ArticlePDF Available

Abstract and Figures

For the automated guided vehicle with human-following function in human-machine integration environment, a compliant following method of mobile robot based on an improved spring model is proposed to solve the problem of robot malfunction caused by abrupt movements of the followed target. The closed-loop control of the relative posture between the mobile robot and the followed target is performed by adding virtual springs to the legs of the followed target and obstacles to accomplish obstacle avoidance and natural interaction tasks. In particular, dynamic damping coefficients are added to the virtual spring to make the mobile robot follow the human target compliantly in real time. In Simulink simulation, the compliant following trajectory of the mobile robot is compared with the dynamic motion of the target, and thus the optimal parameters of the spring model are obtained. A self-developed two-wheeled differential mobile robot and an optical motion capture system are utilized to verify the smoothness and flexibility of the mobile robot trajectory when the followed human target performs irregular and long-distance motion.
Content may be subject to copyright.
43 卷第 6
2021 11 机器人 ROBOT Vol.43, No.6
Nov., 2021
DOI10.13973/j.cnki.robot.200310
基于改进弹簧模型的移动机器人柔顺跟随行人方法
姚瀚晨1,彭建伟1,2,戴厚德1,2,林名强1
1. 中国科学院海西研究院泉州装备制造研究所,福建 晋江 3622162. 中国科学院大学,北京 100049
要:针对人机共融环境下的跟随型自动搬运机器人,为了解决被跟随目标突发性运动造成机器人失灵的
难题,提出了一种基于改进弹簧模型的移动机器人柔顺跟随方法.给被跟随目标的腿部和障碍物添加虚拟弹簧,
完成了对机器人和被跟随目标之间相对位姿的闭环控制,从而实现躲避障碍物和自然交互任务.特别地,通过给
虚拟弹簧添加动态阻尼系数,实现了移动机器人跟随目标运动的实时性和柔顺性.通过 Simulink 仿真对比移动机
器人对被跟随目标的柔顺跟随轨迹,实现对改进弹簧模型的参数优化采用自主开发的两轮差速移动机器人和
Vicon 光学运动捕捉系统,在被跟随目标做无规律、长距离运动的条件下,验证了该移动机器人跟随轨迹的平滑
和柔顺性.
关键词:人机共融;人机交互;行人跟随;虚拟弹簧;柔顺控制
中图分类号:TP242 文献标识码:A文章编号:1002-0446(2021)-06-0684-10
A Compliant Human Following Method for Mobile Robot Based on an Improved Spring Model
YAO Hanchen1PENG Jianwei1,2DAI Houde1,2LIN Mingqiang1
(1. Quanzhou Institute of Equipment Manufacturing,Haixi Institutes,Chinese Academy of Sciences,Jinjiang 362216, China;
2. University of Chinese Academy of Sciences,Beijing 100049, China)
Abstract: For the automated guided vehicle with human-following function in human-machine integration environment,
a compliant following method of mobile robot based on an improved spring model is proposed to solve the problem of robot
malfunction caused by abrupt movements of the followed target. The closed-loop control of the relative posture between the
mobile robot and the followed target is performed by adding virtual springs to the legs of the followed target and obstacles
to accomplish obstacle avoidance and natural interaction tasks. In particular, dynamic damping coefficients are added to
the virtual spring to make the mobile robot follow the human target compliantly in real time. In Simulink simulation, the
compliant following trajectory of the mobile robot is compared with the dynamic motion of the target, and thus the optimal
parameters of the spring model are obtained. A self-developed two-wheeled differential mobile robot and an optical motion
capture system are utilized to verify the smoothness and flexibility of the mobile robot trajectory when the followed human
target performs irregular and long-distance motion.
Keywords: human-machine integration; human-machine interaction; human following; virtual spring; compliant control
1引言(Introduction
下一代机器人的核心特点是人机共融 [1],即
器人与人能在同一自然空间里紧密协调工作和自然
交互,机器人能自主地提高运动性能并有极高的安
全性能.随着自主导航和人机交互 [2] 等先进技术与
策略的应用,机器人已经进入智能制造物流环节和
社会家庭生活的各个方面;但受限于人机协作和交
互能力不足等特征,在小批量仓储分拣和物流转运
等环节还需要工人完成低效率重复劳动,例如药店
和超市货柜上过期商品的更换和新货的补充.机器
人跟随行人目标是一种典型的人机交互方式,随着
人口老龄化的加剧,在工厂搬运、医院看护、餐饮
服务、学校助家庭娱农业和军事等场景
这种交互方式的需求越来越多 [3-5]
目前机器人跟随行人目标的控制方法多种多
样,Jung [6] 使用比例控制模型,实现了达到人
类跑步速度的外跟随,缺是随着时的增加,
稳态误差会保留和累积,比例控制器会崩溃;马旭
东等 [7] 使 PID(比-积分-分)控制模型,
实现了控制机器人的速度和角速度跟随目标,缺点
是误差积分反馈使得机器人信号产生振荡;Tanaka
基金项目:中国科学院国际伙伴计划对外合作重点项目(121835KYSB20190069
通信作者:戴厚德,dhd@fjirsm.ac.cn 收稿录用修回:2020-08-14/2020-10-30/2020-11-02
684
43 卷第 6 姚瀚晨,等:基于改进弹簧模型的移动机器人柔顺跟随行人方法 685
[8] 使用模糊控制模型,实现了多个机器人的共享
控制跟随,缺点是跟随精度较低和鲁棒性较差.这
些方法的美中不足之处在于,要求跟随目标平滑移
动和线性可估计 [9],使用传统控制方法的机器人跟
随轨迹是剧烈抖动的.
