ArticlePDF Available

Mapping and Validation of qHD7b: Major Heading-Date QTL Functions Mainly under Long-Day Conditions

Authors:

Abstract and Figures

Heading date (HD) is one of the agronomic traits that influence maturity, regional adaptability, and grain yield. The present study was a follow-up of a previous quantitative trait loci (QTL) mapping study conducted on three populations, which uncovered a total of 62 QTLs associated with 10 agronomic traits. Two of the QTLs for HD on chromosome 7 (qHD7a and qHD7b) had a common flanking marker (RM3670) that may be due to tight linkage, and/or weakness of the statistical method. The objectives of the present study were to map QTLs associated with HD in a set of 76 chromosome segment substitution lines (CSSLs), fine map and validate one of the QTLs (qHD7b) using 2,997 BC5F2:3 plants, and identify candidate genes using sequencing and expression analysis. Using the CSSLs genotyped with 120 markers and evaluated under two short-day and two long-day growing conditions, we uncovered a total of fourteen QTLs (qHD2a, qHD4a, qHD4b, qHD5a, qHD6a, qHD6b, qHD7b, qHD7c, qHD8a, qHD10a, qHD10b, qHD11a, qHD12a, and qHD12b). However, only qHD6a and qHD7b were consistently detected in all four environments. The phenotypic variance explained by qHD6a and qHD7b varied from 10.1% to 36.1% (mean 23.1%) and from 8.1% to 32.8% (mean 20.5%), respectively. One of the CSSL lines (CSSL52), which harbored a segment from the early heading XieqingzaoB (XQZB) parent at the qHD7b locus, was then used to develop a BC5F2:3 population for fine mapping and validation. Using a backcross population evaluated for four seasons under different day lengths and temperatures, the qHD7b interval was delimited to a 912.7-kb region, which is located between RM5436 and RM5499. Sequencing and expression analysis revealed a total of 29 candidate genes, of which Ghd7 (Os07g0261200) is a well-known gene that affects heading date, plant height, and grain yield in rice. The ghd7 mutants generated through CRISPR/Cas9 gene editing exhibited early heading. Taken together, the results from both the previous and present study revealed a consistent QTL for heading date on chromosome 7, which coincided not only with the physical position of a known gene, but also with two major effect QTLs that controlled the stigma exertion rate and the number of spikelets in rice. The results provide contributions to the broader adaptability of marker-assisted breeding to develop high-yield rice varieties.
Content may be subject to copyright.
Plants2022,11,2288.https://doi.org/10.3390/plants11172288www.mdpi.com/journal/plants
Article
MappingandValidationofqHD7b:MajorHeadingDateQTL
FunctionsMainlyUnderLongDayConditions
AmirSohail
1
,LiaqatShah
1,2
,LingLiu
1
,AnowerulIslam
1,3
,ZhengfuYang
1,4
,QinqinYang
1
,GalalBakrAnis
1,5
,
PengXu
1
,RiazMuhammadKhan
1,6
,JiaxinLi
1
,XihongShen
1
,ShihuaCheng
1
,LiyongCao
1,7
,YingxinZhang
1,
*
andWeixunWu
1,
*
1
StateKeyLaboratoryofRiceBiology,ChinaNationalRiceResearchInstitute,Hangzhou310006,China
2
DepartmentofAgriculture,MirChakarKhanRindUniversity,Sibi82000,Pakistan
3
DepartmentofAgriculturalExtension,MinistryofAgriculture,Dhaka1215,Bangladesh
4
StateKeyLaboratoryofSubtropicalSilviculture,ZhejiangA&FUniversity,Hangzhou311300,China
5
RiceResearchandTrainingCenter,FieldCropsResearchInstitute,AgricultureResearchCenter,
Kafrelsheikh33717,Egypt
6
CerealCropsResearchInstitute(CCRI)PirsabakNowshera,AgricultureResearchSystemKhyber
Pakhtunkhwa24100,Pakistan
7
NorthernCenterofChinaNationalRiceResearchInstitute,Shuangyashan155600,China
*Correspondence:wuweixun@caas.cn(W.W.);zhangyingxin@caas.cn(Y.Z.)
Abstract:Headingdate(HD)isoneoftheagronomictraitsthatinfluencematurity,regional
adaptability,andgrainyield.Thepresentstudywasafollowupofapreviousquantitativetraitloci
(QTL)mappingstudyconductedonthreepopulations,whichuncoveredatotalof62QTLs
associatedwith10agronomictraits.TwooftheQTLsforHDonchromosome7(qHD7aandqHD7b)
hadacommonflankingmarker(RM3670)thatmaybeduetotightlinkage,and/orweaknessofthe
statisticalmethod.TheobjectivesofthepresentstudyweretomapQTLsassociatedwithHDina
setof76chromosomesegmentsubstitutionlines(CSSLs),finemapandvalidateoneoftheQTLs
(qHD7b)using2,997BC
5
F
2:3
plants,andidentifycandidategenesusingsequencingandexpression
analysis.UsingtheCSSLsgenotypedwith120markersandevaluatedundertwoshortdayandtwo
longdaygrowingconditions,weuncoveredatotaloffourteenQTLs(qHD2a,qHD4a,qHD4b,
qHD5a,qHD6a,qHD6b,qHD7b,qHD7c,qHD8a,qHD10a,qHD10b,qHD11a,qHD12a,andqHD12b).
However,onlyqHD6aandqHD7bwereconsistentlydetectedinallfourenvironments.The
phenotypicvarianceexplainedbyqHD6aandqHD7bvariedfrom10.1%to36.1%(mean23.1%)and
from8.1%to32.8%(mean20.5%),respectively.OneoftheCSSLlines(CSSL52),whichharboreda
segmentfromtheearlyheadingXieqingzaoB(XQZB)parentattheqHD7blocus,wasthenusedto
developaBC
5
F
2:3
populationforfinemappingandvalidation.Usingabackcrosspopulation
evaluatedforfourseasonsunderdifferentdaylengthsandtemperatures,theqHD7bintervalwas
delimitedtoa912.7kbregion,whichislocatedbetweenRM5436andRM5499.Sequencingand
expressionanalysisrevealedatotalof29candidategenes,ofwhichGhd7(Os07g0261200)isawell
knowngenethataffectsheadingdate,plantheight,andgrainyieldinrice.Theghd7mutants
generatedthroughCRISPR/Cas9geneeditingexhibitedearlyheading.Takentogether,theresults
fromboththepreviousandpresentstudyrevealedaconsistentQTLforheadingdateon
chromosome7,whichcoincidednotonlywiththephysicalpositionofaknowngene,butalsowith
twomajoreffectQTLsthatcontrolledthestigmaexertionrateandthenumberofspikeletsinrice.
Theresultsprovidecontributionstothebroaderadaptabilityofmarkerassistedbreedingto
develophighyieldricevarieties.
Keywords:rice(OryzasativaL.);quantitativetraitlocus;chromosomesegmentsubstitutionlines;
qHD7b;finemapping
Citation:Sohail,A.;Shah,L.;Liu,L.;
Islam,A.;Yang,Z.;Yang,Q.;Anis,
G.B.;Xu,P.;Khan,R.M.;Li,J.;etal.
MappingandValidationofqHD7b:
MajorHeadingDateQTLFunctions
MainlyUnderLongDayConditions.
Plants2022,11,2288.https://doi.org/
10.3390/plants11172288
AcademicEditors:KassaSemagn
andTikaAdhikari
Received:28June2022
Accepted:30August2022
Published:1September2022
Publisher’sNote:MDPIstays
neutralwithregardtojurisdictional
claimsinpublishedmapsand
institutionalaffiliations.
Copyright:©2022bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(https://creativecommons.org/license
s/by/4.0/).
Plants2022,11,22882of15
1.Introduction
Riceisastaplefoodformorethan50%oftheworld’spopulation,withitsproduction
expectedtoincreasebyabout25%in2030tokeeppacewithpopulationgrowth.Riceisa
facultative,shortdaycropthatflowersearlierundershortday(SD)conditionsandlater
underlongday(LD)conditions[1].Headingdate(HD)isacrucialtraitaffectingrice
adaptiontodiversecultivationareas,croppingseasons,maturity,andgrainyield[2].The
developmentofearly‐orlatematuringcultivarsdependsonecologicalconditions.Inthe
regionswheregrowingseasonsareshort,theaimistodevelopearlymaturingvarieties
toescapefrostdamage,buttheremaybeayieldpenalty.However,intheregionswhere
growingseasonsarelong,theaimistodeveloplatematuringvarietieswithallofthe
assimilatesefficientlytransmittedtothegrains,therebyenhancinggrainweightandyield.
Generally,therewasatradeoffbetweenfloweringtimeandyield,whichaimedto
maximizeproduction[3].
Numerousstudieshavebeenconductedtomapandcharacterize712HDgenesand
quantitativetraitloci(QTLs)thathavebeendocumentedintheGramenedatabase
(http://archive.gramene.org/qtl/(accessedon29August2022)).TheE1/Ghd7wasthefirst
HDQTLreportedinrice,whichpossessesafunctionaldominantE1alleleandanon
functionale1allele[4].TheallelicvariationofGhd7contributestothegeographic
distributionofcultivatedrice[5],whichhasbeeninvestigatedforphotoperiodsensitivity
andregionaladaptability[6].ThefunctionalGhd7alleles(e.g.,Ghd71,Ghd72,andGhd7
3)delayheading,whilethenonfunctionalalleles(e.g.,Ghd70andGhd70a)shorten
headingdateinthedifferentgeneticbackgroundsofrice.BoththeGhd71andGhd73
alleleswerefoundinricevarietiesgrowninthetropics,subtropics,andareaswithhot
summersandlonggrowingseasonsinChinaandSoutheastAsia.TheGhd72allelewas
foundintemperatejaponicavarietiesfromJapanandnorthernChinaandhadasmaller
phenotypiceffectthanGhd71[7].Se1/Hd1wasthefirstclonedheadingdateQTL,an
orthologofArabidopsisCONSTANSthatpromotesandsuppressesfloweringundershort‐
andlongdaygrowingconditions,respectively[8].Headingdate6(Hd6)[9],Headingdate
3a(Hd3a)[10],Earlyheadingdate1(Ehd1)[11],Daystoheading8(DTH8)/Ghd8[12],Heading
date17(Hd17)[13],RICEFLOWERINGLOCUST1(RFT1)[14],andDaystoheading2
(DTH2)[3]areotherHDQTLsinricethathavebeenclonedusingamapbasedapproach.
