ArticlePDF Available

Research progress on interactions between root and beneficial microbes

Authors:

Abstract

Associations formed between plant roots and microbes are mutually beneficial to both organisms. In such associations, plants provide carbon source and anchoring space for the microbes while the microbes provide nutrients and enhanced stress resistance for the plants. Root exudates function as key signaling and regulatory molecules mediating the establishment of this association. In the past decade, plant microbiome has received more and more attentions due to its critical role in plant health and potential applications in agricultural practice. Here we summarized the research progress in the molecular mechanism underlying the interactions between plant and beneficial microbes, with a focus on the strategies used by plants to modulate the root microbiome. Attempts for engineering symbiosis in cereals and applications of synthetic microbiome to enhance plant performance were also discussed. These research breakthrough not only will deepen our understanding in the interaction mechanism between plants and microbial communities, but also lay the foundation for designing and improving stress resistance in crops.
植物生理学报
Plant Physiology Journal
2020, 56 (11): 2275–2287  doi: 10.13592/j.cnki.ppj.2020.0156
2275
收稿 2020-04-10  修定 2020-07-20
资助 国家杰出青年科学基金(31825003)
# 并列第一作者。
* 共同通讯作者: 王二涛(etwang@sibs.ac.cn)、张学斌
(xuebinzhang@henu.edu.cn)
植物根系与益生菌相互作用的研究进展
禹坷1,#, 王孝林2,#, 张学斌1,*, 王二涛2,*
1河南大学省部共建作物逆境适应与改良国家重点实验室, 河南开封475004
2中国科学院分子植物科学卓越创新中心/植物生理生态研究所, 上海200032
摘要: 植物根系能够与微生物建立多种多样的益生关系。植物为益生菌提供碳源和生存空间, 益生菌则为植
物提供营养元素并增强植物对逆境的抗性。根际分泌物在益生关系的建立中起到了关键的信号和调节作用。
在过去的十年间, 微生物组对植物健康的重要作用也受到了广泛的关注, 并展示出广泛的应用前景。本文总结
了植物根系与益生菌相互作用的最新研究成果, 重点介绍了植物在逆境胁迫下对根系微生物的调控机制, 以及
目前对植物、益生菌或整个微生物组进行定向改造来改良植物性状的尝试。这些研究成果加深了人们对植物
与微生物群落互作关系的理解, 为改良作物对逆境胁迫的抗性提供了理论基础。
关键词: 益生菌; 微生物组; 根系分泌物; 共生; 根际
土壤是地球上微生物种群最为复杂的系统之
, 具有极高的微生物多样性, 不仅包括能够侵染
植物造成产量损失的病原菌, 也包括能够直接或者
间接促进植物生长的益生菌(Lakshmanan2014;
TkaczPoole 2015)。作为与土壤直接接触的器
, 根系是植物与环境进行营养交换的重要途径
(Hodge2009)。土壤中的营养物质在被根系吸收
, 通过主动或者被动运输传送到地上部分用于
植物的生长发育(Hodge2009); 植物地上部分通
过光合作用固定的碳源有超过20%以根系分泌物
(root exudates)的形式释放到土壤中, 对土壤生态
特别是其中的微生物群落产生影响, 形成特异的
根系微生物组(root microbiome) (Berendsen2012;
Sasse2018; Zhalnina2018)。根系微生物组的
结构与功能对植物免疫和发育具有重要的作用,
与植物健康息息相关(Berendsen2012; Laksh-
manan2014; TkaczPoole 2015)。植物会通过改
变自身代谢来抵御生长过程中遭遇的逆境胁迫,
代谢的改变能够影响根系分泌物的组成, 进一步
影响根系微生物组(SelmarKleinwachter 2013;
Sasse2018)。许多研究发现, 根系微生物组的改
变会对植物健康产生正向的反馈。本文从植物与
根系微生物群落建立的益生关系出发, 重点介绍
了植物在逆境下调控根系微生物组的机制, 并总
结了目前在改造植物与微生物益生关系中的突破
性进展。
1 益生菌能够促进植物健康
植物在与微生物相互作用的漫长历史中演化
出了独特的免疫系统来识别土壤微生物群落中的
病原菌, 这种识别机制能够诱导植物产生特异的
免疫反应来抑制病原菌的侵染(JonesDangl
2006)。同样地, 植物也能够识别菌群中可以与其
建立共生关系(symbiosis)的益生菌, 其机制依赖
于细胞膜上的共生受体和共生菌分泌的共生因子
(ZipfelOldroyd 2017)。研究的比较多的例子包
括能够与豆科植物形成共生关系的根瘤菌(rhizo-
bia), 以及能够与超过80%的陆生植物形成共生关
系的菌根真菌(mycorrhiza)。植物根系分泌物在共
生关系的建立中起到了重要的信号和调节作用。
豆科植物分泌到根际(rhizosphere)的黄酮类物质
(avonoid)能够诱导根瘤菌合成结瘤因子(Nod fac-
tor) (Abdel-Lateif2012); 植物分泌到根际的激素
类物质独角金内酯(strigolactone)能够促进菌根真
菌的孢子萌发和菌丝分支(Besserer2006)。细胞
膜上的共生受体, 如百脉根(Lotus japonicus)中的
NFR1NFR5SYMRK (Stracke2002; Madsen
2003; Radutoiu2003)及蒺藜苜蓿(Medicago
植物生理学报
2276
truncatula)中的LYK3NFPDMI2 (Catoira
2000; Amor2003; Limpens2003; Smit2007),
能够识别根瘤菌产生的结瘤因子; 水稻(Oryza sativa)
中的MYR1CERK1能够识别菌根真菌产生的菌
根因子(Myc factor) (Zhang2015; He2019)。共
生受体识别共生因子后, 能够激活宿主体内共生
信号的产生和传导, 最终在特定组织形成共生结
(ZipfelOldroyd 2017)。根瘤菌能够诱导豆科
植物根表皮细胞形成侵染线结构(infection thread)
和根瘤(nodule)器官, 实现共生固氮(Gage 2004)
菌根真菌的菌丝能够侵入根部内皮层细胞间隙,
皮层细胞中形成丛枝结构(arbuscule), 实现与宿主
植物的营养交换(Genre2008; Hacquard2013)
当共生关系建立之后, 根瘤菌能够通过固氮反应
将空气中的氮气转变为氨, 从而为植物所利用
(Masson-BoivinSachs 2018); 菌根真菌能够提高
植物对土壤中无机磷的吸收(Smith2011), 相应的
植物为其提供以脂肪酸为主的碳源(Jiang2017;
Luginbuehl2017)
另外, 有许多益生菌不与宿主植物形成共生
关系, 经典的例子包括在根际定殖的促生细菌如
部分假单胞菌(Pseudomonas)和芽孢杆菌(Bacillus),
以及在根部定殖的内生真菌如印度梨形孢(Pirifor-
mospora indica)和木霉(Trichoderma)(Pieterse
2014)。这一类益生菌能够协助植物对营养的吸收,
比如促生细菌Pseudomonas simiae WCS417 (后文
简称WCS417)在定殖到拟南芥(Arabidopsis thaliana)
根际之后, 能够诱导植物产生典型的铁胁迫反应,
从而促进其对土壤中三价铁的吸收(Zamioudis
2015); 而印度梨形孢能够通过磷转运蛋白PiPT
根际的磷元素直接转运到宿主植物(Yadav2010)
这一类益生菌也能够通过资源竞争和拮抗作用直
接抑制病原菌的生长, 或者通过提高植物的系统
抗性来帮助植物抵御病原的侵染(Lugtenberg
Kamilova 2009; Pieterse2014)。比如, 促生细菌
Pseudomonas chlororaphis PCL1391能够产生吩嗪
类化合物(phenazine)抑制土壤中的致病真菌如尖
孢镰刀菌(Fusarium oxysporum) (Mazurier2009);
WCS417和木霉等能够诱导多种植物包括拟南芥
产生对众多病原菌甚至植食性昆虫的广谱抗性
(Djonovic2007; Van der Ent2008), 又称诱导系
