule. This regulation applies to regions of mandatory lane changes
near lane closures if traffic is congested. In this situation, drivers on the lane to be
closed must stay on this lane until reaching the location where the lane actually
ends. Then, they merge zipper-like (one vehicle in every gap) to the continuous lane.
This behavior contributes to a more effective usage of the road space. Furthermore,
it minimizes the risk of spill-over gridlocks (see Fig. 21.2), particularly in urban
networks.14

21.7 Objective Functions for Traffic Flow Optimization

21.7.1 Setting up the Frame

Objective functions assess quantitatively whether, and in which way, optimization
measures as discussed above are successful. Since optimization measures often
involve more than one road element, we consider a whole road network and formally

14 As a welcome side effect for the individual driver on lanes to be closed, he or she often passes
several vehicles on the neighboring lanes (in accordance with traffic regulations of most countries)
when this rule is adopted.
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map the cumulated arc-lengths of all links of the networks to the one-dimensional
interval [x1, x2].

Typically, it suffices to consider a single road link to assess the effects of
speed limits. When investigating ramp metering (influencing the main-road and the
on-ramp) or dynamic routing (influencing the main route and the deviation), two
links must be considered as a minimum. More links are necessary depending on the
link definitions in the simulator (e.g., when defining the upstream, merge, and down-
stream regions of the main-road as three separate links), or if side effects cannot be
excluded, e.g., spillovers to other nodes, or gridlocks (cf. Fig. 21.2). In extreme cases,
e.g., when optimizing self-organized switching strategies of traffic lights (which is
not considered here), the region of influence and thus the network to be considered
may consist of all the major roads in a city.

Mathematically, objective functions map the dynamical variables of traffic flow
(e.g., density, local speed, trajectories) of the interesting spatiotemporal region G =
[x1, x2] × [tstart, tend] to a real-valued number F denoting, e.g., the total travel time
or, more generally, a suitable utility.15 Optimizing traffic flow means minimizing
(or maximizing) the objective function.

21.7.2 Constraining Conditions

In order to allow equitable comparisons, we require that the initial conditions and the
traffic-demand profiles of the considered road network are fixed external conditions.
As initial conditions, we specify the locations and speeds of all vehicles in micro-
scopic simulations, or, macroscopically, the initial local density and speed fields. In
the simplest cases when no routing decisions are possible inside the considered net-
work (e.g., when investigating speed limits or ramp metering without side effects),
the traffic demand profile is completely defined by the inflows Qin

i (t) at all sources
(in-flowing boundary conditions) i of the network, assuming steady-state conditions
for the speed. In more complex cases, drivers make routing decisions inside the net-
work, so information on the destination is necessary. We can specify the optimization
problem in this case by disaggregating the inflows according to their destinations
(sinks, exiting nodes of the network) e.g., by prescribing a (generally time depen-
dent) origin-destination matrix Qi j (t) of drivers entering at source i and heading
towards node j . To completely specify the problem for this case, we also specify the
route-choice decision algorithm/heuristic of the drivers when arriving at a node.16

15 Strictly speaking, objective functions map functions (such as the spatiotemporal local speed)
onto a number, so they are, mathematically speaking, functionals rather than functions. Agreeing
with the common usage, we will nevertheless speak of objective “functions”.
16 In the simplest case, the routes are statically prescribed by a succession of nodes {k} with i being
the first and j the last node. When defining route choices dynamically at each node according to
the driver’s subjective impression of the traffic state, things begin to get really complicated.
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Furthermore, we do not allow congestion at any of the spatial and temporal bound-
aries of the region G. Free spatial boundaries guarantee that (i) the simulation is
completely determined by the initial and upstream boundary conditions as given
above,17 (ii) traffic flow inside G is not optimized at costs of the network outside of G.
A jam-free initial state guarantees consistency with the boundary conditions, and pre-
scribing a free final state prevents optimizing traffic inside G at costs of future traffic.

21.7.3 Examples

The mathematical form and the exogenous variables of the objective function reflect
the model category and the aspect of traffic flow (the “objective”) to be optimized.
In the following, we give some examples.

Minimizing the total travel time. In simulations of microscopic models, the total
travel times is simply equal to the number of all vehicles in the network, integrated
over time:

Fτ = 1

T0

tend∫

tstart

∑

{l}
nl(t) dt. (21.3)

Here, nl(t) denotes the number of vehicles on link l, and the sum runs over all links
of the considered network. For a single-objective optimization, the normalization
constant T0 is arbitrary and can be set to unity (then, Fτ denotes the total travel time
directly). For multi-purpose optimizations, T0 serves as weighting factor to define
the relative weight of travel time with respect to other criteria. Then, T0 should have
the unit of a time to make Fτ dimensionless and commensurable with the objective
functions characterizing other criteria.

In a macroscopic simulation, we derive the total travel time from Eq.( 21.3) by
applying the definition of the density “vehicles per road length” resulting in an spatial
integral over the vehicle density:

Fτ = 1

T0

tend∫

tstart

x2∫

x1

ρ(x, t) dx dt. (21.4)

Notice that, by our definition of the spatial coordinate, x runs over all links of the
considered network, so there is no sum over all links l.

Maximizing the driving comfort. The main factors determining the subjective
driving comfort are the acceleration v̇ = dv/dt and its time derivative, the jerk J =
v̈ = d2v/dt2. Roughly speaking, the driving style is smooth, i.e., corresponding to a

17 In case of traffic jams, information flow propagates upstream, so downstream boundary conditions
are needed.
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Fig. 21.9 Visualization of
the driver’s perspective in a
microscopic simulation. The
coffeemeter visualizes the
discomfort due to acceleration
and jerk

high driving comfort, if an uncovered cup of coffee in a cup holder inside the driving
vehicle does not spill over. It is therefore highly intuitive and instructive to visualize
driving comfort (or the lack thereof) by the dynamics of the surface of a cup of coffee.
We may call this instrument the coffeemeter (cf. Fig. 21.9).18

In a microscopic simulation, we can formulate the “discomfort” Fcomf to be
minimized by

Fcomf = 1

T0 a2
0

tend∫

tstart

∑

α

(
v̇2
α + τ 2

0 v̈2
α

)
dt. (21.5)

The sum runs over all vehicles α inside the investigated region. The corresponding
macroscopic formulation

Fcomf = 1

T0 a2
0

tend∫

tstart

x2∫

x1

ρ(x, t)

[
A2(x, t) + τ 2

0

(
∂ A(x, t)

∂t

)2
]

dx dt (21.6)

involves the local acceleration A(x, t) in the comoving system, Eq. (9.1). Obviously,
this macroscopic objective function only makes sense for second-order models. In any
case, the square of the characteristic time τ0 indicates how much the jerk contributes
to the overall discomfort relative to acceleration. Since, in typical driving situations,
longitudinal and lateral accelerations are of the order of 1 m/s2 and jerks are of
the order of 1 m/s3, a characteristic time of 1 s will weigh both influencing factors
evenly. The prefactor 1/a2

0 determines the relative weighting of the driving comfort
with respect to travel time. A value a0 = 1 m/s2 means that cruising without any

18 To simulate the coffeemeter, you do not need to apply the full three-dimensional hydrodynamics
of hot coffee with mixed Dirichlet and free boundary conditions for the cup and the free coffee
surface, respectively. It suffices to phenomenologically model the two orthogonal lowest-order
modes (corresponding to in-phase motions of the whole surface) by a two-dimensional pendulum
driven by the longitudinal and lateral accelerations. The eigenfrequencies are determined by the
cup geometry, and the modes are phenomenologically damped to yield the observed decay of the
oscillations inside the cup (time constant ≈ 5 s).

http://dx.doi.org/10.1007/978-3-642-32460-4_9
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acceleration (situation I), and halving the travel time at the cost of permanently
accelerating and decelerating at |v̇| = 1 m/s2 (situation II) result in the same overall
value of the objective function (disutility).

Alternatively, we can define the driving comfort by the intensity (squared-mean
value of the amplitude) of the surface oscillations of the coffeemeter. This would
lead to a similar expression as Eq. (21.6).

Minimizing total fuel consumptions and CO2 emissions. As a matter of fact,
the objective function for fuel consumption is directly proportional to the total fuel
consumption in the considered spatiotemporal region. Depending on the level of
detail, we can evaluate it with any fuel consumption/emissions model such as that
given in Chap. 20. When calculating consumptions and emissions with the modal
models of Sect. 20.3, we obtain the microscopic objective

Fc = 1

T0 Ċ0

tend∫

tstart

∑

α

Ċα(vα(t), v̇α(t)) dt. (21.7)

In macroscopic simulations, we replace the sum over vehicles by the space integral
over vehicle density, and the vehicle acceleration v̇α by the local acceleration A(x, t)
in the comoving system. This results in

Fc = 1

T0 Ċ0

tend∫

tstart

x2∫

x1

ρ(x, t)Ċ(V (x, t), A(x, t)) dx dt. (21.8)

The constant Ċ0 indicates the relative weighting of fuel consumption with respect
to travel time. For example, a value Ċ0 = 10 L/h means that losing one hour of time
has the same disutility as consuming ten additional liters of fuel.

Multi-objective optimization. For a multi-objective optimization, we sum the objec-
tive functions for the individual criteria:

F = Fτ + Fcomf + Fc . (21.9)

The priorities and relative weightings are specified by the parameters a2
0 , τ 2

0 , and Ċ0.
In principle, nothing changes when setting T0 = 1. After all, 1/T0 appears as common
factor in all components of the objective function F . However, setting T0 equal
to the total travel time of the system before optimization allows us to compare the
optimization potential of different situations with different spatiotemporal regions G.
In this case, F is dimensionless and assumes values of the order of unity, regardless
of G.

Mathematically, the task of minimizing F is similar to calibrating traffic flow mod-
els (estimating their parameters) by minimizing a function indicating the differences
between observations and simulation with respect to the parameters (cf. Chap. 16).

http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_16
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In both cases, we have to solve the mathematical problem of multi-dimensional non-
linear optimization. Since a single calculation of F generally implies a complete
simulation run, the objective function is expensive to calculate and not differen-
tiable analytically. Furthermore, due to the inherent nonlinearities of traffic flow
dynamics, including deterministic chaos,19 the “landscape” of the objective function
is generally very jagged and contains many secondary local minima. As a conse-
quence, simulation-based traffic flow optimization implies the use of fast and robust
numerical optimization methods (cf. Sect. 16.3).
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Solutions to the Problems

Problems of Chapter 2

2.1 Floating-Car Data
GPS data provide space-time data points and (anonymized) IDs of the equipped
vehicles. We can obtain their trajectories by connecting the data points in a space-
time diagram (via a map-matching process). From the trajectories, we can infer the
speed by taking the gradients. Low speeds on a highway or freeway, e.g., 30 km/h,
usually indicate a traffic jam. Since the data provide spatiotemporal positions of the
vehicles, we can deduce the location of congested zones, including their upstream
and downstream boundaries, at least, if the penetration rate of equipped vehicles
with activated communication is sufficiently high.1 However, GPS measurements
are only accurate to the order of 10 m and careful map-matching/error checking is
necessary to exclude, for example, stopped vehicles on the shoulder or at a rest area,
or vehicles on a parallel road. Moreover, due to this resolution limit, GPS data do
not reveal lane information, nor information on lane changes. Since the percentage
of equipped vehicles with connected devices is low, variable, and unknown, we can
not deduce extensive quantities (traffic density and flow) from this type of data.

To wrap it up: (1) yes; (2) no; (3) no; (4) no; (5) yes; (6) yes.

2.2 Analysis of Empirical Trajectory Data
1. Flow, density, and speed: Using the spatiotemporal region [10 s, 30 s] ×
[20 m, 80 m] suggested for a representative free-flow situation, we obtain by tra-
jectory counting:

1 On major roads with high traffic flow, 0.5 % of the vehicles are typically enough; on smaller roads,
we need a significantly higher percentage.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 423
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Qfree = 11 vehicles

20 s
= 1,980 vehicles/h, ρfree = 3 vehicles

60 m
= 60 vehicles/km.

The speed can be deduced either from the gradient of the trajectories or from the
hydrodynamic relation Q/ρ:

V gradient
free = 60 m

5 s
= 43.2 km/h, V hyd

free = Qfree

ρfree
= 39.6 km/h.

This discrepancy is tolerable in view of the reading accuracy (one may also count
12 vehicles in 20 s, yielding Q = 2,160 vehicles/h and thus ρ = 43.2 km/h). For
congested traffic, we use, again, the suggested spatiotemporal region [50 s, 60 s] ×
[40 m, 100 m] and obtain analogously

Qcong = 2 vehicles

10 s
= 720 vehicles/h, ρcong = 6 vehicles

60 m
= 1,000 vehicles/km,

V hyd
cong = Qcong

ρcong
= 7.2 km/h.

2. Propagation velocity: The stop-and-go wave can be identified by the spatiotempo-
ral region with nearly horizontal trajectories. First, we observe that, in the diagram,
the gradient of the (essentially parallel) upstream and downstream wave boundaries
are negative, i.e., the wave propagates against the direction of traffic. To determine
the propagation velocity, we estimate from the diagram

c ≈ − 140 m

(60 − 33) s
= −5.2 m/s = −19 km/h.

3. Travel time increase: Without being obstructed by the traffic wave, the considered
vehicle entering at t = 50 s into the investigated road section (x = 0) would leave
the section (x = L = 200 m) after about 16 s. This can be deduced either by linearly
extrapolating the first seconds of the trajectory, or by the quotient L/Vfree. The actual
vehicle leaves the investigated region at t = 86 s. Thus, the delay imposed by this
traffic wave on the vehicle is 20 s.

4. Lane-changing rate: By counting all lane changes entering and leaving the con-
sidered lane in the spatiotemporal region [0 s, 80 s] × [0 m, 140 m], i.e., trajectories
beginning or ending inside this region,2 we obtain the lane-changing rate by

r ≈ 6 changes

80 s 140 m
= 0.00054

changes

m s
≈ 1,900

changes

km h
.

2 Outside this region, a positive bias is unavoidable because real lane changes cannot be distinguished
from the begin/end of recorded trajectories.
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2.3 Trajectory Data of “Obstructed” Traffic Flow

1. The trajectory data shows a queue at a traffic light. The horizontal bar marks the
position of the traffic light and the duration of the red light phase.

2. Flow Qin = 5 trajectories per 20 s = 0.25 vehicles/s = 900 vehicles/h.
3. Following the trajectory which starts at x = − 80 m, t = − 16 s and which ends

at (x, t)= (80 m, 0 s), we get the speed

vin = 160 m

16 s
= 10 m/s = 36 km/h.

The density is read off the diagram as one trajectory per 40 m or is calculated
using ρ = Q/v. Either way yields ρ = 25 vehicles/km.

4. Density in the congested area: 8 horizontal trajectories per 40 m ⇒ ρjam = 200
vehicles/km.

5. Outflow after the red light turns green: The best way is to count the number of
lines within a 20 s interval above the blue dots marking the end of the acceleration
phase, giving 10 lines per 20 s and thus Qout = 0.5 vehicles/s = 1 800 vehicles/h.
The speed is the same as in free traffic (the trajectories are parallel to those
further upstream), i.e., V = 36 km/h. The density is obtained again by count-
ing trajectories (two lines per 40 m) or via the hydrodynamic relation, yielding
ρ = 50 vehicles/km.

6. Propagation velocities of the fronts can be read off the chart as the gradient of the
front lines (marked by the dots) or using the continuity equation (cf. Chap. 7):

free → congested: vup
g = ΔQ

Δρ
= −900 vehicles/h

175 vehicles/km
= −5.17 km/h,

congested → free: vdown
g = ΔQ

Δρ
= 1,800 vehicles/h

−150 vehicles/km
= −12 km/h.

7. Without the red light the vehicle entering at x = − 80 m and t = 20 s would
have reached the “end” (upper border) of the diagram (x = 100 m) at tend = 38 s.
De facto, it arrives at x = 100 m at time t = 69 s, thus delayed by 31 s.

8. The braking distance is sb = 25 m, while the distance covered during the acceler-
ation phase is sa = 50 m. Thus

b = v2

2sb
= 2 m/s2, a = v2

2sa
= 1 m/s2.

Alternatively, we can calculate the braking distance using the definition of the
acceleration and the duration Δt of the acceleration/deceleration:

b = −Δv

Δt
= −−10 m/s

10 s
= 2 m/s2, a = Δv

Δt
= 10 m/s

10 s
= 1 m/s2.

http://dx.doi.org/10.1007/978-3-642-32460-4_7
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Problems of Chapter 3

3.1 Data Aggregation at a Cross-Section
1. Flow and speed: With an aggregation interval Δt = 30 s and n1 = 6, n2 = 4 mea-
sured vehicles on lanes 1 and 2, respectively, the flow and time mean speed on the
two lanes are

Q1 = n1

Δt
= 0.2 vehicles/s = 720 vehicles/h,

Q2 = n2

Δt
= 0.133 vehicles/s = 480 vehicles/h,

V1 = 1

n1

∑

α

v1α = 25.8 m/s, V2 = 1

n2

∑

α

v2α = 34.0 m/s.

2. Density: When assuming zero correlations between speeds and time headways,
the covariance Cov(vα,Δtα) = 0. With Eq. (3.20), this means that calculating the
true (spatial) densities by Q/V using the arithmetic (time) mean speed gives no
bias:

ρ1 = Q1

V1
= 7.74 vehicles/km, ρ2 = Q2

V2
= 3.92 vehicles/km.

3. Both lanes combined: Density and flow are extensive quantities increasing with
the number of vehicles. Therefore, building the total quantities by simple summation
over the lanes makes sense:

ρtot = ρ1 + ρ2 = 11.66 vehicles/km, Qtot = Q1 + Q2 = 1,200 vehicles/h.

Since speed is an intensive quantity (it does not increase with the vehicle number),
summation over lanes makes no sense. Instead, we define the effective aggregated
speed by requiring the hydrodynamic relation to be valid for total flow and total
density as well:

V = Qtot

ρtot
= ρ1V1 + ρ2V2

ρtot
= Qtot

Q1/V1 + Q2/V2
= 28.5 m/s = 102.9 km/h.

By its derivation from the hydrodynamic relation, this effective speed is the space
mean speed rather than the time mean speed measured directly by the detectors.
We notice that the effective speed is simultaneously the arithmetic mean weighted
with the densities, and the harmonic mean weighted with the flows. However, the
weighting with the densities requires that the density estimates itself are known
without bias. This is the case here but not generally. Since flows can always be
estimated without systematic errors from stationary detectors, the harmonic mean
weighted with the flows is preferable.

http://dx.doi.org/10.1007/978-3-642-32460-4_3
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4. Fraction of trucks: Two out of six (33 %) are in the right lane, none in the left,
two out of ten (20 %) total. Notice again that the given percentages are the fraction
of trucks passing a fixed location (time mean). In the same situation, we expect the
fraction of trucks observed by a “snapshot” of a road section at a fixed time (space
mean). To be higher, at least if trucks are generally slower than cars

3.2 Determining Macroscopic Quantities from Single-Vehicle Data
The distance headway Δxα = 60 m is constant on both lanes. All vehicles are of the
same length l = 5 m and all vehicles on a given lane l (left) or r (right) have the
same speed vl

α = 144 km/h = 40 m/s and vr
α = 72 km/h = 20 m/s, respectively.

1. Time gap / headway: The headways Δtα = Δxα/vα are

Δt l
α = 60 m

40 m/s
= 1.5 s, Δt r

α = 60 m

20 m/s
= 3.0 s.

The time gaps Tα are equal to the headway minus the time needed to cover a distance
equal to the length of the leading vehicle, Tα = Δtα − lα−1

vα−1
. Since all vehicle lengths

are equal, this results in

T l
α = 60 m − 5 m

40 m/s
= 1.375 s, T r

α = 60 m − 5 m

20 m/s
= 2.75 s.