Theanalysisofthesegenesexhibitedtwomainphotoperiodicfloweringpathwaysinrice:
Hd1Hd3aandGhd7Ehd1Hd3a/RFT1.MajorQTLsassociatedwiththelateheading,such
asGhd7,Hd1,DTH8/Ghd8,andDTH7/Ghd7.1[5,15],showedastrongcorrelationwithan
increaseingrainyield,whichsuggeststhattheuseofsuchtypesofHDQTLscan
significantlyinfluencerice’sproductivityandadaptabilitytospecificgrowingconditions.
Recentprogressinmoleculartechnologyandstatisticalmethodologyhasprovided
researchersanopportunitytomapandcharacterizeHDQTLsindiversetypesof
populations,includingF2,recombinantinbredlines(RILs),anddoubledhaploidlines
(DHLs)inrice[16,17].However,thesepopulationsmaynotbeidealfortheprecise
mappingofQTLsduetothesimultaneoussegregationofmultiplelocioriginatingfrom
thetwoparents.Moreover,itwouldbemorechallengingtodeterminetheactualgenetic
actionsoftheQTLsanddifferentiatetheQTLeffectsfrombackgroundnoise[18,19].
Chromosomesegmentsubstitutionlines(CSSLs)aregeneticstocksthatconsistof
overlappingsegmentsofthecompletegenomeofanygenotype.CSSLshavebeenwidely
usedtomapQTLsaccurately,evaluategeneinteractions,discovernewalleles,and
comparethephenotypiceffectofgenesorQTLs[19,20].FurtherfinemappingofQTLsof
interestcanbedonebyconstructingsegregatingpopulationsobtainedfromcrossingone
oftheCSSLsandtheirrecurrentparent[21].
Inapreviousstudy,ourgroupidentified9HDQTLsinaRILpopulation(FigureS1)
and2BCF1populationsderivedfromacrossbetweenXieqingzaoB(XQZB)and
Zhonghui9308(ZH9308),whichindividuallyaccountedfor2.6–18.6%ofthephenotypic
variance[22].ThreeofthenineHDQTLsweremappedonchromosome7between
RM3670andRM2markers(qHD7a),betweenRM5436andRM3670(qHD7b),andbetween
Plants2022,11,22883of15
RM118andRM3555(qHD7c),explaining18.6%,12.1%,and5.6%,respectively.TheqHD7a
andtheqHD7bQTLwerephysicallylocatedbetween13439924–16022676bpand9075636–
13439924bp,respectively.RM3670,locatedat13439924bp,wasacommonflanking
markerinbothqHD7aandqHD7b,suggestingthatthetwoQTLsareeithertightlylinked
orthestatisticalmethodwronglyidentifiedthemastwoindependentQTLs.Bothissues
mayberesolvedusingCSSLs,whichformthebasisofthepresentstudy.Therefore,the
objectivesofthepresentstudyweretounderstandthephenotypicvariationoftheCSSLs
forheadingdate,finemaptheHDQTLonchromosome7,andidentifycandidategenes
associatedwithHDundershort‐andlongdayricegrowingconditions.Furthermore,we
werealsointerestedindeterminingtheproportionofphenotypicvarianceexplainedby
oneoftheQTLsonchromosome7,validatingandfinemappingitspositionusingthe
BC5F2:3populationderivedfromacrossbetweenoneoftheCSSLsandtherecurrent
parent,identifyingcandidategenesnearthetargetQTL,anddeterminingitsactualeffect
inmutantsgeneratedthroughCRISPR/Cas9geneediting.
2.Results
2.1.PhenotypicandGenotypicAnalysisofCSSLs
SeventysixCSSLsandthetwoparentswereevaluatedforHDundernaturalSD
(NSD)atHainanin20152016andundernaturalLD(NLD)atHangzhouin20142015for
twoseasons.TheXQZBmaturedabout32and20daysearlierthantheZH9308inthe
HangzhouandHainangrowingconditions,respectively(Figure1A,B;Table1).Thedays
toheadingof76CSSLsexhibited59to122daysinNLDsandfrom93to124daysinNSDs
(Figure1C–F;Table1).Overall,HDshowedcontinuousvariationinbothgrowing
conditionsbutskeweddistribution(Table1,Figure1).Thebroadsenseheritabilitywas
computedfromallfourenvironments,Hainan,andHangzhou,andwere0.83,0.82,and
0.79,respectively(Table1).PC1andPC2fromtheprincipalcomponentanalysis(PCA)
accountedfor75.7%and15.5%,respectively(FigureS2),withmostCSSLsshowingan
averageheadingdateclusteredtogetherattheorigin.Highlysignificantpositive
correlationswereobservedamongthetestedenvironmentsforheadingdate(FigureS2).
Table1.Summaryofheadingdatesofparentsand76chromosomesegmentsubstitutionlines
(CSSLs)evaluatedundertwonaturalshortdayconditionsatHainanandlongdayconditionsat
Hangzhou.
Parentsb76CSSLsa
Year/LocationZH9308XQZBMinMaxMeanSDKurtosisSkewnessH
2014Hangzhou91.83±1.11**60.17±1.1060.40119.2287.128.895.21−0.230.79
2015Hangzhou88.33±0.50**56.67±0.5457.67124.2888.219.424.45–0.33
2015Hainan110.99±1.52**91.00±1.3196.57124.94110.873.944.330.630.82
2016Hainan109.67±1.24**91.44±1.6790.00122.80103.596.101.540.36
Combined
TraitMinMaxMeanσ2Gσ2GxEσ2ECVH2
HD80.77119.7897.4534.8624.918.983.080.83
aValuesforCSSLsareminimum(Min),maximum(Max),mean,standarddeviation(SD),and
repeatability(H2).bDataofparentsarepresentedasmean±SDwith**indicatingsignificant
differencesbetweenZH9308andXQZBatthep<0.01.
Plants2022,11,22884of15
Figure1.ComparisonofZH9308andXQZBparentswith**indicatingsignificantdifferencesatp<
0.01(AB)andheadingdatedistributionofthe76chromosomesegmentsubstitutionlines(CSSLs)
basedonthebestlinearunbiasedprediction(BLUP)evaluatedattheHangzhouandHainan
growingconditions(CF).
2.2.QTLAnalysisoftheCSSLs
ThegeneticlinkagemapoftheCSSLpopulationwasconstructedusing87simple
sequencerepeats(SSRs)and33insertion/deletion(InDel)markersthatfollowedthe1:1
Mendeliansegregationpattern(FigureS3).Atotalof120markersweredistributedacross
thewholegenomewithtotalcoverageof1311.02cmusingtheKosambifunctionof
IciMappingsoftware(FigureS3;TableS1).Inclusivecompositeintervalmapping
conductedontheBLUPHDdataofthefourenvironmentsusingaLODthresholdvalue
≥2.5identified14QTLsassociatedwithheadingdateonChr2(qHD2a),Chr4(qHD4aand
qHD4b),Chr5(qHD5a),Chr6(qHD6aandqHD6b),Chr7(qHD7bandqHD7c),Chr8
(qHD8a),Chr10(qHD10aandqHD10b),Chr11(qHD11),andChr12(qHD12aandqHD12b)
Plants2022,11,22885of15
(Table2).Theproportionofphenotypicvariance(PVE)explainedbyeachQTLranged
from0.4%to36.1%,andtheadditiveeffectfrom15.4to18.2.OfthefourteenQTLs,only
qHD6aandqHD7bwereconsistentlydetectedinallfourenvironments,from10.1%to
36.1%(mean23.14%)andfrom8.1%to32.8%(mean20.5%),respectively.Theremaining
12QTLsweredetectedonlyin1or2environments(Table2).WethenfocusedonqHD7b
forfurtherresearchduetoitsconsistentdetectionnotonlyinallfourenvironmentsinthe
presentstudy,butalsointwotypesofmappingpopulationsinourpreviousstudy[23].
ThefavorableallelesofallQTLwithanegativeadditiveeffectoriginatedfromtheXQZB,
whilethosewithapositivealleleoriginatedfromZH9308.TheXQZBalleleattheqHD7b
leadstoearlyheadingunderbothNSDandNLDconditions(Figure1A,B;Table2).
Table2.ChromosomallocationsofputativeHDQTLsunderfourdifferentenvironmentsusing76
CSSLpopulations.
QTLsYear/locationaChr.Region(cM)FlankingmarkersLODbPVE(%)cAddd
qHD2a2015HZ219.77RM6424InD312.802.542.37
qHD4a2014HZ46.58InD62RM120538.899.8713.13
2015HZ410.54RM1205RM59796.464.501.75
qHD4b2015HZ421.08RM3839RM24111.339.148.79
qHD5a2014HZ525.20RM3638RM68412.590.45–0.47
2016HN514.52InD79RM36382.917.78–3.91
qHD6a2014HZ66.58RM5754RM596349.6719.0318.21
2015HN65.27RM510RM575411.1236.146.78
2015HZ66.58RM5754RM596313.1410.139.90
2016HN65.27RM510RM57548.8325.018.67
qHD6b2014HZ611.85RM20069InD943.770.330.36
qHD7b2014HZ727.69RM3859RM587554.4226.54–15.44
2015HN727.69RM3859RM58753.248.10–2.61
2015HZ727.69RM3859RM587526.5632.84–12.90
2016HN727.69RM3859RM58757.5520.33–6.76
qHD7c2015HZ721.13RM1132RM4552.562.790.88
qHD8a2014HZ87.91RM5556RM2252946.4016.12–12.03
2015HZ87.91RM5556RM2252915.9113.30–8.22
qHD10a2015HZ102.63InD133InD13512.279.14–13.28
2015HN102.63InD133InD1356.6718.74–7.37
qHD10b2016HN106.58RM6142RM56203.608.89–5.96
qHD11a2014HZ1110.54RM7463RM2665218.141.94–7.76
2015HZ1117.16RM26652InD1512.513.10–2.72
qHD12a2014HZ122.63InD156RM700315.422.21–6.10
qHD12b2014HZ1223.82InD165RM13002.850.43–0.44
aYear/Locationreferstotheyearoftheexperiment(2014,2015,and2016)followedbythelocation
(Hangzhou—HZ/Hainan—HN).bLogarithmofodd,ctheproportionofthephenotypicvariance
explainedbytheQTLeffect,dthesignoftheadditiveeffectsshowstheparentaloriginofthe
favorablealleles(negative=XQZBandpositive=ZH9308).