统抗性(induced systemic resistance), 其特征是在没
有生物胁迫时, 植物免疫处于未激活状态, 而当植
物受到病原菌或者昆虫侵染时, 植物的免疫反应
相比没有益生菌定殖的植株更加迅速和强烈(Piet-
erse2014)。现已发现多个遗传因子参与诱导系
统抗性的信号通路, MYC2MYB72BGLU42
(Pozo2008; Van der Ent2008; Zamioudis
2014)。尽管诱导系统抗性在多种植物和微生物的
组合中都有发现, 但目前鉴定到的负责激活该信
号通路的微生物因子以及对应的宿主受体还很
少。有意思的是, 尽管拟南芥无法与菌根真菌形
成共生关系, 但一项研究发现双色蜡蘑(Laccaria
bicolor)能够诱导非自然宿主拟南芥产生对食草昆
虫的系统抗性, 并且该抗性依赖于细胞膜上免疫
受体CERK1对真菌几丁质(chitin)的识别(Vishwa-
nathan2020)
植物免疫系统中的细胞膜上受体(pattern rec-
ognition receptor)和胞内受体(intracellular R protein)
能够分别识别微生物在侵染过程中分泌到植物细
胞间隙的免疫原分子(microbe-associated molecular
pattern)或者分泌到胞内的效应蛋白(effector)来诱
导不同强度的免疫反应, 从而有效遏制病原菌的
入侵(JonesDangl 2006)。由于部分免疫原分子
的保守性, 益生菌在与植物相互作用的初期也会
诱导植物产生免疫反应, 因此益生菌也演化出与
病原菌类似的机制来抑制植物免疫, 从而实现定
(ZamioudisPieterse 2012; Teixeira2019; Yu
2019b)。益生菌能够逃避植物免疫膜受体的识别,
比如百脉根根瘤菌(Mesorhizobium loti)在与宿主植
物共同演化的过程中演化出具有高度多样性的鞭
毛蛋白(agellin)分子, 从而逃避宿主对鞭毛蛋白保
守区域的识别(Lopez-Gomez2012); 印度梨形孢
能够分泌胞外效应蛋白FGB1来竞争植物膜受体对
免疫原分子β-葡聚糖(β-glucan)的结合(Wawra
2016)。还有一些益生菌能够抑制免疫识别后的胞
内信号转导, 比如促生细菌Pseudomonas capefer-
rum WCS358WCS417能够通过酸化根际环境来
抑制拟南芥根部免疫反应(Yu2019a); 双色蜡蘑
能够分泌胞内效应蛋白MiSSP7, 与杨树(Populus
禹坷等: 植物根系与益生菌相互作用的研究进展
2277
tremula)中茉莉酸免疫信号途径抑制因子JAZ6结合
后阻断其降解, 从而终止免疫信号的传递(Plett
2014)。综上所述, 土壤微生物群落中的益生菌能够
通过对植物免疫的调控与植物建立多种多样的益
生关系, 在获取碳源和空间的同时促进植物健康。
2 植物逆境胁迫影响微生物组的结构和功能
在过去的数十年间, 对植物益生菌的研究大
多集中在植物和单一益生菌的组合。测序成本的
显著下降使得对整个根系微生物组的研究成为可
, 通过扩增子测序(amplicon sequencing)和宏基
因组测序(whole metagenome sequencing), 结合生
物信息学工具, 能够对不同植物种类或者生长条
件下的微生物组进行定量研究, 并精确地追溯受到
影响的微生物群落(JanssonHofmockel 2018)
植物微生物组的研究热点之一是建立植物遗传因
子与微生物组结构变化的因果关系, 目前研究的
对象多集中在与植物发育和逆境响应相关的因子,
包括激素信号途径的激活, 如水杨酸(salicylic acid)
和茉莉酸(jasmonic acid)信号途径(Lebeis2015;
Carvalhais2017), 以及代谢产物的合成, 比如酚
类物质和萜类物质等(Badri2013; Stringlis
2018; Huang2019)。在植物与微生物建立益生
关系的过程中, 根系分泌物的作用十分关键(Sasse
2018)。除了前文介绍的黄酮类和独脚金内酯之
, 在植物与非共生益生菌相互作用的过程中,
南芥根部分泌的苹果酸(malic acid)能够通过趋化
作用吸引芽孢杆菌Bacillus subtilis FB17到根际定
(Rudrappa2008); 在分根系统(split-root system)
中培养的番茄(Solanum lycopersicum)能够通过根
部分泌的过氧化物酶类(peroxidase)和氧脂类(ox-
ylipin)物质吸引木霉Trichoderma harzianum (Lom-
bardi2018)。在生长过程中, 植物也能够通过合
成次级代谢产物来应对遇到的逆境胁迫, 如干
旱、高盐、营养缺乏、病原或昆虫侵染等(Selmar
Kleinwachter 2013), 而这些代谢产物能够以根
系分泌物的形式, 对益生菌乃至整个微生物组的
结构和功能产生影响, 从而进一步影响植物的健
(Sasse2018)。这里将有选择性地从以下几个
方面描述植物调控微生物组的机制。
2.1 细胞壁次生化对根系微生物组的影响
细胞壁次生化是植物免疫系统重要的组成部
, 如表皮的蜡质(cuticle)、软木质(suberin)、由木
质素(lignin)形成的凯氏带(Casparian strips)(Sch-
reiber 2010; Roppolo2014; Serrano2014)。根
部免疫膜受体在识别免疫原分子如鞭毛蛋白或者
几丁质后, 也能在根表皮细胞沉积胼胝质(callose),
作为物理屏障抵御潜在病原菌的侵染(Millet
2010; Luna2011)。根系是植物与周围环境进行
营养交换的重要通道, 控制根系分泌物的释放和对
土壤中营养的吸收(Hodge2009)。可以想象,
胞壁组织结构发生改变的同时也会对周围的微生
物群落产生影响。肉桂酰辅酶A还原酶(cinnamoyl-
CoA reductase, CCR)是植物合成木质素单体的关
键酶之一, 负责将阿魏酰辅酶A (feruloyl-CoA)转化
为松柏醛(coniferaldehyde) (Lacombe1997)
CCR缺陷的植物中木质素的含量会显著下降,
会积累更多的阿魏酸(ferulic acid) (Leple2007)
研究发现CCR缺陷的杨树Populus alba具有与野生
型杨树显著不同的内生微生物组, P. alba微生物
组中分离得到的细菌对阿魏酸具有更强的代谢能
(Beckers2016), 说明在不同品种杨树中积累的
不同水平的阿魏酸可能是微生物组发生变化的直
接原因。凯氏带由木质素在内皮层的极性沉积形
, 一项研究发现两个能够调控凯氏带形成的受
体类激酶突变体erk1tic1中凯氏带的正常组织受
到破坏, 而内皮层的软木质显著增加, 导致erk1
tic1的根系微生物组发生显著改变(Durr2019)
有趣的是, 有研究证明凯氏带和软木质能够阻止
微生物免疫原分子比如鞭毛蛋白自根外到中柱的
扩散, 从而将植物根部的免疫反应限制在与土壤
接触更紧密的外层结构(Zhou2020)。这种机制
, 植物能够依据土壤中微生物的侵染方式调整
免疫反应的强度, 仅在植物受到病原的破坏性侵
染时才诱导强烈的免疫反应, 而在非侵入性的益
生菌定殖时, 其免疫反应则非常轻微, 从而保证植
物能够在抵御病原菌侵染的同时不影响益生菌在
根部的定殖(LeeBelkhadir 2020)
植物生理学报
2278
2.2 非生物胁迫对根系微生物组的影响
磷胁迫和铁胁迫是植物生长过程中常见的两
种营养胁迫(Shen2011; KobayashiNishizawa
2012)。许多植物能够从菌根真菌中获得磷元素,
一些根际促生细菌能够提升植物对铁元素的吸收
(Smith2011; Zamioudis2015)。植物的营养胁
迫反应能够与植物免疫反应相互作用。在拟南芥
, PHR1是调控磷胁迫反应最重要的转录因子,
项研究发现PHR1也能够特异地抑制部分水杨酸和
茉莉酸途径调控的免疫反应, PHR1缺陷突变体在
识别细菌鞭毛蛋白或者病原菌侵染后激发的免疫
反应更加强烈(Castrillo2017)。不同的PHR1
性或者不同程度的磷胁迫反应能够显著影响根部
内生微生物组的结构, 这种调控机制很可能与其
对免疫反应的特异性抑制有关(Castrillo2017;
Finkel2019)。利用根部分离的内生细菌合成的
微生物组能够增强PHR1的活性, 提高拟南芥在缺
磷的环境下对磷的吸收和积累(Castrillo2017)
这些证据说明部分根部内生细菌可能通过激发拟南
芥的磷胁迫反应来抑制局部免疫从而实现定殖。
在缺铁环境下, 拟南芥根系分泌大量的香豆素
(coumarin)来协助对铁元素的吸收(TsaiSchmidt
2017a)。在拟南芥中, 香豆素通过苯丙素(phenyl-
propanoid)代谢途径合成, 该途径中阿魏酰辅酶A
羟化酶(feruloyl-CoA 6'-hydroxylase1, F6'H1)是香豆
素合成的限速酶, 负责将阿魏酰辅酶A羟化为香豆
素的前体6'-hydroxyferuloyl CoA (Schmid2014)
香豆素也是植物免疫反应的组成部分之一, 能够
在病原菌的侵染位点积累并抑制其生长(Grosskin-
sky2011; Sun2014)。对f6'h1突变体的根系微
生物组进行分析表明香豆素能够通过其对选择性
的抑菌作用显著影响根系微生物组的结构, 这种
抑菌作用依赖于香豆素将空气中的氧气转化为活
性氧的活性(Stringlis2018; Voges2019)。部分
根际益生细菌, WCS417表现出对香豆素非常高
的耐受性, 而同属假单胞菌的Root329对香豆素则
极为敏感(Stringlis2018; Voges2019)。另外,
MYB72是拟南芥在铁胁迫下调控香豆素合成的关
键转录因子, 同时也在根际益生菌如WCS417诱导
的系统抗性中起着决定性的作用, 表明铁胁迫产
生的香豆素可能参与了诱导系统抗性(Van der Ent
2008; Stringlis2018)。事实上, 过表达香豆素
