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Preface to the third edition

What to expect in this book?

This book is about a formal consistent and coherent theory for the processes of substrate
uptake and use by organisms, which I called the Dynamic Energy Budget (DEB) theory.
Over the thirty years of research on this theory, it became well established; some 140 papers
on DEB theory appeared since the second edition in 2000. The application of the theory by
the international research group AQUAdeb, http://www.ifremer.fr/aquadeb/, and of
this book in the DEB tele-courses, http://www.bio.vu.nl/thb/deb/course/, urged for a
new edition. This book gives a fresh update of the present state of the theory. In view of its
accelerating development, this update will probably not be the last one. To accommodate
all new material, I had to cut out most methodological parts of the previous edition, which
is a pity because opponents of DEB theory typically seem to differ in opinion on ‘details’,
but actually differ in opinion on the role of models in research and related methodological
issues. I wrote a document on methods in theoretical biology, which also summarises the
mathematics that is used in this book, see http://www.bio.vu.nl/thb/deb/.

Many empirical models, ranging from Lavoisier’s model for indirect calorimetry, Kleiber’s
model for the respiration as function of body weight, von Bertalanffy’s model for animal
growth and Droop’s model for nutrient-limited algal growth turned out to be special cases
of DEB models that follow from the theory. This makes that DEB theory is the best tested
quantitative theory in biology.

Support of this book

Although I tried hard to avoid errors, experience tells me that they are unavoidable. A
list of detected errors can be found at the DEB information page http://www.bio.vu.
nl/thb/deb/, and I offer my apologies for any inconvenience. The errata, and all support
material mentioned below will frequently be updated.

I tried to emphasise the concepts in this book, and to reduce on technicalities. Math-
ematical derivations of results are important, however, especially for people who want to
contribute to the further development of the theory. These derivations are collected in
the comments on DEB theory, which can also be found at DEB information page. These
comments also give further background information and summarise the developments of
the theory and its applications since this book appeared.

Software package DEBtool can be downloaded freely from the electronic DEB labo-
ratory, http://www.bio.vu.nl/thb/deb/deblab/; the manual is included (run file in-


http://www.ifremer.fr/aquadeb/
http://www.bio.vu.nl/thb/deb/course/
http://www.bio.vu.nl/thb/deb/
http://www.bio.vu.nl/thb/deb/
http://www.bio.vu.nl/thb/deb/
http://www.bio.vu.nl/thb/deb/deblab/

Xiv Preface

dex.html in subdirectory manual in a browser, such as firefor). DEBtool is written in
Octave and in Matlab. The purpose of this package is a mix of demo’s for what the the-
ory can do, routines that can be used to fit DEB models to data, to calculate quantities
such as the initial amount of reserve in eggs, to reconstruct food density trajectories from
observations on an individual, to run numerical simulations for plant growth, etc. Toolbox
fig collects the files that have been used to create the figures of this book. Here you can
see how the data are set, how the model is specified and how it is fitted to the data. The
files give the figures in colours, and also presents standard deviations of parameters that
are estimated. These standard deviations are not presented in this book. If you want to
apply the theory to your own data, and your application resembles one of the figures, an
efficient way to do this is to go the file that produces the figure, replace the data by your
own data and re-run the file.

This book is used in the international biannual DEB tele-course. Its setup can be found
on http://www.bio.vu.nl/thb/deb/course/; starting in 2009, the course will be linked
to an international symposium on DEB theory, organised by previous participants of the
tele-courses. The DEB-information page also gives access to other material that is used
and produced in this course. This includes collections quizzes, exercises and solutions,
powerpoint sheets, questions and answers, essays that are written by participants and,
typically, later used in publications.

The book mentions many names of taxa; I collected recent ideas on the evolution-
ary relationships between living organisms. Both documents can be found on the DEB
information page.

The DEB information page also presents a number of papers that introduce DEB theory,
ongoing activities, job opportunities etc. Examples of application of DEB theory can be
found in the special issues of the Journal of Sea Research, 56 (2006), issue 2 and 62 (2009),
issue 1/2.

Setup of this book

-+ 92—+ 3 dev 5r 9 10—11 Th}% logica‘l structure of the chapte.rs is indi-
cated in the diagram (left). A first quick glance
6 7 8 through the section on notation and symbols,

page {469}, saves time and annoyance.

A glossary at {463} explains technical terms

Chapter 1 gives introductory concepts, namely the notion of the individual, its life
stages, the various varieties of homeostasis and the effects of temperature on metabolic
rates. The choice of topics is based on their relevance for the standard DEB model.

Chapter 2 specifies the standard DEB model, which represents the simplest non-degenerated
model in DEB theory, so a canonical form, which uses one type of substrate (food), one
reserve, one structure for an isomorph, i.e. an organism that does not change in shape
during growth. It neglects all sorts of complications for educational purposes, to illustrate
the basic DEB concepts in action; a summary section presents the list of assumptions from
which the standard DEB model follows.

Chapter 3 discusses the relationships between energy, compounds and biomass, and
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presents basic concept on metabolism. It presents the actions of synthesising units (SUs),
i.e. a generalised form of enzymes that basically follow enzyme kinetics, but with an im-
portant modification: SU kinetics is based on fluxes, not on concentrations. The material
in this chapter prepares for the next one.

Chapter 4 describes univariate DEB models, which have one type of substrate (food), one
reserve and one structure, and starts with extending the standard DEB model of chapter
2 by accounting for changes in food density and of shapes. The various chemical com-
pounds, isotopes and energies are followed, product formation is specified and respiration
is discussed in some detail. The quantification of entropy of living biomass is discussed.
The parameter estimation section of chapter 2 is now extended to include mass, energy
and entropy parameters. The final section shows the use of observations on individuals to
reconstruct how the food availability and temperature changed in time. This is useful e.g.
to study size-dependent food selection.

Chapter 5 extends the theory to include several substrates, reserves and structural
masses to increase the metabolic versatility that is found in organisms that acquire nutrients
and light independently, and have to negotiate the problem of simultaneous limitation
caused by stoichiometric coupling. The various ways in which substrate can take part in
metabolic transformations are discussed. The processes of photosynthesis and calcification
are discussed; the implications for plant development are evaluated.

Chapter 6 starts with a discussion of aging that is caused by the effects of reactive
oxygen species, which are formed as side-products of respiration; the ageing kinetics have
direct links with energetics. This chapter considers the uptake and effects of non-essential
compounds, such as toxicants. The significance of effects of toxicants for energetics is that
DEB parameter values are changed and the response to these changes reveal the metabolic
organisation of individuals.

Chapter 7 extends DEB theory to include more detail for the various applications,
especially if the shorter time scales need to be included to link to developments in molecular
biology. The purpose of this chapter is to show how DEB theory fits into a wider context
of biological research. Some parameter values turn out to change sometimes during the
development of an organism and are discussed; it prepares the topic of the next chapter.

Chapter 8 analyses the intra- and inter-specific variation of parameter values among
individuals. It compares the energetics of different species by studying the implications
of DEB theory for the covariation of parameter values among species. The chapter shows
how, for a wide variety of biological variables, body size scaling relationships can be derived
from first principles rather than established empirically. This approach to body size scaling
relationships is fundamentally different from that of existing studies.

Chapter 9 considers interactions between individuals and develops population conse-
quences. The population, after its introduction as a collection of individuals, is considered
as a new entity in terms of systems analysis, with its own relationships between input,
output and state. These new relationships are expressed in terms of those for individuals.
The coupling between mass and energy fluxes at the population level is studied and the
behaviour of food chains and of canonical communities is discussed briefly.

Chapter 10 presents scenarios for the evolution of metabolic organisation and the grad-
ual coupling and uncoupling of the dynamics of partners in symbiotic interactions; it also
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aims to make DEB theory biologically explicit. Apart from showing how DEB theory fits
into an evolutionary context, this chapter demonstrates a key issue: two species that fol-
low DEB rules can merge such that the merged new species again follows DEB rules. The
process that life became increasingly dependent on life is discussed and illustrated with
examples.

Chapter 11 places the approach taken by the DEB theory in existing eco-energetic
research, and highlights some differences in concepts. A collection of well-known empirical
models is presented that turn out to be special cases of DEB theory and their empirical
support also supports DEB theory.
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Chapter 1

Basic concepts

The purpose of this chapter is to introduce some general concepts to prepare for the devel-
opment of the simplest version of DEB theory, which is discussed in the next chapter. I start
with the explanation why the organisation level of the individual plays a key role in DEB
theory, followed by homeostasis concepts. Mechanisms for homeostasis and evolutionary
aspects are discussed later. Then we need to introduce the notion of life stages and effects
of temperature in some detail.

1.1 Individuals as dynamic systems

1.1.1 The basic level of metabolic organisation

From a systems analysis point of view, individuals are special for metabolic organisation
because at this organisational level it is relatively easy to make energy and mass balances.
This is important, because the conservation law for energy and mass is one of the few hard
laws available in biology. At the sub- and supra-individual levels it is much more difficult
to measure and model mass and energy flows.

Life started as an individual in evolutionary history, see {370}, and individuals are the
units of selection and the survival machines of life; differences between individuals are,
in combination with selection, key to evolution. DEB theory captures these differences by
parameter values, which can differ between individuals, see chapter 8.

Individuals are also special because behaviour is key to food intake and food selec-
tion (food fuels metabolism) and to mate selection; reproduction controls survival across
generations in many species.

The analysis of metabolic organisation should, therefore, start at the level of the indi-
vidual. Many species are unicellular, which links subcellular organisation directly to the
individual level.

1.1.2 Vague boundaries: the cell-population continuum

The emphasis on individuals should not mask that the boundaries between cells, individ-
uals, colonies, societies and populations are not always sharp. Fungal mycelia can cover
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up to 15 hectares as in the basiodiomycete Armillaria bulbosa, but they can also fragment
easily. Cellular slime moulds (dictyostelids) have a single-celled free-living amoeboid stage,
as well as a multicellular one; the cell boundaries dissolve in the multicellular stage of acel-
lular slime moulds (eumycetozoa), which can now creep as a multi-nucleated plasmodium
over the soil surface.

The mycetozoans are not the only amoebas with multi-nuclear stages; Mastigamoeba
(a pelobiont) is another example[91]. Many other taxa also evolved multi-nucleated cells,
plasmodia or stages, e.g. ciliates, Xenophyophores, Actinophryids, Biomyza, Loukozoans,
Diplomonads, Gymnosphaerida, Haplosporids, Microsporidia, Nephridiophagids, Nucle-
ariidae, Plasmodiophorids, Pseudospora, Xanthophyta (e.g. Vaucheria), most classes of
Chlorophyta (Chlorophyceae, Ulvophyceae, Charophyceae (in mature cells) and all Clado-
phoryceae, Bryopsidophyceae and Dasycladophyceae)) [871, 516]. Many higher fungi have
hyphen where cells are fused in a multi-nucleated plasma, and nuclei of several rhodophytes
can crawl from one cell into another. The Paramyzxea have cells inside cells. The Myzozoa
have multicellular spores, but a single-cellular adult stage. Some bacteria have multicellular
tendencies [1045].

Certain plants, such as grasses and sedges, can form runners that give off many sprouts
and cover substantial surface areas; sometimes, these runners remain functional in trans-
porting and storing resources as tubers, whereas in other cases they soon disintegrate. A
similar situation can be found in, for example, corals and bryozoans, where the tiny polyps
can exchange resources through stolons.

Behavioural differentiation between individuals, such as between those in syphono-
phorans, invites to consider the whole colony an integrated individual, whereas the differ-
entiation in colonial insects and mammals is still that loose that it is recognised as a group
of coordinated individuals. Schools of fish {334}, bacterial colonies and forests {130} can
behave as a super individual,

These examples illustrate the vague boundaries of multicellularity, and even those of
individuality. A sharpening of definitions or concepts may reduce the number of transition
cases to some extent, but this cannot hide the fact that we are dealing here with a con-
tinuum of metabolic integration in the twilight-zone between individuals and populations.
This illustrates that organisms, and especially eukaryotes, need each other metabolically.

1.1.3 Why reserves apart from structure?

DEB theory partitions biomass into one or more reserves and one or more structures.
Reserves complicate the dynamics of the individual and the application of the model con-
siderably, so it makes sense to think about its necessity and become motivated to deal with
this more complex dynamics.

We need reserve because of the following reasons

e to include metabolic memory. A variable substrate (food) supply does not combine
easily with constant maintenance needs. Organisms use reserve(s) to smooth out
fluctuations. The metabolic behaviour of an individual does not depend on the actual
food availability, but of that of the (recent) past. Individuals react slowly to changes
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in their feeding conditions. This cannot be described realistically with the digestive
system as a buffer, because its relaxation time is too short. Spectacular examples of
prolonged action without food intake are the European, North American and New
Zealand eels, Anguilla, which stop feeding at a certain moment. Their alimentary
canal even degenerates, before the 3000-km-long journey to their breeding grounds
where they spawn. The male emperor penguin Aptenodytes forsteri breeds its egg in
Antarctic midwinter for two months and feeds the newly hatched chick with milky
secretions from the stomach without access to food. The male loses some 40 % of its
body weight before assistance from the female arrives.

e to smooth out fluctuations in resource availability to make sure that no essential
type of resource is temporarily absent, cf {379}; growth can only proceed if all
essential resources are available in certain relative amounts. This argument concerns
a different form of memory that is used by multiple reserve systems. Single reserve
systems evolved from multiple reserve systems. This will be discussed in chapter 10.
Non-limiting reserves can dam up, which causes strong changes in the composition
of biomass, see {193}.

e the chemical composition of the individual depends on the growth rate. This can
only be captured if biomass has more than one component.

e fluxes (e.g. dioxygen, carbon dioxide, nitrogen waste, heat) are linear sums of three
basic energy fluxes: assimilation, dissipation and growth (as we will see). The method
of indirect calorimetry is based on this fact. Without reserve, using a single structure
only, two rather than three basic energy fluxes would suffice, while experimental
evidence shows that this is not true.

e to explain observed patterns in respiration and in body size scaling relationships.
Eggs decrease in mass during development, but increase in respiration, while juve-
niles increase in mass as well as in respiration. This cannot be understood without
reserve. A freshly laid egg consists (almost) fully of reserve and does hardly respire;
a simple and direct empirical support for the DEB assumption that structure requires
maintenance, but reserve does not. We will see that reserve plays a key role in body
size scaling relationships, and to understand, for instance, why respiration increases
approximately with weight to the power 3/4 among species.

e to understand how the cell decides on the use of a particular (organic) substrate, as
building block or as source of energy. This problem will be discussed in the section
on organelle-cytoplasm interactions at {275}.

The term reserve does not mean ‘set apart for later use’; reserve ‘molecules’ can have
active metabolic functions while ‘waiting’ for being used. Ribosomal RNA, for instance,
turns out to belong to the reserve, see {139}; it is used for peptide elongation. The primary
difference between reserve and structure is in their dynamics: all chemical compounds in
the reserve have the same turnover time, in the structure they can be different. Reserves
are used to fuel all metabolic needs of the individual.
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Most metabolic behaviour of animals, i.e. organisms that live of other organisms, can be
understood using a single reserve, but autotrophs, which obtain nutrients independently
from the environment, require the delineation of more reserves, as will be discussed in
chapter 5.

1.1.4 Metabolic switching is linked to maturation

Metabolic switches occur, for instance, at the start of development of an individual, the
moment at which age is initiated in DEB theory. Another switch occurs when assimilation
is initiated, a moment called birth, or when allocation to maturation is redirected to repro-
duction, a moment called puberty, or when cell division occurs or at which DNA duplication
is initiated. The age at which such switches occur differs widely among individuals of the
same species, depending on the food uptake in the past. The size at which the switches
occur differs already much less, but still shows some scatter.

DEB theory links the occurrence of such metabolic switches to the level of maturity, i.e.
the set of regulation systems that control metabolic performance. Although allocation to
reproduction does not occur as long as maturity is still increasing, this does not imply that
maturity directly relates to preparation of the reproductive machinery only. I see maturity
as a much more general investment to prepare the body for the adult state, which involves,
among other things, extensive gene regulation switching and cell and tissue differentiation.
Its formal status is information, not energy, mass, or entropy. The building up of maturity
costs energy, and maturity is quantified as the cumulated energy or amount of reserve that
is invested in maturity. After being used to build up maturity, this energy becomes lost.
Maturation can be conceived as metabolic learning and can be compared with reading a
book or a newspaper; this costs considerable energy but forgetting the information does
not give and extra release of heat or an extra carbon dioxide emission.

In multicellular organisms birth typically precedes puberty, which naturally leads to
three life-stages: embryo, juvenile and adult.

Embryo

The first stage is the embryonic one, which is defined as a state early in the development
of the individual, when no food is ingested. The embryo relies on stored energy supplies.
Freshly laid eggs consist, almost entirely, of stored energy, and for all practical purposes
the initial structural volume of the embryo can realistically be assumed to be negligibly
small. At this stage it hardly respires, i.e. it uses no dioxygen and does not produce carbon
dioxide. (The shells of bird eggs initially produce a little carbon dioxide [127, 469].) In
many species, this is a resting stage. This especially holds for plants, where seeds are
equivalent to eggs; seeds can be dormant for many years and the number of dormant seeds
greatly exceeds the number of non-dormant individuals [462]. Many seeds (particularly
berries) require to be treated by the digestive juices of a particular animal species for
germination; others need fire, see {412}. Although the seed or egg exchanges gas and
water with the environment, it is otherwise a rather closed system.