2.3.PhotoperiodicResponseofqHD7b
TheCSSL52isoneofthechromosomesegmentsubstitutionlines,whichcontainstwo
segmentsfromXQZBintheZH9308backgroundandharborstheearlyheadingalleleat
theqHD7bregionflankedbyRM3859andRM5875markers(FigureS4).ZH9308and
CSSL52wereevaluatedforfiveconsecutiveseasonsunderNLDandNSDconditionswith
differentdaylengthsandtemperatures(Figure2A–D).ThereweresignificantHD
differences(p<0.01)betweentheparentsinallthestudiedenvironments(Figure2E–G).
ZH9308headed24.6–26.4dayslaterthanCSSL52atHangzhouNLDconditions(Figure
Plants2022,11,22886of15
2E,G).AtHainanNSDconditions,ZH9308headed6.2–10.4dayslaterthanCSSL52(Figure
2F,G).Similarly,ZH9308hadahigherplantheightthanCSSL52underallfive
environments(Figure2H).Takentogether,ZH9308headedlaterthanCSSL52underboth
SDandLDconditions,andthephenotypicdifferencesofdaystoheadingweremore
significantunderLDconditions.Duetolongerdaystoheading,ZH9308alsoexhibiteda
tallerPH,longerpaniclelength,morenumbersofinternodes,longerinternodelength,a
greaternumberofpaniclesperplant,andamoresignificantnumberofgrainsinthemain
paniclethanCSSL52(FiguresS5andS6).
Figure2.ComparisonofheadingdateandplantheightofZH9308andCSSL52underfive
environmentalconditions.(AD)Dailyphotoperiod(A,B)andmeantemperature(C,D)under
HangzhouandHainanconditionsin2020duringthericegrowingseason.(E,F)Thephenotypeof
ZH9308andCSSL52underHangzhou(E)andHainan(F).ThephotowastakenattheCSSL52
headingstagein(E)andtheCSSL52maturationstagein(F).(G,H)Daystoheading(G)andplant
Plants2022,11,22887of15
height(H)comparisonbetweenparentsfrom2019–2021underNLDconditionsinHangzhouand
NSDconditionsinHainan.Theasterisks**indicatesignificancebetweentheparentsatthep<0.01,
accordingtoStudent’sttest.
HeadingdateshowedahighlysignificantpositivePearsoncorrelationwithplant
height(r=0.83,p<0.01),paniclelength(r=0.86,p<0.01),andnumberofgrainsinthe
mainpanicle(r=0.79,p<0.01)(TableS2).Plantheightshowedhighpositivecorrelations
withthepaniclelength(r=0.83,p<0.01)andnumberofgrainsinthemainpanicle(r=
0.80,p<0.01).Similarly,therewasalsoasignificantpositivecorrelationbetweenpanicle
lengthandnumberofgrainsinthemainpanicle(r=0.76,p<0.01)(TableS2).
2.4.QTLMappinginBC5F2:3Population
TheqHD7bwasinitiallydelimitedtothe7.1MbregionbetweentheRM3859and
RM5875markers(Table1).WeusedaBC5F2populationtovalidateandfinemapthe
qHD7bQTL,whichwasdevelopedbycrossingCSSL52thathastheearlyheadingallele
withtheZH9308parentandthenbackcrossingtheprogeniesfivetimeswiththeZH9308
todevelopasecondaryF2(BC5F2)populationforfinemappingqHD7b(FigureS7).
Usingalinkagemapof9markersneartheqHD7bQTLandheadingdataofasubset
of501BC5F2plants(Figure3)evaluatedfortwoconsecutiveseasonsunderHangzhou
NLDandtwoseasonsunderHainanNSDconditions(FigureS8),wemappedtheqHD7b
QTLbetweentheInDel4373andInDel3markers.TheQTLwasdetectedinallfour
environments(seasons)andwasbetween10.8%and41.1%ineachenvironment(mean=
26.0%),andhadaLODscorerangingfrom4.9to62.7(mean=33.8).UnderHangzhou
conditions,however,theqHD7bhadaverylargeeffect(31.5–41.1%)andmoresignificant
LODscores(59.8–62.7)thanintheHainanconditions(PVE=10.8–21.2%,LOD=4.9–7.5),
whichwasabouttwofoldgreaterinthemeanphenotypiceffectandnearlytenfoldlarger
inthemeanLODscore(TableS3).Wethenclassifiedthe501BC5F2aslateandearly
headingandcalculatedthemeandifferenceinheadingdate.Theaveragedifference
betweentheearlyandlatesegregatingprogenieswas9.6and25.5daysunderNSDand
NLD,respectively(FigureS8).AChisquareanalysisperformedontheBC5F2population
fittheexpected3(late):1(early)ratio(386:115;χ2=0.52,p=0.47),indicatingthatqHD7b
behavesasasingledominantgenethatismorefunctionalunderLDconditionsthanSD
conditions.
2.5.FineMappingofqHD7b
TonarrowdowntheconfidenceintervaloftheqHD7bidentifiedusingthe501BC5F2
plants,weusedatotalof2997BC5F2:3individualsgenotypedwith7markersthatwere
polymorphicbetweentheZH9308andCSSSL52,aswellasthetwoflankingInDels
(InDel4373andInDel3)identifiedduringtheinitialmapping.Thegenotypedatarevealed
14homozygousrecombinants(Figure3D)thatbelongto4groups(G1=3plants,G2=5
plants,G3=4plants,andG4=2plants).TherecombinantplantsinG1hadthesame
headingdate(86.0d)astheZH9308parent(85.2d),whiletheremainingthree
recombinantgroupshadnearlythesameheadingdate(56.2–58.0d)astheCSSL52parent
(58.8d).Inthefinemapping,InDel4477,locatedat9075693bp,wastheclosestmarkerto
qHD7b,whileRM5436andRM5499weretheflankingmarkerslocatedat9075636bpand
9988139bponchromosome7.IncontrasttotheG1recombinantsthathadtheZH9308
parentgenomebetweenRM5436andRM5499attheqHD7binterval,theremainingthree
groupsofrecombinants(G2toG4)allinheritedtheCSSL52genome.Thephysicalinterval
betweenRM5436andRM5499markersspans912.7kb(Figure3D),whichwasconfirmed
using20BC5F3:4progenyfromeachrecombinantgroup.
Plants2022,11,22888of15
Figure3.CoarsemappingandfinemappingofqHD7bonchromosome7.(A)ThepositionofqHD7b
basedon76CSSLsgenotypedwith12molecularmarkersonchromosome7.(B)Thepositionof
qHD7bbasedon501BC
5
F
2
plantsgenotypedwith7markerslocatedbetweenRM3859andRM5875
(theflankingmarkersidentifiedusingtheCSSLs).(C)FinemappingofqHD7busingBC
5
F
2:3
plants
genotypedwith7markersthatmappedbetweenInDel4373andInDel3(theflankingmarkers
identifiedusingthe501BC
5
F
2
plants).(D)Genotypesandphenotypesofthetwoparents(ZH9308
andCSSL52)and14homozygousrecombinantlinesusedforfinemappingofqHD7b.TheZH9308
andCSSL52genotypicmarkersarerepresentedbywhiteandblackbars,respectively.The14
homozygousrecombinantsbelongtofourgroups(G1=3plants,G2=5plants,G3=4plants,and
G4=2plants).Thesuperscriptedletters(aandb)indicatestatisticallysignificantdifferencesinthe
headingdatesofrecombinantsrelativetotheparents.(E)Approximately29openreadingframes
(ORFs)werelocatedbetweenthetwoflankingmarkersidentifiedduringthefinemapping(RM5436
andRM5499),whicharesummarizedinTableS4.(F)SequencecomparisonbetweenZH9308and
CSSL52with5.984kbdeletioninCSSL52atOs07g0261200using7markers(M1toM7).Thedeleted
regioninCSSL52issignificant,andsevenmolecularmarkers(Ghd7M1toGhd7M7)linkedwith
qHD7bareamplifiedinZH9308.
2.6.CandidateGeneAnalysisofqHD7bandValidationUsingCRISPR/Cas9
Acandidategenesearchusingthephysicalpositionofthetwoflankingmarkers
identifiedduringthefinemapping(RM5436andRM5499)intheGramenedatabase
(https://www.gramene.org/(accessedon29August2022))usingtheOryzasativajaponica
groupreferencegenomeidentified29predictedgenes,ofwhich18hadOryzaindica
homologuesthatfellwithinthe912.7kbregion(7:90756369988139)ofqHD7b(Figure3E
andTableS4).ORF4(Os07g0261200)isphysicallylocatedat9,152,377bponchromosome
7,encodestheCCTmotiffamilyprotein,andhasbeenannotatedasGhd7(Os07g0261200).
WethensequencedOs07g0261200inthetwoparentsusingsevenmarkers(M1toM7),
whichrevealeda5.984kbdeletionintheORF4regionintheCSSL52parentbutnotin
Plants2022,11,22889of15
ZH9308(Figure3F).TheexpressionlevelsofOs07g0261200inCSSL52werealsonearly
zeroascomparedwithZH9308,whichalsosuggeststhatGhd7isaprobableputative
candidategeneforqHD7b(FigureS9).