合成关键酶如BGLU42能够为拟南芥提供对多种
病原菌的持久抗性(Zamioudis2014), 但香豆素是
直接作用于病原菌还是作为系统信号参与到诱导
系统抗性, 尚需要进一步的研究。根际益生菌如
WCS417能够诱导拟南芥产生典型的铁胁迫反应
并促进根系中香豆素的合成(Zamioudis2014,
2015; Stringlis2018), 说明根际益生菌可能通过
诱导分泌自身不敏感的植物代谢产物来抑制与其
竞争生存空间或者营养的其他微生物。有研究表
, 磷胁迫同样能够诱导香豆素的合成和分泌(Tsai
Schmidt 2017b; Chutia2019)。以上证据说明
以香豆素为代表的植物代谢产物, 在帮助植物抵
御营养胁迫的同时对根系相关的微生物组产生选
择作用。此外, 其他非生物胁迫如高盐和干旱胁
迫也能够影响根系微生物组的结构(Xu2018;
Yuan2019), 此处不再赘述。
2.3 生物胁迫对根际微生物组的影响
许多研究已经证明免疫系统对根系微生物组
具有显著影响。水杨酸和茉莉酸是植物免疫系统
中研究得最为透彻的两种激素: 水杨酸主要调控
植物对活体营养型(biotroph)病原菌的抗性, 茉莉
酸主要调控植物对腐生菌(necrotroph)和植食性昆
虫的抗性(Pieterse2012)。水杨酸信号能够显著
影响拟南芥根部微生物组(Lebeis2015), 但该途
径控制的植物性状非常广泛, 因此需要进一步深
入研究水杨酸对微生物组调控的机制。茉莉酸信
号同样能够显著影响拟南芥微生物组, 且与根系
分泌物的变化直接相关(Carvalhais2015, 2017)
当植物感受到病原或者昆虫存在时, 会合成大量的
代谢产物来抵御病原菌或昆虫的入侵, 如植保素
(camalexin)、芥子苷(glucosinolate)、三萜类(triter-
pene)、苯并 唑嗪酮类(benzoxazinoids, BXs)和前
文提到的香豆素等(Glawischnig 2007; Bednarek
2009; Clay2009; Thimmappa2014; Zhou
2018)。这些代谢产物在协助植物抵御生物胁迫的
同时, 也会影响在相同生态位的其他微生物, 导致
整个微生物组结构的改变。
植物在生物胁迫下对自身微生物组进行调节
禹坷等: 植物根系与益生菌相互作用的研究进展
2279
的最著名的例子当属抑病土(disease suppressive
soil)的形成。小麦全蚀病在小麦单作数年之内病
情均会逐年加重, 但在一定年限之后病情严重程
度会迅速回落。这种现象是由于小麦在受到全蚀
病原菌(Gaeumannomyces graminis var. tritici)持续
侵染的情况下在根际逐年富集拮抗病原菌的假单
胞菌, 当达到一定的种群密度之后, 这些假单胞菌
能够产生抗生素2,4-diacetylphloroglucinol来帮助
小麦抵抗全蚀病原菌的侵染(Weller2002)。同样
的现象在甜菜(Beta vulgaris)上也有发现, 对抑病
土的宏基因组分析发现甜菜在受到土传病原立枯
丝核菌(Rhizoctonia solani)侵染后, 能够选择性地
使咖啡因降解菌(Paraburkholderia)、假单胞菌和
放线菌(Streptomyces)在根际富集, 同时允许噬几丁
质菌(Chitinophaga)和黄杆菌(Flavobacterium)在根
内富集(Mendes2011; Carrion2019)。这些富集
的细菌能够通过其产生的抗菌肽类物质抑制立枯
丝核菌的生长, 而将这些细菌分离出来后接种到甜
菜能够显著提高甜菜对立枯丝核菌的抗性(Mendes
2011; Carrion2019)。不同的植物品种在生物
胁迫下也能够富集具有不同功能的微生物组,
番茄抗病(‘Hawaii 7996’)和感病(‘Moneymaker’)
种接种土传病原青枯菌(Ralstonia solanacearum)
, 抗病品种的根际会显著富集一种黄杆菌, 将该
黄杆菌分离出来并接种到感病品种后能够显著
高其对青枯菌的抗病性(Kwak2018)。除了土传
病原侵染, 植物地上部分受到侵染后也能够系统
性调节根系微生物组的结构, 从而对植物健康产
生正向反馈。拟南芥叶部受到霜霉病原菌(Hyalo-
peronospora arabidopsidis)侵染时, 在其根际会特
异性富集黄单胞菌(Xanthomonas)、嗜麦芽窄食单
胞菌(Stenotrophomonas)和微杆菌(Microbacterium)
(Berendsen2018)。实验证明同时接种这三种菌
能够促进拟南芥的生长, 并系统性地诱导拟南芥
产生对霜霉病原菌的抗性。不仅如此, 叶部病原
侵染诱导的根际微生物组的改变, 能够为土壤中
下一代的拟南芥提供对病原菌的持久抗性(Ber-
endsen2018)。拟南芥叶部接种丁香假单胞菌
(Pseudomonas syringae pv. tomato), 也观察到类
似的现象(Yuan2018)。对根系分泌物的解析证
明来自植物的氨基酸和长链脂肪酸(long-chain or-
ganic acids)是导致其微生物组发生改变的直接原
, 而直接在土壤中加入外源的氨基酸和长链脂
肪酸能够诱导植物产生对丁香假单胞菌的抗性,
并且这种抗性被证明依赖于土壤中的微生物组的
变化(Yuan2018)
大部分研究着重于植物免疫相关的代谢产物
对病原菌的抑制作用, 但其对根系微生物组或者
其中的益生菌的影响长久以来被忽视。近期的一
些研究发现这些物质对植物维持与内生和根际微
生物的益生关系都有着不可或缺的作用。十字花
科植物如拟南芥能够分泌具有抗菌作用的代谢产
物如植保素(camalexin)和芥子苷(glucosinolate)
抵御病原菌的侵染(Glawischnig 2007; Bednarek
2009; Clay2009)。植保素是十字花科植物特有
的吲哚类含硫代谢产物, 通过色氨酸(tryptophan)
途径合成, 能够有效抑制病原菌如灰霉菌(Botrytis
cinerea)的侵染(Ferrari2003; Glawischnig 2007)
多种细胞色素酶P450, CYP71A12CYP71A13
CYP71A27CYP71A28, 均参与了拟南芥根部植
保素的合成(Millet2010; Koprivova2019)。研
究表明, 根系分泌物中的植保素能够显著影响根
际微生物硫酸酯酶(sulfatase)的活性, 从而导致微
生物组结构发生改变, 同时植保素也是促生细菌
Pseudomonas sp. CH267对拟南芥促生作用所必
不可少的, 表现为在植保素合成突变体如cyp71A27
上该益生菌的促生作用消失(Koprivova2019)
芥子苷是植物抵抗真菌病原和植食性昆虫侵染的
重要代谢产物, 主要通过甲硫氨酸(methionine)
色氨酸(tryptophan)、苯丙氨酸(phenylalanine)和酪
氨酸(tyrosine)途径合成(Sonderby2010)。在拟南
芥根部, 吲哚类芥子苷(主要通过色氨酸合成)也参
与了植物识别免疫原分子后胼胝质的形成(Millet
2010)。先前的研究发现脂肪族芥子苷(主要通
过甲硫氨酸合成)能够对根际微生物组的结构产生
影响(Bressan2009)CYP79B2CYP79B3
拟南芥合成植保素和吲哚类芥子苷上游的重要酶
(Frerigmann2016)。一项研究发现, 拟南芥根部
的内生真菌Colletotrichum tofieldiae能够促进植物
在低磷环境下对磷的吸收, 而在无法合成植保素
植物生理学报
2280
和吲哚类芥子苷的cyp79B2/cyp79B3上却会过度繁
殖并转化为病原菌(Hiruma2016; WangWang
2016)。以上研究表明, 植物免疫相关的代谢产物
不仅能够抑制病原菌的生长, 在维持植物与微生
物的益生关系中也起着重要的作用。
其他能够对植物根系微生物组产生影响的免
疫相关代谢产物包括三萜类和苯并 唑嗪酮类
(BXs)。拟南芥根部三萜类物质通过甲羟戊酸(me-
valonate)途径合成, 其合成通路最近被成功解析,
其中的arabidinthalianin能够直接对根系微生物
组的结构产生影响, 可能与不同微生物对三萜类
物质的代谢和利用能力有关(Huang2019)BXs
广泛存在于禾本科植物如小麦和玉米(Zea mays)
, 不仅能够协助植物抵御地上和地下部分病原
和昆虫的侵染(Ahmad2011; Zhang2019b),
能够通过化感作用吸引根际促生细菌Pseudomonas
putida KT2440 (Neal2012)。最近的一项研究对
BXs合成缺陷的玉米突变体代谢组和微生物组进
行分析, 发现BXs的代谢衍生物6-methoxy-benzox-
azolin-2-one能够改变根系微生物组的结构, 并诱
导植物产生依赖于茉莉酸信号途径的对植食性昆
虫的抗性(Hu2018)。另外, BXs合成途径也会影
响玉米的整体代谢, 特别是黄酮类物质, 从而对根
部内生以及根际微生物组产生影响(Cotton2019;
Kudjordjie2019)
综上所述, 植物在遭遇逆境胁迫时, 能够通过
对代谢的调控影响其根系微生物组的结构, 从而
对植物健康产生正向的反馈, 使自身甚至下一代
获得对逆境更强的抗性(1)。根系分泌物在特异
性地招募和富集益生菌过程中的重要作用受到越
来越多的关注, 由于其成分高度复杂, 需要具有极
高精度的技术手段去寻找其中导致根系微生物组
变化的有效成分。得益于代谢组学特别是非靶向
代谢组学技术的进步, 其检测的广度和深度使精
确分析根系分泌物的组成成为可能, 从而建立植
物代谢产物和微生物组变化的直接关系。代谢组
学手段已经被成功应用于研究作物群体中特定性
状的演变和发现新的代谢途径以供品质的改良
(Zhu2018), 而有少数植物微生物组的研究也通
过靶向或非靶向代谢组分析成功揭示了植物代谢
产物如香豆素、黄酮类和三萜类对根系微生物组
的影响(Stringlis2018; Cotton2019; Huang
2019)
3 定向促进植物与微生物的益生关系
在农业中使用益生菌来帮助作物抵御逆境胁