Foetal development represents a variation on embryo development, where the mother
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provides the embryo with reserve material, such as in the Placentalia, some species of velvet
worm Peripatus and the Devonian placoderm Materpiscus [717]. Complicated intermedi-
ates between reproduction by eggs and foetuses exist in fish [1279, 1280, 957], reptiles and
amphibians [113, 901, 1113]. The evolutionary transition from egg to foetal development
occurred several times independently. From the viewpoint of energetics, foetuses are em-
bryos because they do not take food. The digestive system is not functional and the embryo
does not have a direct impact on food supplies in an ecological sense. The crucial difference
from an energetics point of view is the supply of energy to the embryo. In lecithotrophic
species, nutrients are provided by the yolk of the ovum, whereas in matrotrophic species
nutrients are provided by the mother as the foetus grows, not just in vitellogenesis. The
fact that eggs are kept in the body (viviparity) or deposited in the environment (ovipar-
ity) is of no importance from an energetic perspective. (The difference is important in a
wider evolutionary setting, of course.) As in eggs, a number of species of mammal have a
developmental delay just after fertilisation, called diapause [1053].

Juvenile

The second stage in life history is the juvenile one, in which food is taken but resources are
not yet allocated to the reproductive process. In some species, the developing juvenile takes
a sequence of types of food or sizes of food particles. Most herbivores, for instance, initially
require protein-rich diets that provide nitrogen for growth, cf. {180}. Some species, such as
Oikopleura, seem to skip the juvenile stage. It does not feed as a larva, a condition known
as lecithotrophy, and it starts allocating energy to reproduction at the moment it starts
feeding. A larva is a morphologically defined stage, rather than an energy defined one. If
the larva feeds, it is treated as a juvenile; if not, it is considered to be an embryo. So, the
tadpole of the gastric-brooding frog Rheobatrachus, which develops into a frog within the
stomach of the parent, should for energy purposes be classified as an embryo, because it
does not feed. The switch from feeding to non-feeding as a larva seems to be made easily,
from an evolutionary perspective. Sea urchins have developed a complex pattern of species
that do or do not feed as a larva, even within the same genus, which comes with dramatic
differences in larval morphology [1281, 1282, 1283]. Sperm of the sea urchin Heliocidaris
tuberculata, which has feeding larvae, can fertilise eggs of H. erythrogramma, which has
non-feeding larvae; the zygote develops into feeding hybrid larvae that resemble starfish
larvae, similar to that of the distant ancestor of sea urchins and starfishes, some 450 Ma
ago [930].

Parthenogenetic aphids have a spectacular mode of repro-
duction: embryos producing new embryos [596] cf. {343}.
Since aphids are ovoviviparous, females carry daughters and
grand-daughters at the same time. From a formal point of
view, the juvenile period is negative; the embryonic stage
overlaps with the adult one. Aphids illustrate that the meta-
bolic events of switching on feeding and reproduction matter,
rather than the stages.
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The word ‘mammal’ refers to the fact that the young usually receive milk from the
mother during the first stage after birth, called the baby stage. Pigeons, flamingos and
penguins also do this. The length of the baby stage varies considerably. If adequate food
is available, the guinea-pig Cavia can do without milk [1053]. At weaning the young ex-
perience a dramatic change in diet, and after weaning the growth rate frequently drops
substantially. Few biochemical transformations are required from milk to building blocks
for new tissue. The baby, therefore, represents a transition stage between embryo and ju-
venile. The baby stage relates to the diet in the first instance, cf. {180}, and not directly to
a stage in energetic development, such as embryo and juvenile. This can best be illustrated
by the stoat Mustela erminea. Although blind for some 35-45 days, the female offspring
reaches sexual maturity when only 42-56 days of age, before they are weaned. Copulation
occurs whilst they are still in the nest [597, 1053].

Asexually propagating unicellular organisms take food from their environment, though
they do not reproduce in a way comparable to the production of eggs or young by most
multicellular organisms. For this reason, I treat them as juveniles in this energy-based
classification of stages. Although I realize that this does not fit into standard biologi-
cal nomenclature, it is a logical consequence of the present delineations. I do not know
of better terms to indicate energy-defined stages, which highlights the lack of literature
dealing with the individual-based energetics of both micro- and multicellular organisms.
This book shows that both groups share enough features to try to place them in a single
theoretical framework. Some multicellular organisms, such as some annelids, triclads and
sea cucumbers (e.g. Holothuria parvula [323]), also propagate by division. Some of them
sport sexual reproduction as well, causing the distinction between both groups to become
less sharp and the present approach perhaps more amenable.

The eukaryotic cell cycle is usually partitioned into the interphase and mitotic phases;
the latter is here taken to be infinitesimally short. The interphase is further decomposed
into the first gap-phase, the synthesis phase (of DNA) and the second gap-phase. Most cell
components are made continuously through the interphase, so that this distinction is less
relevant for energetics. The second gap-phase is usually negligibly short in prokaryotes.
Since the synthesis phase is initiated upon exceeding a certain cell size, size at division
depends on growth conditions and affects the population growth rate. These phenomena
are discussed in some detail on {272}.

In many species, the switch from the juvenile to the adult stage is hardly noticeable,
but in the paradoxical frog, for instance, the switch comes with a dramatic change in
morphology and a substantial reduction in size from 20 to 2 cm; the energy parameters differ
between the stages. Holo-metabolic insects are unique in having a pupal stage between the
juvenile and adult ones. It closely resembles the embryonic stage from an energetics point
of view, cf. {277}. Pupae do not take food, and start synthesising (adult) tissue from tiny
imaginal disks. A comparable situation occurs in echinoderms, bryozoans, sipunculans
and echiurans, where the adult stage develops from a few undifferentiated cells of the
morphologically totally different larva. In some cases, the larval tissues are resorbed, and
so converted to storage materials; in other cases the new stage develops independently.
When Luidia sarsi steps off its bipinnaria larva as a tiny starfish, the relatively large
larva may continue to swim actively for another 3 months, [1138] in [1260]. Some jelly
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fishes (Scyphomedusae) alternate between an asexual stage, i.e. small sessile polyps, and
a sexual stage, i.e. large free swimming medusae. Many parasitic trematods push this
alternation of generations to the extreme. Mosses, ferns and relatives alternate between
a gametophyte and a sporophyte stage; the former is almost completely suppressed in
flowering plants. From an energetics perspective, the sequence embryo, juvenile is followed
by a new sequence, embryo, juvenile, adult, with different values for energy parameters for
the two sequences. The coupling between parameter values is discussed on {287}.

Adult

The third stage is the adult one, in which energy is allocated to the reproduction process.
The switch from the juvenile to the adult stage, puberty, is here taken to be infinitesimally
short. The actual length differs from species to species and behavioural changes are also
involved. The energy flow to reproduction is continuous and usually quite slow, while
reproduction itself is almost instantaneous. This can be modelled by the introduction of a
buffer, which is emptied or partly emptied upon reproduction. The energy flow in females
is usually larger than that in males, and differs considerably from species to species.

Some Florideophyceae (red algae) and Ascomyceta (fungi) have three sexes; most an-
imals and plants have two, male and female, but even within a set of related taxa, an
amazing variety of implementations can occur. Some species of mollusc and annelid, and
most plants, are hermaphroditic, being male and female at the same time; some species of
fish and shrimp are male during one part of their life and female during another part; plants
such as the bog-myrtle Myrica gale can change sex yearly; some have very similar sexes
while other species show substantial differences between males and females; see Figure 1.1.
The male can be bigger than the female, as in many mammals, especially sea elephants, or
the reverse can occur, as in spiders and birds of prey. Males of some fish, rotifers and some
echiurans are very tiny, compared to the female, and parasitise in or on the female or do
not feed at all. The latter group combines the embryo stage with the adult one, not unlike
aphids. Differences in ultimate size reflect differences in values for energy parameters, see
{291}. Parameter values, however, are tied to each other, because it is not possible to
grow rapidly without eating a lot (in the long run). Differences in energy budgets between
sexes are here treated in the same way as differences between species.

Reproduction, in terms of the production of offspring, does not always have a simple
relationship with gamete production. All oocytes are already present at birth for future
ovulations in birds and mammals, where they are arrested at Prophase I of meiosis [799]
(which occurs at the transition from the second gap-phase to the mitotic phase). In some
species of tapeworm, wasp and at least eighteen species of mammal (e.g. armadillo) there
is a mode, called polyembryony, in which a sexually produced embryo splits into several
genetically identical offspring. The opposite also occurs in several species of mammal
(e.g. pronghorn, elephant shrews, bats, viscacha), where the mother reduces a considerable
number of ova to usually two, early in the development, but also later on, by killing embryos
[111]. Cannibalism among juveniles inside the mother has been described for Salamandra,
some sharks and the sea star Patiriella, {180}. Parent coots, Fulica, are known to drown
some hatchlings of large litters, possibly to increase the likelihood of the healthy survival
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Figure 1.1: Sexual dimorphy can be extreme. The male of the southern sea elephant Mirounga
leonina is ten times as heavy as the female, while the parasitic males of the angler fish Haplophryne
mollis are just pustules on the female’s belly.

of the remaining ones.

In some species, e.g. humans, a senile stage exists, where reproduction diminishes or
even ceases. This relates to the process of aging, see {209}. An argument is presented
for why this stage cannot be considered as a natural next stage within the context of DEB
theory.

The summary of the nomenclature used here reads:

embryo juvenile adult

| | | |
[ [ [ |

fertilisation birth puberty death

1.2 Homeostasis is key to life

Homeostasis is the ability to run metabolism independent of the (fluctuating) environment.
All living systems do this to some extent and to capture this extent DEB theory makes use
of several homeostasis concepts, which are discussed in this section.

The compounds that cells use to drive metabolism require enzymes for their chemical
transformation. Compounds that react spontaneously are excluded or stored such that
this cannot occur. In this way cells achieve full control over all transformations, because
they synthesise enzymes, consisting of protein, themselves. No reaction runs without the
assistance of enzymes. The properties of enzymes depend on their micro-environment. So
homeostasis is essential for full control. Changes in the environment in terms of resource
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availability, both spatial and temporal, require the formation of reserve pools to ensure a
continuous supply of essential compounds for metabolism. This implies a deviation from
homeostasis for cells (or individuals) as a whole. The cell’s solution to this problem is to
make use of polymers that are not soluble. In this way these reserves do not change the
osmotic value, and neither do they affect the capacity of monomers to do chemical work (cf.
{77}). In many cases cells encapsulate the polymers in membranes, to reduce interference
even further, at the same time increasing access, as many cellular activities are membrane

bound.

1.2.1 Strong homeostasis: stoichiometric constraints

The chemical composition in small volumes, such as in bacterial cells and eukaryotic cell
compartments is intrinsically stochastic, see {413}, and therefore fluctuates. So homeosta-
sis is never perfect. DEB theory assumes that the chemical composition of reserve(s) and
structure(s) are constant, an assumption called the strong homeostasis assumption. The
basic idea is to delineate enough reserve(s) and structure(s) to approximate this situation,
but for animals a single reserve and a single structure already captures most variation in
the chemical composition of biomass, mainly because the variation in the chemical com-
position of their food is limited. The amounts of reserve(s) and structure(s) can vary, but
not their chemical composition. The mixture of chemical compounds that make up these
pools can, therefore, be considered as a single generalised compound.

To produce a compound of constant chemical composition, substrates for this produc-
tion are required in particular relative amounts, which gives what is called stoichiometric
constraints on production. A lot of ecological literature focuses on the availability of chem-
ical elements [1111], but the production is from chemical compounds, however, not from
chemical elements directly and the problem is that compounds can be transformed into
other compounds, which complicates matters considerably. Primary production on earth
is mainly limited by nitrogen, for instance, while 70 % of the atmospheric gases consist of
dinitrogen; only few organisms can use this nitrogen, however. The problem of specify-
ing the constraints on production is one of the main tasks of DEB theory, which a rather
complex one because some compounds can partly replace others.

Reserve materials can be distinguished from materials of the structural mass by a
change in relative abundance if resource levels change. This defining property breaks
down in case of extreme starvation, when structural materials are degraded as well when
reserves are exhausted. An example of this is the break down of muscle tissue during
extreme starvation. Even if food intake is resumed, the structural component of muscle
tissue does not recover in mammals such as ourselves.

Since the amount of reserves can change relative to the amount of structural material,
the chemical composition of the whole body can change. That is, it can change in a
particular way. This is a consequence of choosing energy as a state variable rather than
the complete catalogue of all compounds.
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1.2.2 Weak homeostasis: restrictions on dynamics

DEB theory also uses another homeostasis assumption: weak homeostasis. Its definition is
that if food density does not change reserve density, i.e. the ratio between the amounts of
reserve and structure, becomes constant even when growth continues; reserve and struc-
ture grow in harmony and biomass no longer changes in composition. This makes sense
only if reserve and structure obey strong homeostasis, so weak homeostasis implies strong
homeostasis, but is more restrictive. The fact that growth still can continue is essential
for the weak homeostasis concept. Weak homeostasis applies to the whole body, not to
its compartments, but under steady state conditions only. Strong homeostasis has nothing
to do with reserve dynamics, but weak homeostasis turns out to fully determine reserve
dynamics, see {36}.

1.2.3 Structural homeostasis: isomorphy

Structural homeostasis is about shapes, not about chemical composition. For an under-
standing of energetics, only two aspects of size and shape are relevant, as is explained
later: surface areas for acquisition processes and volumes for maintenance processes. The
shape defines how these measures relate to each other. If an individual does not change
in shape during growth, it is called an isomorph. Isomorphism is an important property
that applies to the majority of species on Earth by approximation. The shape can be any
shape and the comparison is only between the shapes that a single individual takes during
its development. If organisms have a permanent exoskeleton, however, there are stringent
constraints on their shape [637].

Two bodies of a different size are isomorphic if it is possible to transform one body
into the other by a simple geometric scaling in three dimensional space: scaling involves
only multiplication, translation and rotation. This implies, as Archimedes already knew,
that if two bodies have the same shape and if a particular length takes value L; and Ly in
the different bodies, the ratio of their surface areas is (L;/L,)? and that of their volumes
(Ly/Ly)3, irrespective of their actual shape. It is, therefore, possible to make assertions
about the surface area and the volume of the body relative to some standard, on the basis
of lengths only. One only needs to measure the surface area or volume if absolute values
are required. This property is used extensively in this book.

Structural homeostasis is an assumption of the standard DEB model, but not of DEB
models generally. Notice that length itself does not play a role in DEB theory and every-
where where it occurs while isomorphy is assumed, length actually stands for the ratio of
volume and surface area. Section 4.2 at {120} considers changes in shape and its conse-
quences for energetics.

Shape coefficients convert physical to volumetric lengths

Each length measure L, needs a definition of how the length is taken. If we would relate
quantities about the performance of an individual to its length, the parameter values in
the description can differ substantially between two species, not because they would differ
in performance, but because they differ in shape. To eliminate this effect, I typically work
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Table 1.1: The means and coefficients of variation of shape coefficients of European birds and
mammals and Neotropical mammals.

Taxon Source Number Mean cv Mean cv
tail included tail excluded

European birds [169, 321] 418 0.186 0.14

European mammals  [151] 128 0.233 0.27 0.335 0.28

Neotrop. mammals [89] 246 0.211 0.41 0.328 0.18

with volumetric length, being the cubic root of the volume, L = V/?: it is independent of
the shape.

The shape coefficient d,q is defined as volume'/3length™, so the physical volume is
given by V,, = (0apLy)3. The practical purpose of shape coefficients is to convert shape-
specific length measures to volumetric lengths: L = dqL,,. It is specific for the particular
way the length measure has been chosen. Thus the inclusion or exclusion of a tail in the
length of an organism results in different shape coefficients. A simple way to obtain an
approximate value for the shape coefficient belonging to length measure L, is via the wet
weight W, i.e. the weight of a living organism without adhering water, and the specific
density dy., to convert weight into volume: d = (;“j—z)l/ 3L the specific density dy,, is
typically close to 1 gem™3. So Wy, = dy, V.

The following considerations may help in getting acquainted with the shape coefficient.
For a sphere of diameter L,, and volume L2 /6, the shape coefficient is 0.806 with respect
to the diameter. For a cube with edge L,,, the shape coefficient takes the value 1, with
respect to this edge. The shape coefficient for a cylinder with length L,, and diameter L,
is (2)'/3(Lw/Ly)~%* with respect to the length.

The shapes of organisms can be compared in a crude way on the basis of shape co-
efficients. Figure 1.2 shows the distributions of shape coefficients among European birds
and Neotropical mammals; they fit the normal distribution closely. Summarizing statis-
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tics are given in Table 1.1, which includes European mammals as well. Some interesting
conclusions can be drawn from the comparison of shape coefficients. They have an amaz-
ingly small coefficient of variation (cv), especially in birds (including sphere-like wrens and
stick-like flamingos), which probably relates to constraints for flight. Mammals have some-
what larger shape coefficients than birds. They tend to be more spherical, which possibly
relates to differences in mechanics. The larger coefficient of variation indicates that the
constraints are perhaps less stringent than for birds. The spherical shape is more efficient
for energetics because cooling is proportional to surface area and a sphere has the smallest
surface area/volume ratio, namely 6/Ls. When the tail is included in the length, Euro-
pean mammals have somewhat larger shape coefficients than Neotropical mammals, but
the difference does not arise when the tail is excluded. Neotropical mammals tend to have
longer tails, which is probably because most of them are tree dwellers. The temperature
difference between Europe and the Neotropics does not result in mammals in FEurope being
more spherical to reduce cooling.

Shape at the subcellular level: membrane-cytosol interactions

Surface-area-volume relationships play an essential role in the communication between the
extensive variable body size and intensive variables such as concentrations of compounds
and rates of reaction between compounds. It is not difficult to imagine the physiological
significance of isomorphism. Process-regulating substances in the body tend to have a short
lifetime to cope with changes, so such substances have to be produced continuously. If some
organ secretes at a rate proportional to its volume (i.e. number of cells), isomorphism will
result in a constant concentration of the substance in the body. The way the substance
exercises its influence does not have to change with changing body volume in order to
obtain the same effect in isomorphs. Organisms and cells monitor their size, but the way
they do this is considered to be an open problem [1216, p 123]; the argument in Figure 1.3
shows that organisms and cells do not need to accumulate compounds with increasing size
to monitor their size.

