ArticlePDF Available

Pm52-the effectiveness of the gene conferring resistance to powdery mildew in wheat cultivar Liangxing 99(Pm52-小麦品种良星99抗白粉病基因的有效性)

Authors:

Abstract and Figures

Abstract: Liangxing 99 is a powdery mildew-resistant winter wheat cultivar adapted to the Yellow and Huai River Valleys Facultative Wheat zone and the Northern Winter Wheat Zone. Its powdery mildew resistance is conferred by gene Pm52 on chromosome 2BL. A total of 123 isolates of Blumeria graminis f. sp. tritici collected from different wheat producing regions were used in assessment of disease resistance, and Liangxing 99 was resistant to 80% of them. During the five consecutive growing seasons from 2012 to 2016, Liangxing 99 was immune or highly resistant to the mixture of Bgt isolate inoculated at the adult plant stage. A gene-specific marker Xgwm120 closedly linked to Pm52 and 27 Bgt isolates were used to analyze ten wheat cultivars with Liangxing 99 as a parent. Heng 4568, Hannong 2312, Zhongxinmai 99 and DH51302 may inherit Pm52 from Liangxing 99, while the powdery mildew resistance genes of Zhengmai 369 and Jimai 729 may differ from Pm52. Shi U09-4366, XR4429, Heng 10-5039 and Nongda 3486 were susceptible to all the Bgt isolates examined and did not carry gene Pm52. The responses of these cultivars at the adult plant stage were consistent with those at the seedling stage. Results from this study facilitate the effective application of Pm52 in Liangxing 99 in breeding programs and the production of wheat. 摘 要: 良星99是黄淮冬麦区和北部冬麦区推广的抗白粉病冬小麦品种,其抗白粉病基因位于2BL染色体,已被命名为Pm52。利用来自不同小麦生产区的123个小麦白粉菌菌株进行抗性鉴定,良星99可抗80%的菌株。2012-2016年连续5个生长季抗性鉴定,良星99在成株期对接种的白粉菌混合菌株都表现免疫或高抗反应型。采用Pm52基因紧密连锁分子标记Xgwm120和27个菌株对10个利用良星99培育的品系进行分子检测和抗性分析发现,衡4568、邯农2312、中信麦99和DH51302可能携带了良星99的Pm52基因,而郑麦369和冀麦729的白粉病抗性基因可能与Pm52不同。石U09-4366、XR4429、衡10-5039和农大3486苗期和成株期都表现感病,不含Pm52基因。这些品种的成株期抗性反应与苗期的抗性反应一致。本研究的结果有利于良星99的抗白粉病基因Pm52在育种和生产上的有效利用。
No caption available
… 
Content may be subject to copyright.
作物学报 ACTA AGRONOMICA SINICA 2017, 43(3): 332342 http://zwxb.chinacrops.org/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn
本研究由国家自然科学基金项目(31471491, 31501310), 国家转基因生物新品种培育科技重大专项(2014ZX0800906B-003)和中国农业
科学院农业创新工程项目资助。
This study was supported by the National Natural Science Foundation of China (31471491 and 31501310), the National Major Project for
Developing New GM Crops (2014ZX0800906B-003), and the Agricultural Science and Technology Innovation Program of CAAS.
* 通讯作者(Corresponding author): 李洪杰, E-mail: lihongjie@caas.cn
第一作者联系方式: E-mail: zoujingwei2013@qq.com
Received(收稿日期): 2016-06-11; Accepted(接受日期): 2016-09-18; Published online(网络出版日期): 2016-09-29.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20160929.1451.010.html
DOI: 10.3724/SP.J.1006.2017.00332
Pm52——小麦品种良星 99 抗白粉病基因的有效性
邹景伟 1,2 1,2 孙艳玲 2 郑超星 4 李静婷 3 吴培培 2
武小菲 2 王晓鸣 2 2 李洪杰 2,*
1 河北科技师范学院生命科技学院, 河北秦皇岛 066604;
2 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大
科学工程, 北京 100081;
3 平顶山学院化学与环境工程学院, 河南平顶山 467000;
4 北京师范大学生命科学学院, 北京 100875
: 良星 99 是黄淮冬麦区和北部冬麦区推广的抗白粉病冬小麦品种, 其抗白粉病基因位于 2BL 染色体, 已被命
名为 Pm52利用来自不同小麦生产区的 123 个小麦白粉菌菌株进行抗性鉴定, 良星 99 可抗 80%的菌株。2012-2016
年连续 5个生长季抗性鉴定中, 良星 99 在成株期对接种的白粉菌混合菌株都表现免疫或高抗。采用 Pm52 基因紧密
连锁分子标记 Xgwm120 27 个菌株对 10 个利用良星 99 培育的品系进行分子检测和抗性分析发现, 4568、邯农
2312、中信麦 99 DH51302 可能携带 Pm52 基因, 而郑麦 369 和冀麦 729 的白粉病抗性基因可能与 Pm52 不同。石
U09-4366XR4429、衡 10-5039 和农大 3486 苗期和成株期都表现感病, 不含 Pm52 基因。这些品种的成株期抗性反
应与苗期的抗性反应一致。本研究的结果有利于良星 99 的抗白粉病基因 Pm52 在育种和生产上的有效利用。
关键词: Pm52; 良星 99; 小麦白粉病; 抗性
Pm52: Effectiveness of the Gene Conferring Resistance to Powdery Mildew in
Wheat Cultivar Liangxing 99
ZOU Jing-Wei1,2, QIU Dan1,2, SUN Yan-Ling2, ZHENG Chao-Xing3, LI Jing-Ting4, WU Pei-Pei2, WU
Xiao-Fei2, WANG Xiao-Ming2, ZHOU Yang2, and LI Hong-Jie2,*
1 College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; 2 National Key Facility
for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
3 College of Chemistry and Environment Engineering, Pingdingshan College, Pingdingshan 467000, China; 4 College of Life Science, Beijing Normal
University, Beijing 100875, China
Abstract: Liangxing 99 is a powdery mildew-resistant winter wheat cultivar adapted to the Yellow–Huai Rivers Valley
Facultative Wheat Zone and the Northern Winter Wheat Zone. Its powdery mildew resistance is conferred by gene Pm52 on
chromosome 2BL. A total of 123 isolates of Blumeria graminis f. sp. tritici collected from different wheat producing regions were
used in assessment of disease resistance, and Liangxing 99 was resistant to 80% of them. During the five consecutive growing
seasons from 2012 to 2016, Liangxing 99 was immune or highly resistant to the mixture of Bgt isolate inoculated at the adult plant
stage. A gene-specific marker Xgwm120 closedly linked to Pm52 and 27 Bgt isolates were used to analyze ten wheat cultivars
with Liangxing 99 as a parent. Heng 4568, Hannong 2312, Zhongxinmai 99, and DH51302 may inherit Pm52 from Liangxing 99,
while the powdery mildew resistance genes of Zhengmai 369 and Jimai 729 may differ from Pm52. Shi U09-4366, XR4429, Heng
10-5039, and Nongda 3486 were susceptible to all the Bgt isolates examined and did not carry gene Pm52. The responses of these
cultivars at the adult plant stage were consistent with those at the seedling stage. Results from this study are favorable to facilitate
the effective application of Pm52 from Liangxing 99 in breeding programs and the production of wheat.
