ArticlePDF Available

Effect of ethanol and aqueous extracts of seed pod of Copaifera salikounda (Heckel) on complete Freund's adjuvant‐induced rheumatoid arthritis in rats

Wiley
Journal of Food Biochemistry
Authors:
  • Alex Ekwueme Federal University Ndufu-Alike Ebonyi State Nigeria
  • Alex Ekwueme Federal University Ndufu Alike Ikwo

Abstract and Figures

The antirheumatoid arthritis potential of ethanol and aqueous extracts of seed pod of Copaifera salikounda (SPCS) was evaluated using the chicken collagen/complete Freund's adjuvant‐induced arthritic rats model. Adjuvat‐induced rats were treated with varied doses of the extracts (400, 600, and 800 mg/kg body weight) and with reference drug, indomethacin for 21 days. Antiarthritic evaluation was done through measurement of body weight, paw size, inflammatory makers, hematological parameters, cytokines, antioxidant enzymes, reduced glutathione, lipid peroxidation as well as histopathological examinations. Treatment with the ethanol and aqueous extracts of SPCS markedly inhibited the paw size and caused weight gain. The extracts considerably modulated the hematological as well as the antioxidant parameters. Likewise, the extract restored the altered lipid peroxidation, pro‐inflammatory mediators, and inflammatory factors which further accentuate the implication in adjuvant‐induced arthritis. Thus, the ethanol and aqueous extracts of SPCS showed a significant antiarthritic activity that was statistically analogous to that of indomethacin. Practical applications Copaifera salikounda (Heckel) has been used in treatment of different ailments including rheumatoid arthritis in folklore medicine. This is the first reported proof of the antiarthritic potential of the seed pod. Oxidative stress has been implicated in rheumatoid arthritis. Ethanol extract of SPCS has been shown to be predominantly rich in phenols, terpenoids, alkaloids, and flavonoids which are natural antioxidant. The present study has demonstrated that ethanol and aqueous extracts of SPCS can exert antioxidative and antiinflammatory effects, thus strengthening its antiarthritic potentials.
This content is subject to copyright. Terms and conditions apply.
J Food Biochem. 2019;e12912. wileyonlinelibrary.com/journal/jfbc  
|
 1 of 13
https://doi.org/10.1111/jc.12912
© 2019 Wiley Periodicals, Inc.
Received:13December2018 
|
  Revised:2 0March2019 
|
  Accepted:4May2019
DOI : 10.1111/jfbc .12912
FULL ARTICLE
Effect of ethanol and aqueous extracts of seed pod of
Copaifera salikounda (Heckel) on complete Freund’s adjuvant
induced rheumatoid arthritis in rats
Chinyere Aloke1| Udu Ama Ibiam2| Nwogo Ajuka Obasi1| Obasi Uche Orji2|
Nkiru Nwamaka Ezeani2| Patrick Maduabuchi Aja2| Esther Ugo Alum2|
Joseph Chukwufumnanya Mordi3
1DepartmentofMedicalBiochemistry,
FacultyofBasicMedicalSciences,Alex
EkwuemeFederalUniversity,Abakaliki,
Nigeria
2DepartmentofBiochemistr y,Facultyof
Sciences,EbonyiStateUniversity,Abakaliki,
Nigeria
3DepartmentofBiochemistr y,DeltaSt ate
University,Abraka,Nigeria
Correspondence:
ChinyereAloke,DepartmentofMedical
Biochemistr y,FacultyofBasicMedical
Sciences,AlexEkwuemeFederalUniversity,
Ndufu‐Alike,Ikwo,Abakaliki,EbonyiState,
Nigeria.
Email: alokec2002@yahoo.com
Abstract
Theantirheumatoidarthritispotentialofethanolandaqueousextractsofseedpod
of Copaifera salikounda(SPCS) was evaluatedusing thechickencollagen/complete
Freund'sadjuvant‐inducedarthriticrats model.Adjuvat‐inducedratsweretreated
with varied doses of the ex tracts (400, 600, and 800 mg/kg body weight) and
withreferencedrug,indomethacin for21days. Antiarthritic evaluation wasdone
throughmeasurementofbodyweight,pawsize,inflammatorymakers,hematologi
calparameters, cytokines,antioxidantenzymes,reduced glutathione,lipidperoxi
dation as wellas histopathological examinations.Treatment withthe ethanol and
aqueousextractsofSPCSmarkedlyinhibitedthepawsizeandcausedweightgain.
Theextractsconsiderablymodulated thehematologicalaswellasthe antioxidant
paramete rs. Likewise, the ext ract restored th e altered lipid peroxidati on, pro‐in
flammatorymediators,andinflammatoryfactorswhichfurtheraccentuatetheim
plication inadjuvant‐inducedarthritis. Thus, theethanoland aqueous extracts of
SPCS showedasignificantantiarthriticactivitythat was statistically analogousto
that of indomethacin.
Practical applications
Copaifera salikounda (Heckel) has been used in treatment of different ailments in‐
cluding rheumatoid arthritis in folklore medicine. This is the first reported proof of
theantiarthriticpotentialofthe seedpod. Oxidative stress hasbeen implicated in
rheumatoidarthritis.EthanolextractofSPCShasbeenshowntobepredominantly
richin phenols,terpenoids,alkaloids,andflavonoidswhicharenaturalantioxidant.
ThepresentstudyhasdemonstratedthatethanolandaqueousextractsofSPCScan
exertantioxidativeandantiinflammatoryeffects,thusstrengtheningitsantiarthritic
potentials.
KEYWORDS
antioxidant,Copaifera salikounda,Cytokines,indomethacin,lipidperoxidation
2 of 13 
|
   ALOKE Et AL.
1 | INTRODUCTION
Rheumatoid arthritis is an autoimmune systemic disorder with an
unknown cause which is associated with swelling of membrane
liningthejointsanddamageofthejoints(Dhaouadietal.,2007).
The synovial stratum or synovium which is situated within the
joint cavity isthe first joint thatis affected(Smolen, Aletaha,&
Ma c h o ld,2005) .O therti s s uesaro u n dthejo i nt ssucha sskin,b l o o d
vessels,andmusclesareequallyaffectedbytheailment(Asolkar,
Kakkar,&Chakre,1992).Differenttherapeuticapproacheshave
beenemployedinthe treatment of RA. Nevertheless,sufferers
of rheumatoid arthritis still contend with the negative side effects
of synthetic steroidal and nonsteroidal antiinflammatory drugs
(NSAIDS) (M usa et al., 2012). World hea lth organizatio n report
equally assert s that long‐term usage of these drugs is accom
panied wi th toxic actio ns or undesir able side effe cts elici ted by
thedrugs(Sarwar,Suryakanta, Hameed,Abul,&Sarfaraz,2011).
Sequel to the negative effects and ineffectiveness of the cur
rently us ed orthodox d rugs, atten tion is geared towa rd the use
of herbal drugs which are used in folklore medicine because they
producelessersideeffectsandarecheaper(Dharamsiri,Jayakody,
Galhena,Liyanage,&Ratnasooriya,2003).Oneofsuchplantthat
iscommonlyemployedintreatmentofRAtraditionallyisCopaifera
salikounda but there are no documented evidences to substantial
thisclaim,hencethisstudy.
Copaifera salikounda (C. salikounda) belongs to the family
Caesalpiniaceae (Leguminosae or Fabaceae). Its pulped leaves are
usedinsoretreatment, coldextractoftheseed inmanagementof
vertigo , whereas the dr ied leaves and b ark mixed with b aked and
powdered clay are used in ulcer treatment (Oteng‐Amoako and
Obeng,2012).Theseed podsof Copaifera salikounda with or with‐
out the seeds are underutilized as food material in the cooking of
yam porr idge mostly duri ng famine perio d. In the same vein, t he
grounded seed is used to make sauce for eating of white yam by the
rural po pulace from Ugw ulangwu in Oh aozara Local G overnment
Area of Ebonyi State, Nigeria. In light of the all eged antiarthritic
potential s of the seed pod of t his plant, this s tudy is design ed to
investigatetheeffect ofethanoland aqueousextractsofseedpod
of Copaifera salikounda in chicken collagen/complete Freund's adju
vant‐induced rheumatoid arthritis.
2 | MATERIALS AND METHODS
2.1 | Plant material
The seed pods of C. salikounda (Heckel) (SPCS) were sourced
from a far m land located a t Umuigboke villa ge in Ohaozara Lo cal
Governm ent of Ebonyi State, Nige ria in the month of Novem ber.
Theplantwasidentifiedand madeauthentic byMr.AlfredOzioko,
a plant ta xonomist at the Inte rnational Cent re for Ethnomedi cine
and Drug Development Nsukka, Enugu State. A voucher speci
men has been deposited with the center (Voucher specimen no.
InterCEDD/16281). The picture of seed pod of C. salikounda is
shown in Figure 1 below.
2.2 | Preparation of extracts
The ethanol and aqueous extracts of SPCS were prepared by the
method describedby Oluduro andAderiye(2009).The driedseed
pods of C. salikounda obtained from the farm were washed with
clean water and further dried in the shade.Thereafter, they were
then pounded in a mortar using pes tle to get them into a fine p article.
The fine particle was passed through a sieve to obtain its powdered
form. Aqueous extract of SPCS was obtainedbysoaking500gof
thepowderedSPCSin200mlofdistilledwateratroomtemperature
for3daysandfilteredthereafter.Theethanolextractwasprepared
bymacerationof500gofpowdered SPCSin1,000mlofabsolute
ethanol for72hr.Then,theextractwasfiltered,concentrated,and
dried in vacuo. The percentage yield for the ethanol and aqueous
extractsofSPCSare6.16and8.35%,respectively.
FIGURE 1 Seedpodsof Copaifera salikounda with some seeds
    
|
 3 of 13
ALOKE Et A L.
2.3 | Chemicals and reagents
Chicken t ype 11 collagen, CFA, and ot her reagents use d for this
studywerepurchasedfromSigma‐Aldrich,USA,andwereofstand
ard grade.
2.4 | Experimental animals
Albino rats (Wister strain) of eithersex weighing 170–195g were
obtainedfromtheAnimalHouseofFacultyofVeterinaryMedicine,
University of Nigeria, Nsukka. Therats weresafelytransportedto
the Animal House of Department of Biochemistry Ebonyi State
University, Abakaliki and thereafter acclimatized for a period of2
weeks under standard laborator y conditions and fed with growers’
mash and water ad libitum. The Fac ulty of Basic Me dical Science
ResearchandEthicsCommitteeofAlexEkwuemeFederalUniversity,
Ndufu‐AlikeIkwo, Nigeria granted ethical approvalfor this animal
study with ethical code no: FBMS/EC/AE/1812. The procedures
agreewiththeU.S.NationalInstitutesofHealthGuidelinesforCare
andUseofLaboratoryAnimalsinBiomedicalResearch(2001).
2.5 | Quantitative phytochemical screening
Quantitativedeterminationofalkaloid,terpenoids,andglycosidesof
theextractswereconducted accordingtothe methoddescribed by
Harborne(1973).Theflavonoidcontentwasdeterminedusingprevi
ouslydescribedmethod(Bohnr&Kocipai,1994).Saponinconcentra
tionw asd ete rmin edu sin gear lie rdes crib edm etho d(S ofo wor a,199 3).
TotalphenolicwasdeterminedbymeansofFolin–Ciocalteu'sphenol
reagent (Singleton, Orthofer, & Lamuela‐Reventos, 1999). Tannin
content was determined using gravimetric method as described by
Makkar, Bluemmel,Borowy,and Becker(1993).The composition of
steroidwasdeterminedusingthemethodofAOAC(1999).Reducing
sugar and c arbohydrates were quantified using the method previously
describedbyEkwueme,Nwodo,Joshua,Nkwocha,andEluka(2015).