Most enzymes can be conceived of as fluffy structures, with performance depending
on the shape of the molecule’s outer surface and the electrical charge distribution over it.
If bound to a membrane, the outer shape of the enzyme changes into the shape required
for the catalysis of the reaction specific to the enzyme. Membranes thus play a central
role in cellular physiology [395, 465, 1242]. The change in surface area/volume ratios has
important kinetic implications at all scales, including the micro-scale .

Many pathways require a series of transformations and so involve a number of enzymes.
The binding sites of these enzymes on the membrane are close to each other, so that the
product of one reaction does not disperse in the cytosol before being processed further.
The product is just handed over to the neighbouring enzyme in a process called piping.
Interplay between surface areas and volumes is basic to life, not only at the level of the
individual, but also at the molecular level.



1.2. Homeostasis is key to life 13

d
< E
DpI‘OdUCtS
'@
substrate
enzyme Figure 1.4: The structural cell volume V
pB;EgS};i%g is growing to the right by a factor two,

non-binding i.e. the cell diameter is growing by a fac-

tor 21/3. The reserve E is growing to the
bottom by a factor two, i.e. the number of

blobs of E in V is growing by a factor two.

Figure 1.3: Each cell in the body ‘knows’ its vol- V' and E typically grow simultaneously; if
ume by the ratio between its volume and the sur-  E/V" remains constant, the blobs of E in

face area of its membranes. This is because most 1/ grow as if we look through a magni-

enzymes only function if bound to a membrane, fication glass of increasing strength. The
with their substrates and products in the cell vol-  consequence is that the surface area of the

ume as illustrated; the production of enzymes is a  interface between F and V is proportional
relatively slow process, while regulation is fast. to EV—1/3,

Reserve-structure interface at subcellular level

Figure 1.4 illustrates how isomorphy works out at the subcellular level for the distribution
of reserve material in a matrix of structural material. Since monomers are osmotically
active, their concentration in cells is typically very low, and reserve and structure are
mainly present in form of polymers (carbohydrates, proteins, RNA) and lipids. The surface
area of their interface is proportional to EV~'/3 = E/L, where E stands for the energy in
reserve and V' for the volume of structure of the cell and L for (volumetric) length. This
implies that the number of reserve vesicles reduces, if the structural cell volume grows, but
not the amount of reserves. This property is used in the mechanism for reserve dynamics,

{39}

1.2.4 Thermal homeostasis: ecto-, homeo- & endothermy

Temperature affects metabolic rates, cf {16}, so control over metabolic rates requires con-
trol over body temperature. Heat is a side product of all uses of energy, cf. {155}. In
ectotherms, this heat simply dissipates without increasing the body temperature above
that of the environment to any noticeable amount as long as the temperature is sufficiently



14 1. Basic concepts

low, especially in the aquatic environment. If the environmental temperature is high, as
in incubated bird eggs just prior to hatching, metabolic rates are high as well, c¢f {16},
releasing a lot more energy in the form of heat, which increases the body temperature
even further, cf. {167}. This is called positive feedback in cybernetics. The rate of heat
dissipation obviously depends on the degree of insulation and is directly related to surface
area.

A small number of species, known as endotherms, use energy to maintain their body
temperature at a predetermined high level, 27 °C in sloths( Bradypus), 34 °C in monothremes,
37°C in most mammals, 39 °C in non-passerine birds, 41 °C in passerine birds. Mammals
and birds change from ectothermy to endothermy during the first few days of their juve-
nile stage. Some species temporarily return to the ectothermic state or partly so at night
(hummingbirds, insectivores) or during hibernation (poorwills [705], rodents, bats) or dry
seasons (tenrecs, cf. {119}). Not all parts of the body are kept at the target temperature,
especially not the extremities. The naked mole rat Heterocephalus glaber (see Figure 1.5)
has a body temperature that is almost equal to that of the environment [719] and actually
behaves as an ectotherm. Huddling in the nest plays an important role in the thermoreg-
ulation of this colonial species [1267]. The body temperature of the Grant’s golden mole
Eremitalpa granti normally matches that of the sand in which it lives, but it is able to
maintain the diurnal cycle of its body temperature if the temperature of the sand is kept
constant [720].

Many ectotherms can approach the state of homeothermy under favourable conditions
by moving from shady to sunny places, and back, in an appropriate way. In an extensive
study of 82 species of desert lizards from three continents, Pianka [895] found that body
temperature T;, relates to ambient air temperature 7, as

T, = 311.8 4+ (1 — B)(T. — 311.8) (1.1)

where [ stands for the species-specific thermoregulatory capacity, spanning the full range
from perfect regulation, § = 1, for active diurnal heliothermic species, to no regulation, § =
0, for nocturnal thigmothermic species. The target temperature of 311.8 K or 38.8 °C varies
somewhat between the different sub-groups and is remarkably close to that of mammals.
Many species of plants enhance the interception of radiation by turning their flowers to
the moving sun. The parabolic shape of flowers helps to focus radiation on the developing
ovum. Sunflowers, Helianthus annuus, follow the sun with their leaves and developing
inflorescence, but when the flowers open they are oriented towards the east [682]. This
probably relates to thermoregulation.

Several species can raise their temperature over 10°C above that of the environment
(bumble bees and moths [487], tuna fish, mackerel shark, leatherback turtles Dermochelys).
Some species of Arum, which live in dark forests, heat their flowers metabolically. These
examples do make it clear that energy investment in heating is species-specific and that
the regulation of body temperature is a different problem.

The ‘advantages’ of homeothermy are that enzymes can be used that have a narrow
tolerance range for temperatures and that activity can be maintained at a high level in-
dependent of environmental temperature. At low temperatures ectotherms are easy prey
for endotherms. Development and reproduction are enhanced, which opens niches in areas
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Figure 1.5: The naked mole rat Hetero-
cephalus glaber (30 gram) is one of the few
mammals that are essentially ectother-
mic. They live underground in colonies
of some 60 individuals. The single breed-
ing female suppresses reproductive devel-
opment of all ‘frequent working’ females
and of most ‘infrequent working’ females,
a social system that reminds us of termites
[721].

with short growing seasons that are closed to ectotherms. The costs depend on the envi-
ronmental temperature, insulation and body size. If temperature is high and/or insulation
is excellent and/or body size is large, there may be hardly any additional costs of heating;
the range of temperatures to which this applies is called the thermo-neutral zone.

1.2.5 Acquisition homeostasis: supply & demand

Individuals can be ranked on the spectrum from supply to demand systems. For supply
systems, the lead is in the feeding process, which offers an energy input to the individual.
The available energy flows to different destinations, more or less as water flows through
a river delta. A sea-anemone is an example of a ‘supply’ type of animal. It is extremely
flexible in terms of growth and shrinkage, which depend on feeding conditions. It can
survive a broad range of food densities. Japanese bonsai cultures cannot illustrate better
that plants are typical supply systems as well. Supply organisms typically move less and
find their food via a kind of (activated) diffusion process. Supply systems typically have
less developed sensors and are metabolically more flexible and vary more in the chemical
composition of their bodies. By far the majority of species are supply systems, but the few
demand systems got relatively more research attention.

For demand systems, the lead is in some process that uses energy, such as maintenance
and/ or growth, which requires energy intake of matching size. Food-searching behaviour
is then subjected to regulation processes in the sense that an animal eats what it needs;
the nervous system plays an important role in this regulation [812]. The range of possible
growth curves is thus much more restricted. Demand systems evolved from supply systems,
cf {406}, and froze existing metabolic rules, lost metabolic flexibility (to deal with extreme
starvation conditions), but increased in behavioural flexibility. All demand systems are
animals, i.e. organisms that feed on other organisms; they are often mobile and move to
there were the food is. Hence they encounter less frequently extreme starvation conditions;
they typically cannot shrink during starvation, but die. The increased behavioural flex-
ibility gives them the possibility to specialise on one type of food species and translates
in a small value for the half saturation coefficient for demand systems. They also have a
relatively large difference between the peak and the standard metabolic rate, and have typi-
cally closed circulation systems (efficient transport under extreme metabolic performance),
some developed endothermy (birds and mammals) and many have highly developed sen-
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sors. Closed circulation systems developed in vertebrates, echinoderms, cephalopods and
annelids. Altogether only a small fraction of the animal species have a closed circulatory
system and most of these species still have a position near the supply end of the spectrum.
Demand systems typically sport accelerated aging, where a high survival probability dur-
ing the juvenile period is combined with a relatively fast aging during the adult stage, see
{213}.

Even in the ‘supply’ case, growth is typically regulated carefully by hormonal control
systems, cf Figure 2.14. This is because growth should not proceed faster than the rate
at which the energy and elementary compounds necessary to build the new structures can
be mobilised, nor should growth proceed slower, else metabolites accumulate locally which
gives several problems. Models that describe growth as a result of hormonal regulation
should deal with the problem of what determines the hormone levels. This requires study-
ing organisation at the individual level. The conceptual role of hormones is linked to the
similarity of growth patterns despite the diversity of regulating systems, cf Figure {2.11}.
In the DEB theory, messengers such as hormones are part of the physiological machin-
ery that an organism uses to regulate its growth. Their functional aspects can only be
understood by looking at other variables and compounds.

The development of demand systems from supply systems can be seen as a step up in
the degree of homeostasis.

1.3 Temperature affects metabolic rates

1.3.1 Arrhenius temperature

All metabolic rates depend on the body temperature. For a species-specific range of tem-
peratures, the description proposed by S. Arrhenius in 1889, see, e.g. [410], usually fits

well T T

k(T) = ki exp <Tf - jf‘) (1.2)
with T the absolute temperature (in Kelvin), 7} a chosen reference temperature, the pa-
rameter T4 the Arrhenius temperature, & a (metabolic) reaction rate and ki its value at
temperature T;. So, when Ink is plotted against 71, a straight line results with slope
—T4, as Figure 1.6 illustrates.

Arrhenius based this formulation on the van’t Hoff equation for the temperature co-
efficient of the equilibrium constant and amounts to k(T) = ke exp(52¢), where fioo is
known as the frequency factor, R is the gas constant 8.31441 J K~ mol™!, and E,, is called
the activation energy. Justification rests on the collision frequency which obeys the law of
mass action, i.e. it is proportional to the product of the concentrations of the reactants.
The Boltzmann factor exp(—2¢) stands for the fraction of molecules that manage to obtain
the critical energy F, to react.

In chemistry, the activation energy is known to differ widely between different reac-
tions. Processes such as the incorporation of [**CJleucine into protein by membrane-bound

rat-liver ribosomes have an activation energy of 180 kJmol~! in the range 8-20°C and
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67 kJmol~! in the range 22-37°C. The difference is due to a phase transition of the mem-
brane lipids, [1169] after [15]. Many biochemical reactions seem to have an activation
energy in this range [1098]. This supports the idea that the value of activation energy is a
constraint for functional enzymes in cells.

Glasstone et al. [410] studied the thermodynamic basis of the Arrhenius relationship in
more detail. They came to the conclusion that this relationship is approximate for bimolec-
ular reactions in the gas phase. Their absolute rate theory for chemical reactions proposes
a more accurate description where the reaction rate is proportional to the absolute tem-
perature times the Boltzmann factor. This description, however, is still an approximation
[410, 510].

The step from a single reaction between two types of particles in the gas phase to
metabolic rates where many compounds are involved and gas kinetics do not apply is,
of course, enormous. Due to the somewhat nebulous application of thermodynamics to
describe how metabolic rates depend on temperature, I prefer to work with the Arrhenius
temperature, rather than the activation energy. I even refrain from the improvement
offered by Glasstone’s theory, because the small correction does not balance the increase
in complexity of the interpretation of the parameters for biological applications. The
Arrhenius relationship seems to describe the effect of temperature on metabolic rates with
acceptable accuracy in the range of relevant temperatures.

1.3.2 Coupling of rates in single reserve systems

Figure 1.7 shows that the Arrhenius temperatures for different rates in a single species are
practically the same. If each reaction would depend in a different way on temperature, cells
or individuals would have a hard time coordinating the different processes at fluctuating
temperatures. Metabolism is about the conversion of chemical compounds by organisms,
for which they use a particular biochemical machinery that operates with a particular
efficiency in ways that do not depend on temperature. Obviously, animals cannot respire
more without eating more. As a first approximation it is realistic to assume that all
metabolic rates in a single individual are affected by temperature in the same way, so that
a change in temperature amounts to a simple transformation of time.

Table 1.2 gives Arrhenius temperatures, T4, for several species. It ranges somewhere
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between 6 and 12.5 kK. Many experiments do not allow for an adaptation period, which
affects the resulting value. The problem is that allo-enzymes are produced with somewhat
different temperature—activity relationships when temperature changes. This takes time,
depending on species and body size. Without an adaptation period, the performance of
enzymes adapted to one temperature is measured at another temperature, which affect the
apparent Arrhenius temperature.

1.3.3 States can depend on temperature via rates

The standard DEB model implies that ultimate size results from a ratio of two rates, cf
{49}, so it should not depend on the temperature, as all rates are affected in the same
way. Table 1.3 confirms this for two species of daphnids cultured under well standardised
conditions and abundant food [636]. Tt is also consistent with the observation by Beverton,
see appendix to [204], that the walleye Stizostedion vitreum matures at 2 years at the
southern end of its range in Texas and at 7 or 8 years in northern Canada, while the size
at maturation of this fish is the same throughout its range.

Although ultimate sizes are not rates, they are frequently found to decrease with in-
creasing temperature. The reason may well be that the feeding rate increases with temper-
ature, so, at higher temperatures, food supplies are likely to become limited, which reduces
ultimate size. I discuss this phenomenon in more detail in relation to the Bergmann rule,
{288}. For a study of the effects of temperature on size, it is essential to test for the
equality of food density. This requires special precautions.

Apart from effects on rate parameters, temperature can affect egg size [327] and sex.
High temperatures produce males in lizards and crocodiles, and females in turtles [255,
1050], within a range of a few degrees.

We will see that the fractionation of isotopes depends on temperature, {150}, not
because the fractionation mechanism itself does, {95}, but the rates that generate frac-
tionation depend on temperature.
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Table 1.2: Arrhenius temperatures as calculated from literature data on the growth of ectother-
mic organisms. The values for the mouse cells are obtained from Pirt [903]. The other values
were obtained using linear regressions.

species range Tx type of source
(°C) (K) data
Escherichia coli 23-37 6590 population growth  [803]
FEscherichia coli 26-37 5031 population growth  [545]
Escherichia coli 1226 14388 population growth  [545]
Psychrophilic pseudomonad 12-30 6339 population growth  [545]
Psychrophilic pseudomonad 2-12 11973 population growth  [545]
Klebsiella aerogenes 20-40 7159 population growth  [1168]
Aspergillus nidulans 20-37 7043 population growth  [1170]
9 species of algae 13.5-39 6842 population growth  [118]
mouse tissue cells 31-38 13834 population growth — [1223]
Nais variabilis 14-29 9380 population growth  [569]
Pleurobrachia pileus 520 10000 Bertalanffy growth  [433]
Mya arenaria 7-15 13000 Bertalanffy growth  [31]
Daphnia magna 10-26.5 6400 Bertalanffy growth  [636]
Ceriodaphnia reticulata 20-26.5 6400 Bertalanffy growth  [636]
Calliopius laeviusculus 6.5-15 11400 Bertalanffy growth  [241]
Perna canaliculus 717 5530 lin. growth [506]
Mytilus edulis 6.5-18 8460 lin. growth larvae  [1096]
Cardium edule & C. glaucum  10-30 8400 lin. growth larvae [598]
Scophthalmus mazimum 8-15 15000 lin. growth larvae [560]
25 species of fish 6-29 11190 embryonic period [770]
Brachionus calyciflorus 15-25 7800 embryonic period [448]
Chydorus sphaericus 10-30 6600 embryonic period [791]
Canthocampus staphylinus 3-12 10000 embryonic period [1013]
Moraria mrazeki 7-16.2 13000 embryonic period  [1013]

1.3.4 Patterns in Arrhenius temperatures

The catalising rate of enzymes in metabolic transformations can be adapted by the in-
dividual to the current temperature by changing the tertiary configuration. This takes
time, up to days to weeks depending on the detailed nature of the adaptation. This time-
dependence is frequently a reason for conflicting results on the effects of temperature on
rates as reported in the literature.

Species living in habitats that typically sport large (and rapid) temperature fluctuations
(e.g. juvenile and adult bivalves that live in the intertidal zones of sea coasts) have to use
enzymes that function well in a broad temperature range, with the result that they have
a relatively low Arrhenius temperature (around 6 kK). Species that live in habitats with
a rather constant temperature (e.g. the larvae of the intertidal bivalves that live in the
pelagic, or the deep ocean) typically have a high Arrhenius temperature (around 12kK).
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Table 1.3: The von Bertalanffy growth rate for the waterfleas Ceriodaphnia reticulata and Daph-
nia magna, reared at different temperatures in the laboratory both having abundant food. The
length at birth is 0.3 and 0.8 mm respectively.

Ceriodaphnia reticulata Daphnia magna
temp growth sd ultimate sd growth sd ultimate s.d
rate length rate length
°C a~! a~! mm mm a~! a~! mm mm
10 15.3 14 4.16 0.16
15 20.4 4.0 1.14 0.11 25.9 1.3 4.27 0.06
20 49.3 3.3 1.04 0.09 38.7 2.2 4.44 0.09
24 57.3 2.6 1.06 0.01 44.5 1.8 4.51 0.06
26.5 74.1 4.4 0.95 0.02 53.3 2.2 4.29 0.06

The Arrhenius temperature can thus change with the stage in some species.

