ArticlePDF Available

Genomic SNPs reveal population structure of Rhizopus arrhizus

Authors:

Abstract and Figures

Rhizopus arrhizus is widely distributed in nature, important in food fermentation and well-known as opportunistic pathogens. It is diverse in morphology and biochemistry, including three taxonomic varieties (arrhizus, delemar and tonkinensis), four morphological types (arrhizus, delemar, tonkinensis and rouxii) and two biochemical groups (lactic acid, LA; and fumaric-malic acid, FMA). This species is more diverse in DNA molecules. However, the relationship among all these diversities lacks a systematic research. Based on the internal transcribed spacer (ITS), intergenic spacer (IGS) of nuclear ribosomal DNA and single nucleotide polymorphisms (SNPs) extracted from whole-genome resequencing, this study analyzed the phylogeny and population structure of R. arrhizus represented by strains covering the diversities above. Results showed that R. arrhizus was divided into four main phylogenetic clades. The sister clades 1 and 2 constituted the variety delemar, and the other two clades corresponded with the varieties tonkinensis and arrhizus, respectively. The morphological type rouxii was polyphyletic in the clades of varieties arrhizus and delemar. Analyses about the population structure within R. arrhizus indicated that the variety delemar diverged first, then the variety tonkinensis and arrhizus, and finally subgroups of these three varieties each; these subgroups indicated that R. arrhizus is evolving molecularly along eight hybrid populations. For the first time, this study molecularly analyzed several R. arrhizus populations and deduced its evolution through genome-wide information, and confirmed that all ecological populations, taxonomic varieties, morphological types, biochemical groups and phylogenetic clades were conspecific, and no speciation occurrence.
Content may be subject to copyright.
菌物学报
Mycosystema
ISSN 1672-6472,CN 11-5180/Q
《菌物学报》网络首发论文
题目: 基因组 SNP 揭示少根根霉种群结构
作者: 鞠笑,张明晢,赵恒,刘泽,贾碧丝,Timothy Y.James,刘小勇
DOI 10.13346/j.mycosystema.200105
收稿日期: 2020-04-02
网络首发日期: 2020-09-15
引用格式: 鞠笑,张明晢,赵恒,刘泽,贾碧丝,Timothy Y.James,刘小勇.基因组 SNP
揭示少根根霉种群结构.菌物学报.
https://doi.org/10.13346/j.mycosystema.200105
网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶
段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期
刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出
版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出
版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编
辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、
出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。
为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,
只可基于编辑规范进行少量文字的修改。
出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国
学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷
出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出
版广电总局批准的网络连续型出版物(ISSN 2096-4188CN 11-6037/Z,所以签约期刊的网络版上网络首
发论文视为正式出版。
Research paper 研究论文
22 December 2020, 39(12): 1-19 Mycosystema ISSN1672-6472 CN11-5180/Q DOI: 10.13346/j.mycosystema.200105
基金项目国家自然科学基金(3197000931670019)和科技部科技基础性工作专项(2014FY210400
Supported by the National Natural Science Foundation of China (31970009, 31670019) and the National S & T Basic Work
Program of China (2014FY210400).
Corresponding author. E-mail: liuxiaoyong@im.ac.cn
ORCID: JU Xiao (176-1088-7237)
Contributed equally to this work.
Received: 2020-04-02, accepted: 2020-08-03
Copyright © 2020 Institute of Microbiology, CAS. A ll rights reserved. | jwxt@im.ac.cn Http://j ournals -myco.im.ac.cn Tel: +86-10-64807521 菌物学报
1
基因组 SNP 揭示少根根霉种群结构
鞠笑 1, 2 张明1 赵恒 1 刘泽 3 贾碧丝 1 Timothy Y. James4
刘小勇 1
中国科学院微生物研究所真菌学国家重点实验室 北京 100101
中国科学院大学 北京 100049
北京林业大学生态与自然保护学院 北京 100083
密西根大学生态与进化生物系 美国 安娜堡 MI 48109-1048
要:少根根霉在自然界分布广泛,是重要的食品发酵菌,又是著名的机会致病菌,在形态和生化上
多样性丰富,包括原变种、德氏变种和东京变种等 3个分类学变种,原型、德氏型、东京型和鲁氏型等
4个形态型,以及乳酸组和富马苹果酸组等 2个生化组。DNA 分子多样性更为丰富。但这些多样性之间
缺乏系统的关联研究。本研究选择能代表以上多样性的 67 个菌株,通过全基因组重测序提取 ITSIGS rDNA
SNP 多态性位点进行分子系统发育和群体结构分析,结果将少根根霉分为 4个主要的系统发育分支,
分支 12是姐妹群关系,共同构成德氏变种,另外两个分支分别对应东京变种和原变种。鲁氏形态型
多系,源自原变种和德氏变种。群体结构分析表明在少根根霉物种内,德氏变种首先分歧出来,然后东
京变种和原变种发生分化,最后 3个变种分化出各自的亚群;这些亚群表明少根根霉物种正沿着 8个相
互杂交的分子群体进行演化。本研究首次利用基因组范围的信息支持所有的生态群、分类学变种、形态
型、生化组和系统发育分支仍然属于同一个物种,物种分化尚未完成,同时实现了对少根根霉多个 DNA
分子群体的解析并推导出其演化规律。
关键词:米根霉,德氏根霉,鲁氏淀粉霉,全基因组重测
[引用本文] 鞠笑,张明晢,赵恒,刘泽,贾碧丝,Timothy Y. James,刘小勇,2020. 基因组 SNP 揭示少根根霉种群结构.
物学报,39(12): 1-19
Ju X, Zhang MZ, Zhao H, Liu Z, Jia BS, Timothy Y. James, Liu XY, 2020. Genomic SNPs reveal population structure of Rhizopus
arrhizus. Mycosystema, 39(12): 1-19
网络首发时间:2020-09-15 17:12:10
网络首发地址:https://kns.cnki.net/kcms/detail/11.5180.Q.20200915.1703.004.html
鞠笑 /基因组SNP揭示少根根霉种群结构 Research paper
菌物学报
2
Genomic SNPs reveal population structure of Rhizopus arrhizus
JU Xiao1, 2 ZHANG Ming-Zhe1 ZHAO Heng1 LIU Ze3 JIA Bi-Si1 Timothy Y. James4
LIU Xiao-Yong1*
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100049, China
College of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
Abstract: Rhizopus arrhizus is widely distributed in nature, important in food fermentation and well-known as
opportunistic pathogens. It is diverse in morphology and biochemistry, including three taxonomic varieties
(arrhizus, delemar and tonkinensis), four morphological types (arrhizus, delemar, tonkinensis and rouxii) and
two biochemical groups (lactic acid, LA; and fumaric-malic acid, FMA). This species is more diverse in DNA
molecules. However, the relationship among all these diversities lacks a systematic research. Based on the
internal transcribed spacer (ITS), intergenic spacer (IGS) of nuclear ribosomal DNA and single nucleotide
polymorphisms (SNPs) extracted from whole-genome resequencing, this study analyzed the phylogeny and
population structure of R. arrhizus represented by strains covering the diversities above. Results showed that R.
arrhizus was divided into four main phylogenetic clades. The sister clades 1 and 2 constituted the variety
delemar, and the other two clades corresponded with the var ieties tonkinensis and arrhizus, respectively. The
morphological type rouxii was polyphyletic in the clades of varieties arrhizus and delemar. Analyses about the
population structure within R. arrhizus indicated that the variety delemar diverged first, then the variety
tonkinensis and arrhizus, and finally subgroups of these three varieties each; these subgroups indicated that R.
arrhizus is evolving molecularly along eight hybrid populations. For the first time, this study molecularly
analyzed several R. arrhizus populations and deduced its evolution through genome-wide information, and
confirmed that all ecological populations, taxonomic varieties, morphological types, biochemical groups and
phylogenetic clades were conspecific, and no speciation occurrence.
Key words: Rhizopus oryzae, Rhizopus delemar, Amylomyces rouxii, whole-genome resequencing
少根根霉 Rhizopus arrhizus A. Fisch.典型
的接合菌类真菌,隶属于毛霉目根霉科的根霉属
Roskov et al. 2019根不发达,有性繁殖异
配,形成对生的接合孢子,无性繁殖有或无,
有则孢囊梗产生于气生菌丝或者匍匐菌丝,梗上
常见膨胀,孢子囊褐色,球形或亚球形,直径
41235um囊托明显,囊轴扁球形或者亚球形,
孢囊孢子具有明显条纹(Zheng et al. 2007。少
根根霉世界广布,既腐生于自然环境的土壤、
枝落叶、粪便、花卉和蘑菇等,还能侵染植物和
人体引起毛霉病(Kwon et al. 2011Cheng et al.
2017,同时经过长期的驯化也成为重要的食品
发酵菌Abd Razak et al. 2017以上野生群wild
population、致病群(clinical population)和驯
群(domesticated population3个生态群体在
形态、DNA 分子和生化上存在丰富的多样性Saito
et al. 2004Londoño-Hernández et al. 2017)。
这些多样性究竟是种间差异还是种内变异,
研究论文 22 December 2020, 39(12): 1-19 Mycosystema ISSN1672-6472 CN11-5180/Q
菌物学报
3
长期以来有着不同的观点。根据有机酸特征,
Abe et al. 2007)将少根根霉(文中采用其异
名米根霉 Rhizopus oryzae Went & Prins. Geerl.
1895区分为两大类群类产生乳酸lactic acid
LA而不产生富马酸和苹果酸fumaric-malic acid
FMA;另一类产生富马酸和苹果酸而不产生乳
酸。Abe et al.2007)认为这种差异属于种间水
平,因此将前者保留为少根根霉而将后者承认为
独立的物种,即德氏根霉 R. delemar Wehmer &
Hanzawa。除以上生化特征上的差异之外,该文
还依据核糖rDNA 内转录间隔区序列(ITS
rDNA、乳酸脱氢酶基因 BldhB肌动
act1、翻译延伸因子(EF-)以及基因组
围的扩增片段长度多态性AFLP建的系统发
育树对其种间差异观点给与支持。该观点还得到
Andrii P Gryganskyi 等学者的支持Gryganskyi
et al.20102018)基于交配位点基因(HMG
TPT RNA helicase)、 ITS rDNA RPB2 行系
统发育分析,对乳酸脱氢酶基因lhdA lhdB
进行的分配统计,进一步利用全基因组范围内
192 个直源基因、14 个形态和 2生态特征进行
的系统发育分析,都认为少根根霉和德氏根霉虽
然亲缘关系非常近,但已经成为两个独立的物
种。关于不产孢的少根根霉形态型(鲁氏型)
部分学者认为该型是独立的物种鲁氏淀粉霉
Amylomyces rouxii Calmette 1892), Kito et al.