2.6 | Acute toxicity
WecarriedoutacutetoxicitystudyofSPCSethanolandaqueousex
tractsusingmodifiedmethodofLorke(1983).Atotalof68ratswere
used for th e acute toxicity s tudy. The rats were r andomized into
threegroups,1,2,and3,weighedandfastedovernight beforethe
acutetoxicitytesting.Group1(fourrats)servedasthecontrolgroup
andwasgivennormalsaline.Group2wasgiven ethanolextractof
SPCS,while group 3receivedaqueous extractof SPCS. Groups 2
and 3 were further subdivided into eight groups (four rats in each
subgroup). T he subgroups wer e orally given et hanol and aque ous
extractsofSPCSat200,400,800,1,200,1,800,2,000,3,000,and
5,000mg/kgbodyweight,respectively.Theexperimentalratswere
observedfor24hr.Further,theywerecontinuouslyobservedforthe
first2hrformorbidityandupto24hrformortality.
2.7 | Experimental design
2 . 7.1   | Induction of arthritis
RA was i nduced according to t he method previo usly described b y
Pearson (1956) Arthritis was induced intradermally by injection of
0.1‐mlchicken typeIIcollagen inCFA[heat‐killed Mycobacterium tu
berculosisandsterileparaffinoil(10mg/ml)]intothelefthindpawsof
rats ingroups 2–9accordingto theirbodyweights. Treatment with
etha nolan daque ousex t rac t sofSBCPsta rte dfromthe10thdayaf ter
arthritis induction and continued for 21 days. The treatment lasted
for3 weeks afterwhichthe animals wereeuthanized humanely via
cervicaldislocation.Thereafter,bloodsampleswerecollectedbycar
diac punc ture into sterile bot tles. The blood sample s were centrifuged
(3,000×gfor15min)andserumseparatedforbiochemicalanalyses.
2 . 7. 2  | Experimental groups
Atotal number of 135Wistar albino rats divided intonine groups
of 15 rats ea ch were used. T hey were groupe d as follows: Gro up
1servesas Normalcontroland wasgiven normal saline (5 ml/kg).
Group 2 was induced but not treated (Negative control) and re
ceived5ml/kg normalsaline.Group 3 (Positivecontrol) is arthritic
rats treatedwith indomethacin(10mg/kg)standard drug.Group 4
isarthriticrats +400mg/kgethanolextractofseedpodCopaifera
salikounda(EESPCS).Group5isarthriticrats+600mg/kgEESPCS.
Group 6isarthritic rats+800mg/kg EESPCS.Group 7isarthritic
rats+400mg/kgaqueousextractofseedpodCopaifera salikounda
(AESPCS).Group8isarthriticrats+600mg/kgAESPCS).Group9is
arthriticrats+800mg/kgAESPCS).
2.8 | Evaluation of physical parameters
Thechangesinpawsizeandbodyweightweremeasuredbeforein
ductionand on10th, 17th, 24th, and31st daysof thestudy using
digital Vernier caliper and weighing balance.
2.9| Determination of inflammatory parameters
The seru m C‐reactive protein (CR P) level was carried out by the
methoddescribedbyVoilaetal.(1981).Rheumatoidfactor(RF)was
determined according to methoddescribed byJohnson and Faulk
(1976).Theactivityofadenosinedeaminase(ADA) was assayedby
the meth od elucidated by B ergmeyer (1983). Esti mation of ery th
rocy te sedimentat ion rate (ESR) wa s carried out ac cording to the
methoddescribedbyWestergreen(1957).S erumlevelsoftumorne
crosis factor‐α (TNF‐α),interleukin‐1beta (IL‐1β),andinterleukin‐6
(IL‐6)were quantitated using an ELISA‐based kit for rats following
manufacturer's instructions.
2.10| Determination of hematological parameters
AnimprovedNeubauer's counting chamber was used for counting
RBC, wh ite blood cell (WB C) count, and plate let as describe d by
4 of 13 
|
   ALOKE Et AL.
Baker and Si lverton (1982). Hemoglobin ( Hb) was determined ac
cordingtothemethoddescribedbyICSH(1996),while packedcell
volume(PCV)wasdeterminedbymethoddescribedbyICSH(1980).
2.11 | Assessment of oxidative stress markers and
antioxidant status
The concen tration of malo ndialdehyde (M DA) in serum was sp ec
trophotometrically estimated by measuring thiobarbituric acid reac
tivesubstance(TBARS)asdescribedbyBuegeandAust(1978),while
nitric oxide(NO) was measured according to method describedby
Tither adge (1998). The activit y of superoxide dism utase (SOD) in
serum was assayedby themethoddescribed byFridovichandMc‐
Cord(1969),whereastheassayfortheactivityofcatalase(CAT)was
donebythemethoddescribedbySinha(1972).
2.12| Histopathological assessment of joint
The histopathological assessment of the interphalangeal joints was
carriedoutbyfixingtheminformolaceticacidsolutionwhichwere
later removed and cleaned with distilled water twice. The samples
wereimmersedfor2hrinethanolofdifferentgradedseries(30,50,
70,and 95%),and thereafterdehydrated in absolute ethanol over
night.Afterdehydration,thesampleswereclearedbyputtingthem
successivelyvia 3:2, 1:1, and1:3 volume/volumeofabsolute etha
nol/xyleneseriesandafterwardthroughpurexylenefor3hr.Each
ofthemwaskeptinmoltenwaxat50–60°Cfor48hrforinfiltration
ofthewaxintothe tissues.The specimens were placedinthe em
beddingmoldandmoltenwaxpouredonthem,andsetasidetocool.
Plas ticblockwasth enattachedtoth ewa xb loc kcont ain ingthesa m
ple and to a rocking microtome for sectioning. The cut sections were
laid on slides daubed with albumin of an egg, cleared with graded
ethanol–xylenesolutions,anddyedwithhematoxylinandeosin.The
slideswereoven‐driedandsubsequently,microscopicexaminations
were carried out using light microscope and photomicrograph.
2.13| Statistical analysis
AllthedatawereexpressedasMean±Standarddeviation(SD)in
Tables and Figur es. One‐way ANOVA tes t was used for asse ss
ment of significant differences between means. A significance
threshold of p<0.05wasadoptedfortheanalyses.Datawere
analyzed using the IBM‐SPSS (version 20) statistical software
(IBM, Co rp., Atlanta , GA). Value of (p <0.05)wasviewedtobe
statistically significant.
3 | RESULTS
3.1 | Quantitative phytochemical screening of
EESPCS
The result of quantitative phytochemical screening of EESPCS is
shown in Table1.The results revealed thatEESPCScontainedthe
followingphytochemicals: tannins,steroids, terpenoids,total phe
nolics,alkaloids,flavonoids,glycosides,reducingsugarandcarbohy
drateswithtotalphenolics,alkaloids,andterpenoidspredominantly
more abundant.
3.2 | Acute toxicity testing
Theresultoftheacutetoxicitystudydemonstratedthattheextracts
werenottoxic.Therewasnodeathorobservabletoxiceffectinthe
ratsevenatahighdoseof5,000mg/kg.
3.3 | Effect of EESPCS and AESPCS on paw size and
weight of adjuvant‐induced arthritic rats
The data i n Figure 2a showe dt hat administ ration of EESP CS and
AESPCSatdosesof40 0,600,and80 0mg/kgsignificantly( p<0.05)
reduced paw swelling in dose dependent manner in comparison with
thecontrol.Similarobservationwasevidentinindomethacin‐treated
group.Theresultsofalterationsinbodyweightoftheexperimental
rats are shown in Figure 2b. The result revealed significant (p<0.05)
loss in bod y weight of induced a rthritic r ats. However, treatm ent
withEESPCSandAESPCSatdifferentconcentrationsinhibitedloss
in weight in the treated rats in comparison to the negative control.
Thus,thedeclineinweightwasrestoredinthetreatedrats.
3.4 | Effect of EESPCS and AESPCS on
inflammatory parameters of adjuvant‐induced
arthritic rats
The results of inflammatory parameters are depicted in Figures
3(a–d)and4(a–c).AsshowninFigure3(a–d),CRP,ESR,RF,andADA
levels were significantly elevated in the serum of ar thritic control
group relative to the normal control. Treatment with different doses
oftheextractmitigatedtheirconcentrationindose‐dependentman
ner.Likewise,theconcentrationsofthepro‐inflammatorymediators
(I L‐1β,IL‐6,TNFα)(Figure4a–c)wereattenuatedbytheextractad
ministration corollary to the negative control.
TABLE 1 PhytochemicalcompositionofEESPCS
Phytochemical constituents Value (mg/100g)
Tannins 12.57±0.15
Steroids 2.51±0.09
Terpenoids 189.4±10.9
Total phenolics 1,148.99±36.88
Alkaloids 1,04 4.70±28.90
Flavonoids 84.54±5.87
Glycosides 9.61±0.01
Reducing sugar 31.63±1.95
Carbohydrates 165.41±11.67
Note:Resultsaremeanoftriplicatedeterminations±standarddeviation
(SD).EESPCS:ethanolextractofseedpodof Copaifera salikounda.
    
|
 5 of 13
ALOKE Et A L.
3.5 | Effect of EESPCS and AESPCS on
hematological parameters of adjuvant‐induced
arthritic rats
Figure 5(a–e) show s the effect of t he extrac ts on RBC, PC V, Hb,
platelet count, and WBC. The resultsshowed that there was con
siderablesubsidenceinthelevelsRBC,PCV,andHbwhiletherewas
markedupsurgein plateletandWBCcountintheinducedarthritic
ratsrelativetothenormalcontrol.EESPCSandAESPCStreatments
conferred protection to the rats by helping to restore the altered
hematologicalparametersclosetonormal.Similarly,theeffectofin
domethacinwascomparabletotheeffectoftheextracts.
3.6 | Effect of EESPCS and AESPCS on oxidative
stress parameters of adjuvant‐induced arthritic rats
The resul ts are shown in Figur e 6(a–f). As expected, injec tion of
chicken collagen/complete Freund's adjuvant into the hind paw of
the rats markedly increased theserum level of MDA and NO and
decreasedtheactivitiesofCAT,SOD,GPx,andGSHrelativetothe
normal control. However, treatment with indomethacin and var
ieddosesoftheextractsat400,600,and800mg/kgbody weight
caused a significant (p<0.05)attenuationintheserumconcentra
tionofMDAandNO,whiletheactivitiesofcatalase,superoxidedis
mutase,and glutathioneperoxidase and reduced glutathione were
boosted.
3.7 | Effect of EESPCS and AESPCS on
HIstopathology of adjuvant‐induced arthritic rats
The histopathology observations of the normal control and ad
juvant‐induced arthritic rats are shown in Figure 7(a–e). A few
numbers of multiple synoviocytes and giant cells (yellow arrow)
without evidence of inflammation was observed in normal control
group(Figure7a).Therewasdestructionof epidermallayer,lossof
thickness,and hyperplasia of synoviocytes (blackarrow)inthe un
treated arthriticrats, i.e.,negative controlgroup (Figure7b).Quick
onset of stratum corneum and stratum granulosum regeneration
with intact collagen fibers and dif fuse synoviocytes at the epider‐
malregionwasobservedinindomethacin‐treatedgroup(Figure7c).
Regeneration of stratum corneum with stratum granulosum was
evidentinEESPCS‐treatedgroup(Figure7d).Formationofthethree
stratas(stratumcorneum,Sratumgranulosum, and stratum basale)
inAESPCS‐treatedgroupwasseen(Figure7e).