迫已经有上千年的历史, 而植物与益生菌互作的
分子机制仅在过去的数十年间才有了飞速的发
展。对植物与益生菌互作机制的研究, 目标之一
是将这种具有高度特异性的益生关系转化到重要
的经济作物上。比如豆科植物与根瘤菌之间形成
的共生关系, 如果能够成功应用到禾本科作物,
够大量减少氮肥的施用。在过去的十年里, 随着
高通量测序技术和多组学联合分析的应用, 许多
研究开始关注整个微生物组对植物健康的影响。
通过对植物微生物组结构和功能的解析, 结合分
离和培养微生物的技术, 证明对微生物组的调整
也能增强植物抵抗逆境胁迫的能力。
3.1 共生关系的人工转化
植物在与共生菌建立共生关系的过程中有着
持续的化学信号交流, 因此改造宿主或者目标菌
的代谢和合成通路来产生这些信号, 从而促进共
生关系的建立是最直接和有效的手段。根瘤碱(rhi-
zopine)是部分根瘤菌如苜蓿中华根瘤菌(Sinorhi-
zobium meliloti L5-30, 后文简称L5-30)在宿主上形
成根瘤后合成的化学信号物质(Bahar1998)。一
项研究成功地解析了根瘤碱的合成通路, 并证明
根瘤碱能够分泌到植物根际(Geddes2019)。另
, 该研究将L5-30和豌豆根瘤菌(Rhizobium legu-
minosarum)中合成根瘤碱的关键酶结合在一起,
功将根瘤碱合成通路转化到了蒺藜苜蓿和大麦
(Hordeum vulgare), 转化后的植物能够合成和分
泌根瘤碱, 并诱导根瘤菌的生物传感器产生响应
(Geddes2019)。另一项研究从禾本科植物的内
生和根际益生菌出发, 对多种包含野生型或改造
后的固氮基因簇(nitrogen xation gene cluster)的内
生型固氮菌和根际益生菌的固氮酶活性进行了筛
(Ryu2020)。该研究将固氮酶的诱导机制进行
替换, 使得植物分泌的冠瘿碱(opine)能够调节固氮
酶的活性, 有效避免了持续固氮反应对能量的消
禹坷等: 植物根系与益生菌相互作用的研究进展
2281
1 逆境胁迫下植物通过调整根系微生物组来增强对逆境的抗性
Fig.1 Root exudates-mediated microbiome modulation enhances plant stress resistance
, 消除了固氮反应中的氨抑制现象并降低了固
氮酶对氧的敏感度, 使得固氮反应在施加氮肥或
有氧环境下也能够正常进行(Ryu2020)。这两项
研究分别通过改造作物或者益生菌, 实现了将固
氮反应转化到作物中突破性的进展。尽管菌根真
菌能够在大多数陆生植物的根系定殖, 但仍有部
分重要的经济作物无法与菌根真菌形成共生关系
(Cosme2018)。一项研究发现杨树的一个受体类
激酶(receptor-like kinase)能够调控其与双色蜡蘑
共生关系的建立, 而将该激酶在拟南芥中超表达
, 双色蜡蘑能够成功地定殖到非自然宿主拟南
芥的根部, 说明菌根共生有潜力向非自然宿主中
转化(Labbe2019)
3.2 定向改造根系微生物组
使用植物在逆境胁迫下富集的微生物菌株
来组建合成微生物组(synthetic microbiome)或者
“SynCom”是对植物调节微生物组的机制和微生物
组的功能进行验证的重要手段, 人工选择的菌株
组合之后能够对植物产生预测的反馈作用(Liu
2019)。因此, 研究植物与微生物组相互调控的机
理能够指导对微生物组结构和功能的精准调节,
对于提高植物对逆境的抗性具有重要意义。一项
研究发现, 籼稻根际微生物组具有比粳稻根际微
生物组更高的氮代谢能力, 这种现象由水稻中的
硝酸盐转运蛋白NRT1.1B的活性调控(Zhang
2019a)。将籼稻和粳稻根际富集的微生物进行分
离并重新组合成SynCom, 接种后发现仅籼稻根际
富集的微生物通过提高籼稻对环境中有机氮的利
用能力来促进水稻生长(Zhang2019a), 说明植物
与微生物群落的共进化促进了植物氮利用。
另外, 也可以利用现有的益生菌来合成具有
特定功能的微生物组。一项研究使用多种对青枯
菌具有拮抗作用的假单胞菌组成不同的组合并接
种到了番茄的根际来观察其对青枯菌的抑制作用,
植物生理学报
2282
结果显示番茄根际假单胞菌的多样性越高则其存
活能力也越强, 同时根际的病原菌数量和番茄发
病指数与假单胞菌的多样性程度呈现显著的负相
(Hu2016)。这项研究证明了微生物之间的相
互抑制和协同作用对整个微生物组功能的影响。
目前绝大多数研究在使用合成微生物组的时候并
未考虑微生物之间在特定生长环境如根际中的相
互作用。有多项研究表明微生物之间的相互作用
(包括促进、抑制和共存)能够显著影响微生物结
构的稳态(Friedman2017; Xiao2017; Ratzke
2020), 而部分微生物在整个微生物组中起着稳定
结构的基石(keystone)作用(Banerjee2018)。由于
自然微生物组具有极高的多样性, 对微生物之间
相互作用(包括两两相互作用和高阶的相互作用)
的研究需要相当可观的资源和精力。数学模型的
构建可以利用少数群落成员之间相互作用数据来
推断和预测整个微生物组的动态变化(Friedman
2017; Xiao2017; Ratzke2020)。一项研究通过
对少部分拟南芥根部细菌的组合接种到拟南芥后
的表型进行分析, 利用神经网络成功地优选出能
够帮助拟南芥抵御磷胁迫的最佳细菌组合(Herrera
Paredes2018), 证明了数学模型在微生物组定向
改造中的指导意义。
4 研究展望
随着人口的不断增长和资源的不断消耗,
食危机成为本世纪需要解决的重大问题, 而对植
物根系微生物组的研究能够为解决该问题提供新
的思路(Bailey-Serres2019)。多组学联合应用来
揭示植物与益生菌或根系微生物组的互作机理已
经成为主流, 根系分泌物作为植物与微生物群落
交流的重要信号来源也受到越来越多的重视。在
微生物组的研究中, 合成微生物组或“SynCom”
经成为最重要的功能验证的手段(Liu2019)。微
生物组绝对定量方法和代谢组学手段的加入能够
极大促进该领域的发展(Van DamBouwmeester
2016; Guo2020; Wang2020)。这些研究成果可
以用来对宿主植物或者微生物进行改造, 或者通
过对微生物组结构的调节, 在作物上实现对目的
性状的改良, 而技术发展和学科融合如合成生物
学和计算生物学能够大大加速这一进程。今后的
研究重点将逐渐由模式植物转向经济作物之上,
从而为解决农业生产中的实际问题提供理论和实
践基础。
参考文献(References)
Abdel-Lateif K, Bogusz D, Hocher V (2012). The role of
avonoids in the establishment of plant roots endosym-
bioses with arbuscular mycorrhiza fungi, rhizobia and
Frankia bacteria. Plant Signal Behav, 7: 636–641
Ahmad S, Veyrat N, Gordon-Weeks R, et al (2011). Benzoxaz-
inoid metabolites regulate innate immunity against aphids
and fungi in maize. Plant Physiol, 157: 317–327
Amor BB, Shaw, SL, Oldroyd GED, et al (2003). The NFP lo-
cus of Medicago truncatula controls an early step of Nod
factor signal transduction upstream of a rapid calcium
ux and root hair deformation. Plant J, 34: 495–506
Badri DV, Chaparro JM, Zhang R, et al (2013). Application of
natural blends of phytochemicals derived from the root
exudates of Arabidopsis to the soil reveal that pheno-
lic-related compounds predominantly modulate the soil
microbiome. J Biol Chem, 288: 4502–4512
Bahar M, De Majnik J, Wexler M, et al (1998). A model for
the catabolism of rhizopine in Rhizobium leguminosarum
involves a ferredoxin oxygenase complex and the inositol
degradative pathway. Mol Plant Microbe Interact, 11:
1057–1068
Bailey-Serres J, Parker JE, Ainsworth EA, et al (2019). Ge-
netic strategies for improving crop yields. Nature, 575:
109–118
Banerjee S, Schlaeppi K, Van der Heijden MGA (2018). Key-
stone taxa as drivers of microbiome structure and func-
tioning. Nat Rev Microbiol, 16: 567–576
Beckers B, Op De Beeck M, Weyens N, et al (2016). Lignin
engineering in eld-grown poplar trees affects the endo-
sphere bacterial microbiome. Proc Natl Acad Sci USA,