Keywords: Pm52; Liangxing 99; Wheat powdery mildew; Resistance
3 邹景伟等: Pm52——小麦品种良星 99 抗白粉病基因的有效性 333
小麦白粉病(病原菌 Blumeria graminis f. sp.
tritici, Bgt)是影响我国小麦生产的一种重要流行性
病害。白粉病不仅降低小麦产量, 而且还影响小麦
加工品质[1]。白粉病在我国的流行始于 20 世纪 70
年代。矮秆基因的引入使小麦种植密度大幅度提高,
水肥条件的改善使田间小麦群体的湿度大大提高,
这些生产条件的改变为白粉病的蔓延提供了有利的
条件。目前, 在大部分冬麦区和一部分春麦区, 小麦
白粉病已经成为一种常见、多发性病害。据全国农
业技术推广服务中心测报, 2016 年小麦白粉病发病
面积高达 740 万公顷, 对长江中下游、江淮、黄淮、
华北、西北等地区的小麦生产危害尤为严重(http://
www.natesc.org.cn/sites/cb/)
化学防治常用来控制白粉病的发生[2]。我国小
麦生产上多用三唑酮类杀菌剂防治白粉病。但是,
长期使用杀菌剂会导致白粉菌产生抗药性。最近一
项研究显示, 在测试的 9个省 129 个菌株中, 99.2%
的菌株具有抗药性, 其中四川、甘肃、青海、陕西、
浙江、云南、山东等地的供试菌株 100%具有抗药性[3]
此外, 大量使用化学农药造成的环境污染必须高度
重视。因此, 种植抗病品种是降低白粉病对产量和
品质的影响, 控制白粉病发生和流行的首选措施。
随着白粉病在全国的流行, 抗白粉病育种也受
到广泛重视。20 世纪 70 年代从罗马尼亚引进的
Lovrin 13 等小麦黑麦T1BL·1RS 易位系携带抗白粉
病基因 Pm8, 具有良好的白粉病抗性, 而且产量表
现突出, 适应性广, 因而被广泛用于小麦育种。这个
易位系对我国以及全世界的小麦品种选育产生了深
远的影响[4]。在黄淮冬麦区该易位系的频率曾达
59%[5]近期国家审定的小麦品种中仍有 43.2%含有
T1BL·1RS 易位系[6]但是过度利用, 导致对 Pm8
因的毒性菌株频率迅速上升, 使其在很多地区抗性
不再有效。发掘新的有效抗白粉病基因是抗病育种
的关键环节, 特别是从产量和农艺性状表现良好的
推广品种发现抗白粉病基因, 更容易被育种利用。
良星 99 是山东省德州市良星种子研究所于
2001 年育成的半冬性小麦, 先后通过河北省中南部
(2004 )、山东省(2006 )和国家黄淮麦区北片
(2006 )品种审定, 适合在黄淮冬麦区北片种植;
2012 年又通过河北省中北部品种审定, 2013 年获准
在天津市种植, 进一步将推广区域扩大到北部冬麦
区。2006 年良星 99 被确定为国家和山东省的主导
品种。2010 年和 2012 , 良星 99 被确定为山东省
和国家冬小麦区域试验黄淮冬麦区北片水地组的对
照品种。良星 99 在生产上高抗白粉病, 其抗白粉病
基因(MlLX99)被定位于 2BL 染色体的 2BL2-0.35~
0.50 区间[7], 之后被正式命名为 Pm52[8]。除了作为
推广品种广泛种植之外, 良星 99 还作为优良的亲本,
培育出一批小麦新品种参加国家冬小麦区域试验
(1)
本研究的目的一是利用不同地区小麦生产田的
小麦白粉菌对良星 99 进行抗性鉴定, 分析 Pm52
白粉病抗性在我国小麦主产区的有效性和利用价值;
二是通过多菌株抗性鉴定, 分析以良星 99 为亲本培
育的小麦品系对白粉病的抗性。
1 材料与方法
1.1 植物材料
小麦品种良星99以及近年来参加国家小麦品种
区域试验的10个以其为亲本选育的小麦品系的系谱
和来源信息列于表1。小麦品种 Coker 747和品系
2636-24R 分别携带 Pm6Pm33, 用于抗谱比较。
9504作为抗性鉴定的感病对照品种, 并用于繁殖
和保存白粉菌菌种。
1.2 苗期抗白粉病鉴定
供试小麦白粉菌菌株主要来自良星 99 适宜推
广地区山东、河北、河南、北京、山西等地的小麦
生产田, 另有少数菌株采自江苏、云南、贵州、四
川等地的麦田, 3个菌株的来源地不详(2)。从
田间采集病叶接种到中作 9504 幼苗上, 3次单孢
子堆分离纯化, 作为抗白粉病鉴定的菌种。所有菌
种均在中作 9504 幼苗上保持和繁殖。
采用苗期离体叶段法进行抗性鉴定[9]。剪取第
一片叶大约 3 cm 的叶段, 每个材料取 3个不同植株
的叶段作为重复, 置铺有滤纸的塑料方盒中, 50
mg L–1 苯骈咪唑(benzimidazole)溶液湿润滤纸, 将新
繁殖的待测白粉菌分生孢子均匀地抖落在小麦叶段
; (18±2)℃的培养箱中培养 7~10 d, 采用 0~4
标准调查每个叶段的反应型, 其中 0~2 级为抗病反
应型(R), 3~4 级为感病反应型(S) [10]
1.3 成株期抗白粉病鉴定
20122016 年在中国农业科学院作物科学研究
所北京昌平试验站进行。播种每个品种 1, 行长 1
m, 行距 25 cm, 每行播种 30 , 在试验区四周种植
中作 9504 作为接种行。小麦返青后, 在接种行上接
种混合菌株(毒力型 V1V3aV3bV3cV3eV3f
334 43
1 利用良星 99 为亲本培育的小麦品系的系谱、来源和参加国家区域试验组别
Table 1 Pedigrees, origins, and the groups tested in the national yield trials of wheat lines derived from Liangxing 99
品种/
Cultivar/line
系谱
Pedigree
选育单位
Origin
参试年份及试验组别
Year and test group
良星 99
Liangxing 99
(稳千 1/鲁麦 14) F1/PH85-16
(Wenqian 1/Lumai 14) F1/PH85-16
山东良星种业有限公司
Shandong Liangxing Seed Co., Ltd.
2012–2015 年黄淮冬麦区北片水地组
对照品种 Control of Northern Yellow
and Huai Rivers Group in 2012–2015
4568
Heng 4568
衡优 18/良星 99
Hengyou 18/Liangxing 99
河北省农林科学院旱作农业研究所
Dryfarming Institute, Hebei Academy
of Agricultural and Forestry Sciences
(HAAFS)
2012 年黄淮冬麦区北片水地组
Northern Yellow and Huai Rivers
Group in 2012
U09-4366
Shi U09-4366
良星 99/石优 17
Liangxing 99/Shiyou 17
石家庄市农林科学研究院
Shijiazhuang Academy of Agricultural
and Forestry Sciences
2014 年黄淮冬麦区北片水地组
Northern Yellow and Huai Rivers
Group in 2014
邯农 2312
Hannong 2312
轮选 987/良星 99
Lunxuan 987/Liangxing 99
河北工业大学和永年县原种场
Hebei University of Technology and
Yongnian Stock Seed Farm
2014 年黄淮冬麦区北片水地组
Northern Yellow and Huai Rivers
Group in 2014
冀麦 729
Jimai 729
9618/良星 99
Gao 9618/Liangxing 99
河北省农林科学院粮油作物研究所
Institute of Cereal and Oil Crops,
HAAFS
2014 年黄淮冬麦区北片水地组
Northern Yellow and Huai Rivers
Group in 2014
郑麦 369
Zhengmai 369
郑麦 366/良星 99
Zhengmai 366/Liangxing 99
河南省农业科学院小麦研究所
Wheat Research Institute, Henan
Academy of Agricultural Sciences
2015 年黄淮冬麦区南片水地组
Southern Yellow and Huai Rivers
Group in 2015
XR-4429 良星 99/烟农 5072
Liangxing 99/Yannong 5072
济南鑫瑞种业科技有限公司
Jinan Xinrui Seed Science and
Technology Ltd.