Tovalidatethemutantphenotype,weknockedoutGhd7intheNipponbaregenetic
backgroundutilizingtheCRISPR/Cas9system(Figure4A).TheHDofthewildtypewas
9.4dayslaterthantheghd7mutantunderNLDconditionsinHangzhou(Figure4B,C)and
2.0dayslaterunderNSDconditionsinHainan(Figure4C).Thewildtypeshowed
significantdifferenceswiththeghd7mutantforHD,plantheight,andthenumberof
grainsperpanicle(Figure4D,E).
Figure4.Headingdateofwildtype(WT)andghd7mutantintheNipponbaregeneticbackground.
(A)SchematicoftheGhd7genewiththesgRNA:Cas9targets(green)andcorresponding
protospaceradjacentmotifsequences(underlined).Theinsertionnucleotideisshownasaredletter.
(B)ThephenotypeofWTandmutantghd7attheheadingstageunderHangzhouconditions.(C)
DaystoheadingofWTandghd7undernaturallongdayHangzhouandnaturalshortdayHainan
conditions.(DandE)ComparisonoftheWTandghd7mutantforplantheight(D)andthenumber
ofgrainsinthemainpanicle(E)undernaturallongdayconditions.Thedataareexpressedasmean
values±SD.Theasterisks**indicatesignificancebetweenWTandghd7mutantatthep<0.01,as
determinedbyStudent’sttest.
3.Discussion
Headingdateisoneofthemostimportantagronomictraitsandvarieswidelyinrice
dependingonthegeneticdifferencesamonggenotypes,environmentalconditions,day
length,temperature,andtheirinteractions[23].Aclearunderstandingofthegenetic
driversofheadingdatesisessentialforcultivatingriceindifferentgeographicalregions
andseasons[24].Numerousgeneticmappingstudieswereconductedtoidentifygenes
andQTLsassociatedwithheadingusingbiparentalpopulations,suchasF2,backcross,
doubledhaploidlines,RILs,andCSSLs[25,26].Hundredsofgenomicregionsrelatedto
HDhavebeenreportedinrice;however,fewhavebeenmappedandcloned[27].qHD7b
wasidentifiedusingtwotypesofpopulationsthatwere76CSSLsandaBC5F2population.
Using76CSSLlines,thepresentstudyconfirmedtheqHD7bQTLthatwepreviously
reportedbetweenmarkersRM5436,locatedat9075636bp,andRM3670,locatedat
13439924bp[22].However,thephysicalintervaloftheQTLwasaboutdoubleinthe
Plants2022,11,228810of15
CSSLs(7120.8kb)ascomparedwiththepreviousstudy(4,364.3kb),whichislikelydue
tothesmallpopulationsizeoftheCSSLs.Theuseof501BC5F2plantsreducedthephysical
confidenceintervaloftheQTLto1245.9kb,followedby912.7kbwhenitwasfinemapped
using2997BC5F2:3plants(Figure3).RM5436andRM5499weretheflankingmarkersof
theqHD7bQTLafterfinemapping,whichwerealsopreviouslyreportedasflanking
markersforamajorQTL(qSSP7),therebycontrollingthenumberofspikeletsperpanicle
[28],andanothermajorQTL(qSE7),therebyinfluencingthestigmaexertionrate[29]in
rice.AcandidategenesearchconductedusingthephysicalintervaloftheqHD7b
(7:90756369988139)andtheOryzasativajaponicagroupreferencegenomeinGramene
identifiedatotalof29candidategenes.Ghd7(Os07g0261200)isoneofthe29candidate
genes,whichhasbeenextensivelystudiedforitseffectoninfluencingheadingdate,grain
yield,plantheight,andotheragronomictraitsinrice[7,30].However,othermultiple
genesshouldalsobeexploredinthefuture.
OneofthechallengesinQTLmappingisidentifyingQTLsthatareconsistently
detectedacrossdifferentenvironments,whichwasnotthecaseforqHD7b.ThisQTLwas
consistentlydetectedinallenvironmentsregardlessofthetypeofmappingpopulations,
butitseffectandLODscorestendtobeveryerratic.TheLODscorefortheqHD7bvaried
from3.2to54.4inthe76CSSLsandfrom4.9to62.7inthe501BC5F2plants,whilethe
phenotypicvarianceexplainedbytheQTLvariedfrom8.1%to32.8%intheCSSLsand
from10.8%to41.1%intheBC5F2plants(Table2andTableS3).Apreviousstudyshowed
thattheQTLeffectdetectedbythedifferentmappingpopulationsandenvironmental
conditionsisnotnecessarilythesame[31].Inourcase,thediscrepanciesmaybedueto
differencesinthepopulationsizeand/orthetypeofmappingpopulations.CSSLsare
powerfulforQTLdiscoverystudiesduetothepresenceofmultipleoverlappingsegments
andseveralrecombinationevents[32].Still,thesmallsizeofthepopulationinthecurrent
studymayaffecttheQTLresults.TheBC5F2populationsize,ontheotherhand,wasideal
forQTLdiscoverystudiesintermsofpopulationsizebuthaslimitedrecombination
frequency,whichmakesitinferiorintermsofmappingresolutions.Thetwophenotyping
locationswerealsodifferentinbothtemperatureanddaylength,withHangzhou’s
showingahighertemperatureandlongerdaylengththanHainan(Figure2A–D),which
resultedinacleardifferenceinphenotypebetweentheparentsinHangzhou’sthan
Hainan(Figure2E–H)[33].Asaresult,theproportionofphenotypicvarianceexplained
byqHD7bwasverylowinHainaninboththeCSSLandBC5F2populations(Table2and
TableS3).Liuetal.[23]alsoreportedrelativelyloweffectsforqHD1binHainanthanin
Hangzhou.Thedifferencesinheadingdatesbetweenthewildtypeandtheghd7mutant
werealsosmallerinHainanthanintheHangzhougrowingconditions,andrecentstudies
alsosupportthisresult[34].TheseresultssuggestqHD7basamajorHDQTLfunction,
mainlyunderLDconditions.
OursequencingresultrevealedthatattheGhd7locus,theqHD7bXQZBallelebelongs
toGhd70,whichisnonfunctional,andtheqHD7bZH9308allelebelongstoGhd74,whichis
functionaltogetherwithGhd71,Ghd72,andGhd73[35].ThenonfunctionalMinghui63
alleleofGhd7showednonsignificantphenotypedifferencesunderSDconditions[7].
However,underSDconditions,theqHD7bXQZBallelefloweredearlierthantheqHD7bZH9308
allele(Figure2G).Thesephenotypicdifferencesmaybecausedbybackground
differences,indicatingqHD7balsofunctionsinSDconditions,buttheeffectissmallerthan
thatinLDconditions.ThetwoflankingmolecularmarkersforqHD7b(RM5436and
RM5499)andthesevenmolecularmarkersthatmappedwithintheQTLconfidence
interval(Ghd7M1locatedat9,150,263toGhd7M7locatedat9,155,572bp)cancontribute
towardstheeffortinthebreedingofricevarietiesusingmarkerassistedselection(MAS).
Forexample,qHD7bZH9308couldbeusefulinbreedinglatematuringcultivars.Whenthe
ricecultivarswithGhd70a,Ghd70,andGhd72allelesoriginatingfromnorthernChina
wereintroducedtosouthernChina,theirheadingdatewouldbesignificantlyearlier.The
qHD7bZH9308allelecouldbeintroducedintothesecultivarstoprolongtheirheadingdate
tomakethemhavedelayedheadingandincreasetheiryield.Onthecontrary,qHD7bXQZB
Plants2022,11,228811of15
couldbeusefulinbreedingearlymaturingcultivars.WhenthericecultivarswithGhd7
1,Ghd73,andGhd74allelesoriginatingfromthetropicalandsubtropicalregionswere
introducedtonorthernChina,theirgrainscouldn’treachmaturityduetolaterheading.
TheqHD7bXQZBallelecouldbeintroducedintothesecultivarstomakeearlyheadingto
matureandharvestintime.
4.MaterialsandMethods
4.1.PopulationDevelopmentandPhenotyping
Thepresentstudywasconductedusingthreepopulations.Oneofthepopulations
wasdevelopedbycrossing134RILswithZhonghui9308(ZH9308),whichwasthen
backcrossedthreetimes,andselfedsixtimestoformBC4F6generation.TheRILswere
initiallydevelopedfromacrossbetweenanearlyheadingXieqingzaoB(XQZB)donor
parentandalateheadingZH9308recipientparentandparentallinesofXieyou9308(an
indicajaponicasubspeciessuperhybridricewith87.5%indicaand12.5%japonicagenome)
[22].Seventysixofthe134BC4F6lineswereselectedtorepresentCSSLsforQTLmapping,
andthegenotypesofthe76CSSLswerealsoinvestigated[36].Thesecondpopulationwas
developedbycrossingoneoftheCSSLs(CSSL52)thatexhibitedearlyheadingwiththe
ZH9308parentandthenbackcrossingtheprogeniesfourtimeswiththeZH9308to
developasecondaryBC5F2populationforvalidationandaBC5F2:3populationforthefine
mappingoftheqHD7bQTL(FigureS1).
Asetof76CSSLsalongwithparentallines,ZH9308andXQZB,wereevaluatedfor
headingdatethroughaRandomizedCompleteBlock(RCB)designconsistingof3
replications,with4rows×8plantsforeachlineatHangzhouandHainanfor4seasons.
Eachplotconsistedof4rowsof1.32squaremeterswith16.5cm×26.5cmspacingbetween
plantsandrows.TheBC5F2population,alongwithZH9308andCSSL52parents,was
evaluatedfortwoyearsunderNLD(daylength>14h)conditionsinHangzhou,Zhejiang
Province(120.0°E,30.15°N),andNSD(daylength<12h)conditionsinLingshui,Hainan
Province(110.0°E,18.5°N).HDwasrecordedasthenumberofdaysfromthesowingdate
totheemergenceofthefirstheading.Plantheight(PH)wasmeasuredfromtheground
leveltothetipofthepanicleatfullphysiologicalmaturity.Internodelengthwasrecorded
asthelengthbetweentwonodes.Numberofpaniclesperplantwasrecordedasthe
numberofallpaniclesperplant.Paniclelength(PL)wasrecordedfromthenecktothe
apexofthepanicle.Thenumberofgrainsinthemainpaniclewasrecordedasthefilled
grainnumbersofthemainpanicle.Paddyfieldmanagementfollowedconventional
practices[37].
