ArticlePDF Available

Gut microbes and skin disease, gut-brain-skin axis: A review

Authors:

Abstract

Summary for “肠道微生物与皮肤疾病——肠-脑-皮轴研究进展” Gut microbes and skin disease, gut-brain-skin axis: A review DUAN YunFeng & JIN Feng* Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China * Corresponding author, E-mail: jinfeng@psych.ac.cn Skin disease, especially eczema, dermatitis and acne, may damage appearance of people, and cause physical dis�comfort or mental disorders. The prevalence rate is increasing sharply and globally that has been affected all popu�lations in the world. The diseases have various, complex pathogeny and high recurrence rate. Studies demonstrate that skin and mental state are closely related, emerging of skin diseases always accompanied with prevalence of mental disorders obviously. As early as 1930s, the dermatologist John H. Stokes and Donald M. Pillsbury at the university of Pennsylvania, proposed the gut-brain-skin unified theory. They found a close relationship between the brain and the skin. Recent studies demonstrate a mechanism among gut microbes unbalance, mental disorder and skin diseases, which has been postulated to the gut-brain-skin axis. Gut, brain and skin can interplay to each other. Psychological stress can aggravate a variety of skin diseases, particularly autoimmune skin disease, such as atopic dermatitis, psoriasis, seborrheic eczema, nodular prurigo, li�chen planus, chronic urticaria, alopecia areata and pruritus sine material etc. Skin diseases are also closely related with health of digestive system. There are high ratio gastrointestinal pa�tients who suffered from acne simultaneously. Gut microbiota is also involved in the gut-skin connection. The number of Bifidobacterium and Lactobacillus in feces are significantly less in adult patients with atopic dermatitis, than those of controls. The composition of aerobic and anaerobic bacteria in gut of those seborrheic dermatitis pa�tients are severely changed. Similarly, more than half of acne patients go along with significant changes in the gut microbiota. Studies indicate that both gut microbiota and mental status affect the occurrence of skin diseases. On the contra�ry, the skin condition can also be as a barometer of mental health and gut microeubiosis. The treatment through the gut-brain-skin axis can be an important intervention to cure skin diseases. Combination of diet, probiotics, prebiot�ics, drug and mental health status can be positive factors in skin diseases therapy. Diet may affect the composition of gut microbes directly, and light diet can reduce the acne rate. Probiotics, like Bifidobacterium longum, Lactoba�cillus paracasei, Lactobacillus reuteri were reported to protect the function of intestinal barrier, help to reestablish intestinal microbiota ecological balance, and intensify the anti-inflammation effects. Some bacteria have tremen�dous potential in prevention and therapy of skin diseases, including eczema, allergic dermatitis, acne, allergic skin, UV induced skin damage and wound. Antibiotics can eliminate intestinal microbiota. Two weeks antibiotics treatment in mice may lead to reduce food intake, and messy, dull hair et al., in the opposite, 10 days probiotics drinking recover hair status obviously. Be�sides, probiotics can also restore the stress caused skin neurogenic inflammation in mice. In the present review, we aim to focus on the following hot topics around symbiosis microbiome, gut-brain-skin axis and skin diseases. To consider the gut microbiota, the brain and the skin as one combined system, instead of single reason may enhance the effects of treatment. More study should focus on the interaction of skin and intestinal microbiota, as well as the interaction mechanism of the gut-brain-skin axis, especially immune system. We urge scientists and medical doctors to pay more attentions on this field. skin, gut, brain, gut-brain-skin axis, gut microbiota doi: 10.1360/N972016-00473 Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:24:10 http://engine.scichina.com/doi/10.1360/N972016-00473
Gut microbes and skin disease, gut-brain-skin axis: A review
段云峰 and 金锋
Citation: 科学通报 62, 360 (2017); doi: 10.1360/N972016-00473
View online: http://engine.scichina.com/doi/10.1360/N972016-00473
View Table of Contents: http://engine.scichina.com/publisher/scp/journal/CSB/62/5
Published by the 《中国科学》杂志社
Articles you may be interested in
Gut-liver axis: gut microbiota in shaping hepatic innate immunity
SCIENCE CHINA Life Sc iences 60, 1191 (2017);
Alzheimer’s disease and gut microbiota
SCIENCE CHINA Life Sc iences 59, 1006 (2016);
Probiotics, gut microbes and health
Chinese Science Bulletin 64, 245 (2019);
The development and tendency of depression researches: Viewed from the microbiota-gut-brain axis
Chinese Science Bulletin 63, 2010 (2018);
Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features
SCIENCE CHINA Life Sc iences 60, 1223 (2017);
2017 62 5期:360 ~ 371
引用格式: 段云峰, 金锋. 肠道微生物与皮肤疾病——肠--皮轴研究进展. 科学通报, 2017, 62: 360–371
Duan Y F, Jin F. Gut microbes and skin disease, gut-brain-skin axis: A review (in Chinese). Chin Sci Bull, 2017, 62: 360–371, doi:
10.1360/N972016-00473
© 2017《中国科学》杂志社 www.scichina.com csb.scichina.com
中国科学杂志社
SCIENCE CHINA PRESS
肠道微生物与皮肤疾病——肠--皮轴研究进展
段云峰, 金锋*
中国科学院心理研究所, 心理健康重点实验室, 北京 100101
* 联系人, E-mail: jinfeng@psych.ac.cn
2016-06-12 收稿, 2016-07-11 修回, 2016-07-12 接受, 2017-01-16 网络版发表
中国博士后科学基金(2013M541072)和日本未来生命科学研究院资助
摘要 皮肤疾病, 特别是湿疹、皮炎和痤疮等不仅影响个人形象, 还可引起躯体感觉不适或精神异常. 皮肤疾病
影响人群广泛, 病因复杂, 复发率高, 全球范围内患病人数不断增加. 皮肤疾病与心理疾病之间存在密切联系,
且心理疾病的患病比例增长趋势也很明显. 近年来的研究表明, 肠道状态、肠道微生物以及心理疾病与皮肤疾病
的关联称作肠道-大脑-皮肤轴(--皮轴). 肠道微生物可影响皮肤疾病的发生, 并且精神状态与肠道微生物健康
状况可折射皮肤健康状况. 反之, 皮肤状况也可作为精神状态和肠道微生物健康状况的评估参. 饮食是通过肠-
-皮轴影响皮肤的重要因素, 而心理因素对皮肤健康的影响也不能忽视. 通过将肠道和皮肤微生物、肠道状态、
大脑以及皮肤作为一个系统, 而非独立对待, 进而围绕肠--皮轴进行干预将是解决皮肤疾病的重要方法. 未来
皮肤病的治疗趋势是将饮食、益生菌、益生元、药物和心理健康等方式综合运用. 本文将重点介绍人类第二基因
组——人体微生物组、肠道-大脑-皮肤轴与皮肤疾病的关系以及相互影响有关的研究进展.
关键词 皮肤, 肠道, 大脑, --皮轴, 肠道微生物
皮肤是人体暴露面积最多的器官, 也是保护机
体内各种组织和器官免受物理、化学、病原微生物等
侵袭的前线. 在全球范围内, 皮肤疾病的患病率日益
增多. 据统计, 全球最常见的皮肤病——粉刺(或称
痤疮、青春痘, Acne vulgaris), 大约会影响80%的青少
年到青壮年[1], 仅在美国就导致每年30亿美元的财政
损失[2]. 皮肤免疫疾病——牛皮癣(或称银屑病, pso-
riasis)影响全球2%~3%的人群[3], 过敏性皮炎(atopic
dermatitis, AD)则有10%~20%的儿童患者[4].
值得注意的是, 心理问题发生的比例在逐年升
, 伴随而来的皮肤病呈增高趋势. 研究人员注意
, 皮肤疾病与精神疾病具有共病性, 诸多基础和临
床研究发现精神心理因素在皮肤病发病中起特定作
[5]. 皮肤病人数多、病因复杂、复发率高, 不仅影
响患者的面容、降低美感, 常伴有疼痛、剧烈瘙痒或
皮肤干燥等躯体感觉, 甚至引起自卑、消极、焦虑、
抑郁等心理疾病, 严重影响患者生活质量, 加重个人
和社会经济负担. 因此, 防治皮肤疾病已经成为亟待
解决的世界性难题. 皮肤病的病因复杂, 通常使用针
对患处的单纯性治疗方式, 可能收效甚微. 近年来研
究表明, 肠道微生物与多种皮肤疾病关系密切, 针对
肠道微生物的研究正在逐步破解这一难题. 本文将
重点综述肠--皮轴(gut-brain-skin axis), 并讨论心
理疾病、肠道微生物与皮肤疾病之间的关系.