2015 年黄淮冬麦区北片水地组
Northern Yellow and Huai Rivers
Group in 2015
10-5039
Heng 10-5039
7228/山东 93-5031//良星 99
Heng 7228/Shandong 93-5031//
Liangxing 99
河北省农林科学院旱作农业研究所
Dryfarming Institute, HAAFS
2015 年黄淮冬麦区北片水地组
Northern Yellow and Huai Rivers
Group in 2015
中信麦 99
Zhongxinmai 99
良星 99/222
Liangxing 99/222
河北众信种业科技有限公司
Hebei Zhongxin Seed Science and
Technology Ltd.
2015 年黄淮冬麦区北片水地组
Northern Yellow and Huai Rivers
Group in 2015
DH51302 DH6388/兰考矮早八//良星 99
DH6388/Lankao’aizao 8//Liangxing 99
山东登海种业股份有限公司
Shandong Denghai Seed Co., Ltd.
2015 年黄淮冬麦区北片水地组
Northern Yellow and Huai Rivers
Group in 2015
农大 3486
Nongda 3486
农大 211/新麦 9//良星 99
Nongda 211/Xinmai 9//Liangxing 99
中国农业大学
Chinese Agricultural University
2015 年北部冬麦区北片水地组
Northern Winter Wheat
Group in 2015
2 Pm52 (良星 99)Pm6 (Coker 747)Pm33 (2636-24R)苗期对 123 个白粉病菌株的反应型
Table 2 Infection types of Pm52 (Liangxing 99), Pm6 (Coker 747), and Pm33 (2636-24R) produced by 123 Blumeria graminis f. sp.
tritici isolates at the seedling stage
反应型 Infection type 反应型 Infection type
菌株
Isolate
来源
Origin Pm52 Pm6 Pm33
菌株
Isolate
来源
Origin Pm52 Pm6 Pm33
1 山东崮山 Gushan, Shandong 1 4 4 63 河北黄骅 Huanghua, Hebei 0 3 0
2 山东冠县 Guanxian, Shandong 1 0 3 64 河北涞源 Laiyuan, Hebei 0 3 0
3 山东冠县 Guanxian, Shandong 0 0 3 65 河北任丘 Renqiu, Hebei 3 3 3
4 山东冠县 Guanxian, Shandong 0 0 3 66 河北任丘 Renqiu, Hebei 4 4 3
5 山东海阳 Haiyang, Shandong 0 3 4 67 河北沙河 Shahe, Hebei 0 3 3
6 山东海阳 Haiyang, Shandong 0 3 3 68 河北沙河 Shahe, Hebei 0 2 3
3 邹景伟等: Pm52——小麦品种良星 99 抗白粉病基因的有效性 335
(续表 2)
反应型 Infection type 反应型 Infection type
菌株
Isolate
来源
Origin Pm52 Pm6 Pm33
菌株
Isolate
来源
Origin Pm52 Pm6 Pm33
7 山东济南 Jinan, Shandong 3 3 0 69 河北石家庄 Shijiazhuang, Hebei 0 2 0
8 山东济宁 Jining, Shandong 3 4 4 70 河北邢台 Xingtai, Hebei 0 3 3
9 山东济宁 Jining, Shandong 3 2 3 71 河北邢台 Xingtai, Hebei 0; 0 3
10 山东济宁 Jining, Shandong 3 3 0 72 河北邢台 Xingtai, Hebei 1 0 1
11 山东莒县 Juxian, Shandong 0 0 3 73 河北邢台 Xingtai, Hebei 0 0 0
12 山东聊城 Liaocheng, Shandong 2 3 3 74 河北徐水 Xushui, Hebei 4 3 4
13 山东聊城 Liaocheng, Shandong 1 2 3 75 河北徐水 Xushui, Hebei 1 0 4
14 山东平度 Pingdu, Shandong 4 4 4 76 河北元氏 Yuanshi, Hebei 0 4 3
15 山东平度 Pingdu, Shandong 0 2 4 77 河北正定 Zhengding, Hebei 0; 3 3
16 山东平度 Pingdu, Shandong 0 0 4 78 河北涿州 Zhuozhou, Hebei 0 1 3
17 山东平邑 Pingyi, Shandong 0 0 3 79 河北涿州 Zhuozhou, Hebei 0 3 0
18 山东平邑 Pingyi, Shandong 0 0 0 80 河北涿州 Zhuozhou, Hebei 0; 3 0
19 山东平邑 Pingyi, Shandong 0 3 0 81 河北涿州 Zhuozhou, Hebei 0 0 0
20 山东青州 Qingzhou, Shandong 0 0 0 82 河南浚县 Xunxian, Henan 0 4 3
21 山东荏平 Renping, Shandong 4 3 4 83 河南浚县 Xunxian, Henan 0 3 3
22 山东寿光 Shouguang, Shandong 0; 0 3 84 河南浚县 Xunxian, Henan 2 3 3
23 山东寿光 Shouguang, Shandong 0 0 2 85 河南开封 Kaifeng, Henan 0; 3 0
24 山东寿山 Shoushan, Shandong 3 3 3 86 河南兰考 Lankao, Henan 0 0 3
25 山东寿山 Shoushan, Shandong 0 0 3 87 河南兰考 Lankao, Henan 0 3 0
26 山东寿山 Shoushan, Shandong 0 0 0 88 河南西华 Xihua, Henan 3 3 3
27 山东文登 Wendeng, Shandong 0 3 3 89 河南西华 Xihua, Henan 3 4 3
28 山东文登 Wendeng, Shandong 3 3 0 90 河南西华 Xihua, Henan 0 4 4
29 山东武备 Wubei, Shandong 0 3 3 91 河南新乡 Xinxiang, Henan 0 3 3
30 山东武备 Wubei, Shandong 0 0 3 92 河南新乡 Xinxiang, Henan 3 2 3
31 山东烟台 Yantai, Shandong 3 4 0 93 河南新乡 Xinxiang, Henan 0 0 4
32 山东烟台 Yantai, Shandong 0 3 0 94 河南荥阳 Xingyang, Henan 1 3 0
33 山东烟台 Yantai, Shandong 1 3 2 95 河南荥阳 Xingyang, Henan 0; 3 0
34 山东烟台 Yantai, Shandong 0 0 2 96 河南郑州 Zhengzhou, Henan 0; 0 3
35 山东郓城 Yuncheng, Shandong 3 3 3 97 北京 Beijing 1 3 4
36 山东郓城 Yuncheng, Shandong 1 4 3 98 北京 Beijing 0 3 3
37 山东郓城 Yuncheng, Shandong 3 3 0 99 北京 Beijing 0; 3 3
38 山东沾化 Zhanhua, Shandong 0 0 4 100 北京 Beijing 0 3 0
39 山东沾化 Zhanhua, Shandong 0 3 3 101 北京 Beijing 0; 2 0
40 山东沾化 Zhanhua, Shandong 3 3 0 102 北京 Beijing 0 1 0