4.2.TestofDayLengthResponseinGrowthChambers
Toinvestigatethephotoperiodicresponse,ZH9308andCSSL52plantsweregrown
underCLD(14hlight,30°C/10hdarkness,25°C)andCSD(10hlight,30°C/14h
darkness,25°C).Thehumiditywas75%,andthelightintensitywas300μmolm2s1[38].
4.3.MolecularMarkersDevelopmentandDNAExtraction
PolymorphismsbetweenZH9308andCSSL52werescreenedusing
Insertion/Deletion(InDel)andSimpleSequenceRepeat(SSR)markers[39].Todetermine
thecandidategenesofqHD7bQTL,thesequencebetweenRM3859andRM5875was
downloadedfromtheEnsemblePlants(http://plants.ensembl.org/index.html(accessedon
29August2022))andGramenewebsite(https://www.gramene.org/(accessedon29
August2022))usingtheOryzasativajaponicagroupreferencegenomebyablastsearchof
theprimersequences.NewInDelmarkersintheQTLregionweredesignedbasedon
differencesingenomicsequencebetweenIndicaandJaponicausingthePrimerPremier
5.0software(PREMIERBiosoftInternational,CA,USA).ThemarkersarelistedinTables
S5andS6.Themarkersthatamplifiedthemutatedregionbetweenparentsarelistedin
TableS7.
Plants2022,11,228812of15
GenomicDNAwasextractedfromthefreshleavesofparentsandthesecondaryF2
(BC5F2)populationusingthecetyltrimethylammoniumbromide(CTAB)method
describedbyLuoetal.[40].Apolymerasechainreaction(PCR)wasperformedina12μL
volumethatconsistedof5μLofmastermix,3μLofddH2O,2μLof10pmolμL1primers
(1μLforwardprimerandreverseprimers),and2μLoftemplategenomicDNA(200ng).
ThePCRamplificationprotocolconsistedofapredenaturationstep(95°Cfor3min),
followedby32cycles(denaturationat95°Cfor15s,annealingat55°Cfor15s,and
extensionat72°Cfor5s),andfinalextension(72°Cfor10min).ThePCRproductswere
separatedusinggelelectrophoresison8%nondenaturingpolyacrylamidegeland
visualizedwithsilvernitratestainingusingaformaldehydesolution[41].
4.4.RNAExtractionandqRTPCR
ThetotalRNAwasextractedfromleavesofZH9308andCSSL52usinganRNAprep
PurePlantkit(TiangenBiotechCo.Ltd.,Beijing,China).Atotalof50μLof
complementaryDNA(cDNA)wassynthesizedusing5μgofRNAwithReverTraAce®
qPCRRTMasterMixwithgDNARemover(ToyoboCo.Ltd.,Osaka,Japan).Realtime
quantitativeRTPCR(RTqPCR,20μLreactionvolume)wasperformedusing0.5μLof
cDNA,0.2μMofeachgenespecificprimer,andTBGreenPremixExTaqII(TakaraBio,
Inc.,Kusatsu,Shiga,Japan)inaLightCycler®480II(Roche).ThericeUbqgene
(Os03g0234350)wasexploitedastheendogenouscontrol.TheprimersforqRTPCRwere
designedusingGeneScript(https://www.genscript.com/tools/realtimepcrtaqman
primerdesigntool)andaredisplayedinTableS7.
4.5.Generationofghd7MutantUsingCRISPR/Cas9System
TheCRISPR/Cas9systemwasusedtoknockoutGhd7accordingtothemethodsas
describedpreviously[42].The18bpsgRNA:Cas9targetsequenceofGhd7wasintroduced
intothepCas9sgRNAvectorattheAarIsite.Thefinalvectorwastransformedinto
NipponbareusingAgrobacteriummediatedtransformation[43].Theprimersusedare
displayedinTableS7.
4.6.StatisticalAnalysis
Theexperimentaldesignineachenvironmentwasarandomizedcompleteblock
designwiththreereplicationsperenvironment/location.Thebestlinearunbiased
prediction(BLUP)valueswereobtainedthroughMETARv6.03[44],usingthelinear
model:
Yik=μ+Repi+Genk+εik(withintheenvironment)
Yijk=μ+Repi(Envj)+Envj×Genk+Genk+Envj+εijk(acrossenvironments)
whereYikisthetraitofinterest,μisthemeaneffect,Repiistheeffectoftheithreplicate,
Genkistheeffectofthekthgenotype,εikistheerrorassociatedwiththeithreplication,and
thekthgenotype,whichisassumedtobenormallyandindependentlydistributed.For
acrossenvironments,Yijkisthetraitresponse,Envjisthejthenvironment,Repi(Envj)is
theeffectofithreplicationinthejthenvironment,andEnvj×Genkistheenvironmentand
genotypeinteraction.Theresultinganalysisproducedtheadjustedtraitphenotypic
valuesintheformofBLUPwithinandacrossenvironments.TheBLUPmodelconsiders
genotypesasrandomeffects.Broadsenseheritability(H2)andrepeatability(H)were
calculatedaccordingtoAlemuetal.[45]usingMETARsoftware.
H= σ 2g
σ 2g + σ 2e /reps (within the environment)
H= σ
2
g
σ 2g + σ 2 ge /env + σ 2 e/(reps × env) (across environment)
Plants2022,11,228813of15
whereσ
2gandσ
2earethegenotypicanderrorvariance,σ
2geisthegenotypeby
environmentinteractionvariance,repisthenumberofreplicates,andenvisthenumber
ofenvironments.
QTLanalysiswasperformedusingtheinclusivecompositeintervalmapping(ICIM)
functionimplementedinQTLIciMappingsoftware[46].ALODthresholdvalue≥2.5
indicatesthepresenceofQTL(selectedby1000permutationteststoobtaina0.05genome
wideprobabilitylevelofTypeIerror,withasearchstepof1cm).QTLswerenamedby
placinga“q”atthebeginningofthetrait“HD”,followedbythechromosomenumber.
FormorethanoneQTLonthesamechromosome,asecondidentifierwasplacedafterthe
chromosomenumberreportedpreviously[47].
5.Conclusions
Atotaloffourteensignificant(LOD≥2.5)HDQTLs(qHD2a,qHD4a,qHD4b,qHD5a,
qHD6a,qHD6b,qHD7b,qHD7c,qHD8a,qHD10a,qHD10b,qHD11a,qHD12a,andqHD12b)
weredetectedinthe76CSSLpopulationsconcerningthepositionandintrogression
segmentsunderfourdifferentenvironments.WefocusedonqHD7bforfurtherresearch
duetoitsstability.AsecondaryF2(BC5F2)populationwasdevelopedbybackcrossing
CSSL52withrecurrentparentZH9308,andqHD7bwasnarroweddowntothe912.7kb
region,flankedbymarkersRM5436andRM5499using2995individualsfromthe
secondaryF2:3(BC5F2:3)population.TheCSSL52alleleattheqHD7blocusnegatively
regulatesHDunderSDandLDconditions.Sequencingandexpressionanalysis
demonstratedthatOs07g0261200encodesGhd7,asuitablecandidategeneforqHD7b.The
ghd7mutantgeneratedthroughCRISPR/Cas9promotedtheheadingdateandvalidated
Ghd7asaputativecandidategeneforHD.FurtherstudyonqHD7bwillcontributetoMAS
andthedevelopinglatematuringvarietiesthatcanbeusedindiversegeographical
regions.
SupplementaryMaterials:Thefollowingsupportinginformationcanbedownloadedat:
www.mdpi.com/article/10.3390/plants11172288/s1,FigureS1:BreedingschemeforQTL
identificationandfinemapping,FigureS2:GGEBiplotofdaystoheadingfrom76CSSLstestedin
fourenvironments,FigureS3:Linkagemapof76CSSLsderivedfromZH9308×XQZBusing120
polymorphicmarkers,FigureS4:AschematicrepresentationofZH9308,XQZB,andCSSL52plants
toshowdifferencesonchromosome7nearqHD7b,FigureS5:Agronomictraitphenotypesof
ZH9308andCSSL52,FigureS6:MeasurementofagronomictraitsofZH9308andCSSL52,Figure
S7:PhenotypesandgenotypesofZH9308,CSSL52,andsecondaryF2(BC5F2)population,FigureS8:
FrequencydistributionofheadingdateinthesecondaryF2(BC5F2)populationunderHainanand
Hangzhouconditions,FigureS9:TheexpressionlevelsofOs07g0261200inZH9308andCSSL52,
TableS1:ChromosomewiseSNPmarkersandgeneticmaplengthofriceCSSLpopulation,Table
S2:Pearsoncorrelationcoefficientsamongheadingdateandyieldrelatedtraits,TableS3:
EvaluationofheadingdateQTLqHD7bunderHainanandHangzhouconditions,TableS4:
Candidategeneswithin912.7kbphysicalregionsofqHD7bonchromosome7,TableS5:
PolymorphicDNAmarkersusedinheadingdateQTLanalysisin76CSSLsandthesecondaryF2
(BC5F2)population,TableS6:DNAmarkersusedinQTLanalysisandfinemappingofqHD7b,Table
S7:Markersusedforsequencing,qRTPCR,andCRISPR.
AuthorContributions:Conceptualization,W.W.,Y.Z.,S.C.andL.C.;methodology,W.W.;software,
A.S.;investigation,A.S.,L.S.,L.L.,A.I.,Z.Y.,Q.Y.,G.B.A.,P.X.,R.M.K.,J.L.andX.S.;resources,Y.Z.;
writingoriginaldraftpreparation,A.S.;writingreviewandediting,A.S.andW.W.;supervision,
W.W.;projectadministration,W.W.;fundingacquisition,W.W.Allauthorshavereadandagreed
tothepublishedversionofthemanuscript.