1 皮肤与心理状态的关系: -皮联接
(brain-skin connection)
在几十年的临床观察中, 人们意识到皮肤疾病
与心理疾病之间在发病时间和严重程度方面同步或
重叠. 随着研究的深入, 大脑与皮肤关联逐渐清晰,
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
361
并且已组成专业的神经皮肤病学或精神皮肤病学研
究组. 大脑皮肤之间的关系称为脑-皮连接[6].
研究发现, 年轻人最常见的痤疮与抑郁、焦虑和
其他心理疾病常相伴发病, 而相比其他非精神疾病,
如癫痫和糖尿病等慢性疾病, 年轻痤疮患者的心理
健康障碍情况可能更严重[7,8]. 此外, 心理应激会加
重多种皮肤疾病, 特别是免疫性皮肤病, 如过敏性皮
炎、牛皮癣、脂溢性湿疹(seborrheic eczema)、结节
性痒疹(prurigo nodularis)、扁平癣(lichen planus)、慢
性荨麻疹(chronic urticaria)斑秃(alopecia areata)和瘙
(pruritus sine material)[9]. 此外, 人们还观察到,
在心理应激阶段, 皮肤的平衡状态和表皮的完整性
以及保护功能会受到破坏, 皮肤天然抵抗有害微生
物的能力丧失, 引起一系列皮肤疾病或症状, 可能使
过敏性皮炎和牛皮癣等加重或恶化[10]. 会心理应
激也会引起皮肤问题, 这可能是通过影响神经、免疫
系统进而影响皮肤健康, 具体途径包括: 中枢途径
(如下丘脑-垂体-肾上腺, hypothalamic-pituitary-adren
al, HPA)轴和蓝斑去甲肾上腺素(locus ceruleus-nore-
pinephrine, LC-NE)交感神经-肾上腺髓质系统)和外
周途径(如皮内HPA轴和外周感觉神经与自主神经释
放的介质)[11].
现已发现, 多种活性物质, 如激素、细胞因子、p
物质、活性氧等在心理应激引起的皮肤改变中发挥重
要作用[6]. 慢性束缚应激会引起小鼠的皮肤出现异
, 包括毛发周期性异常, 出现自噬现象, 并且脂质
过氧化水平升高, 活化的超氧化物歧化酶、谷胱甘肽
过氧化物酶(氧化酶)减少以及自噬标记物微管相关
蛋白, LC 3- (light chain 3-)Beclin-1增加[12].
同时, 这种由束缚应激引起的行为异常也能改变肠
道微生物组成[13]. 其他类型的皮肤疾病, 如白癜风、
斑秃、慢性荨麻疹、系统性红斑狼疮等也都与精神因
素密切相关[14,15].
2 皮肤与肠道健康的关系: -皮联接
(gut-skin connection)
皮肤与肠道是人体两个最大的器官, 也是人体
的外表面和内表面. 中医认为: “皮肤主一身之表,
防御外邪侵入; 大肠为传导之官, 传化物而不藏”.
虽然这两大器官在形态和功能方面相差甚远, 临床
观察发现, 皮肤与大肠之间关系密切, 皮肤与肠道有
非常类似的变化和表现, 皮肤疾病能引起大肠病变;
大肠疾病也能引起多种皮肤病, 这就是皮肠同病”.
现代医学和生物学的发展, 已经证明皮肤与肠道之
间确实存在密切联系[16].
皮肤除受心理因素影响外, 也与胃肠道有关.
具代表性的是肠病性肢端皮炎(acrodermatitis entero-
pathica, AE), 这是一种由肠道对锌的吸收异常引起
的遗传性锌缺乏证, 皮肤和肠道都会表现症状, 出现
肢端皮炎、脱发和腹泻[17]. 1953年之前, 治疗AE的唯
一方法是母乳喂养, 直到1974年才发现锌对此病有
治疗作用. AE常见于断奶儿童, 从母乳转为牛奶时
会发病, 而换为母乳就会好转[18,19]. 尽管母乳的锌含
量低于牛奶, 但母乳本身对锌的易吸收性比锌的含
量更重要, 并且可能母乳中的微生物也起作用[20].
其他皮肤疾病与肠道也存在密切联系. 痤疮患
者出现胃肠道不适的风险非常高. 一项针对13215
12~20岁的汉族青少年的研究表明, 痤疮的患病率达
51.03%; 患与未患皮肤病的青少年相比, 患者发生
便秘、口臭、胃反流等胃肠道症状显著增多, 约有
37%的腹胀可能与痤疮等脂溢性疾病有关[21].
研究发现, 口周皮炎与幽门螺杆菌(Helicobacter
pylori, Hp)感染引起的胃炎之间存在显著相关性,
周皮炎的患者中, Hp感染率均超过85%[22,23]. 某些药
物可引起皮肤及肠道的过敏症状. 腹泻常用药物氟
哌酸可引起全身皮肤瘙痒, 四肢及躯干出现皮疹,
伴有全腹弥漫性压痛、肠鸣、腹泻以及大便出现较多
黏液等皮肤和肠道症状[24].
肠道及皮肤都属于人体与外界环境接触的内外
表面, 它们具有类似的信号转导和神经支配通路. T
细胞介导的免疫反应通常会引起肠道和皮肤的双重
表现[25]. 我们认为, 皮肤和肠道表现呈生物学二态
(dimorphism), 在构成免疫屏障方面行使类似功能,
只是表现形式不同.
2007~2012, 人类微生物组计划(the human
microbiome project, HMP)初步研究报道了人体鼻腔、
口腔、产道、皮肤和肠道5个主要部位分布有种类达
1000~1500种的微生物, 重量达1.5~2 kg, 总数量是
人体自身细胞数量的10~100, 编码的基因数量可
达人体自身的300多倍, 被称为人体的第二基因组
被遗忘的器官[26~29]. 无论皮肤还是肠道, 这些
微生物与外界环境之间的关联部分通过附着于其表
面的微生物. 基于营养、温度、湿度等因素, 人体消
化道成为世界上生物多样性最为丰富的地方之一,
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
2017 2 62 5
362
这些微生物包括细菌、病毒、酵母菌、真菌等[26~29].
体微生物与健康关系密切, 它们不仅帮助人体吸收
和消化营养物质, 合成维生素等必需生物活性物质,
还可以维护人体免疫系统, 抵御病原微生物的侵
[30]. 最新研究发现, 痤疮患者皮肤表面的痤疮丙
酸杆菌(Propionibacterium acnes)的维生素B12的生物
合成通路显著下调[31]. 维生素B12都是由微生物合成
, 并且需要肠道分泌物的辅助才能被人体吸收,
B族维生素缺乏会导致溃疡、口角炎和皮炎等皮肤疾
, 同时影响精神状态[32~34]. 人体微生物广泛参与
代谢过程, 人体血液中大约70%的物质来自于肠
[35], 其中36%的小分子物质是由肠道微生物产生
[36]. 然而, 伴随着社会发展, 人体共生微生物的多
样性在下降[37], 这种下降可能引起了多种现代病”,
皮肤病高发很可能与此相关.
肠道微生物和免疫系统相互作用, 共同进化,
够激活宿主先天性和获得性免疫反应[38]. 研究还发
, 肠道与皮肤具有一致的免疫因子IgT (immuno-
globulin T), 能引发类似的免疫反应[39]. 肠道微生物
与免疫系统相关的过敏性皮肤疾病关系也很密切.
过敏性疾病的发病机制至今尚不清楚, 近年很多研
究表明, 肠道微生物可能在其中扮演着重要角色[40].
特应性皮疹或过敏性皮疹(湿疹), 在过去30年中发病
率增加了2~3, 3岁内的孩子中发病率高达
44%[41]. 研究发现, 成年过敏性皮疹患者粪便中肠道
微生物状况与病情严重程度具有相关性, 患者粪便中
双歧杆菌(Bifidobacterium)及乳酸杆菌(Lactobacillus)
的数量明显少于对照组[42]. 研究还发现, 益生菌对
该病有一定的防治效果, 从而推测肠道微生物可能
是发生湿疹的重要影响因素[43,44]. Noverr等人[45]
2005年提出肠道微生物引发过敏性疾病的假,
为肠道微生物对宿主免疫系统的发育成熟具有重要
作用, 特别是在维持黏膜免疫耐受方面作用显著.
牛皮癣与肠道和皮肤微生物密切相关, 肠道或
皮肤微生物出现紊乱时会增加银屑病的易感性[46].
此外, 银屑病关节炎(psoriatic arthritis)是一种慢性炎
症性关节疾病, 也表现为牛皮癣或银屑病等慢性皮
肤炎症. 研究发现肠道微生物在此病的发病中发挥
重要作用, 据此提出了皮肤-关节-肠道轴(skin-joint-
gut axis)的概念, 并且发现Th17 (T helper cells 17)
肠道微生物与银屑病关节炎之间发挥决定性作用[47].
最近的研究也证明了肠道微生物与关节炎密切相
[48,49]. 这些研究表明, 肠道不仅与皮肤, 而且与关
节关系密切.