2009)基ITS rDNAldhB AFLP 数据支持
该学术观点,同时发现该形态型属于两个系统发
育支,部分成员和少根根霉聚在一起形成一支,
其余成员和德氏根霉聚在一起形成另外一支,
此认为鲁氏淀粉霉这一物种通过驯化起源于前
述两个物种。
以上独立成种的处理方式有着明显的缺陷,
即对鲁氏淀粉霉和德氏根霉使用了不同的标准,
如果认为单系的德氏根霉系统发育支是独立的
物种,那么鲁氏淀粉霉由于多系的特征就不应该
承认为独立的物种。针对这一缺陷,出现了另外
一种处理方式,即将所有差异归结为物种内如下
各个类群间的变异:3个分类学变种varieties),
即原变种var. arrhizus德氏变种var. delemar
和东京变种var. tonkinensis);4种形态型types),
即原型type arrhizus德氏type delemar)、
鲁氏型type rouxii和东京type tonkinensis);
两个有机酸生化组,即乳酸组group LA)和富
马苹果酸组(group FMA)。 Zheng et al.2007
Liu et al.2007)在根霉属专著性研究中,基
于少根根霉的形态、交配实验、最高生长温度、
ITS rDNA pyrG 基因序列的分析,将原型、德
氏型和东京型 3个形态型分别处理为原变种、
氏变种和东京变种 3个变种,而第四个形态型
(鲁氏型)归入原变种,解释为其驯化成员。Liu
et al.2008进一步采用核糖体基因间隔区IGS
rDNA)的短串重复序列(STR,对以上 3个变
种进行了有效区分。Watanabe & Oda2008)发
现原型与鲁氏型在碳同化能力上并没有得到明
确的区分,因此支持 Zheng et al.2007鲁氏
型归入原变种的种内变异观点。其他学者支持
Zheng et al.2007将德氏型处理为德氏变种的
种内变异观点,比如 Dolatabadi et al.2014)通
过交配实验发现原型和德氏型之间未形成交配
隔离,二者的 ITS 遗传距离显著小于根霉属内
他物种之间的距离,多种生化特征(包括漆酶、
脂酶、淀粉霉、尿素酶、铁载体、酪氨酸酶、纤
维素酶和明胶酶)未见差异;Orikasa & Oda
2013)和 Orikasa et al.2018)对呋喃果糖苷
酶基因(sucA的研究,也发现鲁氏型与德氏型
极为相近,并没有达到种间差异的水平。
近年来,随着二DNA 测序技术的发展,
群体基因组学为研究物种的起源与演化问题做
出了重要贡献。比如,对双孢菇的全基因组重测
序,发现野生群体和驯化群体各自独立进化Sun
et al. 2019;对酿酒酵母的群体基因组学研究,
鞠笑 /基因组SNP揭示少根根霉种群结构 Research paper
菌物学报
4
揭示了远东地区是酿酒酵母的起源中心(Duan
et al. 2018)。 SNP 多态性位点在基因组内数量众
多、分布广泛,能提供丰富且稳定的遗传信息,
在种群演化分析上发挥着重要的作用(蒋
2017。当今,高通量自动化的 SNP 检测已经成
为主流技术(苏睿等 2019在系统发育分析时
予以考虑Pearson et al. 2004Filliol et al. 2006
Timme et al. 2013目前,少根根霉基因组测序
已经完成,为其基因组群体遗传学研究奠定了基
础(Ma et al. 2009。利用基因组内辨识率高
微卫星 DNA 位点对 30 株致病型少根根霉进行系
统进化分析(Baghela et al. 2010,在全基因
中挑选 76 个直源蛋白对毛霉病原真菌(包括少
根根霉)进行系统发育分析,同时基于基因组
SNP 对少根根霉原型和德氏型进行群体遗传和
比较基因组学分析Chibucos et al. 2016结果
都表明原型和德氏型并不能完全区分,从而支持
了种内变异的观点。
然而,上述群体基因组研究中选用的菌株地
理分布不广,仅分离自印度、美国和加拿大 3
国家;菌株来源也有所欠缺,只包含了致病菌株,
并未涉及数目更多、分布更广的野生菌株和具有
生产价值的驯化菌株;菌株多样性也有限,仅考
虑了原型和德氏型,没有全面代表所有四种形态
型。针对以上缺陷,本研究选择来自世界各地的
67 株少根根霉作为研究材料,包括 LA FMA
生化组成员,涉及野生、驯化、致病 3种生态
群体,囊括原型德氏型、东京型和鲁氏型等四
种形态型,涵盖原变种、东京变种和鲁氏变种
3个分类学变种,通过全基因组重测序深入
探索少根根霉种群结构。
1 材料与方法
1.1 菌株形态鉴定及有机酸测定
供试 80 株菌(表 1)分离自中国、德国、
国、委内瑞拉、南非和巴布亚新几内亚等 21
国家,其中包括 NCBI 数据库菌13 株,涵盖
洲、欧 、北、南洲、非洲
6个大洲,来源于人体、酒曲、蛋糕、空气、土
壤、花朵和昆虫残体等多种基物,涉及驯化、
病和野生等三个生态群。所有菌株于中国科学院
微生物研究所真菌学国家重点实验室用甘油
4℃和-80℃保藏。将菌种接种到马铃薯葡萄糖琼
脂培养基PDA200g 马铃薯20g 葡萄糖、20g
琼脂粉、1 000mL 馏水)平板上,30℃恒温培
57d。挑取菌丝制作水封片,在光学正置显
微镜下观察假根、匍匐菌丝、孢囊梗、孢子囊、
囊托、囊轴和孢囊孢子等形态,用德国蔡司
IMAGER A2-M2 成像系统拍摄显微照片,根据
Zheng et al.2007的分类标准进行形态学鉴定。
250mL 三角瓶中装入 50g 糯米(安徽省
合肥市安徽燕之坊食品有限公司),加入 80mL
蒸馏水,封口后在高压灭菌锅中 1×105Pa121
灭菌 20min将孢子悬浮(调整浓度为 6.25×106
/mL)接种到灭菌的糯米培养基中,加入无菌
水至总体积 100mL,封口膜密封后置于 30℃摇
140r/min 续培养 8天。每株菌 3个技术重
复,对照设置为无菌水加糯米,以及无菌水加孢
子悬浮液。预实验确定的发酵稳定期关键时间节
点为 8d,因此培8d 后,抽取 2mL 发酵液
1 200rpm 离心 10min离心两次0.22um 微孔
滤膜过滤上清液,装入液相小瓶中,置于 4保存
并尽快测定。对有机酸类物质的测定采用高效液
相色谱法high-performance liquid chromatograph
HPLC,选用 Shimadzu LC-20A 液相色谱仪(岛
津,日本Aminex HPX-87H Column 300×7.8mm
液相色谱柱(BIO-RAD ,美国)、示差检测器
RID-20A,以抽滤并除去气泡的 5mM H2SO4作为
流动相,设置流速 0.6mL/min,进样量 20uL,柱
60℃,检测时间 30min
1.2 DNA 提取及其定性定量
使用 Wiza rd 全基因组 DNA 纯化试剂盒
Promega A1120,美国)进行 DNA 提取。刮取
PDA 平板上培养 3d 的菌丝约 0.1g 置于 1.5mL
研究论文 22 December 2020, 39(12): 1-19 Mycosystema ISSN1672-6472 CN11-5180/Q
菌物学报
5
心管中,加入 293μL 50mM EDTA 重悬,加入 7.5μL
20mg/mL 的溶壁酶,用移液器轻轻吸放 4次混
1 供试 80 株少根根霉菌株信息
Table 1 Information of involved 80 strains of Rhizopus arrhizus
菌株
Strains
基物*
Substrates
大洲
Continents
国家
Countries
形态型
Morphological
types
分类学
变种
Taxonomic
varieties
分子系统
发育分支**
Phylogenetic
clades
生态群
Ecological
populations
生化组***
Biochemical
groups
GenBank
登录号
GenBank
Accession Nos.