41 山东沾化 Zhanhua, Shandong 3 3 0 103 北京 Beijing 0 1 0
42 山东沾化 Zhanhua, Shandong 3 0 0 104 北京 Beijing 0 0 0
43 山东招远 Zhaoyuan, Shandong 3 3 0 105 北京 Beijing 0 1 0
44 山东招远 Zhaoyuan, Shandong 1 4 0 106 北京 Beijing 0 2 0
45 山东招远 Zhaoyuan, Shandong 0 4 0 107 北京 Beijing 0 1 1
46 山东淄博 Zibo, Shandong 0 0 3 108 山西榆次 Yuci, Shanxi 0; 3 3
336 43
(续表 2)
反应型 Infection type 反应型 Infection type
菌株
Isolate
来源
Origin Pm52 Pm6 Pm33
菌株
Isolate
来源
Origin Pm52 Pm6 Pm33
47 山东淄博 Zibo, Shandong 1 0 2 109 山西榆次 Yuci, Shanxi 0 0 0
48 河北保定 Baoding, Hebei 0 2 0 110 江苏南京 Nanjing, Jiangsu 3 3 0
49 河北磁县 Cixian, Hebei 0 3 3 111 江苏南京 Nanjing, Jiangsu 0 4 0
50 河北磁县 Cixian, Hebei 0 0 3 112 江苏扬州 Yangzhou, Jiangsu 0 0 0
51 河北磁县 Cixian, Hebei 0 0 1 113 江苏扬州 Yangzhou, Jiangsu 3 3 0
52 河北定州 Dingzhou, Hebei 0; 4 3 114 江苏扬州 Yangzhou, Jiangsu 0 3 0
53 河北定州 Dingzhou, Hebei 1 0 2 115 江苏扬州 Yangzhou, Jiangsu 0 2 0
54 河北固城 Gucheng, Hebei 0 3 3 116 云南 Yunnan 0 3 3
55 河北固城 Gucheng, Hebei 1 3 3 117 贵州 Guizhou 0; 3 3
56 河北固城 Gucheng, Hebei 0 3 3 118 四川温江 Wenjiang, Sichuan 0 3 3
57 河北邯郸 Handan, Hebei 0; 3 3 119 四川温江 Wenjiang, Sichuan 1 1 3
58 河北邯郸 Handan, Hebei 0 0 4 120 四川温江 Wenjiang, Sichuan 1 1 1
59 河北邯郸 Handan, Hebei 1 0 3 121 未知 Unknown 0; 3 3
60 河北衡水 Hengshui, Hebei 0 3 3 122 未知 Unknown 1 3 1
61 河北黄骅 Huanghua, Hebei 2 4 4 123 未知 Unknown 0; 2 0
62 河北黄骅 Huanghua, Hebei 0 3 1
V4aV4bV5aV6V7V8V17V19V23
V25V30V34V35 VXBD)。在每年 5月下旬
小麦灌浆期, 采用0~9 级标准调查病害的反应型[11]
其中0级为免疫(IM), 1~2 级为高抗(HR), 3~4 级为中
(MR), 5~6 级为中感(MS), 7~9 级为高感(HS)
2016 , 3次重复, 调查小麦材料倒二叶最
大严重度(maximum disease severity, MDS)和病程曲
线下面积(area under the disease progress curve,
AUDPC)。做法是当感病对照品种中作 9504 开始发
病时, 开始调查发病严重度, 每个重复调查5,
54日开始, 每隔 5 d 调查一次, 共调查 6次。6
1日最后一次调查时记录每个品种倒二叶白粉菌孢
子堆面积占总叶片面积的百分数, 作为最大严重度[12]

1
1
AUDPC 2
ii
ii
xx tt


式中, xi表示第 i次调查的严重度, ti表示第 i次调查
距接种后的天数。用 SPSS19 软件对最大严重度和
AUDPC 进行方差分析, 采用 t-测验进行显著性差异
比较(P < 0.01) [13]
1.4 抗白粉病基因 Pm52 的分子检测
采用 DNA 提取试剂盒(北京天根生化科技有限
公司)提取小麦叶片的基因组 DNA。抗白粉病基因
Pm52 紧密连锁的分子标记为 Xgwm120 (F: 5'-GAT
CCACCTTCCTCTCTCTC-3', R: 5'-GATTATACTG
GTGCCGAAAC-3')。在 T3000 Thermocycler 多功能
扩增仪(Biometra, 德国)上进行PCR, 反应混合液 10
μL, 其成分为50 ng 模板DNA, 0.1 μmol L1引物, 2×
Taq PCR Master Mix 5 μL (北京天根生化科技有限
公司), 其中包含 Taq DNA 聚合酶、dNTPsMgCl2
反应缓冲液、PCR 的增强剂和优化剂以及稳定剂。
反应程序为 94°C 预变性 4 min; 94°C 变性 30 s, 60°C
退火 40 s, 72°C 延伸 1 min, 38 个循环; 72°C 延伸 10
min。采用 2918%非变性聚丙烯酰胺凝胶电泳
检测扩增产物。
2 结果与分析
2.1 Pm52 对不同地区白粉菌的抗性
采用 123 个白粉菌菌株对 Pm52 (良星 99)与同
样位于 2BL 染色体上的 Pm6 (Coker 747)Pm33
(2636-24R)基因进行抗谱比较(2)Pm52 对这些菌
株的平均抗性频率为 81.3%, 高于 Pm6 (42.3%)
Pm33 (43.9%) (1)Pm52 对不同地区的白粉菌抗
性频率均接近或超过 70%在良星 99 品种的来源地
山东省, Pm52 的抗性频率为68.1% (1); 对同属黄
淮冬麦区的河北省和河南省菌株抗性频率分别为
91.2%80.0%对北部冬麦区的北京市采集的菌株
抗性频率为 100%; 对其他省份(包括山西、江苏、
南、贵州和四川)的菌株抗性频率为 87.5%Pm6
3 邹景伟等: Pm52——小麦品种良星 99 抗白粉病基因的有效性 337
Pm33 对各地菌株的平均抗性频率为 42.3% (26.7%~
63.6%)43.9% (26.7%~63.6%) (1)
2.2 Pm52 的成株期抗性
2012—2016 年连续5个生长季, 对良星 99 进行
成株期白粉病抗性鉴定。在灌浆期, 良星 99 对接种
的白粉菌混合菌株的病害级别分别为 0~2 , 表现
免疫至高抗表现型(3)。对照品种中作 9504 的病
害级别为 8级或 9, 表现高感白粉病。
1 良星 99 (Pm52)对不同省份白粉菌菌株的苗期抗性频率
Fig. 1 Frequencies of Liangxing 99 (Pm52) against the Blumeria graminis f. sp. tritici isolates from different provinces at the
seedling stage
括号内数字为不同省份的菌株数目。
The numbers of isolates from different provinces are shown in the brackets.
3 2012–2016 年良星 99 (Pm52)成株期对白粉病的抗性反应
Table 3 Rating scores of Liangxing 99 (Pm52) at the adult plant stage during 2012–2016 cropping seasons
良星 99 Liangxing 99 中作 9504 Zhongzuo 9504
年份
Year 级别 Rating score 表现型 Phenotype 级别 Rating score 表现型 Phenotype
2012 1 HR 8 HS
2013 0 IM 9 HS
2014 0 IM 8 HS
2015 2 HR 8 HS
2016 1 HR 9 HS
IM; 免疫; HR; 高抗; HS; 高感。IM: immune; HR: highly resistant; HS: highly susceptible.