4 | DISCUSSION
This study has demonstrated that administration of ethanol and
aqueousextracts of seedpod of C. salikounda at different doses
exhibitedpotent antiarthriticpotential against adjuvant‐induced
rheumatoidarthritisinrats.Besides,theextractsreducedthein
flamedpawsizeandrestoredthelossinbodyweightofadjuvant‐
inducedar thr it icrats.Theextractsequallyi ncreasedtheactivities
of SOD, CAT, GPx, and G SH as well as decreas ed the levels of
MDA, NO, IL‐1β,IL‐6, and T NF‐α indicating the inhibition of in
flammatory reaction by reducing the generation of free radicals. In
thesamevein,treatmentwiththeextractssignificantlyincreased
thelevelsofHb,RBC,andPCV,whiletheWBCandplateletcount
were reduced in the ar thritic rats relative to the negative con
trol. The phytochemical analysis of the ethanol extract of C . sa
likounda revealed the presence of tannins, steroids, terpenoids,
totalphenolics, alkaloids, flavonoids, glycosides, reducingsugar,
and carbohydrate with total phenolics and alkaloids being the
FIGURE 2 EffectofEESPCSandAESPCSonpawsizeandbodyweightofadjuvant‐inducedarthriticrats.
EESPCS,ethanolextractofseedpodof Copaifera salikounda;AESPCS,aqueousextractofseedpodof Copaifera salikounda;Norm.C,normal
control;Neg.C,negativecontrol;Pos.C,positivecontrol;EE,ethanolextract;AE,aqueousextract
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
Ĩ/ŶĚ ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
WĂǁƐŝnjĞ;ŵŵͿ
d/D
(a) (b)
ϭϱϬ
ϭϲϬ
ϭϳϬ
ϭϴϬ
ϭϵϬ
ϮϬϬ
ϮϭϬ
ϮϮϬ
ϮϯϬ
Ĩ/ŶĚĂLJϭϬĂLJϭϳĂLJϮϰĂLJϯϭ
tĞŝŐŚƚ;ŐͿ
d/D
EŽƌŵ͘EĞŐ͘WŽƐ͘ϰϬϬϲϬϬ
ϴϬϬϰϬϬϲϬϬϴϬϬ
6 of 13 
|
   ALOKE Et AL.
most pre dominant chem ical compone nt in the extr act. Many of
these secondar y metabolites from plant s have been discovered
andshowntodisplayantiarthriticpotentials(Clavinetal.,2007).
Althoughtheexac tmechanismofactionofantiarthriticactivityof
EESPCSandAESPCShasnotbeenelucidated,itissuggestedthat
these phytochemicals individually or in synergy could be responsi
ble for this particular pharmacological action.
Rat adjuvant‐induced ar thritis is the most frequently employed
anim almode lforassessingtheef f icac yofNSAIDSa nddis eas e‐mod
ifyingantirheumaticdrugs(DMARDS)insubclinicalstudiesanditis
proposed to be most suitable model for assessing drugs af fecting
human arthritis. The development of arthritis in rats using complete
Freund's adjuvant could be divided into three stages just as in human
rheumatoidarthritis,viz.: inductionstage without proofof synovi
tis, ear ly synovitis, and l ate synovitis and any e ffective antir heu
maticagentshouldbeabletooccludeanyofthesestages(Woode,
Boakye‐Gyasi,Danquah,Ansah,&Duwiejua,2009).
Alterationsinbodyweighthavebeenemployedinevaluatingthe
course of disease and the response to treatment of antiinflammatory
drugs (Winder et al., 2005). Inthe current study,the reductionin
thebodyweightofR A‐inducedratsmightbeduetothechangesin
their met abolic act ivities (Kore, S hete, & Desai, 2 011).Th is might
equally be attributed to reduction of absorption of 14C‐glucose and
14C‐leucinein the intestineof inflamed rats (Somasundaram et al.,
1983). Additionally, it has been suggested that administration of
complete Freund's adjuvant stimulate the production of increased
levelofleptin(acytokinehormone)whichfacilitatelossofappetite
andhence,weightloss(Mariam2016).Theincreasedbodyweightof
thearthritic ratsonadministrationoftheextractscouldbedueto
restoration of the decreased absorption capacity of intestine during
inflammationupontreatmentwiththeextracts.
The paw size was s uppressed by admi nistration of dif ferent
doses of th e extract s as well as indomet hacin in compar ison to
untreated control group. This suggests that the mechanism of
action of EESPCS and AESPCS might be linked to stoppage of
prostaglandin and histamine and may be leukotriene production.
These me tabolites p roduced thro ugh cyclooxy genase (COX) and
lipoxygenase (LOX) pathways represent two crucial classes of
FIGURE 3 (a–d)EffectofEESPCSandAESPCSoninflammatoryparametersofadjuvant‐inducedarthriticrats.
EESPCS,ethanolextractofseedpodof Copaifera salikounda;AESPCS,aqueousextractofseedpodof Copaifera salikounda;CRP,C‐reactive
protein;ESR,Erythrocytesedimentationrate;RF,Rheumatoidfactor;ADA,Adenosinedeaminase;Norm.C,normalcontrol;Neg.C,negative
control;Pos.C,positivecontrol;EE,ethanolextract;AE,aqueousextract
Ϭ
ϱ
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
ZW;ŵŐͬĚůͿ
d/D
Ϭ
Ϯ
ϰ
ϲ
ϴ
ϭϬ
ϭϮ
ϭϰ
ĂLJϭϬĂLJϭϳĂLJϮϰĂLJϯϭ
^Z;ŵŵͬŚƌͿ
d/D
ϮϬ
ϯϬ
ϰϬ
ϱϬ
ϲϬ
ϳϬ
ϴϬ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
Z&;/ƵͬŵůͿ
d/D
(a)
(c) (d)
(b)
Ϭ͘ϯ
Ϭ͘ϰ
Ϭ͘ϱ
Ϭ͘ϲ
Ϭ͘ϳ
Ϭ͘ϴ
Ϭ͘ϵ
ϭ
ĂLJϭϬĂLJϭϳĂLJϮ
ϰ
ĂLJϯϭ
;hͬ>Ϳ
d/D
EŽƌŵ͘ EĞŐ͘ WŽƐ͘ ϰϬϬϲϬϬ
ϴϬϬϰϬϬϲϬϬϴϬϬ
    
|
 7 of 13
ALOKE Et A L.
inflammatory mediators (Sunita, Jha, & Pattanayak, 2011).It has
been reported that inflammation is the initial present ation of the
ailmentatthesiteofinjectionofCFAinthehindpawwhichculmi
nateinpawswelling(Prajapati,Shah,&Sen,2011).CRP isoneof
the acute phase proteins whose concentration rises during inflam
matory reactions (McConkey, Crockson, Crockson, & Nilkinson,
1973).Treatment withethanol andaqueous extracts of SPCS as
well as indomethacin considerably caused diminution in the con
centrationof CRP.Enhancedproduction ofendogenous proteins
like fibrinogen and α/βglobulincouldaccountforariseintheESR
and such an elevation suggests an active but obscure disease pro
cess(Patiletal.,2011).Inthesamevein,ESRexhibitsthecharac
teristic of displaying elevations in the amount in reaction to stress
or inflammations such as injury, injections, surgery, and tissue
death (Nai r, Singh, & Gup ta, 2012). The ext racts admini stration
abrogate d the elevated E SR close to norm al and attenu ated the
activityofADA.
Notable immune reaction disorders that may be relevant in de‐
velopmentofRA areimmunecomplexesthatareseeninjointfluid
cells and in vasculitis. Antibodies, for instance, IgM produced by
plasmacellsplayapartinformationofthesecomplexes.SerumRF
givesanindexofIgMtiterfoundintheserum(Prajapatietal.,2011).
RF is the immunological manifestation of one's immune response to
the presence of an antigen. This reaction to the antigen culminates
intheformationofimmunecomplexes;whichsuccessivelycombine
with the complement and may eventually result in damage of sy‐
novium, c artilage, and b one. The develop ment of inflammatio n is
directlyproportionaltotheamountofserumRF(Viswanathaetal.,
2011).Thus,investigationoftheamountofserumRFlevelsinrheu
matoid arthritis is important in elucidating and evaluating the dis‐
ease progression and to enhance the production of new therapeutic
agents for rheumatoid arthritistreatment.Serum RF is amarker of
systemic inflammation and antibody production against the injected
adjuvant . The increased levels of RF in the adjuvant‐induced arthritic
rats was due to activationofCD4+Tcellswhich stimulate Bcells
toproduceimmunoglobulins,that areassociated withelevationof
serum RF (Nielen, Horst‐Bruinsma, Koning, Habibuw, & Dijkmans,
2006;Yeh,2004).
FIGURE 4 (a–c)EffectofEESPCSandAESPCSoninflammatorycytokinesofadjuvant‐inducedarthriticrats.
EESPCS,ethanolextractofseedpodof Copaifera salikounda;AESPCS,aqueousextractofseedpodof Copaifera salikounda; IL‐1β,
interleukin‐1beta;IL‐6,interleukin‐6;TNF‐α,TumorNecrosisFactor‐alpha;Norm.C,normalcontrol;Neg.C,negativecontrol;Pos.C,positive
control,EE,ethanolextract;AE,aqueousextract
ϮϬϬ
ϮϮϬ
ϮϰϬ
ϮϲϬ
ϮϴϬ
ϯϬϬ
ϯϮϬ
ϯϰϬ
ϯϲϬ
ϯϴϬ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
/>Ͳϭɴ;ƉŐͬŵůͿ
d/D
(a)
(c)
(b)
ϮϬϬ
ϮϮϬ
ϮϰϬ
ϮϲϬ
ϮϴϬ
ϯϬϬ
ϯϮϬ
ϯϰϬ
ϯϲϬ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
/>Ͳϲ;ƉŐͬŵůͿ
d/D
ϭϳϬ
ϭϵϬ
ϮϭϬ
ϮϯϬ
ϮϱϬ
ϮϳϬ
ϮϵϬ
ϯϭϬ
ϯϯϬ
ϯϱϬ
ϯϳϬ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
dE&Ͳɲ;ƉŐͬŵůͿ
d/D
EŽƌŵ͘ EĞŐ͘ WŽƐ͘ ϰϬϬϲϬϬ
ϴϬϬϰϬϬϲϬϬϴϬϬ
8 of 13 
|
   ALOKE Et AL.
TNF‐α a nd IL‐1 β have a significant function in the devel opment of
adjuvantarthritis,inadditiontomediatorslikeIL‐6,IL‐15,IL‐18,and
leukotrieneB4,withsomefunctioningincarryingneutrophilsduring
immune inflammation. TNF‐α is the principal agent in the process
ofinflammationanditisimplicatedin T and Bcells differentiation,
proliferationandinboneerosion(Rioja,Bush,Buckton,Dickson, &
Life,2004),whileIL‐1β is involved in damage of car tilage and bone
(Cuzzocreaetal.,2000).Ithasbeen reported thatTNF‐α blockage
reduces inflammationand alleviatecartilage damage(Cuzzocreaet
al.,2000).Besides,itfunc tionsinleukocyterecruitmenttotheartic
ulationsandequallyintheregulationofnitricoxidesynthase‐2and
cyclooxygenase‐2expressioninthesynovial tissueandcartilageof
arthriticrats(Amin,Attur,&Abramson,1999,Issekutzetal.,1994).
ThisprocessisremarkableasnitricoxideandprostaglandinE2,have
an important role in the development of the inflammatory process
(Fahmi, 2004). IL‐6has beenimplicated in jointdamage, leukocyte
recruitment,apoptosis,andT‐cellactivationusingmodelsofexper
imenta l arthritis i n subclinical t rials (Schelle r,Oh nesorge, & Rose‐
John,2006).
Anemia is often observed in subjects with severe arthritis
(Glen,Bowman,Ronloff,&Seely,1977).Thiscouldbeaccounted
for by the gastrointestinal blood loss due to rheumatoid ar thri
tis drugs and alteration in bone marrow in inflammatory ar thritis
subjects that hinders the liberation of iron for use in synthesis of
red bloo d cells (Allar, O'Dr iscoll, & Laur ie, 1977;Mo wat, 1971).