2. Macroscopic quantities: We assume an aggregation time interval Δt = 60 s. How-
ever, due to the stationary situation considered here, any other aggregation interval
will lead to the same results. Directly from the definitions of flow, occupancy, and
time-mean speed, we obtain for each lane

Ql = 1

Δt l
α

= 1

1.5 s
= 2,400 vehicles/h, Qr = 1

Δt r
α

= 1

3 s
= 1,200 vehicles/h.

O l = 0.125

1.5
= 0.083 = 8.3 %, O r =0.25

3.0
= 0.083 = 8.3 %.

V l = 144 km/h, V r =72 km/h.

Due to the homogeneous traffic situation, the arithmetic and harmonic time-mean
speed are the same and directly given by the speed of the individual vehicles.

Totals and averages of both lanes: As already discussed in Problem 3.1 summing
over the lanes to obtain a total quantity makes only sense for extensive quantities
(Q, ρ) but not for the intensive ones (V , O).
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Flow:

Qtot = ΔN

Δt
= ΔN l + ΔN r

Δt
= 3,600 vehicles/h, Q = Qtot

2
= 1,800 vehicles/h.

Occupancy:
O = O l = O r = 0.083.

Arithmetic time mean speed:

V = 1

ΔN

∑

α

vα = 40 · 40 m/s + 20 · 20 m/s

60
= 120 km/h.

Harmonic time mean speed:

VH = ΔN∑
1/vα

= 60
40

40 m/s + 20
20 m/s

= 108 km/h.

We observe that the arithmetic mean is larger than the harmonic mean.

Which mean? In traffic flow, there are four sensible ways to average, consisting of
the four combinations of (i) one of two physical ways (time mean and space mean),
(ii) one of two mathematical ways (arithmetic and harmonic).

• Time mean means averaging at a fixed location over some time interval as done
by stationary detectors.

• Space mean means averaging at a fixed time over some space interval (road
section), e.g., when making a snapshot of the traffic flow.

For the space mean, we have (cf. the previous problem)

V = ρ1V1 + ρ2V2

ρtot
= Qtot

Q1/V1 + Q2/V2

while, for the time mean, we simply have

V = Q1V1 + Q2V2

Qtot
.

The time mean is generally larger than the space mean because, at the same partial
densities, the class of faster vehicles passes the cross-section more often within the
aggregation interval than the vehicles of the slower class do. The arithmetic average
is generally larger than the harmonic average which can be shown for any data. Only
for the trivial case of identical data, both averages agree.

Here, ρ1 = ρ2 but Q1 �= Q2, so the simple (not weighted) arithmetic average
over lanes applies for the space mean speed.
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3. Speed variance between lanes: Because of identical speeds on either lane, the total
variance of the speeds in the left and right lane is the same as the inter-lane variance
sought after:

σ 2
V =

〈
(vα − 〈vα〉)2

〉

= 1

60

(
40[40 − 33.3]2 + 20[20 − 33.3]2

)

= 88.9 m2/s2.

4. Total speed variance: We divide the speed variance

σ 2
V = 1

N

∑

α

(vα − V )2

into two sums over the left and right lane, respectively:

σ 2
V = 1

N

⎡

⎣
N1∑

α1=1

(
vα1 − V

)2 +
N2∑

α2=1

(
vα2 − V

)2
⎤

⎦ .

Now we expand the two squares:

(vα1 −V )2 = (vα1 −V1+V1−V )2 = (vα1 −V1)
2+2(vα1 −V1)(V1−V )+(V1−V )2,

where V1 is the average over lane 1. We proceed analogously for (vα2 −V )2. Inserting
this into the expression for σ 2

V and recognizing that

∑

α1

(vα1 − V1)(V1 − V ) = 0,
∑

α2

(vα2 − V2)(V2 − V ) = 0

and

σ 2
V1

= 1

N1

N1∑

α1=1

(vα1 − V1)
2

and similarly for σ 2
V2

, we obtain

σ 2
V = N1

N

[
σ 2

V1
+ (V1 − V )2

]
+ N2

N

[
σ 2

V2
+ (V2 − V )2

]
.

With p1 = N1/N and p2 = N2/N = 1 − p1, we get the formula of the problem
statement. If p1 = p2 = 1/2 we have V = (V1 + V2)/2 and thus

σ 2
V = 1

2

[
σ 2

V1
+ σ 2

V2

]
+ (V1 − V2)

2

4
.
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Notice that this mathematical relation can be applied to both space mean and time
mean averages.

Problems of Chapter 4

4.1 Analytical Fundamental Diagram
We have to distinguish between free and congested traffic.

Free traffic:
V free(ρ) = V0 = const.

Flow by using the hydrodynamic relation:

Qfree(ρ) = ρV free(ρ) = ρV0.

Congested traffic: The speed-dependent equilibrium gap between vehicles, s(v) =
s0 + vT , leads to the gap-dependent equilibrium speed V cong(s):

V cong(s) = s − s0

T
.

Using the definition of the density ρ, we replace the gap s:

ρ = number of vehicles

road length

= one vehicle

one distance headway (front-to-front distance)

= 1

vehicle length + gap (bumper-to-bumper distance)
= 1

l + s
.

Thus s(ρ) = 1
ρ

− l and therefore

V cong(ρ) = s − s0

T
= 1

T

[
1

ρ
− (l + s0)

]
.

The flow-density relation is obtained again by the hydrodynamic relation:

Qcong(ρ) = ρV cong(ρ) = 1

T
[1 − ρ(l + s0)] .
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The sum leff = l + s0 of vehicle length and minimum gap can be interpreted as an
effective vehicle length (typically 7 m in city traffic, somewhat more on highways).
Accordingly, the maximum density is

ρmax = 1

l + s0
= 1

leff
.

To obtain the critical density ρC separating free and congested traffic, we determine
the point where the free and congested branches of the fundamental diagram intersect:

Qcong(ρ) = Qfree(ρ) ⇒ ρV0T = 1 − ρ(l + s0) ⇒ ρC = 1

V0T + leff
.

This is the “tip” of the triangular fundamental diagram, and the corresponding flow
is the capacity C (the maximum possible flow):

C = Qcong(ρC) = Qfree(ρC) = 1

T

(
1

1 + leff
V0T

)
. (2.1)

The capacity C is of the order of (yet always less than) the inverse time gap T . The
lower the free speed V0, the more pronounced the discrepancy between the “ideal”
capacity 1/T and the actual value.

Given the numeric values stated in the problem, we obtain the following values
for ρmax, ρC, and C :

ρmax = 143 vehicles/km, ρC = 16.6 vehicles/km,

C = 0.552 vehicles/s = 1,990 vehicles/h.

4.2 Flow-Density Diagram of Empirical Data
The free velocity can be read off the speed-density diagram (at low densities):

V free
A8 = 125 km/h, V free

A9 = 110 km/h.

(Dutch police is very rigorous in enforcing speed limits and uses automated systems
to do so. This explains why few people drive faster than 110 km/h.)

The flow-density diagram immediately shows the maximum density (the density
where the flow data drop to zero at the right-hand side) and the capacity (maximum
flow):

ρmax
A8 = 80 vehicles/km, ρmax

A9 = 110 vehicles/km,

CA8 = 1,700 vehicles/h, CA9 = 2,400 vehicles/h.
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The headways can be calculated by solving the capacity equation (2.1) for T ,

T = 1 − leffC
V0

C
= 1 − C

V0ρmax

C
,

and thus
TA8 = 1.91 s, TA9 = 1.27 s.

One cautionary note is in order: If the data of the scatter plots are derived from
arithmetic time mean speeds via the relation ρ = Q/V (as it is the case here), the
density of congested traffic flow, and in the consequence T , will be underestimated. To
a lesser extent, this also applies to harmonic averages (cf. Fig. 4.10). In the Sects. 8.5.3
and 16.3, we will learn about more robust estimation methods based on propagation
velocities.

Problems of Chapter 5

5.1 Reconstruction of the Traffic Situation Around an Accident
Part 1: In the space-time diagram below, thin dashed green lines mark confirmed
free traffic while all other information is visualized using thicker lines and different
colors. The respective information is denoted in the key. The signal “zero flow”
means “I do not know; either empty road or stopped traffic”.
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Part 2: The information of the first floating car (FC1) tells us the speed in free traffic,
Vfree = 10 km/5min = 120 km/h. From the second floating car (FC2) we know that
an upstream jam front passes x = 5 km at 4:19 pm.

The stationary detectors D1 at x = 4 km and D2 at 8 km both report zero flows
in a certain time interval but this does not tell apart whether the road is maximally
congested or empty. However, we additionally know by the two mobile phone calls
that the road is fully congested at 5 km while it is empty at 7 km. The congestion at
5 km is also consistent with the trajectory of the second floating car. Since down-
stream jam fronts (transition jam → free traffic) are either stationary or propagate
upstream at velocity c ≈ −15 km/h but never downstream (apart from the special
case of a moving bottleneck), we know that the missing vehicle counts of D1 are the
consequence of standing traffic while that of D2 reflect an empty road (at least when
ignoring the possibility that there might be another obstruction more downstream
causing a second jam).

With this information, we can estimate the motion of the upstream jam front.
Assuming a constant propagation velocity cup, we determine this velocity from the
spatiotemporal points where detector D1 and the second floating car encounter con-
gestion, respectively:

cup = −1 km

6 min
= −10 km/h.

The motion of this front is another strong evidence that D2 does not measure a
transition from free to fully congested traffic but from free traffic to no traffic at
all at x = 8 km and t = 4:14 pm: Otherwise, the propagation velocity cup would
be −4 km/5 min = −48 km/h in this region which is not possible even if we do not
require cup to be constant: The largest possible negative velocity cup, realized under
conditions of maximum inflow against a full road block, is only insignificantly larger
in magnitude than |cdown| ≈ 15 km/h.

Now we have enough information to determine location and time of the initial
road block (accident). Intersecting the line

xup(t) = 4 km + cupt − 25 min = 4 km − t − 25 min

6
km/min

characterizing the upstream front with the trajectory xlast(t) of the last vehicle that
made it past the accident location,

xlast(t) = 8 km + v0(t − 14 min) = 8 km + (t − 14 min) 2 km/min

yields location and time of the road block:

xcrash = 6 km, tcrash = 4:13 pm.

Part 3: After the accident site is cleared, the initially stationary downstream jam
front (fixed at the accident site) starts moving at the characteristic velocity cdown =
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−15 km/h = −1 km/4 min. Since the detector at x = 4 km (D1) detects non-zero
traffic flow from 4:58 pm onwards, the front is described by

xdown(t) = 4 km + cdown(t − 58 min).

Obviously, the accident location (xcrash = 6 km) is cleared exactly at the time
where the moving downstream jam front crosses the accident site (cf. the figure),
i.e., at tclear = 4:50 pm.
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5.2 Dealing with Inconsistent Information
Using equal weights, V = 1

2 (V1 + V2), the error variance is

σ 2
V = 1

4

(
σ 2

1 + σ 2
2

)
= 1

4

(
σ 2

1 + 4σ 2
1

)
= 5

4
σ 2

1 ,

assuming negligible systematic errors and independent random errors. Consequently,
the error increases by a factor of

√
5/4 due to the inclusion of the noisy floating-car

data. Using optimal weights,

Vopt = 1

5
(4V1 + V2),

yields the error variance

(σ 2
V )opt = 1

25

(
16σ 2

1 + σ 2
2

)
= 1

25

(
16σ 2

1 + 4σ 2
1

)
= 4

5
σ 2

1 .
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This means, adding floating-car data with a small weight to the stationary detector
data reduces the uncertainty by a factor of down to

√
4/5, in spite of the fourfold

variance of the floating-car data compared to the stationary detector data.

Problems of Chapter 6

6.1 Speed Limit on the German Autobahn?
The safety aspect of speed limits cannot be modeled or simulated by traffic-flow
models simply because these models are calibrated to normal situations (including
traffic jams). However, accidents are typically the consequence of a series of unfor-
tunate circumstances and extraordinary driving behavior which is not included in the
models. In contrast, the effect on fuel consumption can be modeled and simulated
reliably by combining microscopic or macroscopic traffic flow models with the cor-
responding models for fuel consumption or emissions, cf. Chap. 20. To assess the
economic effect of speed limits, including social welfare or changed traffic patterns,
one needs models for traffic demand and route choice, i.e., models of the domain of
transportation planning. Traffic flow models are suited, however, to investigate cer-
tain environmental and societal aspects on a smaller scale. For example, traffic flow
models in connection with consumption/emission models describe the direct effect
of speed limits on emissions. Furthermore, since speed limits change the propensity
for traffic breakdowns and traffic flow/emission models can describe this influence
as well as the changed emissions in the jammed state, these models also describe the
indirect effect via traffic breakdowns.

Problems of Chapter 7

7.1 Flow-Density-Speed Relations
We require

Qtot =
∑

i

Qi =
∑

i

ρi Vi = ρtotV

which we can fulfil by suitably defining the effective average V of the local speed
across all lanes. Solving this condition for V directly gives

V =
∑

i

ρi

ρtot
Vi =

∑

i

wi Vi ,

i.e., the definition (7.6) of the main text.

http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_7
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7.2 Conservation of Vehicles
In a closed ring road, the vehicle number n(t) is the integral of the total vehicle density
ρtot = I (x)ρ over the complete circumference of the ring. Applying Eq. (7.15) for
νrmp = 0 and the hydrodynamic relation ρV = Q, we obtain for the rate of change
of the vehicle number

dn

dt
= −

∮ (
I (x)

∂ Q(x, t)

∂x
+ Q(x, t)

dI

dx

)
dx = −

∮
∂(I (x)Q(x, t))

∂x
dx = I Q|xe

xa
.

If the road is closed, we have xe = xa, so dn
dt = 0 and the total vehicle number n

does not change over time.

7.3 Continuity Equation I
(i) The continuity equation for x < 0 or x > L = 300 m, i.e., outside of the merging
region, has no source terms and reads

∂ρ

∂t
+ ∂ Q

∂x
= 0.

In the merging region 0 ≤ x ≤ L , we have an additional source term νrmp(x, t) that
generally depends on space and time:

∂ρ

∂t
+ ∂ Q

∂x
= νrmp(x, t).

Now we assume that νrmp is constant with respect to x over the merging region L . In
view of the definition of ν, this means that the differential merging rate on a small
segment of the merging lane, divided by the number of main-road lanes, is constant.
We obtain the connection between the ramp flow Qrmp and νrmp by integrating ν over
the merging region and requiring that the result is equal to the ramp flow (if there
are several ramp lanes, the total ramp flow) divided by the number I of main-road
lanes. Thus,

Qrmp

I
=

L∫

0

νrmp dx = νrmp

L∫

0

dx = νrmp L ,

so

νrmp = Qrmp

I L
= 1

2

600 vehicles/h

300 m
= 1 vehicle/m/hour.

(ii) It is easy to generalize the source term νrmp(x) to inhomogeneous differential
merging rates. In the most general case, we prescribe a distribution function of the
merging points3 over the length of the merging lane by its probability density f (x):

3 Later on, when we explicitly model lane changes by microscopic models, we will assume instan-
taneous lane changes, so the merging point is well-defined. For real continuous changes, one can

http://dx.doi.org/10.1007/978-3-642-32460-4_7
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νrmp(x, t) = Qrmp(t)

I
f (x).

For case (i) (constant differential changing rates),

funiform(x) =
{

1/L if 0 ≤ x ≤ L ,

0 otherwise,

i.e., the merging points are uniformly distributed over the interval [0, L]. To model
drivers who, in their majority, merge in the first half of the length of the merging
lane, we prescribe a distribution f (x) which takes on higher values at the beginning
than near the end of the lane, e.g., the triangular distribution

fearly(x) =
{ 2(L−x)

L2 if 0 ≤ x ≤ L ,

0 otherwise.

If we want to describe a behavior where drivers change to the main road near the
end (which applies for some situations of congested traffic, we mirror fearly(x) at
x = L/2 to arrive at

flate(x) =
{ 2x

L2 if 0 ≤ x ≤ L ,

0 otherwise.

Remark A temporal dependency is modeled directly by a time-dependent ramp flow
Qrmp(t).

7.4 Continuity Equation II
A stationary traffic flow is characterized by zero partial time derivatives, particularly,

∂ρ(x, t)

∂t
= 0,

∂ Q(x, t)

∂t
= 0.

This simplifies the continuity equation (7.15) for the effective (lane-averaged) flow
and density for the most general case including ramps and variable lane numbers to

dQ

dx
= − Q(x)

I (x)

dI

dx
+ νrmp(x). (2.2)

By the condition of stationarity, the partial differential equation (7.15) for ρ(x, t)
and Q(x, t) with the independent variables x and t changes to an ordinary differential

define x to be the first location where a vehicle crosses the road marks separating the on-ramp from
the adjacent main-road lane.

http://dx.doi.org/10.1007/978-3-642-32460-4_7
http://dx.doi.org/10.1007/978-3-642-32460-4_7
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equation (ODE) for Q as a function of x . Stationarity also implies that the traffic
inflow at the upstream boundary is constant, Q(x = 0, t) = Q0.

(i) We can solve the ODE (2.2) for νrmp = 0 by the standard method of separating
the variables:

dQ

Q
= −dI

I

dx

dx
= −dI

I
.

Indefinite integration of both sides with respect to the corresponding variable yields
ln Q = − ln I + C̃ with the integration constant C̃ . Applying the exponentiation on
both sides results in

Q(x) = C

I (x)

where C = exp(C̃). The new integration constant is fixed by the spatial initial
conditions C = I (x = 0)Q(x = 0) = I0 Q0 where I0 is the number of lanes at
x = 0. This also determines the spatial dependency of the flow:

Q(x) = I0 Q0

I (x)
. (2.3)

Notice that this is consistent with the stationarity condition Qtot = I (x)Q(x) =
I0 Q0 = const.
(ii) To describe an on-ramp or off-ramp merging to or diverging from a main-road
with I lanes with a constant differential rate, we set

νrmp = Qrmp

I L
= const,

where Qrmp < 0 for off-ramps. Applying the condition of stationarity to the conti-
nuity equation (7.15) assuming a constant number I of lanes results in the ODE

dQ

dx
=
{

νrmp parallel to merging/diverging lanes,
0 otherwise,

with prescribed and constant Q(x = 0) = Q0 = Qtot/I at the upstream boundary.
In our problem with an off-ramp upstream of an on-ramp (which is the normal
configuration at an interchange), we have

dQ

dx
=
⎧
⎨

⎩

−Qoff/(I Loff) if 300 m ≤ x < 500 m,

Qon/(I Lon) if 700 m ≤ x < 100 m,

0 otherwise.

where Loff = 200 m, and Lon = 300 m. We calculate the solution to this ODE by
simple integration:

http://dx.doi.org/10.1007/978-3-642-32460-4_7
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Q(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q0 if x < 300 m,

Q0 − Qoff(x − 300 m)/(I Loff) if 300 m ≤ x < 500 m,

Q0 − Qoff/I if 500 m ≤ x < 700 m,

Q0 − Qoff/I + Qon(x − 700 m)/(I Lon) if 700 m ≤ x < 1,000 m,

Q0 + (Qon − Qoff)/I if x ≥ 1,000 m.

7.5 Continuity Equation III
The highway initially has I0 = 3 lanes, and a lane drop to 2 lanes over the effective
length L:

I (x) =
⎧
⎨

⎩

3 x < 0,(
3 − x

L

)
0 ≤ x ≤ L ,

2 x > L .