1.3.5 van’t Hoff coefficient

A common way to correct for temperature differences in physiology is on the basis of ()1
values, known as van’t Hoff coefficients. The Qg is the factor that should be applied to
rates for every 10°C increase in temperature: k(T) = k(T}) (I=TV/10 " The relationship
with the Arrhenius temperature is thus Q9 = exp(T(lqgﬁo) ). Because the range of relevant
temperatures is only from about 0 to 40°C, the two ways to correct for temperature

differences are indistinguishable for practical purposes.

1.3.6 Temperature tolerance range

At low temperatures, the actual rate of interest is usually lower than expected on the
basis of (1.2). If the organism survives, it usually remains in a kind of resting phase, until
the temperature rises again. For many seawater species, this lower boundary is between
0 and 10°C, but for terrestrial species it can be much higher; caterpillars of the large-
blue butterfly Maculinea rebeli, for instance, cease to grow below 14°C [318]. The lower
boundary of the temperature tolerance range frequently sets boundaries for geographical
distribution. Tropical reef-building corals only occur in waters where the temperature
never drops below 18 °C; cold deep-water reefs have different species. Plants can experience
chilling injury if the temperature drops below a species-specific threshold.

At temperatures that are too high, the organism usually dies. At 27°C, Daphnia magna
grows very fast, but at 29 °C it dies almost instantaneously. The tolerance range is sharply
defined at the upper boundary. A few degrees rise of the seawater temperature, due to the
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intense 1998 El Nino event, caused death and the subsequent bleaching of vast areas of
coral reef. It will take them decades to recover. Nisbet [838] gives upper temperature limits
for 46 species of protozoa, ranging from 33 to 58 °C. Thermophilic bacteria and organisms
living in deep ocean thermal vents thrive at temperatures of 100°C or more. The width
of the tolerance range depends on the species; many endotherms have an extremely small
one around a body temperature of 38°C.

The existence of a tolerance range for temperatures is of major evolutionary impor-
tance; many extinctions are thought to be related to changes in temperature. This is the
conclusion of an extensive study by Prothero, Berggren and others [926] on the change in
fauna during the middle-late Eocene (40-41 Ma ago). This can most easily be understood
if the ambient temperature makes excursions outside the tolerance range of a species. If
a leading species in a food chain is the primary victim, many species that depend on it
will follow. The wide variety of indirect effects of changes in temperature complicate a
detailed analysis of climate-related changes in faunas. Grant and Porter [426] discuss in
more detail the geographical limitations for lizards set by temperature, if feeding during
daytime is only possible when the temperature is in the tolerance range, which leads to
constraints on ectotherm energy budgets.

1.3.7 QOutside the temperature tolerance range

Sharpe et al. [1030, 1046] proposed a quantitative formulation for the reduction of rates
at low and high temperatures, based on the idea that the rate is controlled by an enzyme
that has an inactive configuration at low and high temperatures. The reaction to these
two inactive configurations is taken to be reversible with rates depending on temperature
in the same way as the reaction that is catalysed by the enzyme, however the Arrhenius
temperatures might differ. This means that the reaction rate has to be multiplied by the
enzyme fraction that is in its active state, which is assumed to be at its equilibrium value.

This fraction is )

TAL TAL TAH TAH -
(e (S - 7) veo (7 - ) (1.3)

where Ty, and Ty relate to the lower and upper boundaries of the tolerance range and
Tsr, and Typ are the Arrhenius temperatures for the rate of decrease at both boundaries.
All are taken to be positive and all have dimension temperature. We usually find Ty >
Tar, > Ty. Figure 1.8 illustrates the quantitative effect of applying the correction factor.

The effects of chemical compounds on individuals can be captured using three ranges
of internal concentrations: ‘too little’, ‘enough’ and ‘too much’; {229}. This approach has
a nice similarity with the effects of temperature using the temperature tolerance range.

1.3.8 Uncoupling of rates in multiple reserve systems

The interception of photons by chlorophyll is less effected by temperature than dioxygen
or carbon dioxide binding by Rubisco, which implies an enhanced electron leak at low
temperatures. Photosynthesis is known to depend on temperature at high light levels, but
hardly so at low light levels [114, 756]. A build up of carbohydrate reserve in a multiple
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Figure 1.8: The Arrhenius plot for the pop-
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reserve system can occur at low temperature, so a shift in the composition in biomass,
which affects its nutritional value for consumers of this biomass. In the case of a single
generalised reserve, this flexibility is absent, and the other rates (growth, reproduction,
etc) must follow the temperature dependence of the assimilation process to avoid changes
in conversion efficiencies.

The solubility of dioxygen in water decreases less with temperature than that of car-
bon dioxide, which means that the compensation point, cf {186}, i.e. the ratio of the
carbon dioxide to the dioxygen partial pressures for which photorespiration balances pho-
tosynthesis, increases with temperature [680]. This leads to an optimum relationship of
photosynthesis with temperature, but the location of the optimum is highly adaptable, and
can change during the season in a single individual.

1.4 Summary

This chapter dealt with some basic concepts that are required to set up the DEB theory
systematically, without too many asides.

The individual is introduced as the basic level of organisation with typically three stages
(embryo, juvenile and adult) for multicellulars and one (juvenile) for unicellulars. The
delineation is motivated of structure that requires maintenance, of reserve that quantifies
metabolic memory and of maturity that controls metabolic switching.

The concept of homeostasis is discussed, which is subtle because homeostasis is not per-
fect and takes several qualities: strong, weak, structural, thermal and acquisition. Struc-
tural homeostasis is discussed in some detail because it controls surface area to volume
relationships. This is important because uptake is coupled to surface area, and mainte-
nance to volume. I argued that changes in surface area to volume relationships inform
molecules about the size of the structure.

The effects of temperature on metabolic rates are quantified and I argued why the
different rates in an single reserve systems depend on temperature in the same way, while
multiple reserves allow for more degrees of freedom.



Chapter 2

Standard DEB model in time, length
& energy

This chapter discusses the simplest non-degenerated DEB model that is implied by DEB
theory, the standard or canonical DEB model, to show the concepts of the previous chapter
in action. The next chapter introduces more concepts on chemical transformations to
deal with more complex situations. The standard DEB model assumes isomorphy and
has a single reserve and a single structure, which is appropriate for many aspects of the
metabolic performance of animals; other organisms typically require more reserves, and
some (e.g. plants) also more structures. So in this chapter, we keep an animal in mind
as a reference, which helps to simplify the phrasing. In this chapter substrate (food) has
a constant composition that matches the needs of the individual. Food density in the
environment might vary in the standard DEB model, but the discussion of what happens
during prolonged starvation is delayed to chapter 4. The discussion of mass aspects is also
delayed and we here only use time ¢, length L and energy E. Length L is the volumetric
length, L = V'/3 where V is the structural volume. We use energy only conceptually, and
typically in scaled form, and also delay the discussion of its quantification. The discussion
of energy aspects does not imply that the individual should be energy-limited.

The logic of the energy flows will be discussed in this chapter and we start with a brief
overview in this introductory section. We here keep the amount of detail to a minimum,
neglecting all fast process, and focusing on the slow ones that matter on a life-cycle basis.
Since reserve dynamics is slow relative to gut content dynamics, cf {256}, the latter is
not part of the standard DEB model. The dynamics of blood composition is linked to the
dynamics of gut contents, so we neglect the blood compartment as well. Most aspects of
behaviour are even faster than the dynamics of gut contents, so behaviour is here treated
in very much reduced form.

The relationships between the different processes are schematically summarised in Fig-
ure 2.1. Food is ingested by a post-embryonic animal, transformed into faeces and egested;
defecation is a special case of product formation. The feeding rate depends on food avail-
ability and the amount of structure. Energy, in the form of metabolites, is derived from
food and added to the reserve. The reserve is mobilised at a rate that depends on the
amount of reserve and the amount of structure, and used for metabolic purposes. A frac-
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Figure 2.1: Energy fluxes in the standard DEB
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tion k of the mobilised reserve flux is used for somatic maintenance plus growth, the rest
for maturity maintenance plus maturation (in juveniles) or reproduction (in adults). So-
matic maintenance has priority over growth, so growth ceases if all energy available for
maintenance plus growth is used for somatic maintenance. Likewise maturity maintenance
has priority over maturation or reproduction. Reserve that is allocated to reproduction
is first collected in a buffer; the reproduction buffer has species-specific handling rules
for transformation into eggs that typically leave the body upon formation. Eggs consist
initially almost exclusively of reserve, the amount of structure, and the level of maturity
being negligibly small. The reserve density at birth (hatching) equals that of the mother
at egg formation, a maternal effect.

Each of these processes will be quantified in the following sections on the basis of a set
of simple assumptions that are collected in Table 2.4.

2.1 Feeding

Feeding is part of the behavioural repertoire and, therefore, notoriously erratic compared
with other processes involved in energetics. The three main factors that determine feeding
rates are food availability, body size and temperature.

2.1.1 Food availability is per volume or surface area of environ-
ment

For some species it is sensible to express food availability per surface area of environment,
for others food per volume makes more sense, and intermediates also exist. The body
size of the organism and spatial heterogeneity of the environment hold the keys to the
classification. Food availability for krill, which feed on algae, is best expressed in terms
of biomass or biovolume per volume of water, because this links up with processes that
determine filtering rates. The spatial scale at which algal densities differ is large with
respect to the body size of the krill. Baleen whales, which feed on krill, are intermediate
between surface and volume feeders because some dive below the top layer, where most
algae and krill are located, and sweep the entire column to the surface; so it does not
matter where the krill is in the column. Cows and lions are typically surface feeders and
food availability is most appropriately expressed in terms of biomass per surface area.

To avoid notational complexity, we here express food density X relative to the value that
results in half of the maximum food uptake rate, K, and treat + = X /K as a dimensionless
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quantity. K is known as the half-saturation coefficient or Michaelis—-Menten constant.

2.1.2 Food transport is across surface area of individual

Organisms use many methods to obtain their meal; some sit and wait for the food to
pass by, others search actively. Figure 2.2 illustrates a small sample of methods, roughly
classified with respect to active movements by prey and predator. The food items can be
very small with respect to the body size of the individual and rather evenly distributed
over the environment, or the food can occur in a few big chunks. This section briefly
mentions some feeding strategies and explains why feeding rates tend to be proportional
to the surface area when a small individual is compared to a large one of the same species.
(Comparisons between species are made in Chapter 8, {287}.) The examples illustrate a
simple physical principle: mass transport from one environment to another, namely to the
organism, must be across a surface, so the ingestion rate in Watts is

px = {px }L* (2.1)

where L is the volumetric length of the individual, and the specific ingestion rate {px} is
some function of food density. Notice that not all of the surface of an isomorph needs to
be involved in food acquisition, it might a fixed fraction of it, such as gut surface area.

Marine polychaetes, sea-anemones, sea lilies and other species that feed on blind prey
are rather apathetic. Sea lilies simply orient their arms perpendicular to an existing current
(if mild) at an exposed edge of a reef and take small zooplankters by grasping them one by
one with many tiny feet. The arms form a rather closed fan in mild currents, so the active
area is proportional to the surface area of the animal. Sea-gooseberries stick plankters to
the side branches of their two tentacles using cells that are among the most complex in
the animal kingdom. Since the length of the side branches as well as the tentacles are
proportional to the length of the animal, the encounter probability is proportional to a
surface area.

Filter feeders, such as daphnids, copepods and larvaceans, generate water currents of
a strength that is proportional to their surface area [160], because the flapping frequency
of their limbs or tails is about the same for small and large individuals [913], and the
current is proportional to the surface area of these extremities. (Allometric regressions
of currents gives a proportionality with length to the power 1.74 [149], or 1.77 [312] in
daphnids. In view of the scatter, they agree well with a proportionality with squared
length.) The ingestion rate is proportional the current, so to squared length. Allometric
regressions of ingestion rates resulted in a proportionality with length to the power 2.2
[772], 1 [914], 2.4-3 [262], and 2.4 [863] in daphnids. This wide range of values illustrates
the limited degree of replicatability of these types of measurements. This is partly due to
the inherent variability of the feeding process, and partly to the technical complications
of measurement. Feeding rate depends on food density, as is discussed on {32}, while

Figure 2.2: A small sample of feeding methods classified with respect to the moving activities of
prey and predator.
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most measurement methods make use of changes in food densities so that the feeding rate
changes during measurement. Figure 2.10 illustrates results obtained with an advanced
technique that circumvents this problem [330].

The details of the filtering process differ from group to group. Larvaceans are filterers
in the strict sense; they remove the big particles first with a coarse filter and collect the
small ones with a fine mesh, cf Figure 2.19. The collected particles are transported to the
mouth in a mucous stream generated by a special organ, the endostyle. Copepods take
their minute food particles out of the water, one by one with grasping movements [1184].
Daphnids exploit centrifugal force and collect them in a groove; Figure 2.10 shows that the
resulting feeding rate is proportional to squared length. Ciliates, bryozoans, brachiopods,
bivalves and ascidians generate currents, not by flapping extremities but by beating cilia
on part of their surface area. The ciliated part is a fixed portion of the total surface area
[366], and this again results in a filtering rate proportional to squared length; see Figure
2.3.

Some surface feeding animals, such as crab spiders, trapdoor spiders, praying mantis,
scorpion fish and frogs, lie in ambush; their prey will be snatched upon arrival within
reach, i.e. within a distance that is proportional to the length of a leg, jaw or tongue. The
catching probability is proportional to the surface area of the predatory isomorphs. When
aiming at a prey with rather keen eye sight, they must hide or apply camouflage.

Many animals search actively for their meal, be it plant or animal, dead or alive.
The standard cruising rate of surface feeders tends to be proportional to their length,
because the energy investment in movement as part of the maintenance costs tends to be
proportional to volume, while the energy costs of transport are proportional to surface area;
see {31}. Proportionality of cruising rate to length also occurs if limb movement frequency
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Figure 2.5: The von Bertalanffy growth curve applies to the black-capped chickadee, Parus
atricapillus (left figure, data from Kluyver [607, 1083]. Brood size was a modest 5.) The amount
of food fed per male (o) or female (o) nestling in the closely related mountain chickadee, P.
gambeli, is proportional to weight?/3 (right figure), as might be expected for individuals that
grow in a von Bertalanffy way. Data from Grundel [439, 1083]. The last five data points were
not included in the fit; the parents stop feeding, and the young still have to learn gathering food
while rapidly losing weight.

is more or less constant [924]. The width of the path searched for food by cows or snails
is proportional to length if head movements perpendicular to the walking direction scale
isomorphically. So feeding rate is again proportional to surface area, which is illustrated
in Figure 2.4 for the pond snail.

The duration of a dive for the sperm whale Physeter macrocephalus, which primarily
feeds on squid, is proportional to its length, as is well known to the whalers [1224]. This can
be understood, since the respiration rate of this endotherm is approximately proportional
to surface area, as I argue on {142}, and the amount of reserve dioxygen is proportional to
volume on the basis of a homeostasis argument. It is not really obvious how this translates
into the feeding rate, if at all; large individuals tend to feed on large prey, which occur less
frequently than small prey. Moreover, time investment in hunting can depend on size as
well. If the daily swimming distance during hunting were independent of size, the searched
water volume would be about proportional to surface area for a volume feeder such as the
sperm whale. If the total volume of squid per volume of water is about constant, this
would imply that feeding rate is about proportional to surface area.

The amount of food parent birds feed per nestling relates to the requirements of the
nestling, which is proportional to surface area; Figure 2.5 illustrates this for chickadees.
This is only possible if the nestlings can make their needs clear to the parents, by crying
louder: demand systems in the strict sense of the word.

Catching devices, such as spider or pteropod webs and larvacean filter houses [19], have
effective surface areas that are proportional to the surface area of the owner.

Bacteria, floating freely in water, are transported even by the smallest current, which
implies that the current relative to the cell wall is effectively nil. Thus bacteria must obtain
substrates through diffusion, {259}, or attach to hard surfaces (films) or each other (flocs,
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{132}) to profit from convection, which can be a much faster process. Some species develop
more flagellae at low substrate densities, which probably reduces diffusion limitation (L.
Dijkhuizen, pers. comm.). Uptake rate is directly proportional to surface area, if the
carriers that bind substrate and transport it into the cell have a constant frequency per
unit surface area of the cell membrane [8, 179]. Arthrobacter changes from a rod shape
into a small coccus at low substrate densities to improve its surface area/volume ratio.
Caulobacters do the same by enhancing the development of stalks under those conditions
[906].

Some fungi, slime moulds and bacteria glide over or through the substrate, releasing
enzymes and collecting elementary compounds via diffusion. Upon arrival at the cell
surface, the compounds are taken up actively. The bakers’ yeast Saccharomyces cerevisiae
typically lives as a free floating, budding unicellular, but under nitrogen starvation it
can switch to a filamentous multicellular phase, which can penetrate solids [519]. Many
protozoans engulf particles (a process known as phagocytosis) with their outer membrane
(again a surface), encapsulate them into a feeding vacuole and digest them via fusion with
bodies that contain enzymes (lysosomes). Such organisms are usually also able to take
up dissolved organic material, which is much easier to quantify. In giant cells, such as
the Antarctic foraminiferan Notodendrodes, the uptake rate can be measured directly and
is found to be proportional to surface area [257]. Ciliates use a specialised part of their
surface for feeding, which is called the ‘cytostome’; isomorphic growth here makes feeding
rate proportional to surface area again.