XY00012
rotten pod
of Liliaceae
Europe
Germany
rouxii
arrhizus
clade 4
wild
LA
SRR11788118
XY00077
skin scabs
Asia
China
delemar
delemar
clade 2
clinical
FMA
SRR11788117
XY00406
koji
Asia
Japan
arrhizus
arrhizus
clade 4
domesticated
LA
SRR11788106
XY00409
soil
Asia
Japan
tonkinensis
tonkinensis
clade 1 or 3
wild
LA
SRR11788095
XY00419
ragi
Asia
Japan
delemar
delemar
clade 2
wild
FMA
SRR11788084
XY00424
koji
Asia
Japan
arrhizus
arrhizus
clade 4
domesticated
LA
SRR11788073
XY00438
Chinese yeast
Asia
China
tonkinensis
tonkinensis
clade 3
domesticated
LA
SRR11788062
XY00457
corn flour
Europe
Portugal
arrhizus
arrhizus
clade 4
wild
LA
SRR11788054
XY00495
distillery
yeast
Asia
India
delemar
delemar
clade 2
domesticated
FMA
SRR11788053
XY00507
Chinese yeast
Asia
China
rouxii
arrhizus
clade 4
domesticated
LA
SRR11788052
XY01735
soil
Asia
China
delemar
delemar
clade 2
wild
FMA
SRR11788116
XY01736
flour
Asia
China
rouxii
arrhizus
clade 4
wild
LA
SRR11788115
XY01737
flower
Asia
China
delemar
delemar
clade 2
wild
FMA
SRR11788114
XY01738
cake
Asia
China
delemar
delemar
clade 2
wild
FMA
SRR11788113
XY01745
air
Asia
China
delemar
delemar
clade 2
wild
FMA
SRR11788112
XY01857
flower
Asia
China
arrhizus
arrhizus
clade 4
wild
LA
SRR11788111
XY01864
flower
Asia
China
arrhizus
arrhizus
clade 4
wild
LA
SRR11788110
XY01865
sweet
wrapping
Asia
China
delemar
delemar
clade 2
wild
FMA
SRR11788109
XY01874
grass
Asia
China
arrhizus
arrhizus
clade 4
wild
LA
SRR11788108
XY01875
wrapping
paper
Asia
China
delemar
delemar
clade 2
wild
FMA
SRR11788107
XY01876
soil
Asia
China
arrhizus
arrhizus
clade 4
wild
LA
SRR11788105
XY01880
soil
Asia
China
delemar
delemar
clade 2
wild
FMA
SRR11788104
XY01919
plant
Asia
China
arrhizus
arrhizus
clade 4
wild
LA
SRR11788103
XY01920
lesion
Asia
China
delemar
delemar
clade 2
clinical
FMA
SRR11788102
XY01921
eye socket
Asia
China
arrhizus
arrhizus
clade 4
clinical
LA
SRR11788101
XY02053
sweet
wrapping
Asia
China
tonkinensis
tonkinensis
clade 3
wild
LA
SRR11788100
XY02064
soil
Asia
China
tonkinensis
tonkinensis
clade 3
wild
LA
SRR11788099
XY02120
shell
Asia
China
arrhizus
arrhizus
clade 4
wild
LA
SRR11788098
XY02128
dung
Asia
China
tonkinensis
tonkinensis
clade 3
wild
LA
SRR11788097
鞠笑 /基因组SNP揭示少根根霉种群结构 Research paper
菌物学报
6
XY03778
Vigna
unguiculata
Asia
Tanzania
delemar
delemar
clade 2
domesticated
LA
SRR11788096
待续
续表 1
XY03779
lake mud
Europe
UK
arrhizus
arrhizus
clade 4
wild
LA
SRR11788094
XY03782
ragi
Asia
Indonesia
arrhizus
arrhizus
clade 4
wild
LA
SRR11788093
XY03786
Vicia faba
seedling
Europe
Cyprus
arrhizus
arrhizus
clade 4
wild
LA
SRR11788092
XY03787
Allium
Africa
Egypt
tonkinensis
tonkinensis
clade 3
wild
LA
SRR11788091
XY03788
Gossypium
Asia
India
tonkinensis
tonkinensis
clade 3
wild
FMA
SRR11788090
XY03789
honey dew
Asia
Malaysia
arrhizus
arrhizus
clade 4
wild
LA
SRR11788089
XY03790
Gossypium
root
Asia
Yemen
arrhizus
arrhizus
clade 4
wild
LA
SRR11788088
XY03792
soy sauce
Asia
Malaysia
delemar
delemar
clade 2
domesticated
FMA
SRR11788087
XY03794
cotton lint
Asia
India
rouxii
delemar
clade 2
wild
FMA
SRR11788086
XY03795
Arachis
hypogaea
Africa
Egypt
tonkinensis
tonkinensis
clade 3
wild
FMA
SRR11788085
XY03796
Allium
Asia
Jordan
tonkinensis
tonkinensis
clade 3
wild
LA
SRR11788083
XY03797
radio set
Oceania
Papua
New
Guinea
arrhizus
arrhizus
clade 4
wild
LA
SRR11788082
XY03798
Carica
papaya fruit
South
America
Venezuela
delemar
delemar
clade 2
wild
LA
SRR11788081
XY03799
mouldy bran
Europe
UK
arrhizus
arrhizus
clade 4
wild
LA
SRR11788080
XY03800
soil
Asia
Philippines
delemar
delemar
clade 2
wild
FMA
SRR11788079
XY03801
soil
Africa
South
Africa
delemar
delemar
clade 2
wild
LA
SRR11788078
XY03802
soil
Asia
the
Philippines
delemar
delemar
clade 2
wild
LA
SRR11788077
XY03803
soil
Asia
Philippines
arrhizus
arrhizus
clade 4
wild
LA
SRR11788076
XY03804
dung
Africa
Sudan
delemar
delemar
clade 2
wild
FMA
SRR11788075
XY03805
ragi-tempeh
Asia
Indonesia
delemar
delemar
clade 2
domesticated
FMA
SRR11788074
XY03806
clinical
North
America
USA
tonkinensis
tonkinensis
clade 3
clinical
LA
SRR11788072
XY03808
sweet
potato
North
America
USA
tonkinensis
tonkinensis
clade 1 or 3
wild
LA
SRR11788071
XY03809
dung
Asia
Pakistan
delemar
delemar
clade 2
wild
FMA
SRR11788070
XY03810
clinical
North
America
USA
delemar
delemar
clade 2
clinical
FMA
SRR11788069
XY03813
soil
North
America
USA
arrhizus
arrhizus
clade 4
wild
LA
SRR11788068
XY03815
peanuts
Africa
Uganda
delemar
delemar
clade 2
wild
FMA
SRR11788067
研究论文 22 December 2020, 39(12): 1-19 Mycosystema ISSN1672-6472 CN11-5180/Q
菌物学报
7
XY03816
soil
Asia
Philippines
delemar
delemar
clade 2
wild
FMA
SRR11788066
XY03819
insect
Asia
India
arrhizus
arrhizus
clade 4
wild
LA
SRR11788065
待续
续表 1
XY03820
onion
Asia
Iran
arrhizus
arrhizus
clade 4
wild
LA
SRR11788064
XY03821
leaf
Asia
Indonesia
tonkinensis
tonkinensis
clade 3
wild
LA
SRR11788063
XY03822
soil
Africa
South
Africa
rouxii
delemar
clade 1 or 2
wild
LA
SRR11788061
XY03824
soil
Asia
Philippines
delemar
delemar
clade 2
wild
FMA
SRR11788060
XY03825
soil
Asia
Indonesia
delemar
delemar
clade 2
wild
FMA
SRR11788059
XY03826
soil
Asia
Indonesia
delemar
delemar
clade 2
wild
FMA
SRR11788058
XY03827
soil
Asia
Indonesia
delemar
delemar
clade 1 or 2
wild
LA
SRR11788057
XY03829
dung
Asia
Pakistan
rouxii
delemar
clade 1 or 2
wild
FMA
SRR11788056
XY03830
food
Asia
Indonesia
delemar
delemar
clade 2
wild
FMA
SRR11788055
NRRL
21396
Ethmois
sinus of
diabetic
North
America
USA
arrhizus
arrhizus
clade3
clinical
n.a.
SRP029747
HUMC 02
Sinus
North
America
USA
arrhizus
arrhizus
clade3
clinical
n.a.
SRP029758
CDC-
B7407
Nasal
cavity
North
America
USA
arrhizus
arrhizus
clade3
clinical
n.a.
SRP029597
NRRL 13440
Tracheal
biopsy
North
America
USA
arrhizus
arrhizus
clade3
clinical
n.a.
SRP029749
99-892
Lung
transplant
North
America
USA
arrhizus
arrhizus
clade 1 or 3
clinical
n.a.
SRP029754
99-133
Bone
marrow
North
America
USA
arrhizus
arrhizus
clade4
clinical
n.a.
SRP030769
97-1192
Bronchial
wash
n.a.
USA
arrhizus
arrhizus
clade4
clinical
n.a.
SRP029746
NRRL
18148
Sinus
North
America
USA
delemar
delemar
clade4
clinical
n.a.
SRP030760
NRRL
21789
Leukemia
patient
North
America
USA
delemar
delemar
clade4
clinical
n.a.
SRP029750
99-880
Fatal
mucormycosis
n.a.
USA
delemar
delemar
clade2
clinical
n.a.
SRP202389
NRRL
21446
Face biopsy
North
America
USA
delemar
delemar
clade2
clinical
n.a.
SRP029759
NRRL
21447
Brain and ear
North
America
Canada
delemar
delemar
clade2
clinical
n.a.
SRP029879
NRRL
21477
Face biopsy
North
America
USA
delemar
delemar
clade2
clinical
n.a.
SRP029755
注:*n.a.,未知;**XY00406XY00457XY01864XY03808 99-892 5个菌株各自的 rDNA SNP 系统发育支归属
鞠笑 /基因组SNP揭示少根根霉种群结构 Research paper
菌物学报
8
一致;***LA,产乳酸;FMA,产富马苹果酸
Note: *n.a., not available; **The clades are different in rDNA and SNP phylogeny for each of the five strains XY00406, XY00457,
XY01864, XY03808 and 99-892; ***LA, producing lactic acid; FMA, producing fumaric-malic acid.
匀,37孵育 3060min 化细胞壁,冷却至
温后,13 000r/min 离心 2min,移弃上清,向沉
淀中加入 300μL 20mg/mL 的核裂解液,用移液
器轻轻吸放 4次混匀,加200μL 20mg/mL
白沉淀液并使用涡旋振荡器(Scilogex,美国)高
速剧烈震荡 20s置于冰上 5min然后 13 000r/min
离心 3min移取上清至装300μL 室温 100%
丙醇的 1.5mL 离心管中,轻颠倒混匀,直至
色线状 DNA 形成块状沉淀,13 000r/min 离心
2min弃上清加入 300μL 室温 70%醇,轻轻
颠倒离心管数次清洗 DNA 沉淀,13 000r/min
温离心 2min,吸弃乙醇,自然干燥 15min,加
50μL DNA 溶解液加入 1.5μL 4mg/mL RNA
酶溶液,剧烈振荡 1s利用小型离心Scilogex
美国)13 000g 离心 5s 收集贴附在管壁上的液体,
37孵育 15min 酶解 RNA65孵育 1h RNA
酶失活,4℃保存。
基因组 DNA 提取之后,采用 PicoGreen 双链
DNA 荧光试剂盒(Promega P9740,美国)进行
定量测定。荧光分光光度仪温度设定为 37
激 发 波 长 480nm , 散 发 波 长 530nm 25mL
PicoGreen 浓缩染色液中加入 5mL 1xTE 稀释液制
成测试染色液,比色皿中将 500μL 测试染色液和
500μL DNA 标准溶液(10.50.250.1250
μg/μL)混合,室温避光孵5min,荧光分光光
度仪测读 OD 绘制标准曲线采用以上方法
测定待测样品 OD 值,根据标准曲线标定样品
DNA 浓度。5μL 所提 DNA 1μL 溴酚蓝加样
缓冲液(60mM pH6.8 Tris-酸、2% SDS0.1%
溴酚兰、25%甘油、14.4 mM β-巯基乙醇)混匀
后,利用 1%琼脂糖凝胶电泳对 DNA 质量进行检
测,电泳缓冲液为 1% TAE40 mM Tris-乙酸盐
1 mM EDTA,电压120V,电80mA电泳
时间 20min紫外检测254nm条带集中而少
弥散的 DNA 用于后续基因组 DNA 片段化
1.3 基因组 DNA 片段化、文库构建和测序
委托吉生 http://www.
