
A Parallel FPGA-based FFT Architecture for High-Performance Hybrid
Computing

Vitor C. F. Gomes
Andrea S. Charão

Universidade Federal de Santa Maria
vconrado, andrea@inf.ufsm.br

Haroldo F. C. Velho
Instituto Nacional de Pesquisas Espaciais

haroldo@lac.inpe.br

Abstract

Field Programmable Gate Arrays (FPGAs) have been
increasingly used to improve performance of computational
applications. In recent years, such devices have also been
employed to build hybrid reconfigurable computing systems
as the Cray XD1. Hybrid systems raise a number of chal-
lenges compared to FPGA-only designs, as for example the
efficient data transfer between the CPU and FPGA, during
computations. In this paper, we present an FPGA-based
architecture for performing a parallel floating point Fast
Fourier Transform (FFT) of one-dimensional data. FFT
cores are broadly available for FPGAs, but mainly for ac-
celerating FFT computation on hardware. In contrast, our
design is targeted to a high-performance hybrid comput-
ing system where CPU and FPGA cooperate in calculat-
ing the FFT. It also explores design strategies for paral-
lel FFT computation and overlapping computations with
data transfers. To validate our approach, we present ex-
perimental results obtained on a Cray XD1 hybrid system,
while performing floating point FFTs for varying input data
sizes. The results show that our design is efficient in avoid-
ing bottlenecks between memory and computing modules,
and achieves speedups on the target hybrid architecture.

1. Introduction

In the past few years, hybrid reconfigurable systems have
emerged as promising next-generation platforms for high-
performance computing. Such systems connect general-
purpose processors and modern Field Programmable Gate
Arrays (FPGAs), usually through a custom interconnection
technology. The main idea is to incorporate FPGAs as co-
processors into high-performance systems, in order to ac-
celerate computation-intensive parts of performance-critical
applications. This approach has been investigated in some
recent research works [26, 6, 27, 8], which explore the com-

bined, parallel FPGA and CPU computing power.
Parallelism is a key issue while designing efficient ap-

plications targeted to hybrid reconfigurable systems. In
such systems, there are multiple parallel granularities to ex-
plore, ranging from the fine-grain parallelism inherent in
FPGAs to the coarser parallel grain of multiple intercon-
nected CPU-FPGA nodes. In this work, we focus our atten-
tion on the parallelism provided by a single node containing
both an FPGA and a general-purpose processor. Designing
efficient applications for such platform is a challenge, be-
cause there is a number of factors limiting their parallel per-
formance, namely the efficiency of data transfers between
CPU and FPGA, the workload partition considering the
hardware/software resources and the design choices for the
FPGA-based architecture, which are application-dependent.

Some computational kernels are widely available as
FPGA modules, as occurs with Fast Fourier Transforms
(FFTs). This kernel is recurrent in many computation-
intensive applications, from image processing to atmo-
spheric simulation. The computational cost of an FFT mo-
tivates the parallelization of its computations, as well as
its implementation on hardware. Significant speedups can
be achieved for FFTs, mainly for two or three-dimensional
transforms on distributed or shared-memory parallel archi-
tectures [14, 3, 19]. FPGA-based FFT modules also achieve
high-performance and are suitable for a variety of FPGA-
centric applications [17, 18, 7], but are not designed to ex-
plore parallelism on hybrid nodes and to cope with data
transfer costs. For one-dimensional FFTs, speedups are
harder to obtain due to the high cost of data transfer (O(N)),
compared to its computational cost (O(NlogN)). In this
case, the parallel efficiency is highly sensitive to the number
of points on the input data, so it is beneficial for application
developers/tuners to be able to reuse an FPGA-based FFT
design for different sizes of input vectors, without needing
to re-synthesize the hardware.

In this paper, we present a parallel FPGA-based FFT ar-
chitecture aimed to efficiently exploit high-end hybrid com-
puting systems. This architecture makes an aggressive use



of design alternatives to hide data transfer costs and to keep
the FPGA busy, working in parallel with the CPU, so the re-
sulting schema leverages intra-node and intra-FPGA paral-
lelism to solve the 1D FFT. Our design is based on floating-
point arithmetic and can cope with a range of input data
partition sizes. The CPU computes the other partition of the
FFT input data and processes the final data synchronization.
With such flexible design, experimental tuning and analysis
require no effort of hardware reconfiguration.