Bhujade,Talmate,andPatil(2015)suggestedthatdecreaseinHb
during ar thritis may be ascribed to reduced er ythropoiten level
or lowered response of the bone marrow erythropoiten and de
structionofredbloodcellsprematurely.Mostcasesofanemiain
rheumatoid arthritis subjects could be as a result of the depletion
FIGURE 5 (a–e)EffectofEESPCSandAESPCSonhematologicalparametersofadjuvant‐inducedarthriticrats.
EESPCS,ethanolextractofseedpodof Copaifera salikounda;AESPCS,aqueousextractofseedpodof Copaifera salikounda;RBC,Redblood
cell;PCV,Packedcellvolume;Hb,Hemoglobin;WBC,whitebloodcell;Norm.C,normalcontrol;Neg.C,negativecontrol;Pos.C,positive
control;EE,ethanolextract;AE,aqueousextract
ϭϴϬ
ϮϬϬ
ϮϮϬ
ϮϰϬ
ϮϲϬ
ϮϴϬ
ϯϬϬ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
Z;yϭϬϭϮͬ>Ϳ
d/D
(a)
(c)
(e)
(d)
(b)
ϭϱ
ϮϬ
Ϯϱ
ϯϬ
ϯϱ
ϰϬ
ϰϱ
ϱϬ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
Ws;йͿ
d/D
ϱ
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
ϯϬ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
,ď;ŵŐͬĚůͿ
d/D
ϭϯϬ
ϭϰϬ
ϭϱϬ
ϭϲϬ
ϭϳϬ
ϭϴϬ
ϭϵϬ
ϮϬϬ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
WůĂƚĞůĞƚŽƵŶƚ;yϭϬϵͬ>Ϳ
d/D
ϭϬϬϬϬ
ϭϮϬϬϬ
ϭϰϬϬϬ
ϭϲϬϬϬ
ϭϴϬϬϬ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰ ĂLJϯϭ
tŽƵŶƚ;yϭϬ
ϵͬ>Ϳ
d/D
EŽƌŵ͘EĞŐ͘WŽƐ͘ϰϬϬ ϲϬϬ
ϴϬϬ ϰϬϬϲϬϬϴϬϬ
    
|
 9 of 13
ALOKE Et A L.
ofironthatisstoredinthebody(Punnonenetal.,2000).Ironde
ficienc y may also be caused by inflamed synovial tissue preferring
totakeupiron(Giordano,Floravanti,Sancasciani,Marcolongo,&
Borghi,1984). ThelevelofIL‐6is significantly higherinrheuma
toid arthritis patients that are anemic and hemoglobin levels have
inverserelationshipwithIL‐6(Nikolaisen,Figenschau,&Nossent,
20 08).IL‐6isimplicatedi nt heind uct ionofhepcidindur inginfl am
mation and hence brings about low iron level in blood (Nemeth et
al., 20 04). Hepcidin is a n iron regulator y hormone pr oduced by
the liver cells and inhibits the release of iron from macrophages in
thespleenandironuptakefromtheduodenum(Ganz,2003).Our
resultsrevealedthattheextractssignificantly(p<0.05)elevated
the levelsofHb and RBCin thetreatedarthritic rats relative to
the untreated ones. This can be attributed to the phytochemical
constituentoftheextract.Alowhematocritlevelisanindication
of low red blood cell count. There was a significant increase in
thePCVlevelsofthearthriticratstreatedwithindomethacinand
varie ddo sesoft hee xtrac t sat400,600,a nd8 0 0mg / kgbo dy.Th e
effectwasbothtime‐anddose‐dependent. However,treatment
with the ex tracts and indomet hacin boosted the PCV levels in
comparison to the negative control.
Previous authors have shown that platelets count and plate
let‐derived proteins are elevated within the synovium and synovial
fluid in RA (Gasparyan, Stavropoulos‐Kalinoglou, Sandoo, & Kitas,
2010).IL‐6indirectlymediatesthrombocytosis, throughthe induc
tionofthrombopoietin,andiscommontootherinflammatorycyto
kines(Pablos‐Álvarez,2009).Gasparyanetal.(2010)hasshownthat
pleiotropic cytokines of rheumatoid arthritis have megakaryotopoi
etic/thrombopoietic activities. Thrombocytosis is a characteristic
ofsharp and sluggish blood failure and in R A it might be ascribed
toanemiaseeninthedisease(MowatandHothersal,1968).Choie
etal.(1974)hasrevealedthatbothchronic anemiaandnormoblast
deprivation of iron are implicated in the thrombocytosis production.
The homeostasis of platelet is mediated by thrombopoietin (a hu‐
moralregulatoryfactor)thathaseffectonsize,number,ploidy,and
maturationrateofmegakaryocyte(Ebbe,1974).Itissuggestedthat
there is chemical correlation between thrombopoietin and erythro
poietin in chronically anemic subjects with persistent reticulocytosis
FIGURE 6 (a–f)EffectofEESPCSandAESPCSonoxidativestressmarkersandantioxidantstatusofadjuvant‐inducedarthriticrats.
EESPCS,ethanolextractofseedpodof Copaifera salikounda;AESPCS,aqueousextractofseedpodof Copaifera salikounda;CAT,catalase;
SOD,superoxidedismutase;GPx,Glutathioneperoxidase;GSH,reducedglutathione;MDA,Malondialdehyde;NO,Nitricoxide;Norm.C,
normalcontrol;Neg.C,negativecontrol;Pos.C,positivecontrol;EE,ethanolextract;AE,aqueousextract
Ϭ
Ϭ͘ϱ
ϭ
ϭ͘ϱ
Ϯ
Ϯ͘ϱ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰĂLJϯϭ
d;ƵͬŵŐͿ
d/D
(a)
(c)
(e) (f)
(d)
(b)
Ϯϱ
ϯϱ
ϰϱ
ϱϱ
ϲϱ
ϳϱ
ϴϱ
ϵϱ
ĂLJϭϬĂLJϭϳĂLJϮϰĂLJϯϭ
^K;ƵͬŵŐͿ
d/D
ϯϬ
ϯϱ
ϰϬ
ϰϱ
ϱϬ
ϱϱ
ϲϬ
ϲϱ
ϳϬ
ϳϱ
ĂLJϭϬ ĂLJϭϳ ĂLJϮϰĂLJϯϭ
'Wdž;ƵͬůͿ
d/D
ϱ
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
ϯϬ
ϯϱ
ĂLJϭϬĂLJϭϳĂLJϮϰĂLJϯϭ
'^,;hŵŽůͬůͿ
d/D
ϭϬ
ϮϬ
ϯϬ
ϰϬ
ϱϬ
ĂLJϭϬĂLJϭϳĂLJϮϰĂLJϯϭ
EK;ŶŵŽůͬŵůͿ
d/D
EŽƌŵ͘ EĞŐ͘ WŽƐ͘ ϰϬϬϲϬϬ
ϴϬϬϰϬϬϲϬϬϴϬϬ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ĂLJϭϬ ĂLJϭϳĂLJϮϰĂLJϯϭ
DĞƋƵŝǀĂůĞŶƚͿ
d/D
10 of 13 
|
   ALOKE Et AL.
and elevated ery thropoietin levels with increased platelet counts
(Hutchins on et al., 1976).E xtract s administ ration to the ad juvant‐
induced rats mitigated the platelet counts relative to the untreated
ones.
TheincreaseintotalWBCcountinarthriticratsmaybeattributed
to immune system stimulation against foreign microorganisms as
demonstrated by the infiltration of inflammatory mononuclear
cells in the a rthriti c rats’ joint (Ma ria, Engeniusz , Miroslaw, Maria,
&Iwona, 1983). The WBC of the arthriticrats treated with varied
dosesofethanolandaqueousextractsofseedpodofC. salikounda
was reduced significantly ( p<0.05)relativetotheuntreatedones.
Treatmentwithethanol and aqueousextracts ofseedpodofC. sa‐
likoundarestored thelevels of Hb, RBC, andWBCwhich mightbe
attributed to inhibition of migration of leucocytes into the site of in‐
flammationbytheextract(Suralkar,Jadhav,Gupta,&Bhoite,2015)
suggesting that these extracts may have antiarthritic potentials
which are perhaps mediated by immune‐suppressant mechanism.
Withinthebody,reactiveoxygenspecies(ROS)/reactivenitro
genspecies(RNS)/freeradicalarefrequentlyproducedasaresultof
exposureofthe bodytochemicals generated internallyand exter
nally. There is normally a balance between these free radic als and
antioxidants as the generation of ROS/RNS is stabled by endoge
nousantioxidants. Anyimbalancebetweenthegenerationof ROS/
RNSspecies anddeactivationprocessculminates tocellularabnor
mality anduntowarddisease conditionsincludingRA (Ali, Barakat,
& Hassan, 2015). The ROS/RNS species bring about removal of
FIGURE 7 (a–e)EffectofEESPCSandAESPCS(800mg/kg)onhistopathologyofjointsofadjuvant‐inducedarthriticrats.H&E.Mag.
×100.EESPCS,ethanolextractofseedpodof Copaifera salikounda;AESPCS,aqueousextractofseedpodof Copaifera salikounda;A,normal
control;B,negativecontrol;C,Positivecontrol;D,TreatedwithEESPCS;E,TreatedwithAESPCS.Yellowarrow,multiplesynoviocytesand
giantcellswithoutevidenceofinflammation(Figure7a),blackarrowin7B:destructionofepidermallayer,lossofthicknessandhyperplasia
of synoviocytes. Quick onset of stratum corneum and stratum granulosum regeneration with intact collagen fibers and diffuse synoviocytes
attheepidermalregioninindomethacin‐treatedgroup(Figure7c).Regenerationofstratumcorneumwithstratumgranulosumevident
inEESPCS‐treatedgroup(Figure7d).Formationofstratumcorneum,Sratumgranulosum,andstratumbasaleinAESPCS‐treatedgroup
(Figure7e)
D E
F
H
G
    
|
 11 of 13
ALOKE Et A L.
synovial fluid and facilitate the degradation of hyaluronic acid which
leads to loss of viscosity injoints(Arnett et al., 1988). Thehuman
system has an effective way of avoiding and mopping up free radical
usingitsendogenousantioxidantmechanism.