3 皮肤、肠道和大脑的关系: --皮轴
(gut-brain-skin axis)
皮肤与大脑、皮肤与肠道之间关系密切, 而肠道
与大脑之间也紧密关联. 研究发现, 肠道和大脑之间
通过迷走神经连接, 90%以上的五羟色胺在肠道中产
, 并受肠道微生物影响[50,51]. 肠道微生物不仅在皮
肤炎症方面发挥重要作用, 还能直接影响人体的生
理健康以及人的心理和行为[52~57].
早在1930, 美国宾夕法尼亚大学的皮肤学家
StokesPillsbury[58] 就提出了肠--皮肤统一理论
(gut-brain-skin unifying theory). 他们通过一系列实
验和临床上出现的奇特现象总结归纳出了皮肤受情
绪和精神状态影响的理论和实践机制, 认为肠道,
脑和皮肤之间存在密切联系. 他们发现, 抑郁、担忧
和焦虑等情绪状态能改变胃肠道功能和微生物组成,
最终导致区域性或系统性的炎症, 其中包括皮肤炎
; 约有40%的痤疮病人存在胃酸分泌过少的症状,
可能胃酸的减少会引起结肠细菌进入小肠, 并破坏
正常的肠道微生物. 压力引起的微生物变化可能引
起肠道通透性增加, 进而引起区域或系统性的皮肤
炎症[59].
遗憾的是, 这一理论提出之后被商业开发者误
解和滥用, 出现了各种参差不齐的治疗方法, 引起了
医学界担忧而最终被定性为伪科学并退场, 逐渐被
人们遗忘. 沉寂几十年后, 直到最近才再次被注
[60]. 1981, 研究人员再次发现, 一些皮肤、肠道
和大脑细胞可能有共同的胚胎起源, 证明肠--皮之
间的密切关系[61]. 近年来的研究已经确证肠--皮肤
统一理论, 并且已经有越来越多的研究者将肠道、
脑和皮肤之间的关系用肠--皮轴(gut-brain-skin
axis)来表示[62,63]. 肠道、大脑和皮肤之间是通过血液
系统、免疫系统、内分泌系统和神经系统进行双向联
接的[6,64](1). 肠道微生物可以通过影响系统性炎
症、氧化应激、血糖控制、组织脂质含量, 甚至宿主
的情绪等影响皮肤疾病[60].
暨南大学医学院的张宏和余林中[65], 早在1999
年就发现脂溢性皮炎患者正常的肠道微生物显著失
, 包括需氧菌总数与厌氧菌总数明显下降, 多种常
见正常菌群数量和比例发生改变.
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
363
1 (网络版彩色)--皮轴
Figure 1 (Color online) Gut-brain-skin axis
此外, 胃酸分泌过少在抑郁病人中非常常见,
且小肠细菌过度生长(small intestinal bacterial over-
growth, SIBO)与焦虑和抑郁密切相关[66]. 酒糟鼻是
30~60岁人群中常见的慢性皮肤疾病, 该病与肠道微
生物关系密切[67]. 酒糟鼻患者出现SIBO的比例比正
常人高40%以上, 通过治疗改善SIBO, 皮肤病变
也能恢复, 并且这种治疗效果能够持续至少9
[68]. 还有研究发现, 在消除SIBO, 肠易激综合征
病人的心理异常症状得以明显改善[69]. 这些结果表明
小肠细菌的异常与精神疾病和皮肤疾病都有关系.
研究发现, 痤疮患者中有54%的肠道微生物发
生明显改变[70]. 伴有焦虑的肠易激综合征患者血液
中大肠杆菌(Escherichia coli)产生的脂多糖(lipopoly-
saccharide, LPS)含量明显增加[71]. LPS本身就可以
引起动物产生类似抑郁的行为[72].
皮肤疾病除受肠道微生物, 还受皮肤表面微生
物影响. 皮肤表面的微生物具有稳定性和部位特异
, 同时也受人的生理代谢状态影响[73]. 有研究发
, 面部脂溢性皮炎的炎症严重程度与皮肤上的马
拉色菌(Malassezia)密度呈正相关, 而与油脂量无
[74]. 皮肤上的马拉色菌还与脂溢性皮炎、特应性皮
炎、马拉色菌毛囊炎、银屑病等皮肤疾病的发生和发
展有关[75]. 其他皮肤疾病, 如寻常痤疮、牛皮癣、头
皮屑(Dandruff)和梅克尔细胞瘤(Merkel Cell Carci-
noma)等都与皮肤微生物密切相关[76].
肠道微生物对维持正常的皮肤健康具有重要作
. 有研究发现, 用抗生素给小鼠灌胃消除肠道微生
2周后, 小鼠的毛色变得杂乱、无光泽、进食量减
少、精神状态变差; 用益生菌灌胃10天后, 小鼠毛色
明显变光泽, 精神状态得以改善[77]. 研究还发现,
鼠摄入乳酸菌(Lactobacillus), 因应激引起的神经
性皮肤炎症得以抑制, 抑制毛发生长的现象消除[62].
这说明通过益生菌调节肠道微生物, 可以大大降低
应激引起的神经性皮肤炎症. 调节肠道微生物可影
响多种皮肤症状, 这是对肠--皮轴理论的有力
证明.
随着人们对肠--皮轴的认识, 推论肠道微生物
对皮肤和大脑的影响机制可能主要通过免疫系统.
这是由于肠道微生物是免疫系统最初和最主要的刺
激物, 对免疫系统的发育和成熟至关重要[78,79].
4 --皮轴的影响因素
--皮轴的影响因素众多, 理论上能够影响肠
道、大脑和皮肤的任何因素都可影响肠--皮轴,
饮食、光照、年龄、精神压力、药物和环境等. 本文
仅着重介绍与人体微生物有关的影响因素(2).
4.1 食物和营养
食物在塑造和维持肠道微生物方面具有决定作
[80], 而肠道微生物又能进一步帮助人体从食物中
获得更多的营养物质. 食物和营养能影响肠道微生
物组成, 不同的饮食习惯肠道微生物组成不同[81].
物源食物和植物源食物能够在24 h之内影响肠道微生
, 可引起肠道的不同微生物改变, 这种改变除受食
物本身, 还受食物上负载的共生微生物的影响[82].
食物不仅影响肠道微生物, 也影响皮肤健康状
. 饮食可直接影响肠道微生物的组成[83], 同时也
是引起痤疮的重要因素[84,85]. 有研究发现, 食物中的
维生素、类胡萝卜素等微量元素以及不饱和脂肪酸有
助于皮肤抗紫外线和防止过敏[86]. 维生素A与皮肤
的油脂含量以及表面的pH关系密切, 而食物中的总
脂肪、不饱和脂肪和单不饱和脂肪与皮肤的水分状况
存在密切关系[87]. 食物和营养也影响人的神经系统
发育和正常功能, 以及人的免疫系统[88~90].
19世纪30年代, StokesPillsbury[58]就曾提出了
干预肠--皮轴的方法, 他们建议采用添加嗜酸的微
生物, 如嗜酸乳杆菌(Bacillus acidophilus)来终止由
压力引起的皮肤炎症. 此外, 他们还推荐一种嗜酸菌
酸奶(acidophilus milk)和鱼肝油来辅助治疗皮肤炎
, 并且发现口服乳酸杆菌片和乳酸菌发酵饮料有
明显促进心理健康的作用[91]. 而饮食和营养对心理
疾患具有一定的改善作用已经被多方证实[92~94].
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
2017 2 62 5
364
2 (网络版彩色)--皮轴的影响因素
Figure 2 (Color online) Influence factors of gut-brain-skin axis
此看来, 健康的皮肤离不开合理的食物、营养和益生
(3).
4.2 微生物和益生菌
人体皮肤本身的微生物对皮肤的健康至关重要,
它们与肠道微生物一样对维持人体健康必不可少,
其中的常见细菌, 如葡萄球菌(Staphylococcus)、棒
杆菌属(Corynebacterium)、丙酸菌属(Propionibac-
terium)、链球菌(Streptococcus)和假单胞菌(Pseu-
domonas)等既具有致病性又能保护皮肤健康[95].
, 对皮肤微生物的深入了解有助于我们对皮肤疾
病的认识. 研究表明, 皮肤微生物受到皮肤解剖结
构、位置、宿主的性别、年龄和免疫系统的影响[73,96].
皮肤本身的影响因素也很多, 如本身的微生物类型、
生存环境、使用的护肤品、化妆品、卫生习惯以及使
用的药物等都会对皮肤产生影响[97~99].