To validate our approach, we implemented this architec-
ture on a Cray XD1 hybrid system. Our implementation
choices considered the different modes provided by the sys-
tem for data sharing between the CPU and the FPGA. We
analyzed the performance of our hybrid solution for varying
input data sizes and with different workload partitions and
mappings. The results show that our hybrid design achieves
speedups compared to a CPU-only FFT implementation.

The rest of this paper is organized as follows. Section
2 briefly provides some background on parallel FFT al-
gorithms and their implementation on FPGA. It also dis-
cusses some related work focused on hybrid designs for
high-performance reconfigurable computing systems. Sec-
tion 3 presents the target computing systems for this work
and describes the communication modes provided for hy-
brid applications on the Cray XD1. Sections 4 and 5 present
our hybrid architecture design and explain some implemen-
tation details. Section 6 describes our experimental analysis
and discusses the results, while Section 7 presents some fi-
nal considerations.

2. Background and Related Work

2.1. Fast Fourier Transform

Fourier transforms are linear transformations used in
several scientific and engineering applications. In their dis-
crete formulation, these transforms are usually the core of
computational applications such as digital signal processing
and solution of partial differential equations, just to name a
few. The Discrete Fourier Transform (DFT) of a sequence
of N numbers can be computed as

X(k) =
N−1∑
n=0

x(n)Wnk
N k = 0, 1, ..., N − 1 (1)

where WN = e−2π
√−1/N is a trigonometric coefficient

known as the twiddle factor. The Fast Fourier Transform
algorithm (FFT) [9] computes DFT reducing the complex-
ity from O(N2) to O(NlogN).

There are many ways to structure the FFT algorithm.
One variant is the radix-2 algorithm: it takes a divide-and-
conquer approach, which operates on an N-point data set,
where N is a power of 2. Its basic operation is known

as “butterfly” and consists of two complex additions and
a complex multiplication. The radix-2 algorithm yields the
smallest butterfly unit, which allows for greater flexibility in
studying the design space [2, 23, 9, 5, 18]. In this work, we
chose a radix-2 butterfly in order to design a flexible hybrid
solution for the 1D FFT, allowing for experimental analy-
sis without hardware reconfiguration. We also focused on
the 1D FFT because it may be used as a building block for
higher-dimensional transforms.

There are also several ways to calculate an FFT in paral-
lel. The binary-exchange algorithm can be used to minimize
the communication [16]. Figure 1 illustrates an eight-point
FFT computational flow with reordered inputs. This struc-
ture provides an ideal optimal-cost parallel time complexity
of O(logN) when computed with N processors. Each step
of the FFT algorithm operates on points with increasingly
distant indices. In the last step, radix-2 butterflies oper-
ates on points i and (N/2) + i, with i varying from 0 to
(N/2)−1. In case of partitioning the FFT algorithm in two
parallel tasks (light gray and dark gray in Fig. 1), the last
step of the FFT cannot be achieved without data movement
between the two tasks. These data dependencies are found
earlier in computational flow with greater number of par-
allel tasks. With this structure, data communication must
occur in the logP last steps, where P is the number of par-
allel tasks computing the FFT. When the communication
cost is high, it may be advantageous to assign (N/P )-point
FFTs to each task and perform the last steps sequentially on
a single task.

Figure 1. Computational flow for an 8-point
FFT

2.2. FFT and Hybrid Reconfigurable Com-
puting Systems

As a computationally intensive algorithm, FFT is suit-
able for hardware acceleration and FPGA-based implemen-
tation. Hardware FFT architectures have been extensively
investigated in a number of research works [22, 18, 17, 24,



15] and are currently available as modules from different
vendors [13, 1, 25]. These architectures differ on their goals
and target applications. Some are focused on low resource
usage and low power consumption, while others are con-
cerned with high-throughput and high-performance. They
also differ in terms of the FFT algorithm (radix-2 or higher
order radices) and the hardware implementation strategies.