TheresultsinFigure7(a‐e)showedsignif icantelevatio nsinthe
activitiesofSOD,CAT,GPx,andGSHanddecline intheconcen
tration of MDAinthetreatedarthriticratswhencomparedwith
the negat ive control. Thi s indicates tha tE ESPCS‐ and A ESPCS‐
treated arthritic rats were effectively shielded from deleterious
effectoffreeradicals.Thephytochemicalconstituentsoftheex
tractsmighthaveplayedacontributoryantioxidantfunctioninad
ditiontotheendogenousantioxidantdefensemechanism,hence
curbingtheoxidativestressinducedintherats.Previousauthors
have reported the involvement of oxidative stress inthe patho
genesis of R A partic ularly in proli feration of syn ovitis (Maurice ,
Nakamura,&vanderVoort, E.A., vanVliet,A., Staal,F.J.,Tak,P.P.,
Breedveld, F.C., & Verweij, C.L., 1997; Tak, Zvaifler, Green, &
Firestein, 2000). Pro‐inflammatory mediators such as cy tokines
andprostaglandins, in addition toreactiveoxygenspecies(ROS)
andnitricoxide (NO)areliberated at inflammatory sitesinmost
joint disorders (Sakurai et al., 1995). These mediators are re
latedtodiminutionof SOD activityduringinflammation(Afonso,
Champy,Mitrovic,Collin,&Lomri,20 07 ).Thismayaccountforthe
continueddeclineintheactivityofSODinnegativecontrolgroup
relat ivetoEESP C S‐a ndA E SPCS‐tr eate dar t hrit icr ats. SODacti on
isanessentialintegral partofthecellularantioxidant mechanism
thatshieldcellsandtheextracellularmatrixfromthedeleterious
consequencesofsuperoxideanion(
O
2
)anditsderivativeslikehy
droxyl radical(OH) (Afonso et al., 2007). Superoxidedismutase
transforms
O
2
toH2O2(Afonsoetal.,2007).CATmakestheH2O2
harmlessbytransformingitintowaterandoxygen.Inthiscurrent
study, the increase inserumactivity of CATactivity mightsafe
guard against reactive oxygen species‐mediated inflammation in
EESPCS‐ and AESPCS‐treated groups, while the diminution of
serumCATactivityinnegativecontrolgroupwouldinevitablyac
centuate the oxidativestressin tissues. This stemsfromthefact
thattheH2O2producedwouldbetransformedintoHOCl,anin
flammatory factor which is capable of reacting with
O
2
to produce
OHthatmayreactandcausecellinjuryinlivingcells(Hitchon&
Ei‐Gabalawy,2004).Ithas earlier beenreported that GSHcould
functionasasulfhydrylbuffertosafeguardthethio(–SH)groups
ofbiomolecules,particularly,proteinfromthe harmfuleffectsof
ROS (Singh, Rajasekar, Raj, & Paramaguru, 2011). The reduction
in serum concentration of MDAin EESPCS and AESPCSas well
as indomethacin‐treated groups equally demonstrated that the
extracts could have protective potential against harmful effect
ofROS mediatedlipid peroxidation in tissuebiomolecules(Andy,
Gabriel,&Onyebuguwa,2004).
Theresult ofhistopathologicalexaminationswasin conformity
with the result of biochemical findings as there was restoration of
the rats’ joint architecture near normal control in the adjuvant‐in‐
ducedratsonwithtreatmentwiththeextracts.
5 | CONCLUSION
Inviewoftheresultsofthisstudy,itisinferredthebothEESPCSand
AESPCSattenuatedadjuvant‐inducedrheumatoidarthritisinratsby
modulating inflammatory mediators, hematological, and oxidative
stress parameters. This could be attributed to the phy tochemicals
therein.
ACKNOWLEDGMENT
WeexpressourprofoundgratitudetoMrAlfredOziokoforhelping
usin theidentification and authenticationoftheplant.Weequally
appreciate Dr. C.E.C.C. Ejike and Dr. I.I. Ekpe for their insightful com‐
ments and contributions.
CONFLICT OF INTERESTS
We wish to confir m that there are n o known conflic ts of interes t
associated with this publication and there has been no significant fi‐
nancial support for this work that could have influenced its outcome.
ORCID
Chinyere Aloke https://orcid.org/0000‐0002‐8929‐6754
REFERENCES
Afonso, V., Champy, R., Mitrovic, D., Collin, P., & Lomri, A. (2007).
Reactiveoxygenspeciesandsuperoxidedismutase:Roleinjointdis
eases. Joint Bone Spine,74,324–329.
Ali,E.A. I., Barakat,B.M.,& Hassan, R. (2015).Antioxidantandangio
static effec t of spirulina platensis suspension in complete freund’s
adjuvant‐induced ar thritis in rats. PLoS ONE,10 (4),e0121523.https
://doi.org/10.1371/journal.pone.0121523
Allar, S., O’ Driscoll , J., & Laurie , A. (1977). Salm onella oste omyelitis in
aplastic anaemia after anti‐lymphocytic globulin and steroid treat
ment. Journal of Clinical Pathology,2,174–175.
Amin, A . R.,Attur, M., & Abramson, S. B.(1999).Nitric oxide synthase
and cyclooxygenases: Distribution, regulation and intervention in
arthritis. Current Opinion in Rheumatology,11 ,202–209.https://doi.
org/10.1097/00002281199905000‐00009
Andy,O. E.,Gabriel,I.,& Onyebuguwa,P.N. (2004). Lipidperoxidation
and ascorbic acid levels in Nigeria children with acute falciparum
malaria. African Journal of Biotechnology, 3, 560–563. https://doi.
org/10.5897/AJB2004.000‐2110
AOAC.(1999).Association of Official Analytical Chemists Method of analy‐
sis(15thed.,pp.222–236).Washington,DC:AOAC.
Arnett, F.C., Edworthy, S. M.,Bloch, D. A.,Mcshane, D. J., Fries, J. F.,
Cooper, N. S ., … Hunder, G. G . (1988).T he Americ an Rheuma tism
Assoc iation 1987 revised cri teria for the cl assificati on of rheuma
toid art hritis. Arthritis and Rheumatology, 31, 315–324. https://doi.
org/10.1002/art.1780310302
Asolkar,L. V., Kakkar,K. K., & Chakre, O. J.(1992).Second supplement
to glossary of Indian medicinal plants with active principles, part I
(A‐K ), (1965 ‐1981) (xlvii p. 414). New Delhi, In dia: Publication and
Information Directorate.
Baker, F.J., & Silverton, R . E.(1982).Introduction to medical laboratory
technology(5thed.,pp.34–56).London,UK:ButterworthScientific.
12 of 13 
|
   ALOKE Et AL.
Bergmeyer,H.U.(1983).Methods of enzymatic analysis(3rded.,pp.135–
136).DeerfieldBeach,FL:VerlagChemie.
Bhujad e, A., Talmate, S., & P atil, M. B. (20 15). In vivo stud ies on ant‐
arthritic activity of Cissus quadrangularis against adjuvant induced
arthritis. Journal of Clinical and Cellular Immunnology,6,327.
Bohnr, M. K., & Kocipai, A. (1994). Flavonoids composition and uses
(pp. 106–109). Washington , DC: Smithson ian Institutio n Scholarly
Press.
Buege, J. A ., & Aust , S. D. (1978).Mi crosomal li pid peroxid ation. In S.
Flesicher,&L.Packer(Eds.),Methods in enzymolgy ( Vol. 52,pp.302–
310).NewYork,NY:AcademicPress.
Choie,S.I.,Simone,J.V.,&Jackson,C.W.(1974).Megakaryocytopoiesis
inexperimentalirondeficiencyanaemia.Blood,43,1–11.
Clavin, M., Gorzarlczany,S.,Macho,A.,Muno, E., Ferraro,G., Acevedo,
C., & Mar tino, V. (2007). Ant i‐inflammator y activity of f lavonoids
from Eupatorium arnotianum. Journal of Ethnopharmacology, 112,
585–589.
Cuzzocrea, S., Mazzon, E., Bevilaqua, C., Costantino, G., Britti, D.,
Mazullo,G.,…Caputi,A.P.(2000).Cloricromene,acoumarinederiv
ative,protectsagainstcollagen‐inducedarthritisinLewisrats.British
Journal of Pharmacology, 131, 1399–1407. https://doi.org/10.1038/
sj.bjp.0703695
Dhaoua di, T., Sfar, I., Abelm oula, L., J endoubi‐Ayed , S., Aouadi, H .,
Ben Abdellah, T., … Gorgi, Y. (2007). Role of immune system,
apoptosis and angiogenesis in pathogenesis of rheumatoid arthri
tisandjointdestruction,asystematicreview.La Tunisie Médicale,
85,991–998.
Dharamsiri,M.G.,Jayakody,J.R.A.C.,Galhena,G.,Liyanage,S.S.P.,&
Ratnasooriya,W.D.(2003).Antiinflammatoryandanalgesicactivities
of mature fr esh leaves of Vitex negundo. Journal of Ethnopharmacology,
87,199–206.https://doi.org/10.1016/S0378‐8741(03)00159‐4
Ebbe,S.(1974).Thrombopoietin.Ibid,44,605.
Ekwueme,F.N.,Nwodo,O.F.C.,Joshua,P.E.,Nkwocha,C.,&Eluka,P.E.
(2015).Qualitativeandquantitativephytochemicalscreeningofthe
aqueousleafextract of Senna mimosoides : Its ef fect in in vivo leu
kocytemobilizationinducedbyinflammatorystimulus.International
Journal of Current Microbiology & Applied Sciences,4(5),1176–1188.
Fahmi, H. (2004). mPGES‐1 as a novel target for arthritis. Current
Opinion in Rheumatology, 16, 623–627. htt ps://doi.org /10.1097/01.
bor.0000129664.81052.8e
Fridovich , I., & Mc‐Cord, J . M. (1969). Superox ide dismuta se an enzy
matic function for erythrocuperin. Journal of Biological Chemistry,
244,6045–6055.
Ganz, T. (2003). Hepcidin,a key regulator ofiron metabolism and me
diator of anemia of inflammation. Blood,102, 783–788. https://doi.
org/10.1182/blood‐2003‐03‐0672
Gasparyan,A.Y.,Stavropoulos‐Kalinoglou,A.,Sandoo,A.,&Kitas,G.D.
(2010).Mean platelet volumeinpatients with rheumatoidarthritis:
The effect of anti‐TNF‐alpha ther apy. Rheumatology International,
30(8),1125–1129.https://doi.org/10.1007/s00296‐009‐1345‐1
Giordano,N.,Floravanti,A.,Sancasciani,S.,Marcolongo,R.,&Borghi,C.
(1984).Increasedstorageofironandanaemiainrheumatoidarthritis:
Usefulnessdeferioxamine.British Medical Journal,289,961–962.
Glen, E. M., Bowman, B. J., Ronloff, N. A., & Seely, R. J. (1977). A
major contributory cause of arthritis in adjuvant inoculated rats.
Granulocytes. Agents Actions, 7, 265–282. https://doi.org/10.1007/
BF01969985
Harbor ne, J. B. (1973). Phytochemical methods: A guide to modern tech
niques of plant analysis(pp.88–185 ).Ne wYo rk,NY:Chapm anandHa ll.
Hitchon,C.A.,&Ei‐Gabalawy,H.S.(2004).Oxidationinrheumatoidar
thritis. Arthritis Research Therapy,6,265–278.
Hutchinson,R.M.,Davis,P.,&Jayson,M.I.V.(1976).Thrombocytosisin
rheumatoid arthritis. Annals of the Rheumatic Diseases,35,138.
ICSH.(1980).Recommendationforreferencemethodfordetermination
bycentrifugation of Packedcell volumeof blood. Journal of Clinical
Pathology,33,1–2.
ICSH. (1996).Recommendations for reference method for hemoglobi
nometr yinhumanblood(ICSHstandard1995)andspecificationsfor
international hemoglobincyamide standard (4th editio n). Journal of
Clinical Pathology,49,271–274.
Issekutz,A.C.,Meager,A.,Otterness,I.,&Issekutz,T.B.(1994).Therole
of tumour necrosis f actor‐_ and IL‐1 in polymor phonuclear leukocy te
and T lymphocy te recruitment to joint inflammation in adjuvant ar‐
thritis. Clinical and Experimental Immunology,97,26–32.
Johnson, P. M., & Faulk, W. P. (1976). Rheumatoid factor: Its na
ture, specificity, and production in rheumatoid arthritis. Clinical
Immunology and Immunopathology, 6(3), 414–430. https://doi.
org/10.1016/0090‐1229(76)90094‐5
Kore, K. J.,Shete, R . V.,&Desai,N. V.(2011).Anti‐arthriticactivity of
hydroalcoholicextractofLawsoniaInnermis.International Journal of
Drug Development and Research,3,217–224.
Lorke, D. (1983). A new approach to practical acute toxicity tests.
Archives of Toxicology,54(2),275–287.
Makkar, H. P. S., Bluemmel, M., Borow y, N. K., & Becker, K. (1993).
Gravimetric determination of tannins and their correlations with
chemical and protein precipitationmethods. Journal of the Science of
Food & Agriculture,61,161–165.https://doi.org/10.1002/jsfa.27406
10205
Maria, M ., Engeniusz, M ., Miroslaw, K., Ma ria, K., & Iwona , P. (1983).