Since the traffic demand (inflow) is constant, Qin = Qtot(0) = 3,600 vehicles/h, and
there is no other explicit time dependence in the system, the traffic flow equilibrates
to the stationary situation characterized by ∂

∂t = 0:

dQ

dx
= − Q(x)

I (x)

dI

dx
.

1. The solution for the section with a variable lane number reads [cf. Eq. (2.3)]:

Q(x) = I0 Q0

I (x)
= Qtot

I (x)
.

Upstream and downstream of the lane drop, we have I (x) = const., i.e.,

Q(x) = Qtot

I
.

In summary, this results in

Q(x) =

⎧
⎪⎨

⎪⎩

Qtot/3 x < 0,
Qtot

3− x
L ,

0 ≤ x ≤ L

Qtot/2 x > L .

Furthermore, the hydrodynamic relation Q = ρV with V = 108 km/h gives the
density

ρ(x) = Q

V
=
⎧
⎨

⎩

11.11 /km x < 0,
33.33
3− x

L

1
km 0 ≤ x ≤ L ,

16.67 /km x > L .
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2. We insert the relation I (x) = 3 − x/L and d I/dx = −1/L for the lane drop and
Q(x) = Qtot/(3 − x/L) for the flow into the right-hand side of Eq. (2.2):

dQ

dx
= − Qtot

I 2(x)

∂ I

∂x
= Qtot

L
(
3 − x

L

)2 .

The right-hand side can be identified with the searched-for effective ramp term:

νeff
rmp = Qtot

L
(
3 − x

L

)2 .

We determine the effective ramp flow corresponding to νeff
rmp(x) from the point of

view of the two remaining through lanes:

Qeff
rmp = 2

L∫

0

νeff
rmp dx = 2Qtot

L

L∫

0

dx
(
3 − x

L

)2 = 2Qtot

L

(
1

3 − x
L

)∣∣∣∣
L

0

= Qtot

3
= 1,200 vehicles/h/lane.

Here, we used the indefinite integral

∫
dx

(
3 − x

L

)2 = L

3 − x
L

.

7.6 Continuity Equation for Coupled Maps
Assuming the steady-state condition, ρk(t + Δt) = ρk(t) for all road cells k, we
obtain from Eq. (7.16)

0 = Qup
k

(
1 + Iup − Idown

Idown

)
− Qdown

k + Qk,rmp

Idown

= Qup
k

Iup

Idown
− Qdown

k + Qk,rmp

Idown

and, after multiplying with Idown,

0 = Qup
k Iup − Qdown

k Idown + Qk,rmp

which is the flow balance given in the problem statement. This balance means that, in
steady-state conditions, the ramp flow is equal to the total outflow Qdown

k Idown from
a cell minus the total inflow Qup

k Iup which is consistent with vehicle conservation.

http://dx.doi.org/10.1007/978-3-642-32460-4_7
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7.7 Parabolic Fundamental Diagram
For the fundamental diagram

Q(ρ) = ρV (ρ) = ρV0

(
1 − ρ

ρmax

)
,

the maximum flow (capacity per lane) Qmax is at a density ρC. We determine ρC, as
usual, by setting the gradient Q′(ρ) equal to zero:

Q′(ρC) = V0 − 2
V0ρC

ρmax
= 0 ⇒ ρC = 1

2
ρmax.

Hence

Qmax = Q(ρC) = ρmaxV0

4
.

Problems of Chapter 8

8.1 Propagation Velocity of a Shock Wave Free → Congested
The triangular fundamental diagram is semi-concave, i.e., the second derivative
Q′′

e (ρ) is non-positive, and the first derivative Q′
e(ρ) is monotonously decreasing.

This means, any straight line connecting two points on the fundamental diagram
always lies below or, at most, on the fundamental diagram Qe(ρ). Consequently, the
slope c12 = (Q2 − Q1)/(ρ2 − ρ1) of this line cannot be greater than Q′(0) = V0
and not less than Q′(ρmax) = c proving the statement. Since this argumentation only
relies on the semi-concavity of the fundamental diagram, it can also be applied to
the parabolic fundamental diagram of Problem 7.7 leading to c12 ∈ [−V0, V0].
8.2 Driver Interactions in Free Traffic
There are not any in this model. If there were interactions, the followers would react
to the leaders, so the information of the shock wave would propagate at a lower
velocity than the vehicle speed, contrary to the fact.

8.3 Dissolving Queues at a Traffic Light
When the traffic light turns green, the traffic flow passes the traffic light in the
maximum-flow state. For the triangular fundamental diagram, the speed at the
maximum-flow state is equal to the desired speed and the transition from the waiting
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queue (density ρmax) to the maximum-flow state propagates backwards at a velocity
c = −leff/T corresponding to the congested slope of the fundamental diagram. In
the microscopic picture, every follower starts a time interval T later than its leader
and instantaneously accelerates to V0 (Fig. 8.12). This suggests to interpret T as the
reaction time of each driver, so |c| is simply the distance between two queued vehicles
divided by the reaction time.

We emphasize, however, that the LWR model does not contain any reaction time.
Moreover, the above microscopic interpretation no longer holds for LWR models with
other fundamental diagrams. Therefore, another interpretation is more to the point. As
above, the driver instantaneously starts from zero to V0 which follows directly from
the sharp macroscopic shock fronts. However, the drivers only start their “rocket-
like” acceleration when there is enough time headway at V0. Thus, |c| is the distance
between two queued vehicles divided by the desired time gap T in car-following
mode. Similar considerations apply for concave fundamental diagrams (such as the
parabola-shaped of Problem 7.7). This allows following general conclusion:

The fact that not all drivers start simultaneously at traffic lights is not caused
by reaction times but by the higher space requirement of moving with respect
to standing vehicles: It simply takes some time for the already started vehicles
to make this space.

8.4 Total Waiting Time During One Red Phase of a Traffic Light
The total waiting time in the queue is equal to the number n(t) of vehicles waiting at
a given time, integrated over the duration of the queue: Defining t = 0 as the begin
of the red phase and x = 0 as the position of the stopping line, this means

τtot =
τr +τdiss∫

0

n(t)dt =
τr +τdiss∫

0

xo(t)∫

xu(t)

ρmax dx dt = ρmax A,

i.e., the total waiting time is equal to the jam density times the area of the queue in
space-time (cf. the following diagram).

http://dx.doi.org/10.1007/978-3-642-32460-4_8
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The area of the congested area is equal to the sum of the area of the two right-angled
triangles with the legs (τr,−cupτr) and (τdiss,−cupτr), respectively:

τtot = 1

2
ρmax

(
−cupτ

2
r − cupτrτdiss

)
.

To obtain the second right-angled triangle DEF’, we have shifted the point F of the
original triangle DEF to F’ which does not change the enclosed area. Furthermore,
we have the geometrical relation (cf. the figure above)

cupτr = (ccong − cup)τdiss,

i.e., τdiss = cupτr/(ccong −cup). Inserting this into the expression for τtot finally gives

τtot = 1

2
ρmaxτ

2
r

cupccong

cup − ccong

with

cup = Qin

Qin/V0 − ρmax
, ccong = − 1

ρmaxT
.

The total waiting time increases with the square of the red time.

8.5 Jam Propagation on a Highway I: Accident
Subproblem 1: With the values given in the problem statement, the capacity per lane
reads

Qmax = V0

V0T + leff
= 2,016 vehicles/h.

The total capacity of the road in the considered driving direction without accident is
just twice that value:

C = 2Qmax = 4,032 vehicles/h.
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This exceeds the traffic demand 3,024 vehicles/h at the inflow (x = 0), so no jam
forms before the accident, and only road section 1 exists. Since there are neither
changes in the demand nor road-related changes, traffic flow is stationary and the
flow per lane is constant:

Q1 = Qin

2
= 1,512 vehicles/h, V1 = V0 = 28 m/s, ρ1 = Q1

V0
= 15 vehicles/km.

This also gives the travel time to traverse the L = 10 km long section:

ttrav = L

V0
= 357 s.

Subproblem 2: At the location of the accident, only one lane is open, so the bottleneck
capacity

Cbottl = Qmax = 2,016 vehicles/h

does not meet the demand any more, and traffic breaks down at this location. This
means, there are now three regions with different flow characteristics:

• Region 1, free traffic upstream of the congestion: Here, the situation is as in
Subproblem 1.

• Region 2, congested traffic at and upstream of the bottleneck.
• Region 3, free traffic downstream of the bottleneck.

From the propagation and information velocities of perturbations in free and con-
gested traffic flow, and from the fact that the flow but not the speed derives from a
conserved quantity, we can deduce following general rules:

Free traffic flow is controlled by the flow at the upstream boundary, congested
traffic flow and the traffic flow downstream of “activated” bottlenecks is con-
trolled by the bottleneck capacity.

For the congested region 2 upstream of the accident (both lanes are available),
this means

Q2 = Cbottl

2
= 1,008 vehicles/h.

To determine the traffic density, we invert the flow-density relation of the congested
branch of the fundamental diagram,4

ρ2 = ρcong(Q2) = 1 − Q2T

leff
= 72.5 vehicles/km.

4 Beware: The fundamental diagram and derived quantities (as ρcong(Q)) are always defined for
the lane-averaged effective density and flow.
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Subproblem 3: To calculate the propagation velocity of the shock (discontinuous
transition free → congested traffic), we apply the shock-wave formula:

cup = c12 = Q2 − Q1

ρ2 − ρ1
= −8.77 km/h.

Subproblem 4: After lifting the lane closure, the capacity is, again, given by
C = 2Qmax = 4,032 vehicles/h, everywhere. In the LWR models, the outflow from
congestions is equal to the local capacity, so the outflow region 3 is characterized by
Q3 = C/2 = Qmax, V3 = V0, and ρ3 = Q3/V0 = 20 vehicles/h. Furthermore, the
transition from regions 2 to 3 (downstream jam front) starts to move upstream at a
propagation velocity again calculated by the shock-wave formula:

cdown = c = c23 = Q3 − Q2

ρ3 − ρ2
= −19.2 km/h.

The jam dissolves if the upstream and downstream jam fronts meet. Defining t as
the time past 15:00 h, x as in the figure of the problem statement, and denoting
the duration of the bottleneck by τbottl = 30 min, we obtain following equations of
motion for the fronts,

xup(t) = L + cup t,

xdown(t) = L + c(t − τbottl).

Setting these positions equal results in the time for complete jam dissolution:

tdissolve = τbottl
c

c − cup = 3,312 s.

The position of the last vehicle to be obstructed at obstruction time is equal to the
location of the two jam fronts when they dissolve:

tdissolve = L + cup tdissolve = 1,936 m.

Subproblem 5: In the spatiotemporal diagram, the congestion is restricted by three
boundaries:

• Stationary downstream front at the bottleneck position L = 10 km for the times
t ∈ [0, τbottl],

• Moving downstream front for t ∈ [τbottl, tdissolve] whose position moves according
to xdown(t) = L + c(t − τbottl),

• Moving upstream front for t ∈ [0, tdissolve] whose position moves according to
xup(t) = L + cup t
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Subproblem 6: We follow the vehicle trajectory starting at time t = t0 = 1,800 s at
the upstream boundary x = 0 by piecewise integrating it through the three regions
(cf. the diagram):

1. Traversing the inflow region: The vehicle moves at constant speed V0 resulting
in the trajectory x(t) = V0(t − t0).

2. Traversing the jam: To calculate the time tup of entering the jam, we intersect
the free-flow trajectory with the equations of motion xup(t) = L + cup t for the
upstream front:

tup = L + V0t0
V0 − cup = 1,984 s.

The corresponding location xup = V0(tup − t0) = 5,168 m. Hence, the trajectory
reads

x(t) = xup + vcong(t − tup), vcong = Q2

ρ2
= 3.86 m/s.

3. Trajectory after leaving the jam: Since, at time tup, the bottleneck no longer exists,
we calculate the exiting time by intersecting the trajectory calculated above with
the equations of motion of the moving downstream front. This results in

tdown = L − xup − ct0 + vcongtup

vcong − c
= 2,403 s,

xdown = xup + ccong(tdown − tup) = 6,783 m.

After leaving the jam, the vehicle moves according to trajectory x(t) = xdown +
V0(t − tdown), so the vehicle crosses the location x = L = 10 km at time
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tend = tdown + L − xdown

V0
= 2,518 s.

In summary, we obtain for the total travel time to traverse the L = 10 km long
section

τ = tend − t0 = 718.1 s.

8.6 Jam Propagation on a Highway II: Uphill Grade and Lane Drop
Subproblem 1: As in the previous problem, we calculate the capacities with the
capacity formula of the triangular fundamental diagram:

Qmax = V0

V0T + leff
= 2,000 vehicles/h,

QIII
max = V03

V03T3 + leff
= 1,440 vehicles/h.

Subproblem 2: For the total quantities, lane drops, gradients, and other flow-
conserving bottlenecks are irrelevant, and the continuity equation reads

∂ρtot

∂t
+ ∂ Qtot

∂x
= ∂ Qtot

∂x
= 0.

Since the inflow is constant, Qin = 2,000 vehicles/h, and less the minimum capacity
C III = 2QIII

max = 2,880 vehicles/h, this amounts to stationary free traffic flow in all
four regions I–IV with Qtot = Qin = const. From this information, we calculate the
effective flow of all regions by dividing by the respective number of lanes, and the
density by the free part of the fundamental diagram:

V Qtot Q ρtot ρ

(km/h) (vehicles/h) (vehicles/h/lane) (vehicles/km) (vehicles/km/lane)

Region I 120 2,000 667 16.7 5.55
Region II 120 2,000 1,000 16.7 8.33
Region III 60 2,000 1,000 33.3 16.7
Region IV 120 2,000 1,000 16.7 8.33

Subproblem 3: Traffic breaks down if the local traffic flow is greater than the local
capacity. Thus, the jam forms at a location and at a time where and when this condition
is violated, for the first time. Since the capacities in the four regions are given by
6,000, 4,000, 2,880, and 4,000 vehicles/h, respectively, the interface between regions
II and III at x = 3 km is the first location where the local capacity can no longer meet
the new demand Qin = 3,600 vehicles/h. Traffic breaks down if the information of



448 Solutions to the Problems

the increased demand reaches x = 3 km. This information propagates through the
regions I and II at cfree = V0 = 120 km/h, or at 2 km per minute, so

xbreakd = 3 km, tbreakd = 16:01:30 h.

Subproblem 4: To determine density, flow, and speed of congested traffic in the regions
I and II, we, again, adhere to the rule that free traffic flow is controlled by the upstream
boundary while the total flow of congested regions and of regions downstream of
“activated” bottlenecks are equal to the bottleneck capacity at some earlier times
determined by the information propagation velocities cfree and ccong, respectively.
Furthermore, densities inside congestions are calculated with the congested branch
of the fundamental diagram while the free branch is used in all other cases. Denoting
with regions Ib and IIb the congested sections of regions I and II, respectively, and
with regions Ia and IIa the corresponding free-flow sections, this leads to following
table for the traffic-flow variables:

V Qtot Q ρtot ρ

(km/h) (vehicles/h) (vehicles/h/lane) (vehicles/km) (vehicles/km/lane)

Ia (I = 3) 16 3,600 1,200 30 10
Ib (I = 3) 120 2,880 960 180 60
IIa (I = 2) 36 3,600 1,800 30 15
IIb (I = 2) 120 2,880 1,440 80 40
III (I = 2) 60 2,880 1,440 48 24
IV (I = 2) 120 2,880 1,440 24 12

Notice that the local vehicle speed inside congested two-lane regions is more than
twice that of three-lane regions.5

Subproblem 5: To calculate the propagation velocities of the upstream jam front in
the regions I and II, we use, again, the shock-wave formula together with the table
of the previous subproblem:

vg = ΔQ

Δρ

=
{−240/(60 − 10) km/h = −4.8 km/h Interface Ia-Ib, situation (i),

−360/(40 − 15) km/h = −14.4 km/h Interface IIa-IIb, situation (ii).

8.7 Diffusion-Transport Equation
Inserting the initial conditions into (8.57) results in

5 When being stuck inside jams without knowing the cause, this allows to draw conclusions about
the type of bottleneck, e.g., whether it is a three-to-two, or three-to-one lane drop.

http://dx.doi.org/10.1007/978-3-642-32460-4_8
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ρ(x, t) = ρ0

L∫

0

dx ′ 1√
4π Dt

exp

[−(x − x ′ − c̃t)2

4Dt

]
.

Since the integrand is formally identical to the density function fN (x ′) of a (μ, σ 2)

Gaussian distribution (with space and time dependent expectation μ(t) = x − c̃t and
variance σ 2(t) = 2Dt), we can the above integral write as6

ρ(x, t) = ρ0

L∫

0

dx ′ f (μ,σ 2)
N (x ′).

Since the integrand is the density of a Gaussian distribution function, the integral
itself can be expressed in terms of the (cumulated) Gaussian or normal distribution

FN (x) =
x∫

−∞
fN (x ′)dx ′,

resulting in

ρ(x, t) = ρ0

[
F (μ,σ 2)

N (L) − F (μ,σ 2)
N (0)

]
.

Since this is no elementary function, we express the result in terms of the tabulated
standard normal distribution Φ(x) = F (0,1)

N (x) by using the relation F(x) = Φ((x −
μ)/σ) taught in statistics courses. With μ = x − c̃t and σ 2(t) = 2Dt , this results in

ρ(x, t) = ρ0

[
Φ

(
L − μ

σ

)
− Φ

(−μ

σ

)]

= ρ0

[
Φ

(
L − x + c̃t√

2Dt

)
− Φ

(−x + c̃t√
2Dt

)]

= ρ0

[
Φ

(
x − c̃t√

2Dt

)
− Φ

(
x − c̃t − L√

2Dt

)]
,

In the last line, we have used the symmetry relationΦ(x) = 1−Φ(−x). In the limiting
case of zero diffusion, the two standard normal distribution functions degenerate
to jump functions with jumps at the positions c̃t and L + c̃t . This is consistent
with the analytic solution of the section-based model, ρ(x, t) = ρ0(x − c̃t) where
ρ0(x) denotes the initial density given in the problem statement. For finite diffusion
constants, the initially sharp density profiles smear out over time (cf. Fig. 8.26).

6 When doing the integral, watch out that the variable to be integrated is x ′ rather than x .

http://dx.doi.org/10.1007/978-3-642-32460-4_8
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Problems of Chapter 9

9.1 Ramp Term of the Acceleration Equation
Macroscopically, the total derivative dV

dt of the local speed denotes the rate of change
of the average speed of all n = ρ Δx vehicles in a (small) road element of length
Δx comoving with the local speed V ,

dV

dt
= d〈vα〉

dt
= d

dt

(
1

n

n∑

α=1

vα

)
. (2.4)

Without acceleration of single vehicles
(

dvα

dt = 0
)

, the rate of change is solely caused

by vehicles entering or leaving this road element at a speed Vrmp �= V (cf. Fig. 9.5).
Assuming that the position of the merging vehicles is uniformly distributed over the
length L rmp of the merging region, the rate of change of the vehicle number is given by

dn

dt
= q = Qrmp

Δx

L rmp
(2.5)

whenever the moving road element is parallel to the merging section of an on-ramp.
When evaluating the time derivative (2.4), we notice that both the prefactor 1

n and
the sum itself depend explicitly on time. Specifically,

d

dt

(
1

n

)
= − q

n2 ,
d

dt

(
∑

α

vα

)
= qVrmp.

The second equation follows from the problem statement that all vehicles enter
the road at speed Vrmp and no vehicles (including the ramp vehicles) accelerate
(vα = const). Using these relations and

∑
α vα = nV , we can write the rate of

change of the local speed as

Armp = d〈vα〉
dt

= d

dt

⎛

⎝ 1

n(t)

n(t)∑

α=1

vα

⎞

⎠

= −qnV

n2 + qVrmp

n

= q(Vrmp − V )

n

= QrmpΔx(Vrmp − V )

nL rmp

= Qrmp(Vrmp − V )

IρL rmp
.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
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In the last step, we have used n = Iρ Δx .