To achieve high performance and throughput, FPGA-
based FFT architectures usually employ pipelined con-
structs to operate on continuous data streaming at clock
rate [22]. When resource usage is a constraint, the so-called
burst FFT architectures are predominant [22]. They process
a data frame at a time, as the FFT unit only operates on an-
other frame when the previous frame is finished. One can
also consider a mixed strategy, which consists on adding
functional and memory units to the burst architecture, in or-
der to overlap computations with data I/O.

In hybrid applications for reconfigurable computing sys-
tems, the FPGA usually needs to read a fixed width in-
put vector to compute the FFT. In this case, real-time data
streaming is not a requirement for the FPGA-based FFT, but
a burst architecture would restrict parallelism. Considering
that we are interested on high-performance FFT computa-
tion, a mixed strategy is best suited for our case.

While FPGA-centric designs for the FFT are around for
more than a decade, to our knowledge there is not yet a
thorough investigation of hybrid designs that leverages the
power of using both the FPGA and the CPU to compute this
transform. This approach is rather recent, due to the new re-
configurable computing systems brought to the market over
the past few years. Some related work on hybrid designs
address different computational kernels and are limited to
linear algebra operations and optimization problems [26, 6].

3. High-Performance Reconfigurable Systems

FPGAs have achieved sufficient gate density and func-
tional capability to support high-performance floating-point
operations required by many scientific kernels. In the past
few years, high-performance computing vendors, like Cray,
SGI and SRC, introduced hybrid computing systems such
as Cray XD1, XT3/XT4 and XT5h, SGI RASC and SRC-6
MAP. These systems have been explored in some research
works on hybrid computing [27, 20, 21, 26, 6]. In our work,
we have used a Cray XD1 system to carry out experimental
analysis, so the following sections present the main charac-
teristics of its hybrid architecture.

3.1. Cray XD1

Our Cray XD1 system is made up of six interconnected
nodes (blades), each one containing two AMD Opteron
general-purpose processors and one Xilinx Virtex II Pro

FPGA. Figure 2 shows the architecture of an XD1 node
(blade). The reconfigurable device has direct access to four
banks of QDR II SRAM. Through a RapidArray proces-
sor, the FPGA can also access the DRAM of the proces-
sors [10, 11]. While developing hybrid programs for the
XD1, two key issues are moving data between the FPGA
and the processors and efficiently using the memory hierar-
chy available to FPGA designs.

Figure 2. Cray XD1 blade architecture

3.2. Communication Modes

To allow communication between the FPGA and the
CPUs, Cray provides the RapidArray Transport Core (RT-
Core) and the einlib library. This library provides a C-
language interface for software applications to share mem-
ory blocks with the FPGA. These blocks are called FPGA
transfer regions (FTRs). The library also allows to issue
write and read requests from the application to the FPGA,
at the same abstraction level of file reads and writes.

The RTCore provides a VHDL entity to handle requests
from the C program to the FPGA. This core has two inter-
faces with distinct functions. The Fabric Request interface
comprises the signals of processor requests and FPGA re-
sponses. Using this interface, the communication is man-
aged by software logic and keeps the CPU occupied. The
second interface, User Request, allows the FPGA to access
the DRAM memory which is shared with the processors.
After the software sends the shared transfer region address
to the FPGA (using Fabric Request interface), it can read
up to eight quadwords in a burst. The maximum allowed
size for a transfer region is 2MB [12, 10]. This limitation
may hinder the transfer of greater amounts of data, which
need be done with FPGA-CPU synchronization or multiples
FTRs. In a previous work [4], we analyzed both interfaces
to measure the performance of each communication mode.
For up to 16KB, the Fabric Request is faster than User Re-
quest. So, in the current work, we use the Fabric Request



interface to communicate status registers with the FPGA,
and the User Request interface to transfer the FFT data set.
Another important reason for choosing the User Request in-
terface to transfer large amounts of data is because proces-
sors are freed to perform other computing tasks during the
transfer. The theoretical maximum bandwidth of RTCore is
1.6GB/s on each way. Despite that, in our previous work,
we achieved a maximum bandwidth of 87MB/s using the
User Request and 12MB/s using the Fabric Request inter-
face to tranfer 2MB from CPU to FPGA.