虚拟弹簧模型对跟随目标运动具有鲁棒性好和
自适 点,被广 动学
模型.Nikoobin [10] 将虚拟弹簧用于机器人点对
点运动控制,实现了机器人被动平衡,没有考虑到
跟随方法的闭环控制;潘振华 [11] 将虚拟弹簧用
于多机器人编队跟随,克服了局部不可达难题[12]
和导航死 [13] 问题,其跟随目标是平滑移动的机
器人,适用跟随标是 的情况;Morioka
[14] 使用虚拟弹簧模型基于多个相机在分布式智
能网 人跟 人,考虑
安全距离,机器人有碰撞跟随目标的危险;阮晓钢
[15] 使用虚拟弹簧模型实现了两轮机器人的柔顺
控制,该方法使用静态阻尼系数,导致机器人运动
的跟随效果较差,不足以应对被跟随目标的突然转
弯等情况.然而,当被跟随目标有急变速、急
转弯等突发动作时,机器人有失灵失控的风险.
为了解决这一难题,本文提出了一种改进的弹
簧模型,其区别于传统的虚拟弹簧模型之处在于
首先,在虚拟弹簧中添加了动态的阻尼系数,阻尼
系数 理距 关,机器
人跟随运动的柔顺性;其次,在虚拟弹簧中添加了
安全距离,避免了机器人减速不及时碰撞被跟随目
标;最后,改进的虚拟弹簧模型考虑了环境中的障
碍物,通过障碍物和机器人之间的虚拟弹簧实现避
障.为了更好地描述机器人和跟随目标之间的动态
关系,将改进的弹簧模型引入到移动机器人的运动
学和动力学模型.通过仿真实验,观察和对比移动
机器人对动态目标的柔顺跟随轨迹,以实现改进弹
簧模型的参数优化.通过自主开发的两轮差速移动
机器人和 Vicon 光学运动捕捉系统,在被跟随人体
目标做无规律和长距离运动的条件下,验证了移动
机器人跟随轨迹的柔顺性.
2改进的虚拟弹簧模型(The improved vir-
tual spring model
在跟随机器人的实际应用场景中,机器人跟随
行人的噪声信息往往比较复杂[16-19].人机共融环
境下,机器人跟随行人的场景主要包含:被跟随目
机器人、动态障碍物和静态障碍物.被跟随目
标会受到环境中障碍物的影响,其运动速度和方向
容易产生突然变化,这给跟随机器人的运动控制提
出了巨大的挑战 [20-22]
为解决跟随机器人运行环境复杂的难题,本方
法采用改进的虚拟弹簧模型.该模型考虑了机器人
与被跟随目标、碍物三者间虚拟弹的特性,
使得机器人能在躲避障碍物的前提下,实时和柔顺
地跟随目标行人.图 1对改进虚拟弹簧模型中机器
r和被跟随目标 h之间的虚拟弹簧、机器人 r
障碍物 o之间的虚拟弹簧进行了受力分析.
Y
OX
Fa
Frh
Fro
ls2
ls1
kfh
r
o
1移动机器人跟随目标和避障时的受力分析
Fig.1 Force analysis on a mobile robot in human-following and
obstacle-avoidance task
如图 1所示,机器人、被跟随目标和障碍物都
受到了改进虚拟弹簧的影响.机器人在跟随目标时
所受到的弹力 Frh 与两者的距离成正比,方向指
被跟随目标的方向.当机器人靠近障碍物时,障碍
物产生的斥力 Fro 与两者的距离成反比,方向指
远离障碍物的方向.当机器人在跟随运动中遇到障
碍物时,机器人将向合力 Fa的方向驶去.
区别于传统的虚拟弹簧模型,改进的虚拟弹簧
模型考虑了机器人和障碍物之间的关系,添加了机
器人和被跟随目标之间的安全距离 ls1、机器人和
碍物之间的安全距离 ls2 和动态阻尼系数 kf
2.1 移动机器人柔顺跟随目标
如图 2所示,在跟随运动的加速、减速和跟踪
阶段,机器人 r被跟随目 h之间弹簧的松紧状
态有不同变化.在目标加速阶段,机器人和目标之
间的距离增加,虚拟弹簧为拉伸状态;在目标减速
阶段,机器人和目标之间的距离减小,虚拟弹簧为
压缩状态;在目标跟踪阶段,机器人和目标之间的
距离较为稳定,虚拟弹簧为松弛状态.
机器人和目标之间的弹簧松紧状态 srh
srh =
1,l0<lrh
0,l0=lrh
1,l0>lrh
(1)
686 2021 11
࣐䙏䱦⇥ᕩ㉗᣹ըᇎ䱵䐍⿫ lrh ᆹޘ䐍⿫ ls1 ᕩ㉗ᶮᕋ䮯ᓖ l0
߿䙏䱦⇥ᕩ㉗঻㕙䐏䑚䱦⇥ᕩ㉗ᶮᕋrh
r1h1
ls1
ls1
ls1
h2
h3
r3
r2
Frh
Frh
Frh
k0kf
k0kf
k0kf
k0kf
l0<lrh, Srh=1
l0>lrh, Srh=−1
l0=lrh, Srh=0
2机器人在不同跟随阶段下的弹簧松紧状态
Fig.2 Spring tightness at different stages when the robot following a human
式中,l0为虚拟弹簧的松弛长度,lrh 为机器人 r
目标 h之间的物理距离.