majorbio.bioon.com.cn/)对基因组 DNA 行片
段化并构建文库和测定基因组序列。
检测合格DNA ,用基因剪切仪 M220
Covaris Inc.,美国马萨诸塞州)基于自动声波
聚焦原理进行均质片段化,设置 DNA 片段长度
400500bp 。片段化之后凝胶电泳条带集中于
400500bp,溶液不粘稠,无色素,无悬浊物,
RNA蛋白、糖类等杂质污染,OD260/280≥1.8
OD260/230≥1.5,总量≥1μg DNA用于后续
库构建。片段化的 DNA 5'末端进行修复和磷酸化,
3'端加 A尾并连接到测序衔接子,通过琼脂
糖凝胶电泳筛选目标区域片段(400500bp)并
回收,PCR 富集形成测序文库。文库在 HiSeq 4000
Illumina Inc.美国加州)平台进行基因组测序
加入 DNA 聚合酶和带有不同荧光标记的 dNTPs
每次循环掺入单种碱基,用激光扫描反应板表
面,读取每条模板序列第一轮反应所聚合上去的
核苷酸种类,将“荧光基团”和终止基团”化
学切割,恢复 3'端粘性,继续聚合第二个核苷酸,
统计每轮收集到的荧光信号结果,获知模板 DNA
片段的序列。
1.4 比对参考基因组进行基因组序列组装
Illumina HiSeq 测序得到的原始图像数据经过
碱基识别转化为 fastq 序列数据,使用 Trimmomatic
0.39Bolger et al. 2014)进行过滤:去除 5’端非
AGCT 碱基,修剪测序质量较低的末端,去除接
头序列,舍弃修剪及去头后长度不足 25bp 的小
片段,舍弃 N比例大于等于 10%的片段。
使用 FastQC 0.11.8 软件Andrews 2019)对
研究论文 22 December 2020, 39(12): 1-19 Mycosystema ISSN1672-6472 CN11-5180/Q
菌物学报
9
过滤后的序列数据进行质控,获得 N值、GC
量、重复序列、长度分布等基础统计信息,测序
深度100 为测序覆盖率标准。选取少根根霉
99-892JNEB00000000.1http://www.ncbi.nlm.
nih.gov)作为参考基因组,使用软件 bwa 0.7.17
Li & Durbin 2009)对质控后的 fataq 序列数据
构建索引并生成 sam 比对文件,用 Picard 2.20.1
软件(http://broadinstitute.github.io/picard )转
换为 bam 文件,排序并去除由 PCR 引起的重复
qualimap 件(García-Alcalde et al. 2012)进
行分析。用 platanus 2.0Nishikawa et al. 2015
进行组装:短片段序列先组装出 contig,然后将
paired reads 比对到 contig 上,确定 Contig 的顺
序和方向后构建出 scaffolds,再paired reads
比对到 scaffolds,最后将其余 reads 定位到 gap
上得到 PREFIX_gapClosed.fa 基因组序列文件。
1.5 单核苷酸多态性检测、主成分和群体结构
分析
使用 GATK 4.07 软件(McKenna et al. 2010
创建比对列的典文,使GATK 软件
Samtools 1.9 件(Li & Durbin 2009)分别提取
单核苷酸多态性(SNP)和插入缺失(Indel)变
异信息,使用 VarianFiltration 命令过滤低质量的
SNP Indel,然后合并变异,生成 vcf 文件,用
SnpEff 4.3 软件(Cingolani et al. 2012)对 SNP
突变类型、基因名和区域类型等进行注释。
根据 SNP 变异信息进行主成分分析PCA)。
VCFtools 0.1.13 软件Danecek et al. 2011)将
含有 SNP 变异信息的 vcf 文件转换为 ped map
文件,再用 PLINK 1.90 软件(Purcell et al. 2007
将上述两个数据文件分别转换为 bed bim
式,gcta 1.92 软件Yang et al. 2011输入 bed
map bim 数据进行主成分分量的计算,并生
eigenvec 文件,对该数据使用 Rplot 函数
绘制散点图,并根据变种信息设置点的颜色,
95%置信区间绘制椭圆
PLNK 软件将链接、单态、多等位基因以
25%的位点进行数据过滤,删除
Phred 质量小30 的位点。使用 ADMIXTURE
1.3.0 软件Alexander et al. 2009进行群体结构
分析,选择默认 CV 值(5-fold), K值设置为 1
15k=1:15,提取每K值对应的交叉验证
误差值(cross-validation error, CV error)绘制
线图,最小的交叉验证误差值所对应的 K值为
佳分群数,载入最优及其相邻 K值对应q文件
并绘制群体结构图。
1.6 核糖体 DNA 序列提取和系统发育分析
选取 NR103595 DQ990327http://www.
ncbi.nlm.nih.gov作为核糖体内转录间隔区和基
因间隔区ITS IGS rDNA的参考序列bwa
0.7.17 软件(Li & Durbin 2009)将组装后的序列
比对到参考序列上,再用 picard 2.20.1 软件
http://broadinstitute.github.io/picard
的序列进行格式转换、排序和去重。提取的 ITS
IGS rDNA GenBankhttp://www.
ncbi.nlm.nih.gov并获得相应的保藏号码(表 1)。
使用 AliView 1.26 Larsson 2014对序
列文件进行查看并编辑,最后采用 MEGA4.0
件(Tamura et al. 2007 )和 PhyML3.1 软件
Guindon et al. 2010)分别构建 SNP NJ(遗
传模HKY)和 rDNA ML模型
HKY85)系统发育树,可靠性检验采用自举法
bootstrap,重复抽1 000 次,连锁类型为
直源基因,自动评估转换/颠倒比例、不变位点
比率以及 Gamma 分布参数,选择 NNI 方式搜
拓扑结构。由于没有选择到合适的外群,因此将
拓 扑 结 构 的 中 点 设 置 为 树 根 。 利 用 iTOL
https://itol.embl.de/)( Letunic & Bork 2006
进行系统发育树的编辑。
2 结果与分析
2.1 分类学变种、形态型和生化组
供试 80 株菌经形态鉴定和有机酸 HPLC
鞠笑 /基因组SNP揭示少根根霉种群结构 Research paper
菌物学报
10
定,其分类学变种、形态型和生化组的归类结果
见表 1。系统分类学方面,原变种 31 株(包含
未鉴定 7株)氏变种 37 株,京变种 12 株;
形态型方面,原型 28 (包含未鉴定 7株)
氏型 34 株,东京型 12 株,鲁氏型 6株;有机酸
生化组方面,乳酸40 株,富马苹果酸组 27
和未鉴定 13
2.2 基因组测序质量
67 株少根根霉基因组重测序数据统计结
果显示,所有样本测序深度均在 100以上,最
大测序深度为 175,最小测序深度为 101,平
均测序深度为 133表明测序的覆盖度达到要
求,可用于后续分析。
2.3 核糖体 DNA 统发育
80 株少根根霉全基因组序列中提取 ITS
IGS rDNA 序列,比对之后的矩阵分别含有 610
730 个特征,分别构ML 系统发育树(图 1
2)。 ITS 系统树(图 1)可将少根根霉总体分
4个分子系统发育支分支 1包括 3株德氏
种(含 2株鲁氏型)2LA 组和 1FMA 组菌
种,均源于自然环境,来自亚洲和北美洲,获得
99%的支持率分支 2囊括了 31 株德氏变种和
1株原变种(含 1株鲁氏型)4LA 组、24
FMA 组和 3株未鉴定菌种,获得了 99%的支持率,
3种生态群体的菌株都有,来自亚洲、非洲、欧洲
和北美洲;分支 3为东京变种/东京型单系群,
17 株(其中包括未鉴定 5株),含 10 LA 组、2
FMA 组和 5株未鉴定菌种,获得了 100%的支
持率,3种生态群体的菌株都有,来自亚洲、非洲
和欧洲;分支 4包括原变种 24 株、德氏变种 2
以及未鉴定 2株(含 3株鲁氏型),均为 LA
菌种未鉴3株)也获得了 100%的支持率,
3种生的菌
欧洲和大洋洲。基于 IGS rDNA 的系统
(图 2虽然在次级分支拓扑结构上有所不同,
菌株 XY02120 4个主要分支结果与 ITS 系统发育
树完全吻合,均获得 90%以上的支持率。
2.4 单核苷酸多态性系统发育
80 株少根根霉重测序基因组数据中的
5 208 049 SNP 位点利用 NJ 法构建系统发育树
(图 3,可将少根根霉分为 4个主要的分子系
统发育支,均获100%的支持率。
分支 14个菌株(1株德氏变种,2株东
京变种,1株未定)3株野生菌株1株致病
菌株,均为 LA 组菌(包括 1株未鉴定来自
亚洲、欧洲和北美洲。分支 235 株菌33
德氏变种/德氏型和 2株德氏变种/鲁氏型)5
LA 组和 25 FMA 组(3株未鉴定)菌种,
包括野生、驯化和致病三种生态群体,来自亚洲、
非洲、欧洲和北美洲。分支 3总计 14 株菌,均
为东京变种/东京型3株未鉴定9LA 组和
1FMA 组菌种4株未鉴定),包括三种生态
群体,来自亚洲、非洲、欧洲和北美洲。分支 4
28 株菌(25 原变种/型和 3株原变种/
氏型),均为 LA 组菌种4株未鉴定),包括三
种生态群体,来自亚洲、欧洲、北美洲南美洲
和大洋洲。
2.5 群体结构
交叉验证误差值对 K值的折线图呈非典型
v字形(图 4A,具有一个较宽的波谷,即交
叉验证误差值在 K=28时,交叉验证误差值达到
较低水平,其中 K=4 时最低。将菌株按照 SNP
系统发育树的聚类顺序排列,并根据上述 K值绘
制种群结构图(图 4B,对比三个变种的不同群
体结构组成。K=2 时,原变种和东京变种属于同
一个簇(黄色),而德氏变种属于另外一簇(
色)K=3 时,三簇正好对应三个形态变种,东京
变种(橙色)从原变种中分离出来;K=4 时,从
东京变种中分化出第四簇(紫色)K=5 时,
氏变种中分化出第五簇(浅蓝色)K=6 时,
变种中演化出第六簇(青色)K=7 时,从德氏变
种中再分化一次,形成第七簇(深灰色)k=8 时,
从原变种中再分化一次,形成第八簇(淡蓝色)
2.6 主成分分析
研究论文 22 December 2020, 39(12): 1-19 Mycosystema ISSN1672-6472 CN11-5180/Q
菌物学报
11
67 株少根根霉的 SNP 位点信息根据三个
变种进行主成分分析,结果显示,原变种、东京
变种和德氏变种在主成分 PC135.3%)和主成
PC215.3%)方向上均可明显区分(图 5)。
按照 95%置信区间绘制椭圆,可以发现多数菌株
位于置信区间内,而少数菌株落在椭圆外,尤其
4株德氏变种远离其 95%置信椭圆而分散在
东京变种区域附近,2株原变种与其 95%置信椭
圆的距离在 2倍椭圆直径左右。
鞠笑 /基因组SNP揭示少根根霉种群结构 Research paper
菌物学报
12
1 少根根霉 ITS rDNA ML 统发育 图上方的标尺表示 0.1%的遗传距离,支持率大于 70%的分支用浅紫色圆点
标识,不同颜色分别代表不同系统发育分支、分类学变种、形态型、生化组、生态群和地理位置
Figure 1. Maximum likelihood phylogenetic tree based on ITS rDNA of Rhizopus arrhizus. The upper scale represents 0.1% of
genetic distance, the branches with bootstrap values greater than 70% are marked with light purple dots, and the strips in
different colors represent different phylogenetic clades, taxonomic varieties, morphological types, biochemical groups,
ecological populations and geographical locations.