3.3. Memory Hierarchy

The hybrid architecture of XD1 provides the FPGA with
access to different memory levels. The DRAM is the upper
level, largest memory bank and has a non-constant latency.
This memory can be accessed using the User Request in-
terface. The lower level memory comprises four banks of
QDR II SRAM with 4MB each. The SRAM read latency
is 8 cycles. Also, Xilinx Virtex-Pro FPGAs has an inter-
nal memory that can be accessed in one cycle latency. In
this work, we used the three memory levels. The DRAM
memory is used to transfer input data between the proces-
sor and the FPGA. Two banks of SRAM are used to store
partial results of the computations and the twiddle factors.
The internal memory of the FPGA is used to record the sta-
tus, communication signals between architecture units and
to implement a cache.

4. Hybrid Architecture Description

Our hybrid architecture aims to harness the power of
both the CPU and the FPGA to compute the 1D FFT, so
as to keep both devices fully occupied to ensure the per-
formance of the hybrid execution. To do so, it aggressively
explore multiple parallel and latency hiding opportunities in
the hybrid system.

To parallelize the FFT, we use the binary-exchange algo-
rithm and perform the task partitioning and mapping onto
the processor and the FPGA. Each task calculates a range
of the input data. We consider only a single node of the
hybrid system, as we are primarily focused on parallel in-
teractions between the CPU and the FPGA. At the end of
computations, the processor performs the final steps of the
FFT algorithm (cf. Section 2.1), to avoid the communica-
tion overhead of many data transfers.

To hide communication costs, the control of data trans-
fer is left to the FPGA, that has inherent parallelism. This
solution keeps the CPU free to collaborate on the FFT com-
putation. The cost of communication handling by the FPGA
is overlapped with the beginning of FPGA computations
while the data transfer is processed. As stated in Section
2.2, our FPGA design uses a burst FFT strategy mixed with

a streaming behavior [22], so the FPGA accepts multiple
input data sizes. The workload partitioning between FPGA
and CPU can be adjusted to optimize the load balance. This
will be discussed in Section 6.1.

In our FPGA design, presented in Figure 3, we made
many efforts to reduce the latency of memory accesses and
the bottleneck of arithmetic kernels, by using prefetching,
parallel data fetching and parallel floating-point computa-
tions. In the following paragraphs, we describe these op-
erations considering the architectural components in Figure
3.

4.1. Communication Unit

The Communication Unit in Figure 3 is an interface be-
tween the Rapid Array Transport Core, that links the FPGA
to the processors/DRAM, and the other FPGA blocks. This
entity manages Fabric Request interface requests from soft-
ware, which handle control configurations like FFT start
and state registers. Furthermore, it is responsible for trans-
fering the data set and twiddle factors from blade memory
to FPGA QDR banks.

To overlap the data movement cost with computations,
this unit provides the FFT Control Unit with a transfer state
register which indicates the progress of the data copying.
This technique allows the FFT Control Unit to begin the
FFT computation while the whole transfer is being pro-
cessed.

At the end of the transfer, this unit waits a signal from the
FFT Control Unit that enables copying of the output result
data back to the node memory. At the end of output data
transfer, a state register is changed to indicate the end of
FFT computation.

4.2. FFT Control Unit

The FFT Control Unit manages the FFT computation. It
is responsible to address input data items to be computed in
the Butterfly Cores Unit. It also gets the twiddle factor from
Twiddle Factor Prefetcher.

Fig. 4 presents the pseudocode for the FFT Control Unit.
This algorithm is similar to the one used in a software-based
FFT computation. After each iteration of the main loop, the
FFT Control Unit and the Butterfly Cores Unit are synchro-
nized to avoid prefetching an element that is being calcu-
lated.