2.3 用良星 99 培育的小麦品系对白粉病的抗性
采用 27 个小麦白粉菌菌株对 10 个以良星 99
亲本培育的小麦品系进行苗期抗性鉴定。良星 99
18 个菌株表现抗病反应型, 反应型为 00;1,
另外 9个菌株表现感病, 反应型为 34。衡 4568
中信麦 99 DH51302 与良星 99 的反应型相似,
1个菌株的反应型表现不同, 中信麦99
DH51302 对这些菌株的反应型完全相同(4)邯农
2312 与良星 99 3个菌株的反应型存在差异。根
据反应型聚类分析结果, 这些品系与良星 99 的反应
型比较接近(2)。冀麦 729 和郑麦 369 分别对 13
9个菌株表现抗病反应型, 抗谱与良星 99 有很大
的不同。由聚类分析可知, 这些品系与良星 99 的距
离较远。其余 4个品系石 U09-4366XR-4429、衡
10-5039 和农大 3486 对所有供试菌株都表现感病反
应型, 它们与感病对照中作 9504 聚为一类。
2016 年的成株期抗性鉴定中, 4568、邯农
2312、中信麦 99 DH51302 表现中抗或高抗表型,
MDS AUDPC 与良星99 差异不显著(5和图 3)
表现中抗表型的冀麦 729 和郑麦 369, MDS
AUDPC 也与良星 99 差异不显著。这些品系的 MDS
AUDPC 显著低于对照品种中作 9504 (P < 0.01)
U09-4366XR-4429、衡 10-5039 和农大 3486
感白粉病, MDS AUDPC 与中作9504 差异不显著,
但显著高于良星 99 和其他 6个抗病品系(P < 0.01)
从病程发展趋势来看, U09-4366、衡 10-5039
338 43
3 邹景伟等: Pm52——小麦品种良星 99 抗白粉病基因的有效性 339
2 良星 99 10 个衍生品种和感病对照品种中作 9504 27 个白粉菌反应型的聚类图
Fig. 2 A dendrogram based on the infection types of Liangxing 99, 10 derived lines and the susceptible control cultivar Zhongzuo
9504 to 27 Blumeria graminis f. sp. tritici isolates
5 良星 99 10 个衍生品系成株期抗性反应型、倒二叶最大严重度和病程曲线下面积
Table 5 Rating score (RS) , maximum disease severity (MDS), and area under the disease progress curve (AUDPC) of Liangxing 99
and 10 derived lines at the adult stage
品种
Cultivar/line
级别
RS
倒二叶最大严重度
MDS
病程曲线下面积
AUDPC
良星 99 Liangxing 99 1 0 A 0 A
4568 Heng 4568 3 2.3 A 18.0 A
U09-4366 Shi U09-4366 8 84.7 B 1112.5 B
邯农 2312 Hannong 2312 2 0 A 0 A
冀麦 729 Jimai 729 3 2.0 A 21.0 A
郑麦 369 Zhengmai 369 3 0.9A 11.0 A
XR-4429 7 92.7 C 1630.0 C
10-5039 Heng 10-5039 8 92.7 C 1200.0 BC
中信麦 99 Zhongxinmai 99 1 0 A 0 A
DH51302 2 3.0 A 0 A
农大 3486 Nongda 346 7 93.3 C 1317.5 BC
中作 9504 Zhongzuo 9504 9 96.7 C 1470.0 BC
MDS AUDPC 平均值后不同大写字母表示差异极显著(P < 0.01)
Means of MDS and AUDPC followed by different capital letters are significantly different at P < 0.01.
农大 3486 AUDPC 低于衡 XR-4429 (3)
2.4 小麦品系中抗白粉病基因 Pm52 的分子标记
检测
利用与 Pm52紧密连锁的分子标记 Xgwm120
10个品系分析表明, 4568、邯农2312、中信麦99
DH51302与良星99的带型相同。U09-4366、冀
729、郑麦369XR-4429、衡10-5039和农大3486
的扩增片段与良星99片段不同(4)
3 讨论
良星99适宜推广地区包括黄淮冬麦区和北部冬
麦区的山东、河北、河南、山西、陕西、安徽、
北京、天津等地, 这些地区也是我国白粉病流行的
地区。根据本研究的结果, 良星 99 的抗病基因 Pm52
在苗期对这些地区 80%的白粉菌菌株有效, 同时也
表现很好的成株期抗性。因此, 良星 99 在其适宜推
广地区可比较有效地防控白粉病的发生或减轻白粉
病的危害程度。
在正式命名的抗白粉病基因中, 由我国发现的
包括簇毛麦 Pm21 [14]中间偃麦草 Pm40 [15]Pm43 [16]
长穗偃麦草 Pm51 [17]、野生二粒小麦 Pm41 [18]
Pm42 [19], 以及普通小麦的 Pm45 [20]Pm47 [21]
Pm24b [ 22]Pm2b [23]Pm2c [24]。这些抗病基因或
者来自野生近缘种, 或者来自地方品种, 需要经过
340 43
3 良星 99 与其衍生品系的病程曲线下面积表现
Fig. 3 Area under the disease progress curve (AUDPC) of
Liangxing 99 and ten derived wheat lines
图中未列出良星 99、邯农 2312、中信麦 99 DH51302, 因其
AUPDC 值均为 0左侧和右侧纵坐标分别指示感病(实线)和抗病
材料(虚线)AUPDC
Liangxing 99, Hannong 2312, Zhongxinmai 99, and DH51302 are
not shown in the graph because their AUDPC values are 0. Left and
right ordinates indicate the AUDPC of susceptible genotypes (solid
line) and resistant (dot line), respectively.
4 Pm52 紧密连锁标记 Xgwm120 在小麦品种()中的扩增
结果
Fig. 4 An amplification profile of the Pm52-linked marker
Xgwm120 from the wheat cultivars or lines
M: 100 bp 分子标记; 1: 良星 99 (Pm52); 2: 中作9504; 3: 4568;
4: U09-4366; 5: 邯农 2312; 6: 冀麦 729; 7: 郑麦 369; 8:
XR-4429; 9: 10-5039; 10: 中信麦 99; 11: DH51302; 12: 农大
3486。箭头示目标条带。
M: 100 bp DNA ladder; 1: Liangxing 99; 2: Zhongzuo 9504; 3:
Heng 4568; 4: Shi U09-4366; 5: Hannong 2312; 6: Jimai 729; 7:
Zhengmai 369; 8: XR-4429; 9: Heng 10-5039; 10: Zhongxinmai 99;
11: DH51305; 12: Nongda 3486. Arrow indicates the target band.
较长时间的杂交和回交, 才能转育到育种家常用或
熟悉的育种亲本中, 才容易被选用。生产上的推广
品种集成了很多优良的基因, 一般没有不利基因的
牵连, 勿需前期改造即可投入育种和生产利用。因
, 发掘推广品种的抗白粉病基因, 既可为生产上
抗病基因布局提供参考, 又可为育种提供优异的抗
病亲本。
实际上, 利用良星 99 已经培育出优良品系进入
区域试验。本研究采用多菌株抗性鉴定和 Pm52
因连锁分子标记 Xgwm120 检测, 10 个以良星 99
为亲本培育的小麦新品系中发现, 4568、邯农
2312、中信麦 99 DH51302 4个品系可能含有
Pm52 基因。另外 4个品系石 U09-4366XR-4429
10-5039 和农大 3486 无论在苗期, 还是在成株期
都表现感病, 分子标记分析的带型也与良星 99 不同,
表明这些材料尽管以良星 99 作为亲本之一, 但不含
Pm52 基因。冀麦 729 和郑麦 369 的抗谱与良星
99 存在差异, 也没有扩增出与良星99 相同的特征条
, 表明这两个品种的白粉病抗性可能与 Pm52
因不同。据报道, 冀麦 729 的亲本藁 9618, 以及郑
369 的亲本郑麦 366, 均表现中抗白粉病[25-26]
用分子标记定位可以准确地确定冀麦729 和郑麦369
抗白粉病基因。这些结果表明, 利用良星 99 有可能
培育出高抗白粉病的小麦新品种。
在我国生产上一些推广品种中也含有其他抗白
粉病基因。良星 66 [27]、农大 399 [28]、汶农 14 [29]
中麦155 [30]和婴泊700 [31]分别含有Pm2 基因座的等
位基因。小麦品种豫麦 66 和郑 9754 中的抗白粉病
基因位于 2AL 染色体[32-33]。唐麦 4号、济麦 22
周麦 22 的抗白粉病基因分别位于 7BL[34]2BL[35]
3BL[36]。这些抗病基因均具有优良的遗传背景,
可以与良星 99 Pm52 基因聚合起来, 培育抗谱更
广的抗病品种。
4 结论
良星99的抗白粉病基因 Pm52在苗期对来自不
同小麦生产区80%的供试菌株(123)表现抗性反应
, 成株期调查良星99表现高抗白粉病。在10个以
良星99为亲本培育的小麦品系中, 4568 、邯农
2312、中信麦99DH51302与良星99的抗谱相似,
分子标记检测的带型与良星99相同, 这些品系的
白粉病抗性可能来源于良星99Pm52基因。根据
抗谱分析和分子标记检测结果, 郑麦369 和冀麦
729的白粉病抗性可能来自其他亲本。U09-4366
XR-4429、衡10-5039和农大3486在苗期和成株期都
不抗白粉病。
3 邹景伟等: Pm52——小麦品种良星 99 抗白粉病基因的有效性 341
致谢: 感谢中国农业科学院植物保护研究所周益林
研究员提供成株期抗性鉴定的白粉菌菌株。
References
[1] Cowger C, Miranda L, Griffey C, Hall M, Murphy J P, Maxwell J.