9.2 Kinematic Dispersion
Subproblem 1: The lane-averaged local speed is given by

V = 1

ρ1 + ρ2
(ρ1V1 + ρ2V2) .

First, we calculate the initial speed variance across the lanes (k = 1 and 2 for the left
and right lanes, respectively):

σ 2
V (x, 0) =

〈
(Vk(x, 0) − V )2

〉

= ρ1(V1 − V )2 + ρ2(V2 − V )2

ρ1 + ρ2
,

or, for the special case ρ1 = ρ2,

σ 2
V (x, 0) = (V1 − V2)

2

4
= 100 (m/s)2 = const.

Notice that these expressions give the true spatial (instantaneous) variance. In con-
trast, when determining the time mean variance at a given location from data
of a stationary detector station, we would obtain for lane 1 the weighting factor
Q1/(Q1 + Q2) = 1/3 instead of the correct value ρ1/(ρ1 + ρ2) = 1/2 resulting in
a biased estimate for the true variance (cf. Chap. 4).

Subproblem 2: The kinematic part Pkin = ρσ 2
V of the pressure term leads to a

following contribution of the local macroscopic acceleration,

Akin = − 1

ρ

∂ P

∂x
= − 1

ρ

d

dx

(
ρ(x, t)σ 2

V

)
=
{

0.01s−2

ρ
0 ≤ x ≤ 100 m,

0 otherwise.

(The factor 0.01 s−2 result from the gradient ∂ρ
∂x = 10−4 m−2 multiplied by the

variance 100 (m/s)2.) Consequently, a finite speed variance implies that a negative
density gradient leads to a positive contribution of the macroscopic acceleration. This
will be discussed at an intuitive level in the next subproblem.

Subproblem 3: If there is a finite variance σ 2
V and a negative density gradient

(a transition from dense to less dense traffic), then the vehicles driving faster than the
local speed V go from the region of denser traffic to the less dense region while the
slower vehicles are transported backwards (in the comoving system!) to the denser
region. Due to the density gradient, the net inflow of faster vehicles is positive and

http://dx.doi.org/10.1007/978-3-642-32460-4_4
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that of slower vehicles negative. This is illustrated in the following figure, the upper
graphics of which depicting the situation in the stationary system, and the lower
one in a system comoving with V . As a result, the averaged speed V is increasing
although not a single vehicle accelerates while the total number of vehicles in the
element, i.e., the density, is essentially constant.

x=0 x=100 m

144 km/h

72 km/h

x=V  t x=V  t + 100 m

− 36 km/h

36 km/h

0 0

Stationary
system

Comoving
system

Subproblem 4: Assuming that higher actual speeds are positively correlated with
higher desired speeds, the mechanism described in Subproblem 3 leads to a segre-
gation of the desired speeds such that the fast tail of the desired speed distribution
tends to be found further downstream than the slow tail. This is most conspicuous in
multi-lane queues of city traffic waiting behind a red traffic light when the light turns
green: If there is one lane with speeding drivers, these drivers will reach first a given
position downstream of the stopping line of the traffic light. At this moment, the traffic
composition at this point consists exclusively of speeding drivers. Macroscopically,
this can only be modeled by multi-class macroscopic models where the desired speed
V0(x, t) becomes another dynamical field with its own dynamical equation. Because
of their complexity, such Paveri-Fontana models are rarely used.

9.3 Modeling Anticipation by Traffic Pressure
Subproblem 1: Since, by definition, the traffic density is equal to the number of
vehicles per distance, one vehicle distance, i.e., the distance headway d, can be
expressed by the density:

d = 1

ρ((x + xa)/2, t)
≈ 1

ρ(x, t)
.

The first expression to the right of the equal sign is accurate to second order in
xa − x = d. The second expression 1/ρ(x, t) is accurate to first order which is
sufficient in the following.
Subproblem 2: We expand the nonlocal part Ve(ρ(xa, t)) = Ve(ρ(x + d, t)) of the
adaptation term to first order around x :
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Ve(ρ(x + d, t)) = Ve(ρ(x, t)) + dVe(ρ(x, t))

dx
d + O(d2)

= Ve(ρ(x, t)) + 1

ρ

dVe(ρ(x, t))

dx
+ O(d2).

Inserting this into the speed adaptation term results in

(
dV

dt

)

relax+antic
≈ Ve(ρ(x, t)) − V (x, t)

τ
+ 1

ρτ

dVe(ρ(x, t))

dx

!= Ve(ρ(x, t)) − V (x, t)

τ
− 1

ρ

dP(x, t)

dx
,

where, in the last step, we set the result equal to the general expression for the
acceleration caused by P . The comparison yields

P(x, t) = − Ve(ρ(x, t))

τ
.

Subproblem 3: According to the problem statement, the density profile obeys (with
ρ0 = 20 vehicles/km = 0.02 vehicle/m, c = 100 vehicles/km2 = 10−4 vehicle/m2)

ρ(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ0 x < 0,

ρ0 + cx 0 < x ≤ 200 m,

2ρ0 x > 200 m.

(2.6)

(i) Acceleration by anticipation when using the original relaxation term:

(
dV

dt

)

relax
= Ve(ρ(x + 1/ρ(x, t), t)) − Ve(ρ(x, t))

τ
,

where Ve(ρ) = V0(1 −ρ/ρmax) is given in the problem statement (such a relation is
rather unrealistic; it serves to show the principle in the easiest possible way). Inserting
Eq. (2.6), we obtain

(
dV

dt

)

relax
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 x ≤ −1/ρ0 or x > 200 m,
−V0c
τρmax

(
1
ρ0

+ x
)

− 1
ρ0

< x ≤ 0,

−V0c
τρmaxρ

0 < x ≤ 200 m − 1
2ρ0

,

−V0
τρmax

(2ρ0 − ρ) 200 m − 1
2ρ0

< x ≤ 200 m,
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where the criterion separating the last two cases is only approximatively valid.
(ii) Expressing the acceleration contribution by the pressure term, we obtain

(
dV

dt

)

pressure
=
{

0 x ≤ 0 or x > 200 m,
−V0c

τρmaxρ
0 < x ≤ 200 m − 1

2ρ0
.

Except for the transition regions at the beginning and end of the density gradient,
this agrees with the acceleration derived from the original relaxation term. How-
ever, in contrast to the pressure term, the nonlocal anticipation term provides “true”
anticipation everywhere, including the region −1/ρ0 ≤ x < 0 where the local
approximation by the pressure term does not “see” anything. In summary, the non-
local route to modeling anticipation is more robust.

9.4 Steady-State Speed of the GKT Model
In the steady state on homogeneous roads, all spatial and temporal derivatives vanish,
so the GKT acceleration equation (9.24) reduces to V = V ∗

e . Furthermore, the
homogeneity associated with the steady state implies Va = V and ρa = ρ, and the
Boltzmann factor is given by B(0) = 1. Using these conditions and the definition
(9.27) for V ∗

e , we can write the condition V = V ∗
e as

V

V0
= 1 − α(ρ)

α(ρmax)

(
ρaV T

1 − ρa/ρmax

)2

.

This is a quadratic equation in V . Its positive root reads

V = Ve(ρ) = Ṽ 2

2V0

⎛

⎝−1 +
√

1 + 4V 2
0

Ṽ 2

⎞

⎠

with the abbreviation

Ṽ =
√

α(ρmax)

α(ρ)

(1 − ρ/ρmax)

ρT
.

For densities near the maximum density we have Ṽ � V0 and α(ρ) ≈ α(ρmax).
With the micro-macro relation s = 1/ρ − 1/ρmax, we can write the steady-state
speed in this limit as

Ve(ρ) ≈ Ṽ ≈ (1 − ρ/ρmax)

ρT
= s

T
.

Notice that this implies that T has the meaning of a (bumper-to-bumper) time gap in
heavily congested traffic.

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_9
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9.5 Flow-Conserving form of Second-Order Macroscopic Models
We start by setting V = Q/ρ in the continuity equation:

∂ρ

∂t
+ ∂ Q

∂x
= − Q

I

dI

dx
+ νrmp.

Multiplying the acceleration equation (9.11) by ρ and inserting V = Q/ρ gives the
intermediate result

ρ
∂V

∂t
+ Q

∂V

∂x
= ρV ∗

e − Q

τ
− ∂ P

∂x
+ ∂

∂x

(
η
∂(Q/ρ)

∂x

)
+ ρ Armp.

Now we substitute the time derivative of the local speed by a time derivative of the
flow. The left-hand side of the last equation then reads

ρ
∂V

∂t
+ Q

∂V

∂x
= ∂ Q

∂t
− V

∂ρ

∂t
+ Q

∂V

∂x

= ∂ Q

∂t
+ V

∂ Q

∂x
+ V

Q

I

dI

dx
− V νrmp + Q

∂V

∂x

= ∂ Q

∂t
+ ∂(QV )

∂x
+ V

Q

I

dI

dx
− V νrmp.

Substituting again V = Q/ρ and grouping the spatial derivatives together, we obtain

∂ Q

∂t
+ ∂

∂x

[
Q2

ρ
+ P − η

∂

∂x

(
Q

ρ

)]
= ρV ∗

e − Q

τ
+ Q2

ρ I

dI

dx
− Qνrmp

ρ
+ ρ Armp.

9.6 Numerics of the GKT Model
Neglecting the pressure term (its maximum relative influence is of the order of√

α = 10 %), the first CFL condition (9.39) for the convective numerical instability
reads

Δt <
Δx

V0
= 1.5 s. (2.7)

Since the GKT model does not contain diffusion terms, the second CFL condition
is not relevant. However, the relaxation instability must be tested: The characteristic
equation det(L − λ1) = 0 for the eigenvalues of the matrix L of the linear equation
(9.36) reads

−λ(L22 − λ) = −λ

[
1

τ

(
−1 + ρ

∂ Ṽe(ρ, Q)

∂ Q

)
− λ

]
= 0

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_36
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resulting in the eigenvalues

λ1 = 0, λ2 = − 1

τ

(
1 − ρ

∂ Ṽe(ρ, Q)

∂ Q

)
,

where

Ṽe(ρ, Q) = V ∗
e (ρ, Q, ρ, Q) = V0

[
1 − α(ρ)

αmax

(
QeT

1 − ρ/ρmax

)2
]

.

With this result, the condition Δt < |λ−1
2 | to avoid relaxation instability becomes

Δt <
τ

1 + 2α(ρ)V0ρQe
αmax

(
T

1−ρ/ρmax

)2 ,

i.e., Eq. (9.44) of the main text. In the limit of high densities ρ ≈ ρmax we make use
of the approximate relation (cf. Problem 9.4)

Ve(ρ) ≈ 1

T

(
1

ρ
− 1

ρmax

)

to arrive at

Δt

(
1 + 2

V0

Ve

)
< τ

which is Eq. (9.45) of the main text. Inserting ρmax,sim = 0.1 m−1 from the problem
statement and Ve(ρmax,sim) = 4.14 m/s (watch out for the units! If in doubt, always
use the SI units m, kg, and s), we finally obtain

Δt <
1

|λ2| = 1.32 s. (2.8)

The definitive limitation of the time step is given by the more restrictive one of the
conditions (2.7) and (2.8), so Δt < 1.32 s.

The expression (9.48) for the numerical diffusion of both equations at V = 20 m/s
and Δt = 1 s (i.e., the conditions for linear numerical stability are satisfied)
evaluates to

Dnum = V
Δx

2

(
1 − V

Δt

Δx

)
= 300 m/s2.

This is only about 1/30 of the (real) diffusion introduced to the Kerner-Konhäuser
model by the term proportional to Dv (assuming standard parameterization).

http://dx.doi.org/10.1007/978-3-642-32460-4_9
http://dx.doi.org/10.1007/978-3-642-32460-4_45
http://dx.doi.org/10.1007/978-3-642-32460-4_9
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Problems of Chapter 10

10.1 Dynamics of a Single Vehicle Approaching a Red Traffic Light
Subproblem 1 (parameters). The free acceleration is the same as that of the OVM.
Hence, v0 is the desired speed and τ the adaptation time. If the model decelerates,
it does so with the deceleration b. Since, at this deceleration, the kinematic braking
distance to a complete stop is given by Δxbrake = v2/(2b), the vehicle stops at a
distance s0 to the (stopping line of) the red traffic light. This explains the meaning
of the last parameter. Notice that, in this model, vehicles would follow any leading
vehicle driving at a constant speed vl < v0 at the same gap s0, i.e., the model does not
include a safe gap. Nor does it contain a reaction time. The model is accident-free
with respect to stationary obstacles, but not when slower vehicles are involved.

Subproblem 2 (acceleration). Here, the first condition of the model applies, so we
have to solve the ordinary differential equation (ODE) for the speed

dv

dt
= v0 − v

τ
with v(0) = 0.

The exponential ansatz eλt for the homogeneous part dv
dt = −v/τ gives the solvability

condition λ = 1/τ . Furthermore, the general solution for the full inhomogeneous
ODE reads

v(t) = Ae−t/τ + B.

The asymptotic v(∞) = B = v0 yields the inhomogeneous part B. Determining the
integration constant A by the initial condition v(0) = A + B = A + v0 = 0 gives
A = −v0, so the speed profile reads

v(t) = v0

(
1 − e− t

τ

)
.

Once v(t) is known, we determine the trajectory x(t) by integrating over time. With
x(0) = 0, we obtain

x(t) =
t∫

0

v(t ′) dt ′ = v0

t∫

0

(
1 − e− t ′

τ

)
dt ′

= v0

[
t ′ + τe− t ′

τ

]t ′=t

t ′=0
= v0t + v0τ

(
e− t

τ − 1
)

.

By identifying parts of this expression with v(t), this simplifies to

x(t) = v0t − v(t)τ.
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Finally, to obtain the acceleration profile, we either differentiate v(t), or insert v(t)
into the right-hand side of the ODE. In either case, the result is

v̇ = v0 − v

τ
= v0

τ
e−1/τ .

Subproblem 3 (braking phase). The red traffic light represents a standing virtual
vehicle of zero length at the stopping line, so Δv = v. This phase starts at a distance

sc = s0 + v2

2b
= 50.2 m

to the stopping line, and the vehicle stops at a distance s0 to this line.

Subproblem 4 (trajectory). For the accelerating phase, the trajectory has already been
calculated. The deceleration phase begins at the location

xc = L − sc = L − s0 − v2

2b
≈ 450 m.

To approximatively determine the time tc at which the deceleration phase begins, we
set v(tc) = v0 to obtain

xc(tc) = v0tc − v(tc)τ ≈ v0(tc − τ) ⇒ tc = xc

v0
+ τ = 32.4 s + 5.0 s = 37.4 s.

With the braking time v0/b, this also gives the stopping time

tstop = tc + v0

b
= 44.3 s.

In summary, the speed profile v(t) can be expressed by (cf. the graphics below)

v(t) =
⎧
⎨

⎩

v0
(
1 − e−t/τ

)
0 ≤ t < tc,

v0 − b(t − tc) tc ≤ t ≤ tstop,

0 otherwise.
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10.2 OVM Acceleration on an Empty Road
(i) The maximum acceleration amax = v0/τ is reached right at the beginning,

t = 0. (ii) Prescribing amax = 2 m/s2 and a desired speed v0 = 120 km/h determines
the speed relaxation time by

τ = v0

amax
= 16.7 s.

(iii) We require that, at a time t100 to be determined, the speed should reach the value
v100 = 100 km/h:

v(t100) = v100 = v0

(
1 − e− t100

τ

)
.

Solving this condition for t100 gives

v100

v0
= 1 − e− t100

τ ⇒ t100 = −τ ln

(
1 − 100

120

)
≈ 29.9 s.

10.3 Optimal Velocity Model on a Ring Road
The problem describes a situation with evenly spaced identical vehicles on a ring road
which, initially, are at rest. This means, traffic flow is not stationary (since the initial
gaps are greater than the minimum gap) but homogeneous: Since the road is homoge-
neous, and the vehicle fleet consists of identical vehicles, the homogeneity imposed
by the initial conditions is not destroyed over time. For microscopic models, homo-
geneity implies that the dynamics depend neither on x nor on the vehicle index α.
So, dropping α, the OVM reads

dv

dt
= vopt(s(0)) − v

τ
.

The solution to this ODE is analogously to Problem 10.2, only v0 is replaced by the
steady-state speed ve = vopt(s(0)).

10.4 Full Velocity Difference Model
General plausibility arguments require the steady-state speed vopt(s) to approach the
desired speed v0 when the gap s tends to infinity. However, for an arbitrarily large
distance to the red traffic light modeled by a standing virtual vehicle (Δv = v), the
FVDM vehicle accelerates according to

v̇ = v0 − v

τ
− λv = v0

τ
−
(

1

τ
+ λ

)
v.
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From this it follows that the acceleration v̇ becomes zero for a terminal speed

v∗ = v0

1 + λτ
.

This is the maximum speed an initially standing Full Velocity Difference Model
(FVDM) vehicle can reach in this situation. It is significantly lower than v0. For
the parameter values of the problem statement, v∗ = 13.5 km/h which agrees with
Fig. 10.6.

10.5 A Simple Model for Emergency Braking Maneuvers
Subproblem 1 (identifying the parameters). Tr = denotes the reaction time, and bmax
is the maximum deceleration in emergency cases.

Subproblem 2 (braking and stopping distance). Assuming a fixed reaction timer
Tr and a constant deceleration bmax in the braking phase, elementary kinematic
relations yield following expressions for the braking and stopping distances sB(v)
and sstop(v) = vTr + sB(v), respectively:

sB(v) = v2

2bmax
, sstop(v) = vTr + sB(v)

with the numerical values

v = 50 km/h : sB(v) = 12.1 m, sstop(v) = 25.9 m,

v = 70 km/h : sB(v) = 23.6 m, sstop(v) = 43.1 m.

Subproblem 3 (emergency braking). At first, we determine the initial distance such
that a driver driving at v1 = 50 km/h just manages to stop before hitting the child:

s(0) = sstop(v1) = 25.95 m.

Now we consider a speed v2 = 70 km/h but the same initial distance s(0) = 25.95 m
as calculated above. At the end of the reaction time, the child is just

s(Tr ) = s(0) − v2Tr = 6.50 m

away from the front bumper. Now, the driver would need the additional braking
distance sB(v2) = 23.6 m for a complete stop. However, only 6.50 m are available
resulting in a difference Δs = 17.13 m. With this information, the speed at collision
can be calculated by solving Δs = (Δs)B(v) = v2/(2bmax) for v, i.e.,

http://dx.doi.org/10.1007/978-3-642-32460-4_10
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vcoll = √2bmaxΔs = 16.56 m/s = 59.6 km/h.

Remark This problem stems from a multiple-choice question of the theoretical exam
for a German driver’s licence. The official answer is 60 km/h.

Problems of Chapter 11
11.1 Conditions for the Microscopic Fundamental Diagram
The plausibility condition (11.5) is valid for any speed vl of the leading vehicle.
This also includes standing vehicles where Eq. (11.5) becomes amic(s, 0, 0) = 0 for
s ≤ s0. This corresponds to the steady-state condition ve(s) = 0 for s ≤ s0.

Conditions (11.1) and (11.2) are valid for any speed vl of the leader as well,
including the steady-state situation vl = v or Δv = 0. For the alternative acceleration
function ã(s, v,Δv), this means

∂ ã(s, v, 0)

∂s
≥ 0,

∂ ã(s, v, 0)

∂v
< 0.