All these different feeding processes relate to surface areas in comparisons between
different body sizes within a species at a constant low food density. At high food densities,
the encounter probabilities are no longer rate limiting, this becomes the domain of digestion
and other food processing activities involving other surface areas, for example the mouth
opening and the gut wall. The gradual switch in the leading processes becomes apparent
in the functional response, i.e. the ingestion rate as function of food density, {32}.

2.1.3 Feeding costs are paid from food directly

As feeding methods are rather species-specific, costs of feeding will also be species-specific
if they contribute substantially to the energy budget. I argue here that costs of feeding and
movements that are part of the routine repertoire are usually insignificant with respect to
the total energy budget. For this reason this subsection does not do justice to the volumi-
nous amount of work that has been done on the energetics of movements [880], a field that
is of considerable interest in other contexts. Alexander [14] gives a most readable and en-
tertaining introduction to the subject of energetics and biomechanics of animal movement.
Differences in respiration between active and non-active individuals give a measure for the
energy costs of activity, but metabolic activity might be linked to behavioural activity
more generally, which complicates the interpretation. The resting metabolic rate is a mea-
sure that excludes active movement. The standard or basal metabolic rate includes a low
level of movement only. The field metabolic rate is the daily energy expenditure for free
ranging individuals. Karasov [576] found that the field metabolic rate is about twice the
standard metabolic rate for several species of mammal, and that the costs of locomotion
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ranges 2-15% of the field metabolic rate. Mammals are among the more active species.
The respiration rate associated with filtering in animals such as larvaceans and ascidians
was found to be less than 2 % of the total dioxygen consumption [356]. Energy investment
in feeding is generally small, which does not encourage the introduction of many parame-
ters to describe this investment. Feeding costs can be accommodated in two ways within
the DEB theory without the introduction of new parameters, and this subsection aims to
explore to what extent this accommodation is realistic.

The first way to accommodate feeding costs is when they are proportional to feeding
rate. They then show up as a reduction of the energy gain per unit of food. One can,
however, argue that feeding costs per unit of food should increase with decreasing food
density, because of the increased effort of extracting it from the environment. This type
of cost can only be accommodated without complicating the model structure if these costs
cancel against increased digestion efficiency, caused by the increased gut residence time,
cf. {266}.

The second way to accommodate feeding costs without complicating the model struc-
ture applies if the feeding costs are independent of the feeding rate and proportional to
body volume. They then show up as part of the maintenance costs, cf. {42}. This argu-
ment can be used to understand how feeding rates for some species tend to be proportional
to surface area if transportation costs are also proportional to surface area, so that the
cruising rate is proportional to length, {28}. In this case feeding costs can be combined
with costs of other types of movement that are part of the routine repertoire. A fixed (but
generally small) fraction of the maintenance costs then relates to movement.

Schmidt-Nielsen [1023] calculated 0.65 ml Oy cm™2km™" to be the surface-area-specific
transportation costs for swimming salmon, on the basis of Brett’s work [150]. (He found
that transportation costs are proportional to weight to the power 0.746, but respiration
was not linear with speed. No check was made for anaerobic metabolism of the salmon.
Schmidt-Nielsen obtained, for a variety of fish, a power of 0.7, but 0.67 also fits well.) Fedak
and Seeherman [339] found that the surface-area-specific transportation cost for walking
birds, mammals and lizards is about 5.39 mlOgcm™?km™" ~ 118 Jem 2km~!. (They
actually report that the transportation costs are proportional to weight to the power 0.72
as the best fitting allometric relationship, but the scatter is such that 0.67 fits as well.) This
is consistent with data from Taylor et al. [1139] and implies that the costs of swimming
are some 12 % of the costs of running. Their data also indicate that the costs of flying are
between those of swimming and running and amount to some 1.87 ml Oy cm=2km ™.

The energy costs of swimming are frequently taken to be proportional to squared speed
on sound mechanical grounds [672], which questions the usefulness of the above-mentioned
costs and comparisons because the costs of transportation become dependent on speed. If
the inter-species relationship that speeds scale with the square root of volumetric length, see
{302}, also applies to intra-species comparisons, the transportation costs are proportional
to volume if the travelling time is independent of size.

The energy required for walking and running is found to be proportional to velocity
for a wide diversity of terrestrial animals including mammals, birds, lizards, amphibians,
crustaceans and insects [388]. This means that the energy costs of walking or running a
certain distance are independent of speed and just proportional to distance. If the costs of
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covering a certain distance are dependent on speed, and temperature affects speeds, these
costs would work out in a really complex way at the population and community levels.

The conclusion is that, for the purposes of studying how energy budgets change during
the life span, transportation costs either show up as a reduction of energy gain from food,
or as a fixed fraction of the somatic maintenance costs when these costs are proportional
to structural mass.

2.1.4 Functional response converts food availability to ingestion
rate

The feeding or ingestion rate, px, of an organism as a function of scaled food density,

x = X/K, expressed in Watts, is described well by the hyperbolic functional response

X

Px = [Pxm = f{Pxm}L" with f T2

(2.2)

where py,, the maximum ingestion rate, {px.,} the specific maximum ingestion rate and
L the volumetric length. This functional response, proposed by Holling [523] as type
I1, is illustrated in Figure 2.6. It applies to the uptake of organic particles by ciliates
(phagocytosis), the filtering of algae by daphnids, the catching of flies by mantis, the uptake
of substrates by bacteria, the nutrient uptake by algae and plants, and the transformation
of substrates by enzymes. Although these processes differ considerably in detail, some
common abstract principle gives rise to the hyperbolic functional response: the busy period,
which is characteristic of the Synthesising Unit, cf. {101}. To reveal the connection, I
rephrase the basic derivation in terms that make sense in the context of a simple model for
feeding, or substrate processing, that will be generalised subsequently in various directions,
cf. {180}.

All behaviour is classified into just two categories: food acquisition and food process-
ing, which not only includes food handling, but also digestion and other metabolic steps
that keep the individual away from food acquisition. These two behavioural components
compete for time allocation by the individual.

Let F denote the filtering rate (in volume per time), a rate that is taken to depend
on mean particle density only, and not on particle density at a particular moment. The
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arrival rate of food particles (in number per time), present in density N (in number per
volume), equals h = FN. Notice that we have to multiply N with the mass per particle
Mx to arrive at the mass of food per volume of environment X = NMy, and that we
have to multiply h with M x to arrive at the ingestion rate Jxa =M Xh in terms of C-
moles per time. The mean time between the end of a handling period and the next arrival
(the binding period) is t, = h~!. The mean handling period is t, = = I —1_ which is the
maximum value of h, where no time is lost in waiting for particles. The time required
to find and eat one particle is thus given by t. = #, 4+ ¢, and the mean ingestion rate is
h=t'=(h;' +h ") = hyN(hy/F + N)', which is hyperbolic in the density X. The
(half) saturation coefficient is inversely proportional to the product of the handling time
and the filtering (or searching) rate, i.e. K = My (t,F)™" = Jxam/F, where Jx 4, is the
maximum surface area specific food uptake rate in moles per time per squared length.

Filter feeders, such as rotifers, daphnids and mussels, reduce filtering rate with increas-
ing food density [365, 913, 973, 974], rather than maintain a constant rate, which would
imply the rejection of some food particles. They reduce the rate by such an amount that
no rejection occurs because of the handling (processing) of particles. If all incoming water
is swept clear, the filtering rate is found from F (X) = h/N, which reaches a maximum
if no food is around (temporarily), so that F,, = {hm}L?/N, and F approaches zero for
high food densities. An alternative interpretation of the saturation coefficient in this case
would be K = JXAm/Fm = {JXAm}/{Fm}, which is independent of the size of the animal,
as long as only intra-specific comparisons are made. It combines the maximum capacity
for food searching behaviour, only relevant at low food densities, with the maximum ca-
pacity for food processing, which is only relevant at high food densities. This mechanistic
interpretion of the saturation coefficient is a special case of the dynamics of Synthesizing
Units, which will be discussed in chapter 3.

Because the specific searching rate {Fm} is closer to the underlying feeding process,
it will be treated as primary parameter, rather than the descriptive saturation coefficient
K = {Jxam}/{Fn}-

A most interesting property of the hyperbolic functional response is that it is the only
one with a finite number of parameters that maps onto itself. For instance, an exponential
function of an exponential function is not again an exponential function. A polynomial (of
degree higher than one) of a polynomial is also a polynomial, but it is of an increasingly
higher degree if the mapping is repeated over and over again. The ratio of two linear
functions of a ratio of two linear functions as in (2.2) is, however, again such a ratio;
the linear function is a special case of this. In a metabolic pathway each product serves
as a substrate for the next step. Neither the cell nor the modeller needs to know the
exact number of intermediate steps to relate the production rate to the original substrate
density, if and only if the functional responses of the subsequent intermediate steps are of
the hyperbolic type. If, during evolution, an extra step is inserted in a metabolic pathway
the performance of the whole chain does not change in functional form. This is a crucial
point because each pathway has to be integrated with other pathways to ensure the proper
functioning of the individual as a whole. If an insert in a metabolic pathway simultaneously
required a qualitative change in regulation at a higher level, the probability of its occurrence
during the evolutionary process would be remote. This suggests that complex regulation
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systems in metabolic pathways fix and optimise the kinetics that originate from the simpler
kinetics on which Synthesising Units are based.

A most useful property of the hyperbolic functional response is that it has only two
parameters that serve as simple scaling factors on the food density and ingestion rate axis.
So if food density is expressed in terms of the saturation coefficient, and ingestion rate
in terms of maximum ingestion rate, the functional response no longer has dimensions or
parameters.

When starved animals are fed, they often ingest at a higher rate for a short time [1225],
but this is here neglected. Starved daphnids, for instance, are able to fill their guts within
7.5 minutes [393].

2.1.5 Generalisations: differences in size of food particles

The derivation of the functional response can be generalised in different ways without
changing the model. FEach arriving particle can have an attribute that stands for its
probability of becoming caught. The i-th particle has some fixed probability p; of being
caught upon encountering an animal if the animal is not busy handling particles, and a
probability of 0 if it is. The mass of each particle does not need to be the same. The flux
Jx should be interpreted as the mean mass flux (in C-moles per time), where the mass of
each particle represents a random trial from some frequency distribution.

It is not essential for the handling time to be the same for all particles; handling
time can be conceived of as a second attribute attached to each particle, but it must be
independent of food density. The amount of time required for food processing is taken
to be proportional to the amount of mass of the food item to ensure that the maximum
uptake capacity is not exceeded.

The condition of zero catching probability when the animal is busy can be relaxed. Metz
and van Batenburg [784, 785] and Heijmans [482] tied catching probability to satiation
(thought to be related to gut content in the mantis). An essential condition for hyperbolic
functional responses is that catching probability equals zero if satiation (gut content) is
maximal.

When offered different food items, individuals can select for size. Shelbourne [1047]
reports that the mean length of Oikopleura eaten by plaice larvae increases with the size
of the larvae. Copepods appear to select the larger algal cells [1127]. Daphnids do not
collect very small particles, < 0.9 ym cross-section [421], or large ones, > 27 and > 71 um,;
the latter values were measured for daphnids of length 1 and 3mm respectively [177].
Kersting and Holterman [593] found no size-selectivity between 15 and 105 ym? (and prob-
ably 165 ym?) for daphnids. Size selection is rarely found in daphnids [971], or in mussels
[365, 1253], but selection of food type does occur frequently [134].

Deviations from the hyperbolic functional response can be expected if the mass per
particle is large, while the intensity of the arrival process is small. They can also result
from, e.g. more behavioural traits, see {256}, social interactions, see {257}, transport
processes of resources, see {259}.



2.2. Assimilation 35

2.2 Assimilation

The term ‘assimilated’ energy here denotes the free energy fixed into reserves; it equals
the intake minus free energy in faeces and in all losses in relation to digestion. Unlike
in typical static budgets, cf {416}, the energy in urine is included in assimilation energy,
because urine does not directly derive from food and is excreted by the organism, cf. {84}
and {147}. (Faeces is not excreted, because it has never been inside the organism.)

The assimilation efficiency of food is here taken to be independent of the feeding rate.
This makes the assimilation rate proportional to the ingestion rate, which seems to be
realistic, cf. Figure 7.17. I later discuss the consistency of this simple assumption with
more detailed models for enzymatic digestion, {266}. The conversion efficiency of food
into assimilated energy is denoted by kx, so that {pam} = kKx{Dxm}, where {pa,} stands
for the maximum surface-area-specific assimilation rate. Both kx and {pa,} are diet-
specific parameters. The assimilated energy that comes in at food density X is now given
by

X
K+ X

and L the volumetric length. It does not involve the parameter {px,,} in the notation,
which turns out to be useful in the discussion of processes of energy allocation in the next
few sections.

Pa = kxPx = {Pam} fL* where f = (2.3)

2.3 Reserve dynamics

The change of the reserve energy E in time ¢ can be written as %E = pPa — pc, where the
assumption is that the mobilisation rate of reserve, pc, is some function of the amount of
reserve energy E and of structural volume V only. This function is fully determined by the
assumptions of strong and weak homeostasis; see {10}, but its derivation is not the easiest
part of this book. Since mobilised reserve fuels metabolism, reserve dynamics is discussed
in some detail. For the sake of parameter estimation from data that has no energy in its
units, I will use the scaled reserve Ug = E/{pam}, which has the un-intuitive dimension
time x length?, and treat it as ‘something that is proportional to reserve energy’.

The dynamics for the reserve density has to be set up first, in general form. It can
be written as the difference between the volume-specific assimilation rate, [pa] = pa/V =
f{Pam}/L, and some function of the state variables: the reserve density [E] = E/V and
the structural volume V. The freedom of choice for this function is greatly restricted by
the requirement that [E] at steady state does not depend on size, while [pa] oc L71 Tt
implies that the dynamics can be written as

d

—[E] = [pa] = L' H([E]|6) + ([E]" - [EDG(E], L) (2.4)

where H ([£]]0) is some function of [E] and a set of parameters €, that does not depend on

L, and G([E], L) some function of [E] and L. The value [E]* represents the steady-state

reserve density, which can be found from 4[E] = 0. Since [E]* depends on food density
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via the assimilation power [p4], the requirement that the rate of use of reserves should not
depend on food density implies that G([E], L) = 0 and (2.4) reduces to

1B = [pa] ~ H(E)6)/L (25)

The mass balance for the reserve density can be written as

d

a[E] = [pa] — [pc] — [E]7 (2.6)

where r = %an stands for the specific growth rate; the third term stands for the di-
lution by growth, which directly follows from the chain rule for differentiation of E/V.
Because maintenance (work) and growth are among the destinations of mobilised reserve,
the volume-specific mobilisation rate [pc] = pe/V relates to these fluxes as k([E], V)[pc] =
[ps]+ [pal, or 7 = [pg|/[Ec] = (k([E],V)[pc] —[ps])/[Ec], where the specific somatic main-
tenance costs [pg] is some function of V' and the volume-specific costs of structure [Eg| is
constant, in keeping with the homeostasis assumption for structural mass. The fraction
k([E],V) is, at this stage in the reasoning, some function of the state variables [E] and V.
Substitution of the expression for growth into (2.6) results in

d

3 B = [pa] = [pc](1 + K[E]/[Ec]) + [E][ps](V) /[ Ec] (2.7)

Substitution of (2.5) leads to the volume-specific mobilisation rate

H([E]|6°)/L + [B][ps])(V)/[Ec]
1+ w([E], V|6°)[E]/[Ec]

[pc] = (2.8)

where 0° is a subset of @ = (0°, [ps], [E¢]). Note that the functions H and & cannot depend
on [ps] or [E¢| because allocation occurs after mobilisation.

2.3.1 Partitionability follows from weak homeostasis

The next step in the derivation of reserve dynamics follows from the partitionability of
reserve kinetics, meaning that the partitioning of reserves should not affect its dynamics, i.e.
the sum of the dynamics of the partitioned reserves should be identical to that of the lumped
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one in terms of growth, maintenance, development and reproduction. Partitionability is
implied by weak (and strong) homeostasis, as shown in [1088]. This originates from the
fact that the reserves are generalised compounds, i.e. mixtures of various kinds of proteins,
lipids, etc. Each of these compounds follows its own kinetics, which are functions of the
amounts of that compound and of structural mass, but their relative amounts do not
change; all reserve compounds have identical kinetics. The strong homeostasis assumption
ensures that the amount of any particular compound of the reserves is a fixed fraction, say
k4, of the total amount of reserves. This compound must account for a fraction x4 of the
maintenance costs and growth investment, see Figure 2.7.
In quantitative terms, partitionability means

kalpe|([E], VIps), [Ecl, 0°) = [pcl(kalE], V]kalps], kalEc], 6°) (2.9)

for an arbitrary factor x4 in the interval (0, 1). This factor not only applies to [E], but also
to the specific maintenance [pg] and structure costs [Eg], because the different fractions of
the reserves contribute to these costs. The factor does not apply to V' and the parameters
0°. We can check in (2.8) that [pc| is partitionable if

e the function H is a first-degree homogeneous function, which means that x4 H ([E]|6°) =
H(k4[F]|0°). Tt follows that this function can be written as H([E]) = 0[E], for some
constant 0, which will be called the energy conductance (dimension length per time).
The inverse, v~ !, has the interpretation of a resistance. Conductances are often used
in applied physics. Therefore, it is remarkable that the biological use of conductance
measures seems to be restricted to plant physiology [562, 842] and neurobiology [674].

e the function x is a zero-th degree homogeneous function in E, which means that
k(ka[E],V) = k([E],V). In other words: k may depend on V, but not on [E].
Later, I argue that (V') is a rather rudimentary function of V', namely a constant,

see {40}.
Substitution of the function H into (2.5) gives
d . . . .
o Bl = [pa] = [BJ0/L = ({Dam} f — [E]0)/L (2.10)
The reserve density at steady state is [E]* = L{pal/0 = f{pam}/0. The maximum reserve
density at steady state occurs at f = 1, which gives the relationship [E,,] = {pam}/0. So
the reserve capacity [F,,] represents the ratio of the assimilation and mobilisation fluxes.
The scaled reserve density e = [E]/[E,,] is a dimensionless quantity and has the simple
dynamics
d
pri (f —e)o/L (2.11)

Notice that, if f is constant, e converges to f.
The reserve dynamics (2.10) results in the specific mobilisation and growth rates

d i o _ 1o [EG]O/ L+ [ps]
S Bl = [l = [E](0/L - 7) = [E] w[E] + [Ed]

. [EJo/L = [ps]/#
P = E T TBeln (2.13)

[pc] = [Pl - (2.12)
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After further specification of xk and [pg], the mobilisation and specific growth rates are fully
specified.