Adjuvantinduceddiseaseinrats,clinicalfindingsandmorphological
and biochemical changes in the blood histological changes in internal
organs. Rheumatology,2,231–245.
Mariam , A. H. K. (2016). A nti‐arthri tic activi ty of ethanol ic extrac t of
Lawsonia inermis in Freund’s adjuvant induced arthritic rats. IOSR
Journal of Agriculture and VeterinaryScience,9(6),2319–2372.
Maurice,M.M.,Nakamura,H.,vanderVoort, E.A.,vanVliet,A.,Staal,F.
J.,Tak,P.P.,Breedveld,F.C.,&Verweij,C.L.(1997).Evidenceforthe
role of an alt ered redox s tate in hypor esponsive‐ n ess of synovi al
Tcells in rheum atoid arthrit is. Journal of Immunology,158,1458–1465.
McConkey,B.,Crockson,R.A.,Crockson,A.P.,&Nilkinson,A.R.(1973).
The effect of some anti‐inflammatory drugs on the acute‐phase
proteins in rheumatoid arthritis. Quarterly Journal of Medicine, 32,
785–791.
Mowat, A.,&Hothersall,T.E.(1968).Nature ofanaemiaofrheumatoid
arthritis.VIII. Annals of the Rheumatic Diseases,27,345.
Mowat,G.(1971).Haematologicalabnormalitiesinrheumatoidarthritis.
Seminars in Arthritis and Rheumatism,1,195–199.
Musa, A.M.,Abdullahi, M.I.,Mahmud,M.D.,Panya, S.T., Yaro,A. H.,
Magaji, M. G., …Sule, M.I.(2012).Analgesicandanti‐inflammator y
activitiesofthemethanolleafextractofIndigoferahirsutalinnand
isolation of stigmasterol. Nigerian Journal of Pharmaceutical Sciences,
1,39–48.
Nair,V.,Singh, S., & Gupta,Y.K.(2012). Evaluation of disease modify
ingactivity ofCoriandrumsativuminexperimental models. Indian
Journal of Medical Research,135(2),240–245.
Nemeth,E.,Rivera,S., Gabayan, V.,Keller,C.,Taudorf, S., Pederson,B.
K., & Ga nz, T.(2 004). IL‐6 media tes hypoferr emia of inflam mation
by inducing the synthesis of t he iron regulator y hormone hepci‐
din. Journal of Clinical Investigation, 113, 1271–1276. https://doi.
org /10.1172/JCI200420945
Nielen,M.M.J.,van der Horst‐Bruinsma, I.E.,deKoning,M.H.M. T.,
Habibuw,M.R.,&Dijkmans,B.A.C.(2006).Simultaneousdevelop
ment of acute phase response and autoantibodies in preclinical rheu‐
matoid ar thritis. Annals of the Rheumatic Diseases, 65(4), 535–537.
https://doi.org/10.1136/ard.2005.040659
Nikolaisen, C., Figenschau, Y.,&Nossent, J. C. (2008).Anemiainearly
rheumatoidarthritisisassociatedwithinterleukin6‐mediatedbone
marrowsuppression,buthasnoeffectondiseasecourseormortal
it y. Journal of Rheumatology,35,380–386.
Oluduro,A. O.,&Aderiye,B.I.(2009).Effectof Moringa oleifera seed
extractonvitalorgansandtissueenzymesactivitiesofmalealbino
rats. African Journal of Microbiology Research,3(9),537–540.
    
|
 13 of 13
ALOKE Et A L.
Oteng‐Amoako, A. A., & Obeng, E. A. (2012). Copaifera salikounda
Heckel.RecordfromPROTA4U.InR.H.M.J.Lemmens,D.Louppe,&
A.A .Oteng‐Amoako(Eds.).PROTA (Plant Resources of Tropical Africa
/ Ressources végétale s de l’Afriqutropicale).Wageningen,Netherlands.
Retrievedfromhttp://www.prota4u.org/search.asp
PablosÁlvarez,J.L.(2009).Interleukin6inthephysiopathologyofrheu
matoid ar thritis. Clinical Rheumatology,5(1),34–39.
Patil,K.R.,Patil,C.R.,Jadhav,R.B.,Mahajan,V.K.,Patil,P.R.,&Gaikwad,
P.S. (2011). Anti‐arthritic activity ofbartogenic acid isolated from
fruits of Barringtonia racemosaRoxb.(Lecy thidaceae).Evidence‐Based
Complementary and Alternative Medicine, 2011:785245. https://doi.
org/10.1093/ecam/nep148
Pearson,C.M.(1956).Developmentofarthritis,periarthritisandperios
titis in rats given adjuvants. Pro ceedings of the So ciety for Experi mental
Biology and Medicine,91(1),95–101.https://doi.org/10.3181/00379
727‐91‐22179
Prajapati,D.S.,Shah,J.S.,&Sen,D.J.(2011).Modulator yeffectoftel
misartanonanti‐inflammatoryeffectofrosiglitazoneinadjuvantar
thritis model. International Journal of Research in Pharmaceutical and
Biomedical Sciences,2(2),554–566.
Punnonen, K., Kaipiainen‐Sepranen, O., Riittinen, L., Tuomisto, T.,
Hongisto, T.,& Penttila, L. (20 00).Evaluationof iron stores in ane
mic patients with rheumatoid arthritis using an automated immuno‐
turbidimetric assay for transferrin receptor. Clinical Chemistry and
Laboratory Medicine,12,1297–1300.
Rioja, I.,Bush,K. A.,Buckton,J.B.,Dickson,M.C., & Life,P.F.(2004).
Jointcytokinequantificationintworodentarthritismodels:Kinetics
ofexpression,correlationofmRNAandproteinlevelsandresponse
to prednisolone t reatment. Clinical and Experimental Immunology,137,
65–73.https://doi.org/10.1111/j.1365‐2249.2004.02499.x
Sakurai,H., Kohsaka, H.,Liu, M.F.,Higashiyama, H., Hirata,Y.,Kanno,
K.,…Miyasaka,N.(1995).Nitricoxideproductionandinducibleni
tric oxid e synthase e xpression i n inflammato ry arth ritis. Journal of
Clinical Investigation,96,2357–2363.
Sarwar,B., Suryakanta, S., Hameed, H., Abul, M. B., &Sarfaraz, M. H.
(2011). Systematic review of herbals as potential anti‐inflamma
tory agents: Recent advances, current clinical status and future
perspectives. Pharmacognosy Review, 5, 120–137. https://doi.
org/10.4103/0973‐7847.91102
Scheller,J., Ohnesorge,N., &Rose‐John, S. (2006). Interleukin‐6trans‐
signalling in chronic inflammation and cancer. Scandinavian Jour
nal of Immunology, 63, 321–329. https://doi.o rg /10.1111/j.1365‐
3083.2006.01750.x
Singh,S.,Rajasekar,N.,Raj,N.,&Paramaguru,R.(2011).Hepatoprotective
andantioxidanteffectofAmorphophalluscampamilatusagainstac
etaminophen induced hepatotoxicityinrats. International Journal of
Pharmacy and Pharmaceutical Science,3,202–205.
Singleton,V.L.,Orthofer,R.,&Lamuela‐Reventos,R.M.(1999).Analysisof
totalp henolan do theroxida tionsubstratea ndantioxida ntsbyme ansof
Folin‐Ciocalteu’s phenol reagent. Methods in Enzymology,299,152–178.
Sinha,A.K.(1972).Colorimetricassayofcatalase.Analytical Biochemistry,
47(2),389–394.https://doi.org/10.1016/0003‐2697(72)90132‐7
Smolen , J. S., Alet aha, D., & Macho ld, K. P. (2005). Th erapeuti c strat
egies in early rheumatoid arthritis. Best Practice & Research:
Clinical Rheumatology, 19(1), 163–177. https://doi.org/10.1016/j.
berh.2004.08.009
Sofowora , A. (1993). Medicinal plants and traditional medicina in Africa.
Screening plants for bioactive agent(2 nd ed., pp. 134–156). Ibadan ,
Nigeria:SunshineHouse:SpectrumBooksLtd.
Somasundaram, S., Sadique, J., & Subramoniam, A. (1983). Influence
of extra‐intestinal inflammation on the in vitro absorption of
14C‐glucose and the effectsofanti‐ nflammatorydrugsinthejeju
num of rats. Clinical and Experimental Pharmacology and Physiology,
10(2),147–152.
Sunita,P.,Jha, S., & Pattanayak,S.P.(2011).Anti‐inflammatoryand in‐
vivoantioxidantactivitiesofCressacriticalLinn.,ahalophyticplant.
Middle‐East Journal of Scientific Research,8,129–140.
Suralkar,A.A., Jadhav,S.,Gupta,N.A., & Bhoite, C. T.(2015). Anti‐ar
thritic potential of helianthus annuus in laboratory animals. Asian
Journal of Pharmaceutical and Clinical Research,8(6),53–57.
Tak,P.P.,Zvaifler,N.J.,Green,D.R.,&Firestein,G.S.(2000).Rheumatoid
arthritisandP53:howoxidativestressmight alter thecourseofin
flammatory diseases. Immunology Today, 21, 78–82. https://doi.
org/10.1016/S 0167‐5699(99)01552‐2
Titheradge,M.A.(1998).Theenzymaticmeasurementofnitrateandni
trite. Methods in Molecular Biology,100,83–91.
Viswanatha, G.,Akinapally,N.,Shylaja,H.,Nandakumar,K., Srinath, R.,
&Janardhanan,S. (2011).Analgesic, anti‐inflammatory and antiar
thriticactivit yofnewlysynthesizedbicyclothieno1,2, 3‐ triazines.
Macedonian Journal of Medical Sciences,4(2),131–138.
Voila, M., Ruoslanti, L., & Enguall, E. (1981). Immunology methods.
Journal of Immunological Methods,42,11–115.
Westergren,A.(1957).Diagnostictests:Theerythrocytesedimentation
rate range an limitations of the technique. Triangle,3(1),20–25.
Winder,C.V.,Lembke,L.A.,&Stephens,M.D.(2005).Comparativebio
assayofdrugs in adjuvantinducedarthritis inrats:flufenamicacid,
mefenamicacidandphenylbutazone.Arthritis and Rheumatism,12(5),
472–482.
Woode, E. , Boakye‐Gy asi, E., Danqu ah, C. A., A nsah, C., & D uwiejua,
M. (200 9). Anti‐Art hritic ef fects of Palisota hirsuta K . Schum. Le af
extract in freund’s adjuvant‐induced art hritis in rats. International
Journal of Pharmacology,5,181–190.
Yeh,E. T.H. (2004). CRP as amediatorof disease. Circulation, 10 9(21),
11–14.
How to cite this article:AlokeC,IbiamUA,ObasiNA ,etal.
Effectofethanolandaqueousextractsofseedpodof
Copaifera salikounda(Heckel)oncompleteFreund’sadjuvant‐
induced rheumatoid arthritis in rats. J Food Biochem.
2019;e12912. https ://doi.org/10.1111/jfbc.12912
... The raised MDA (a consequence of increased extent of lipid peroxidation) might be due to the increased formation of ROS which tends to increase abundantly during chronic inflammation and could result to damage to tissues. Other authors have also reported increase in MDA in liver and brain of rats with arthritis (64,65,66). Elevated level of MDA has been found in the serum, plasma and erythrocytes of RA patients (13,67). ...
... Some functions of NO include immune response, neural communication and blood pressure maintenance (68). In this study, increased NO level portends oxidative stress and this corroborates previous findings as reported by other authors (64,13,67). However, Veselinovic et al. (69) reported unaltered level of NO in the plasma of RA patients. ...