3 (网络版彩色)饮食与肠--皮轴
Figure 3 (Color online) Diet and gut-brain-skin axis
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
365
卫生假说(the hygiene hypothesis)”认为人缺少了微
生物和寄生虫的刺激, 会导致免疫系统异常, 引起过
敏和哮喘等免疫系统疾病[100~102]. 这一假说同样适
于皮肤疾病. 自从人们确定肠道微生物与皮肤疾病
之间的生物学关联以来, 越来越多的研究开始转向
能够调节肠道微生物的益生菌或益生元.
益生菌具有改善肠道屏障功能, 恢复肠道微生态
健康, 刺激宿主免疫系统和对抗炎症等作用, 在预防
和治疗皮肤疾病方面有巨大的潜力, 不仅用于湿疹、
敏性皮炎、痤疮、过敏炎症或皮肤过敏, 紫外线引起
的皮肤损伤以及保护伤口, 因而也被用作化妆品[103].
早在1924, 人们就发现心理异常的病人体内
缺乏嗜酸乳杆菌, 一些病例研究也发现口服嗜酸乳
杆菌之后, 痤疮和精神异常症状能够得以恢复[60].
随后的研究表明, 益生菌在改善皮肤状态, 缓解或治
疗皮肤疾病方面具有潜在价值. 长双岐杆菌
(Bifidobacterium longum)能缓解皮肤炎症[104]. 副干
酪乳杆菌(Lactobacillus paracasei)能消除P物质引起
的皮肤血管扩张、水肿、肥大细胞脱粒和肿瘤坏死因
-α (Tumor Necrosis Factor, TNF-α)的释放, 亦可诱
导皮肤屏障功能的快速恢复[105]. 来自韩国的研究发
, 富含乳铁蛋白(Lactoferrin)的乳酸菌发酵乳饮料
能显著降低痤疮患者的皮肤症状, 与安慰剂组相比,
服用这种发酵乳饮料12周后, 脂肪溢出量下降了
31.1%, 病灶数量和痤疮等级也明显下降[106]. 此外,
给年老的小鼠饲喂罗伊氏乳杆菌(Lactobacillus reu-
teri)单菌或发酵乳后, 小鼠皮肤变厚, 毛色更光亮,
生育能力也提高[107]. 随后的研究发现, 该菌是通过
具有抗炎作用的白细胞介素10 (Interleukin-10)和一
种神经肽类激素-催产素来发挥上述作用[108]. 此外,
益生菌对皮肤的益处也可能是通过促进肠道免疫系
统的成熟, 维护正常的免疫系统功能, 保持Th1/Th2
(T helper cells 1/2)的免疫平衡、增强调节性T细胞功
能及降低血清中Ig E (immunoglobulin E)的水平等调
节人体免疫水平来实现的[109]. 最近, 我们的一项研
究也表明, 口服瑞士乳杆菌NS8 (Lactobacillus hel-
veticus NS8)菌株能显著改善抑郁大鼠的精神异常症
, 并且比药物效果更稳定, 同时也注意到动物毛发
和皮肤状况的改变[13].
4.3 药物
抗生素对肠道微生物有超乎我们预料的重大影
, 长期或过量使用抗生素会增加细菌耐药性, 改变
肠道微生物构成, 甚至破坏肠黏膜, 诱发肠
[110~112]. 研究表明, 给变应性疾病动物模型服用抗
生素后, 肠道微生物明显改变, 血清中的Ig E水平显
著升高, Th1/Th2免疫失衡[113]. 流行病学调查也发现,
婴儿期使用抗生素会增加青少年期患哮喘, 过敏性
皮炎, 过敏性鼻炎等疾病的风险[114,115]. 此外, 来自
华东师范大学的研究表明, 口服万古霉素会使小鼠
皮肤伤口处的微生物组成发生明显变化, 特别是葡
萄球菌减少[116]. 最近的研究还显示, 抗生素不仅可
以杀死肠道微生物, 也能影响大脑细胞可塑性和认
知能力[117].
5 小结与展望
--皮轴对皮肤健康至关重要. 微生物、肠道、
大脑和皮肤并不是各自独立, 而是相互密切关联的
复合系统, 肠道微生物对维持正常皮肤健康具有重
要作用, 多种皮肤疾病的发生常伴随精神状态的改
, 是通过肠--皮轴产生的影响.
肠道微生物能够通过产生内毒素, 刺激免疫系
统引起炎症反应或改变营养物质的代谢对肠--
轴产生影响. 其他影响因素, 如饮食、益生菌、抗生
素和精神因素等同样都能影响肠--皮轴. 因此,
取多种影响肠--皮轴方式的干预措施可以明显改
善皮肤和心理健康状况.
饮食、益生元或益生菌等调节肠道微生物的方式
将成为未来干预和治疗心理和皮肤问题的重要手段.
饮食是微生物和皮肤健康的基础影响因素. 以头脑
欺骗肠脑、暴饮暴食的不良饮食方式, 可改变肠道菌
群比例或导致肠漏, 进而对人体造成系统性伤害.
美味来绑架自己的头脑, 理智饮食是防治皮肤
疾病的重要举措.
保持好心情有利于大脑向皮肤和肠脑释放更多
有益和有积极作用的化学物质, 促进皮肤健康, 使皮
肤真正成为免疫屏障.
目前, 益生元或益生菌大多针对肠道微生物而
研发和应用, 也有一些针对皮肤微生物的研究, 它们
的使用形式不是口服, 而是直接用于化妆品中, 涂抹
在皮肤上调节皮肤微生物. 这种以化妆品形式增补
的益生元或益生菌, 直接针对皮肤状况, 作用更直
[118,119]. 本研究室也在利用含有NS乳酸菌的护肤
用品来调节皮肤表面的微生物, 获得非常好的效果.
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
2017 2 62 5
366
目前正在对使用活性微生物护肤液后皮肤表面微生
物的变化以及治疗效果进行进一步分析.
不像肠道内众多厌氧微生物, 我们的皮肤表面
布满适宜自然空气成分的微生物, 而多数化妆品并
未考虑对皮肤微生物的生活习性, 如金黄色葡萄球菌
(Staphylococcus aureus)和绿脓杆菌(Pseudomonas ae-
ruginosa)为好氧菌, 涂抹的化妆品一旦阻断这类微生
物与空气的接触, 可能导致这类微生物的代谢方式改
变而发生感染. 皮肤微生物有个体差异性, 化妆品的
使用效果与皮肤表面微生物的个体差异密切相关.
了皮肤健康, 不能忽略皮肤微生物的环境和营养.
综合来看, 皮肤不仅是人的第一道免疫防线,
是精神状态和肠道微生物健康状况的晴雨表. 然而,
仍有一些问题亟待解决, 包括: 皮肤微生物和肠道微
生物的相互影响; --皮轴的相互影响机制, 特别
是免疫系统在肠--皮轴中发挥的作用; 制定合理的
皮肤和精神疾病的临床诊疗路径, 皮肤病诊疗可能
不仅在皮肤病科, 也不能忽略消化科或精神科的正
确诊疗; 不同饮食和营养物质对人体微生物, 特别是
对皮肤微生物的影响; 借鉴和评估益生菌、益生元、
抗生素、甚至粪菌移植等能够改变肠道微生物的方法
在干预和治疗皮肤疾病的作用. 2016年以来, 国际上
全面开展的共生微生物计划将让我们有更多的机会
着眼于肠--皮之间的生物学关联, 这不仅为解决不
断攀升的皮肤疾病提供了新的视角, 同时也将为认
识人类这一复杂的生命体提供更多信息.