研究论文 22 December 2020, 39(12): 1-19 Mycosystema ISSN1672-6472 CN11-5180/Q
菌物学报
13
2 少根根霉 IGS rDNA ML 系统发育树 图上方的标尺表示 1%的遗传距离,支持率大于 70%的分支用浅紫色圆点标
识,不同颜色分别代表不同分子系统发育支、分类学变种、形态型、生化型、生态群和地理位置
Fig. 2 Maximum likelihood phylogenetic tree based on IGS rDNA of Rhizopus arrhizus. The upper scale represents 1% of genetic
distance, the branches with bootstrap values greater than 70% are marked with light purple dots, and the strips in different
colors represent different phylogenetic clades, taxonomic varieties, morphological types, biochemical groups, ecological
populations and geographical locations.
3 少根根霉基因组 5 208 049 SNP 位点的邻接法NJ)无根系统发育树 A概览;B:节点和树端细节. 图中两个
鞠笑 /基因组SNP揭示少根根霉种群结构 Research paper
菌物学报
14
标尺均表1%的遗传距离,支持率大于 70%的分支用浅紫色圆点标识,不同颜色分别代表不同 SNP rDNA 统发育分
支、分类学变种、形态型、生化组、生态群和地理位置
Fig. 3 Unrooted neighbor-joining phylogenetic tree based on 2 157 418 SNPs in the genome of Rhizopus arrhizus. A: Overview of
the phylogram; B: Detail for nodes and leaves. Both scales represent 1% of genetic distance. The branches with bootstrap valu es
greater than 70% are marked with light purple dots, and the strips in different colors represent different SNP and rDNA
phylogenetic clades, taxonomic varieties, morphological types, biochemical groups, ecological populations and geographical
locations.
4 基于 2 157 418 SNP 点的 67 株少根根霉群体
A:不同 K值时的交叉验证误差值(CV error), K=4
时的 CV error 低;B:不同 K值(28)群体数目假定下
少根根霉 3个变种分簇比例,不同颜色代表不同簇
Fig. 4 Population structure of Rhizopus arrhizus based on 2
157 418 SNPs in the genome of 67 strains. A: Cross-validation
(CV) error values against different K values. The
reconstruction at K=4 has the smallest CV error; B:
Assignment of the three varieties to different clusters when
different K(28) hypothetical populations are assumed.
Different colours represent different clusters.
5 基于基因组 2 157 418 SNP 位点对 67 株少根根霉的
主成分分PCA X 轴和 Y轴分别代表主分量 1PC1,
35.5%)和主分量 2PC2, 15.3%原变种、德氏变种和东
京变种用不同的颜色标识,并以 95%置信区间绘制椭圆
Fig. 5 The principal component analysis (PCA) scatter plot for
67 Rhizopus arrhizus strains based on 2 157 418 SNPs in their
genomes. Principal components 1 (PC1, X-axis) and 2 (PC2,
Y-axis) explain 35.3 % and 15.3% of the total variance,
respectively. The varieties arrhizus, delemar and tonkinensis
研究论文 22 December 2020, 39(12): 1-19 Mycosystema ISSN1672-6472 CN11-5180/Q
菌物学报
15
are labeled with different colors, and encompassed with a
95% prediction ellipse.
3 讨论
本研究基于全基因组重测序,选择 rDNA
两个区段(ITS IGS)和全基因组 SNP 多态性
位点,共计 3组分子数据对少根根霉进行种内系
统发育分析,结果显示出不同的分辨率。基于 ITS
rDNA 的系统发育树(图 1可以分4个系统
发育分支,每个分支内部遗传距离几乎为零,
法提供更精细的分支信息。基于 IGS rDNA 的系
统发育树(图 2相较于 ITS rDNA 系统发育树,
4大分支完全吻合之外,各大分支内部还能划
分出不同的小分支。当考虑到全基因组
5 208 049 SNP 点时(图 3,同样聚为 4
分支;此外,SNP 小分支比 IGS rDNA 小分支更
为丰富。因此,就少根根霉种内系统发育而言,
SNPIGS ITS rDNA 在一级分支方面结果基本
一致,均为 4支;但在次级分支信息方面,ITS
rDNA 有所欠缺,IGS rDNA 优之,SNP 最优。因
此,使用基因组 SNP 位点重建少根根霉种内系
统发育历史并解析其 DNA 分子系统发育多样
性,比起之前基于单个或者多个基因的方法更具
优势。
既然 SNP 能够提供最丰富的系统发育信息,
那么选择 SNP 对明确变种信息的 67 株少根根霉
进行种群结构分析(图 4,就能在一定程度上
揭示不同群体间的演化规律。按照 CV error 值较
低水平下的 K值(28)假定群体数目,分析分
簇比例后发现,德氏变种最先完成种内分化
K=2,随后分化出东京变种和原变种(K=3),
当假定种群数目再增加时,东京变种内部首先出
现不同群体的分化K=4后是德氏变种和
变种发生群体分化(K=56,最后,德氏变种
和原变种再次发生群体分化(K=78根据中
位假定树根法构建的 IGS rDNA SNP 有根系统
发育树(图 23)显示,除德氏变种内部亚群
分化提前之外,系统发育顺序与上述 SNP 种群
结构演化顺序基本吻合。综合 IGS rDNA SNP
的结果,研究推测少根根霉物种内群体演化历
程如下:德氏变种首先演化出来,然后东京变种
和原变种发生分化,最后东京变种、德氏变种、
原变种分化出各自的亚群。
Chibucos et al.2016基于 SNP 13 株少
根根霉进行了群体遗传和系统发育分析,将少根
根霉分为 3系统发育支,具有 3种不同的祖先
成分,然而遗憾的是,文中只选择了原变种(米
根霉)和德氏变种(德氏根霉)两个群体作为研
究对象,只设置了 K=2而且并未对结果展示的
3种祖先成分进行解释。研究选择了更多少根
根霉菌株作为研究对象,在地理上、生态上、
态上、生化上和分子上具有更广泛的代表性,
K=115 之间的 CV error 都进行了统计(图 4),
结果发现 K=4 CV error 值最低因此认为将少
根根霉分为 4个群体最合理,但是这 4群体到
底如何划分,却难以下定论不能按 4形态型
划分,只能是从某个或某几个变种中分出一个新
的变种来,rDNA 支持从德氏变种中单独分(图
12), SNP 系统发育树支持从德氏变种和东京
变种中联合分出(图 3,而 SNP 群体结构支持
从东京变种中单独分出(图 4由此可见各种
方法分析出来的结果不一致;K=8 CV 值仍
然处于较低水平,因此少根根霉种群正沿着至少
8个不同的分子方向进行演化;较宽的波谷
K=28)还表明亚群之间具有明显的杂交。
基于 SNP 多态性位点,除进行系统发育和
群体结构两种分析之外,本研究还开展了 PCA
分析(图 53种分析结果都支Zheng et al.
2007划分的少根根霉 3个变种PCA 聚类图
上位于 95%置信椭圆外的菌株,也在系统发育分
析中得到了体现,但展示出的离散距离有所不
同。分散在东京变种区域附近的 4株德氏变种和
2株东京变种,似离东京变种置信椭圆很近且
鞠笑 /基因组SNP揭示少根根霉种群结构 Research paper
菌物学报
16
6株菌相互之间的距离也很近,但在 SNP
统发育树上(分支 1)距离东京变种(分支 3
较远,且这 6株菌之间的距离也比较远与上
述情况正好相反,2株原变种距离原变种置信椭
圆较远且这两株之间的距离也较远,但在 SNP
系统发育树上位于分支 4的基部且两者之间距
离也较近。因此,对于同样的 SNP 数据,从不
同的角度可以解析出不同的菌株分化信息。
ITS rDNA 作为常用的真菌分子条形码(张宇
和郭良栋 2012直以来在系统发育分析中
挥着重要的作用。许多学者基于 ITS rDNA 系统
发育实现了对少根根霉原型(米根霉)和德氏型
(德氏根霉)的区分Abe et al. 2007Gryganskyi
et al. 2010Dolatabadi et al. 2014。而本研究除
上述两个形态型之外,将另外两个形态型(东京
型和鲁氏型)的菌株也纳入分析,结果形成了 4
个主要的 ITS rDNA 系统发育支,但这 4个分支
和形态型并没有很好的对应关系,却和分类学变
种对应较好:原变种和东京变种各对应一支,
氏变种对应两个姐妹分支;鲁氏型并不单独形成
变种,而是并入德氏变种和原变种内(图 13)。
IGS rDNA 同样可作为真菌较为稳定的分子条形
码得以应用(de Souza et al. 2020)。 Liu et al.