113: 2312–2317
Bednarek P, Pislewska-Bednarek M, Svatos A, et al (2009).
A glucosinolate metabolism pathway in living plant cells
mediates broad-spectrum antifungal defense. Science,
323: 101–106
Berendsen RL, Pieterse CMJ, Bakker PAHM (2012). The rhi-
zosphere microbiome and plant health. Trends Plant Sci,
17: 478–486
Berendsen RL, Vismans G, Yu K, et al (2018). Disease-in-
duced assemblage of a plant-benecial bacterial consor-
tium. ISME J, 12: 1496–1507
Besserer A, Puech-Pages V, Kiefer P, et al (2006). Strigolac-
tones stimulate arbuscular mycorrhizal fungi by activat-
禹坷等: 植物根系与益生菌相互作用的研究进展
2283
ing mitochondria. PLOS Biol, 4: e226
Bressan M, Roncato MA, Bellvert F, et al (2009). Exogenous
glucosinolate produced by Arabidopsis thaliana has an
impact on microbes in the rhizosphere and plant roots.
ISME J, 3: 1243–1257
Carrion VJ, Perez-Jaramillo J, Cordovez V, et al (2019).
Pathogen-induced activation of disease-suppressive func-
tions in the endophytic root microbiome. Science, 366:
606–612
Carvalhais LC, Dennis PG, Badri DV, et al (2015). Linking
jasmonic acid signaling, root exudates, and rhizosphere
microbiomes. Mol Plant Microbe Interact, 28: 1049–1058
Carvalhais LC, Schenk PM, Dennis PG (2017). Jasmonic acid
signalling and the plant holobiont. Curr Opin Microbiol,
37: 42–47
Castrillo G, Teixeira PJ, Paredes SH, et al (2017). Root mi-
crobiota drive direct integration of phosphate stress and
immunity. Nature, 543: 513–518
Catoira R, Galera C, De Billy F, et al (2000). Four genes of
Medicago truncatula controlling components of a Nod
factor transduction pathway. Plant Cell, 12: 1647–1666
Chutia R, Abel S, Ziegler J (2019). Iron and phosphate de-
ciency regulators concertedly control coumarin profiles
in Arabidopsis thaliana roots during iron, phosphate, and
combined deciencies. Front Plant Sci, 10: 113
Clay NK, Adio AM, Denoux C, et al (2009). Glucosinolate
metabolites required for an Arabidopsis innate immune
response. Science, 323: 95–101
Cosme M, Fernandez I, Van der Heijden MGA, et al (2018).
Non-mycorrhizal plants: the exceptions that prove the
rule. Trends Plant Sci, 23: 577–587
Cotton TEA, Petriacq P, Cameron DD, et al (2019). Metabolic
regulation of the maize rhizobiome by benzoxazinoids.
ISME J, 13: 1647–1658
Djonovic S, Vargas WA, Kolomiets MV, et al (2007). A pro-
teinaceous elicitor Sm1 from the benecial fungus Trich-
oderma virens is required for induced systemic resistance
in maize. Plant Physiol, 145: 875–889
Durr J, Reyt G, Spaepen S, et al (2019). Two receptor-like
kinases required for Arabidopsis endodermal root organ-
isation shape the rhizosphere microbiome. bioRxiv, doi:
https://dx.doi.org/10.1101/816330
Ferrari S, Plotnikova JM, De Lorenzo G, et al (2003). Arabi-
dopsis local resistance to Botrytis cinerea involves sali-
cylic acid and camalexin and requires EDS4 and PAD2,
but not SID2, EDS5 or PAD4. Plant J, 35: 193–205
Finkel OM, Salas-Gonzalez I, Castrillo G, et al (2019). The
effects of soil phosphorus content on plant microbiota are
driven by the plant phosphate starvation response. PLOS
Biol, 17: e3000534
Frerigmann H, Pislewska-Bednarek M, Sanchez-Vallet A, et
al (2016). Regulation of pathogen-triggered tryptophan
metabolism in Arabidopsis thaliana by MYB transcrip-
tion factors and indole glucosinolate conversion products.
Mol Plant, 9: 682–695
Friedman J, Higgins LM, Gore J (2017). Community structure
follows simple assembly rules in microbial microcosms.
Nat Ecol Evol, 1: 109
Gage DJ (2004). Infection and invasion of roots by symbiotic,
nitrogen-fixing rhizobia during nodulation of temperate
legumes. Microbiol Mol Biol Rev, 68: 280–300
Geddes BA, Paramasivan P, Joffrin A, et al (2019). Engineer-
ing transkingdom signalling in plants to control gene ex-
pression in rhizosphere bacteria. Nat Commun, 10: 3430
Genre A, Chabaud M, Faccio A, et al (2008). Prepenetration
apparatus assembly precedes and predicts the coloniza-
tion patterns of arbuscular mycorrhizal fungi within the
root cortex of both Medicago truncatula and Daucus
carota. Plant Cell, 20: 1407–1420
Glawischnig E (2007). Camalexin. Phytochemistry, 68: 401–
406
Grosskinsky DK, Naseem M, Abdelmohsen UR, et al (2011).
Cytokinins mediate resistance against Pseudomonas
syringae in tobacco through increased antimicrobial phy-
toalexin synthesis independent of salicylic acid signaling.