... This result is in tandem with other findings using human beings (54,13,71,74). However, some groups have also reported unaltered catalase activity in RA patients (64,75,78,72). ...
Article
Full-text available
Several studies have implicated reactive oxygen species in perpetuation of inflammation and subse-quent de�struction of joints in patients with arthritis. Antioxidant effects of Buchholzia coriacea ethanol leaf-extract, aqueous and ethyl acetate fractions on oxidative stress indices in rheumatoid arthritic female Wistar albino rats were examined. 180 rats were randomly divided into 12 groups. Fifteen rats were placed in each group. Rats without arthritis were placed in Group 1. Rheuma�toid arthritis was induced in groups 2 to 12 by intradermal injection of 0.1 ml complete Freund’s adjuvant into the left hind paws of rats. Group 2 (arthritic rats) did not receive any treatment but rather were given normal saline while group 3 (arthritic rats) received 5 mg/kg indomethacinTM (a standard drug). Rats in Groups 4 to 12 were administered the samples at doses of 200, 400 and 800 mg/kg body weight. Freund’s ad-juvant administration led to inflammation and oxidative stress which were marked by significant (P<0.05) increase in paw sizes, oxidative stress markers and reduced body weight of the rats. Arthritic rats were treated with standard drug and samples (at varied doses) and this resulted to reversal of the trend of those parameters in a time and dose-dependent manner. Rats that received 800 mg/kg of the aqueous fraction displayed the best desirable result which was similar to the effect of indomethacin. Thus, Buchholzia coriacea ethanol extract and fractions may be useful in the management of oxidative stress which is very common among individuals with rheumatoid arthritis.
... The raised MDA (a consequence of increased extent of lipid peroxidation) might be due to the increased formation of ROS which tends to increase abundantly during chronic inflammation and could result to damage to tissues. Other authors have also reported increase in MDA in liver and brain of rats with arthritis (64,65,66). Elevated level of MDA has been found in the serum, plasma and erythrocytes of RA patients (13,67). ...
... Some functions of NO include immune response, neural communication and blood pressure maintenance (68). In this study, increased NO level portends oxidative stress and this corroborates previous findings as reported by other authors (64,13,67). However, Veselinovic et al. (69) reported unaltered level of NO in the plasma of RA patients. ...
... This result is in tandem with other findings using human beings (54,13,71,74). However, some groups have also reported unaltered catalase activity in RA patients (64,75,78,72). ...
Article
Full-text available
Several studies have implicated reactive oxygen species in perpetuation of inflammation and subse-quent destruction of joints in patients with arthritis. Antioxidant effects of Buchholzia coriacea ethanol leaf-extract, aqueous and ethyl acetate fractions on oxidative stress indices in rheumatoid arthritic female Wistar albino rats were examined. 180 rats were randomly divided into 12 groups. Fifteen rats were placed in each group. Rats without arthritis were placed in Group 1. Rheumatoid arthritis was induced in groups 2 to 12 by intradermal injection of 0.1 ml complete Freund’s adjuvant into the left hind paws of rats. Group 2 (arthritic rats) did not receive any treatment but rather were given normal saline while group 3 (arthritic rats) received 5 mg/kg indomethacinTM (a standard drug). Rats in Groups 4 to 12 were administered the samples at doses of 200, 400 and 800 mg/kg body weight. Freund’s ad-juvant administration led to inflammation and oxidative stress which were marked by significant (P<0.05) increase in paw sizes, oxidative stress markers and reduced body weight of the rats. Arthritic rats were treated with standard drug and samples (at varied doses) and this resulted to reversal of the trend of those parameters in a time and dose-dependent manner. Rats that received 800 mg/kg of the aqueous fraction displayed the best desirable result which was similar to the effect of indomethacin. Thus, Buchholzia coriacea ethanol extract and fractions may be useful in the management of oxidative stress which is very common among individuals with rheumatoid arthritis.
... Furthermore, an infusion of the fruit valve is employed as blood cleanser whereas a cold extract of the seed is used in vertigo treatment (20). The seed pod of C. salikounda is used as food ingredient and in treatment of rheumatoid arthritis (21). Aloke et al. (21) had reported the presence of the following phytochemicals in the seed pod of C. salikounda in order of their abundance as follows: total phenolics > alkaloids> terpenoids> carbohydrates> flavonoids> reducing sugar> tannins> glycosides> steroids. ...
... The seed pod of C. salikounda is used as food ingredient and in treatment of rheumatoid arthritis (21). Aloke et al. (21) had reported the presence of the following phytochemicals in the seed pod of C. salikounda in order of their abundance as follows: total phenolics > alkaloids> terpenoids> carbohydrates> flavonoids> reducing sugar> tannins> glycosides> steroids. There is paucity of scientific information on the use of the seed pod ethanol extract from Copaifera salikounda (SPEECS) for the management of DM. ...
... Some studies have shown that a wide variety of plant extracts profoundly lowered blood glucose level in alloxan-induced diabetic animals (32,33,34,35). The results of this study showed that SPEECS has antihyperglycemic effect on alloxaninduced DM in Wistar albino rats Report on the quantification of the chemical components in the seed pod of C. salikounda indicated that it is predominantly rich in total phenolics, alkaloids, terpenoids, flavonoids, tannins, steroids, glycosides, reducing sugar and carbohydrates (21). In this study, the GC-MS analysis of SPEECS revealed the presence of known α-glucosidase inhibitors such as 9-octadecenoic acid and octadecanoic acid in the ethanol extracts. ...
Article
Full-text available
Accumulating evidences have reinforced the use of medicinal plants in the treatment of various ailments as a result of negative side effects associated with conventional drugs. Plant components such as phenols and flavonoids with antioxidant potential have confirmed protective roles against oxidative stress-induced degenerative diseases like diabetes mellitus (DM). The current study was carried out to investigate the effect of seed pod ethanol extract from Copaifera salikounda (SPEECS) in alloxan-induced diabetic rats. SPEECS was obtained by maceration of seed pod powder in absolute ethanol for 72 h, filtered, concentrated and dried in-vacuo. Gas chromatography-mass spectrometry (GC–MS) technique was used to quantitatively elucidate the chemical constituents of SPEECS. Twenty-four male albino rats were randomly allocated into four groups (n=6): normal control, DM control, DM + 200 mg/kg SPEECS and DM + 400 mg/kg SPEECS groups. DM was induced in the Wistar albino rats through intraperitoneal injection of 200 mg/kg body weight of alloxan. After 14 days of treatment, the body weight changes and the fasting blood glucose level were determined in the different groups. Also, serum biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), albumin (ALB), total protein (TP), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were estimated. The GC-MS results confirm nine bioactive compounds with 9-octadecenoic acid (55.75%) being most abundant. SPEECS (200 and 400 mg/kg) administration significantly (P 0.05) caused gain in weight, decreased fasting blood glucose and reversed the elevated liver function enzymes (ALT, AST, ALP) while total TP and ALB were markedly elevated relative to DM control group. Furthermore, SPEECS attenuated the activities of SOD and CAT while the level of MDA was significantly (P 0.05) decreased in dose dependent manner in comparison to the DM control. This study indicated that SPEECS can alleviate hyperglyceamia of DM. Key words: Copaifera salikounda; oxidative stress; medicinal plants; diabetes mellitus; phytochemicals; orthodox ANTIDIABETIČNI UČINEK EKSTRAKTA ETANOLA Copaifera salikounda (HECKEL) NA SLADKORNO BOLEZEN, SPROŽENO Z ALLOXAN-om, PRI PODGANAHIzvleček: Obstaja vedno več dokazov, ki poudarjajo uporabnost zdravilnih rastlin pri zdravljenju različnih bolezni, tudi zaradi različnih negativnih stranskih učinkov, povezanih s konvencionalnimi zdravili. Rastlinske sestavine kot so fenoli in flavonoidi z antioksidativnim potencialom, imajo po nekaterih raziskavah zaščitno vlogo pred degenerativnimi boleznimi, ki jih povzroča oksidativni stres, kot je sladkorna bolezen diabetes mellitus (DM). Študija je bila izvedena z namenom raziskovanja učinka etanolnega semenskega ekstrakta iz rastline Copaifera salikounda (SPEECS) pri podganah s sladkorno boleznijo, ki jo je povzročil alloxan. SPEECS je bil pridobljen z maceracijo praška semen v prahu v absolutnem etanolu 72 ur ter nadaljnjo filtracijo, koncentracijo in sušenjem v vakuumu. Za kvantitativno ugotavljanje kemijskih sestavin SPEECS je bila uporabljena tehnika plinske kromatografije in masne spektrometrije (GC-MS). Štiriindvajset samcev podgan Wistar je bilo naključno razporejenih v štiri skupine (n=6): normalna kontrola, kontrola DM, DM + 200 mg/kg SPEECS in DM + 400 mg/kg SPEECS. DM je bil pri podganah sprožen z intraperitonealno injekcijo 200 mg/kg telesne mase alloxana. Po 14 dneh zdravljenja so bile pri različnih skupinah določene spremembe telesne teže in nivo glukoze v krvi (na tešče). Poleg tega so avtorji raziskave izmerili še nekatere serumske biokemične parametre kot so ravni alaninske aminotransferaze (ALT), aspartatne aminotransferaze (AST), alkalne fosfataze (ALP), albumina (ALB), skupnih proteinov (TP), malondialdehida (MDA), superoksiddismutaze (SOD) in katalaze (CAT). Rezultati GC-MS so v izvlečku SPEECS pokazali devet bioaktivnih spojin, v katerih je največ 9-oktadecenojske kisline (55,75%). SPEECS (200 in 400 mg/kg) je povzročil znatno (P 0,05) povečanje telesne mase, znižanje glukoze v krvi na tešče in znižal raven encimov pokazateljev jetrne funkcije (ALT, AST, ALP), medtem ko je bila raven TP in ALB pri podganah, ki so prejemale SPEECS izrazito povišana v primerjavi z DM kontrolno skupino. Zdravljenje s SPEECS je tudi oslabilo aktivnosti SOD in CAT, medtem ko se je raven MDA znatno zmanjšala (P 0,05) v primerjavi s kontrolno skupino DM. Ta študija je pokazala, da lahko SPEECS ublaži hiperglikemijo pri sladkorni bolezni pri podganah.Ključne besede: Copaifera salikounda; oksidativni stres; zdravilne rastline; sladkorna bolezen; fitokemikalije; ortodoksni
... The diluted blood was poured in Westergren pipette and allowed to stand for one hour in vertical position. ESR was determined by calculating the number of falling RBCs in millimeters [25]. ...
Article
Full-text available
Background: Rheumatoid arthritis is a chronic inflammatory autoimmune disorder characterized with destruction and degradation of synovial joints. The current study aims to evaluate the physical and hematological effects of gallic acid (GA) isolated from Tecoma stans leaf extract and further synthesis of its gallic acid phytosome (GAP) to evaluate antiarthritic activity in Complete Freund's Adjuvant induced rheumatoid arthritis in Wistar rats. Methods: The experimental rats were categorized into nine groups (n = 6 each group) namely normal control, disease control, methotrexate (0.75 mg/kg) treated group, GA 50 mg/kg treated group, GA 100 mg/kg treated group, GAP 50 mg/kg treated group, GAP 100 mg/kg treated group, GA 100 mg/kg treated group + methotrexate (0.75 mg/kg), GAP 100 mg/kg treated group + methotrexate (0.75 mg/kg) for 21 days. All the parameters were assessed at the end of the study. To assess the role of GA in mediating anti-arthritic activity through inhibition of NLR family pyrin domain containing 3 (NLRP3) inflammasome, an additional Molecular Dynamics (MD) simulation was also conducted. Results: GA and GAP significantly decreased arthritic score (p < 0.01, p < 0.05, and p < 0.001), paw volume, pain latency (p < 0.01, p < 0.05, and p < 0.001) and increased body weight (p < 0.01, p < 0.05, and p < 0.001) in a dose-dependent manner in arthritic rats. The level of Haemoglobin (Hb) and number of red blood cells (RBCs) were significantly increased while the levels of white blood cell (WBC), platelet count and erythrocyte sedimentation rate (ESR) were drastically dropped in treatment groups compared to disease control group (p < 0.001, p < 0.01 and p < 0.05). During the MD simulation, GA demonstrated the formation of 2-3 stable hydrogen bond contacts with the NLR family pyrin domain containing 3 (NLRP3, previously known as NACHT domain), primarily involving the residues Threonine439 (THR439), Single Amino Acid of Gα16 Alanine228 (ALA228), and Arginine578 (ARG578). Conclusion: The results produced by GAP were higher than GA indicating the benefit of formulation in providing better efficacy and suggesting its potential role in rheumatoid arthritis. The MD simulation result also suggested that GA has the potential to function as an inhibitor of NLRP3 protein and thus expressing anti-arthritic activity.