为了防止机器人碰撞到被跟随目标,在机器人
和目标之间设置安全距离 ls1,虚拟弹簧的弹力 Frh
表示为
Frh =
srhkf|l0lrh |,l0>lrh
srhkf|l0lrh |1
(lrh ls1)2,ls1 <l0<lrh
(2)
式中,srh 为机器人 r和被跟随目标 h之间的弹簧松
紧状态,kf为虚拟弹簧的动态阻尼系数,l0为虚
弹簧松弛时的长度,lrh 为机器人 r和被跟随目标 h
之间的物理距离.虚拟弹簧的动态阻尼系数 kf为一
个与 lrh 相关变量.即机人与目标距离
近,虚拟弹簧的动态阻尼系数越大.
kf=1
l2
rh
k0(3)
式中,k0为虚拟弹簧的弹性系数.此时,机器人 r
和目标 h之间的弹簧夹角
θ
rh 表示为
θ
rh =
asin yryh
(xrxh)2+ (yryh)2,yr>yh
2πasin yryh
(xrxh)2+ (yryh)2,yr<yh
(4)
式中,(xr,yr)为机器人的坐标位置,(xh,yh)为目标
的坐标位置.
2.2 移动机器人躲避障碍物
障碍物给机器人施加的斥力 Fro 表示为
Fro =
kr|l0lro|,lro 6ls2
0,lro >ls2
(5)
式中,kr为障碍物虚拟弹簧的弹性系数,l0为虚拟
弹簧松弛时的长度,lro 为机器人和障碍物之间的物
理距离,ls2 为机器人和障碍物之间的安全距离.
机器人在跟随运动下躲避障碍物时,受到的合
Fa表示为
Fa=Frh +
n
i=1
iFro (6)
式中,n为影响机器人的障碍物的虚拟弹簧数量.
3柔顺跟随闭环控制(Closed-loop control
for compliant following
如图 3所示,通过输入机器人位姿 (xr,yr,
θ
r)
和被跟随目标位姿 (xh,yh,
θ
h),得到两者之间的轨
迹误差.改进虚拟弹簧模型通过对机器人运动学模
型和动力学模型进行建模分析,控制机器人在跟随
状态下速度 v和角速度
ω
的变化,从而实现移动机
器人在柔顺跟随过程中的闭环控制.其中,机器人
位姿和目标位姿是实时更新的.
3.1 移动机器人跟随运动学模型
将移动机器人视为一个在 2维平面上运动的
刚体,建立了世界坐标系 XWOYW和机器人坐标系
43 卷第 6 姚瀚晨,等:基于改进弹簧模型的移动机器人柔顺跟随行人方法 687
ᵪಘӪսု(xr, yr, θr)䖘䘩䈟ᐞe(t)᧗ࡦ䟿(v, ω)
㹼Ӫսု(xh, yh, θh)ᇎ䱵սု(x, y, θ)
᭩䘋Ⲵ㲊ᤏᕩ⁑රḄ亪䐏䲿䘀ࣘᆖࣘ࣋ᆖսုᴤᯠ
3移动机器人柔顺跟随的闭环控制图
Fig.3 Closed-loop control diagram of the mobile robot for compliant following
XRP
RWYR如图 4示,通控制机器左、右
速度,实现在直线行驶和转弯行驶状态下对机器人
线速度和角速度的运动学控制.
YW
yr
YR
xrXW
PRW
PRW
PRW
XR
θrr2
r1
v1
vr
v
α
O
4机器人直线行驶(左)和机器人转弯行驶(右)
Fig.4 Robot motion control: running straightly (left) and
turning (right)
在图 4的左图中,选取机器人底盘上的某一端
P
RW 为机器人位置坐标参考点,机器人的前进方
向为机器人坐标系 XR的正方向.其中,机器人
位置坐标参考点 P
RW 由世界坐标系中的坐标 (xr,yr)
决定,机器人姿态角
θ
r由世界坐标系和机器人坐标
系之间的角度差决定.此时,机器人的位置和姿态
描述为 P
P
PRW = (xr,yr,
θ
r)T
机器人的运动学分析可以分为直线行驶和转
弯行驶 2种情 况. 4示,当
人直线行驶时,线速度为 v= (vl+vr)/2,角
ω
=0 如图 4 示,
行驶 时, 线 v= (vl+vr)/2
ω
=
(vrvl)/2r2.其中,r2为图 5中机器人轮胎的端点
到机器人中心的车轮轴间距离.
3.2 移动机器人跟随任务的动力学模型
如图 5所示,将改进虚拟弹簧模型引入机器人
动力学模型,考虑了机器人和目标之间、机器人和
障碍物之间存在虚拟弹簧时的运动情况.根据机器
人位姿目标位姿和障碍物位姿的动态关系调整机
器人的输入速度,使得机器人能柔顺跟随行人.
器人、 目标 和障 碍物 在世 界坐 标系 下的
姿分别为 P
P
PRW = (xr,yr,
θ
r)TP
P
POW = (xo,yo,
θ
o)T
P
P
PHW = (xh,yh,
θ
h)T此时,器人标的动学
关系可以描述为
lrh =(xrxh)2+ (yryh)2
lro =(xrxo)2+ (yryo)2
θ
h=arctan yhyr
xhxr
θ
o=arctan yoyr
xoxr
(7)
式中,lrh 为机器人位置参考点 P
RW 与目标位置参考
P
HW 之间的距离,lro 为机器人位置参考点 P
RW
障碍物位置参考点 P
OW 之间的距离,
θ
h为世界坐标
系下目标的姿态角(紫色)
θ
o为世界坐标系下
器人到障碍物的姿态角(蓝色)
θ
r为机器人的姿
态角(绿色)
YW
yh
yr
xrxh
yh,r
ls1
lrh
Frh
Fa
Fro
YR
Xh,r
XR
XW
POW=(xo, yo, θo)T
PRW=(xr, yr, θr)T
PHW=(xh, yh, θh)T
O
θr
θh
θo
Iro
L
ω
β
a
5基于改进弹簧模型的动力学分析
Fig.5 Kinetic analysis based on the improved spring model
在机器人柔顺跟随过程中,将机器人受到的力
在机器人坐标系下拆分为 FXRF
YR根据牛顿第
二定律,得到 XR轴方向上的动力学表达式:
FXR=ma =m˙v
m˙v=Fro cos
α
+Frh cos
β
(8)
式中,FXR为机器人在机器人坐标系 X轴上受到的
分力;m为机器人的质量,单位为 kg
α
β
为图
6所示的夹角.