Along the one-dimensional manifold of steady-state solutions {ve(s)} for s ∈ [0,∞[,
we have ã(s, ve(s), 0) = 0, so the differential change dã along the equilibrium curve
ve(s) must vanish as well:

dã = ∂ ã(s, ve(s), 0)

∂s
d s + ∂ ã(s, ve(s), 0)

∂v
v′

e(s)d s = 0,

hence

v′
e(s) = −∂ ã(s, v, 0)/∂s

∂ ã(s, v, 0)/∂v
≥ 0.

If the leading vehicle is outside the interaction range, we have v′
e(s) = 0 [second

condition of Eq. (11.2)]. Finally, the condition lim
s→∞ ve(s) = v0 follows directly from

the second part of condition (11.1).

11.2 Rules of Thumb for the Safe Gap and Braking Distance
Subproblem 1. One mile corresponds to 1.609 km. However, the US rule does not give
explicit values for a vehicle length. Here, we assume 15 ft = 4.572 m. In any case,
the gap s increases linearly with the speed v, so the time gap T = s/v is independent

http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
http://dx.doi.org/10.1007/978-3-642-32460-4_11
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of speed. Implementing this rule, we obtain

T = s

v
= 15ft

10 mph
= 4.572 m

16.09 km/h
= 4.572 m

4.469 m/s
= 1.0 s.

Notice that, in the final result, we rounded off generously. After all, this is a rule of
thumb and more significant digits would feign a non-existent precision.7 Notice that
this rule is consistent with typically observed gaps (cf. Fig. 4.8).

Subproblem 2. Here, the speedometer reading is in units of km/h, and the space gap
is in units of meters. Again, the quotient, i.e., the time gap T is constant and given
by (watch out for the units)

T = s

v
=

1
2 m
( v

km/h

)

v
=

1
2 m

km/h
= 0.5 h

1,000
= 1,800 s

1,000
= 1.8 s.

Subproblem 3. The kinematic braking distance is s(v) = v2/(2b), so the cited rule
of thumb implies that the braking deceleration does not depend on speed. By solving
the kinematic braking distance for b and inserting the rule, we obtain (again, watch
out for the units)

b = v2

2s
= v2

0.02 m

(
km

h v

)2

= 50

3.62 m/s2 = 3.86 m/s2.

For reference, comfortable decelerations are below 2 m/s2 while emergency braking
decelerations on dry roads with good grip conditions can be up to 10 m/s2, about
6 m/s2 for wet conditions, and less than 2 m/s2 for icy conditions. This means, the
above rule could lead to accidents for icy conditions but is okay, otherwise.

11.3 Reaction to Vehicles Merging into the Lane
Reaction for the IDM. For v = v0/2, the IDM steady-state space gap reads

se(v) = s0 + vT
√

1 −
(

v
v0

)δ
= s0 + v0T

2√
1 − ( 1

2

)δ .

The prevailing contribution comes from the prescribed time headway (for s0 = 2 m
and δ = 4, the other contributions only make up about 10 %). This problem assumes
that the merging vehicle reduces the gap to the considered follower to half the steady-

7 There is also a more conservative variant of this rule where one should leave one car length every
five mph corresponding to the “two-second rule” T = 2.0 s.

http://dx.doi.org/10.1007/978-3-642-32460-4_4
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state gap, s = se/2 = v0T/4, while the speed difference remain zero. The new IDM
acceleration of the follower (with a = 1 m/s2 and δ = 4) is therefore

v̇IDM = a

[
1 −

(
v

v0

)δ

−
(

s0 + vT

s

)2
]

(v=v0/2, s=se/2)= a

[
1 −

(
1

2

)δ

−
(

s0 + v0T/2

se/2

)2
]

se(v)=se(v0/2)= −3a

[
1 −

(
1

2

)δ
]

= −45

16
m/s2 = −2.81 m/s2.

Reaction for the simplified Gipps’ model. For this model, the steady-state gap in the
car-following regime reads se(v) = vΔt . Again, at the time of merging, the merging
vehicle has the same speed v0/2 as the follower, and the gap is half the steady-state
gap, s = (vΔt)/2 = v0Δt/4. The new speed of the follower is restricted by the safe
speed vsafe:

v(t + Δt) = vsafe = −bΔt +
√

b2(Δt)2 +
(v0

2

)2 + bv0Δt

2
= 19.07 m/s.

This results in an effective acceleration
(

dv

dt

)

Gipps
= v(t + Δt) − v(t)

Δt
≈ −0.93m/s2.

We conclude that the Gipps’ model describes a more relaxed driver reaction compared
to the IDM. Notice that both the IDM and Gipps’ model would generate significantly
higher decelerations for the case of slower leading vehicles (dangerous situation).

11.4 The IDM Braking Strategy
A braking strategy is self-regulating if, during the braking process, the kinematically
necessary deceleration bkin = v2/(2s) approaches the comfortable deceleration b.
In order to show this, we calculate the rate of change of the kinematic deceleration
(applying the quotient and chain rules of differentiation when necessary) and set ṡ =
−v and v̇ = −b2

kin/b = −v4/(4bs2), afterwards. This eventually gives Eq. (11.19)
of the main text:

dbkin

dt
= d

dt

(
v2

2s

)
= 4vsv̇ − 2v2ṡ

4s2

= v3

2s2

(
1 − v2

2sb

)
= v bkin

s b

(
b − bkin

)
,

http://dx.doi.org/10.1007/978-3-642-32460-4_11
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11.5 Analysis of a Microscopic Model
Subproblem 1 (parameters). For interaction-free accelerations, vsafe > v0, so vsafe
is not relevant. Hence v0 denotes the desired speed, and a the absolute value of the
acceleration and deceleration for the cases v < v0 and v > v0, respectively. The
steady-state conditions s = const. and v = vl = ve = const. give

ve = min(v0, vsafe).

Without interaction, vsafe > v0, so ve = v0. With interactions, the safe speed becomes
relevant and the above condition yields

ve = vsafe = −aT +
√

a2T 2 + v2
e + 2a(s − s0)

which can be simplified to
s = s0 + veT .

Thus, s0 is the minimum gap for v = 0, and T the desired time gap. The model
produces a deceleration −a not only if v > v0 (driving too fast in free traffic) but
also if v > vsafe (driving too fast in congested situations). Furthermore, the model
is symmetrical with respect to accelerations and decelerations. Obviously, it is not
accident free.

Subproblem 2 (steady-state speed). We have already derived the steady-state condi-
tion

ve(s) = min

(
v0,

s − s0

T

)
.

Macroscopically, this corresponds to the triangular fundamental diagram

Qe(ρ) = min

(
v0ρ,

1 − ρleff

T

)

where leff = 1/ρmax = l + s0. The capacity per lane is given by Qmax = (T +
leff/v0)

−1 = 1,800 vehicles/h at a density ρC = 1/(leff + v0T ) = 25 /km. For
further properties of the triangular fundamental diagram, see Sect. 8.5.

Subproblem 3. The acceleration and braking distances to accelerate from 0 to 20 m/s
or to brake from 20 m/s to 0, respectively, are the same:

http://dx.doi.org/10.1007/978-3-642-32460-4_8
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sa = sb = v2
0

2a
= 200 m.

At a minimum gap of 3 m and the location xstop = 603 m of the stopping line of
the traffic light, the acceleration takes place from x = 0 to x1 = 200 m, and the
deceleration from x2 = 400 m to x3 = 600 m. The duration of the acceleration and
deceleration phases is v0/a = 20s while the time to cruise the remaining stretch
of 200 m at v0 amounts to 10 s. This completes the information to mathematically
describe the trajectory:

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 at2 t ≤ t1 = 20 s,
x1 + v0(t − t1) t1 < t ≤ t2 = 30 s,

x2 + v0(t − t2) − 1
2 a(t − t2)2 t2 < t ≤ t3 = 50 s,

where t1 = 20 s, t2 = 30 s and t3 = 50 s.

11.6 Heterogeneous Traffic
The simultaneous effects of heterogeneous traffic and several lanes with lane-
changing and overtaking possibilities results in a curved free part of the fundamental
diagram even for models that would display a triangular fundamental diagram for
identical vehicles and drivers (as the Improved Intelligent Driver Model, IIDM).
This can be seen as follows: For heterogeneous traffic, each vehicle-driver class
has a different fundamental diagram. Particularly, the density ρC at capacity is dif-
ferent for each class, so a simple weighted average of the individual fundamental
diagrams would result in a curved free part and a rounded peak. However, without
lane-changing and overtaking possibilities, all vehicles would queue up behind the
vehicles of the slowest class resulting in a straight free part of the fundamental dia-
gram with the gradient representing the lowest free speed.8 So, both heterogeneity
and overtaking possibilities are necessary to produce a curved free part of the fun-
damental diagram.

8 Even when obstructed, drivers can choose their preferred gap (in contrast to the desired speed), so
the congested branch of the fundamental diagram is curved even without overtaking possibilities.
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11.7 City Traffic in the Improved IDM
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1. For realistic circumstances, the maximum possible flow is given by the dynamic
capacity, i.e., the outflow from moving downstream congestion fronts. In our case,
the “congestion” is formed by the queue of standing vehicles behind a traffic light.
Counting the trajectories (horizontal double-arrow in the upper diagram) yields

C = Qmax ≈ 9 vehicles

20 s
= 1,620 vehicles/h.

2. Counting the trajectories passing x = 0 for times less than 5, 15, and 40 s (black
bullets in the upper diagram) gives

n(5) = 1, n(15) = 5, n(40) = 15,

respectively. We determine β by the average time headway after the first vehicles
have passed,

β = 1

C
= 40 s − 15 s

15 − 5
= 2.5 s/vehicles.

We observe, that β denotes the inverse of the capacity. The obtained value agrees
with the result of the first subproblem within the “measuring uncertainty” of
one vehicle.9 This also gives the additional time until the first vehicle passes:
τ0 = 15 s − 5β = 2.5 s. (Notice that this is not a reaction time since the IIDM
does not have one.)

9 One could have calculated β as well using the pairs {n(15), n(5)} or {n(40), n(5)} with similar
results.
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3. The propagation velocity of the position of the starting vehicles in the queue is
read off from the upper diagram:

ccong = −100 m

20 s
= −5 m/s = −18 km/h.

4. We estimate the desired speed by the maximum speed of the speed profile (lower
diagram): v0 = 15 m/s = 54 km/h. The effective length leff is equal to the dis-
tance between the standing vehicles in the upper diagram: ρmax = 1/ leff =
10 vehicles/100 m = 100 vehicles/km, i.e., leff = 10 m. Since the steady state
of this model corresponds to a triangular fundamental diagram, the time gap
parameter T is determined by the propagation speed and the maximum density:
T = −leff/c = 2 s. Finally, the maximum acceleration a and the comfortable
deceleration b can be read off the lower diagram by estimating the maximum and
minimum gradient of the speed profile:

a = 20 m/s

10 s
= 2 m/s2, b = 20 m/s

7 s
= 2.9 m/s2.

Problems of Chapter 12

12.1 Statistical Properties of the Wiener Process
To determine the expectation

〈
w(t)w(t ′)

〉
from the given formal solution w(t) to the

stochastic differential equation of the Wiener process, we insert the formal solution
into

〈
w(t)w(t ′)

〉
carefully distinguishing the arguments t and t ′ from the formal

integration variables t1 and t2. This gives the double integral

〈
w(t)w(t ′)

〉 = 2

τ̃

t∫

t1=−∞

t ′∫

t2=−∞
e−(t−t1+t ′−t2)/τ̃ 〈ξ(t1)ξ(t2)〉 dt1dt2.

Notice that the operations of integration and averaging (expectation value) are
exchangeable. We now consider the case t > t ′. Setting 〈ξ(t1)ξ(t2)〉 = δ(t1 − t2)
and using the definition

∫
f (t)δ(t)dt = f (0) of the Dirac δ-distribution to eliminate

the integral over t110 yields

〈
w(t)w(t ′)

〉 = 2

τ̃

t ′∫

t2=−∞
e(2t2−t−t ′)/τ̃ dt2

10 Since t ≥ t ′ and the above integration property of the δ-distribution only applies if the integration
interval includes zero (i.e., t1 = t2), we cannot use this property to eliminate the integral over t2.
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which can be analytically solved resulting in

〈
w(t)w(t ′)

〉 = e−(t−t ′)/τ .

If t < t ′, the derivation proceeds analogously resulting in
〈
w(t)w(t ′)

〉 = e−(t ′−t)/τ .
Consolidating these two cases, we arrive at

〈
w(t)w(t ′)

〉 = e−|t−t ′|/τ .

As important special case, we obtain the variance
〈
w2(t)

〉 = 1. Finally, when we
apply the averaging operation 〈·〉 to the formal solution w(t) itself using the condition
〈ξ(t)〉 = 0, we obtain 〈w〉 = 0, i.e., the second condition (12.7). This concludes the
derivation of the statistical properties of the Wiener process.

12.2 Consequences of Estimation Errors
Overestimating the gap by 10 %, i.e., by the factor 1.1 results in a smaller steady-state
gap. With the values of the problem statement, we obtain

1.1se = s0 + vT ⇒ se = s0 + vT

1.1
= 28.3 m

instead of the “true” steady-state se = 31.1 m. When there is a constant additive
acceleration component Δa = 0.4 m/s2, the steady-state condition reads

v̇ = Δa +
se−s0

T − v

τ

!= 0,

or se = s0 + vT − τaz = 30.9 m. Notice that the surprisingly small amount of
change can be tracked back to the “rigidity” of the OVM reaction caused by the
small relaxation time τ .

12.3 Multi-Anticipation for the IDM
Applying the general equation (12.17) for multi-anticipative effects to the IDM gives

c
na∑

j=1

a

(
s0 + vT

js

)2

= a

(
s0 + vT

s

)2

,

hence c = 1/(
∑na

j=1
1
j2 ), i.e., Eq. (12.18). Instead of introducing c, it is obviously

possible for the IDM to renormalize the parameters s0 and T by multiplying them with
a common factor. For this purpose, we write the left-hand side of above equation as

na∑

j=1

a

(√
cs0 + v

√
cT

js

)2

,

http://dx.doi.org/10.1007/978-3-642-32460-4_12
http://dx.doi.org/10.1007/978-3-642-32460-4_12
http://dx.doi.org/10.1007/978-3-642-32460-4_12
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so the factor
√

c of the problem statement is evident. The factor
√

c assumes values
between 1 (no multi-anticipation) and

√
6/π ≈ 0.78 (multi-anticipation to infinitely

many leaders). This means, the numerical values of s0 and T are reduced by no more
than 22 %.

Problems of Chapter 13

13.1 Dynamic Properties of the Nagel-Schreckenberg Model
To obtain physical units, we multiply the dimensionless desired speed of the NSM
with Δx/Δt . Thus, v0 = 2 (city traffic) corresponds to 54 km/h, and v0 = 5
(highways) to 135 km/h. Likewise, multiplying the dimensionless accelerations with
Δx/(Δt)2 = 7.5 m/s2 yields the physical accelerations. In the deterministic NSM,
a = 1, so aphys = 7.5 m/s2 resulting in an acceleration time of

τ0→100 = vphys

aphys
= 3.7 s.

In the stochastic model, the acceleration a is realized only with a probability (1− p).
So, the average acceleration time increases by a factor (1 − p)−1 to 6.2 s.

13.2 Approaching a Red Traffic Light
The driver approaches with the desired speed v0 until the distance to the traffic light
falls below the “interaction distance” g = v0. Then, there are two possibilities for the
deceleration process: (i) stopping in one step (if, after crossing the interaction point,
the gap in the next time step is already zero), (ii) stopping in two steps v0 → v1 → 0
(if the gap after crossing the interaction point is v1 > 0). If v0 = 2, the realized
decelerations are (i) −15 m/s2 or (ii) −7.5 m/s2.

13.3 Fundamental Diagram of the Deterministic NSM
Without stochastic components, the steady-state speed as a function of the gap g is
well-defined:

ve(g) = max(v0, g)

meaning that the macroscopic fundamental diagram (in physical units) has the well-
known triangular shape given by11

Qe(ρ) = min

[
V phys

0 ρ,
1

T

(
1 − ρ

ρmax

)]
.

The values of its three parameters are

11 We drop the superscripts “phys” denoting physical quantities where no confusion is possible,
i.e., for ρ and Q. We will retain the superscripts for speeds and velocities.
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V phys
0 = v0Δx/Δt =

{
54 km/h cities
135 km/h highways,

T = Δt = 1 s, ρmax = 1

Δx
= 133 vehicles/km.

In the stochastic model (p > 0), the average flow 〈Q(ρ)〉 as a function of the local
density is below that of the deterministic case. The fundamental diagram is no longer
triangular, and also the gradients at zero and maximum density are different. In the
following two problems, we will derive

V phys
0 = Q′

e(0) = (v0 − p)
Δx

Δt
, cphys

cong(ρmax) = Q′
e(ρmax) = −(1 − p)

Δx

Δt
.

13.4 Macroscopic Desired Speed
Without interaction and after a sufficient time, the vehicle speed is either v0 (no
dawdling in the last time step), or v0 − 1 (dawdling). If v = v0, then the speed
will be reduced in the next time step to v0 − 1 with probability p. If v = v0 − 1,
the speed in the next time step will reach v0 with probability 1 − p. The situation
is stationary in the stochastic sense if expectation values do not change over time,
〈v(t + 1)〉 = 〈v(t)〉. Here, this means that the probabilities for the speeds v0 and
v0 − 1 do not change over time, i.e., the unconditional “probability fluxes” from v0
to v0 −1 and from v0 −1 to v0 balance to zero.12 Setting up the balance for the speed
state v = v0 and denoting by θ the probability for this state, the probability flux
v0 → v0 − 1 away from v0 is −θp (probability θ times conditional probability p;
negative sign because the flux is outflowing). The “inflowing” probability flux v0 −
1 → v0 is (1 − θ)(1 − p) (probability 1 − θ times conditional probability 1 − p).
So, stationarity implies

d

dt
(Prob(v = v0)) = −θp + (1 − θ)(1 − p)

!= 0 ⇒ θ = 1 − p,

or
〈v〉 = θv0 + (1 − θ)(v0 − 1) = v0 − p.

In physical units, this means V phys = 〈v〉Δx/Δt , i.e., the result displayed above in
the solution to Problem 13.4.

13.5 Propagation Velocity of Downstream Jam Fronts
Assume a queue of standing vehicles where only the first vehicle has space to

accelerate. This first vehicle will accelerate with probability 1 − p (with probability

12 Mathematically, this balance of probability fluxes is called a Master equation.
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p, dawdling occurs). Only if this vehicle accelerates, the next vehicle in the queue has
the possibility to accelerate in the next time step, which it does, again, with probability
1 − p. This means, the “starting wave” propagates at an average velocity ccong =
−(1 − p)Δx/Δt . For p = 0.4, this yields the reasonable value c = −16.2 km/h.

Problems of Chapter 14

14.1 Why the Grass is Always Greener on the Other Side?
We assume two lanes with staggered regions of highly congested traffic (ρ1, V1)

and less congested traffic (ρ2 < ρ1, V2 > V1) of the same length: Whenever there
is highly congested traffic on lane 1, congestion is less on lane 2, and vice versa
(cf. the figure in the problem statement). Since traffic in both regions is (more or less)
congested and the fundamental diagram is triangular by assumption, the transitions
from region 1 and 2 and from 2 to 1 remain sharp and propagate according to the
shock-wave formula (8.9) at a constant velocity

c = Q2 − Q1

ρ2 − ρ1
= − l

T
= −5 m/s.

The fraction of time in which drivers are stuck in the highly congested regions is
obviously equal to the fraction of time spent in regions of type 1. Denoting by τi the
time intervals τi to pass one region i = 1 or 2, we express this fraction by

pslower = p1 = τ1

τ1 + τ2
.