An important characteristic of this unit is that it does not
wait for each butterfly computation to be finished. It over-
laps the data fetching with butterfly operations. This ap-
proach keeps the Butterfly Cores Unit occupied as much as
possible.



for step from 1 to n by 2
for j from 0 to step by 1

read twiddle factor
for i from j to n by step*2

read data[i]
read data[i + step]
send data to butterflies

end for
end for
while butterflies not idle do

nothing
end while

end for

Figure 4. Pseudocode for FFT Control Unit

4.3. Butterfly Cores Unit

The Butterfly Cores Unit is the computational core of our
architecture. This entity receives FFT Control Unit requests
with two points and a twiddle factor to be computed. To
perform parallel computations, this unit has multiple butter-
fly cores implementing radix-2 computations. These cores
can operate in parallel, because there are not dependencies
among butterflies in a single step of the FFT.

When a request is received from the FFT Control Unit,
the data are delivered to a butterfly core to compute the
operation, that provides two new points to be stored into
QDR SRAM. Using multiple butterflie, this unit coordinates

the task distribution among butterfly cores and forwards the
computed points to the Data Item Handler.

4.4. Memory Controllers and Multiplexers

Our architecture has two memory control units, namely
the Twiddle Factor Prefetcher and the Data Item Handler,
whose main purpose is to reduce the latency of data read
accesses.

The Twiddle Factor Prefetcher is able to load a memory
position before it is requested by the FFT Control Unit. This
is possible because the twiddle factor is organized in access
order in the QDR bank. This technique reduces the read
latency from 8 to 1 cycle.

The Data Item Handler manages the access to data items.
Its goal is to improve the throughput of read accesses made
by the FFT Control Unit. This requires two QDR banks
allowing access to two memory positions in each request.
Using this approach it is possible to feed the Butterfly Cores
Unit avoiding idle butterfly cores.

As presented in Figure 3, there are three distinct units
that need to perform read or write requests to the Data Item
Handler. To allow these concurrent operations, we use two
multiplexers controlled by the Communication Unit that
change the data flow as necessary.

5. Implementation

We developed two cooperating programs to validate our
FFT-hybrid architecture and to analyze its performance be-

Figure 3. Block diagram of the parallel FPGA-based FFT



havior. They implement the FPGA-side and the CPU-side
logic and computations. The following paragraphs describe
these implementations.

5.1. FPGA-side

For the FPGA-side, the units described in section 4 were
implemented using VHDL. The hardware description uses
64 bits to represent each data item, comprised of two 32 bits
floating-point elements representing the real and imaginary
parts of a complex number.

The Butterfly Core Unit was implemented with five but-
terfly cores. Each one performs a radix-2 computation us-
ing two complex adders and a complex multiplier. More
butterfly cores are not currently possible because this con-
figuration already uses 97% of the total area of the FPGA.

To distribute the tasks among the butterflies, all butter-
flies are connected in a task bus and each one has a busy
flag that is snooped by the following butterflies. When a
request arrives, each idle butterfly verifies if previous but-
terflies are occupied. If so, it gets the job and marks its
status as busy. This approach simplifies the work distribu-
tion among the butterflies while avoiding the use of more
area of the FPGA.

Each butterfly core uses six 32-bit floating-point adders
and two multipliers to build two complex adders and a com-
plex multiplier. This configuration was chosen to reduce
the latency in computing the butterfly operation. For the
floating-point operations, we used the Xilinx Floating-Point
Core providing a 32-bit IEEE754 compliant implementa-
tion of adders and multiplies.

Our implementation of FFT in FPGA accepts a maxi-
mum of 219 points. This limitation is due to the amount
of QDR memory available to the FPGA. We further limit
our hybrid implementation to 218 points in order to avoid
handling multiple FPGA transfer regions.

5.2. CPU-side

For the CPU-side implementation, we developed a C-
language program to drive the hybrid execution, along with
a software-only FFT for comparison purposes. This pro-
gram is organized in four functions:

• soft fft: this function implements the FFT as presented
in the pseudocode in Figure 4 and it is used to compute
the CPU task in the hybrid execution. This function
is also used to perform a software-only FFT over the
entire data set, for comparison purposes. Differently
from the FPGA-based FFT, this implementation does
not have input size limitations;

• fpga fft start: this function manages the FPGA-based
FFT execution. It sends the FTR address and the input

data size to the FPGA and changes a state register to
indicate the start of FFT in FPGA;

• fpga fft wait: this function waits for the end of the
FPGA-based FFT execution polling the state register
of the FPGA;

• soft last steps fft: computes the last steps of an N-
point FFT in CPU. This functions is necessary to join
the hybrid (CPU and FPGA) results.