2008)的研究表明,利用 IGS rDNA 可以达到
对少根根霉 3个变种很好的区分效果,本研究再
次验证了这一结论且基于 IGS rDNA 序列对少根
根霉种群进行了细致的群体划分(图 2本研
究中对于富马苹果酸FMA)和乳酸(LA)生化
组的划分,基本与 Abe et al.2007)的结果相
吻合,只有少数几个例外,即德氏变种分支5
株菌外均为 FMA 生化组,而东京变种和原变种
分支除 2株菌之外均为 LA 生化组(图 13))。
由此表明发酵产 FMA LA 的生化特征可以作为
少根根霉分类的辅助依据,但并无法与形态和分
子系统发育分支完全吻合,本研究认为该特征不
足以作为划分独立物种的依据,因此不支持德氏
变种单独成种的分类学观点。另外,少根根霉在
地理、生态上的差异,并未与系统发育和群体结
构的结果相匹配,由此推测少根根霉并未完成地
理种群和野生驯化群体之间的分化,目前仍处于
演化的过程中。
ITS rDNAldhBact1EF-AFLP 系统
发育分析支持按有机酸特性分为 LA FMA 两个
生化组(分支),分别为少根根霉和德氏根霉
Abe et al. 2007。除此之外,对交配位点基因
HMGTPTRNA helicase)( Gryganskyi et al.
2010以及 192 个直源基因片段Gryganskyi et
al. 2018)的系统发育分析,同样认为少根根霉
(米根霉)和德氏根霉是两个独立的物种。以上
文献提供的数据中也存在原型和德氏型相似、
京型和鲁氏型相似的证据,然而作者没有注意
到。Gryganskyi et al.2010)发现原型(少根
霉)与德氏型(德氏根霉)在孢子大小上存在极
大的相似性。Gryganskyi et al.2018)进行基因
组大小、转座子数量和交配型结构的分析,显示
出原型与德氏型较高的相似性。对鲁氏型鲁氏
淀粉霉)基于 ITS rDNAldhB AFLP 进行系
发育分析,发现它分为两支,分别与原型(少根
根霉)和德氏型(德氏根霉)聚在一起,成为
系这两个类型的纽带Kito et al. 2009上述证
据的差异不足以达到种间水平,而本研究基于
rDNA 片段和全基因组 SNP对少根根霉的系统
发育和群体结构分析,再次明确了少根根霉具有
4个主要的分子系统发育分(图 13)和至
8个相互杂交的种群成分(图 4,德氏型组
成其中两个进化分支,而没有独立成种。
综上所述,本研究对 80 株少根根霉的 rDNA
SNP 系统发育分析以及 67 株菌SNP 群体结
构分析推导出该物种内至少8个分子群体的演
化规律,生态、形态、生化和 DNA 分子多样性
之间无明显的对应关系,所有这些多样性应该理
解为种内变异而非种间差异。由此认为少根根霉
目前仍然是一个具有丰富种内多样性的物种:
理上全球广布,占据野生、化和致病 3生态
研究论文 22 December 2020, 39(12): 1-19 Mycosystema ISSN1672-6472 CN11-5180/Q
菌物学报
17
位,形成了 3分类变种4个形态类型,分化
出了 2个有机酸生化组群,分子上相互杂交并沿
8个方向进行演化。
致谢:研究得到国家自然科学基金和科技部科技基础性
工作专项的支持,感谢中国科学院微生物研究所真菌学国
家重点实验室赵瑞琳研究员在数据分析方面的指导。
[REFERENCES]
Abd Razak DL, Abd Rashid NY, Jamaluddin A, Sharifudin SA,
Abd Kahar A, Long K, 2017. Cosmeceutical potentials
and bioactive compounds of rice bran fermented with
single and mix culture of Aspergillus oryzae and
Rhizopus oryzae. Journal of the Saudi Society of
Agricultural Sciences, 16(2): 127 -134
Abe A, Oda Y, Asano K, Sone T, 2007. Rhizopus delemar is the
proper name for Rhizopus oryzae fumaric-malic acid
producers. Mycologia, 99(5): 714-722
Alexander DH, Novembre J, Lange K, 200 9. Fast model-based
estimation of ancestry in unrelated individuals. Genome
Research, 19(9): 1655-1664
Andrews S, 2019. FastQC. A quality control tool for high
throughput sequence data. Accessed on Mar 12, 2020,
at: http://www.bioinformatics.babraham.ac.uk/projects
/fastqc
Baghela A, Thungapathra M, Shivaprakash MR, Chakrabarti
A, 2010. Multilocus microsatellite typing for Rhizopus
oryzae. Journal of Medical Microbiology , 59(12):
1449-1455
Bolger AM, Lohse M, Usadel B, 2014. Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics,
30(15): 2114-2120
Cheng Y, Gao Y, Liu XY, Wang GY, Zhang GQ, Gao SQ, 2017.
Rhinocerebral mucormycosis caused by Rhizopus
arrhizus var. tonkinensis. Journal de Mycologie
Médicale, 27(4): 586-588
Chibucos MC, Soliman S, Gebremariam T, Lee H, Daugherty S,
Orvis J, Shetty AC, Crabtree J, Hazen TH, Etienne KA,
Kumari P, O'Connor TD, Rasko DA, Filler SG, Fraser CM,
Lockhart SR, Skory CD, Ibrahim AS, Bruno VM, 2016. An
integrated genomic and transcriptomic survey of
mucormycosis-causing fungi. Nature Communications,
7(1): 11218
Cingolani P, Platts A, Le Lily W, Coon M, Nguyen T, Wang L,
Land SJ, Lu X, Reden DM, 2012. A program for
annotating and predicting the effects of single
nucleotide polymorphisms, SnpEff: SNPs in the genome
of Drosophila melanogaster strain w111 8; iso-2; iso-3. Fly,
2(6): 80-92
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo
MA, Handsaker RE, Lunter G, Marth GT, Sherry ST,
Mcvean G, Durbin R, 2011. The variant call format and
VCFtools. Bioinformatics, 27(15): 2156-2158
de Souza TB, Gaeta ML, Martins C, Vanzela ALL, 2020. IGS
sequences in cestrum present AT- and GC-rich
conserved domains, with strong regulatory potential for
5S rDNA. Molecular Biology Reports, 47(1): 55-66
Dolatabadi S, de Hoog GS, Meis JF, Walther G, 2014. Species
boundaries and nomenclature of Rhizopus arrhizus (syn.
R. oryzae). Mycoses, 57: 108-127
Duan S, Han P, Wang Q, Liu W, Shi J, Li K, Zhang X, Bai F,
2018. The origin and adaptive evolution of domesticated
populations of yeast from Far East Asia. Nature
Communications, 9(1): 2690
García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz
S, Tarazona S, Dopazo J, Meyer TF, Conesa A, 2012.
Qualimap: evaluating next-generation sequencing
alignment data. Bioinformatics, 28(20): 2678-2679
Gryganskyi AP, Golan J, Dolatabadi S, Mondo S, Robb S,
Idnurm A, Muszewska A, Steczkiewicz K, Masonjones S,
Liao H, Gajdeczka MT, Anike F, Vuek A, Anishchenko IM,
Voigt K, de Hoog GS, Smith ME, Heitman J, Vilgalys R,
Stajich JE, 2018. Phylogenetic and phylogenomic
definition of Rhizopus species. G3 (Bethesda, Md.), 8(6):
2007-2018
Gryganskyi AP, Lee SC, Litvintseva AP, Smith ME, Bonito G,
Porter TM, Anishchenko IM, Heitman J, Vilgalys R, 2010.
Structure, function, and phylogeny of the mating locus
in the Rhizopus oryzae complex. PLoS One, 5(12):
e15273
Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W,
Gascuel O, 2010. New algorithms and methods to
estimate maximum-likelihood phylogenies: assessing the
鞠笑 /基因组SNP揭示少根根霉种群结构 Research paper
菌物学报
18
performance of PhyML 3.0. Systematic Biology, 59(3):
307-321
Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbón MH, del
Valle MB, Fyfe J, García-García L, Rastogi N, Sola C, Zozio
T, Guerrero MI, León CI, Crabtree J, Angiuoli S, Eisenach
KD, Durmaz R, Joloba ML, Rendón A, Sifuentes-Osornio
J, de León AP, Cave MD, Fleischmann R, Whittam TS,
Alland D, 2006. Global phylogeny of Mycobacterium
tuberculosis based on single nucleotide polymorphism
(SNP) analysis: insights into tuberculosis evolution,
phylogenetic accuracy of other DNA fingerprinting
systems, and recommendations for a minimal standard
SNP set. Journal of Bacteriology, 188(2): 759-772
Jiang Y, Dai P, Han D, 2017. Single nucleotide polymorphism
in the development of human genomics. Chinese Journal
of Otology, 15(2): 239-244 (in Chinese)
Kito H, Abe A, Sujaya I, Oda Y, Asano K, Sone T, 2009.
Molecular characterization of the relationships among
Amylomyces rouxii, Rhizopus oryzae, and Rhizopus
delemar. Bioscicece Biotechnology and Biochemistry,
73(4): 861-864
Kwon JH, Kim J, Kim WI, 2011. First report of Rhizopus oryzae
as a postharvest pathogen of apple in Korea.
Mycobiology, 39(2): 140-142
Larsson A, 2014. AliView: a fast and lightweight alignment
viewer and editor for large datasets. Bioinformatics,
30(22): 3276-3278
Letunic I, Bork P, 2006. Interactive tree of life (iTOL): an
online tool for phylogenetic tree display and annotation.