参考文献
1 James W D. Clinical practice: Acne. New England J Med, 2005, 352: 1463–1472
2 Bickers D R, Lim H W, Margolis D, et al. The burden of skin diseases: 2004. J Am Acad Dermatol, 2006, 55: 490–500
3 Crow J M. Psoriasis uncovered. Nature, 2012, 492: 550–551
4 Shaw T E, Currie G P, Koudelka C W, et al. Eczema prevalence in the United States: Data from the 2003 National Survey of Children’s
Health. J Invest Dermatol, 2011, 131: 67–73
5 Cao Y, Zhou S H, Cai N N, et al. The related correlation between dematosis and psychological factors (in Chinese). Chin J Aest Med,
2007, 16: 1312–1314 [曹洋, 周守红, 蔡念宁, . 皮肤疾病与精神心理因素相关性研究. 中国美容医学, 2007, 16: 1312–1314]
6 Paus R, TheoharidesT C, Arck P C. Neuroimmunoendocrine circuitry of the brain-skin connection. Trends Immunuol, 2006, 27: 32–39
7 Loney T, Standage M, Lewis S. Not just skin deep: Psychosocial effects of dermatological-related social anxiety in a sample of acne
patients. J Health Psychol, 2008, 13: 47–54
8 Elizabeth Uhlenhake B S, Yentzer B A, Feldman S R. Acne vulgaris and depression: A retrospective examination. J Cosmet
Dermatol-US, 2010, 9: 59–63
9 Arck P, Paus R. From the brain-skin connection: The neuroendocrine-immune misalliance of stress and itch. Neuroimmunomodulat,
2007, 13: 347–356
10 Andrzej S. A nervous breakdown in the skin: Stress and the epidermal barrier. Eur J Clin Invest, 2007, 117: 3166–3169
11 Hunter H J A, Momen S E, Kleyn C E. The impact of psychosocial stress on healthy skin. Clin Exp Dermatol, 2015, 40: 540–546
12 Lei W, Guo L L, Wang L H, et al. Oxidative stress and substance P mediate psychological stress-induced autophagy and delay of hair
growth in mice. Arch Dermotol Res, 2015, 307: 1–11
13 Liang S, Wang T, Hu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical
aberrations caused by chronic restraint stress. Neuroscience, 2015, 310: 4710–4719
14 Li W, Liu Z F. Skin disease, psychological factors and neuro-endocrine-immune regulation (in Chinese). Int J Dermotol Venereol, 2008,
28: 102–105 [李雯, 刘贞富. 皮肤病、精神因素与神经-内分泌-免疫调节. 国际皮肤性病学杂志, 2008, 28: 102–105]
15 Ma X Y. Psychological factors in skin diseases (in Chinese). J Changzhi Med Col, 2015, 29: 237–240 [马晓燕. 精神心理因素在皮肤疾
病中的作用. 长治医学院学报, 2015, 29: 237–240]
16 Dohil M A. The skin-gut connection. Australas J Dermatol, 2012, 53: A8
17 Shu Y, Tang J L, Chang J, et al. Clinical analysis of 30 cases of enteropathic acrodermatitis (in Chinese). J Clin Dermatol, 2015, 44:
288–290 [树叶, 唐金玲, 常静, . 肠病性肢端皮炎 30 例临床分析. 临床皮肤科杂志, 2015, 44: 288–290]
18 Ren Y Q, Yang S, Zhang X J. Advance in enteropathic acrodermatitis research (in Chinese). Int J Dermotol Venereol, 2005, 31:
226–228 [任韵清, 杨森, 张学军. 肠病性肢端皮炎的研究进展. 国际皮肤性病学杂志, 2005, 31: 226–228]
19 Wang S, Li L. Advance in enteropathic acrodermatitis research (in Chinese). Clin Dermatol, 2014, 43: 509–512 [汪盛, 李利. 肠病性肢
端皮炎研究进展. 临床皮肤科杂志, 2014, 43: 509–512]
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
367
20 Hunt K M, Foster J A, Forney L J, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk.
PLoS One, 2011, 6: e21313
21 Zhang H, Liao W, Chao W, et al. Risk factors for sebaceous gland diseases and their relationship to gastrointestinal dysfunction in Han
adolescents. J Dermatol, 2008, 35: 555–561
22 Lei Z C, Lin J J, Chen L, et al. Correlaton between helicobacter pylori infection and perioral dermatitis and effect of anti-Hp triple
therapy (in Chinese). Chin J Gen Pract, 2014, 12: 540–542 [雷振春, 林京晶, 陈亮, . Hp 感染与口周皮炎的相关性分析及抗 Hp
联疗法疗效分析. 中华全科医学, 2014, 12: 540–542]
23 Sheng W T, Li Q L. Study on the correlation between helicobacter pylori infection with perioral dermatitis (in Chinese). Chin J Clin,
2008, 2: 31–33 [盛文婷, 李其林. 幽门螺杆菌感染与口周皮炎的临床相关性探讨. 中华临床医师杂志, 2008, 2: 31–33]
24 Liu W C, Zhang F Y. Two cases of norfloxacin caused skin intestinal irritation (in Chinese). Jilin Med Inf, 2006, 23: 14 [刘文成, 张风
. 氟哌酸引起皮肤肠道过敏 2. 吉林医学信息, 2006, 23: 14]
25 Zhang Y Y, Wang X M, Wang T T, et al. Diagnostic methods for food allergy (in Chinese). Int J Dermotol Venereol. 2015, 41, doi:
10.3760/cma.j.issn.1673-4173.2015,05.011 [张洢祎, 王学民, 王婷婷, . 食物过敏的诊断方法. 国际皮肤性病学杂志, 2015, 41,
doi: 10.3760/cma.j.issn.1673-4173.2015,05.011]
26 O’Hara A M, Shanahan F. The gut flora as a forgotten organ. EMBO Rep, 2006, 7: 688–693
27 Zhu B, Wang X, Li L, Human gut microbiome: The second genome of human body. Protein Cell, 2010, 1: 718–725
28 Gill S R, Pop M, DeBoy R T, et al. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312: 1355–1359
29 Ley R E, Peterson D A, Gordon J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006,
124: 837–848
30 Scarpellini E, Ianiro G, Attili F, et al. The human gut microbiota and virome: Potential therapeutic implications. Digest Liver Dis, 2015,
47: 1007–1012
31 Kang D, Shi B, Erfe M C, et al. Vitamin B12 modulates the transcriptome of the skin microbiota in acne pathogenesis. Sci Transl Med,
2015, 11: e0152722
32 Martens J H, Barg H, Warren M, et al. Microbial production of vitamin B12. Appl Microbiol Biot, 2002, 58: 275–285
33 Deijen J B, Beek E J V D, Orlebeke J F, et al. Vitamin B-6 supplementation in elderly men: Effects on mood, memory, performance and
mental effort. Psychopharm, 1992, 109: 489–496
34 Zwaluw N L, Dhonukshe-Rutten R A, van Wijngaarden J P, et al. Results of 2-year vitamin B treatment on cognitive performance:
Secondary data from an RCT. Neurology, 2014, 83: 2158–2166
35 Grice E A, Kong H H, Sean C, et al. Topographical and temporal diversity of the human skin microbiome. Science, 2009, 324:
1190–1192
36 Digiulio D B, Callahan B J, Mcmurdie P J, et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl
Acad Sci USA, 2015, 112: 11060–11065
37 Gillings M R, Paulsen I T, Tetu S G. Ecology and evolution of the human microbiota: Fire, farming and antibiotics. Genes, 2015, 6:
841–857
38 Luo J, Li W, Duan Y F, et al. Host discriminates between probiotics and pathogens: Impact of toll like receptor 5-flagellin interaction
and evolution (in Chinese). Microb Chin, 2014, 41: 1368–1375 [罗佳, 李薇, 段云峰, . Toll 样受体5和鞭毛蛋白的相互作用影响宿
主区分病原菌和益生菌. 微生物学通报, 2014, 41: 1368–1375]
39 Xu Z, Parra D, Gómez D, et al. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc Natl Acad Sci USA,
2013, 110: 13097–13102
40 Yang F L, Zhao Y. Intestinal microorganisms and allergic diseases (in Chinese). J Clin Otorhinolaryngol Head Neck Surg, 2014, 28:
351–355 [杨奉玲, 赵宇. 肠道微生物与变应性疾病. 临床耳鼻咽喉头颈外科杂志, 2014, 28: 351–355]
41 Halkjaer L B, Loland L, Buchvald F F, et al. Development of atopic dermatitis during the first 3 years of life: The Copenhagen
prospective study on asthma in childhood cohort study in high-risk children. Arch Dermatol, 2006, 142: 561–566
42 Guo Z, Dai J B, Jiang Y L, et al. Correlation analysis intestinal microorganisms and atopic dermatitis disease degree (in Chinese). Shandong
Med, 2014, 54: 86–88 [郭震, 戴景斌, 姜丽亚, . 肠道菌群状态与特应性皮炎病变程度的相关性分析. 山东医药, 2014, 54: 86–88]
43 Wei J J, Shao J, Li Y Z, et al. Meta analysis: The function of probiotics in atopic dermatitis prevention and cure (in Chinese). J Clin
Pediat, 2008, 26: 433–437 [蔚京京, 邵洁, 李云珠, . Meta 分析: 益生菌在防治儿童特应性皮炎中的作用. 临床儿科杂志, 2008,
26: 433–437]
44 Xian L J, Tang Y. Progress of the relationship between intestinal bacteria microecological and human diseases (in Chinese). Prog
Microbiol Immu, 2015, 4: 75–79 [鲜凌瑾, 唐勇. 肠道细菌微生态与人类疾病关系研究进展. 微生物学免疫学进展, 2015, 4: 75–79]
45 Noverr M C, Huffnagle G B. The microflora hypothesis of allergic diseases. Clin Exp Allergy, 2005, 35: 1511–1520
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
2017 2 62 5
368
46 Zanvit P, Konkel J E, Xue J, et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun,
2015, 6: 8424
47 Eppinga H, Konstantinov S R, Peppelenbosch M P, et al. The microbiome and psoriatic arthritis. Curr Rheumatol Rep, 2014, 16: 1–8
48 Manasson J, Scher J U, Spondyloarthritis and the microbiome: New insights from an ancient hypothesis. Curr Rheumatol Rep, 2015, 17:
1–8
49 Mark A, Dirk E, Phoebe L, et al. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract Res Cl Rh, 2014,
28: 687–702
50 Yano J, Yu K, Donaldson G, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161:
264–276
51 Gershon M D, Jan T, The serotonin signaling system: From basic understanding to drug development for functional GI disorders.