When evaluating τi , it is crucial to realize that the regions propagate in the opposite
direction to the vehicles, so the relative velocity Vi +|c| is relevant. Assuming equal
lengths L for both regions, the passage times are τi = L/(Vi + |c|), so

p1 =
L

V1+|c|
L

V1+|c| + L
V2+|c|

= V2 + |c|
V2 + V1 + 2|c| .

For example, if V1 = 0 and V2 = 10 m/s, the fraction is

p1 = 10 + 5

10 + 10
= 3

4
,

i.e., drivers are stuck in the slower lane 75 % of the time—regardless which lane they
choose or of whether they change lanes or not.

http://dx.doi.org/10.1007/978-3-642-32460-4_8
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Alternatively, one picks out a vehicle at random. Since the less and highly congested
regions have the same length, the fraction of vehicles in the highly congested region,
i.e., the probability of picking one from this region, is given by

p1 = ρ1

ρ1 + ρ2
= 200

200 + 200/3
= 3

4
.

14.2 Stop or Cruise?
We distinguish two cases: (i) Drivers can pass the traffic light at unchanged speed in
the yellow phase, i.e.,

s < s1 = vτy .

(ii) When cruising, drivers would pass the traffic light in the red phase, so stopping is
mandatory. In this case, drivers need a reaction time Tr to perceive the signal, make a
decision, and stepping on the braking pedal. Afterwards, we assume that they brake
at a constant deceleration b so as to stop just at the stopping line. This results in the
stopping distance

s = vTr + v2

2b
. (2.9)

Obviously, the worst case for the initial distance s to the stopping line at switching
time green-yellow is the threshold s = s1 between (i) and (ii), i.e., cruising is just no
more legal. Inserting s = s1 into Eq. (2.9) and solving for b gives

b = v

2(τy − Tr )
= 3.47 m/s2.

This is a significant, though not critical, deceleration. It is slightly below the deceler-
ation 3.86 m/s2 implied by the braking distance rule “speedometer reading in km/h
squared divided by 100” (Problem 11.2) but above typical comfortable decelerations
of the order of 2 m/s2. We conclude that the legal minimum duration of yellow phases
is consistent with the driver and vehicle capabilities.

14.3 Entering a Highway with Roadwork
In this situation, we can apply both the safety criterion (14.4) of the general lane-
changing model or the safety criterion of the decision model (14.27) for entering
a priority road. With the notations of Fig. 14.6, we obtain for a defensive driver
(bsafe = 0)

sf > ssafe(vf, v) = sopt(vf) = vfT = 20 m.

Here, we have dropped all hats, consistent with the convention adopted in Sect. 14.5.
In the “worst case”, the driver decides to merge if the vehicle on the highway is just
ssafe = 20 m away. Now we calculate the minimum deceleration bmin the driver on

http://dx.doi.org/10.1007/978-3-642-32460-4_14
http://dx.doi.org/10.1007/978-3-642-32460-4_14
http://dx.doi.org/10.1007/978-3-642-32460-4_14
http://dx.doi.org/10.1007/978-3-642-32460-4_14
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the main-road has to adopt to avoid a crash. Applying the kinematic braking distance
s = Δv2/(2b) to the critical distance ssafe = 20 m, the initial speed difference
Δv = vf = 20 m/s, and the relative deceleration b = bmin + a (assuming that the
merging vehicle accelerates at a = 2 m/s2), and solving for bmin results in

bmin = v2
f

2s
− a = 8 m/s2.

We observe that, in spite of the very conservative assumption bsafe = 0 in the decision
model, the actually necessary deceleration of the main-road vehicle corresponds
to an emergency braking maneuver. This discrepancy can be traced back to the
OVM whose braking strategy is inconsistent with kinematic constraints and does
not contain the speed difference although this is a crucial exogenous factor (in fact,
the OVM simulation will lead to crashes in this situation). As shown in the next
problem, drivers modeled by the Gipps’ model or the IDM family will make a
consistent decision in this situation.

14.4 An IDM Vehicle Entering a Priority Road
In this situation (Fig. 14.6 for vα = 0), the IDM safety criterion (14.27) reads

sf > sIDM
safe (vf, 0) =

s0 + vfT + v2
f

2
√

ab√
afree(vf)

a + bsafe
a

,

or, with s0 = 0, vf = v0, and a = b = bsafe (then, the square root is equal to 1)

sf > sIDM
safe = vfT + v2

f

2bsafe
.

This means, the minimum gap to allow merging corresponds to the stopping distance
of the follower on the main-road (braking distance v2/(2b) plus distance vTr driven
during the reaction time) when the desired time headway is set equal to the reaction
time, T = Tr . Consequently, the IDM safety criterion for merging is consistent with
the driver capabilities and kinematic constraints. For T = 1 s, bsafe = 2 m/s2, and
v0 = 50 km/h, we obtain as safe distance for merging sIDM

safe = 31 m.

Problems of Chapter 15

15.1 Characterizing the Type of Instability
The displayed traffic flow is locally stable since, after a sufficient time, each driver
reverts to the steady state (he or she stops, at most, once). At the same time, the
dynamics is string unstable since the amplitude of the oscillations increase from
vehicle to vehicle. The string instability is convective (of the upstream type) since

http://dx.doi.org/10.1007/978-3-642-32460-4_14
http://dx.doi.org/10.1007/978-3-642-32460-4_14
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there is only a single traffic wave: After a sufficiently long time, traffic flow reverts
to the steady state at any fixed location.

15.2 Propagation Velocity of Traffic Waves in Microscopic Models
At first, we transform the microscopic propagation velocity given in the comoving
(Lagrangian) coordinate system to a stationary coordinate system:

c̃ = ve + c̃rel = ve − (se + l)v′
e(se) = ve − v′

e(se)

ρe
.

Here, we used the relation se + l = 1/ρe. Now we express the microscopic gradient
v′

e(s) by the corresponding macroscopic quantity V ′
e(ρ). Using the identity ve(s) =

Ve(ρ(s)) and the micro-macro relation ρ = 1/(s + l), we obtain

v′
e(s) = dve

ds
= dVe

dρ

dρ

ds
= − V ′

e(ρ)

(s + l)2 = −ρ2V ′
e(ρ). (2.10)

Inserting this into the expression for c̃ gives the final result

c̃ = ve − v′
e(se)

ρe
= Ve + ρeV ′

e(ρe) = d

dρe
(ρeVe) = Q′

e(ρe).

15.3 Instability Limits for the Full Velocity Difference Model
Subproblem 1: The local stability criterion is satisfied if

ãv + ãΔv = − 1

τ
− γ ≤ 0 ⇒ γ ≥ − 1

τ
= −0.2 s−1.

This is true even for slightly negative values of the sensitivity γ to speed differences
(although this implies accelerations in response to positive approaching rates which
is no reasonable behavior). As such, it reflects the result that all reasonable (and
even some unreasonable) models without explicit delays (reaction times) are locally
stable.

Subproblem 2: For v ≥ v0, there are no interactions and, therefore, no instabilities. If
v < v0, we have v′

e(s) = 1/T , ãv = −1/τ , and ãΔv = −γ . Inserting these relations
into condition (15.25) for an oscillation-free local car-following characteristics yields

1

T
≤ 1

4τ
(1 + γ τ)2 .

Solving this quadratic inequality for γ results in

γ ≥ − 1

τ
± 2√

T τ
= 0.69 s−1.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
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Here, we used the general plausibility condition γ ≥ 0 to select the positive sign of
the square root when calculating the numerical value.

Subproblem 3: To determine the limits of string instability, we use criterion (15.69).
Solving the resulting inequality for γ yields

γ >
1

T
− 1

2τ
= 0.9 s−1.

We observe that car-following schemes may be string unstable even if they do not
produce any kind of oscillations (damped or otherwise) when following a single
leader. Here, this applies to the parameter range 0.69 s−1 < γ ≤ 0.9 s−1. This is
highly relevant when investigating the effects of adaptive cruise control systems on
traffic flow.

15.4 Stability Properties of the Optimal Velocity Model Compared to Payne’s
Model
The OVM criterion for string stability reads v′

e(s) ≤ 1/(2τ), and the corresponding
criterion for flow stability in Payne’s model −V ′

e(ρ) ≤ 1/(2ρ2τ). Using the micro-
macro relation v′

e(s) = 1/ρ2
e V ′

e(ρ) already needed for Problem 15.2, we show the
equivalence by direct substitution:

1

2τ
≥ v′

e(se) = −ρ2
e V ′

e(ρe(se)) ⇒ −V ′
e(ρ) ≤ 1

2ρ2τ
q.e.d.

15.5 Flow Instability in Payne’s Model and in the Kerner-Konhäuser Model
Subproblem 1: We have solved the general flow stability problem for Payne’s model
already in Problem 15.4. For the triangular fundamental diagram as specified in the
problem formulation, the gradient of the speed-density relation reads

V ′
e(ρ) =

{
0 ρ ≤ ρC,

− 1
ρ2T

ρ > ρC,

with the density at capacity ρC = 1/(v0T + leff) = 20 vehicles/km. For free traffic
(ρ < ρC) there are no interactions (V ′

e(ρ) = 0) and therefore unconditional stability.
Congested traffic flow (ρ ≥ ρC) is stable if

τ <
T

2
.

This means, Payne’s model describes stable congested traffic for unrealistically
small adaptation times τ , only.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
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Subproblem 2: For the Kerner-Konhäuser model, the flow stability criterion reads
(ρV ′

e(ρ))2 < θ0. Inserting the steady-state relation Ve(ρ) = max[V0, 1/T (1/ρ −
1/ρmax)] gives, again, unconditional stability for free traffic flow (ρ < ρC = 20/km)
which is consistent with the requirements of the problem formulation. For congested
traffic (ρ > ρC ), we have

1

ρ2T 2 < θ0.

From this condition, we determine θ by demanding that congested traffic flow should
be unstable for densities below ρ3 = 50 /km, and stable above. With T = 1.1 s and
ρ3 = 50 /km, we finally obtain (cf. the figure below)

θ0 = 1

ρ2
3 T 2

= 331
m2

s2 .

ρcrit ρ3

Ve

ρ

Kerner−Konhäuser (KK) Model 
stable

instable

stable

15.6 Flow Instability of the GKT Model
For high densities near the maximum density, we can approximate the GKT steady-
state flow by Qe ≈ 1/T (1 − ρ/ρmax), or V ′

e(ρ) = −1/(Tρ2) ≈ −1/(Tρmax)
2.

Without anticipation (γ = 0) and assuming a constant speed variance prefactor
αmax = α(ρ) ≈ α(ρmax) which is equivalent to P ′

e ≈ σ 2
V ≈ αmaxV 2

e , the GKT
stability criterion (15.83) becomes

(ρV ′
e)

2 − P ′
e = 1

T 2ρ2 − αmaxV 2
e ≤ 0.

Since, for ρ → ρmax, the expression (Tρ)−2 tends to the squared propagation veloc-
ity c2 of moving downstream jam fronts while the speed variance αmaxV 2

e tends to
zero, the stability criterion cannot be satisfied: Without anticipation, the GKT model
is unconditionally unstable for sufficiently high densities!

For a finite anticipation range sa = γ VeT , however, the third term of the stability
condition (15.83) can stabilize traffic flow. Sufficiently close to the maximum density,
we can approximate the full GKT flow stability criterion to an analytically tractable
condition. If ρ ≈ ρmax, we have, up to linear order in Ve

http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_15
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ρV ′
e ≈ − 1

Tρ
, P ′

e ≈ αmaxV 2
e ≈ 0, sa(V0 − Ve) ≈ γ VeV0T .

Furthermore, with ρmax/(ρmax − ρ) ≈ (ρVeT )−1, we can approximate the bracket
of the last term of Eq. (15.83) by

[
ρmax

ρmax − ρ
− ρV ′

e

σV
√

π

]
≈ 1

ρVeT

(
1 + 1√

αmax

)
.

Inserting all this into the GKT stability condition (15.83), we find that the GKT model
is string stable for densities near the maximum density if the anticipation factor γ

fulfils
γ >

τ

2T 2ρmaxV0
[
1 + (αmaxπ)−1/2

]

which is condition (15.84).

15.7 IDM Stability Class Diagram for other Parameter Values
In the following, we will denote the scaled dimensionless quantities with a tilde.
According to the problem formulation, the scaled time and space coordinates as well
as derived variables (speed, acceleration) are related to the unscaled quantities as

t =
√

s0

b
t̃, x = s0 x̃, v = √bs0ṽ,

dv

dt
= b

dṽ

dt̃
.

Inserting this transformation into the IDM equations results in

dṽ

dt̃
= a

b

[
1 −

(√
bs0ṽ

v0

)4

−
(

s̃∗

s̃

)2
]

,

s̃∗ = s∗

s0
= 1 +

√
b

s0
T ṽ −

√
b

a

ṽΔṽ

2
.

As a consequence, the prefactors of the different new terms are dimensionless as well.
Moreover, they come in only three combinations of the original IDM parameters
which we can identify as the new model parameters:

ṽ0 = v0√
bs0

, ã = a

b
, T̃ = T

√
b

s0
.

Thus, the scaled IDM equations read

dṽ

dt̃
= ã

[
1 −

(
ṽ

ṽ0

)4

−
(

s̃∗

s̃

)2
]

, s̃∗ = 1 + ṽT̃ − ṽΔṽ

2
√

ã
.

http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_15
http://dx.doi.org/10.1007/978-3-642-32460-4_15
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This allows a powerful conclusion13: Changing the five physical IDM parameters
such that ṽ0, ã, and T̃ remain unchanged does not change the scaled IDM equations,
nor the local dynamics. This allows to reduce the five-dimensional IDM parameter
space spanned by V0, T , a, b, and s0 to the three-dimensional space (Ṽ0, T̃ , ã)

spanned by the dimensionless parameters. However, the stability class depends not
only on the local dynamics but also on the vehicle length influencing the macroscopic
fundamental diagram Qe(ρ) and the sign of propagation velocities. Therefore, to
ensure the same stability class, a forth dimensionless parameter

l̃ = l/s0

must be kept constant.
When applying these insights to the concrete problem of where to read off the

stability class in the a-T -class diagram when other IDM parameters are changed,
we observe that this is only possible if speed is changed proportionally to changes
of

√
bs0 and the vehicle length changes proportionally to s0. Only then, the two

scaled parameters ṽ0 and l̃ containing neither a nor T remain unchanged. This is
fulfilled here since s0 does not change anyway and the new values v∗

0 = 139 km/h
and b∗ = 2 m/s2 of the desired speed and time headway, respectively, satisfy ṽ0 =
v0(bs0)

−1/2 = v∗
0(b

∗s0)
−1/2 = const. In order to make sure that ã and T̃ remain

unchanged as well, we read off the old diagram at the coordinate (T ∗, a∗) = (τT, αa)

rather than at (T, a). We fix the scaling factors τ and α to fulfill the conditions

a

b
= a∗

b∗ = αa

b∗ , T

√
b

s0
= T ∗

√
b∗
s0

= τT

√
b∗
s0

resulting in

τ =
√

b

b∗ = 0.87, α = b∗

b
= 1.33.

This means, for the new values of v0 and b, one reads of the class diagram at 0.87
times the original T coordinate and 1.33 times the original a coordinate.

15.8 Fundamental Diagram with Hysteresis
Subproblem 1: Maximum free-traffic flow:

Qfree
max = v0ρ

free
max = 2,400 vehicles/h.

13 In hydrodynamics, such scale relations are the basis to measure the hydrodynamics of big objects
(ships, planes etc.) by observing a scaled-down (physical) model of the object in a wind or water
channel rather than observing/measuring the real thing.
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Subproblem 2: The congested part of the fundamental diagram corresponds to the
congested part of the triangular fundamental diagram for the parameters Qcong(ρ) =
1/T (1 − ρleff) where leff = l + s0 = 6.67 m. This congested branch intersects the
free branch at the same point (ρC , Qdyn

max) that would correspond to the maximum of
the triangular diagram without hysteresis:

ρ
cong
min = ρC = 1

v0T + leff
= 16.67 vehicles/km.

Subproblems 3 and 4: The jam outflow is characterized by the dynamic capacity
Qdyn

max = v0ρC = 2,000 vehicles/h. This describes a capacity drop of

ΔQ = Qfree
max − Qdyn

max = 400 vehicles/h (or 16.7 %).

The density of the outflow is given by ρC . This means, hysteretic effects can take
place in the density range ρ ∈ [ρC, ρfree

max], or, numerically, ρ ∈ [16.67 vehicles/h,
20 vehicles/h].
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Problems of Chapter 16

16.1 Influence of Serial Correlations on Measures of Parsimony
Given are twenty data points (si , vi ) of which the first 10 and the second 10 are iden-
tical. This means, Model (i) can fit, at least, ten data points exactly, while Model (ii)
fits the data to 100 %, after calibration. In contrast, if the data were not serially cor-
related, Models (i) and (ii) will fit at least one and two data points, respectively.
This result does not depend on the specific model, since the same would apply to,
say, the models (i): v̂(s) = ln(β0/s) and (ii): v̂(s) = ln(β0/s + β1). This means,
even completely nonsensical models fit one additional data point per parameter if
the data points are independent, but they fit ten additional points if they are serially
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correlated as in this example. Now assume a nonsensical addition to a given model
introducing one new parameter. For iid errors in the data, a parsimony test such as
the likelihood-ratio test would yield a negative result for the augmented model since
each parameter can always fit one additional data point without increasing its predic-
tive value which such tests take care of. However, for correlated data as above, this
parameter explains ten additional points. For robustness tests assuming iid errors,
this corresponds to nine nontrivial fits which such tests may erroneously interpret as
worth the additional parameter.

Problems of Chapter 17

17.1 Phase Diagram for Stability Class 3
For class 3, there are no traffic-flow instabilities and no hysteresis. Therefore, one
just distinguishes between free traffic and homogeneous congested traffic:
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Free Traffic
=Q

max

tot

Q

Furthermore, since no instability also implies no hysteresis effects, there is only one
phase diagram valid for both small and large initial perturbations.

17.2 Boundary-Induced Phase Diagram
The kind of extended congested pattern (TSG, OCT, HCT) is directly defined by the
supply restriction Qout. Because of the oscillatory nature of the congested states for
comparatively high values of Qout (OCT and TSG), significant perturbations arrive at
the upstream boundary activating the “inflow-bottleneck” if Qin > Cdyn (remember
that we have I = 1 lane). If, additionally, Qout ≥ Cdyn, the potential outflow is higher
than the inflow restricted by the activated inflow-bottleneck. This means there is free
traffic in the bulk of the investigated road section corresponding to the maximum-
flow state. If, however, Qout < Cdyn, congested traffic will arise everywhere and
the inflow-bottleneck (whether activated or not) is no longer relevant. Therefore, the
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maximum-flow state requires both Qin > Cdyn and Qout ≥ Cdyn. This results in
following boundary-induced phase diagram:
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The situation with an activated inflow bottleneck corresponds to the stationary front
of a bottleneck in inhomogeneous systems. However, since no upstream region is
simulated here, the stationary front appears as a “standing wave”. In simulations, acti-
vated inflow bottlenecks are a serious problem since they introduce bottlenecks not
corresponding to anything in reality. Dedicated and very complex upstream boundary
conditions (not discussed here) are necessary to avoid them.

Problems of Chapter 18

18.1 Locating a Temporary Bottleneck
From the data of floating car 3, we know that this car leaves a jam, i.e., crosses its
downstream boundary, at the spatiotemporal point A depicted in the diagram below.
From the data of detector 2 (point B), we know that this front is moving. We can
exclude that the transition from congested to free traffic recorded by detector 2 at
point B corrresponds to a downstream moving upstream front because (i) detector
D1 records essentially constant traffic flow, (ii) the data of the detector D2 and the
floating car 3 imply an upstream propagating upstream jam front, i.e., a growing jam.
Hence, the upstream front is propagating backwards as long as it exists.