The mean time compounds stay in the reserve amounts to ty = F/pc, which increases
with length. For metabolically active compounds that loose their activity spontaneously,
this phenomenon might contribute to the ageing process, to be discussed at {209}. This
storage residence time must be large with respect to that of the stomach and the gut to
justify neglecting the smoothing effect of the digestive tract.

If the reserve capacity, [E,,], is extremely small, the dynamics of the reserves degen-
erates to [E| = f[E,], while both [E] and [E,,] tend to 0. The mobilisation rate then
becomes pe = {pam }fV?/3. This case has been studied by Metz and Diekmann [787], but
some consistency problems arise in variable environments where maintenance costs cannot
always be paid.

2.3.2 DMergeability is almost equivalent to partitionability

Mergeability means that reserves can be added without effects on the reserve (density)
dynamics if assimilation of the resources to synthesise the reserves is coupled and the total
intake is constant. This is also implied by weak homeostasis; partitionable dynamics is also
mergeable. This property is essential to understand the gradual reduction of the number
of reserves during evolution, see {384}. The mergeability is also essential to understand
symbiogenesis in a DEB theory context, cf {391}: Given that species 1 and 2 each follow DEB
rules, and species 1 evolves into an endosymbiont of species 1, the new symbiosis again
should follow the DEB rules [648] (else the theory becomes species-specific), see {391}.
Evolution might have found several mechanisms to obtain mergeability of reserves, but the
fact that they are mergeable is essential for evolution, see {380}.

A quantitative definition of mergeability is as follows. Given 4[E;] = [pa,] — F([E;],V)
fori =1,2,---and [pa,] = ka,[pa] with 3>, k4, = 1, two reserves E; and E, are mergeable if
d% B = [pa]— F (3], V). The mergeability condition summarises to >, F([E;], V) =

Weak homeostasis implies that F([E], V) = V~Y3H([E]), see (2.5), so together with the
mergeability requirement this translates into the requirement that 3=, H ([E]) = H (> E:)
or ko H(|E]) = H(ka[E]) for an arbitrary positive value of x,4. In other words: H must
be first degree homogeneous in [E]. From this follows directly H([E]) = 9[E].

Since from partitionability also follows that x is a zero-th degree homogeneous function
in F, while this does not follow from mergeability, the latter requirement is less restric-
tive. In other words, partitionability imposes constraints on the fate of mobilised reserve,
mergeability does not. More specifically, partitionability involves maintenance explicitly,
mergeability does not.

To demonstrate the difference I now translate the mergeability constraint on £ to a
constraint on the mobilisation flux po. These two fluxes relate to each other as F' =
[pc] + [E]7, where the specific growth rate 7 = [pe]/|Fa] = (k[pc] — [ps])/[Fal]. So

F = [pe] + (vlpo) — [ps]) E)/[Ea) = (1 " [,gj) el — il (219
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The mergeability constraint x4 F([E],V) = F(k4[E], V) can be written as

[Eg] + IQAH[E]
[Ec] + k[E]

ka[pcl([E], V) = [pcl(kalE] V) (2.15)

which can now be compared with the partitionability definition (2.9).

2.3.3 Mechanism for mobilisation & weak homeostasis

Although Lemesle and Mailleret [696] correctly observed that the use of food and reserve
are both Michaelis-Menten type functions of their densities, and the mechanism behind
the use of food is known, the use of reserve must have a different mechanism because the
parameters have a specific interpretation and reserve and structure are not homogeneously
mixed. Also first-order kinetics, which is very popular in chemistry, cannot apply because
it is not partitionable for isomorphs. Finding a mechanism for reserve mobilisation has
been a challenge; a elegant and realistic mechanism for the reserve dynamics rests on the
structural homeostasis concept, see {10}. The arguments are as follows.

Since reserve primarily consists of polymers (RNA, proteins, carbohydrates) and lipids,
an interface exists between reserve and structure and the gross mobilisation rate of reserve
is now taken to be proportional to the surface area of the reserve-structure interface, so
Ev/L, see Figure 1.4, and allocated to the mobilisation SUs. This flux is partitioned for
7 > 0 into a net mobilisation flux po = Ev/L — E7 that is accepted by the mobilisation
SUs and used for metabolism, and a flux E7 is rejected and fed back to the reserve. This
particular partitioning follows from the weak homeostasis argument, where the ratio of
formation of reserve, rFE, and structure, 7V, equals the existing ratio of both amounts,
E/V, and the rejected flux is formally considered as a ‘synthesis’ of reserve. From (2.6)
now directly follows (2.10).

A beautiful property of this mechanism is that the correct partitioning of the gross
mobilisation flux automatically follows from SUs kinetics, see {98}, if the specific number
of mobilisation SUs (in C-moles) equals y’Z—‘Igi’, where ygy is the yield of reserve on structure
(in C-moles), and k is the (constant) dissociation rate of the SUs [662]. An increased
deviation from this value results in an increased deviation from weak homeostasis, and the
selection of the proper value possibly links directly to the evolution of weak homeostatis.
If membranes wrap reserve vesicles, the SU density in these membranes would be constant.
Strong homeostasis can only apply strictly if mobilisation SUs switch to the active state if
bound to these membranes.

This mechanism has a problem for embryo’s (eggs, seeds), because L is initially very
small, so the gross mobilisation rate as well as the rejected flux are very large. This is
unrealistic, because the absence of respiration in the early embryo excludes substantial
metabolic activity. This problem hardly exists for organisms that propagate by division,
so it became a problem when embryos evolved during evolution. Also organisms with
a large body size suffer from the problem, because they have a relatively large amount
of reserve, cf {292}. This problem can be solved by an self-inhibition mechanism for
monomerisation; polymers as such do not take part in metabolism as substrates. The SUs
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take their substrate from a small pool of reserve monomers, and the pool size of the reserve
monomers is proportional to that of the reserve polymers; this is implied by the strong
homeostasis assumption.

The self-inhibition mechanism might be by rapid inter-conversion of the first order type,
but this comes with metabolic costs. A more likely possibility is that monomerisation
is product inhibited and ceases if the monomers per polymer reach a threshold. The
monomerisation cost is then covered by maintenance and growth. For an individual with
an amount of structure My and reserve Mg, the kinetics of the amount of monomers Mp
could be

— Mg = —Mg(kpr — —krg); —Mp = Mg(kgr — —Fk 2.16

g e e(ker . FE); g P = YFE e(ker o FE) ( )

with mp = Mg/My and mp = Mp/My. This kinetics makes that in steady state

% = Zi—g The monomerisation occurs at the E-V interface, which has a surface area
E

proportional to E/L in isomorphs. This makes that kgr and kgp are proportional to L™!
as well.

2.4 The k-rule for allocation to soma

The motivation for a k-rule originates from the maturation concept, see {44}, which im-
plies four destinies of mobilised reserve: growth plus somatic maintenance, summarised
by the term “soma”, and maturation (or reproduction) plus maturity maintenance. The
partitionability requirement states that the fraction x of mobilised reserve that is allocated
to the soma cannot depend on the amount of reserve (or on the reserve density) but still
can depend on the amount of structure. The simplest assumption is that x is constant and
does also not depend on the amount of structure. This assumption is used by the standard
DEB model.

The empirical evidence for a constant value of « is that then the von Bertalanffy growth
curve results at constant food density, see {49}, which typically fit data from many species
very well. Even stronger support is provided by the resulting body size scaling relationships,
which are discussed in Chapter 8. Moreover Huxley’s allometric model for relative growth
of body parts closely links up with multivariate extensions of this x-rule, see {196}. Strong
support for the x-rule also comes from situations where the value for s is changed to a
new fixed value. Such a simple change affects reproduction as well as growth and so food
intake in a very special way. Parasites such as the trematod Schistosoma in snails harvest
all energy to reproduction and increase x to maximise the energy flow they can consume;
see [564] for a detailed physiological discussion. Parasite-induced gigantism, coupled to a
reduction of the reproductive output, is also known from trematod-infested chaetognats
(Sagitta), [821], for instance. The daily light cycle also affects the value for  in snails, and
the allocation behaviour during prolonged starvation; see {113}. The effect of some toxic
compounds can be understood as an effect on &, as is discussed on {235}.

A possible mechanism for a constant « is as follows. At separated sites along the path
the blood follows, somatic cells and ovary cells pick up energy. The only information
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the cells have is the energy content of the blood and body size, cf. {12}. They do not
have information about each other’s activities in a direct way. This also holds for the
mechanism by which energy is added to or taken from energy reserves. The organism only
has information on the energy density of the blood, and on size, but not on which cells
have removed energy from the blood. This is why the parameter x does not show up in
the dynamics of energy density. The activity of all carriers that remove energy from the
body fluid and transport it across the cell membrane depends, in the same way, on the
energy density of the fluid. Somatic cells and ovary cells both may use the same carriers,
but the concentration in their membranes may differ so that 1 —x may differ from the ratio
of ovary to body weight. This concentration of active carriers is controlled, by hormones
for example, and depends on age, size and environment. Once in a somatic cell, energy
is first used for maintenance, the rest is used for growth. This makes maintenance and
growth compete directly, while development and reproduction compete with growth plus
maintenance at a higher level. The x-rule makes growth and development parallel processes
that interfere only indirectly, as is discussed by Bernardo [92], for instance.

If conditions are poor, the system can block allocation to reproduction, while somatic
maintenance and growth continue to compete in the same way, see {113}.

The k-rule solves quite a few problems from which other allocation rules suffer. Al-
though it is generally true that reproduction is maximal when growth ceases, a simple
allocation shift from growth to reproduction leaves similarity of growth between different
sexes unexplained, since the reproductive effort of males is usually much less than that of
females. The k-rule implies that size control is the same for males and females and for
organisms such as yeasts and ciliates, which do not spend energy on reproduction but do
grow in a way that is comparable to species that reproduce; see Figure 2.14. It is impor-
tant to realize that although the fraction of mobilised reserve that is allocated to the soma
remains constant, the absolute size of the flow tends to increase during growth at constant
food densities.

The value of k can be extracted from combined observations on growth and reproduc-
tion. The observed value of 0.8 for D. magna in Figure 2.10 is well above the value that
would maximise the reproduction rate, given the other parameter values. This questions
the validity of maximisation of fitness without much attention for mechanisms, a line of
thinking that has become popular among evolutionary biologists, e.g. [1102, 983]. The
reason why the measured value of x is so high is an open problem, but might be linked
with the length at birth and at puberty, which increases sharply with « in the standard
DEB model.

2.5 Dissipation excludes overheads of assimilation &
growth

Dissipation is defined as the use of reserve that is not coupled to net production, where
reproduction is seen as an excretion process, rather than a production process in the
strict sense of the word. Assimilation and growth have overheads that also appear in the
environment, and are excluded from dissipation. So dissipation is not all that dissipates,
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Figure 2.8: The leaves of most plant species grow
during a relatively short time period, and are shed
yearly, after the plant has recovered useful compounds.
The leaves of some species, however, such as Wel-
witschia marabilis, grow and weather continuously.
The life span of this remarkable gymnosperm can ex-
ceed 2000 years. Leaves have a very limited functional
life span, but plants have found different ways to deal
with that problem.

but less than that. The reason to group these fluxes together under one label, dissipation,
becomes clear in the discussion on the organisation of mass fluxes.

Dissipation represents metabolic work. Reserve is metabolised and the metabolites are
generally excreted into the environment, frequently in mineralised form (mainly water,
carbon dioxide and ammonia), cf {159}. Dissipation has four components: somatic and
maturity maintenance, maturation and reproduction overhead.

2.5.1 Somatic maintenance is linked to volume & surface area

Maintenance costs can generally be decomposed in contributions that are proportional to
structural body volume, and to surface area, which gives the quantification

[ps] = [pa] + {pr}/L (2.17)

where the costs that comprise the volume-linked maintenance costs [pys] and the surface
area-linked maintenance costs {pr} are discussed below.

Volume-linked maintenance costs

Maintenance processes include the maintenance of concentration gradients across mem-
branes, the turnover of structural body proteins, a certain (mean) level of muscle tension
and movement, and the (continuous) production of hairs, feathers, scales, leaves (of trees),
see Figure 2.8.

The idea that maintenance costs are proportional to biovolume is simple and rests on
strong homeostasis: a metazoan of twice the volume of a conspecific has twice as many
cells, which each use a fixed amount of energy for maintenance. A unicellular of twice the
original volume has twice as many proteins to turn over. Protein turnover seems to be
low in prokaryotes [613]. Another major contribution to maintenance costs relates to the
maintenance of concentration gradients across membranes. Eukaryotic cells are filled with
membranes, and this ties the energy costs for concentration gradients to volume. (The
argument for membrane-bound food uptake works out differently in isomorphs, because
feeding involves only the outer membrane directly.) Working with mammals, Porter and
Brand [915] argued that proton leak in mitochondria represents 25 % of the basal respiration
in isolated hepatocytes and may contribute significantly to the standard metabolic rate of
the whole animal.
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The energy costs of movement are also taken to be proportional to volume if averaged
over a sufficiently long period. Costs of muscle tension in isomorphs are likely to be
proportional to volume, because they involve a certain energy investment per unit volume
of muscle. In the section on feeding, I discuss briefly the energy involved in movement,
{31}, which has a standard level that includes feeding. This can safely be assumed to
be a small fraction of the total maintenance costs. Sustained powered movement such
as in migration requires special treatment. Such activities involve temporarily enhanced
metabolism and feeding. The occasional burst of powered movement hardly contributes
to the general level of maintenance energy requirements. Sustained voluntary powered
movement seems to be restricted to humans and even this seems of little help in getting
rid of weight!

There are many examples of species-specific maintenance costs. Daphnids produce
moults every other day at 20°C. The synthesis of new moults occurs in the intermoult
period and is a continuous and slow process. The moults tend to be thicker in the larger
sizes. The exact costs are difficult to pin down, because some of the weight refers to
inorganic compounds, which might be free of energy cost. Larvaceans produce new feeding
houses every 2 hours at 23°C [340], and this contributes substantially to organic matter
fluxes in oceans [17, 18, 248]. These costs are taken to be proportional to volume. The
inclusion of costs of moults and houses in maintenance costs is motivated by the observation
that these rates do not depend on feeding rate [340, 634], but only on temperature.

It will be convenient to introduce the maintenance rate coefficient ky; = [pa]/[F¢] as
compound parameter. It stands for the ratio of the costs of somatic maintenance and of
structure and has dimension time™'. It was introduced by Marr et al. [747] for the first
time and publicised by Pirt [902].

Surface-area-linked maintenance costs

Some specialised maintenance costs relate to surface areas of individuals.

Aquatic insects are chemically fairly well isolated from the environment. Euryhaline
fishes, however, have to invest energy in osmoregulation when in waters that are not iso-
osmotic. The cichlid Oreochromis niloticus is iso-osmotic at 11.6°/., and 29% of the
respiration rate at 30°/., can be linked to osmoregulation [1277]. Similar results have
been obtained for the brook trout Salvelinus fontinalis [377].

Endotherms (birds, mammals) use reserve to heat their body such that a particular part
of the body (the head and the heart region in humans) has a constant temperature during
the post-embryonic stages; embryos don’t do this. Heat loss is not only proportional to
surface area but, according to I. Newton, also to the temperature difference between body
and environment. This is incorporated in the concept of thermal conductance {pr}/(T. —
Ty), where T, and T}, denote the temperature of the environment and the body. It is about
5.43 Jem~2h~'°C~! in birds and 7.4-9.86 Jecm~2h~! °C~! in mammals, as calculated from
[497]. The unit cm™? refers to volumetric squared length, not to real surface area which
involves shape. The values represent crude means in still air. The thermal conductance is
roughly proportional to the square root of wind speed.

This is a simplified presentation. Birds and mammals moult at least twice a year, to
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replace their hair and feathers which suffer from wear, and change the thick winter coat for
the thin summer one. Cat owners can easily observe that when their pet is sitting in the
warm sun, it will pull its hair into tufts, especially behind the ears, to facilitate heat loss.
Many species have control over blood flow through extremities to regulate temperature.
People living in temperate regions are familiar with the change in the shape of birds in
winter to almost perfect spheres. This increases insulation and generates heat from the
associated tension of the feather muscles. These phenomena point to the variability of
thermal conductance.

There are also other sources of heat exchange, through ingoing and outgoing radiation
and cooling through evaporation. Radiation can be modulated by changes in colour, which
chameleons and tree frogs apply to regulate body temperature [719]. Evaporation obviously
depends on humidity and temperature. For animals that do not sweat, evaporation is tied
to respiration and occurs via the lungs. Most non-sweaters pant when hot and lose heat by
enhanced evaporation from the mouth cavity. A detailed discussion of heat balances would
involve a considerable number of coefficients [804, 1093], and would obscure the main line
of reasoning. T discuss heating in connection with the water and energy balances on {155,
154}. Tt is important to realize that all these processes are proportional to surface area,
and so affect the heating rate {pr} and in particular its relationship with the temperature
difference between body and environment.