Bioinformatics, 23(1): 127-128
Li H, Durbin R, 2009. Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics,
25(14): 1754-1760
Liu XY, Huang H, Zheng RY, 2007. Molecular phylogenetic
relationships within Rhizopus based on combined
analyses of ITS rDNA and pyrG gene sequences.
Sydowia, 59(2): 235-253
Liu YX, Huang H, Zheng YR, 2008. Delimitation of Rhizopus
varieties based on IGS rDNA sequences. Sydowia, 60:
93-112
Londoño-Hernández L, Ramírez-Toro C, Ruiz HA, Ascacio-
Valdés JA, Aguilar-Gonzalez MA, Rodguez-Herrera R,
Aguilar CN, 2017. Rhizopus oryzae-ancient microbial
resource with importance in modern food industry.
International Journal of Food Microbiology, 257:
110-127
Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler
M, Elias M, Idnurm A, Lang BF, Sone T, Abe A, Calvo SE,
Corrochano LM, Engels R, Fu J, Hansberg W, Kim JM,
Kodira CD, Koehrsen MJ, Liu B, Miranda-Saavedra D,
O'Leary S, Ortiz-Castellanos L, Poulter R, Rodriguez-Romero
J, Ruiz-Herrera J, Shen YQ, Zeng Q, Galagan J, Birren BW,
Cuomo CA, Wickes BL, 2009. Genomic analysis of the
basal lineage fungus Rhizopus oryzae reveals a
whole-genome duplication. PLoS Genetics, 5(7):
e1000549
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K,
Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M,
Depristo MA, 2010. The genome analysis toolkit: a
mapreduce framework for analyzing next-generation
DNA sequencing data. Genome Research, 20(9):
1297-1303
Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Fujiwara H,
2015. A genetic mechanism for female-limited Batesian
mimicry in Papilio butterfly. Nature Genetics, 47(4):
405-409
Orikasa Y, Oda Y, 2013. Molecular characterization of
β-fructofuranosidases from Rhizopus delemar and
Amylomyces rouxii. Folia Microbiologica, 58(4): 301-309
Orikasa Y, Oda Y, Ohwada T, 2018. Identification of sucA,
encoding β-fructofuranosidase, in Rhizopus microsporus.
Microorganisms, 6(1): e26
Pearson T, Busch JD, Ravel J, Read TD, Rhoton SD, U'Ren JM,
Simonson TS, Kachur SM, Leadem RR, Cardon ML,
Matthew NVE, Huynh LY, Fraser CM, Keim P, Falkow S,
2004. Phylogenetic discovery bias in Bacillus anthracis
using single nucleotide polymorphisms from
whole-genome sequencing. Proceedings of the National
Academy of Sciences of the United States of America,
101(37): 13536-13541
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR,
Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ,
Sham PC, 2007. PLINK: a tool set for whole-genome
association and population-based linkage analyses. The
研究论文 22 December 2020, 39(12): 1-19 Mycosystema ISSN1672-6472 CN11-5180/Q
菌物学报
19
American Journal of Human Genetics, 81(3): 559-575
Roskov Y, Ower G, Orrell T, Nicolson D, Bailly N, Kirk PM,
Bourgoin T, Dewalt RE, Decock W, Nieukerken EV,
Zarucchi J, Penev L, 2019. Species 2000 & ITIS Catalogue
of Life, 2019 Annual Checklist
Saito K, Saito A, Ohnishi M, Oda Y, 2004. Genetic diversity in
Rhizopus oryzae strains as revealed by the sequence of
lactate dehydrogenase genes. Archives of Microbiology,
182(1): 30-36
Su R, Lin J, Chen LQ, Cai WW, 2019. Research progress on
high-throughput automated SNP detection technology.
Chinese Journal of Cell Biology, 41(7): 1412-1422 (in
Chinese)
Sun L, Fu Y, Yang Y, Wang X, Cui W, Li D, Yuan X, Zhang Z, Fu
Y, Li Y, 2019. Genomic analyses reveal evidence of
independent evolution, demographic history, and
extreme environment adaptation of Tibetan plateau
Agaricus bisporus. Frontiers in Microbiology, 10: 1786
Tamura K, Dudley J, Nei M, Kumar S, 2007. MEGA4:
molecular evolutionary genetics analysis (MEGA)
software version 4.0. Molecular Biology and Evolution,
24(8): 1596-1599
Timme RE, Pettengill JB, Allard MW, Strain E, Barrangou R,
Wehnes C, Van Kessel JS, Karns JS, Musser SM, Brown
EW, 2013. Phylogenetic diversity of the enteric
pathogen Salmonella enterica subsp. enterica inferred
from genome-wide reference-free SNP characters.
Genome Biology and Evolution, 5(11): 2109 -2123
Watanabe T, Oda Y, 2008. Comparison of sucrose-hydrolyzing
enzymes produced by Rhizopus oryaze and Amylomyces
rouxii. Bioscience, Biotechnology, and Biochemistry.
72(12): 3167-3173. DOI: 10.1271/bbb.80346
Yang J, Lee SH, Goddard ME, Visscher PM, 2011. GCTA: a tool
for genome-wide complex trait analysis. The American
Journal of Human Genetics, 88(1): 76-82
Zhang Y, Guo LD, 2012. Progress of fungal DNA barcode.
Mycosystema, 31(6): 809-820 (in Chinese)
Zheng RY, Chen GQ, Huang H, Liu XY, 2007. A monograph of
Rhizopus. Sydowia, 59(2): 273-372
[附中文参考文献]
蒋刈,戴朴韩东一,2017. 单核苷酸多态性在人类基因
组学发展中的应用. 中华耳科学杂志,15(2): 239-244
苏睿,林峻,陈鲤群蔡伟文,2019. 高通量自动化 SNP
检 测 技 术 研 究 进 展 . 中 国 细 胞 生 物 学 学 报 , 41(7):
1412-1422
张宇,郭良栋,2012. 真菌 DNA 条形码研究进展. 菌物
报,31(6): 809-820
(本文责编:王敏)
... R. arrhizus is found all over the world, colonizing a wide range of ecological habitats. Most strains of R. arrhizus are saprotrophic inhabitants of soil, dung, organic matter, and plant debris, while some isolates parasitize plants and infect animals and humans, causing mucormycosis, especially those co-infected with COVID-19 (Zheng et al. 2007;Kwon et al. 2011;Cheng et al. 2017;Ju et al. 2020;Tabarsi et al. 2021). The species plays an important role in industrial bio-transformations, such as beverage and food processing through fermentation (Jin et al. 2003;Liu et al. 2017;Dobrev et al. 2018). ...
Article
Full-text available
Rhizopus arrhizus is a saprotrophic, sometimes clinically- and industrially-relevant mold (Mucorales) and distributed worldwide, suggesting it can assimilate a broad spectrum of substrates. Here, 69 strains of R. arrhizus were investigated by using the Biolog FF MicroPlate for the profiles of utilizing 95 carbon and nitrogen substrates. The study showed that most R. arrhizus strains were similar in average well color development (AWCD) and substrate richness (SR). Nevertheless, 13 strains were unique in principal component analyses, heatmap, AWCD, and SR analyses, which may imply a niche differentiation within R. arrhizus. The species R. arrhizus was able to utilize all the 95 carbon and nitrogen substrates, consistent with the hypothesis of a great metabolic diversity. It possessed a substrate preference of alcohols, and seven substrates were most frequently utilized, with N-acetyl-d-galactosamine and l-phenylalanine ranking at the top of the list. Eight substrates, especially l-arabinose and xylitol, were capable of promoting sporulation and being applied for rejuvenating degenerated strains. By phenotyping R. arrhizus strains in carbon and nitrogen assimilation capacity, this study revealed the extent of intra-specific variability and laid a foundation for estimating optimum substrates that may be useful for industrial applications.
... They play key roles in industrial, agricultural, and medical applications as fermentation agents, and some species cause diseases in plants, humans and animals (Zheng et al. 2007, Cheng et al. 2017, Yao et al. 2018, Ju et al. 2020. ...
Preprint
Full-text available
Zygomycetes are phylogenetically early diverged, ecologically diverse, industrially valuable, agriculturally beneficial, and clinically pathogenic fungi. Although new phyla and subphyla have been constantly established to accommodate specific members and a subkingdom, Mucoromyceta, was erected to unite core zygomycetous fungi, their phylogenetic relationships have not been well resolved. Taking account of the information of monophyly and divergence time estimated from ITS and LSU rDNA sequences, the present study updates the classification framework of the subkingdom Mucoromyceta from the phylum down to the generic rank: six phyla (including two new phyla Endogonomycota and Umbelopsidomycota), eight classes, 15 orders (including five new orders Claroideoglomerales, Cunninghamellales, Lentamycetales, Phycomycetales and Syncephalastrales), 41 families (including six new families Circinellaceae, Gongronellaceae, Protomycocladaceae, Rhizomucoraceae, Syzygitaceae and Thermomucoraceae), and 121 genera. The taxonomic hierarchy was calibrated with estimated divergence times: phyla 810–639 Mya, classes 651–585 Mya, orders 570–400 Mya, and families 488–107 Mya. Along with this outline, 71 genera are annotated and 73 new species are described. In addition, three new combinations are proposed. In this paper, we update the taxonomic backbone of the subkingdom Mucoromyceta and reinforce its phylogeny. We also contribute numerous new taxa and enrich the diversity of Mucoromyceta.
Article
Full-text available
Zygomycetes are phylogenetically early diverging, ecologically diverse, industrially valuable, agriculturally beneficial, and clinically pathogenic fungi. Although new phyla and subphyla have been constantly established to accommodate spe- cific members and a subkingdom Mucoromyceta, comprising Calcarisporiellomycota, Glomeromycota, Mortierellomycota and Mucoromycota, was erected to unite core zygomycetous fungi, phylogenetic relationships within phyla have not been well resolved. Taking account of the information of monophyly and divergence time estimated from ITS and LSU rDNA sequences, the present study updates the classification framework of the phylum Mucoromycota from the class down to the generic rank: three classes, three orders, 20 families (including five new families Circinellaceae, Protomycocladaceae, Rhizomucoraceae, Syzygitaceae and Thermomucoraceae) and 64 genera. The taxonomic hierarchy was calibrated with estimated divergence times: phylum earlier than 617 Mya, classes and orders earlier than 547 Mya, families earlier than 199 Mya, and genera earlier than 12 Mya. Along with this outline, all genera of Mucoromycota are annotated and 58 new species are described. In addition, three new combinations are proposed. In this study, we update the taxonomic backbone of the phylum Mucoromycota and reinforce its phylogeny. We also contribute numerous new taxa and enrich the diversity of Mucoromycota.