While a FFT CPU-based execution calls only the func-
tion soft fft, the hybrid execution calls all four func-
tions, as follows: fpga fft start, soft fft, fpga fft wait and
soft last steps fft.

6. Experimental Results

Our experimental analysis was carried out on a Cray
XD1 system available at XXX1. We focused our analysis
on a single node of the XD1 and used only a single proces-
sor, because we were mainly concerned with hybrid parallel
interactions between CPU and FPGA. To synthesize, place
and route the hardware description we used Xilinx ISE 10.1.
For the C-program, we used GCC 3.3.3 compiler. Our hy-
brid design runs at 160MHz on the FPGA and uses a single
CPU (2.4 GHz AMD Opteron) on a single Cray XD1 node.

We organized our analysis into two sets of experiments.
In the first set, we investigated the workload partitioning
between the CPU and the FPGA for our parallel 1D FFT,
in order to determine task distribution schemes leading to
high resource usage for both devices. In the second set, we
compared our hybrid parallel solution to the CPU-only se-
quential version described in the previous section (soft fft),
so as to analyze the performance of our hybrid FFT imple-
mentation. The following paragraphs present and discuss
these experiments in more detail.

6.1. Workload Partitioning

A simple way to partition a task within a node is to ex-
ecute the computationally intensive part on the FPGA and
use the processor only for control. However, in this case, the
computing power of the processor is mostly wasted [27].
The workload partitioning between FPGA and general-
purpose processors have to be addressed to fully utilize the
devices. This is not a trivial job and it is an important deci-
sion from the performance point of view [21].

To investigate this issue for the 1D FFT, we measured ex-
ecution times of our FPGA-based FFT implementation for
increasing data sample sizes, up to the 218-point limit. It
is important to notice that this FFT is mainly executed in

1Omitted to avoid identification of authors’ institution



FPGA, the CPU just generates the twiddle factor and coor-
dinates the start and the end of the computation. We also
measured execution times for our CPU-only FFT imple-
mentation with the same data samples, up to 220 (1,048,576)
points (as the software implementation is not limited at the
input data size).

With these results at hand, we determined the compara-
tive experimental performance of both implementations for
each data sample size. The results are presented in Table 1.
The execution times shown in Table 1 can be used for gran-
ularity analysis and workload partitioning. The last column
in that table presents the best workload partitioning between
CPU and FPGA, chosen for further experiments. For exam-
ple, when executing a hybrid 65, 536-point FFT, three quar-
ters of the FFT are computed in the general-purpose pro-
cessor and one quarter in FPGA, because its best partition-
ing scheme is closer than 3:1. To avoid the communication
on the last two cycles, because of its high cost, the last two
steps are processed in CPU (for this radix-2 algorithm). The
number of last steps calculated in CPU is log2(P ), where P
is the number of partitions of the FFT input data. In this
case, each partition means a N/P FFT.

Table 1. Workload partition
Time (ms)

log2N Input size FPGA CPU Partition

10 1,024 0.94 0.19 3 : 1
12 4,096 3.45 0.79 3 : 1
14 16,384 14.68 4.33 3 : 1
16 65,536 63.76 20.59 3 : 1
17 131,072 132.73 47.59 3 : 1
18 262,144 276.76 191.25 1 : 1
19 524,288 − 461.59 1 : 1
20 1,048,576 − 979.56 3 : 1

In all results presented in Table 1, the CPU execution
performed better than FPGA. However, there is an approx-
imation of the performance of FPGA and CPU computa-
tion. It suggests that with greater number of points, the FFT
execution on the FPGA could be faster than on the CPU.
Furthermore, the execution time of FFT on FPGA has ap-
proximately linear growth.