... In addition, arthritis patients have decreased muscle work and pain, resulting in decreasing quality of life and limiting physical activity. 4 Although detailed the pathogenesis and etiology of rheumatoid arthritis are not yet fully understood. However, the previous report indicated that chronic inflammation, articular devastation, and autoantibodies development are the foundation in the etiology of rheumatoid arthritis. ...
Article
Full-text available
Introduction This research was to evaluate the beneficial effects of Styphnolobium japonicum (L.) Schott flower extract (SJF) on the adjuvant-induced arthritis rat model. Methods Arthritis was evoked by injection of complete Freund’s adjuvant (CFA) in the hind paw. SJF (150 or 300 mg/kg/day) or Celecoxib (5 mg/kg/day) were administered intragastrically from the 0th day to the 28th day. The arthritis symptoms (paw edema, arthritic scores, mechanical hyperalgesia, and thermal hyperalgesia), inflammation biomarkers (RT and CRP), related enzymes (MMP1 and MMP13), oxidative stress markers (CAT, SOD, GPx, and MDA), and inflammatory cytokines (IL-6, IFN-γ, TNF-α, and IL-1β) of SJF-treated CFA rats were evaluated. Results CFA rats exhibited severe arthritis symptoms, increased oxidative stress, and inflammatory cytokines. Interestingly, SJF treatment relieving arthritis symptoms and restored body weight gain compared with those in the CFA group. SJF treatment decreased the levels of CRP, RF, MMP1, and MMP13 in the CFA group. Besides, SJF treatment increased the activities of antioxidant enzymes and decreased the MDA content and inflammatory cytokines compared with those in the CFA group. Moreover, SJF could increase the mRNA expression of GPx-1 and CAT and inhibit the mRNA expression of IL-6 and TNF-α in the ankle tissue of CFA rats.
... Several plants had been harnessed for their therapeutic potentials and among them Copaifera salikounda of the family Caesalpiniaceae (Leguminosae or Fabaceae) is widely used in the treatment of diseases. The seed pod of C. salikounda had been reported to modulate immunological and hematological parameters in experimental rats (Aloke et al., 2019). To our knowledge, the protective potential of C. salikounda methanol leaf extract (CSMLE) against PHZ-induced hemolytic anemia has not been explored. ...
Article
Full-text available
Anemia is a clinical disorder orchestrated by factors such as drugs, including phenylhydrazine (PHZ). This study explored the protective roles of Copaifera salikounda methanol leaf extract (CSMLE) against PHZ-induced hematotoxicity and oxidative stress in rats. In vitro antioxidants studies of CSMLE using 1,1-diphenyl-2-picryl hydrazyl (DPPH) and ferric reducing antioxidant potential (FRAP) and quantification of CSMLE bioactive compounds using High-Performance-Liquid-Chromatography (HPLC) were done. In vivo, thirty rats in five groups (n=6) were used. Anemia was induced intraperitoneally in groups 2 to 5 with 40 mg/kg body-weight/day PHZ for two days. Group 1 received normal saline, group 2 (untreated: negative-control), group 3 received 1ml/kg-body-weight Vit B12 syrup while groups 4 and 5 received 200 mg/kg and 400 mg/kg-body-weight CSMLE, respectively, daily for fourteen days. Result of CSMLE profiling showed luteolin (76.49 ng/Ml) and squalene (38.31 ng/Ml) as the most abundant flavonoid and terpenoid, respectively. In vitro CSMLE demonstrated dose-dependent antioxidant effects on DPPH and FRAP with IC50 of 0.1085 mg/ml and 0.07344 mg/ml (EC50), respectively. In vivo, CSMLE improved the body weight, red blood cell, hematocrit and hemoglobin concentrations, significantly (P < 0.05), reduced serum malondialdehyde and nitic oxide but increased reduced glutathione levels, superoxide dismutase and catalase activities and attenuated the levels of Interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in dose-dependent manner in treated groups relative to the negative control. The spleen tissues histology results corroborated biochemical results. The results indicated that CSMLE possesses anti-anemic potentials and attenuate spleenotoxic effects of PHZ.
Article
Full-text available
Intermittent Fasting (IF) has recently become very popular due to its perceived health benefits, such as helping with weight loss, improving metabolic health, and even possibly influencing lifespan. This dietary strategy involves alternating between eating and not eating, with different fasting diets picking up popularity. Despite the fact that IF seems to improve general well-being, it is vital to look at the sex-specific outcomes because metabolism and hormonal profiles vary in men and women. This review focused on the biological pathways involved in IF, as well as the advantages and disadvantages associated with this procedure. In addition, it considers how IF specifically impacts male and female physiology in terms of hormonal shifts, metabolic modifications, energy reserves, metabolism, and aspects of fertility and reproduction. It is therefore imperative to characterise these sex differences with regard to IF strategies and maximise gender-sensitive benefits for males and females. However, we should conduct more studies to understand the complex effects of IF on individual sexual health and to identify individualised dietary patterns.
Article
Full-text available
The rising burden of Diabetes mellitus (DM) globally and particularly in sub-Sahara Africa calls for alternative treatment solutions. This is because the currently available drugs for its management are limited due to undesirable adverse effects and high cost. Thus, this review explores diabetes and summarizes its treatment options, focusing mainly on medicinal plants therapy. Information on twenty-five selected medicinal plants from sub-Sahara Africa having hypoglycemic and anti-diabetic potentials was obtained via electronic search of major databases, such as Pubmed/Medline, Scopus, Google Scholar and web of science. Predominant bioactive compounds found in these plants include tannins, carpaine, terpenoids, hexadecenoic acid, luteolin, saponins, glycosides, rutin, quercetin, vindoline and kaempferol. Robust evidence indicates that these medicinal plants and their bioactive components exert their antidiabetic potentials via different mechanisms, including: regeneration of pancreatic β-cell and insulin secretion; inhibition of α-amylase, inhibition of intestinal glucose absorption and liver glucose production; antioxidative stress; limitation of glycogen degradation and gluconeogenesis; anti-inflammatory, immunoregulatory. DM imposes a tremendous burden in the region, and its prevalence is not abating; thus the rich flora of the region with known hypoglycemic and antidiabetic efficacy could be explored as a complementary therapy in its management.
Article
Objectives: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by inflammation, pain, and cartilage and bone damage. There is currently no cure for RA. It is however managed using nonsteroidal anti-inflammatory drugs, corticosteroids and disease-modifying anti-rheumatic drugs, often with severe side effects. Hidden within Africa's lush vegetation are plants with diverse medicinal properties including anti-RA potentials. This paper reviews the scientific literature for medicinal plants, growing in Africa, with reported anti-RA activities and identifies the most abundant phytochemicals deserving research attention. A search of relevant published scientific literature, using the major search engines, such as Pubmed/Medline, Scopus, Google Scholar, etc. was conducted to identify medicinal plants, growing in Africa, with anti-RA potentials. Key findings: Twenty plants belonging to 17 families were identified. The plants are rich in phytochemicals, predominantly quercetin, rutin, catechin, kaempferol, etc., known to affect some pathways relevant in RA initiation and progression, and therefore useful in its management. Summary: Targeted research is needed to unlock the potentials of medicinal plants by developing easy-to-use technologies for preparing medicines from them. Research attention should focus on how best to exploit the major phytochemicals identified in this review for the development of anti-RA 'green pharmaceuticals'.
Article
Full-text available
Abstract: The aim of the present study was to investigate anti-arthritic activity of Lawsonia Inermis Linn in wistar rats . the anti-arthritic activity of ethanolic extract of Lawsonia Inermis Linn (EELI) was studied against Freund ҆ s Complete Adjuvant (FCA) induced arthritis in rats. The (EELI) was administered at the doses of 200mg/kg, 400mg/kg body weight orally for 21 days after the injection of (FCA) in the rats right hind paw. The parameters assessed were paw diameter , body weight changes, haematological parameters like ( RBC, WBC, Hb, ESR), biochemical parameters like ( SGPT, SGOT, ALP, TP), histopathology and radiology of hind legs. Diclofenac sodium drug was taken as standard. The result of this study revealed that administration of EELI produced significant (P< 0.05) reduction of paw diameter and gain in body weight. The altered haematological parameters and biochemical parameters in the arthritic control rats were significantly brought back to near normal by the EELI treatment at the dose level of 200mg/kg and 400mg/kg. Further the histopathological and radiological studies revealed the significant anti-arthritic activity of EELI as indicated by fewer abnormalities in these groups when compared to the arthritic control group. From this study it has been concluded that the ethanolic extract of Lawsonia Inermis having good anti- arthritic activity, which is compared to Diclofenac sodium.
Article
Full-text available
The rate of autoxidation of epinephrine and the sensitivity of this autoxidation to inhibition by superoxide dismutase were both augmented, as the pH was raised from 7.8 → 10.2. O2⁻, generated by the xanthine oxidase reaction, caused the oxidation of epinephrine to adrenochrome and the yield of adrenochrome produced per O2⁻ introduced, increased with increasing pH in the range 7.8 → 10.2 and also increased with increasing concentration of epinephrine. These results, in conjunction with complexities in the kinetics of adrenochrome accumulation, lead to the proposal that the autoxidation of epinephrine proceeds by at least two distinct pathways, only one of which is a free radical chain reaction involving O2⁻ and hence inhibitable by superoxide dismutase. This chain reaction accounted for a progressively greater fraction of the total oxidation as the pH was raised. The ability of superoxide dismutase to inhibit the autoxidation of epinephrine at pH 10.2 has been used as the basis of a convenient and sensitive assay for this enzyme.
Article
Adjuvant induced arthritis is a chronic crippling, skeletonmuscular disorder having nearest approximation to human rheumatoid arthritis for which there is currently no medicine available effecting a permanent cure. Even modern drugs used for the amelioration of the symptoms, offer only temporary relief and also produce severe side effects. This work was aimed at the scientific validation of the ethno-pharmacological claim about Lawsonia inermis and its anti-arthritic property. In the present study, antiarthritic activity of hydroalcoholic extract of Lawsonia inermis is done by Freund's adjuvant induced arthritis model and formaldehyde induced arthritis model. Paw edema, paw diameter and loss in body weight during arthritis condition was corrected on treatment with hydroalcoholic extract of Lawsonia inermis and Diclofenac. Biochemical parameters such as hemoglobin and erythrocyte sedimentation rate were estimated. Serum parameters such as SGOT, SGPT, ALP, and Total protein were also estimated for assessing the anti- arthritic potential of hydroalcoholic extract of Lawsonia inermis. The results of the current investigation concluded, hydroalcoholic extract of Lawsonia inermis possess a significant anti-arthritic activity against adjuvant induced arthritis and formaldehyde induced arthritis model and justifying its therapeutic role in arthritic condition. The observed antiarthritic activity may be due to the presence of phytoconstituents such as alkaloid and flavonoids.