688 2021 11
ᵪಘӪ䖘䘩䐏䲿ⴞḷ䖘䘩6
4
2
−2
−4
−6
−8
−1
−2
−3
0
1
2
3
−10
0
00
1.2
1
0.8
0.6
0.4
0.2
0
0 10 20 30 40 50 60 70 80 90
v /(m/s)
ω /(rad/s)
10
30
25
15
10
20
15 2520
X /m
Y /m
305
5
20 40
t /s
t /s
0 10 20 30 40 50 60 70 80 90
t /s
8060
lrh /m
(a) ᵪಘӪ઼ⴞḷⲴ䖘䘩ᴢ㓯(c) ᵪಘӪ䐏䲿ⴞḷᰦⲴ䙏ᓖᴢ㓯(b) 㲊ᤏᕩ㉗ᖒ䟿(d) ᵪಘӪ䐏䲿ⴞḷᰦⲴ䀂䙏ᓖᴢ㓯
6动态目标绕圆行走时机器人的柔顺跟随轨迹
Fig.6 Compliant following trajectory of the robot when the target moving around a circle
根据刚体的转动定律,得到 YR轴方向上的动
力学表达式:
J˙
ω
=F
YR·L
J˙
ω
= (Fro sin
α
Frh sin
β
)L
(9)
式中,F
YR为机器人在机器人坐标系 Y轴上受到的
分力;J为机器人的转动惯量,单位为 kg·m2L
机器人上虚拟弹簧的端点到机器人旋转中心的距
离;
α
β
为图 6所示的夹角.
综合 (8)(9),得到基于改进弹簧模型的机器
人柔顺跟随动力学模型:
˙v=Fro cos
α
+Frh cos
β
m
˙
ω
=(Fro sin
α
Frh sin
β
)L
J
(10)
式中, ˙v为机器人柔顺跟随目标时的线加速度, ˙
ω
为机器人柔顺跟随目标时的角加速度.
4 Experimental results
and analysis
4.1 仿真实验
使用 2020a Matlab 软件中的 Simulink 工具搭
建了基于改进弹簧模型的可视化仿真模型.通过分
析机器人轨迹曲线在仿真实验中的特性,优化相应
的参数,将优化后的参数用于实际的测验中,从而
使得机器人实现更好的柔顺跟随效果.
仿真中动态目标的运动分为绕圆行走和无序行
2种情况,参数设如表 1 2所示.中,
当机器人跟随绕圆行走的动态目标时,目标行人的
运动轨迹见参数方程 (11)
x=15 +10cos i
120
y=15 +10sin i
120
(11)
1机器人和被跟随目标的基本参数设置
Tab.1 Basic parameters of the mobile robot and the
followed target
基本参数 参数大小
虚拟弹簧安全距离 ls1 ls2 /m 1
机器人质量 m/kg 400
机器人转动惯量 J/(kg·m2) 1000
弹簧力方向上的阻尼系数 c16000
弹簧力垂直方向上的阻尼系数 c26000
弹簧力方向上的弹力系数 k12000
弹簧力垂直方向上的弹力系数 k22000
43 卷第 6 姚瀚晨,等:基于改进弹簧模型的移动机器人柔顺跟随行人方法 689
2机器人和被跟随目标的位姿参数设置
Tab.2 Pose parameters of the mobile robot and the
followed target
仿真实验
跟随目标
设定
机器人
初始位姿
(xr,yr,
θ
r)
跟随目标
初始位姿
(xh,yh,
θ
h)
绕圆行走动态目标 (0 m, 0 m, 0) (25.0 m, 15.0 m, 0)
无序行走动态目标 (0 m, 0 m, 0) (3.0 m, 1.0 m, 0)
当机器人跟随无序行走的动态目标时,目标行
人的运动轨迹见参数方程 (12)
x=3cos (2π·i
100 +2π)+i
10
y=1+2sin (2π·i
300 +π)+i
10
(12)
如图 6所示,当动态目标绕圆行走时,机器人
先加速追赶动态目标(弹簧特性大于阻尼特性)
然后缓慢靠近(阻抗特性大于弹特性)最终
内切圆的姿态柔顺跟随目标在图 6(c) 人跟
随目标时的速度曲线中,当被跟随目标大幅度转变
方向时,机器人的速度曲线是缓慢下落、缓慢回升
的,这一过程体现了改进弹簧模型的柔顺性.
如图 7所示,当动态目标无序行走时,机器人
加速追赶动态标(弹簧特性大阻尼特性)
动态目标突发性地急转弯时,机器人能够实时调整
位姿.在图 7(c) 机器人跟随目标时的速度曲线中,
即使被跟随目标不断地变换姿态,机器人仍然能够
保持一段时间的匀速跟随,这一过程体现了改进弹
簧模型的柔顺性.综上所述,在仿真实验中机器人
能够始终柔顺地调整位置和姿态,跟随轨迹较为平
滑.