Wheat powdery mildew. In: Sharma I (ed) Disease resistance in
wheat. CABI, Oxfordshire, 2012. pp 84–119.
[2] Hardwick N V, Jenkins J E, Collins B, Groves S J. Powdery mil-
dew (Erysiphe graminis) on winter wheat: control with fungi-
cides and the effects on yield. Crop Prot, 1994, 13: 93–98
[3] 史倩倩, 范洁茹, 周益林, 邹亚飞, 段霞瑜. 2012 年部分麦区
小麦白粉菌群体对三唑酮敏感性及其与毒性的关系. 植物病
理学报, 2015, 45: 181–187
Shi Q Q, Fan J R, Zhou Y L, Zou Y F, Duan X Y. Triadimefon
sensitivity and its correlation with the virulence population of
Blumeria graminis f. sp. tritici in some wheat growing areas in
2012. Acta Phytopathol Sin, 2015, 45: 181–187 (in Chinese with
English abstract)
[4] Rabinovich S V. Importance of wheat-rye translocation for
breeding modern cultivars of Triticum aestivum L. Euphytica,
1998, 100: 323–340
[5] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌,
广军. 1BL/1RS 易位系在我国小麦育种中的应用. 作物学报,
2004, 30: 531–535
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing
Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat
breeding in China. Acta Agron Sin, 2004, 30: 531–535 (in Chi-
nese with English abstract)
[6] 李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学
. 中国小麦品种对白粉病的抗性反应与抗病基因检测.
物学报, 2011, 37: 943–954
Li H J, Wang X M, Song F J, Wu C P, Wu X F, Zhang N, Zhou
Y, Zhang X Y. Response to powdery mildew and detection of re-
sistance genes in wheat cultivars from China. Acta Agron Sin,
2011, 37: 943–954 (in Chinese with English abstract)
[7] Zhao Z H, Sun H G, Song W, Lu M, Huang J, Wu L F, Wang X
M, Li H J. Genetic analysis and detection of the gene MlLX99 on
chromosome 2BL conferring resistance to powdery mildew in the
wheat cultivar Liangxing 99. Theor Appl Genet, 2013, 126:
3081–3089
[8] McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R,
Xia X C. Catalogue of gene symbols for wheat: 2013–2014 sup-
plement. http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/
supplement2013.pdf
[9] 司权, 张新心, 段霞瑜, 盛宝钦. 小麦白粉病菌生理小种鉴
. 中国农业科学, 1987, 20(5): 64–70
Si Q M, Zhang X X, Duan X Y, Sheng B Q. Identification of iso-
lates of Erysiphe graminis f. sp. tritici. Sci Agric Sin, 1987, 20(5):
64–70 (in Chinese with English abstract)
[10] 盛宝钦. 用反应型记载小麦苗期白粉病. 植物保护, 1988,
14(1): 49
Sheng B Q. Identification of powdery mildew infection type at
seedling stage. Plant Prot, 1988, 14(1): 49 (in Chinese)
[11] Saari E E, Prescott J M. A scale for appraising the foliar intensity
of wheat diseases. Plant Dis Rep, 1975, 59: 377–381
[12] 刘金栋, 陈新民, 何中虎, 伍玲, 白斌, 李在峰, 夏先春. 小麦
慢白粉病 QTL 对条锈病和叶锈病的兼抗性. 作物学报, 2014,
40: 1557–1564
Liu J D, Chen X M, He Z H, Wu L, Bai B, Li Z F, Xia X C. Re-
sistance of slow mildewing genes to stripe rust and leaf rust in
common wheat. Acta Agron Sin, 2014, 40: 1557–1564 (in Chi-
nese with English abstract)
[13] Lin F, Chen X M. Quantitative trait loci for non-race-specific,
high-temperature adult-plant resistance to stripe rust in wheat
cultivar Express. Theor Appl Genet, 2009, 118: 631–642
[14] 齐莉莉, 陈佩度, 刘大钧, 周波, 张守中, 盛宝钦, 向齐君,
霞瑜, 周益林. 小麦白粉病新抗源——基因 Pm21. 作物学报,
1995, 21: 257–262
Qi L L, Chen P D, Liu D J, Zhou B, Zhang S Z, Sheng B Q,
Xiang Q J, Duan X Y, Zhou Y L. The gene Pm21: a new source
for resistance to wheat powdery mildew. Acta Agron Sin, 1995,
21: 257–262 (in Chinese with English abstract)
[15] Luo P G, Luo H Y, Chang Z J, Zhang H Y, Zhang M, Ren Z L.
Characterization and chromosomal location of Pm40 in common
wheat: a new gene for resistance to powdery mildew derived
from Elytrigia intermedium. Theor Appl Genet, 2009, 118:
1059–1064
[16] He R L, Chang Z J, Yang Z J, Yuan Z Y, Zhan H X, Zhang X J,
Liu J X. Inheritance and mapping of powdery mildew resistance
gene Pm43 introgressed from Thinopyrum intermedium into
wheat. Theor Appl Genet, 2009, 118: 1173–1180
[17] Zhan H X, Li G R, Zhang X J, Li X, Guo H J, Gong W P, Jia J Q,
Qiao L Y, Ren Y K, Yang Z J, Chang Z J. Chromosomal location
and comparative genomics analysis of powdery mildew resis-
tance gene Pm51 in a putative wheat–Thinopyrum ponticum in-
trogression line. PLoS One, 2014, 9: e113455
[18] Li G Q, Fang T L, Zhang H T, Xie C J, Li H J, Yang T M, Nevo
E, Fahima T, Sun Q X, Liu Z Y. Molecular identification of a
new powdery mildew resistance gene Pm41 on chromosome 3BL
derived from wild emmer (Triticum turgidum var. dicoccoides).
Theor Appl Genet, 2009, 119: 531–539
[19] Hua W, Liu Z J, Zhu J, Xie C J, Yang T M, Zhou Y L, Duan X Y,
Sun Q X, Liu Z Y. Identification and genetic mapping of pm42, a
new recessive wheat powdery mildew resistance gene derived
from wild emmer (Triticum turgidum var. dicoccoides). Theor
Appl Genet, 2009, 119: 223–230
[20] Ma H Q, Kong Z G, Fu B H, Li N, Zhang L X, Jia H Y, Ma Z Q.