Plant Physiol, 157: 815–830
Guo X, Zhang X, Qin Y, et al (2020). Host-associated quan-
titative abundance profiling reveals the microbial load
variation of root microbiome. Plant Commun, 1: 100003
Hacquard S, Tisserant E, Brun A, et al (2013). Laser microdis-
section and microarray analysis of Tuber melanosporum
ectomycorrhizas reveal functional heterogeneity between
mantle and Hartig net compartments. Environ Microbiol,
15: 1853–1869
He J, Zhang C, Dai H, et al (2019). A LysM receptor het-
eromer mediates perception of arbuscular mycorrhizal
symbiotic signal in rice. Mol Plant, 12: 1561–1576
Herrera Paredes S, Gao T, Law TF, et al (2018). Design of
synthetic bacterial communities for predictable plant phe-
notypes. PLOS Biol, 16: e2003962
Hiruma K, Gerlach N, Sacristan S, et al (2016). Root en-
dophyte Colletotrichum tofieldiae confers plant fitness
benefits that are phosphate status dependent. Cell, 165:
464–474
Hodge A, Berta G, Doussan C, et al (2009). Plant root growth,
architecture and function. Plant Soil, 321: 153–187
Hu J, Wei Z, Friman VP, et al (2016). Probiotic diversity en-
hances rhizosphere microbiome function and plant dis-
ease suppression. mBio, 7: e01790-16
Hu L, Robert CAM, Cadot S, et al (2018). Root exudate
植物生理学报
2284
metabolites drive plant-soil feedbacks on growth and
defense by shaping the rhizosphere microbiota. Nat Com-
mun, 9: 2738
Huang AC, Jiang T, Liu YX, et al (2019). A specialized met-
abolic network selectively modulates Arabidopsis root
microbiota. Science, 364: eaau6389
Jansson JK, Hofmockel KS (2018). The soil microbiome-from
metagenomics to metaphenomics. Curr Opin Microbiol,
43: 162–168
Jiang Y, Wang W, Xie Q, et al (2017). Plants transfer lipids to
sustain colonization by mutualistic mycorrhizal and para-
sitic fungi. Science, 356: 1172–1175
Jones JD, Dangl JL (2006). The plant immune system. Nature,
444: 323–329
Kobayashi T, Nishizawa NK (2012). Iron uptake, translo-
cation, and regulation in higher plants. Annu Rev Plant
Biol, 63: 131–152
Koprivova A, Schuck S, Jacoby RP, et al (2019). Root-specic
camalexin biosynthesis controls the plant growth-promot-
ing effects of multiple bacterial strains. Proc Natl Acad
Sci USA, 116: 15735–15744
Kudjordjie EN, Sapkota R, Steffensen SK, et al (2019). Maize
synthesized benzoxazinoids affect the host associated mi-
crobiome. Microbiome, 7: 59
Kwak MJ, Kong HG, Choi K, et al (2018). Rhizosphere mi-
crobiome structure alters to enable wilt resistance in to-
mato. Nat Biotechnol, 36: 1100–1109
Labbe J, Muchero W, Czarnecki O, et al (2019). Mediation
of plant-mycorrhizal interaction by a lectin receptor-like
kinase. Nat Plants, 5: 676–680
Lacombe E, Hawkins S, Van Doorsselaere J, et al (1997). Cin-
namoyl CoA reductase, the rst committed enzyme of the
lignin branch biosynthetic pathway: cloning, expression
and phylogenetic relationships. Plant J, 11: 429–441
Lakshmanan V, Selvaraj G, Bais HP (2014). Functional soil
microbiome: belowground solutions to an aboveground
problem. Plant Physiol, 166: 689–700
Lebeis SL, Paredes SH, Lundberg DS, et al (2015). Salicylic
acid modulates colonization of the root microbiome by
specic bacterial taxa. Science, 349: 860–864
Lee HS, Belkhadir Y (2020). Damage control: cellular logic
in the root immune response. Cell Host Microbe, 27:
308–310
Leple JC, Dauwe R, Morreel K, et al (2007). Downregulation
of cinnamoyl-coenzyme A reductase in poplar: multi-
ple-level phenotyping reveals effects on cell wall polymer
metabolism and structure. Plant Cell, 19: 3669–3691
Limpens E, Franken C, Smit P, et al (2003). LysM domain
receptor kinases regulating rhizobial Nod factor-induced
infection. Science, 302: 630–633
Liu YX, Qin Y, Bai Y (2019). Reductionist synthetic commu-
nity approaches in root microbiome research. Curr Opin
Microbiol, 49: 97–102
Lombardi N, Vitale S, Turra D, et al (2018). Root exudates
of stressed plants stimulate and attract Trichoderma soil
fungi. Mol Plant Microbe Interact, 31: 982–994
Lopez-Gomez M, Sandal N, Stougaard J, et al (2012). Inter-
play of g22-induced defence responses and nodulation
in Lotus japonicus. J Exp Bot, 63: 393–401
Luginbuehl LH, Menard GN, Kurup S, et al (2017). Fatty ac-
ids in arbuscular mycorrhizal fungi are synthesized by the
host plant. Science, 356: 1175–1178
Lugtenberg B, Kamilova F (2009). Plant-growth-promoting
rhizobacteria. Annu Rev Microbiol, 63: 541–556
Luna E, Pastor V, Robert J, et al (2011). Callose deposition: a
multifaceted plant defense response. Mol Plant Microbe
Interact, 24: 183–193
Madsen EB, Madsen LH, Radutoiu S, et al (2003). A receptor
kinase gene of the LysM type is involved in legume per-
ception of rhizobial signals. Nature, 425: 637–640
Masson-Boivin C, Sachs JL (2018). Symbiotic nitrogen fix-
ation by rhizobia-the roots of a success story. Curr Opin
Plant Biol, 44: 7–15
Mazurier S, Corberand T, Lemanceau P, et al (2009).
Phenazine antibiotics produced by uorescent pseudomo-
nads contribute to natural soil suppressiveness to Fusari-
um wilt. ISME J, 3: 977–991
Mendes R, Kruijt M, De Bruijn I, et al (2011). Deciphering
the rhizosphere microbiome for disease-suppressive bac-
teria. Science, 332: 1097–1100
Millet YA, Danna CH, Clay NK, et al (2010). Innate immune
responses activated in Arabidopsis roots by microbe-as-
sociated molecular patterns. Plant Cell, 22: 973–990
Neal AL, Ahmad S, Gordon-Weeks R, et al (2012). Benzox-
azinoids in root exudates of maize attract Pseudomonas
putida to the rhizosphere. PLOS One, 7: e35498
Pieterse CMJ, Zamioudis C, Berendsen RL, et al (2014). In-
duced systemic resistance by benecial microbes. Annu
Rev Phytopathol, 52: 347–375
Pieterse CMJ, Van der Does D, Zamioudis C, et al (2012).
Hormonal modulation of plant immunity. Annu Rev Cell
Dev Biol, 28: 489–521
Plett JM, Daguerre Y, Wittulsky S, et al (2014). Effector MiS-
SP7 of the mutualistic fungus Laccaria bicolor stabilizes
the Populus JAZ6 protein and represses jasmonic acid
(JA) responsive genes. Proc Natl Acad Sci USA, 111:
8299–8304
Pozo MJ, Van Der Ent S, Van Loon LC, et al (2008). Tran-
scription factor MYC2 is involved in priming for en-
hanced defense during rhizobacteria-induced systemic
禹坷等: 植物根系与益生菌相互作用的研究进展
2285
resistance in Arabidopsis thaliana. New Phytol, 180:
511–523
Radutoiu S, Madsen LH, Madsen EB, et al (2003). Plant rec-
ognition of symbiotic bacteria requires two LysM recep-
tor-like kinases. Nature, 425: 585–592
Ratzke C, Barrere J, Gore J (2020). Strength of species inter-
actions determines biodiversity and stability in microbial
communities. Nat Ecol Evol, 4: 376–383
Roppolo D, Boeckmann B, Pster A, et al (2014). Functional
and evolutionary analysis of the CASPARIAN STRIP
MEMBRANE DOMAIN PROTEIN family. Plant Physi-
ol, 165: 1709–1722
Rudrappa T, Czymmek KJ, Pare PW, et al (2008). Root-se-
creted malic acid recruits beneficial soil bacteria. Plant
Physiol, 148: 1547–1556
Ryu MH, Zhang J, Toth T, et al (2020). Control of nitrogen
xation in bacteria that associate with cereals. Nat Micro-
biol, 5: 314–330
Sasse J, Martinoia E, Northen T (2018). Feed your friends: do
plant exudates shape the root microbiome? Trends Plant
Sci, 23: 25–41
Schmid NB, Giehl RFH, Doll S, et al (2014). Feruloyl-CoA
6'-Hydroxylase1-dependent coumarins mediate iron ac-
quisition from alkaline substrates in Arabidopsis. Plant
Physiol, 164: 160–172
Schreiber L (2010). Transport barriers made of cutin, suberin
and associated waxes. Trends Plant Sci, 15: 546–553
Selmar D, Kleinwachter M (2013). Stress enhances the
synthesis of secondary plant products: the impact of
stress-related over-reduction on the accumulation of natu-
ral products. Plant Cell Physiol, 54: 817–826
Serrano M, Coluccia F, Torres M, et al (2014). The cuticle and
plant defense to pathogens. Front Plant Sci, 5: 274
Shen J, Yuan L, Zhang J, et al (2011). Phosphorus dynamics:
from soil to plant. Plant Physiol, 156: 997–1005
Smit P, Limpens E, Geurts R, et al (2007). Medicago LYK3,
an entry receptor in rhizobial nodulation factor signaling.