4.2 柔顺跟随实验
在安装有 Vicon 光学运动捕捉系统的房间中开
展了柔顺跟随实验,实现和记录了机器人柔顺跟随
目标.如图 8示,实验设备包含 Vicon 光学运
捕捉系统、两轮差速移动机器人和光学标记物.其
中,Vicon 运动捕捉传感器(红色区域)使用 6
运动捕捉相机,能够在全局坐标系下对光学标记物
的位姿进行实时捕捉和记录.两轮差速移动机器人
(黄色域)搭 2个差速动力轮1
服电 1NVIDIA Jetson TX2 控制主板,通过
ROS 操作系统实现对机器人的操作和控制.光学标
记物(蓝色区域)包 Vicon 标定杆和反光球.如
6
4
2
−2
−4
−6
−8
−10
0
lrh /m
0 20 40
t /s
8060
10 15 2520
X /m
305 ᵪಘӪ䖘䘩䐏䲿ⴞḷ䖘䘩0
30
25
15
10
20
Y /m
5
0 10 20 30 40 50 60 70 80 90
t /s
0 10 20 30 40 50 60 70 80 90
t /s
1.2
1
0.8
0.6
0.4
0.2
0
v /(m/s)
ω /(rad/s)
1.5
0.5
1
0
(a) ᵪಘӪ઼ⴞḷⲴ䖘䘩ᴢ㓯(b) 㲊ᤏᕩ㉗ᖒ䟿(c) ᵪಘӪ䐏䲿ⴞḷᰦⲴ䙏ᓖᴢ㓯(d) ᵪಘӪ䐏䲿ⴞḷᰦⲴ䀂䙏ᓖᴢ㓯
7动态目标无序行走时机器人的柔顺跟随轨迹
Fig.7 Compliant following trajectory of the robot when the target moving disorderly
690 2021 11
Vicon
Րᝏಘ 1
Vicon
Րᝏಘ 2 Vicon
Րᝏಘ 3
Vicon Րᝏಘ˄ޡ 3 њ˅є䖞ᐞ䙏〫ࣘᵪಘӪє䖞ᐞ䙏〫ࣘᵪಘӪݹᆖḷ䇠⢙
8柔顺跟随实验的设置
Fig.8 Setup for the compliant following experiment
9 Vicon 系统对目标和机器人的位姿实时监控
Fig.9 Real-time monitoring of the position and posture of the followed target and robot by Vicon system
9所示,在 Vicon 软件下同时捕捉到了机器人和
目标的实时位姿.其中,红色区域为 Vicon 运动捕
捉传感器的位姿,黄色区域为两轮差速移动机器人
的位姿,蓝色区域为目标位姿,白色区域为光学标
记物.柔顺跟随实验分为目标走圆圈轨目标无
序行走机器人躲避障碍物和目标无序长距离行走
几种情况.
柔顺跟随实验的基本参数设置如表 3所示.其
中,Vicon 传感器的相机镜头分辨率为 130 万像素,
频率为 120 Hz.机器人和目标的最大线速度分别为
2.2 m/s1.2 m/s,因 Vicon 传感器的配置适用于
高速移动的目标.
43 卷第 6 姚瀚晨,等:基于改进弹簧模型的移动机器人柔顺跟随行人方法 691
3机器人和 Vicon 传感器的基本参数
Tab.3 Basic parameters of the mobile robot and the Vicon
sensor
基本参数 参数大小
两轮差速
机器人
电机额定转速 n/(r/min) 3000
电机额定力矩 T/(N·m) 0.64
电机额定功率 P/W 200
机器人最大线速度 v/(m/s) 2.2
机器人最大角速度
ω
/(rad/s) 4.8
Vicon
传感器
相机尺寸 H×W×D
/mm×mm×mm 83×80×135
分辨率像素 1280×1024
最大帧速 /Hz 240
相机延迟 /ms 4.2
4.2.1 目标走圆圈轨迹
如图 10(a) 所示,实验验证了圆圈轨迹下改进
弹簧模型的柔顺性.目标走了一段圆圈轨迹(目标
轨迹的方差为 6.25 m2,机器人实时跟随(机器人
轨迹的方差为 0.44 m2,得到了机器人柔顺跟随行
人轨迹的 2维视图和 3维视图.其中,由于目标在
行走时身体重心变化,其轨迹呈现左右抖动.
4.2.2 目标无规律靠近机器人
如图 10(b) 示,通过实验验证目标突然靠近
机器 柔顺 标.了一
段无 机器 (目差为
11.56 m2,机器人实时跟随(机器人轨迹的方差为
0.32 m2,得到了机器人柔顺跟随行人轨迹的 2
视图和 3维视图.随着目标的靠近,机器人靠近目
标,跟随轨迹较为平滑.
4.2.3 机器人躲避障碍物
如图 10(c) 所示,实验验证了机器人能否躲避
障碍物并实时跟随.实验中 (1.5, 0.5, 0) 的位置布
置了障碍物,目标走了一段无序的轨迹,最后目标
远离机器人,得到了机器人柔顺跟随轨迹 2维视
图和 3维视图.其中,目标无序地走动(目标轨迹
的方差为 14.06 m2,随着目标的远离,机器人加速
追赶目标,跟随轨迹较为平滑(机器人轨迹的方差
0.56 m2
4.2.4 目标无规律长距离行走
如图 10(d) 示,实验验证了长距离行走场景
下改 顺性. 据长
度为 8400 个点、时长为 342 s 的长距离轨迹,机器
人没有出现失灵,跟随轨迹较为平滑,得到了机器
人柔顺跟随轨迹的 2维视图和 3维视图在目标
无规律长距离行走的轨迹下,目标轨迹的方差为
25.37 m2,机器人轨迹的方差为 0.84 m2,目标和机
器人之间的均方根误差为 1.69 m2
4.3 评价指标
为了量化分析移动机器人的跟随柔顺性,本文
使用方差和均方根误差作为评价指标,评价结果
如表 4所示.其中,方差(VAR)描述了样本中每
个变量与总体均值间的离散程度,反映了目标轨迹
和机器人轨迹的样本数据的波动程度;均方根误差
RMSE)描述了观测值与真实值之间的误差,反映
了被跟随目标和机器人之间的跟随情况.方差和均
方根误差的数学表达式为
EVAR =1
N
n
i=1
(
λ
i
µ
)2
ERMSE =v
u
u
t
1
N
n
i=1
(
λ
h
λ
r)2
(13)
式中,N为样本数量;
µ
为样本数量的均值;
λ
机器人和目标位置相关的参数,其中各参数的计算
包括
λ
=x2+y2
λ
h为与被跟随目标位置相关的
参数,其中
λ
h=x2
h+y2
h
λ
r为与机器人位置相关
的参数,其中
λ
r=x2
r+y2
r.在式 (13) 中,方差越
大代表轨迹曲线波动越大,均方根误差越小代表跟
随运动的柔顺性越好.