It turns out to be convenient to introduce the heating length Ly = {pr}/[pum] or the
heating volume V7 = L3 as compound parameters of interest. Heating volume stands
for the reduction in volume endotherms experience due to the energy costs of heating. It
can be treated as a simple parameter as long as the environmental temperature remains
constant. Sometimes, it will prove to be convenient to work with the scaled heating length
lr = {pr}/k{pam} as a compound parameter. If the temperature changes slowly relative
to the growth rate, the heating volume is a function of time. If environmental temperature
changes rapidly, body temperature can be taken to be constant again while the effect
contributes to the stochastic nature of the growth process, cf. {111}.

2.5.2 Maturation for embryos & juveniles

The k-rule makes that growth and development are parallel processes, which links up beau-
tifully with the concepts of acceleration and retardation of developmental phenomena such
as sexual maturity [423]. These concepts are used to describe relative rates of development
in species that are similar in other respects.

The ideas on maturation and maturation maintenance in the DEB context rest on four
observations

e Contrary to age, the volume at the first appearance of eggs hardly depends on food
density, typically; see Figure 2.9. The same holds for the volume at birth.

e Some species, such as daphnids, continue to grow after the onset of reproduction.
Daphnia magna starts to reproduce at a length of 2.5 mm, while its ultimate size is
5mm, if well-fed. This means an increase of well over a factor eight in volume during
the reproductive period. Other species, however, such as birds, only reproduce well
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Figure 2.9: The carapace length of the
daphnid Daphnia magna at 20°C for 5 -
different food levels at the moment of egg . .o
deposition in the brood pouch. Data from 2a | i

Baltus [58]. The data points for short ju- 5
venile periods correspond with high food -
density and growth rate. They are diffi- -
cult to interpret because length increase ) - > -

is only possible at moulting in daphnids. age, d

length, mm

after the growth period. The giant petrel wanders seven years over Antarctic waters
before it starts to breed for the first time. This makes that stage transitions cannot
be linked to size.

e The total cumulative energy investment in development at any given size of the in-
dividual depends on food density. Indeed, if feeding conditions are so poor that the
ultimate volume is less than the threshold for allocation to reproduction, the cumu-
lated energy investment in development becomes infinitely large if survival allows.

o If food density is constant, the reproduction rate at ultimate size is a continuous
function of the food density; it is zero for low food densities, and increases from zero
for increasing food densities. So it does not make a big jump if the various food
densities differ sufficiently little.

The combination of the four graphs in Figure 2.10 illustrates a basic problem for the
energy allocation rules quantitatively. The problem becomes visible as soon as one realizes
that a considerable amount of energy is invested in reproductive output. The volume of
young produced exceeds one-quarter of that of the mother each day. The problem is that
growth is not retarded in animals crossing the 2.5 mm barrier; they do not feed much more
and simply follow the surface area rule with a fixed proportionality constant at constant
food densities; they do not change sharply in respiration, so it seems unlikely that they
digest their food much more efficiently. So where does the energy allocated to reproduction
come from?

These observations fit naturally if stage transitions are linked to maturity and a matu-
rity maintenance flux exist that is proportional to the level of maturity. The recognition
of the problem and it solution is the cornerstone of DEB theory.

A solution to this problem can be found in maturation. Juvenile animals have to
mature and become more complex. They have to develop new organs and install regulation
systems. The increase in size (somatic growth) of the adult does not include an increase
in complexity. The energy spent on development in juveniles is spent on reproduction in
adults. This switch does not affect growth and suggests the ‘k-rule’: a fixed proportion
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Figure 2.10: Respiration (upper left), and ingestion (upper right) as a function of body length,
and reproduction (lower left) at high food level and body length (lower right) as function of
age at different food levels in the waterflea Daphnia magna at 20°C. Original data and from
[330, 652]; the DEB model specifies the curves. The reproduction curve shows that D. magna starts
to reproduce at the age of 7d, i.e. when its length exceeds 2.5 mm. However, respiration, and
ingestion do not increase steeply at this size, nor does growth decrease. Where did the substantial
reproductive energy come from? The s-rule gives the explanation. The open symbols in the graph
for respiration relate to individuals with eggs in their brood pouch. Parameter values: d,q = 0.54
(fixed), k = 0.799, kg = 0.95 (fixed), g = 0.15, ky = 3.57d™1, kpyy = 4.06d7!, o = 1.62mmd ™,
UY = 0.001 mm2d, U, = 0.049 mm?d, [O] = 2.033 ugmm =3, {hx,,} = 1.5310°cellsh~'mm—2,
f = 0.88,0.81,0.73,0.63,0.56 in lower-right graph. The observation that Ly = 0.8mm and
L, =25mm at f = 1 and 0.5 has been used to stabilise the estimate for kj. The calculated
lengths are L = 0.686,0.685mm and L, = 2.46,2.45 mm, respectively. All length measures in
the parameters are volumetic. The shape coefficient §4 affects physical lengths and is probably
too large because of the water pockets inside daphnid’s carapax. A multiplication of da¢ by a
factor z means a multiplication of @ by z, of U% and U? by 2%, of [Os] by 273, and of {hxm} by
272, This can be seen from the units of the parameters.
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 of energy mobilised from the reserves is spent on somatic maintenance plus growth, the
remaining portion 1 — s on maturity maintenance plus maturation plus reproduction. The
partitionability of reserve kinetics has led to the conclusion that x cannot depend on the
reserve density (see {37}). The argument that allocation is an intensive process, not an
extensive one, suggests that x is independent of V' as well.

If the maturity maintenance ratio equals the somatic one, the maturity density, so the
ratio of the maturity and the amount of structure, remains constant and stage transitions
then also occur at fixed amounts of structure, cf {51}. Some species do show variations
in the size at first reproduction, however, see [92]. Little is known about the molecular
machinery that is involved in the transition from the juvenile to the adult stage. Recent
evidence points to a trigger role of the hormone leptin in mice, which is excreted by the
adipose tissue [205]. This finding supports the direct link between the transition and
energetics.

The increase in the level of maturity, quantified as cumulative investment of reserve
into maturity equals

where EY, is the maturity threshold at puberty. Because of the arbitrariness of a unit
for information, I refrain from an explicit conversion to information, but the mass as well
as the energy in this investment is typically excreted into the enviroment in the form of
metabolites and heat.

The literature distinguishes determinate growers, which cease growth during the adult
stage, and interdeterminate growers, which continue growth. In DEB theory, this is just
a matter of the value of E¥, relative to other DEB parameters; even for ecdysozoans that
reproduce only in their final moult, typically follow von Bertalanffy growth curves, cf {49}.
The only real determinate growers in the DEB context are the holometabolic insects, which
insert a pupal stage between the juvenile and adult stages, cf {277}, and don’t grow as
adults; their growth as larvae to pupation is not asymptotic.

2.5.3 Maturity maintenance: defence systems

The maturity maintenance is assumed to be proportional to the maturity level
py=ksEy (2.19)

where k is the maturity maintenance rate coefficient. It can be compared with the somatic
maintenance rate coefficient l%:M, and we will see, {51}, that if the maintenance ratio
k=k J/ k‘M = 1, stage transitions also occur at fixed structural volumes. Notice that kM
expresses the maintenance costs relative to the cost for structure; likewise k; expresses the
maintenance costs relative to the cost of a unit of maturity, but since we quantify maturity
as the cumulative reserve investment into maturity this unit equals 1 by definition; we
don’t make the conversion to maturity as information explicitly.
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An observation that strongly supports the existence of maturity maintenance concerns
pond snails, where the day/night cycle affects the fraction of utilized energy spent on main-
tenance plus growth [1298] such that x at equal day/equal night, k,q, is larger than that
at long day/short night, k4. Apart from the apparent effects on growth and reproduc-
tion rates, volume at the transition to adulthood is also affected. If the cumulated energy
investment in the increase of maturity does not depend on the value for x and if the matu-
rity maintenance costs are p; = %pM, the expected effect is ‘prd = :ii&;f:;jg, which is
consistent with the observations on the coupling of growth and reproduction investments
to size at puberty [1298].

Maturity maintenance can be thought to relate to the maintenance of regulating mech-
anisms and concentration gradients, such as those found in Hydra, that maintain head/foot
differentiation [406].

During extreme forms of starvation, many organisms shrink {118}. They can only
recover enough energy from the degradation of structural mass to pay the somatic main-
tenance costs if they can reduce the maturity maintenance costs under those conditions.
Thomas & Ikeda [1152] concluded from studies on laboratory populations of Euphausia
superba that female krill can regress from the adult to the juvenile state during starvation.

Organisms also become more vulnerable to diseases during starvation. This suggests
that defence systems, cf {382}, such as the immune system of vertebrates is fuelled from
maturity maintenance. and that maturity maintenance is more facultative than somatic
maintenance. All species have several defence systems, also to protect themsevels against
effects of toxicants. This also explains why maturity maintance can be substantial.

2.5.4 Reproduction overhead

Since embryos initially exist almost exclusively of reserve, the allocation to reproduction
consists of reserve, and the strong homeostasis assumption makes that reserve cannot
change in composition, little metabolic work is involved in reproduction. Yet some work is
involved in the conversion of (part of) the buffer of reserve that is allocated to reproduction
into eggs. A fraction kg of the reproduction flux, called the reproduction efficiency, is
assumed to be fixed in embryo reserve, and the rest, a fraction 1—kp is used as reproduction
overhead.

2.6 Growth: increase of structure

Now that the allocation fraction x and the specific maintenance costs [pg| are specified,
the specific mobilisation (2.12) and growth rates (2.13) can be written as

ey

[pe] = [Em](8/L+ kar (14 Lr/L) ; (2.20)
Ay — s with = L= F Lo/ D)/ L (2.21)
dt ct+yg

where the investment ratio g = [Fq|/k[FE),] stands for the costs of new biovolume relative to
the maximum potentially available energy for growth plus maintenance. It is dimensionless.
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The maximum length L,, = &{pam}/[Pr] = 0/knrg represents the ratio of the part
of the assimilation flux that is allocated to the soma and the somatic maintenance flux.
Notice the conceptual similarity with the reserve capacity [E,| = {pam}/©, which is also
a ratio of in- and out-going fluxes. The maximum volume V,, = L3, is also a compound
parameter of interest.

On the island Gough, the house mouse Mus musculus changed diet and turned to
prey on the chicks of the Tristan albatross Diomedea dabbenena and the Atlantic petrel
Pterodroma incerta, despite the fact that these birds are 250 times heavier. From an energy
point of view, this had the remarkable effect that the weight of the adult mice are 40 g,
rather than the typical 15 g. The reason is probably that the conversion efficiency from
birds to mice is higher than their typical conversion efficiency. This supports the idea that
ultimate (structural) weight represents the ratio of assimilation and maintenance. From a
nature conservation point of view the problem is that 99 % of the world population these
two bird species live on this island; the birds are now threatened with extinction.

For some applications, it will be convenient to work in scaled length | = L/L,, and
with 41 = li*/3 and scaled reserve density e. From (2.11) and (2.21) we have

jtz - kMgeeing and jte = (f — €)ghu/l (2.22)

Animals that have non-permanent exoskeletons, the Fcdysozoa, have to moult to grow.
The rapid increase in size during the brief period between two moults relates to the uptake
of water or air, not to synthesis of new structural biomass, which is a slow process occurring
during the intermoult period. This minor deviation from the DEB model relates more to
size measures than to model structure.

2.6.1 Von Bertalanffy growth at constant food

If food density X and, therefore, the scaled functional response f, are constant, and if
the initial energy density equals [E] = f[E,,|, energy density will not change and e = f.
Volumetric length as a function of time since birth can then be solved from %L = Lr/3
and results in

L(t) = Lo — (Loo — Ly) exp(—tip) or t(L) = ;1nLL°°_LLb (2.23)
B co T
o 1 ~ ku/3
T 3kt 3fLajo 1+ /g 22
Lo = fLn—Ly (2.25)

where length at birth L, = L(0) is a quantity that will be discussed at {60}. See Figure
2.14 for a graphical interpretation of the L(t) curve. I will follow tradition and call this
curve the von Bertalanffy growth curve despite its earlier origin and von Bertalanffy’s
contribution of introducing allometry, which I reject. Equations (2.24) and (2.25) give a

physiological interpretation of the von Bertalanffy growth rate 75 and the ultimate length
Leo
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Figure 2.11: These von Bertalanffy growth curves fit data very well of organisms that differ
considerably in their growth regulating systems. This suggests that hormones are used to match
local supply and demand of metabolites, but growth is controlled at the level of the individual,
including hormonal activity.
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The von Bertalanffy growth curve results for post-natal isomorphs at constant food
density and temperature and has been fitted successfully to the data of some 270 species
from many different phyla, which have very different hormonal systems to control growth;
see Figure 2.11 and Table 8.3. The gain in insight since A. Piitter’s original formulation
in 1920 [928] is in the interpretation of the parameters in terms of underlying processes.
It appears that heating cost does not affect the von Bertalanffy growth rate rg. Food
density affects both the von Bertalanffy growth rate and the ultimate length. The inverse
of the von Bertalanffy growth rate is a linear function of the ultimate volumetric length;
see Figure 2.10. This is in line with Piitter’s original formulation, which took this rate to
be inversely proportional to ultimate length, as has been proposed again by Gallucci and
Quinn [385]. DEB theory shows, however, that the intercept cannot be zero.

The requirement that food density is constant for a von Bertalanffy curve can be relaxed
if food is abundant, because of the hyperbolic functional response. As long as food density
is higher than four times the saturation coefficient, food intake is higher than 80 % of
the maximum possible food intake, which makes it hardly distinguishable from maximum
food intake. Since most birds and mammals have a number of behavioural traits aimed at
guaranteed adequate food availability, they appear to have a fixed volume—age relationship.
This explains the popularity of age-based models for growth in ‘demand’ systems. Later, on
{167}, T discuss deviations from the von Bertalanffy growth curve that can be understood
in the context of the present theory.

In contrast, at low food densities, fluctuations in food density soon induce deviations
from the von Bertalanffy curve. This phenomenon is discussed further in the section on
genetics and parameter variation, {288}. Growth ceases, i.e. %V = 0, if the reserve density
equals a threshold value, [E] = [ps]L/k0.

2.6.2 States at birth and initial amount of reserve

During the embryo stage, dry weight decreases, but the amount of structure increases:
reserve is converted into structure. The initial amount of reserve is not a free parameter
because the reserve density, i.e. the ratio of the amounts of reserve and structure, at birth
tends to covary with that of the mother at egg production; well-fed mothers give birth
to well-fed offspring. Such maternal effects are typical and have been found in e.g. birds
[824], reptiles, amphibians [715], fishes [478], insects [771, 995, 994], crustaceans [411],
rotifers [1291], echinoderms and bivalves [101]. Maternal effects explain, for instance, why
the batch fecundity of the anchovy Engraulis increases during the spawning season in
response to a decrease in food availability [879]. However, some species seem to produce
large eggs under poor feeding conditions, e.g. some poeciliid fishes [956], daphnids [413]
and Sancassania mites [85]. Moreover, egg size can vary within a clutch [314, 1221, 823],
according to geographical distribution [1068], with age [771] and race. Nonetheless, the
pattern that the reserve density at birth [E,| equals the reserve density [E] of the mother
at egg formation generally holds; this not only removes a parameter, but also has the nice
implication the von Bertalanffy growth applies from birth on, at constant food density.
Embryo’s don’t feed, f = 0, and even embryo’s of endothemic species don’t allocate to
heating, Ly = 0.
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Table 2.1: The dimensionless scaled variables and parameters that are used to find the initial
amount of scaled reserve.

TzakM szabkM l:L/Lm leLb/Lm
_ B > _ B b _ B}
UE = GBI, UB = JEITE UH = GEADE YH T GBI
e:guE/l3 eb:gu%/lg’ eH:guH/l3 el}{:gul}{/lg

1/3
m:ﬁ Tp = eb‘ig o = 3gz'/3/1 ab:3ga:b/ /l
b . .
y = T yp = 2 = gyl Y ol = k=ky/kum

The state variables (Ey, E, L) evolve from (0, Ep,0) at age a = 0 to (EY, [Ey) L3, Ly)
at age a = ap, the age at birth. To find Ey, ap, and L, given EY% and [E,] is a bit of a
challenge, which has been overwon recently only [645].

For this purpose, it is most convenient to remove parameters by scaling to dimensionless
quantities: (7, ug, 1, ug), see Table 2.1. The reformulated problem is now: Find 73, Iy, u%
given ul, k, g, k and u% = eyl3 /g, where e, is the scaled reserve density at birth.

For the variable (7, ug, [, uy) evolving from the value (0, 4%, 0, 0) to the value (7, u%, I, ub;),
the scaled model amounts to

d g+
— = —upl? 2.2
dTUE ve ug + 13 (2.26)
d 1 gup — 14
— = = 2.27
dr 3 Ug + 13 ( )
d 9 g+1
gpun = (1= rjugl T kug (2.28)

or alternatively for variable (7,¢,[, eg) evolving from the value (0,00,0,€%) to the value
(Tba €b, lba el}{)

d e

d ge—1

-] = < 2.

dr ety (2:30)
ie = (1—%)%H—79—e k+ge—l (2.31)
ar letg M letyg '

where the initial scaled maturity density €% = (1 — k)g is such that ‘Ley(0) = 0, else

If k =1, so ky = ka, we have ey (1) = €% for all 7 and ug () = (1 — ){}. In other
words: the maturity density remains constant, so maturity exceeds threshold values when
structure exceeds threshold values. We then have the relationship for the structural volume

at birth = B
V.= [3 = ZH/ml 2.32
T (1w (2:52)

For k > 1, ey is decreasing in (scaled) age, and for k < 1 increasing,.
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Figure 2.12 shows that data on embryo weight, yolk and respiration are in close agree-
ment with model expectations. As is discussed later, {142}, respiration is taken to be
proportional to the mobilisation rate. The two or three curves per species have been fitted
simultaneously by Zonneveld [1300], and the total number of parameters is five exclud-
ing, or seven including, respiration. This is less than three parameters per curve and
thus approaches a straight line for simplicity when measured this way. I have not found
comparable data for plant seeds, but I expect a very similar pattern of development.