6.2. Performance of the Hybrid FFT

Using the results presented in the previous section, we
analyzed the performance of the hybrid FFT by means of
the speedup factor between the hybrid and the CPU-only
execution times. We considered data sample sizes from 210

to 220. For each input data size, we used the best task par-
titioning scheme presented in the previous section. Table
2 presents our measurements and the speedup obtained for
each input data size.

Table 2. Hybrid versus CPU-only results
Time (ms)

log2N Input size Hybrid CPU Speedup

10 1,024 0.66 0.19 0.29
12 4,096 1.72 0.79 0.46
14 16,384 5.66 4.33 0.77
16 65,536 23.29 20.59 0.88
17 131,072 49.77 47.59 0.96
18 262,144 150.63 191.25 1.27
19 524,288 310.48 461.59 1.49
20 1,048,576 813.57 979.56 1.20

In these experimental results, we observe that the CPU-
only version is faster for smaller data sizes, up to 217 points.
We also notice that speedups are achieved for our hybrid
parallel FFT for 218, 219 and 220 points. The efficiencies
for these executions are 64, 75 and 60% respectively. The
decreasing speedup of the test with 220 points can be ex-
plained by the task granularity. In this case, we used the
3:1 distribution between the CPU and the FPGA. A differ-
ent distribution was not used because of the limited input
memory size of our FPGA FFT implementation.

7. Conclusions and Future Work

In this paper, we have proposed an FPGA-based archi-
tecture for performing a parallel 1D FFT in a hybrid recon-
figurable computing system. In our design, both the CPU
and the FPGA cooperate to compute the FFT, contrasting
with the usual approach were the FPGA response must over-
come the CPU without considering data transfer costs.

Our key design decisions were to hide intra-node and
intra-FPGA data movement costs as much as possible, so
as to improve parallelism, and to partition the workload
considering the comparative experimental performance be-
tween CPU and FPGA for the FFT. The resulting FPGA-
based design is flexible in terms of the input data length.
Moreover, our design allows for the data in a frame to be
streamed to the FPGA without blocking the CPU. Our re-
sults show that this approach achieves speedups for a range
of input data sizes and is able to harness the overall com-
puting power of the hybrid system.

As future work, we plan to use higher-order radices for
the FFT, considering that small data samples are unusual on



real-world applications. This may reduce the resource us-
age on the FPGA, so that the remaining space could be used
to accommodate more computing cores, leading to new al-
ternatives for the parallel grain. Another future research
direction concerns the workload partitioning, which is cur-
rently performed manually and could benefit from strategies
aiming to reduce the burden from developers.

References

[1] 4DSP Inc. EEE-754 Floating Point FFT/IFFT IP core.
http://www.4dsp.com/fft.htm.

[2] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high
performance parallel algorithm for 1-d fft. In Supercomput-
ing ’94: Proceedings of the 1994 conference on Supercom-
puting, pages 34–40, Los Alamitos, CA, USA, 1994. IEEE
Computer Society Press.

[3] A. Ali, L. Johnsson, and J. Subhlok. Scheduling fft computa-
tion on smp and multicore systems. In ICS ’07: Proceedings
of the 21st annual international conference on Supercomput-
ing, pages 293–301, New York, NY, USA, 2007. ACM.

[4] Anonymous. Publication details omitted to hide authors’
identity.

[5] J. H. Bahn, J. Yang, and N. Bagherzadeh. Parallel fft algo-
rithms on network-on-chips. Information Technology: New
Generations, Third International Conference on, 0:1087–
1093, 2008.

[6] U. Bondhugula, A. Devulapalli, J. Dinan, J. Fernando,
P. Wyckoff, E. Stahlberg, and P. Sadayappan. Hard-
ware/software integration for fpga-based all-pairs shortest-
paths. In FCCM ’06: Proceedings of the 14th Annual
IEEE Symposium on Field-Programmable Custom Comput-
ing Machines, pages 152–164, Washington, DC, USA, 2006.
IEEE Computer Society.

[7] C. Chao, Z. Qin, X. Yingke, and H. Chengde. Design of
a high performance fft processor based on fpga. In ASP-
DAC ’05: Proceedings of the 2005 conference on Asia South
Pacific design automation, pages 920–923, New York, NY,
USA, 2005. ACM.