Plant Physiol, 145: 183–191
Smith SE, Jakobsen I, Gronlund M, et al (2011). Roles of
arbuscular mycorrhizas in plant phosphorus nutrition:
interactions between pathways of phosphorus uptake in
arbuscular mycorrhizal roots have important implications
for understanding and manipulating plant phosphorus ac-
quisition. Plant Physiol, 156: 1050–1057
Sonderby IE, Geu-Flores F, Halkier BA (2010). Biosynthesis
of glucosinolates−gene discovery and beyond. Trends
Plant Sci, 15: 283–290
Stracke S, Kistner C, Yoshida S, et al (2002). A plant recep-
tor-like kinase required for both bacterial and fungal sym-
biosis. Nature, 417: 959–962
Stringlis IA, Yu K, Feussner K, et al (2018). MYB72-depen-
dent coumarin exudation shapes root microbiome assem-
bly to promote plant health. Proc Natl Acad Sci USA,
115: E5213–E5222
Sun H, Wang L, Zhang B, et al (2014). Scopoletin is a phyto-
alexin against Alternaria alternata in wild tobacco depen-
dent on jasmonate signalling. J Exp Bot, 65: 4305–4315
Teixeira PJP, Colaianni NR, Fitzpatrick CR, et al (2019). Be-
yond pathogens: microbiota interactions with the plant
immune system. Curr Opin Microbiol, 49: 7–17
Thimmappa R, Geisler K, Louveau T, et al (2014). Triterpene
biosynthesis in plants. Annu Rev Plant Biol, 65: 225–257
Tkacz A, Poole P (2015). Role of root microbiota in plant pro-
ductivity. J Exp Bot, 66: 2167–2175
Tsai HH, Schmidt W (2017a). Mobilization of iron by plant-
borne coumarins. Trends Plant Sci, 22: 538–548
Tsai HH, Schmidt W (2017b). One way. Or another? Iron up-
take in plants. New Phytol, 214: 500–505
Van Dam NM, Bouwmeester HJ (2016). Metabolomics in the
rhizosphere: tapping into belowground chemical commu-
nication. Trends Plant Sci, 21: 256–265
Van der Ent S, Verhagen BW, Van Doorn R, et al (2008).
MYB72 is required in early signaling steps of rhizobac-
teria-induced systemic resistance in Arabidopsis. Plant
Physiol, 146: 1293–1304
Vishwanathan K, Zienkiewicz K, Liu Y, et al (2020). Ectomy-
corrhizal fungi induce systemic resistance against insects
on a non-mycorrhizal plant in a CERK1-dependent man-
ner. New Phytol, doi: 10.1111/nph.16715
Voges MJEEE, Bai Y, Schulze-Lefert P, et al (2019). Plant-de-
rived coumarins shape the composition of an Arabidopsis
synthetic root microbiome. Proc Natl Acad Sci USA, 116:
12558–12565
Wang C, Wang E (2016). Arabidopsis farms Colletotrichum
toeldiae for phosphate uptake. Mol Plant, 9: 953–955
Wang X, Wang M, Xie X, et al (2020). An amplication-selec-
tion model for quantied rhizosphere microbiota assem-
bly. Sci Bull, 65: 983–986
Wawra S, Fesel P, Widmer H, et al (2016). The fungal-specic
β-glucan-binding lectin FGB1 alters cell-wall composi-
tion and suppresses glucan-triggered immunity in plants.
Nat Commun, 7: 13188
Weller DM, Raaijmakers JM, Gardener BBM, et al (2002).
Microbial populations responsible for specific soil sup-
pressiveness to plant pathogens. Annu Rev Phytopathol,
40: 309–348
Xiao Y, Angulo MT, Friedman J, et al (2017). Mapping the
ecological networks of microbial communities. Nat Com-
mun, 8: 2042
Xu L, Naylor D, Dong Z, et al (2018). Drought delays devel-
植物生理学报
2286
opment of the sorghum root microbiome and enriches
for monoderm bacteria. Proc Natl Acad Sci USA, 115:
E4284–E4293
Yadav V, Kumar M, Deep DK, et al (2010). A phosphate trans-
porter from the root endophytic fungus Piriformospora
indica plays a role in phosphate transport to the host
plant. J Biol Chem, 285: 26532–26544
Yu K, Liu Y, Tichelaar R, et al (2019a). Rhizosphere-associ-
ated Pseudomonas suppress local root immune responses
by gluconic acid-mediated lowering of environmental
pH. Curr Biol, 29: 3913–3920
Yu K, Pieterse CMJ, Bakker PAHM, et al (2019b). Benecial
microbes going underground of root immunity. Plant Cell
Environ, 42: 2860–2870
Yuan J, Zhao J, Wen T, et al (2018). Root exudates drive the
soil-borne legacy of aboveground pathogen infection.
Microbiome, 6: 156
Yuan YG, Brunel C, Van Kleunen M, et al (2019). Salinity-in-
duced changes in the rhizosphere microbiome improve salt
tolerance of Hibiscus hamabo. Plant Soil, 443: 525–537
Zamioudis C, Hanson J, Pieterse CMJ (2014). β-Glucosidase
BGLU42 is a MYB72-dependent key regulator of rhizo-
bacteria-induced systemic resistance and modulates iron
deficiency responses in Arabidopsis roots. New Phytol,
204: 368–379
Zamioudis C, Korteland J, Van Pelt JA, et al (2015). Rhizo-
bacterial volatiles and photosynthesis-related signals co-
ordinate MYB 72 expression in Arabidopsis roots during
onset of induced systemic resistance and iron-deciency
responses. Plant J, 84: 309–322
Zamioudis C, Pieterse CMJ (2012). Modulation of host immu-
nity by benecial microbes. Mol Plant Microbe Interact,
25: 139–150
Zhalnina K, Louie KB, Hao Z, et al (2018). Dynamic root ex-
udate chemistry and microbial substrate preferences drive
patterns in rhizosphere microbial community assembly.
Nat Microbiol, 3: 470–480
Zhang J, Liu YX, Zhang N, et al (2019a). NRT1.1B is associ-
ated with root microbiota composition and nitrogen use
in eld-grown rice. Nat Biotechnol, 37: 676–684
Zhang X, Dong W, Sun J, et al (2015). The receptor kinase
CERK1 has dual functions in symbiosis and immunity
signalling. Plant J, 81: 258–267
Zhang X, Van Doan C, Arce CCM, et al (2019b). Plant de-
fense resistance in natural enemies of a specialist insect
herbivore. Proc Natl Acad Sci USA, 116: 23174–23181
Zhou F, Emonet A, Denervaud Tendon V, et al (2020). Co-in-
cidence of damage and microbial patterns controls local-
ized immune responses in roots. Cell, 180: 440–453
Zhou S, Richter A, Jander G (2018). Beyond defense: Mul-
tiple functions of benzoxazinoids in maize metabolism.
Plant Cell Physiol, 59: 1528–1537
Zhu G, Wang S, Huang Z, et al (2018). Rewiring of the fruit
metabolome in tomato breeding. Cell, 172: 249–261
Zipfel C, Oldroyd GED (2017). Plant signalling in symbiosis
and immunity. Nature, 543: 328–336
禹坷等: 植物根系与益生菌相互作用的研究进展
2287
Research progress on interactions between root and benecial microbes
YU Ke1,#, WANG Xiaolin2,#, ZHANG Xuebin1,*, WANG Ertao2,*
1State Key Laboratory of Crops Stress Adaption and Improvement, Henan University, Kaifeng, Henan 475004, China
2CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Shanghai 200032,
China
Abstract: Associations formed between plant roots and microbes are mutually benecial to both organisms. In
such associations, plants provide carbon source and anchoring space for the microbes while the microbes pro-
vide nutrients and enhanced stress resistance for the plants. Root exudates function as key signaling and regula-
tory molecules mediating the establishment of this association. In the past decade, plant microbiome has re-
ceived more and more attentions due to its critical role in plant health and potential applications in agricultural
practice. Here we summarized the research progress in the molecular mechanism underlying the interactions
between plant and benecial microbes, with a focus on the strategies used by plants to modulate the root micro-
biome. Attempts for engineering symbiosis in cereals and applications of synthetic microbiome to enhance plant
performance were also discussed. These research breakthrough not only will deepen our understanding in the
interaction mechanism between plants and microbial communities, but also lay the foundation for designing
and improving stress resistance in crops.