4机器人柔顺跟随的评价指标
Tab.4 Evaluation indexes for the robot compliant following
轨迹曲线 方差 /m2均方根
误差 /m
目标 机器人
10(a),目标走圆圈轨迹 6.25 0.44 1.52
10(b),目标靠近机器人 11.56 0.32 1.41
10(c),机器人躲避障碍物 14.06 0.56 1.72
10(d),目标长距离走动 25.37 0.84 1.69
5结论(Conclusion
本文针对两轮差速移动机器人,提出一种基于
改进弹簧模型的移动机器人柔顺跟随方法.本方法
旨在解决被跟随目标执行不可预测的突发运动(急
变速、急转弯等突发情况)所造成的传统机器
人跟随方法失效、甚至机器人失灵碰撞等危险.进
而,在 动场 对行
人的柔顺跟随为了验证本方法的柔顺性,基于
Simulink 工具进行仿真优化并在 Vicon 光学运动捕
捉系统环境下进行验证实验.在被跟随目标做圆圈
走动、无规律走动、长距离走动等实验场景下,移
692 2021 11
1.5
0.5
0.5
1.2
0.8
0.6
0.4
0.2
−0.5
−1.5
−2.5
−0.5
−0.2
−0.4
2
1
1
0
0.2
−0.2
−0.4
−0.6
−0.8
−1
−1.2
−1.4
−0.5
0.5
0
−1
−2
−1.5
0
1
−1
−2
0
0 1 2 32.5 3.51.5
Y /m
Z /m
Y /m X /m
X /m
0.50 1 2 2.51.5
X /m
−1−2 0 2 431
X /m
−1 0 2 431
X /m
Y /m
Y /m
Y /m
1.5
0.5
1
0
Z /m
1.5
0.5
1
0
Z /m
1.5
0.5
1
0
Z /m
1.5
0.5
1
0
0
01234
2
−2
Y /m X /m
0
−2 024
1
−2
−1
Y /m X /m
0
−1
−0.5
−2 024
Y /m X /m
1
0
0.5
00.5 1
2
1.5
(c) ᵪಘӪ䓢䚯䳌⺽⢙ᰦⲴ 2 㔤㿶മ઼ 3 㔤㿶മ(d) ⴞḷᰐ㿴ᖻ䮯䐍⿫䎠ࣘᰦⲴ 2 㔤㿶മ઼ 3 㔤㿶മ(a) ⴞḷ䎠ശസ䖘䘩ᰦⲴ 2 㔤㿶മ઼ 3 㔤㿶മ(b) ⴞḷᰐ㿴ᖻ䶐䘁ᵪಘӪᰦⲴ 2 㔤㿶മ઼ 3 㔤㿶മ
注:红色轨迹代表跟随目标,蓝色轨迹代表机器人,紫色区域为设置在 (1,0.5)的障碍物
10 真实场景下行人目标的多种轨迹跟随实验
Fig.10 Human-following experiments along multiple trajectories in actual scene
43 卷第 6 姚瀚晨,等:基于改进弹簧模型的移动机器人柔顺跟随行人方法 693
动机器人的跟随轨迹较为柔顺平滑.其中,当目标
做无规律长距离走动时(被跟随目标的轨迹方差为
25.37 m2,机器人表现出较好的跟随柔顺性(机器
人轨迹的方差为 0.84 m2,完整轨迹下均方根误差
1.69 m
下一步,需要考虑在多障碍物和人群密集场景
下移 现柔 随;跟随
与自主导航及目标跟踪功能模块相结合,实现面向
厂区物流、零售分拣等场景的应用,进而实现在军
农业、体育等领域的复杂环境(多静态和动态
障碍物)中的应用.
参考文献(References
[1] Song P, Yu Y Q, Zhang X P. A tutorial survey and comparison of
impedance control on robotic manipulation[J]. Robotica, 2019,
37(5): 801-836.
[2] Gupta M, Kumar S, Behera L, et al. A novel vision-based trac-
king algorithm for a human-following mobile robot[J]. IEEE
Transactions on Systems, Man and Cybernetics: Systems, 2017,
47(7): 1415-1427.
[3] Yuan J, Zhang S M, Sun Q X, et al. Laser-based intersection-
aware human following with a mobile robot in indoor environ-
ments[J]. IEEE Transactions on Systems, Man, and Cyberne-
tics: Systems, 2021, 51(1): 354-369.
[4] Lam C P, Chou C T, Chiang K H, Fu L C, et al. Human-centered
robot navigation Towards a harmoniously human-robot co-
existing environment[J]. IEEE Transactions on Robotics, 2011,
27(1): 99-112.
[5] Cheng X, Zhang Y F, Cui J S, et al. Object tracking via tem-
poral consistency dictionary learning[J]. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2017, 47(4): 628-
638.
[6] Jung E J, Lee J H, Yi B J, et al. Development of a laser-
range-finder-based human tracking and control algorithm for
a marathoner service robot[J]. IEEE/ASME Transactions on
Mechatronics, 2014, 19(6): 1963-1976.
