Emily Jane Rundlet

Emily Jane Rundlet
University of Texas at Austin | UT · Department of Molecular Biosciences

Doctor of Philosophy
Postdoc

About

20
Publications
4,172
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,047
Citations

Publications

Publications (20)
Article
Full-text available
In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems¹. Although key features are conserved across evolution², eukaryotes achieve higher-fidelity mRNA decoding th...
Article
Full-text available
Rapid and accurate mRNA translation requires efficient codon-dependent delivery of the correct aminoacyl-tRNA (aa-tRNA) to the ribosomal A site. In mammals, this fidelity-determining reaction is facilitated by the GTPase elongation factor-1 alpha (eEF1A), which escorts aa-tRNA as an eEF1A(GTP)-aa-tRNA ternary complex into the ribosome. The structur...
Preprint
Full-text available
Rapid and accurate mRNA translation requires efficient codon-dependent delivery of the correct aminoacyl-tRNA (aa-tRNA) to the ribosomal A site. In mammals, this fidelity-determining reaction is facilitated by the GTPase elongation factor-1 alpha (eEF1A), which escorts aa-tRNA as an eEF1A(GTP)-aa-tRNA ternary complex into the ribosome. Two structur...
Article
Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorousl...
Article
Full-text available
Significance The increase in multidrug-resistant bacteria highlights the urgent need for compounds with novel target sites that can be developed as antibiotics. The argyrins represent a family of naturally produced octapeptides that display promising activity against Pseudomonas aeruginosa by inhibiting protein synthesis. Our structural and kinetic...
Article
Full-text available
Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2–20 per second) and with a low error rate (around 10−3 to 10−5 at each step) over thousands of cycles1. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a...
Article
INTRODUCTION The subcellular compartmentalization of eukaryotic cells requires selective transport of folded proteins and protein–nucleic acid complexes. Embedded in nuclear envelope pores, which are generated by the circumscribed fusion of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) are the sole bidirectional gateways for...
Preprint
The nuclear pore complex (NPC) is the sole bidirectional gateway for nucleocytoplasmic transport. Despite recent progress in elucidating the NPC symmetric core architecture, the asymmetrically decorated cytoplasmic face, essential for mRNA export and a hotspot for nucleoporin-associated diseases, has remained elusive. Here, we report a composite st...
Article
Full-text available
Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2–20 per second) and with a low error rate (around 10⁻³ to 10⁻⁵ at each step) over thousands of cycles¹. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a...
Chapter
Messenger RNA (mRNA)-directed protein synthesis is carried out by the ribosome, a macromolecular assembly composed of over 70 distinct gene products. During the elongation phase of this multistep, regulated process, the ribosome “reads” the codon sequence of mRNA to synthesize specific polypeptides. This entails repetitive cycles of aminoacyl-trans...
Article
Full-text available
Background: Respiratory syncytial virus (RSV) subtypes, A and B, co-circulate in annual epidemics and alternate in dominance. We have shown that a subtype A RSV fusion (F) glycoprotein, stabilized in its prefusion conformation by DS-Cav1 mutations, is a promising RSV-vaccine immunogen, capable of boosting RSV-neutralizing titers in healthy adults....
Article
Full-text available
Translocation moves the tRNA2⋅mRNA module directionally through the ribosome during the elongation phase of protein synthesis. Although translocation is known to entail large conformational changes within both the ribosome and tRNA substrates, the orchestrated events that ensure the speed and fidelity of this critical aspect of the protein synthesi...
Article
Full-text available
Structure-based design of vaccines, particularly the iterative optimization used so successfully in the structure-based design of drugs, has been a long-sought goal. We previously developed a first-generation vaccine antigen called DS-Cav1, comprising a prefusion-stabilized form of the fusion (F) glycoprotein, which elicits high-titer protective re...
Article
Blueprint for a macromolecular machine Nuclear pore complexes (NPCs) consist of around 1000 protein subunits, are embedded in the membrane that surrounds the nucleus, and regulate transport between the nucleus and the cytoplasm. Although the overall shape of NPCs is known, the details of this macromolecular complex have been obscure. Now, Lin et al...
Article
Full-text available
Respiratory syncytial virus (RSV) is estimated to claim more lives among infants <1 year old than any other single pathogen, except malaria, and poses a substantial global health burden. Viral entry is mediated by a type I fusion glycoprotein (F) that transitions from a metastable prefusion (pre-F) to a stable postfusion (post-F) trimer. A highly n...
Article
The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. We present the reconstitution and interdisciplinary analyses of the ~425-kDa inner ring complex (IRC), which forms the central transport channel and diffusion barrier of the NPC, revealing its interaction network and equimolar stoichiometry. T...

Network

Cited By