Identification and mapping of a new powdery mildew resistance
gene on chromosome 6D of common wheat. Theor Appl Genet,
2011, 123: 1099–1106
[21] Xiao M G, Song F J, Jiao J F, Wang X M, Xu H X, Li H J. Iden-
tification of the gene Pm47 on chromosome 7BS conferring re-
sistance to powdery mildew in the Chinese wheat landrace
Hongyanglazi. Theor Appl Genet, 2013, 126: 1397–1403
[22] Xue F, Wang C Y, Li C, Duan X Y, Zhou Y L, Zhao N J, Wang
Y J, Ji W Q. Molecular mapping of a powdery mildew resistance
gene in common wheat landrace Baihulu and its allelism with
Pm24. Theor Appl Genet, 2012, 125: 1425–1432
[23] Ma P T, Xu H X, Xu Y F, Li L H, Qie Y M, Luo Q L, Zhang X T,
Li X Q, Zhou Y L, An D G. Molecular mapping of a new pow-
dery mildew resistance gene Pm2b in Chinese breeding line
342 43
KM2939. Theor Appl Genet, 2015, 128: 613–622
[24] Xu H X, Yi Y J, Ma P T, Qie Y M, Fu X Y, Xu Y F, Zhang X T,
An D G. Molecular tagging of a new broad-spectrum powdery
mildew resistance allele Pm2c in Chinese wheat landrace Niao-
mai. Theor Appl Genet, 2015, 128: 2077–2084
[25] 梁新棉, 刘玉平. 河北省优质冬小麦区域试验品种主要农艺
性状分析. 河北农业科学, 2006, 10(1): 52–55
Liang X M, Liu Y P. Analysis of the major agronomical charac-
ters of wheat varieties in the Hebei provincial high quality winter
wheat regional yield trial. J Hebei Agric Sci, 2006, 10(1): 52–55
(in Chinese with English abstract)
[26] 胡锐, 邢彩云, 吴营昌, 沙广乐, 李丽霞, 杨爱华. 11 个优质小
麦品种对小麦白粉病抗性的初步鉴定. 河南农业科学, 2011,
40(5):108–110
Hu R, Xing C Y, Wu Y C, Sha G L, Li M X, Yang A H. Primary
identification of resistance of eleven high-quality wheat cultivars
to wheat powdery mildew. J Henan Agric Sci, 2011, 40(5):
108–110 (in Chinese with English abstract)
[27] Huang J, Zhao Z H, Song F J, Wang X M, Xu H X, Huang Y, An
D G, Li H J. Molecular detection of a gene effective against
powdery mildew in the wheat cultivar Liangxing 66. Mol Breed,
2012, 30: 1737–1745
[28] 李丹, 袁成国, 吴海彬, 张栋, 梁永, 王振忠, 吴秋红, 陈永兴,
杨作民, 孙其信, 刘志勇. 普通小麦品种农大 399 抗白粉病基
SSR AFLP–SCAR 分子标记. 植物遗传资源学报, 2013,
14: 104–108
Li D, Yuan C G, Wu H B, Zhang D, Liang Y, Wang Z Z, Wu Q
H, Chen Y X, Yang Z M, Sun Q X, Liu Z Y. SSR and AFLP-
derived SCAR markers associated with the powdery mildew re-
sistance gene in common wheat cultivar ND399. J Plant Genet
Resour, 2013, 14: 104–108 (in Chinese with English abstract)
[29] 宋伟, 孙会改, 孙艳玲, 赵紫慧, 王晓鸣, 武小菲, 李洪杰.
麦品种汶农 14 抗白粉病基因的染色体定位. 作物学报. 2014,
40: 798–804
Song W, Sun H G, Sun Y L, Zhao Z H, Wang X M, Wu X F, Li
H J. Chromosomal localization of resistance gene to powdery
mildew in the wheat cultivar Wennong 14. Acta Agron Sin, 2014,
40: 798–804 (in Chinese with English abstract)
[30] Sun H G, Song W, Sun Y L, Chen X M, Liu J J, Zou J W, Wang
X M, Zhou Y F, Lin X H, Li H J. Resistance to powdery mildew
in the wheat cultivar Zhongmai 155: effectiveness and molecular
detection of the resistance gene. Crop Sci, 2015, 55: 1017–1025
[31] Ma P T, Zhang H X, Xu H X, Xu Y F, Cao Y W, Zhang X T, An
D G. The gene PmYB confers broad-spectrum powdery mildew
resistance in the multi-allelic Pm2 chromosome region of the
Chinese wheat cultivar Yingbo 700. Mol Breed, 2015, 35: 1–10
[32] 胡铁柱, 李洪杰, 刘子记, 谢超杰, 周益林, 段霞瑜, 贾旭,
明山, 杨作民, 孙其信, 刘志勇. 普通小麦品种“豫麦 66”抗
白粉病基因的鉴定与分子标记. 作物学报, 2008, 34: 545–550
Hu T Z, Li H J, Liu Z J, Xie C J, Zhou Y L, Duan X Y, Jia X,
You M S, Yang Z M, Sun Q X, Liu Z Y. Identification and mo-
lecular mapping of the powdery mildew resistance gene in wheat
cultivar Yumai 66. Acta Agron Sin, 2008, 34: 545–550 (in Chi-
nese with English abstract)
[33] Xu W G, Li C X, Hu L, Wang H W, Dong H B, Zhang J Z, Zan
X C. Identification and molecular mapping PmHNK54: a novel
powdery mildew resistance gene in common wheat. Plant Breed,
2011, 130: 603–607
[34] 胡铁柱, 李洪杰, 谢超杰, 尤明山, 杨作民, 孙其信, 刘志勇.
小麦品种“唐麦 4号”抗白粉病基因的分子标记与染色体定
. 作物学报, 2008, 34: 1193–1198
Hu T Z, Li H J, Xie C J, You M S, Yang Z M, Sun Q X, Liu Z Y.
Molecular mapping and chromosomal location of the powdery
mildew resistance gene in wheat cultivar Tangmai 4. Acta Agron
Sin, 2008, 34: 1193–1198 (in Chinese with English abstract)
[35] 殷贵鸿, 李根英, 何中虎, 刘建军, 王辉, 夏先春. 小麦新品
种济麦22 抗白粉病基因的分子标记定位. 作物学报, 2009, 35:
1425–1431
Yin G H, Li G Y, He Z H, Liu J J, Wang H, Xia X C. Molecular
mapping of powdery mildew resistance gene in wheat cultivar
Jimai 22. Acta Agron Sin, 2009, 35: 1425–1431 (in Chinese with
English abstract)
[36] Xu W G, Li C X, Hu L, Zhang L, Zhang J Z, Dong H B, Wang G
S. Molecular mapping of powdery mildew resistance gene
PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai
22. Mol Breed, 2010, 26: 31–38
... At present, only Pm1c, Pm12, Pm21, Pm24, and Pm35 genes still have a strong resistance to powdery mildew, among which Pm21 is a rare broad-spectrum resistance gene (Zhang et al., 2004). Moreover, some disease resistance genes have been applied in wheat breeding, such as Nannong 9918 carrying powdery mildew resistance gene Pm21, Liangxing99 carrying powdery mildew resistance gene Pm52, Bannong AK58 moving powdery mildew resistance gene Pm8, etc. (Jingwei Zou et al., 2016), and achieve more significant economic benefits. Researchers study of wheat powdery mildew in the past was mainly focused on positioning and cloning of disease resistance gene mining. ...
Article
Wheat (Triticum aestivum L.) is one of the major grain crops in the world. Wheat powdery mildew is a fungal disease caused by the infection of Blumeria graminis F. sp. tritici. It is one of the most severe wheat diseases globally, seriously affecting the yield and quality of wheat. At present, the main ways to control powdery mildew are the use of fungicides and the cultivation of disease-resistant varieties. The extensive spraying of fungicides causes pesticide residues and environmental pollution. At present, no matter wild type or artificially bred wheat powdery mildew resistant varieties are scarce, so it is urgent to cultivate resistant varieties quickly and efficiently. Traditional cross breeding has a long time and low efficiency. Still, it is a fast and effective way to get disease-resistant sorts by using modern molecular biological means to transfer disease-resistant genes into cultivated varieties. Although the cultivation of resistant varieties is the most economical and effective way to control powdery mildew in wheat, there are some limitations in the cultivation of resistant varieties by introducing resistance genes by conventional means in actual production. With the increase of disease each year, this situation will be more and more unable to meet the needs of wheat genetic improvement. It is urgent to explore a new way of breeding to improve the wheat to powdery mildew lasting broad-spectrum resistance. The disease-resistant breeding needs from cloning in plant and pathogen affinity interactions play a vital role in the study of disease genes and their mechanism of action. At present, in the wheat by manipulating disease genes make infected material gain lasting broad-spectrum resistance is less. In the case of disease genes and mutations after its disease-resistant mechanism are still not clear. So the breeding of resistant varieties need mining and utilization of resistance genes. The paper summarizes the harm and distribution of wheat powdery mildew, the genes resistance mechanism of wheat powdery mildew, and functional analysis, wheat powdery mildew resistance genes in the field of molecular biology research status, and VIGS, RNAi, such as for the prevention and control of wheat powdery mildew, explore new powdery mildew resistance genes and resistance regulation, breeding disease-resistant varieties of wheat provide the feasible scheme.