Funding:ThisresearchwassupportedbygrantsfromtheNationalKeyR&DProgramofChina
(2020YFE0202300), theNationalNaturalScienceFoundationofChina(31871604,32071996,and
31961143016),theFundamentalResearchFundsofCentralPublicWelfareResearchInstitutions
(CPSIBRFCNRRI202102),HainanYazhouBaySeedLab(B21HJ0219),andtheAgriculturalScience
andTechnologyInnovationProgramoftheChineseAcademyofAgriculturalSciences(CAAS
ASTIP2013CNRRI).
Plants2022,11,228814of15
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Saito,H.;Okumoto,Y.;Tsukiyama,T.;Xu,C.;Teraishi,M.;Tanisaka,T.AllelicdifferentiationattheE1/Ghd7locushasallowed
expansionofricecultivationarea.Plants2019,8,550.
2. Li,X.;Sun,Y.;Tian,X.;Ren,Y.;Tang,J.;Wang,Z.;Cheng,Y.;Bu,Q.Comprehensiveidentificationofmajorfloweringtime
genesandtheircombinations,whichdeterminedricedistributioninNortheastChina.PlantGrowthRegul.2018,84,593–602.
3. Wu,W.;Zheng,X.M.;Lu,G.;Zhong,Z.;Gao,H.;Chen,L.;Wu,C.;Wang,H.J.;Wang,Q.;Zhou,K.;etal.Associationof
functionalnucleotidepolymorphismsatDTH2withthenorthwardexpansionofricecultivationinAsia.Proc.Natl.Acad.Sci.
USA2013,110,2275–2280.
4. Syakudo,K.;Kawase,T.Studiesonthequantitativeinheritance(11):A.Rice(OryzasativaL.)(d)Inheritanceoftheheading
durationandthequantitativefunctionofthecausalgenesinitsdetermination.(1)OnthequantitativefunctionofthegenesE1,
E2andD1.Jpn.J.Breed.1953,3,6–12.
5. Zhang,J.;Zhou,X.;Yan,W.;Zhang,Z.;Lu,L.;Han,Z.;Zhao,H.;Liu,H.;Song,P.;Hu,Y.;etal.CombinationsoftheGhd7,Ghd8and
Hd1geneslargelydefinetheecogeographicaladaptationandyieldpotentialofcultivatedrice.N.Phytol.2015,208,1056–1066.
6. Wei,H.;Wang,X.;Xu,H.;Wang,L.Molecularbasisofheadingdatecontrolinrice.Abiotech2020,1,219–232.
7. Xue,W.;Xing,Y.;Weng,X.;Zhao,Y.;Tang,W.;Wang,L.;Zhou,H.;Yu,S.;Xu,C.;Li,X.;etal.NaturalvariationinGhd7isan
importantregulatorofheadingdateandyieldpotentialinrice.Nat.Genet.2008,40,761–767.
8. Yano,M.;Katayose,Y.;Ashikari,M.;Yamanouchi,U.;Monna,L.;Fuse,T.;Baba,T.;Yamamoto,K.;Umehara,Y.;Nagamura,
Y.;etal.Hd1,amajorphotoperiodsensitivityquantitativetraitlocusinrice,iscloselyrelatedtotheArabidopsisfloweringtime
geneCONSTANS.PlantCell.2000,12,2473–2483.
9. Takahashi,Y.;Ayahiko,S.;Takuji,S.;Masahiro,Yano.Hd6,aricequantitativetraitlocusinvolvedinphotoperiodsensitivity,
encodestheαsubunitofproteinkinaseCK2.Proc.Natl.Acad.Sci.USA2001,98,7922–7927.
10. Kojima,S.;Takahashi,Y.;Kobayashi,Y.;Monna,L.;Sasaki,T.;Araki,T.;Yano,M.Hd3a,ariceorthologoftheArabidopsisFT
gene,promotestransitiontofloweringdownstreamofHd1undershortsayconditions.PlantCellPhysiol.2002,43,1096–1105.
11. Doi,K.;Izawa,T.;Fuse,T.;Yamanouchi,U.;Kubo,T.;Shimatani,Z.;Yano,M.;Yoshimura,A.Ehd1,aBtyperesponseregulator
inrice,confersshortdaypromotionoffloweringandcontrolsFTlikegeneexpressionindependentlyofHd1.GenesDev.2004,
15,18,926–936.
12. Wei,X.;Xu,J.;Guo,H.;Jiang,L.;Chen,S.;Yu,C.;Zhou,Z.;Hu,P.;Zhai,H.;Wan,J.DTH8suppressesfloweringinrice,
influencingplantheightandyieldpotentialsimultaneously.PlantPhysiol.2010,153,1747–1758.
13. Matsubara,K.;Tanaka,E.O.;Hori,K.;Ebana,K.;Ando,T.;Yano,M.NaturalvariationinHd17,ahomologofArabidopsisELF3
thatisinvolvedinricephotoperiodicflowering.PlantCellPhysiol.2012,53,709–716.
14. Tanaka,E.O.;Matsubara,K.;Yamamoto,S.I.;Nonoue,Y.;Wu,J.;Fujisawa,H.;Ishikubo,H.;Tanaka,T.;Ando,T.;Matsumoto,
T.;etal.NaturalvariationoftheRICEFLOWERINGLOCUST1contributestofloweringtimedivergenceinrice.PLoSONE
2013,8,e75959.
15. Ye,J.;Niu,X.;Yang,Y.;Wang,S.;Xu,Q.;Yuan,X.;Yu,H.;Wang,Y.;Wang,S.;Feng,Y.;etal.DivergentHd1,Ghd7,andDTH7
allelescontrolheadingdateandyieldpotentialofJaponicariceinnortheastChina.Front.PlantSci.2018,9,35.
16. Yano,M.;Harushima,Y.;Nagamura,Y.;Kurata,N.;Minobe,Y.;Sasaki,T.Identificationofquantitativetraitlocicontrolling
headingdateinriceusingahighdensitylinkagemap.Theor.Appl.Genet.1997,95,1025–1032.
17. Yuan,R.;Zhao,N.;Usman,B.;Luo,L.;Liao,S.;Qin,Y.;Nawaz,G.;Li,R.Developmentofchromosomesegmentsubstitution
lines(CSSLs)derivedfromGuangxiwildrice(OryzarufipogonGriff.)underrice(OryzasativaL.)backgroundandthe
identificationofQTLsforplantarchitecture,agronomictraitsandcoldtolerance.Genes2020,11,980.
18. Fan,J.;Hua,H.;Luo,Z.;Zhang,Q.;Chen,M.;Gong,J.;Wei,X.;Huang,Z.;Huang,X.;Wang,Q.WholeGenomesequencingof
117chromosomesegmentsubstitutionlinesforgeneticanalysesofcomplextraitsinrice.Rice2022,15,5.
19. Uehara,K.B.;Furuta,T.;Masuda,K.;Yamada,S.;AngelesShim,R.B.;Ashikari,M.;Takashi,T.Constructionofricechromosome
segmentsubstitutionlinesharboringOryzabarthiigenomeandevaluationofyieldrelatedtraits.Breed.Sci.2017,67,408–415.
20. Balakrishnan,D.;Surapaneni,M.;Mesapogu,S.;Neelamraju,S.Developmentanduseofchromosomesegmentsubstitution
linesasageneticresourceforcropimprovement.Theor.Appl.Genet.2019,132,1–25.
21. Shen,W.Q.;Zhao,B.B.;Yu,G.L.;Li,F.F.;Zhu,X.Y.;Ma,F.Y.;Li,Y.F.;He,G.H.;Zhao,F.M.Identificationofanexcellentrice
chromosomesegmentsubstitutionlineZ746andQTLmappingandverificationofimportantagronomictraits.ActaAgron.Sin.
2021,47,451–461.
22. Liang,Y.;Zhan,X.;Gao,Z.;Lin,Z.;Yang,Z.;Zhang,Y.;Shen,X.;Cao,L.;Cheng,S.MappingofQTLsassociatedwithimportant
agronomictraitsusingthreepopulationsderivedfromasuperhybridriceXieyou9308.Euphytica2012,184,1–13.
Plants2022,11,228815of15
23. Liu,L.;Zhang,Y.;Yang,Z.;Yang,Q.;Zhang,Y.;Xu,P.;Li,J.;Islam,A.;Shah,L.;Zhan,X.etal.Finemappingandcandidate
geneanalysisofqHD1b,aQTLthatpromotesfloweringincommonwildrice(Oryzarufipogon)byupregulatingEhd1.CropJ.
2022,10,1083–1093.
24. Hori,K.;Yasunori,N.;Ono,N.;Shibaya,T.;Ebana,K.;Matsubara,K.;OgisoTanaka,E.;Tanabata,T.;Sugimoto,K.;Taguchi
Shiobara,F.etal.GeneticarchitectureofvariationinheadingdateamongAsianriceaccessions.BMCPlantBiol.2015,15,115.
25. Ma,L.;Yang,C.;Zeng,D.;Cai,J.;Li,X.;Ji,Z.;Xia,Y.;Qian,Q.;Bao,J.MappingQTLsforheadingsynchronyinadoubled
haploidpopulationofriceintwoenvironments.J.Genet.Genom.2009,36,297–304.
26. Surapaneni,M.;Balakrishnan,D.;Mesapogu,S.;Addanki,K.R.;Yadavalli,V.R.;TripuraVenkata,V.G.N.;Neelamraju,S.
IdentificationofmajoreffectQTLsforagronomictraitsandCSSLsinricefromSwarna/Oryzanivaraderivedbackcrossinbred
lines.Front.PlantSci.2017,8,1027.
27. Zhu,H.;Li,Y.;Liang,J.;Luan,X.;Xu,P.;Wang,S.;Zhang,G.;Liu,G.AnalysisofQTLsonheadingdatebasedonsinglesegment
substitutionlinesinrice(OryzaSativaL.).Sci.Rep.2018,8,13232.
28. Xing,Y.Z.;Tang,W.J.;Xue,W.Y.;Xu,C.G.;Zhang,Q.Finemappingofamajorquantitativetraitloci,qSSP7,controllingthe
numberofspikeletsperpanicleasasingleMendelianfactorinrice.Theor.Appl.Genet.2008,116,789–796.