[7] Ma X D, Hu C H, Dai X Z, et al. Sensor integration for person
tracking and following with mobile robot[C]//IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. Piscat-
away, USA: IEEE, 2008: 3254-3259.
[8] Tanaka K, Tanaka M, Ohtake H, et al. Shared nonlinear con-
trol in wireless-based remote stabilization: A theoretical ap-
proach[J]. IEEE/ASME Transactions on Mechatronics, 2012,
17(3): 443-453.
[9] Chi W Z, Wang J L, Meng Q H. A gait recognition method
for human following in service robots[J]. IEEE Transactions on
Systems, Man, and Cybernetics, 2018, 48(9):1429-1440.
[10] Nikoobin A, Moradi M, Esmaili A. Optimal spring balancing of
robot manipulators in point-to-point motion[J]. Robotica, 2013,
31(4): 611-621.
[11] Pan Z H, Wang D, Deng H B, et al. A virtual spring method for
the multi-robot path planning and formation control[J]. Interna-
tional Journal of Control, Automation and Systems, 2019, 17:
1272–1282.
[12] Cui J S, Liu Y, Xu Y D, et al. Tracking generic human
motion via fusion of low- and high-dimensional approach-
es[J]. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2013, 43(4): 996-1002.
[13] Chung W, Kim H, Yoo Y, et al. The detection and following
of human legs through inductive approaches for a mobile robot
with a single laser range finder[J]. IEEE Transactions on Indus-
trial Electronics, 2012, 59(8): 3156-3166.
[14] Morioka K, Lee J H, Hashimoto H. Human-following mobile
robot in a distributed intelligent sensor network[J]. IEEE Trans-
actions on Industrial Electronics, 2004, 51(1): 229-237.
[15] 阮晓钢,赵建伟.基于 Hopfield 网络的柔性两轮自平衡机
器人控制[J].机器人,201032(3)405-413.
Ruan X G, Zhao J W. Flexible two-wheeled self-balancing
robot control based on Hopfield neural network[J]. Robot, 2010,
32(3): 405-413.
[16] 文忠, 武,沈 勇,等.基 抗控 行康
训练机器人的轨迹自适应[J].机器人,201133(2)142-
149.
Wen Z, Qian J W, Shen L Y, et al. Trajectory adaptation
for impedance control based walking rehabilitation training
robot[J]. Robot, 2011, 33(2): 142-149.
[17] 谢德胜,徐友春,万 剑,等. 基于 RTK-GPS 的轮式移动
机器人轨迹跟随控制[J].机器人,201739(2)221-229.
Xie D S, Xu Y C, Wan J, et al. Trajectory tracking control
of wheeled mobile robots based on RTK-GPS[J]. Robot, 2017,
39(2): 221-229.
[18] 杨丽,曹志强,张文文,等.一种基于局部感知的多机器
人动态跟随方法[J].自动化学报,201036(1)101-106.
Yang L, Cao Z Q, Zhang W W, et al. A multi-robot dynamic
following approach based on local sensing[J]. Acta Automatica
Sinica, 2010, 36(1): 101-106.
[19] 郭晏,宋爱国,包加桐,等.基于差分进化支持向量机的
移动机器人可通过度预测[J].机器人,201133(3)257-
264,272.
Guo Y, Song A G, Bao J T, et al. Mobile robot traversabili-
ty prediction based on differential evolution support vector ma-
chine[J]. Robot, 2011, 33(3): 257-264,272.
[20] 孙月,刘景泰.基于 RGB-D 传感器的室内服务机器人舒
适跟随方法[J].机器人,201941(6)823-833.
Sun Y, Liu J T. RGB-D sensor based human comfortable fol-
lowing behavior for service robots in indoor environments[J].
Robot, 2019, 41(6): 823-833.
[21] Katsura S, Ohnishi K. Human cooperative wheelchair for haptic
interaction based on dual compliance control[J]. IEEE Transac-
tions on Industrial Electronics, 2004, 51(1): 221-228.
[22] Zhang B C, Li Z G, Cao X B, et al. Output constraint trans-
fer for kernelized correlation filter in tracking[J]. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 2017, 47(4):
693-703.
作者简介:
姚瀚晨1996 ,男,硕士生.研究领域:移动机器人.
彭建伟1997 ,男,硕士生.研究领域:移动机器人.
戴厚德1982 ,男,博士,研究员.研究领域:多模态
传感器信息融合,移动机器人定位导航.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
This paper presents a human detection algorithm and an obstacle avoidance algorithm for a marathoner service robot (MSR) that provides a service to a marathoner while training. To be used as a MSR, the mobile robot should have the abilities to follow a running human and avoid dynamically moving obstacles in an unstructured outdoor environment. To detect a human by a laser range finder (LRF), we defined features of the human body in LRF data and employed a support vector data description method. In order to avoid moving obstacles while tracking a running person, we defined a weighted radius for each obstacle using the relative velocity between the robot and an obstacle. For smoothly bypassing obstacles without collision, a dynamic obstacle avoidance algorithm for the MSR is implemented, which directly employed a real-time position vector between the robot and the shortest path around the obstacle. We verified the feasibility of these proposed algorithms through experimentation in different outdoor environments.
Article
Path planning is a challenging and critical issue in robotics, which involves computing a collision-free path between initial and target. The formation control ensures the robots’ collaborative working. To address these two problems, an efficient virtual spring method for multi-robot path planning and formation control is proposed, and the interaction dynamic model is established to describe both logical and physical topology of the network. Based on the network model, the virtual spring method control law is designed, and aiming at the non-reachable and local minima problems, the virtual target search method is proposed. The robots can calculate an optimal path to the target in the predefined formation based on the control law and the virtual target search method. Finally, a series of simulation results confirm that the approaches proposed in this paper are feasible and efficient in the path planning and formation control for the multi-robot systems.