Gastroenterol, 2007, 132: 397–414
52 Heijtz R D, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA, 2011,
108: 3047–3052
53 Liang S, Wang T, Hu X, et al. Microorganism and behavior and psychiatric disorders (in Chinese). Adv Psychol Sci, 2012, 20: 75–97 [
, 王涛, 胡旭, . 微生物与行为和精神疾病. 心理科学进展, 2012, 20: 75–97]
54 Luo J, Jin F. Recent advances in understanding the impact of intestinal microbiota on host behavior (in Chinese). Chin Sci Bull, 2014,
59: 2169–2190 [罗佳, 金锋. 肠道菌群影响宿主行为的研究进展. 科学通报, 2014, 59: 2169–2190]
55 Foster J A, McVey Neufeld K A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci, 2013, 36:
305–312
56 Cryan J F, O’Mahony S M. The microbiome-gut-brain axis: From bowel to behavior. NeuroGastroenterol Mot, 2011, 23: 187–192
57 O’Mahony S M, Clarke G, Borre Y E, et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res,
2015, 277: 32–48
58 Stokes J H, Pillsbury D H. The effect on the skin of emotional and nervous states: Theoretical and practical consideration of a
gastrointestinal mechanism. Ars Curandi Em Odontol, 1930, 4: 962–993
59 Shera G. A special method of investigating the streptococcal and acidophilus intestinal flora: With results in fifty-three mental patients.
Brit J Psychiatr, 1930, 76: 56–65
60 Bowe W P, Logan A C. Acne vulgaris, probiotics and the gut-brain-skin axis—back to the future? Gut Pathog, 2011, 3: 1–11
61 Teitelman G, Joh T H, Reis D J. Linkage of the brain-skin-gut axis: Islet cells originate from dopaminergic precursors. Peptides, 1981,
s2: 157–168
62 Petra A, Bori H, Evelin H, et al. Is there a gut-brain-skin axis? Exp Dermatol, 2010, 19: 401–405
63 Bowe W, Patel N B, Logan A C. Acne vulgaris, probiotics and the gut-brain-skin axis: From anecdote to translational medicine. Benef
Microbes, 2014, 5: 185–199
64 Carabotti M, Scirocco A, Maselli M A, et al. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous
systems. Ann Gastroenterol Q Publ Hell Soc Gastroenterol, 2015, 28: 203–209
65 Zhang H, Yu L Z. Quantitative research of seborrheic dermatitis patients’ normal fecal microtioba (in Chinese). Int J Dermot, 1999, 32:
339–340 [张宏, 余林中. 脂溢性皮炎患者粪便正常菌群的定量研究. 中华皮肤科杂志, 1999, 32: 339–340]
66 Addolorato G, Mirijello A, C. D’Angelo, et al. State and trait anxiety and depression in patients affected by gastrointestinal diseases:
Psychometric evaluation of 1641 patients referred to an internal medicine outpatient setting. Int J Clin Pract, 2008, 62: 1063–1069
67 Picardo M, Ottaviani M. Skin microbiome and skin disease: The example of rosacea. J Clin Gastroenterol, 2014, 48: S85–S86
68 Andrea P, Stefania P, Alfredo G, et al. Small intestinal bacterial overgrowth in rosacea: Clin effectiveness of its eradication. Digest Liver
Dis, 2008, 6: 759–764
69 Pimentel M, Chow E J, Lin H C. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am
J Gastroenterol, 2000, 95: 3503–3506
70 Volkova L A, Khalif I L, Kabanova I N. Impact of the impaired intestinal microflora on the course of acne vulgaris. Klinicheskaia
Meditsina, 2001, 79: 39–41
71 Viana A F, Maciel I S, Dornelles F N, et al. Kinin B1 receptors mediate depression-like behavior response in stressed mice treated with
systemic E. coli lipopolysaccharide. J Neuroinflammat, 2010, 7: 191–206
72 Liebregts T, Adam B, Bredack C, et al. Immune activation in patients with irritable bowel syndrome. Gastroenterol, 2007, 132: 913–920
73 Oh J, Byrd A, Park M, et al. Temporal stability of the human skin microbiome. Cell, 2016. 165: 854–866
74 Chen S, Xiong L, Dai Y L, et al. The relationship among facial seborrheic dermatitis severity and the amount of sebum overflow and the
malassezia (in Chinese). J Sichuan Univ: Med, 2012, 43: 125–126 [陈爽, 熊琳, 代亚玲, . 面部脂溢性皮炎严重程度与皮脂溢出量
及马拉色菌菌量的关系. 四川大学学报: 医学版, 2012, 43: 125–126]
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
369
75 Jian Q, Jiang W C, Li K X. Progress on Malassezia related diseseases research (in Chinese). In: The tenth academic communication
conference of skin disease branch of China association of Chinese medicine and the Hunan province eighth academic communication
conference of integrative Medicine on skin and venereal diseases. 2013 [蹇强, 姜文成, 李可心. 马拉色菌相关疾病研究现状. 中华中
医药学会皮肤病分会第十次学术交流大会暨湖南省中西医结合皮肤性病第八次学术交流大会. 2013, 41: 60–63]
76 Hannigan G D, Grice E A. Microbial ecology of the skin in the era of metagenomics and molecular microbiology. CSH Perspect Med,
2013, 3: a015362
77 Wang R H. The research on the relationship of intestinal flora disturbance and the pathogenesis of eczema in mice (in Chinese). Master
Dissertation. Guilin: Medical College of Guilin, 2014 [王若涵. 肠道菌群紊乱模型小鼠皮肤湿疹样改变的相关机制研究. 硕士学位
论文. 桂林: 桂林医学院, 2014]
78 Pola J, Bastl Z, Šubrt J, et al. The role of the intestinal microbiota in the development of atopic disorders. Allergy, 2007, 62: 1223–1236
79 Fujimura K, Lynch S. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microb, 2015,
17: 592–602
80 Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Brit J Nutri, 2015, 113: S1–S5
81 Walsh C J, Guinane C M, O’Toole P W, et al. Beneficial modulation of the gut microbiota. FEBS Lett, 2014, 588: 4120–4130
82 David L A, Maurice C F, Carmody R N, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505:
559–563
83 Graf D, Di C R, Fåk F, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis, 2015, 285(Pt
2): 477–480
84 Costa A, Lage D, Moisés T A. Acne and diet: Truth or myth? Anais Brasileiros De Dermatol, 2010, 85: 346–353
85 Wolf R, Matz H, Orion E. Acne and diet. Clin Dermat, 2004, 22: 387–393
86 Boelsma E, Hendriks H F, Roza L. Nutritional skin care: Health effects of micronutrients and fatty acids. Am J Clin Nutr, 2001, 73:
853–864
87 Boelsma E, van de Vijver L P, Goldbohm R A, et al. Human skin condition and its associations with nutrient concentrations in serum and
diet 1. Am J Clin Nutr, 2008, 77: 348–355
88 Duan Y F, Wu X L, Jin F. Influence of diet on autism (in Chinese). Chin Sci Bull, 2015, 60: 2845–2861 [段云峰, 吴晓丽, 金锋. 饮食
对自闭症的影响研究进展. 科学通报, 2015, 60: 2845–2861]
89 Lukens J R, Gurung P, Vogel P, et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature, 2014, 516:
246–249
90 Keunen K, van Elburg R M, van Bel F, et al. Impact of nutrition on brain development and its neuroprotective implications following
preterm birth. Pediatr Res, 2015, 77: 148–155
91 Norman H J. Lactic acid bacilli in the treatment of melancholia. Bri Med J, 1909, 1: 1234–1235
92 Kawicka A, Regulska-Ilow B. How nutritional status, diet and dietary supplements can affect autism. A review. Rocz Panstw Zakl Hig,
2013, 64: 1–12
93 Kałużna-Czaplińska J, Błaszczyk S. The level of arabinitol in autistic children after probiotic therapy. Nutrition, 2012, 28: 124–126
94 Duan Y F, Wu X L, Jin F. Advance in causes and treatment of autism (in Chinese). Sci Sin Vitea, 2015, 45: 820–844 [段云峰, 吴晓丽,
金锋. 自闭症的病因和治疗方法研究进展. 中国科学: 生命科学, 2015, 45: 820–844]
95 Cogen A L, Nizet V, Gallo R L. Skin microbiota: A source of disease or defence? Brit J Dermatol, 2008, 158: 442–455
96 Sanmiguel A, Grice E A, Interactions between host factors and the skin microbiome. Cell Mol Life Sci, 2015, 72: 1499–1515
97 Rosenthal M, Goldberg D, Aiello A, et al. Skin microbiota: Microbial community structure and its potential association with health and
disease. Infect Genet Evol J Mol Epi Evol Genet Infect Dis, 2011, 11: 839–848
98 Chen Y E, Tsao H. The skin microbiome: Curr perspectives and future challenges. J Am Acad Dermatol, 2013, 69: 143–155
99 Kong H H, Segre J A. Skin microbiome: Looking back to move forward. J Invest Dermatol, 2012, 132: 933–939
100 McLean M H, Dieguez D, Miller L M, et al. Does the microbiota play a role in the pathogenesis of autoimmune diseases? Gut, 2014, 64:
332–341
101 Ling Z, Li Z, Liu X, et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Envir Microb, 2014, 80:
2546–2554
102 Cénit M C, Matzaraki V, Tigchelaar E F, et al. Rapidly expanding knowledge on the role of the gut microbiome in health and disease.