29. Zhang,K.;Zhang,Y.;Wu,W.;Zhan,X.;Anis,G.B.;Rahman,M.H.;Hong,Y.;Riaz,A.;Zhu,A.;Cao,Y.qSE7isamajor
quantitativetraitlocus(QTL)influencingstigmaexsertionrateinrice(OryzasativaL.).Sci.Rep.2018,8,14523.
30. Wang,X.;Zhou,T.;Li,G.;Yao,W.;Hu,W.;Wei,X.;Che,J.;Yang,H.;Shao,L.;Hua,J.etal.AGhd7centeredregulatorynetwork
providesamechanisticapproximationtotheoptimalheterosisinanelitericehybrid.PlantJ.2022,epubaheadofprint.
https://doi.org/10.1111/tpj.15928.
31. Kang,Y.;Zhang,M.;Zhang,Y.;Wu,W.;Xue,P.;Zhan,X.;Cao,L.;Cheng,S.;Zhang,Y.Geneticmappingofgrainshape
associatedQTLutilizingrecombinantinbredsisterlinesinhighyieldingrice(OryzasativaL.).Agron.2021,11,705.
32. Zhu,J.;Niu,Y.;Tao,Y.;Wang,J.;Jian,J.;Tai,S.;Li,J.;Yang,J.;Zhong,W.;Zhou,Y.Constructionofhighthroughputgenotyped
chromosomesegmentsubstitutionlinesinrice(OryzasativaL.)andQTLmappingforheadingdate.PlantBreed.2015,134,156–
163.
33. Sun,Z.;Zhu,Y.;Chen,J.;Zhang,H.;Zhang,Z.;Niu,X.;Fan,Y.;Zhuang,J.MinoreffectQTLforheadingdatedetectedincrosses
betweenindicaricecultivarTeqingandnearisogeniclinesofIR24.CropJ.2018,6,291–298.
34. Wang,G.;Wang,C.;Lu,G.;Wang,W.;Mao,G.;Habben,J.E.;Greene,T.W.KnockoutsofalatefloweringgeneviaCRISPR–
Cas9conferearlymaturityinriceatmultiplefieldlocations.PlantMol.Biol.2020,104,137–150.
35. Lu,L.;Yan,W.;Xue,W.;Shao,D.;Xing,Y.EvolutionandassociationanalysisofGhd7inrice.PLoSONE2012,7,e34021.
36. Riaz,A.;Huimin,W.;Zhenhua,Z.;Zegeye,A.W.;Yanhui,L.;Hong,W.;Pao,X.;Zequn,P.;Xihong,S.;Shihua,C.;etal.
Developmentofchromosomesegmentsubstitutionlinesandgeneticdissectionofgrainsizerelatedlocusinrice.RiceSci.2021,
28,322–324.
37. Yang,H.;Yang,Q.;Kang,Y.;Zhang,M.;Zhan,X.;Cao,L.;Cheng,S.;Wu,W.;Zhang,Y.FindingStableQTLforplantheightin
superhybridrice.Agriculture2022,12,165.
38. Sun,B.;Zhan,X.D.;Lin,Z.C.;Wu,W.X.;Yu,P.;Zhang,Y.X.;Sun,L.P.;Cao,L.Y.;Cheng,S.H.Finemappingandcandidategene
analysisofqHD5,anovelmajorQTLwithpleiotropismforyieldrelatedtraitsinrice(OryzasativaL.).Theor.Appl.Genet.2017,
130,247–258.
39. Murray,M.G.;Thompson,W.F.RapidisolationofhighmolecularweightplantDNA.NucleicAcidsRes.1980,8,4321–4325.
40. Luo,Z.Y.;Zhou,G.;Chen,X.H.;Lu,Q.H.;Hu,W.X.IsolationofhighqualitygenomicDNAfromplants.Bull.HunanMed.Univ.
2001,26,178–180.
41. Creste,S.;Tulmann,N.A.;Figueira,A.Detectionofsinglesequencerepeatpolymorphismsindenaturingpolyacrylamide
sequencinggelsbysilverstaining.PlantMol.Biol.Rep.2001,19,299–306.
42. Miao,J.;Guo,D.;Zhang,J.;Huang,Q.;Qin,G.;Zhang,X.;Wan,J.;Gu,H.;Qu,L.J.TargetedmutagenesisinriceusingCRISPR
Cassystem.CellRes.2013,23,1233–1236.
43. Hiei,Y.;Komari,T.;Kubo,T.TransformationofricemediatedbyAgrobacteriumtumefaciens.PlantMol.Biol.1997,35,205–218.
44. Alvarado,G.;Rodríguez,F.M.;Pacheco,A.;Burgueño,J.;Crossa,J.;Vargas,M.;PérezRodríguez,P.;LopezCruz,M.A.META
R:Asoftwaretoanalyzedatafrommultienvironmentplantbreedingtrials.CropJ.2020,8,745–756.
45. Alemu,A.;Brazauskas,G.;Gaikpa,D.S.;Henriksson,T.;Islamov,B.;Jorgensen,L.N.;Koppel,M.;Koppel,R.;Liatukas,Z.;
Svensson,J.T.;etal.Genomewideassociationanalysisandgenomicpredictionforadultplantresistancetoseptoriatritici
blotchandpowderymildewinwinterwheat.Front.Genet.2021,12,661742.
46. Meng,L.;Li,H.;Zhang,L.;Wang,J.QTLIciMapping:Integratedsoftwareforgeneticlinkagemapconstructionandquantitative
traitlocusmappinginbiparentalpopulations.CropJ.2015,3,269–283.
47. McCouch,S.R.GenenomenclaturesystemforRice.Rice2008,1,72–84.
... A polymorphism survey was conducted using 15 genes, including sd1, Ebisud2, Ghd7, Hd1, Hd3, Hd6, PLA1, D10, TB1, HTD1, MOC1, Lax1, GS3, GW2, and CKX2. In a recent study, Amir Sohail et al. 44 reported the existence of 14 QTLs associated with heading date, located on various chromosomes: Chr2 (qHD2a), Chr4 (qHD4a and qHD4b), Chr5 (qHD5a), Chr6 (qHD6a and qHD6b), Chr7 (qHD7b and qHD7c), Chr8 (qHD8a), Chr10 (qHD10a and qHD10b), Chr11 (qHD11), and Chr12 (qHD12a and qHD12b). The findings related to qDF4.1 and qDF7.1 will significantly contribute to Marker-Assisted Selection (MAS) and facilitate the development of late-maturing varieties adaptable to a wide range of geographical regions. ...
Article
Full-text available
This study explores the genetic mechanisms underpinning pigmentation traits in rice, with emphasis on the Kala4 gene responsible for black pigmentation which offers several health benefits. The Kala4 trait was incorporated into the Improved White Ponni variety to develop a black rice introgression line. Comprehensive genomic analysis identified specific chromosomal regions related to black pigmentation and yield traits. The study evaluated 200 F2 plants derived from a cross between Manipur Black rice and Improved White Ponni, using 81 distinct polymorphism markers. The results confirmed the crucial role of the Kala4 loci in black pigmentation and identified key genes regulating anthocyanin synthesis and the PURPLE PERICARP trait. This enhanced our understanding of rice pigmentation and its genetic intricacies. The study also evaluated yield-associated traits in the F2 population, identifying eleven QTLs related to yield, most notably on chromosome 4. These QTLs contribute significantly to phenotypic variance, suggesting their potential for marker-assisted selection in breeding programs. Continued exploration of the Kala4 gene on chromosome 4 can provide further insights into QTLs for hybrid rice, expediting future rice improvement strategies and allowing for targeted selection in breeding programs, thereby enhancing future rice crop development strategies.
Article
Flowering time is of great significance for crop reproduction, yield, and regional adaptability, which is intricately regulated by various environmental cues and endogenous signals. Photoperiod is a key flowering regulating factor due to its relatively high concern in the same geography, while other factors change year over year. Photoperiodic flowering time is controlled by a complex genetic network, which is regulated by florigen. RICE FLOWERING LOCUS T 1 (RFT1) is the closest homologue of Heading date 3a (Hd3a), which is thought to encode a mobile flowering signal and promote floral transition under short-day (SD) conditions in rice. Recent molecular genomic advancement revealed how to identify the molecular nature of florigen, its function, expression, and how to diversify its regulatory pathway. Here, we summarized the recent understanding of flowering time regulation mainly focused on rice Hd3a, its molecular function, expression, and diversified photoperiodic regulatory pathways under short-day and long-day (LD) conditions.
Article
Full-text available
Plant height (PH) is one of the most important agronomic traits determining plant architecture in rice. To investigate the genetic basis of plant height in the high-yielding hybrid rice variety Nei2You No.6, recombinant inbred sister lines (RISLs) were used to map quantitative trait loci (QTL) over four years. A total of 19 minor/medium-effect QTLs were mapped on eleven chromosomes except chromosome 10, totally explaining 44.61–51.15% phenotypic variance in four environments. Among these, qPH-1a, qPH-1b, qPH-2b, qPH-3b, qPH-6, and qPH-7b were repeatedly detected over four years. Among these, the qPH-6 was mapped to an interval of 22.11–29.41 Mb on chromosome 6L, which showed the highest phenotypic variation explained (PVE) of 10.22–14.05% and additive effect of 3.45–4.63. Subsequently, evaluation of near isogenic lines (NILs) showed that the qPH-6 allele from the restorer line (R8006) could positively regulate plant height, resulting in an 18.50% increase in grain yield. These results offered a basis for further mapping of qPH-6 and molecular breeding in improving plant architecture in rice.