From Stylized Fact 2 we know that downstream fronts are either stationary or move
at a constant velocity ccong. Hence, the set of possible spatiotemporal points indicating
when and where the road closure is lifted, lies on a line connecting the points A and
B at a position x > xA. The end of the road block not only sets the downstream
jam front into motion but also leads to a transition empty road → maximum-flow
state. The shockwave formula (8.9) implies that this front propagates with the desired
free-flow speed v0. Microscopically, this transition is given by the first car passing

http://dx.doi.org/10.1007/978-3-642-32460-4_8
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the accident site. This car is recorded as first trajectory of the trajectory data from
the bridge at point C. Assuming, for simplicity, an instantaneous acceleration to the
speed v0, another set of possible spatiotemporal points for the removal of the road
block is given by a line parallel to the first trajectory and touching it at point C (dashed
line in the diagram). Intersecting the lines AB and the line parallel to the trajectories
and going through C gives us the location and time of the lifting of the road block by
the intersecting set of the two lines (point D), and also the location of the accident.

To estimate the time when the accident occurred, we determine the intersection
F of the line x = xD of the temporary bottleneck, and the line representing the
extrapolation of the last trajectory (point E) to locations further upstream (dashed
line). Finally, because of the constant inflow recorded by D1, we know from the
shockwave formula that the upstream jam front propagates essentially at a constant
velocity, i.e., it is given by the line intersecting F and G. The jam dissolves when the
upstream and downstream fronts meet at point H.
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Problems of Chapter 19

19.1 Criteria for Estimating Travel Times by N-Curves
This method works exactly on roads with a single lane per driving direction and with-
out ramps or other non-flow-conserving bottlenecks. Without floating cars, initial-
ization and corrections of the cumulated vehicle numbers are possible on a heuristic
basis, only. If the past speed data indicate free-flow speed and there are no fast-
growing differences Ni − N j between the N-curves of the detectors i and j , one
assumes that there is free traffic in between, and initializes/corrects the N-curves
by Eq. (19.10) with the density estimated by the average flow divided by the aver-

http://dx.doi.org/10.1007/978-3-642-32460-4_19
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age speed. During the evolution of a jam (indicated by fast growing differences
Ni − Ni+1), there are no correction possibilities without floating cars.

19.2 Estimating Travel Times from Aggregated Detector Data
Subproblem 1: The following figure displays two possibilities leading to the observed
zero traffic flow at detector D2 between 16:00 and 16:30 h: (1) The accident happens
upstream of D2 causing a temporarily empty road (ρ = 0, Q = 0) near the detec-
tor location D2. (2) The accident happens downstream of D2 causing temporarily
blocked traffic (ρ = ρmax, Q = 0) near the detector location D2.
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Subproblem 2: Assuming a free-flow speed of 120 km/h, it takes τ12 = 2 min = 120 s
to pass the 4 km long section between the detectors D1 and D2. In this time interval,
Δn = 60 vehicles have passed D1. Setting the cumulated vehicle count N1(0) = 0
for the time 16:00 h (corresponding to t = 0), we obtain N2(0) = 60. With this
initialization, we calculate the cumulated vehicle count as a function of time, i.e.,
the N-curves, N1(t) and N2(t), by piecewise integration of the flows given in the
problem statement:

N1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

60 + 0.5 t t < 2520,

1320 2520 ≤ t < 3000,

1320 + (t − 3000) = t − 1680 3000 ≤ t < 3480,

1800 + 0.5 (t − 3480) = 60 + 0.5 t t ≥ 3480,

and

N2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5 t t < 0,

0 0 ≤ t < 1800,

t − 1800 1800 ≤ t < 3600,

0.5 t t ≥ 3600.
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Subproblem 3: Sketch of the N-curves:
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The realized travel time τ12(t) at time t = 2,400 s can be read from the diagram by
the length of the horizontal line at height N = N2(2400) = 600 s intersecting the
curves N1(t) and N2(t): τ12(t = 2,400) ≈ 1,300 s (exactly: 1,260, see below). The
expected travel time τ̃12(t) at time t = 2,400 s is equal to the length of the horizontal
line at height N1(2400) = 1,250 intersecting the two N-curves: τ̃12(t) ≈ 600 s
(exactly: 660).

Subproblem 4: The diagram of the N-curves shows that, when estimating τ̃12(t)
within the time interval −120 s ≤ t < 2,520 s, the horizontal line intersecting the
N-curves has a height N between N1(−120) = 0 and N1(2,520) = 1,320. We
determine its length between the intersections with the N-curves using the results of
subproblem 2:

N1(t) = N2(t + τ̃12)

60 + t

2
= (t + τ̃12) − 1,800 ⇒ τ̃12 = 1,860 − t

2
.

For t < −120 s, we have τ̃12 = 120 s, i.e., equal to the free-flow travel time. At
t = −120 s, there is a jump from 120 to 1,920, i.e., by 1,800 s or 30 min. This
corresponds to the waiting time difference between the last vehicle that can pass
before the road closure becomes active (possibly the car causing the accident), and
the car after it having to wait the full duration of the road block.

For τ12(t) within the time interval 1,800 s ≤ t < 3120 s, we obtain analogously

N1(t − τ12) = N2(t)

60 + 1

2
(t − τ12) = t − 1,800 ⇒ τ12 = 3,720 s − t.
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Subproblem5: Since, according to the problem statement, the floating car slows down
sharply when passing D2 at 16:00 h, the accident happened downstream of D2 some-
what before 16:00 h. This corresponds to situation (2) discussed in subproblem 1
above.

Problems of Chapter 20

20.1 Coefficients of a Statistical Modal Consumption Model
Assuming a constant specific consumption Cspec = 1/(γ wcal) (purely analytic
physics-based model) and inserting Eqs. (20.14), (20.5), and (20.4) into Eq. (20.12)
gives following function for the instantaneous model consumption:

Ċ = Cspec P = Cspec max [0, P0 + Fv]

= Cspec max

[
0, P0 + mvv̇ + m(μ + φ)gv + 1

2
cdρ Av3

]
.

Apart from the maximum condition, this is a parameter-linear function whose para-
meters β j can be easily estimated by conventional multivariate regression. Compar-
ing this function with the statistical model specified in the problem statement and
using Table 20.2 gives following relations and values for the model parameters:

β0 = Cspec P0 = 25.0 · 10−3 l/s,

β1 = Cspecmgμ = 24.5 · 10−6 l/m,

β2 = 0,

β3 = 1
2 Cspeccdρ A = 32.5 · 10−9 l s2/m3,

β4 = Cspecm = 125 · 10−6 l s2/m2,

β5 = Cspecmg = 1.23 · 10−3 l/s.

http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20


486 Solutions to the Problems

The following figure gives a plot of this function:
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20.2 An Acceleration Model for Trucks
To solve this problem, we only need the power module of the physics-based modal
consumption/emissions model. Assuming a constant engine power P and solving
Eq. (20.5) for the acceleration gives

v̇P (v,φ) = P − P0

mv
− g(μ + φ) − 1

2
cdρ Av2.

To include the restraints “maximum acceleration amax” and “no positive acceler-
ation at speed v > v0”, we obtain the final form of the free-flow truck acceleration
model:

v̇(v,φ) =
{

min (amax, v̇P (v,φ)) v ≤ v0
min (0, v̇P (v,φ)) v > v0.

Following plot shows that the engine power is not sufficient to drive the truck at
80 km/h along a 2 % uphill gradient:
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20.3 Characteristic Map of Engine Speed and Power
“Full throttle” corresponds to the top part of the allowed operating region for a given
engine speed, i.e., to the top contourline. At 3,000 rpm it corresponds to 70 kW. For

http://dx.doi.org/10.1007/978-3-642-32460-4_20
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a power demand of 60 kW, an engine speed f = 3,300 rpm (or the speed nearest to
this value allowed by the transmission) results in most efficient fuel usage.

20.4 Characteristic Map of Engine Speed and Mean Effective Pressure
(i) 60 kW, (ii) An engine speed of 2,600 min−1 results in a specific consumption below
375 ml/kWh while, at 4,000 min−1, the specific consumption is above 400 ml/kWh.
The first option is more efficient.

20.5 Does Jam Avoidance Save Fuel? At high vehicle speeds, the aerodynamic
drag becomes dominant and the consumption per kilometer increases nearly quadrati-
cally. Therefore, the savings potential decreases and can even become negative (when
comparing homogeneously flowing congested traffic with high-speed free traffic).

20.6 Influencing Factors of Fuel Consumption Combining Eqs. (20.16), (20.14),
(20.5), and (20.4) for the purely analytical physics-based model (constant specific
consumption), we obtain following relation for the consumption per travel distance:

Cx = dC

dx
= Cspec max

[
0,

(
P0

v
+ mv̇ + (μ + φ)mg + 1

2
cdρ Av2

)]
. (2.11)

1. Air condition: Correct. The additional power ΔP0 results in an additional con-
sumption ΔCx = CspecΔP0/v which increases for decreasing speed. (Numerical
values for ΔP0 = 4 kW: 3 l/100 km at 40 km/h and 1.5 l/100 km at 80 km/h.)

2. Roof rack: False. It is true that the increased cd value increases the consumption per
distance by ΔCx = CspecΔcdρ Av2/2. However, this increase grows quadratically
with the vehicle speed, i.e., it is lowest for city traffic. (Numerical values for Δcd =
0.08: 0.43 l/100 km at 80 km/h and 1.71 l/100 km at 160 km/h)

3. Disconnecting the clutch when driving downhill: False. If the clutch is discon-
nected, the driving shaft is decoupled from the generator and the overrun fuel cut-off
cannot operate. In this case, the instantaneous consumption rate is given by the idling
consumption rate Ċ0 = Cspec P0 leading to Cx0 = Cspec P0/v for the consumption
per distance. With the clutch connected, the fuel consumption Cx is less than Cx0 if
F < 0, and the overrun fuel cut-off is fully operative, i.e., Cx = 0, if F < −P0/v.
(Numerical values at 50 km/h: Cx0 = 1.8 l/100 km; downhill gradient where the
driving resistance F is equal to zero: −2.5 %; downhill gradient where the overrun
fuel cut-off is fully operative: −4.0 %.)

4. Only use half the capacity of the tank: False. At a tank capacity of 60 l, the average
fuel volume is 30 l for the cycle full-empty-full etc, and 15 l for the cycle half filled-
empty-half-filled etc. This corresponds, on average, to a savings of the total mass
by Δm < 15 kg (since the specific mass of fuels is less than 1 kg/l). The resulting
effect on the consumption per distance, ΔCx = −CspecΔmgμ < 0.025 l/100 km, is
independent of the speed v and negligible (but the risk to run out of fuel increases).

http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20
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5. Reduce speed from 50 to 30km/h: False. At speeds below the optimal value of about
50–60 km/h (cf. the figure below), the consumption (2.11) per distance increases
with decreasing speed. Specifically, Cx = 5.7 l/100 km at 30 km/h and 4.9 l/100 km
at 50 km/h.
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6. Reduce speed from 150 to 130km/h: Correct. Cx = 7.4 l/100 km at 130 km/h and
8.7 l/100 km at 130 km/h (cf. the figure above).

20.7 Highway Versus Mountain Pass: Which Route needs More Fuel? When
choosing alternative 1, i.e., driving the level highway at 150 km/h, one needs
8.7 l/100 km (cf. Solution to Problem 20.6).
When choosing alternative 2, i.e., driving the mountain pass at 72 km/h, one needs fuel
only for the 50 % of the route going uphill while the downhill gradient of 8 % is more
than enough to fully activate the overrun fuel cut-off (cf. the figure at the solution
to Problem 20.6). With Eq. (2.11), we obtain for the uphill sections (φ = 0.08)
a consumption Cx = 14.8 l/100 km. For the complete mountain pass (uphill and
downhill), the consumption halves to Cx = 7.4 l/100 km which is less than the
consumption on the highway! (The balance tips over to the other side for gradients
of more than 10 % or when driving more slowly on the highway.)

20.8 Four-way-stops Versus Intersection with Priority Rules
The analysis of situation II (constant speed v0 = 16 m/s) is easy: With Eq. (2.11),
we obtain for the 500 m long stretch between two intersections

CII = LCx = 24.2 ml.

For situation I, we separate the driving cycle between two intersections into three
driving modes: (i) accelerating from zero to v0, (ii) cruising at v0, and (iii) decelerating
to a full stop at the next intersection.

(i) Acceleration phase. With v̇ = a = 2 m/s2, this phase lasts a time interval of
ta = 8 s during which a distance of La = v2

0/2a = 64 m is covered. Because both Cx

and Ċ are variable during the acceleration phase, explicit integration is necessary. We
choose integration over time. With Eq. (20.12) and Cspec = 1/(γ wcal), the integrand
Ċ reads

http://dx.doi.org/10.1007/978-3-642-32460-4_20
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Ċ(t) = dC

dt
= Cspec

(
P0 + mv̇v(t) + (μ + φ)mgv(t) + 1

2
cdρ Av3(t)

)
. (2.12)

With v(t) = at , the integration can be evaluated analytically:

Cacc =
ta∫

0

Ċ(t)dt

= Cspec

ta∫

0

(
P0 + ma2t + μmgat + 1

2
cdρ Aa3t3

)
dt

= Cspec

(
P0 ta + 1

2
ma(a + μg)t2

a + 1

8
cdρ Aa3t4

a

)
.

Using ta = v0/a and La = 1
2 at2

a , we simplify this expression to

Cacc = CspecWacc = Cspec

(
P0 ta + 1

2
mv2

0 + mμgLa + 1

4
cdρ Av2

0 La

)
= 19.8 ml.

The terms in the parenthesis of the last equation have the following meanings: P0ta is
the energy necessary to operate all the secondary appliances during the acceleration
phase, 1

2 mv2
0 is the kinetic energy at the end of this phase, mμgLa is the energy lost

(or, more precisely, transformed to heat) by the solid-state friction, and 1
4 cdρ Av2

0 La

is the energy lost by the aerodynamic drag.

(ii) Cruising phase. Since both the acceleration and deceleration phases cover a road
section of La = 64 m, a distance Lc = L − 2La = 372 m remains for the cruising
phase. Correspondingly,

Ccruise = CspecWcruise = LcCx (v0, v̇ = 0) = 18.0 ml.

(iii) Deceleration phase. Due to overrun fuel cutoff, no fuel is consumed in this
phase, so Cbrake = 0.14

Result for situation I: The total consumption between two intersections for the traffic
rules of situation I equals

CI = Cacc + Ccruise + Cbrake = 37.9 ml

which has to be compared with CII = 24.2 ml.

14 Strictly speaking, this is not true for the very last part of the deceleration phase when the speed
(ignoring aerodynamic drag) drops below vc = P0/[m(|v̇|−μg)] ≈ 7 km/h. This is neglected here.
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In summary, the fuel saving potential of changing the traffic rules from that of
situation I to that of situation II is about 35 % which is massive.

20.9 Under Which Conditions Do All-Electric Cars Save
CO2 emissions?
The gasoline vehicle is treated as in Problem 20.8 with an increased cruising speed
for situation II: Per kilometer, i.e., doubling the values between two intersections,
we obtain following fuel consumptions for situations I and II:

C I
x = 0.076 l/km, C II

x = 0.074 l/km,

or, with 2.39 kg CO2/l, the CO2 emissions

E I, gas
x = 181 g/km, E II, gas

x = 176 g/km.

For the all-electric car in situation I, we need per kilometer (i.e., for two start-stop
cycles between intersections) a total electrical energy of

W I
el = 2

[
1

γel
(Wacc + Wcruise + γrecWbrake)

]
= 794 · 103 Ws

where the required mechanical work for the acceleration and cruising phases of
the driving cycle between two intersections is calculated as in Problem 20.8, and the
mechanical work for the braking phase is that of the acceleration phase minus the
double kinetic energy at cruising speed, Wbrake = Wacc − mv2

0:

Wacc = 238 · 103 Ws, Wcruise = 216 · 103 Ws, Wbrake = −146 · 103 Ws.

The required total electrical energy per kilometer in situation II (cruising at 130 km/h)
is calculated from the mechanical energy “power times time”,

W II
el = 1

γel

P

v
1 km = 1 042 · 103 Ws.

With an energy mix of 600 g CO2 per kWh electrical energy, the global CO2 emissions
due to operating the electric car in the two situations amounts to

E I, el
x = 132 g/km, E II, el

x = 174 g/km.

Comparing this with the emissions of the gasoline car, we conclude that the all-
electrical car emits significantly less CO2 in city traffic but the global CO2 emissions
differ insignificantly when driving on highways. Of course, the results depend on
many assumptions. For example, the battery adds about 150 kg to the electric vehicle
(which is neglected here), the energy mix in Europe is more favorable, etc. However,
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these assumptions are all transparent in the physics-based consumption/emission
models.

20.10 Fuel Consumption for an OVM-Generated Speed Profile
Subproblem 1: The OVM free acceleration v̇ = (v0 − v)/τ is maximal at v = 0.
Prescribing v̇max = v0/τ = 2 m/s2 gives the relaxation time τ = v0/a = 16.67 s.15

Subproblem 2: We calculate the instantaneous power at a given speed v from
Eq. (20.5) with Eq. (20.4):

P(v, v̇) = Ċ(v, v̇)

Cspec
= P0 + mv̇v + (μ + φ)mgv + 1

2
cdρ Av3.

Inserting the OVM free acceleration v̇ = (v0 − v)/τ , we obtain POVM(v) = A0 +
A1v + A2v2 + A3v3 where

A0 = P0 = 3 kW, A1 = m
(

gμ + v0

τ

)
= 3,294 W s/m,

A2 = −m

τ
= −90 W (s/m)2, A3 = 1

2
cdρ A = 0.39 W (s/m)3.

Subproblem 3: As usual, we calculate extremal values by setting the derivative with
respect to the interesting variable (here, the speed v) equal to zero:

dPa

dv
= A1 + 2A2v + 3A3v2 != 0.

This quadratic equation has two solutions and corresponding extremal power
requirements POVM:

v1 = 132.6 m/s = 477.4 km/h, POVM(v∗
1) = −233 kW,

v2 = 21.2 m/s = 76.4 km/h, POVM(v∗
2) = 36.1 kW.

Obviously, the second solution is the correct one since the power (and the OVM accel-
eration) is negative for the first one.16 The maximum power during the acceleration
phase is reached at 76 km/h. Its value is 36.1 kW.
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20.11 Trucks at Uphill Gradients

15 At this value, the OVM is extremely unstable and cannot be used for simulating interacting or
congested traffic.
16 This solution represents the minimum power requirement.

http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20
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1. Engine power: With Eqs. (20.5) and (20.4), we obtain for the necessary power to
maintain a speed v = vlimit = 80 km/h at level roads

Pdyn = P − P0 = vF(v) = μmgv + 1

2
cdρ Av3 = 249 kW + 57 kW = 306 kW.

2. Initial deceleration: The two new forces entering the balance are the uphill-slope
force and the inertial force. Since, initially, all other forces remain unchanged, the
two new forces must cancel each other, i.e.,

φg + v̇ = 0 ⇒ v̇ = −φg =
{−0.49 m/s2 at 5 % gradient,

−0.39 m/s2 at 4 % gradient.

3. Terminal speed: Equation (20.5) also delivers the terminal speed at a gradient φ

by setting v̇ = 0 and solving for v. Neglecting the aerodynamic drag, we obtain

Pdyn = (μ + φ)gmv ⇒ v∞ = Pdyn

(μ + φ)gm
=
{

10.2 m/s at 5 % gradient,
11.7 m/s at 4 % gradient.