[8] D. Chavarrı́a-Miranda, J. Nieplocha, and I. Gorton.
Hardware-accelerated components for hybrid computing
systems. In CBHPC ’08: Proceedings of the 2008
compFrame/HPC-GECO workshop on Component based
high performance, pages 1–8, New York, NY, USA, 2008.
ACM.

[9] J. W. Cooley and J. W. Tukey. An algorithm for the ma-
chine calculation of complex fourier series. Mathematics of
Computation, 19(90):297–301, 1965.

[10] Cray Inc. Cray XD1 System Overview. Mendota, MN, USA,
2005.

[11] Cray Inc. Design of Cray XD1 QDR II SRAM Core. Men-
dota, MN, USA, 2005.

[12] Cray Inc. Design of Cray XD1 RapidArray Transport Core.
Mendota, MN, USA, 2005.

[13] Dillon Engineering, Inc. Fast Fourier Trans-
form (FFT) IP Cores for FPGA and ASIC.
http://www.dilloneng.com/fft ip.

[14] M. Frigo and S. G. Johnson. Parallel FFTW.
http://www.fftw.org/parallel/parallel-fftw.html.

[15] C. Gonzalez-Concejero, V. Rodellar, A. Alvarez-Marquina,
E. M. d. Icaya, and P. Gomez-Vilda. An fft/ifft design versus
altera and xilinx cores. In RECONFIG ’08: Proceedings of
the 2008 International Conference on Reconfigurable Com-
puting and FPGAs, pages 337–342, Washington, DC, USA,
2008. IEEE Computer Society.

[16] A. Gupta and V. Kumar. The scalability of fft on parallel
computers. IEEE Trans. Parallel Distrib. Syst., 4(8):922–
932, 1993.

[17] H. He and H. Guo. The realization of fft algorithm based
on fpga co-processor. Intelligent Information Technology
Applications, 2007 Workshop on, 3:239–243, 2008.

[18] K. S. Hemmert and K. D. Underwood. An analysis of
the double-precision floating-point fft on fpgas. Field-
Programmable Custom Computing Machines, Annual IEEE
Symposium on, 0:171–180, 2005.

[19] L. Johnsson, D. Mirkovic, R. Mahasoom, and F. Mwandia.
Parallel fft. http://www2.cs.uh.edu/ mirkovic/fft/parfft.htm.

[20] V. Kindratenko and D. Pointer. A case study in porting a
production scientific supercomputing application to a recon-
figurable computer. In FCCM ’06: Proceedings of the 14th
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 13–22, Washington, DC, USA,
2006. IEEE Computer Society.

[21] V. V. Kindratenko, C. P. Steffen, and R. J. Brunner. Acceler-
ating scientific applications with reconfigurable computing:
Getting started. Computing in Science and Engg., 9(5):70–
77, 2007.

[22] J. M. Palmer. The hybrid architecture parallel fast fourier
transform (hapfft). Master’s thesis, Brigham Young Univer-
sity, 2005.

[23] D. Takahashi and Y. Kanada. High-performance radix-2,
3 and 5 parallel 1-d complex fft algorithms for distributed-
memory parallel computers. J. Supercomput., 15(2):207–
228, 2000.

[24] J. A. Vite-Frias, R. d. J. Romero-Troncoso, and A. Ordaz-
Moreno. Vhdl core for 1024-point radix-4 fft computa-
tion. In RECONFIG ’05: Proceedings of the 2005 Inter-
national Conference on Reconfigurable Computing and FP-
GAs (ReConFig’05) on Reconfigurable Computing and FP-
GAs, page 24, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[25] Xilinx Inc. Fast Fourier Transform.
http://www.xilinx.com/products/ipcenter/FFT.htm.

[26] L. Zhuo and V. K. Prasanna. High performance linear alge-
bra operations on reconfigurable systems. In SC ’05: Pro-
ceedings of the 2005 ACM/IEEE conference on Supercom-
puting, page 2, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[27] L. Zhuo and V. K. Prasanna. Scalable hybrid designs for
linear algebra on reconfigurable computing systems. IEEE
Trans. Comput., 57(12):1661–1675, 2008.