Article
Full-text available
Rice is one of the most important food crops in Asia. Genetic analyses of complex traits and molecular breeding studies in rice greatly rely on the construction of various genetic populations. Chromosome segment substitution lines (CSSLs) serve as a powerful genetic population for quantitative trait locus (QTL) mapping in rice. Moreover, CSSLs containing target genomic regions can be used as improved varieties in rice breeding. In this study, we developed a set of CSSLs consisting of 117 lines derived from the recipient ‘Huanghuazhan’ (HHZ) and the donor ‘Basmati Surkb 89–15’ (BAS). The 117 lines were extensively genotyped by whole-genome resequencing, and a high-density genotype map was constructed for the CSSL population. The 117 CSSLs covered 99.78% of the BAS genome. Each line contained a single segment, and the average segment length was 6.02 Mb. Using the CSSL population, we investigated three agronomic traits in Shanghai and Hangzhou, China, and a total of 25 QTLs were detected in both environments. Among those QTLs, we found that RFT1 was the causal gene for heading date variance between HHZ and BAS. RFT1 from BAS was found to contain a loss-of-function allele based on yeast two-hybrid assay, and its causal variation was a P to S change in the 94th amino acid of the RFT1 protein. The combination of high-throughput genotyping and marker-assisted selection (MAS) is a highly efficient way to construct CSSLs in rice, and extensively genotyped CSSLs will be a powerful tool for the genetic mapping of agronomic traits and molecular breeding for target QTLs/genes.
Article
Full-text available
Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici and powdery mildew (PM) caused by Blumeria graminis f.sp tritici (Bgt) are among the forefront foliar diseases of wheat that lead to a significant loss of grain yield and quality. Resistance breeding aimed at developing varieties with inherent resistance to STB and PM diseases has been the most sustainable and environment-friendly approach. In this study, 175 winter wheat landraces and historical cultivars originated from the Nordic region were evaluated for adult-plant resistance (APR) to STB and PM in Denmark, Estonia, Lithuania, and Sweden. Genome-wide association study (GWAS) and genomic prediction (GP) were performed based on the adult-plant response to STB and PM in field conditions using 7,401 single-nucleotide polymorphism (SNP) markers generated by 20K SNP chip. Genotype-by-environment interaction was significant for both disease scores. GWAS detected stable and environment-specific quantitative trait locis (QTLs) on chromosomes 1A, 1B, 1D, 2B, 3B, 4A, 5A, 6A, and 6B for STB and 2A, 2D, 3A, 4B, 5A, 6B, 7A, and 7B for PM adult-plant disease resistance. GP accuracy was improved when assisted with QTL from GWAS as a fixed effect. The GWAS-assisted GP accuracy ranged within 0.53–0.75 and 0.36–0.83 for STB and PM, respectively, across the tested environments. This study highlights that landraces and historical cultivars are a valuable source of APR to STB and PM. Such germplasm could be used to identify and introgress novel resistance genes to modern breeding lines.
Article
Full-text available
Grain shape is a key factor for yield and quality in rice. To investigate the genetic basis of grain shape in the high-yielding hybrid rice variety Nei2You No.6, a set of recombinant inbred sister lines (RISLs) were used to map quantitative trait loci (QTLs) determining grain length (GL), grain width (GW), and length-width ratio (LWR) in four environments. A total of 91 medium/minor-effect QTL were detected using a high-density genetic map consisting of 3203 Bin markers composed of single nucleotide polymorphisms, among which 64 QTL formed 15 clusters. Twelve of 15 clusters co-localized with QTL previously reported for grain shape/weight. Three new QTL were detected: qGL-7a, qGL-8, and qGL-11a. A QTL cluster, qLWR-12c/qGW-12, was detected across all four environments with phenotypic variation explained (PVE) ranging from 3.67% to 11.93%, which was subsequently validated in paired lines of F17 progeny and tightly linked marker assay in F10 generation. Subsequently, 17 candidate genes for qLWR-12c/qGW-12 were detected in the 431 Kb interval utilizing bulk segregant analysis (BSA). Among these, OsR498G1222170400, OsR498G1222171900, OsR498G1222185100, OsR498G1222173400, and OsR498G1222170500 were the best candidates, which lays the foundation for further cloning and will facilitate high-yield breeding in rice.
Article
Full-text available
Common wild rice contains valuable resources of novel alleles for rice improvement. It is well known that genetic populations provide the basis for a wide range of genetic and genomic studies. In particular, chromosome segment substitution lines (CSSLs) ais a powerful tool for fine mapping of quantitative traits, new gene discovery and marker-assisted breeding. In this study, 132 CSSLs were developed from a cultivated rice (Oryza sativa) cultivar (93-11) and common wild rice (Oryza rufipogon Griff. DP30) by selfing-crossing, backcrossing and marker-assisted selection (MAS). Based on the high-throughput sequencing of the 93-11 and DP30, 285 pairs of Insertion-deletions (InDel) markers were selected with an average distance of 1.23 Mb. The length of this DP30-CSSLs library was 536.4 cM. The coverage rate of substitution lines cumulatively overlapping the whole genome of DP30 was about 91.55%. DP30-CSSLs were used to analyze the variation for 17 traits leading to the detection of 36 quantitative trait loci (QTLs) with significant phenotypic effects. A cold-tolerant line (RZ) was selected to construct a secondary mapping F 2 population, which revealed that qCT2.1 is in the 1.7 Mb region of chromosome 2. These CSSLs may, therefore, provide powerful tools for genome wide large-scale gene discovery in wild rice. This research will also facilitate fine mapping and cloning of QTLs and genome-wide study of wild rice. Moreover, these CSSLs will provide a foundation for rice variety improvement.
Article
Full-text available
Key message: OsGhd7 gene was discovered by screening our rice activation tagging population. CRISPR-Cas9 created knockouts of OsGhd7 conferred early flowering and early maturity in rice varieties across multiple geographical locations in China. Our research shows that OsGhd7 is a good target for breeding early maturity rice varieties, and an excellent example of the advantages of applying the CRISPR-Cas9 technology for trait improvement. Flowering time (heading date) is an important trait for crop cultivation and yield. In this study, we discovered a late flowering gene OsGhd7 by screening our rice activation tagging population, and demonstrated that overexpression of OsGhd7 delayed flowering time in rice, and the delay in flowering time depended on the transgene expression level. OsGhd7 is a functional allele of the Ghd7 gene family; knockouts of OsGhd7 generated by CRISPR-Cas9 significantly accelerated flowering time and the earliness of the flowering time depended on field location. The homozygous OsGhd7 knockout lines showed approximately 8, 10, and 20 days earlier flowering than controls at three different locations in China (Changsha City, Sanya City, and Beijing City, respectively) that varied from 18.25° N to 39.90° N. Furthermore, knockouts of OsGhd7 also showed an early flowering phenotype in different rice varieties, indicating OsGhd7 can be used as a common target gene for using the CRISPR technology to modulate rice flowering time. The importance of OsGhd7 and CRISPR technology for breeding early maturity rice varieties are discussed.
Article
Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis that is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single‐locus QTLs and digenic interactions of two traits, spikelet per panicle (SP) and heading date (HD), using recombinant inbred lines and “immortalized F2s” derived from the elite rice hybrid Shanyou 63. Our analysis revealed a regulatory network that may provide an approximation to the genetic constitution of the optimal heterosis observed in this hybrid. In this network, Ghd7 works as the core element, and four other genes, Ghd7.1, Hd1, and Hd3a/RFT1, also have major roles. The effects of positive dominance by Ghd7 and Ghd7.1 and negative dominance by Hd1 and Hd3a/RFT1 in the hybrid background contribute the major part to the high SP without delaying HD; numerous epistatic interactions, most of which involve Ghd7, also play important roles collectively. The results expanded our understanding of the genic interacting networks underlying hybrid rice breeding programs, which may be very useful in future crop genetic improvement.
Article
Heading date (flowering time) determines the adaptability of cultivars to different environments. We report the fine mapping and candidate gene analysis of qHD1b, a quantitative trait locus (QTL) responsible for early flowering that was derived from common wild rice (O. rufipogon) under both short-day and long-day conditions. The introgression line IL7391, which carried segments from common wild rice in a Zhonghui 8015 (ZH8015) background, exhibited early heading compared to the background and was crossed with ZH8015 to generate BC5F2:3 families for QTL analysis. This enabled the identification of two heading-date QTL, named qHD1b and qHD7, of which the first was selected for further research. High-resolution linkage analysis was performed in BC5F4:5 and BC5F6 populations, and the location of qHD1b was confined to a 112.7-kb interval containing 17 predicted genes. Five of these genes contained polymorphisms in the promoter or coding regions and were thus considered as candidates. Expression analysis revealed a positive association between LOC_Os01g11940 expression and early heading. This locus was annotated as OsFTL1, which encodes an ortholog of Arabidopsis Flowering Locus T and was the most likely candidate gene for qHD1b. Our study revealed that qHD1b acts as a floral activator that promotes flowering by up-regulating Ehd1, Hd3a, RFT1, OsMADS14, and OsMADS15 under both short-day and long-day conditions. Field experiments showed that qHD1b affected several yield-related agronomic traits including 1000-grain weight and grain length. qHD1b could be useful for marker-assisted selection and breeding of early-maturing cultivars.
Article
The important agronomic traits, such as grain type, plant height, and panicle composition, are closely related to rice yield, and their gene inheritance is complex. Chromosome segment substitution lines (CSSLs) are useful materials for studying these complex traits. An excellent CSSL, Z746, containing seven substitution segments and with an average substitution length of 3.99 Mb, was identified from Nipponbare as a recipient and 'Xihui 18' as a donor parent. There were significant differences in plant height, panicle composition and grain size between Z746 and Nipponbare. Furthermore, a total of 36 quantitative trait loci (QTL) were detected on chromosomes 2, 3, 4, 6, and 11 in the secondary F2 population constructed by hybridization between Nipponbare and Z746. Five of them may be alleles of the cloned genes, such as qPH3-1, and eight can be detected by multiple times, indicating that these were genetically stable major QTLs. The grain length in Z746 was mainly controlled by four QTLs (qGL3, qGL4, qGL2, and qGL6), and the phenotypic variation of qGL3 and qGL4 for grain length was 60.28% and 27.47%, respectively. Plant height was controlled by five QTLs, panicle length by four QTLs, grain number per panicle by two QTLs, and the 1000-grain weight by two QTLs. Eight single segment substitution lines (SSSLs) were developed in F3 population by molecular marker-assisted selection (MAS), and relevant QTLs verification was conducted in F4. Finally, 24 QTLs were detected by 8 SSSLs and the repeat detection rate was 66.7%, indicating that these QTLs were genetically stable. These results provide a good foundation for further research on genetic mechanisms of the target QTLs and molecular design breeding.