Article
Full-text available
Key message: A new broad-spectrum powdery mildew resistance allele Pm2c was identified and mapped in Chinese wheat landrace Niaomai. Chinese wheat landrace Niaomai showed resistance to 27 of 28 Chinese Blumeria graminis f. sp tritici (Bgt) races. Genetic analysis of an F2 population and its derived F2:3 families from the cross Niaomai × Mingxian 169 and backcross population, Niaomai/2*Mingxian 169, indicated that the resistance of Niaomai to Bgt races was conferred by a single dominant resistance gene, temporarily designated PmNM. Molecular tagging showed that PmNM was located on chromosome 5DS and flanked by SSR markers Xcfd81 and Xcfd78 with the genetic distances of 0.1/0.4 cM and 4.9/7.5 cM, respectively. Niaomai showed a different array of responses compared to lines with Pm2a, Pm2b, PmD57-5D, PmLX66, PmX3986-2 and Pm48 genes, sharing the same Xcfd81 allele but differing from Xcfd78 allele for Pm2a and Pm2b lines. Allelism tests based on crosses of Niaomai with Ulka/8*Cc and KM2939 showed that PmNM is allelic to Pm2a and Pm2b. We concluded that PmNM is a new allele of Pm2, re-designated Pm2c. Pm2c could be transferred into wheat cultivars by marker-assisted selection to improve the powdery mildew resistance of breeding cultivars/lines.
Article
Full-text available
It is important to detect wheat powdery mildew broad-spectrum resistance (Pm) genes in commercial cultivars with superior agronomic performance. YingBo 700, a Chinese commercial cultivar registered and released in 2012, showed a broad-spectrum of resistance to 48 of 49 tested Blumeria graminis f. sp tritici (Bgt) isolates from different regions of China. Genetic analysis of F2 populations from the crosses YingBo 700 × Mingxian 169 and YingBo 700 × Shimai 15 and F2:3 lines from YingBo 700 × Mingxian 169 demonstrated that the resistance was controlled by a single dominant resistance gene, which was temporarily designated PmYB. Using molecular markers and bulked segregant analysis (BSA) of the F2:3 lines from YingBo 700 × Mingxian 169, PmYB was mapped to the multi-allelic Pm2 region of chromosome arm 5DS co-segregated with the sequence characterized amplified region (SCAR) marker SCAR112 and flanked by the simple sequence repeat (SSR) marker Cfd81 and SCAR marker SCAR203 with genetic distance of 0.9 and 1.9 cM, respectively. YingBo 700 showed a unique response pattern to different Bgt isolates compared to the lines with documented Pm2a, Pm2b, Pm48, PmLX66, PmW14, PmZ155 and PmX3986-2 on chromosome 5DS. Therefore, PmYB appears to be a novel allele in this multi-allelic region. In order to validate applicability of the closely linked markers for marker-assisted selection (MAS), the closely linked markers Cfd81, SCAR112, SCAR203 and Mag6176 were evaluated for applicability in diagnosing the resistance gene in 62 cultivars from different regions of China. The results will contribute to rapidly transfer PmYB into more cultivars.
Article
Full-text available
Key message An allele of Pm2 for wheat powdery mildew resistance was identified in a putative Agropyron cristatum -derived line and used in wheat breeding programs. Abstract Powdery mildew (caused by Blumeria graminis f. sp. tritici, Bgt) is one of the most devastating wheat diseases worldwide. It is important to exploit varied sources of resistance from common wheat and its relatives in resistance breeding. KM2939, a Chinese breeding line, exhibits high resistance to powdery mildew at both the seedling and adult stages. It carries a single dominant powdery mildew resistance (Pm) allele of Pm2, designated Pm2b, the previous allelic designation Pm2 will be re-designated as Pm2a. Pm2b was mapped to chromosome arm 5DS and flanked by sequence characterized amplified region (SCAR) markers SCAR112 and SCAR203 with genetic distances of 0.5 and 1.3 cM, respectively. Sequence tagged site (STS) marker Mag6176 and simple sequence repeat (SSR) marker Cfd81 co-segregated with SCAR203. Pm2b differs in specificity from donors of Pm2a, Pm46 and PmLX66 on chromosome arm 5DS. Allelism tests indicated that Pm2b, Pm2a and PmLX66 are allelic. Therefore, Pm2b appears to be a new allele at the Pm2 locus. The closely linked markers were used to accelerate transfer of Pm2b to wheat cultivars in current production.
Article
Full-text available
Powdery mildew (PM) is a very destructive disease of wheat (Triticum aestivum L.). Wheat-Thinopyrum ponticum introgression line CH7086 was shown to possess powdery mildew resistance possibly originating from Th. ponticum. Genomic in situ hybridization and molecular characterization of the alien introgression failed to identify alien chromatin. To study the genetics of resistance, CH7086 was crossed with susceptible genotypes. Segregation in F2 populations and F2:3 lines tested with Chinese Bgt race E09 under controlled conditions indicated that CH7086 carries a single dominant gene for powdery mildew resistance. Fourteen SSR and EST-PCR markers linked with the locus were identified. The genetic distances between the locus and the two flanking markers were 1.5 and 3.2 cM, respectively. Based on the locations of the markers by nullisomic-tetrasomic and deletion lines of 'Chinese Spring', the resistance gene was located in deletion bin 2BL-0.89-1.00. Conserved orthologous marker analysis indicated that the genomic region flanking the resistance gene has a high level of collinearity to that of rice chromosome 4 and Brachypodium chromosome 5. Both resistance specificities and tests of allelism suggested the resistance gene in CH7086 was different from previously reported powdery mildew resistance genes on 2BL, and the gene was provisionally designated PmCH86. Molecular analysis of PmCH86 compared with other genes for resistance to Bgt in the 2BL-0.89-1.00 region suggested that PmCH86 may be a new PM resistance gene, and it was therefore designated as Pm51. The closely linked flanking markers could be useful in exploiting this putative wheat-Thinopyrum translocation line for rapid transfer of Pm51 to wheat breeding programs.
Article
Pyramiding quantitative trait loci (QTLs) is an effective method to improve resistance to powdery mildew, stripe rust, and leaf rust in common wheat. We have developed 21 lines (F6) carrying 2-5 slow mildewing QTLs by crossing slow powdery mildew cultivars Bainong 64 and Lumai 21 possessing four and three slow mildewing QTLs, respectively. These F6 lines were evaluated in the field in Pianxian, Sichuan and Tianshui, Gansu for stripe rust resistance and in Baoding, Hebei and Zhoukou, Henan for leaf rust resistance during the 2012-2013 cropping season. According to the maximum disease severities (MDS) and the area under the disease progress curve (AUDPC), QTLs QPm.caas-4DL, QPm.caas-6BS, and QPm.caas-2BL were highly resistant to stripe rust (P < 0.01), which explained 16.9%, 14.1%, and 17.3% of phenotypic variance, respectively. Locus QPm.caas-4DL also showed high resistance to leaf rust (P < 0.01) with phenotypic contribution of 35.3%. Lines that pyramided five (QPm.caas-1A/QPm.caas-4DL/QPm.caas-2DL/QPm.caas-2BS/QPm.caas-2BL) and four (QPm.caas-1A/QPm.caas-4DL/QPm. caas-2BS/QPm.caas-2BL) QTLs exhibited higher resistance to both stripe and leaf rust compared with their parents. This resultindicates that the combination of QPm.caas-4DL (from Bainong 64), QPm.caas-2BS and QPm.caas-2BL (Lumai 21) has a marked effect on improving adult resistance to powdery mildew, stripe rust and leaf rust, and the more QTLs are pyramided, the stronger slow disease resistance can be achieved. In breeding practice, the combination of 4-5 slow mildewing or rusting QTLs can result in durable resistance to multiple diseases.