Key words: benecial microbes; microbiome; root exudates; symbiosis; rhizosphere
Received 2020-04-10 Accepted 2020-07-20
This work was supported by the National Science Foundation for Distinguished Young Scholars (31825003).
#Co-rst authors.
*Co-corresponding authors: Wang ET (etwang@sibs.ac.cn), Zhang XB (xuebinzhang@henu.edu.cn).
Article
Full-text available
Ectomycorrhizal (ECM) fungi are extremely important for the regulation of forest growth and adaptability. Exploring the ECM symbiotic mechanism, especially the signal recognition mechanism in the pre-symbiotic phase, is of great significance for analyzing the coexistence mechanism between trees and microorganisms and the subsequent application of ECM fungi in forestry production. In this paper, a review of recent advances in the study of ECM pre-symbiotic mechanisms at home and abroad was presented. As for the study of ECM pre-symbiosis, the author not only systematically summarized the study object and system of pre-symbiosis the signal molecular effects of ECM fungi and host sources, but also analyzed the deficiency of research status and future research trend, hoping to provide reference for further explanation of ECM symbiotic mechanism and application of ECM fungi.
Article
Full-text available
Below‐ground microbes can induce systemic resistance against foliar pests and pathogens on diverse plant hosts. The prevalence of induced systemic resistance (ISR) among plant‐microbe‐pest systems raises the question of host specificity in microbial induction of ISR. To test whether ISR is limited by plant host range, we tested the ISR‐inducing ectomycorrhizal fungus Laccaria bicolor on the nonmycorrhizal plant Arabidopsis thaliana. We used the cabbage looper Trichoplusia ni and bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto) as readouts for ISR on Arabidopsis. We found that root inoculation with L. bicolor triggered ISR against T. ni and induced systemic susceptibility (ISS) against the bacterial pathogen Pto. We found that L. bicolor‐triggered ISR against T. ni was dependent on jasmonic acid signaling and salicylic acid biosynthesis and signaling. Heat‐killed L. bicolor and chitin were sufficient to trigger ISR against T. ni and ISS against Pto. The chitin receptor CERK1 was necessary for L. bicolor‐mediated effects on systemic immunity. Collectively our findings suggest that some ISR responses might not require intimate symbiotic association, but rather might be the result of root perception of conserved microbial signals.
Article
Full-text available
Plants live in association and interact with a multitude of microorganisms. The prevalent model for rhizosphere recruitment argues that factors produced by root attract the specific bacterial taxa in the rhizosphere and the more specialized bacterial taxa are further enriched within root. Here, we quantified the absolute abundance of root microbiota in Medicago and rice, which revealed that most of the dominant bacterial phyla are significantly elevated in the rhizosphere to different degrees, followed by the recruitment of specific phyla into the root, suggesting an amplification-selection model for root microbiome assembly.
Article
Full-text available
Organisms—especially microbes—tend to live together in ecosystems. While some of these ecosystems are very biodiverse, others are not, and while some are very stable over time, others undergo strong temporal fluctuations. Despite a long history of research and a plethora of data, it is not fully understood what determines the biodiversity and stability of ecosystems. Theory and experiments suggest a connection between species interaction, biodiversity and the stability of ecosystems, where an increase in ecosystem stability with biodiversity could be observed in several cases. However, what causes these connections remains unclear. Here, we show in microbial ecosystems in the laboratory that the concentrations of available nutrients can set the strength of interactions between bacteria. High nutrient concentrations allowed the bacteria to strongly alter the chemical environment, causing on average more negative interactions between species. These stronger interactions excluded more species from the community, resulting in a loss of biodiversity. At the same time, the stronger interactions also decreased the stability of the microbial communities, providing a mechanistic link between species interaction, biodiversity and stability in microbial ecosystems.
Article
Full-text available
Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.
Article
Full-text available
Legumes obtain nitrogen from air through rhizobia residing in root nodules. Some species of rhizobia can colonize cereals but do not fix nitrogen on them. Disabling native regulation can turn on nitrogenase expression, even in the presence of nitrogenous fertilizer and low oxygen, but continuous nitrogenase production confers an energy burden. Here, we engineer inducible nitrogenase activity in two cereal endophytes (Azorhizobium caulinodans ORS571 and Rhizobium sp. IRBG74) and the well-characterized plant epiphyte Pseudomonas protegens Pf-5, a maize seed inoculant. For each organism, different strategies were taken to eliminate ammonium repression and place nitrogenase expression under the control of agriculturally relevant signals, including root exudates, biocontrol agents and phytohormones. We demonstrate that R. sp. IRBG74 can be engineered to result in nitrogenase activity under free-living conditions by transferring a nif cluster from either Rhodobacter sphaeroides or Klebsiella oxytoca. For P. protegens Pf-5, the transfer of an inducible cluster from Pseudomonas stutzeri and Azotobacter vinelandii yields ammonium tolerance and higher oxygen tolerance of nitrogenase activity than that from K. oxytoca. Collectively, the data from the transfer of 12 nif gene clusters between 15 diverse species (including Escherichia coli and 12 rhizobia) help identify the barriers that must be overcome to engineer a bacterium to deliver a high nitrogen flux to a cereal crop. The comparison of the ability of native and engineered gene clusters transferred into bacteria that live on or inside cereal roots to regulate nitrogenase activity reveals different strategies to control nitrogen fixation in rhizobia and paves the way to engineer a bacterium able to deliver high nitrogen fluxes to crops.
Article
Full-text available
Significance Certain adapted insect herbivores utilize plant toxins for self-defense against their own enemies. These adaptations structure ecosystems and limit our capacity to use biological control agents to manage specialized agricultural pests. We show that entomopathogenic nematodes that are exposed to the western corn rootworm, an important agricultural pest that sequesters defense metabolites from maize, can evolve resistance to these defenses. Resisting the plant defense metabolites likely allows the nematodes to infect and kill the western corn rootworm more efficiently. These findings illustrate how predators can counter the plant-based resistance strategies of specialized insect herbivores. Breeding or engineering biological control agents that resist plant defense metabolites may improve their capacity to kill important agricultural pests such as the western corn rootworm.
Article
The organizational principles of the root immune system are largely uncharacterized. In the February 6, 2020 issue of Cell, Zhou et al. showed roots are built entirely by immunocompetent cells that require distinct instructions to unlock cell-autonomous immune programs. A root cell’s developmental identity combined with its spatial distribution fine-tunes immune signal sensitivity, enabling sector-specific immune responses.
Article
Synthetic community (SynCom) approaches can provide functional and mechanistic insights into how plants regulate their microbiomes, and how the microbiome in turn influences plant growth and health. Microbial cultivation and reconstruction play pivotal roles in this process, which enables researchers to reproducibly investigate the interactions between plants and a major proportion of plant-associated microbes in controlled laboratory conditions. Here, we summarize the emergence, current achievements, and future opportunities for using SynCom experiments in plant microbiome research, with a focus on plant root-associated bacteria.
Article
The root microbiome consists of commensal, pathogenic, and plant-beneficial microbes [1]. Most members of the root microbiome possess microbe-associated molecular patterns (MAMPs) similar to those of plant pathogens [2]. Their recog- nition can lead to the activation of host immunity and suppression of plant growth due to growth- defense tradeoffs [3, 4]. We found that 42% of the tested root microbiota, including the plant growth-promoting rhizobacteria Pseudomonas capeferrum WCS358 [5, 6] and Pseudomonas simiae WCS417 [6, 7], are able to quench local Ara- bidopsis thaliana root immune responses that are triggered by flg22 [8], an immunogenic epitope of the MAMP flagellin [9], suggesting that this is an important function of the root microbiome. In a screen for WCS358 mutants that lost their ca- pacity to suppress flg22-induced CYP71A12pro: GUS MAMP-reporter gene expression, we identi- fied the bacterial genes pqqF and cyoB in WCS358, which are required for the production of gluconic acid and its derivative 2-keto gluconic acid. Both WCS358 mutants are impaired in the production of these organic acids and conse- quently lowered their extracellular pH to a lesser extent than wild-type WCS358. Acidification of the plant growth medium similarly suppressed flg22- induced CYP71A12pro:GUS and MYB51pro:GUS expression, and the flg22-mediated oxidative burst, suggesting a role for rhizobacterial gluconic acid- mediated modulation of the extracellular pH in the suppression of root immunity. Rhizosphere popula- tion densities of the mutants were significantly reduced compared to wild-type. Collectively, these findings show that suppression of immune re- sponses is an important function of the root microbiome, as it facilitates colonization by benefi- cial root microbiota.