Article
There have been significant interests and efforts in the field of impedance control on robotic manipulation over last decades. Impedance control aims to achieve the desired mechanical interaction between the robotic equipment and its environment. This paper gives the overview and comparison of basic concepts and principles, implementation strategies, crucial techniques, and practical applications concerning the impedance control of robotic manipulation. This work attempts to serve as a tutorial to people outside the field and to promote discussion of a unified vision of impedance control within the field of robotic manipulation. The goal is to help readers quickly get into the problems of their interests related to impedance control of robotic manipulation and to provide guidance and insights in finding appropriate strategies and solutions.
Article
Human following in structured indoor environments has to face the challenge of full occlusion caused by the walls when the target person makes a turn at the corridor intersections. This may result in short-term, and even permanent loss of the target from the field of view of the robot. In this paper, human following with a mobile robot in presence of potential occlusions occurring at corridor intersections is addressed. The robot detects four different types of corridor intersections using the on-board laser scanner. Then, a potential-field-based human tracker is designed by integrating the intersection information into the potential function, in order to increase the visibility of the target, while maintaining the relative distance and orientation between the target and the robot. Simultaneously, the robot builds a multihypothesis topological map of the environment based on an improved generalized Voronoi graph, where the edges represent the corridors and the vertices are the virtual meet points extracted from the intersections. In such a way, simultaneous human following and topological mapping are achieved. Simulation and experimental results show that the proposed method can largely avoid occlusion of the target and obtain good performance of human following and topological mapping.
Article
In this paper, we propose a gait recognition method for service robots to conduct human following tasks. A walking sequence segmentation method is designed to extract the consecutive gait cycles from an arbitrary walking sequence. Based on the segmentation results, a novel hybrid gait feature is proposed to capture the static, dynamic, and trajectory features for each segmented key and supplementary gait cycles. A dataset of 25 human subjects is collected to evaluate the proposed method in three different walking paths with various walking directions. Experimental results show that the proposed method achieves satisfactory performance in terms of identification accuracy and Fcomb indexes on our dataset. Compared with five state-of-the-art gait recognition methods, the proposed method achieves the best performance on human gait recognition based on the walking sequences defined in our proposed dataset.
Article
The kernelized correlation filter (KCF) is one of the state-of-the-art object trackers. However, it does not reasonably model the distribution of correlation response during tracking process, which might cause the drifting problem, especially when targets undergo significant appearance changes due to occlusion, camera shaking, and/or deformation. In this paper, we propose an output constraint transfer (OCT) method that by modeling the distribution of correlation response in a Bayesian optimization framework is able to mitigate the drifting problem. OCT builds upon the reasonable assumption that the correlation response to the target image follows a Gaussian distribution, which we exploit to select training samples and reduce model uncertainty. OCT is rooted in a new theory which transfers data distribution to a constraint of the optimized variable, leading to an efficient framework to calculate correlation filters. Extensive experiments on a commonly used tracking benchmark show that the proposed method significantly improves KCF, and achieves better performance than other state-of-the-art trackers. To encourage further developments, the source code is made available.
Article
The ability to follow a human is an important requirement for a service robot designed to work along side humans in homes or in work places. This paper describes the development and implementation of a novel robust visual controller for the human-following robot. This visual controller consists of two parts: 1) a robust algorithm that tracks a human visible in its camera view and 2) a servo controller that generates necessary motion commands so that the robot can follow the target human. The tracking algorithm uses point-based features, like speeded up robust feature, to detect human under challenging conditions, such as, variation in illumination, pose change, full or partial occlusion, and abrupt camera motion. The novel contributions in the tracking algorithm include the following: 1) a dynamic object model that evolves over time to deal with short-term changes, while maintaining stability over long run; 2) an online K-D tree-based classifier along with a Kalman filter is used to differentiate a case of pose change from a case of partial or full occlusion; and 3) a method is proposed to detect pose change due to out-of-plane rotations, which is a difficult problem that leads to frequent tracking failures in a human following robot. An improved version of a visual servo controller is proposed that uses feedback linearization to overcome the chattering phenomenon present in sliding mode-based controllers used previously. The efficacy of the proposed approach is demonstrated through various simulations and real-life experiments with an actual mobile robot platform.
Article
The impedance control theory is applied to the walking rehabilitation robot system, and the location-based impedance control model is used to design system controller. Impedance model based gait trajectory adaption algorithm is proposed, and the system error is analyzed. SolidWorks, Matlab and Adams are integrated as a united simulation platform for virtual prototype of the robot to develop the experiment of active training, and the experiments with healthy subjects are implemented on physical prototype. The results show that the robot can constantly adjust its gait trajectory according to human-machine interaction force to meet the patients' gait request, and the adaptation level of gait and the training flexibility can be improved by adjusting the impedance parameters. The controller serves the purpose that patients can participate in rehabilitation training actively.
Article
Tracking generic human motion is highly challenging due to its high-dimensional state space and the various motion types involved. In order to deal with these challenges, a fusion formulation which integrates low- and high-dimensional tracking approaches into one framework is proposed. The low-dimensional approach successfully overcomes the high-dimensional problem of tracking the motions with available training data by learning motion models, but it only works with specific motion types. On the other hand, although the high-dimensional approach may recover the motions without learned models by sampling directly in the pose space, it lacks robustness and efficiency. Within the framework, the two parallel approaches, low- and high-dimensional, are fused via a probabilistic approach at each time step. This probabilistic fusion approach ensures that the overall performance of the system is improved by concentrating on the respective advantages of the two approaches and resolving their weak points. The experimental results, after qualitative and quantitative comparisons, demonstrate the effectiveness of the proposed approach in tracking generic human motion.