Biochim Biophy Acta (BBA) - Mol Bas Dis, 2014, 1842: 1981–1992
103 Rahmati M R, Karimi R, Sohrabvandi S, et al. Health effects of probiotics on the skin. Crit Rev Food Sci Nutr, 2013, 55: 1219–1240
104 Audrey G, Philippe B, Marc O J, et al. Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp Dermatol, 2010, 19: e1–e8
105 Gueniche A, Benyacoub J, Philippe D, et al. Lactobacillus paracasei CNCM I-2116 (ST11) inhibits substance P-induced skin
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
2017 2 62 5
370
inflammation and accelerates skin barrier function recovery in vitro. Euro J Dermatol, 2010, 20: 731–737
106 Kim J, Ko Y, Park Y K, et al. Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and Clin improvement of acne
vulgaris. Nutrition, 2010, 26: 902–909
107 Levkovich T, Poutahidis T, Smillie C, et al. Probiotic bacteria induce a glow of health. PLoS One, 2013, 8: e53867
108 Erdman S E, Poutahidis T. Probiotic glow of health: It’s more than skin deep. Benef Microb, 2014, 5: 1–11
109 Özdemir Ö. Various effects of different probiotic strains in allergic disorders: An update from laboratory and Clin data. Clin Exp
Immunol, 2010, 160: 295–304
110 Inna S, Tam N M, Maria J, et al. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection.
Infect Immun, 2008, 76: 4726–4736
111 Cecilia J, Sonja L F, Charlotta E, et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota.
Isme J, 2007, 1: 56–66
112 Jernberg C, Lofmark S, Edlund C. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology, 2010,
156: 3216–3223
113 Hill D A, Siracusa M C, Abt M C, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation.
Nat Med, 2012, 18: 538–546
114 William M, Risnes K R, Bracken M B. Prenatal or early-life exposure to antibiotics and risk of childhood asthma: A systematic review.
Pediatrics, 2011, 127: 1125–1138
115 Penders J, Kummeling I, Thijs C. Infant antibiotic use and wheeze and asthma risk: A systematic review and meta-analysis. Euro Resp J,
2011, 38: 295–302
116 Zhang M, Jiang Z, Li D, et al. Oral antibiotic treatment induces skin microbiota dysbiosis and influences wound healing. Microb Ecol,
2015, 69: 415–421
117 Möhle L, Mattei D, Heimesaat M, et al. Ly6C hi monocytes provide a link between antibiotic-induced changes in gut microbiota and
adult hippocampal neurogenesis. Cell Rep, 2016, 15: 1945–1956
118 Marini A, Krutmann J. Pre- and probiotics for human skin. In: Handbook of Diet, Nutrition and the Skin. Wageningen, Gelderland:
Wageningen Academic Publishers, 2012. 2: 318–331
119 Al-Ghazzewi F H, Tester R F. Impact of prebiotics and probiotics on skin health. Benef Microb, 2014, 5: 1–9
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
371
Summary for 肠道微生物与皮肤疾病——肠-脑-皮轴研究进展
Gut microbes and skin disease, gut-brain-skin axis: A review
DUAN YunFeng & JIN Feng*
Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
* Corresponding author, E-mail: jinfeng@psych.ac.cn
Skin disease, especially eczema, dermatitis and acne, may damage appearance of people, and cause physical dis-
comfort or mental disorders. The prevalence rate is increasing sharply and globally that has been affected all popu-
lations in the world. The diseases have various, complex pathogeny and high recurrence rate. Studies demonstrate
that skin and mental state are closely related, emerging of skin diseases always accompanied with prevalence of
mental disorders obviously.
As early as 1930s, the dermatologist John H. Stokes and Donald M. Pillsbury at the university of Pennsylvania,
proposed the gut-brain-skin unified theory. They found a close relationship between the brain and the skin. Recent
studies demonstrate a mechanism among gut microbes unbalance, mental disorder and skin diseases, which has been
postulated to the gut-brain-skin axis.
Gut, brain and skin can interplay to each other. Psychological stress can aggravate a variety of skin diseases,
particularly autoimmune skin disease, such as atopic dermatitis, psoriasis, seborrheic eczema, nodular prurigo, li-
chen planus, chronic urticaria, alopecia areata and pruritus sine material etc.
Skin diseases are also closely related with health of digestive system. There are high ratio gastrointestinal pa-
tients who suffered from acne simultaneously. Gut microbiota is also involved in the gut-skin connection. The
number of Bifidobacterium and Lactobacillus in feces are significantly less in adult patients with atopic dermatitis,
than those of controls. The composition of aerobic and anaerobic bacteria in gut of those seborrheic dermatitis pa-
tients are severely changed. Similarly, more than half of acne patients go along with significant changes in the gut
microbiota.
Studies indicate that both gut microbiota and mental status affect the occurrence of skin diseases. On the contra-
ry, the skin condition can also be as a barometer of mental health and gut microeubiosis. The treatment through the
gut-brain-skin axis can be an important intervention to cure skin diseases. Combination of diet, probiotics, prebiot-
ics, drug and mental health status can be positive factors in skin diseases therapy. Diet may affect the composition
of gut microbes directly, and light diet can reduce the acne rate. Probiotics, like Bifidobacterium longum, Lactoba-
cillus paracasei, Lactobacillus reuteri were reported to protect the function of intestinal barrier, help to reestablish
intestinal microbiota ecological balance, and intensify the anti-inflammation effects. Some bacteria have tremen-
dous potential in prevention and therapy of skin diseases, including eczema, allergic dermatitis, acne, allergic skin,
UV induced skin damage and wound.
Antibiotics can eliminate intestinal microbiota. Two weeks antibiotics treatment in mice may lead to reduce food
intake, and messy, dull hair et al., in the opposite, 10 days probiotics drinking recover hair status obviously. Be-
sides, probiotics can also restore the stress caused skin neurogenic inflammation in mice.
In the present review, we aim to focus on the following hot topics around symbiosis microbiome, gut-brain-skin axis
and skin diseases. To consider the gut microbiota, the brain and the skin as one combined system, instead of single reason
may enhance the effects of treatment. More study should focus on the interaction of skin and intestinal microbiota, as
well as the interaction mechanism of the gut-brain-skin axis, especially immune system. We urge scientists and medical
doctors to pay more attentions on this field.
skin, gut, brain, gut-brain-skin axis, gut microbiota
doi: 10.1360/N972016-00473
Downloaded to IP: 192.168.0.213 On: 2020-06-06 08:35:52 http://engine.scichina.com/doi/10.1360/N972016-00473
... Na rozwój łuszczycy mają prawdopodobnie wpływ czynniki genetyczne, środowiskowe i immunologiczne. Patogeneza łuszczycy związana jest z interakcjami pomiędzy nabytą i wrodzoną odpowiedzią immunologiczną [35]. Ponadto utrzymujący się stan zapalny prowadzi do niekontrolowanej proliferacji i zaburzeń różnicowania keratynocytów. ...
... Ponadto utrzymujący się stan zapalny prowadzi do niekontrolowanej proliferacji i zaburzeń różnicowania keratynocytów. Wiele wskazuje na to, że nieprawidłowości w działaniu osi jelito-skóra i/lub osi jelito-mózg-skóra, w których funkcjonowaniu mikrobiota jelitowa odgrywa niebagatelną rolę, przyczyniają się do rozwoju łuszczycy [35,91]. ...
Article
Full-text available
Due to the advances in DNA sequencing techniques and tools for understanding the human microbiome, the important role of the gut microbiome in maintaining human health has been demonstrated. Recent scientific discoveries emphasize the role of gut dysbiosis in the occurrence of skin diseases. Gut dysbiosis is observed in patients with atopic dermatitis, psoriasis and acne vulgaris and is currently considered as a possible cause of these diseases. Disturbances related to the functioning of the gut-skin axis have also been observed in patients with alopecia areata, vitiligo and melanoma. The therapeutic efficacy of probiotics has been demonstrated in many dermatological diseases. Further research to better understand the mechanisms linking the gut microbiota to the skin could provide a better understanding of the pathophysiology of dermatological disorders.