4. Estimating the OVM parameters in the uphill section: Since the OVM speed
approaches asymptotically the desired speed v∞, we can set the OVM “desired
speed” in the uphill sections equal to the terminal speed v∞. The initial accelerations
calculated in subproblem 2 at the desired speed v0 of the level section serve to estimate
τ via v̇ = (v∞ − v0)/τ , i.e., τ = (v∞ − v0)/v̇, resulting in

τ =
{

24.4 s at 5% gradient,
26.8 s at 4 % gradient.

5. Speed and distance over time: The solution to the inhomogeneous ordinary dif-
ferential equation dv

dt = (v∞ − v)/τ for the initial condition v(0) = v0 reads (cf. the
following figure)

v(t) = v∞ + (v0 − v∞) e−t/τ ,

x(t) = v∞(t − τ) + v0τ − (v0 − v∞) τe−t/τ .
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For the uphill section 1 of length L1 = 500 m and gradient φ1 = 5 %, we obtain
for the time t = t1 = 29.1 s given in the problem statement:

http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20
http://dx.doi.org/10.1007/978-3-642-32460-4_20
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v(t1) = 13.8 m/s = 49.8 km/h.

(Test: x(t1) = 500.5 m.) Analogously, we obtain for the uphill section 2 of length
L2 = 1,000 m and gradient φ2 = 4% at time t = t2 = 64.2 s:

v(t2) = 12.6 m/s = 45.2 km/h.

(Test: x(t2) = 1000.2 m.)

Discussion: Although the uphill section 1 is steeper, the speed of the trucks at its end
is higher than at the end of the less steep but longer uphill section 2. Therefore, it
makes sense to allow higher gradients on shorter uphill sections.
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Detector

cross-sectional, 17
induction loop, 13

double, 13
single, 13

stationary, 20, 371
virtual, 59, 141, 167, 327

Deterministic chaos. See Chaos
Difference equation, 81
Differential equation

partial hyperbolic, 145
delay, 173, 207, 270
ordinary, 60, 159
partial, 59, 81, 127, 128

Diffusion, 121, 136, 151
numerical, 91, 136, 153, 287

Diffusion constant, 121
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Dirac function. See d-function
Dirichlet conditions. See Bounary conditions
Disaggregation, 58
Discomfort, 420
Discrete choice

operative level, 240
strategic level, 240
tactical level, 240

Discretization errors, 149
Dispersion, 135

numerical, 153
Dispersion fan, 84
Distance gap, 14, 163
Distance headway, 14
Distance headway field, 77
Disutility, 420
Diverge, 109
Downwind finite differences, 149
Driven particles, 162
Driver-vehicle unit, 1, 27, 62, 157
Driving pattern, 381
Driving resistance, 387
Driving simulator, 3, 58
Dynamic capacity. See Capacity
Dynamic routing, 410

E
Effective total cylinder volume, 392
Efficiency factor, 391, 392
Eigenvector, 275
Einstein, Albert, 136
Elephant race, 416
Emission model

area-wide, 380
average-speed, 381
cycle-variable, 383
microscopic, 381
modal, 381

load-based, 385, 386
phenomenological, 385
physics-based, 385, 386

speed-profile, 381
traffic-situation, 381
traffic-variable, 381

Endogenous variable. See Variable
Energy density, 390
Engine efficiency, 387, 390
Engine operating point, 391
Engine speed, 382, 391, 392

normalized, 392
Equilibrium assumption, 81
Estimation error, 61, 206

gap, 210

persistence, 211
speed, 210
time dependence, 211

Euler scheme. See Numerical update
Eulerian representation, 75
Exogenous variable. See Variable
Extended floating-car data.

See Floating-car data
Extensive quantity, 424

F
F-test, 312
Factsheet. See Model
FCD. See Floating-car data
Filtering dilemma, 415
Finite difference, 145
Finite-size effects, 294
First-order model. See Model
First-principles model. See Model
Floating-car data, 7, 8, 45, 368, 371
Floating-phone data, 45, 368
Flow. See Traffic flow

microscopic, 15
Flow density, 92
Flow-density diagram, 82, 163

microscopic, 15
Force

aerodynamic drag, 389
downhill-slope, 389
electrostatic, 215
friction, 387
gravitation, 215
inertial, 388
social, 63, 162, 215, 219

Fourier expansion, 273
Fourier modes, 280
FPD. See Floating-phone data
Full Velocity Difference Model. See Model
Functional, 212, 418
Fundamental diagram, 30, 82

concave, 90
congested branch, 93
free branch, 93
inverse-lambda form, 262
microscopic, 15, 163, 267
parabolic, 437
triangular, 91

FVDM. See Full Velocity Difference Model

G
Game of Life, 225
Gap, 14, 195
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G (cont.)
desired, 258
distance, 9, 14
time, 14

Gap-acceptance rule, 246
Gas-kinetic based traffic model. See Model
Gauss-Newton algorithm
General Motors model. See Model
Genetic algorithm, 309
Gipps’ model. See Model
GKT model. See Gas-kinetic

based traffic model
Godunov scheme, 90, 105, 149
Gradient descent method, 309
Greedy algorithm, 411
Green’s function, 122
Gridlock, 108, 408, 417
Ground truth, 43

H
Harmonic mean, 15
HCT. See Homogeneous congested traffic
HDM. See Human Driver Model
Headway, 14, 20

distance, 9, 14
time, 9, 14

Heaviside function, 198
Heterogeneity. See Traffic
Heuristic, 214
High-flow state, 356
Homo oeconomicus, 241
Homogeneous congested traffic, 344, 349
Homogeneous synchronized traffic, 345, 349
HOV lane, 404
HST. See Homogeneous synchronized traffic
Human Driver Model. See Model
Hybrid model, 58
Hybrid navigation, 411
Hybrid vehicle, 390
Hysteresis, 94, 193, 262

I
IDM. See Intelligent Driver Model
IIDM. See Improved Intelligent Driver Model
Improved Intelligent Driver Model. See Model
Incentive criterion, 241

MOBIL, 244
Induction loop. See Detector
Inflow, 70
Information flow, 148, 150, 418
Inhomogeneity, 99
Initial conditions, 62, 122

Instability, 97
absolute, 263
collective, 261
convective, 150, 259, 263, 346
diffusive, 151
flow, 259, 261, 282
linear, 262
local, 259
long-wavelength, 266, 271, 276
macroscopic, 279
nonlinear, 152, 262
numerical, 150, 259
numerical convective, 150
physical, 259
platoon, 261
short-wavelength, 266
string, 261, 259, 271

absolute, 260
convective, 260

Instantaneous travel time. See Travel time
Intelligent Driver Model. See Model
Intelligent transportation systems, 4, 58,

364, 382, 404
Inter-driver variability. See Variability
Interaction, 41, 181, 362
Internal consistency, 317
Interpolation

adaptive, 42
isotropic, 39
linear, 208
spatiotemporal, 37, 40

Intersection, 251
Intra-driver variability. See Variability
Inverse-lambda form, 33, 193, 262, 339
Iterated map. See Model
ITS. See Intelligent transportation systems

J
Jam front, 133

downstream, 76, 167, 362
upstream, 95, 167

Jerk, 168, 188, 419

K
Kalman filter, 306
Kernel-based averaging, 58
Kerner-Klenov-Wolf model. See Model
Kerner-Konḧauser model. See Model
Kinematic deceleration, 191
Kinematic waves, 83
KK model. See Kerner–Konhäuser model
KKW model. See Kerner–Klenov–Wolf model
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Korteweg-de-Vries equation, 294
Krauss model. See Model

L
Lag gap, 245, 246
Lagrange multiplier, 49
Lagrangian coordinates, 127
Lagrangian formulation. See Continuity

equation
Lane change

active, 198
discretionary, 244, 405
mandatory, 244
passive, 198, 315

Lane closure, 72, 240
Lane-changing model, 62, 157

decision, 239
gap-acceptance, 246
MOBIL, 245

Lane-changing rate, 10
Lateral dynamics, 62
Lead gap, 246
Least squared errors, 304
Level of service, 381
Levenberg–Marquardt algorithm, 309
Lighthill–Whitham–Richards model.

See Model
Likelihood function, 305
Likelihood ratio test, 312
Load balancing, 410
Log-likelihood, 306
Longitudinal dynamics, 62, 157
LOS. See Level of service
Low-pass filter, 39
LSE. See Least squared errors
LWR. See Lighthill–Whitham–Richards

model

M
Macro-micro link, 97
Map-matching, 7
Markov chain, 225
Master equation, 58, 225, 470
Maximum likelihood method, 304
Maximum-flow state, 96, 351
McCormack

corrector, 147
predictor, 147

Mean effective pressure, 391
Mean flow

arithmetic, 16
Mean speed

arithmetic, 16
harmonic, 16

Mean squared errors, 304
Memory effect, 206
Mental processing time, 207
Merge, 107
Metastability, 262, 263, 295
Micro-macro link, 59, 163
Minimal model. See Model
Mirrored-k form. See Inverse-lambdaform
ML method. See Maximum likelihood method
MLC See Moving localized cluster
MOBIL See Lane-changing model
Modal consumption characteristics, 392
Modal emission model. See Emission model
Mode choice, 2
Model

acceleration, 157
action point, 188, 220
adaptive cruise control, 199
calibration. SeeCalibration
car-following, 57

continuous-time, 159
discrete-time, 160

cell-transmission, 91, 145, 237, 364
cellular automaton, 57, 60, 225
complete, 157, 171
deterministic, 61
fact sheet, 164
first-order, 82, 127, 258
first-principles, 61, 158, 187
fitting power , 333
Full velocity difference, 171, 247
gas-kinetic, 58
Gas-kinetic based traffic, 142
General motors, 158
Gipps, 184
heuristic, 61, 158
Human driver, 206, 216
hydrodynamic, 57
Improved intelligent driver, 197
input, 205
Intelligent driver, 187

scaled units, 300
iterated map, 60, 70, 160
Kerner-Klenov-Wolf, 233
Kerner-Konḧauser, 140
Krauss, 187
lane-changing. See Lane-changing model
Lighthill-Whitham-Richards, 82
longitudinal, 157
macroscopic, 57

local, 128
multi-lane, 72
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M (cont.)
mesoscopic, 58
microscopic, 57
minimal, 181
MOBIL See Lane-changing model
multi-class, 62, 405
multinomial logit, 241
multinomial probit, 241
Nagel-Schreckenberg, 229
Newell , 139, 173

generalized, 177
Optimal velocity, 168, 246
parsimonious, 240
Paveri-Fontana
Payne, 138
pedestrian, 63
predictive power, 311, 333
psycho-physiological, 206, 221
reliability, 333
robustness, 44, 144, 170, 185, 237, 311,

333, 367
scope, 183
second-order, 82, 127
section-based, 91, 364
social-force, 63
stochastic, 61, 229
sub-microscopic, 239, 297
traffic stream, 60
Wiedemann, 188, 221

Model artefact, 231
Molecular chaos. See Chaos
Moving jam, 363
Moving localized cluster, 343, 349, 361
MovSim, 4, 408, 411
MSE. SeeMean squared errors
Multi-anticipation. See Anticipation
Multi-particle model, 58
Multinomial logit model. See Model
Multinomial probit model. See Model

N
N-curve. See Cumulated vehicle number
Nagel-Schreckenberg model. See Model
Navigation device, 3, 7

connected, 411
Network, 107
Newell model. See Model
Newton’s method, 308
Noise

acceleration, 61, 213, 217, 221
exogenous, 61
parameter, 62

Noise pollution, 406

Nonlinear optimization, 421
Nonlinear wave equation, 83
NSM. See Nagel–Schreckenberg model
Numerical complexity, 91, 140
Numerical diffusion, 92
Numerical instability. See Instability
Numerical integration, 145, 161

Godunov scheme , 90
McCormack , 147
upwind , 147

Numerical method, 145
explicit , 145
implicit , 145

Numerical update, 161
Euler, 151, 161, 173
parallel , 230
Runge-Kutta, 161
sequential, 230

Numerical update time, 175, 185

O
Objective function, 304, 418, 421

unimodal , 307
Obstruction, 108
Occupancy, 15, 23, 158
OCT. See Oscillating congested traffic
Optimal speed. See Velocity
Optimal Velocity Model. See Model
Optimization problem

constrained, 49
Origin-destination matrix, 382, 418
Oscillating congested traffic, 343, 349
Oscillations. See Traffic wave
Outflow, 70
Overreaction, 257
Overrun fuel cut-off, 387
OVM. See Optimal Velocity Model

P
Parallel update. See Numerical update
Parameter estimation, 96–97
Parameter orthogonality, 312
Parameter vector, 304
Parsimony, 312
Particulate matter, 379
Passing rate, 274
Paveri-Fontana model. See Model
Payne’s model. See Model
Pedestrian, 92
Pedestrian model. See Model
Perception threshold, 220
Perception time, 207
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Phantom traffic jam, 258, 356, 360
Phase. See Traffic phase
Phase diagram, 340, 341

boundary-induced, 351
Phase velocity. See Velocity
Pinch effect, 186
Pinned localized cluster, 344, 349
Platoon. See Vehicle platoon
Platoon consistency, 317
Plausibility conditions, 182
PLC. See Pinned localized cluster
PM. SeeParticulate matter
Politeness factor, 244
Pressure term. SeeTraffic pressure
Priority road, 252
Probability density, 437
Probe vehicle, 368
Psycho-physiological model. See Model
Public transport, 404

Q
Quantity

extensive, 69
intensive , 69

R
Ramp flow, 71
Ramp metering, 4, 404, 407

capping strategy, 408
Ramp term, 73
Random walk, 136
Randomness, 61
Reaction distance, 179, 184
Reaction time, 94, 127, 139, 173, 175,

179, 185, 207, 257, 270
effective, 208, 218

Real-time estimation, 364
Recuperation, 387, 390
Regression, 304
Relaxation term, 132
Resignation effect, 219
Response time, 207
Responsiveness, 278
Restabilization, 286, 295, 297, 344
Right-overtaking ban, 243
Ring road. See Closed system
Road inhomogeneity. See Bottleneck
Road-side unit, 413
Roadworks, 406
Robustness. See Model
Root mean square, 330
Route assignment, 3

Routing instability, 411
Rule, 226, 228

S
Safe deceleration, 241
Safe distance, 187
Safe time gap, 158
Safety, 406
Safety criterion, 241, 242
Safety distance, 158
Safety time gap, 185
Scale relation, 479
SDD. See Stationary detector data
Second-order model. See Model
Section-based model. See Model
Self-destructing prophecy, 411
Self-organization, 344
Self-regulation, 191
Sensation time, 207
Sensitivity

parameter, 169
Sensitivity analysis, 311
Shock front, 84
Shock wave, 84, 136

propagation velocity, 87, 108
Simulation, 3, 140, 294

interactive , 245, 406
software , 4

Sink, 100, 108
Slow-to-start rule, 232
Social force. See Force
Social-force model. See Model
Source, 100, 108
Source density, 71, 73, 74
Source term, 137
Space mean speed, 16, 68, 328
Space-time diagram, 9
Spatiotemporal diagram.

See Space-time diagram
Specific consumption, 392
Speed

adaptation time , 168, 175, 185, 287
desired, 27, 30, 31, 94, 169, 181
distribution, 27, 28
effective, 68
effective desired, 405
free, 27, 303
lane-averaged, 68
local, 68
synchronized, 28

Speed adaptation time, 132
Speed funnel, 406
Speed limit, 405
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Speed synchronization, 375
Speed variance, 16
Speed-density diagram, 27, 82
Spill over, 105
SSE. See Sum of squared errors
Stability. See Instability

asymptotic, 261
CFL. See Courant–Friedrichs–Lévy
conditions
Ljapunov , 261
numerical, 140
structural, 261

Stability class, 295
Stability diagram, 291, 339
Standard deviation, 16
Standard normal distribution, 143
Statistical mode, 30
Steady-state conditions, 130
Steady-state equilibrium, 162, 170,

194, 195
cellular automata, 231

Steady-state traffic, 118
Stochastic process, 211

Wiener, 212
Stochastic variable, 210
Stop-and-go mechanism, 258
Stop-and-go traffic, 167
Stop-and-go wave. See Traffic wave
Stopping distance, 184, 251

overall, 179
Strategy matrix, 414
String instability. See Instability
Stylized facts, 361
Sum of squared errors, 304

absolute, 319
mixed, 319
relative, 319

Supply, 55, 100
Supply-demand method, 105, 149
Synchronized traffic, 234, 345
System

closed, 108, 179, 294, 340
extended, 266
infinite, 339
open, 264, 294

T
Taylor expansion, 154, 175, 276
Taylor series. See Taylor expansion
Telematics, 4, 404
Test data, 303
Three-phase theory, 233, 234, 345

Time gap, 14, 30, 94, 96, 185, 187
desired, 34
distribution, 30

Time headway, 9, 30
Time mean speed, 16, 328
Time series, 25
Time-to-collision, 211, 252
Toy system, 294
Traffic

bicycle, 63
congested, 88
free, 88
heterogeneous, 29, 62, 141, 164
mixed, 63
non-motorized, 63
pedestrian, 63

Traffic assignment, 404
agent-based, 3

Traffic breakdown, 25, 97, 165, 192,
355, 403, 411

Traffic demand, 340, 418
Traffic density, 9, 17

effective, 67
Traffic dynamics

hysteretic, 193, 262
spatiotemporal, 40

Traffic flow, 9, 15, 17
microscopic, 15
stationary, 434

Traffic flow modeling, 55, 405
Traffic instability. See Instability
Traffic jam, 25, 96, 355
Traffic light, 167, 168, 171, 178, 203, 250

minimum duration of yellow phase, 473
Traffic light control, 4
Traffic phase, 340
Traffic pressure, 134, 282
Traffic state reconstruction, 40
Traffic stream model. See Model
Traffic wave, 10, 39, 127, 166, 231,

257, 258, 343
standing, 344, 349
stationary, 76

Trajectory, 7, 76, 167
virtual, 371

Trajectory data, 7
Transport-diffusion equation, 122
Transportation planning, 2, 55, 240, 404
Travel time, 367

expected, 367
instantaneous, 373
realized, 367
total, 367, 368

Triggered stop-and-go waves, 343, 349, 361
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Trip distribution, 2
Trip generation, 2
Truck overtaking ban, 416
TSG. SeeTriggered stop-and-go waves
TTC. See Time-to-collision

U
Update time. See Numerical update time
Upwind. See Numerical integration
Upwind finite differences, 148
User equilibrium, 19
Utility, 241, 414, 418

maximization, 241
Utility function, 240

V
Validation, 43, 333

cross, 334
holdout, 333
inverse cross, 334

Variability
inter-driver, 62, 313
intra-driver, 62, 313

Variable
endogenous, 2, 383
exogenous, 2, 61, 205

Variable message sign, 4, 29, 411
Variance, 16
Variation coefficient, 16, 142, 210
Vasaloppet, 64
Vehicle kilometers travelled, 380
Vehicle length, 13, 215

average, 23, 31
effective, 93, 228

Vehicle platoon, 168, 196, 257, 359
Vehicle-driver unit. See Driver-Vehicle Unit
Vehicular dynamics, 3
Velocity

optimal, 168
phase, 291
propagation, 41, 231
stop-and-go wave, 41

Virtual vehicle, 168, 171, 203
Viscosity, 136
VKT. See Vehicle kilometers travelled, 380
VMS. See Variable message sign, 411
Von-Neumann conditions.

See Boundary conditions

W
Wardrop’s equation, 19
Wardrop’s equilibrium, 19
Wave number, 273, 280
Weakest link, 356, 360
Wiedemann Model. See Model
Wiener process. See Stochastic process

X
xFCD. See Extended floating-car data

Z
Zipper merging, 240, 417
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