Article
Full-text available
The genus Conidiobolus s.s. was newly delimited from Conidiobolus s.l. In order to gain insight into its mitochondrial genetic background, this study sequenced six mitochondrial genomes of the genus Conidiobolus s.s. These mitogenomes were all composed of circular DNA molecules, ranging from 29,253 to 48,417 bp in size and from 26.61 to 27.90% in GC content. The order and direction for 14 core protein-coding genes (PCGs) were identical, except for the atp8 gene lost in Conidiobolus chlamydosporus, Conidiobolus polyspermus, and Conidiobolus polytocus, and rearranged in the other Conidiobolus s.s. species. Besides, the atp8 gene split the cox1 gene in Conidiobolus taihushanensis. Phylogenomic analysis based on the 14 core PCGs confirmed that all Conidiobolus s.s. species formed a monophyly in the Entomophthoromycotina lineage. The number and length of introns were the main factors contributing to mitogenomic size, and deep variations and potential transfer were detected in introns. In addition, gene transfer occurred between the mitochondrial and nuclear genomes. This study promoted the understanding of the evolution and phylogeny of the Conidiobolus s.s. genus.
Article
Full-text available
The 35S and 5S ribosomal DNA (rDNA) organized in thousands of copies in genomes, have been widely used in numerous comparative cytogenetic studies. Nevertheless, several questions related to the diversity and organization of regulatory motifs in 5S rDNA remain to be addressed. The 5S rDNA unit is composed of a conserved 120 bp length coding region and an intergenic spacer (IGS) containing potential regulatory motifs (Poly-T, AT-rich and GC-rich) differing in number, redundancy and position along the IGS. The Cestrum species (Solanaceae) have large genomes (about 10 pg/1C) and conserved 2n = 16 karyotypes. Strikingly, these genomes show high diversity of heterochromatin distribution, variability in 35S rDNA loci and the occurrence of B chromosomes. However, the 5S rDNA loci are highly conserved in the proximal region of chromosome 8. Comparison of seventy-one IGS sequences in plants revealed several conserved motifs with potential regulatory function. The AT- and GC-rich domains appeared highly conserved in Cestrum chromosomes. The 5S genic and the GC-rich IGS probe produced FISH signals in both A (pair 8) and B chromosomes. The GC-rich domain presented a strong potential for regulation because it may be associated with CpG islands organization, as well as to hairpin and loop organization. Another interesting aspect was the ability of AT- and GC-rich motifs to produce non-heterochromatic CMA/DAPI signals. While the length of the 5S rDNA IGS region varied in size between the Cestrum species, the individual sequence motifs seem to be conserved suggesting their regulatory function. The most striking feature was the conserved GC-rich domain in Cestrum, which is recognized as a signature trait of the proximal region of chromosome pair 8.
Article
Full-text available
The yeast Saccharomyces cerevisiae has been an essential component of human civilization because of its long global history of use in food and beverage fermentation. However, the diversity and evolutionary history of the domesticated populations of the yeast remain elusive. We show here that China/Far East Asia is likely the center of origin of the domesticated populations of the species. The domesticated populations form two major groups associated with solid-and liquid-state fermentation and appear to have originated from heterozygous ancestors, which were likely formed by outcrossing between diverse wild isolates primitively for adaptation to maltose-rich niches. We found consistent gene expansion and contraction in the whole domesticated population, as well as lineage-specific genome variations leading to adaptation to different environments. We show a nearly panoramic view of the diversity and life history of S. cerevisiae and provide new insights into the origin and evolution of the species.
Article
Full-text available
Phylogenomic approaches have the potential to improve confidence about the inter-relationships of species in the order Mucorales within the fungal tree of life. Rhizopus species are especially important as plant and animal pathogens and bioindustrial fermenters for food and metabolite production. A dataset of 192 orthologous genes was used to construct a phylogenetic tree of 21 Rhizopus strains, classified into four species isolated from habitats of industrial, medical and environmental importance. The phylogeny indicates that the genus Rhizopus consists of three major clades, with R. microsporus as the basal species and the sister lineage to R. stolonifer and two closely related species R. arrhizus and R. delemar A comparative analysis of the mating type locus across Rhizopus reveals that its structure is flexible even between different species in the same genus, but shows similarities between Rhizopus and other mucoralean fungi. The topology of single-gene phylogenies built for two genes involved in mating is similar to the phylogenomic tree. Comparison of the total length of the genome assemblies showed that genome size varies by as much as three-fold within a species and is driven by changes in transposable element copy numbers and genome duplications.
Article
Full-text available
Rhizopus microsporus NBRC 32995 was found to hydrolyze fructooligosaccharides (FOS), as well as sucrose, almost completely into monosaccharides through the production of sufficient amounts of organic acids, indicating that the complete hydrolysis of FOS was caused by the secretion of β-fructofuranosidase from fungal cells. Thus, thesucAgene, encoding a β-fructofuranosidase, was amplified by degenerate PCR, and its complete nucleotide sequence was determined. The total length of thesucAgene was 1590 bp, and the SucA protein ofR. microsporusNBRC 32995 belonged to clade VIa, which also containsRhizopus delemarand is closely related to Saccharomycotina, a subdivision of the Ascomycota.
Article
Full-text available
Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets.
Article
Full-text available
A total of 312 Rhizopus strains comprising 187 strains isolated in China and 125 strains from foreign countries have been studied, which include possibly all of the cultures derived from types available now. The morphology of the sporangial and zygosporic states, maximum growth temperature, mating compatibility, and molecular systematics were used as important reference for the classification of the genus. Seventeen taxa, ten species and seven varieties, are recognized in the genus Rhizopus in this study. These include: R. americanus, R. arrhizus var. arrhizus, R. arrhizus var. delemar, R. arrhizus var. tonkinensis, R. caespitosus, R. homothallicus, R. microsporus var. microsporus, R. microsporus var. azygosporus, R. microsporus var. chinensis, R. microsporus var. oligosporus, R. microsporus var. rhizopodiformis, R. microsporus var. tuberosus, R. niveus, R. reflexes, R. schipperae, R. sexualis, and R. stolonifer. Seventy-two names of Rhizopus are treated as synonyms. Twenty-five species, eight varieties and one form are thought to be doubtful, and nine species and four varieties are excluded from the genus. Neotypes are designated for R. microsporus var. microsporus, R. microsporus var. oligosporus, R. microsporus var. rhizopodiformis, and R. stolonifer. In the taxa accepted, zygospores are found and studied in all the three homothallic species and five heterothallic species or varieties; while azygospores are found in two species and one variety. A synoptic key and a diagnostic key, as well as synonyms, descriptions, and line drawings are provided for all taxa recognized.
Article
Full-text available
DNA sequences from two loci, the entire ITS rDNA and a portion of pyrG, were examined to study relationships within Rhizopus morphospecies. The ITS rDNA sequences from 55 strains representing all 10 currently recognized species showed great differences in length among species ranging from 450 to 788 bp. Phylogenetic analysis of the ITS rDNA resolved seven of the 10 species into separate clades. Three of the species, R. americanus, R. arrhizus and R. niveus, formed a clade, but evolutionary relationships among them were unresolved. In order to clarify relationships among these three species, we analyzed 26 partial sequences of pyrG gene encoding the terminal enzyme in the pyrimidine- biosynthetic pathway. The pyrG gene tree contained seven lineages. R. americanus formed a strongly supported clade with R. sexualis and R. stolonifer, but R. arrhizus was paraphyletic with R. niveus. Although there are 10 recognized species, combined analyses of the ITS rDNA and pyrG gene data only allowed eight species to be distinguished: R. americanus, R. caespitosus, R. homothallicus, R. microsporus, R. reflexus, R. schipperae, R. sexualis and R. stolonifer. The remaining two morphologically distinct species, R. arrhizus and R. niveus, formed an unresolved cluster and need more phylogenetic studies.
Article
Full-text available
Rhizopus currently comprises 10 species two of which, R. arrhizus and R. microsporus, are divided into nine varieties. The molecular phylogenetic relationships among varieties were studied here by using IGS rDNA sequences. All three varieties of R. arrhizus were characterized by special short tandem repeat (STR) motifs except for strain CBS 257.28. The phylogram of R. arrhizus consisted of four clades. Three clades comprised R. arrhizus var. arrhizus, R. arrhizus var. delemar and R. arrhizus var. tonkinensis, respectively. The fourth clade was composed of CBS 258.28 R. arrhizus var. arrhizus and CBS 257.28 R. arrhizus var. tonkinensis. However, the varieties of R. microsporus did not correspond with any STR motif or form monophyletic groups. According to this study, the morphological and molecular characters evolve in concert in R. arrhizus and at different rate in R. microsporus.
Article
Mucormycosis is a rare life-threatening opportunistic infection caused by fungi of the order Mucorales. We report a case of rhinocerebral mucormycosis caused by Rhizopus arrhizus var. tonkinensis, the first formally reported case in the literature. Early diagnosis, reversal of predisposing factors, surgical debridement and prompt administration of antifungal therapy are critical for good outcome. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Article
Filamentous fungi are microorganisms widely known for their diverse biochemical features. Fungi can efficiently invade a wide variety of substrates under operational conditions producing numerous bioproducts of interest, such as enzymes, organic acids, aromatic compounds and colorants. An additional interesting characteristic of some fungi is their safety classification for different uses, which guarantees that the bioproducts obtained from them do not contain any toxic component deleterious to humans. Rhizopus oryzae is among this group of fungi and is classified as a GRAS filamentous fungus, commonly used for production of some oriental traditional foods. It is mainly recognized as a good producer of lactic acid; however, its potential for other biotechnological processes is under study. This review analyzes and discusses the current scientific and technical contributions which may maximize the potential of R. oryzae as a producer of different compounds of industrial interest.