Article
Full-text available
Antibiotics, though remarkably useful, can also cause certain adverse effects. We detected that treatment of adult mice with antibiotics decreases hippocampal neurogenesis and memory retention. Reconstitution with normal gut flora (SPF) did not completely reverse the deficits in neurogenesis unless the mice also had access to a running wheel or received probiotics. In parallel to an increase in neurogenesis and memory retention, both SPF-reconstituted mice that ran and mice supplemented with probiotics exhibited higher numbers of Ly6Chi monocytes in the brain than antibiotic-treated mice. Elimination of Ly6Chi monocytes by antibody depletion or the use of knockout mice resulted in decreased neurogenesis, whereas adoptive transfer of Ly6Chi monocytes rescued neurogenesis after antibiotic treatment. We propose that the rescue of neurogenesis and behavior deficits in antibiotic-treated mice by exercise and probiotics is partially mediated by Ly6Chi monocytes.
Article
Full-text available
Influence of diet on autism DUAN YunFeng1 , WU XiaoLi1,2 & JIN Feng1 1 Key Laboratoory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China Autism is a heterogeneous group of neurodevelopmental disorders, characterized by severe behavioral abnormalities, language and social communication difficulties, and unusually restricted, repetitive behaviors and interests. Some autistic children cannot take care of themselves, and the course of the disease may last for the person’s lifetime. The prevalence of diagnosed autism has rapidly increased over the last several decades, and the disorder has caused a serious social and economic burden to patients’ families and the society at large. The etiology and mechanism of autism are most likely the result of complex interactions between genetic and non-genetic risk factors. However, these are yet to be completely elucidated and effective treatment methods or interventions are required. The present research shows a close association between diet and autism, poor eating habits, harmful substances from food, abnormalities in nutrient absorption, and utilization and metabolism; all of these may affect the immune, endocrine, and metabolic systems, and finally affect brain development. The intestinal microbiota is significantly influenced by diet and is essential for human health. In particular, it can affect the brain’s normal operation and development through the microbiome-gut-brain axis. Nutrients, growth-promoting substances, and microbes in the diet provide adequate material base for the growth and maintain the composition of the intestinal microbiota. An intervention in the diet may not only improve the nutritional status of autistic patients but also relieve some gastrointestinal symptoms as well as improve sleep, inflexibility, self-injuring behavior, hyperactivity, irritability and other abnormal behaviors; in addition, social and language skills are also improved. Specifically after probiotic treatment, the intestinal microbiota and autism-like behaviors are all significantly improved. Therefore, as autism causes widespread concern, probiotic interventions and the relationship between diet, intestinal microbiota, and autism are becoming research hotspots. autism, diet, probiotics, intestinal microbiome, microbiome-gut-brain axis doi: 10.1360/N972015-00355
Article
Full-text available
Psoriasis is an inflammatory skin disease affecting a 1/42% of the worlda € s population, but the aetiology remains incompletely understood. Recently, microbiota have been shown to differentially regulate the development of autoimmune diseases, but their influence on psoriasis is incompletely understood. We show here that adult mice treated with antibiotics that target Gram-negative and Gram-positive bacteria develop ameliorated psoriasiform dermatitis induced by imiquimod, with decreased pro-inflammatory IL-17- and IL-22-producing T cells. Surprisingly, mice treated neonatally with these antibiotics develop exacerbated psoriasis induced by imiquimod or recombinant IL-23 injection when challenged as adults, with increased IL-22-producing I 3I + T cells. 16S rRNA gene compositional analysis reveals that neonatal antibiotic-treatment dysregulates gut and skin microbiota in adults, which is associated with increased susceptibility to experimental psoriasis. This link between neonatal antibiotic-mediated imbalance in microbiota and development of experimental psoriasis provides precedence for further investigation of its specific aetiology as it relates to human psoriasis.
Article
Full-text available
Increasing numbers of studies have suggested that the gut microbiota is involved in the pathophysiology of stress related disorders. Chronic stress can cause behavioral, cognitive, biochemical, and gut microbiota aberrations. Gut bacteria can communicate with the host through the microbiota-gut-brain axis (which mainly includes the immune, neuroendocrine, and neural pathways) to influence brain and behavior. It is hypothesized that administration of probiotics can improve chronic-stress-induced depression. In order to examine this hypothesis, the chronic restraint stress depression model was established in this study. Adult SPF Sprague-Dawley rats were subjected to 21 days of restraint stress followed by behavioral testing (including the sucrose preference test, elevated-plus maze test, open-field test, object recognition test, and object placement test) and biochemical analysis. Supplemental Lactobacillus helveticus NS8 was provided every day during stress until the end of experiment, and SSRI citalopram served as a positive control. Results showed that Lactobacillus helveticus NS8 improved chronic restraint stress induced behavioral (anxiety and depression) and cognitive dysfunction, showing an effect similar to and better than that of citalopram. Lactobacillus helveticus NS8 also resulted in lower plasma corticosterone and adrenocorticotropic hormone levels, higher plasma IL-10 levels, restored hippocampal 5-HT and NE levels, and more hippocampal BDNF mRNA expression than in chronic stress rats. Taken together, these results indicate an anti-depressant effect of Lactobacillus helveticus NS8 in rats subjected to chronic restraint stress depression and that this effect could be due to the microbiota-gut-brain axis. They also suggest the therapeutic potential of Lactobacillus helveticus NS8 in stress-related and possibly other kinds of depression.
Article
Full-text available
Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century.
Article
The ISME Journal: Multidisciplinary Journal of Microbial Ecology is the official Journal of the International Society for Microbial Ecology, publishing high-quality, original research papers, short communications, commentary articles and reviews in the rapidly expanding and diverse discipline of microbial ecology.
Article
Biogeography and individuality shape the structural and functional composition of the human skin microbiome. To explore these factors’ contribution to skin microbial community stability, we generated metagenomic sequence data from longitudinal samples collected over months and years. Analyzing these samples using a multi-kingdom, reference-based approach, we found that despite the skin’s exposure to the external environment, its bacterial, fungal, and viral communities were largely stable over time. Site, individuality, and phylogeny were all determinants of stability. Foot sites exhibited the most variability; individuals differed in stability; and transience was a particular characteristic of eukaryotic viruses, which showed little site-specificity in colonization. Strain and single-nucleotide variant-level analysis showed that individuals maintain, rather than reacquire, prevalent microbes from the environment. Longitudinal stability of skin microbial communities generates hypotheses about colonization resistance and empowers clinical studies exploring alterations observed in disease states.
Article
Interest in the effect of emotional and nervous states on bodily function has been growing in this country during the past decade to a degree which makes it seem desirable that the literature on the subject as it affects the skin be collected and, when possible, critically summarized. We undertook this task with little realization of the labor and time required for even a partial fulfilment. When our bibliography approached three hundred titles on the general aspects of the matter alone, it became evident that such a résumé could not be offered before this association en masse, for the first paper itself approaches one hundred pages in length. We are therefore constrained instead to offer for this occasion one of the special summaries, of which eight were planned, dealing with that part of the field of somatopsychic correlations which is thus far most developed, in some of its possible dermatologic
Chapter
The human skin provides a habitat for a variety of microorganisms, the skin microflora. There is a complex network of interactions between the microbes and cells of the epidermis. The composition and function of the skin’s microflora has become one of the most exciting and rapidly developing areas in cutaneous biology and the interest in strategies of a selective modulation of the skin microflora is constantly growing. Current research on the complex interplay between the microbiota, barrier function and innate immune system of the skin indicate that the skin’s microbiota have a beneficial role, much like that of the gut microflora. Preservation of the microflora is a way to maintain healthy skin functions and because of its role in skin health and disease, the maintenance or restoration of healthy skin microbiota has become the aim of modern therapies. Pre- and probiotics have been suggested as important applications of such therapies and in the last few years have reached scientific popularity as safe and effective agents to regulate the body’s micro-environment and the skin health. A constantly growing body of literature exists about their relevance in cosmetic and dermatology. Most of these examples deal with the orally administration of food grade, but recently their use in cosmetic applications direct to the skin has been proposed. Prebiotics rebalance the skin microflora while probiotic concepts consist of applying an inactivated microbial biomass. Probiotics improve gut barrier function, restore healthier gut microecology, stimulate the host immune system, and antagonize the inflammatory alterations. A regular consumption of fermented dairy products is likely to improve the natural skin barrier function and improved its cosmetic appearance. In the case of diseases with some imbalance in microorganisms, such as impure skin/mild acne or dry skin/mild atopic dermatitis, pre- and probiotic concepts represent an effective alternative to strictly antibacterial products.