The examples are representative of the data collected in Table 2.2, which gives pa-
rameter estimates of some 40 species of snails, fish, amphibians, reptiles and birds. The
model tends to underestimate embryo weight and respiration rate in the early phases of
development. This is partly because of deviations in isomorphism, the contributions of
extra-embryonic membranes (both in weight and in the mobilisation of energy reserves),
and the loss of water content during development. The parameter estimates for the altricial
birds such as the parrot Agapornis should be treated with some reservation, because ne-
glected acceleration caused by the temperature increase during development substantially
affects the estimates, as discussed on {167}.

The values for the energy conductance v, as given in Table 2.2, are in accordance with
the average value for post-embryonic development, as given on {303}, which indicates that
no major changes in energy parameters occur at birth. The maintenance rate constant
keas for reptiles and birds is about 0.08 d~* at 30°C, implying that the energy required to
maintain tissue for 12 days at 30°C is about equal to the energy necessary to synthesise
the tissue from the reserves. The maintenance rate constant for fresh water species seems
to be much higher, ranging from 0.3 to 2.3 d=!. Data from Smith [1082] on the rainbow
trout Oncorhynchus mykiss result in 1.8 d=! and Figure 2.10 gives 4.06d~! at 20 °C, which
corresponds to some 8.5d! at 30°C (if it would survive that) for the waterflea Daphnia
magna. The costs of osmosis might contribute to these high maintenance costs, as has
been suggested on {43}, but for Ecdysozoa (to which Daphnia belongs), moulting might
be costsly. The high value for Oikopleura, see Figure 2.19, probably relates to house
production. Although information on parameter values is still sparse, it indicates that no
(drastic) changes in these values occur at the transition from the embryonic to the juvenile
state.

The general pattern of embryo development in eggs is characterised by unrestricted fast
development during the first part of the incubation period (once it has started the process)
due to unlimited energy supply, at a rate that would be impossible to reach if the animal
had to refill reserves by feeding. This period is followed by a retardation of development
due to the increasing depletion of energy reserves. Apart from the reserves of the juvenile,
the model works out very similar to that of Beer and Anderson [77] for salmonid embryos.

In view of the goodness of fit of the model in species that do not possess shells (see
the turtle data), retardation is unlikely to be due to limitation of gas diffusion across the
shell, as has been frequently suggested for birds [934]. The altricial and precocial modes of
development have been classified as being basically different; the precocials show a plateau
in respiration rates towards the end of the incubation period, whereas the altricials do
not. Figure 2.13 shows that this difference can be traced back to the simple fact that
altricial birds hatch relatively early. A frequently used argument for diffusion limitation
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Figure 2.12: Yolk-free embryo weight (¢), yolk weight (x), and respiration rate (+) during
embryo development, and fits on the basis of the DEB model. Data sources are indicated.
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Figure 2.12 continued
New Guinea soft-shelled turtle Carettochelys insculpta [1229]
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Table 2.2: Survey of re-analysed egg data, and parameter values standardised to a temperature
of 30°C, taken from [1300]. *1* P. J. Whitehead, pers. comm., 1989 ; *2* M. B. Thompson, pers.
comm., 1989; ‘galac.’, stands for galactogen content.

species temp. type of data v3¢ kaso Eb /Eq reference
°C mmd~! d-!
Lymnaea stagnalis 23 ED, galac, O 0.80 2.3 0.55  [527]
Salmo trutta 10 ED, YD 3.0 0.31 0.37  [430]
Rana pipiens 20 EW, O 2.5 0.87  [41]
Crocodylus johnstoni 30 EW, YW 1.9 0.060 0.31 [741]
20,31 O [1248]
Crocodylus porosus 30 EW, YW 2.7 0.024 0.19  [1230]
30 Q) 1
Alligator mississippiensis 30 EW, YW 2.7 0.34  [256]
30 0 [1155]
Chelydra serpentina 29 ED, YD 1.9 0.35  [859]
29 0 399]
Carettochelys insculpta 30 EW, YW, O 1.9 0.040 0.08  [1229]
Emydura macquarii 30 EW, O 1.6 0.14 0.35  [1155]
Caretta caretta 28-30 EW, O 3.0 0.65 [4, 3]
Chelonia mydas 28-30 EW, O 3.0 0.57  [4, 3]
Amphibolurus barbatus 29 ED, YD 0.92 0.061 047  [860]
Coluber constrictor 29 ED, YD 14 0.69  [861]
Sphenodon punctatus 20 HW, O 0.85 0.062 0.25  *2%*
Gallus domesticus 39 EW,0,C 3.2 0.039 0.34  [988]
Gallus domesticus 38 EW, C 3.4 0.52  [127]
Leipoa ocellata 34 EE, YE, O 1.7 0.031  0.55  [1203]
Pelicanus occidentalis 36.5 EW,0 3.2 0.10 0.77  [64]
Anous stolidus 35 EW, O 2.0 0.11 0.59  [889]
Anous tenuirostris 35 EW, O 1.8 0.20 0.59  [889]
Diomedea immutabilis 35 EW, O 2.5 0.069 0.57  [888]
Diomedea nigripes 35 EW, O 2.5 0.049 0.58  [888]
Puffinus pacificus 38 EW, O 0.92 0.084 0.61 [5]
Pterodroma hypoleuca 34 EW, O 1.9 0.20  [888]
Larus argentatus 38 EW, C 2.7 0.15 0.56  [293]
Gygis alba 35 EW, O 14 0.53  [887]
Anas platyrhynchos 37.5 EW 2.5 0.10 0.67  [923]
375 O [578]
Anser anser 375 EW 4.1 0.039 0.23  [987]
375 O [1201]
Coturniz coturniz 375  EW,0 1.7 0.49  [1201]
Agapornis personata 36 EW, O 0.8 0.79 [172]
Agapornis roseicollis 36 EW, O 0.84 0.81 [172]
Troglodytes aédon 38 EW, O 14 0.82  [590]
Columba livia 38 EW 2.7 0.80  [582]
375 O [1201]
EW: Embryo Wet weight YW: Yolk Wet weight ED: Embryo Dry weight

EE: Embryo Energy content YE: Yolk Energy content YD: Yolk Dry weight
O: Dioxygen consumption rate C: Carbon dioxide prod. rate HW: Hatchling Wet weight
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Figure 2.13: The embryonic development of altricial (wren, pelican) and precocial (chicken,
goose) birds. Data from the sources indicated; fits are on the basis of the DEB model (parameters
in Table 2.2). The underestimation of the initial development possibly relates to embryonic
membranes. Pelican’s high respiration rate just prior to hatching is attributed to internal pipping,
which is not modelled. The drawings show hatchlings and adults.
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is the strong negative correlation between diffusion rates across the egg shell and diffusion
resistance, when different egg sizes are compared, ranging from hummingbirds to ostriches;
the product of diffusion rate and resistance does not vary a lot. This correlation probably
results from a minimisation of water loss by eggs. Data from fossil plants from Greenland
show a dramatic drop in stomata frequency at the end of the Triassic (208 Ma ago), which
has been linked to a steep rise of the atmospheric CO4y concentration to three times the
present values, possibly as a result of the activity of volcanoes that mark the breakup of
Pangaea [78, p98]. The plants no longer needed many stomata, and reduced the number
to reduce the water loss by evaporation.
To find 7, I, u%, I first observe that from Table 2.1 and ode’s (2.26 — 2.27), we have

d 11—z d g—1xg—lx d /3 d
P s =2 " 7. T 4= — 2.33
o I @ 3 T 1—zdr’ (2:33)
SO
4
o = 3g(ud) "3 + B3, 0) (2.34)
for the incomplete beta function
E/O y' P —y) " dy (2.35)

1+ 221/3 1
= \/3 (arctan L — arctan

&)

Consequently we have

1
+ 5 log(1 + z'/3 + 2%3) —log(1 — 2'/3) — 3z1/3

4 4
ap — o = B»Tb(§7 0) — Bz(g, O) (236)
1 1 /3 B, (%,0)— B,(%,0
1 _ 1 (“) _ Ba(5,0) (3.0) (2.37)
l b \z 391}1/3

We need this expression for [(z) later in the derivation of .

Scaled age at birth 7,

The scaled age at birth 7, follows from (2.33) and (2.37) by separation of variables and
integration

dx
e 3/ 2)a?3 (0w, — By, (5,0) + By(3,0)) (2.38)
Notice that 7, requires [, in «y, which is given below.

The parameters values in Figure 2.10 for D. magna imply an incubation time of 0.76 d
at f = 1 till 0.80d at f = 0.5. The eggs are deposited in the brood pouch just after
moulting and develop there till birth just before the next moult, some 1.5 till 2d later at
20°C. This suggests a food-level dependent diapause of around 0.5d in D. magna.
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Lo
= Figure 2.14: The von Bertalanffy growth
< curve 4L = 7p(Loo — L), with the graph-
%D ical interpretation of the von Bertalanffy
- growth rate 7'"3, and the maximum possi-
ble age at birth b 5 in the context of DEB
theory. The tangent line at ¢ = 0 inter-
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LbT.gl IWL”? . hits level L at time LL” , which is the
T To—Ls Too "B maximum possible 1ncubat10n time.
The age at birth simplifies for small g and large kg, while 7 = % remains fixed
[661]:
3 [ dx
ay = — 731 " " (2.39)
ke 70 (1= 2)x?3(3gz," 1, — By, (5,0) + Be(5,0))
g,k small 1 /zb dx
Ses Joo (1= m)a2BayP (1 — (2 — a1%) ) (dey)
g,k very small l Ty dx k1o | _r 3]
MU 2 / g T sl 2 (4 9 (9.40)
3evip Jo (1 — x)z2/3x, e kg f
where z;, = - +g The significance of this result is in the fact that for fixed 75, Ly and L,

g — 0 while kjp; — oo if @, is running from 0 to this upper boundary. See Figure 2.14 for
a graphical interpretation.

The chameleon Furcifer labordi is reported to live 8-9 months as egg and only 4-5
months as juvenile plus adult [577]. The males grow from some 3 cm to 10.2 cm (snout-to-
vent length) with a von Bertalanffy growth rate of 0.035d~!, and the females from 2.6 cm
to 7.8 cm with a von Bertalanffy growth rate of 0.04d~!. The maximum age at birth that
is consistent with DEB theory is thus some 8.3d, rather than the observed 8-9 months.
The eggs are buried in the soil, where it might be some 10°C cooler than during post-
embryonic growth. Even after correction for this difference, this suggests that this species
is on a metabolic hold for most of the time.

The foetal special case, where a, = 3L,/0 = %”g represents a lower boundary for the

age at birth (of eggs). So the possible range for ay, is

31 31, karg
2 ocay < (14g/e) or 1< ab— <1l+4+g/ep (2.41)
k?Mg kag 3l



60 2. Standard DEB model in time, length € energy

Scaled initial amount of reserve u%,

The scaled initial amount of reserve u% directly follows from (2.34) for z = x, and o = ay

3

ul, = ( 59 ) so By = ulg[En] L2, (2.42)
o, — By, (3,0)

which again requires [, in .

The parameters values in Figure 2.10 for D. magna imply a scaled initial amount of
reserve of U = 0.04mm?d at f = 1 and 0.0246 mm?3d at f = 0.5 at 20°C. The scaled
amount at birth equals U% = f[E,,|L} = 0.0313 and 0.0156 mm?d, respectively. So a
fraction of 0.79 and 0.63 for f = 1 and 0.5, respectively, of the initial reserve is still left
at birth. Figure 2.10 has, however, no data on embryo development or reserve, which
demonstrates the strength of DEB theory.

Data on embryo development, Table 2.2, also shows that about half of the reserves are
used during embryonic development. The deviating values for altricial birds are artifacts,
caused by the abovementioned acceleration of development by increasing temperatures.
Congdon et al. [217] observed that the turtles Chrysemus picta and Emydoidea blandingi
have 0.38 of the initial reserves at birth. Respiration measurements on sea birds by Pettit
et al. [890] indicate values that are somewhat above the ones reported in the table. The
extremely small value for the soft shelled turtle, see also Figure 2.12, relates to the fact
that these turtles wait for the right conditions to hatch, after which they have to run the
gauntlet as a cohort at night from the beach to the water, where a variety of predators
wait for them.

Scaled length at birth I,

For the variable (7, eg) evolving from the value (0,€%) to the value (73, €%;) we have

Now consider the variable (z,e) evolving from the value (0, ¢e%) to the value (zy, €}) or
the variable (x,y) evolving from the value (0,0) to the value (xp, yp):

jmeH = %(l(gx)—i—l)—?(];:il(?—kl) for e = ep(0) = (1 — K)g
Ly = @) @) o) =g bl sy = § o )

= — 2.44
1—2 gx ( )

where [(x) is given in (2.37). The ode for y can be solved to

y(z) = v(z) /OI 222; dry with v(x) = exp(— /Ox s(x1) dxy) (2.45)
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The quantity [, must be solved from y, = y(z3) = gryvYl, 2, see Table 2.1. So we need to
find the root of ¢ as function of [, with

t(ly) = j(b:f:)%’ — /O RGP (2.46)

From this equation it becomes clear that the parameters x and u% affect I, only via

Y = %; a conclusion that is more difficult to obtain using the ode for the scaled maturity
density ey rather than that for abstract variable y. Notice that the solution of [, (and that
of u% and 7) for the boundary value problem for the ode for (ug, 1, ex) as given in (2.26—
2.28) depends on the four parameters g, k, v% and e, only. The solution for I, must be

substituted into (2.42) to obtain 4% and in (2.38) to obtain 7;; the scaled reserve at birth

b 73
is up = eply/g.

The parameters values in Figure 2.10 for D. magna imply a birth length of 0.686 and
0.685mm at f = 1 and 0.5, respectively. These values hardly differ much because k; is
close to kj;.

Special case e — oo: foetal development

Foetal development differs from that in eggs in that energy reserves are supplied continu-
ously via the placenta. The feeding and digestion processes are not involved. Otherwise,
foetal development is taken to be identical to egg development, with initial reserves that
can be taken to be infinitely large, for practical purposes. At birth, the neonate receives
an amount of reserves from the mother, such that the reserve density of the neonate equals
that of the mother. So the approximation [E] — oo or e — oo for the foetus can be made
for the whole gestation period, because the foetus lives on the reserves of the mother. In
other words: unlike eggs, the development of foetuses is not restricted by energy reserves.
Initially the egg and foetus develop in the same way, but the foetus keeps developing at a
rate not restricted by the amount of reserves till the end of the gestation time, while the
development of the egg becomes retarded, due to depletion of the reserves.

The special case e — oo makes that £l = g/3, or I(1) = g7/3. The foetal structural
volume thus behaves as

d < 2/3 e 3
TV =0V so V() = (0t/3) (2.47)

This growth curve was proposed by Huggett and Widdas [536] in 1951. Payne and Wheeler
[875] explained it by assuming that the growth rate is determined by the rate at which
nutrients are supplied to the foetus across a surface that remains in proportion to the
total surface area of the foetus itself. This is consistent with the DEB model, which gives
the energy interpretation of the single parameter. The graph of foetal weight against age
resembles an exponential growth curve, but in fact it is less steep; the model has the
property that subsequent weight doubling times increase by a factor 2'/3 = 1.26, while
there is no increase in the case of exponential growth.

The fit is again excellent; see Figure 2.15. It is representative for the data collected in
Table 2.3 taken from [1300]. A time lag for the start of foetal growth has to be incorpo-
rated, and this diapause may be related to the development of the placenta, which possibly
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house mouse, Mus musculus impala, Aepyceros melampus

embryo weight, g
embryo wet weight, kg -

a 40 80 120 160 2ee
time, d

Figure 2.15: Foetal weight development in mammals, cf Figure 6.2. Parameters are given in
Table 2.3.

depends on body volume as well. The long diapause for the grey seal Halichoerus proba-
bly relates to timing with the seasons to ensure adequate food supply for the developing
juvenile. Variations in weight at birth are primarily due to variations in gestation period,
not in foetal growth rate. For comparative purposes, energy conductance v is converted
to 30°C, on the assumption that the Arrhenius temperature, T4, is 10200 K and the body
temperature is 37 °C for all mammals in the table. This is a rather crude conversion be-
cause the cat, for instance, has a body temperature of 38.6 °C. Weights were converted to
volumes using a specific density of [W,,] =1 gem ™.

One might expect that precocial development is rapid, resulting in advanced develop-
ment at birth and, therefore, comes with a high value for the energy conductance. The
values collected in Table 2.3, however, do not seem to have an obvious relationship with
altricial-precocial rankings. The precocial guinea-pig and alpaca as well as the altricial hu-
man have relatively low values for the energy conductance. The altricial-precocial ranking
seems to relate only to the relative volume at birth V,/V},.

We further have

ddT“H = (1-r)P(g+1)— kuy (2.48)
uy(r) = 93%];4“) (K*7%(3k + bt — 3) + 6(k — 1)(1 — 7 — exp(—k7)))  (2.49)

The equation uy(7,) = u% has to be solved numerically for 7, but for & = 1 we have
uby = (1 — k)373¢33 = (1 — k)I}. The solution of this equation is stable and fast; the
resulting scaled length at birth [, = ¢7,/3 can be used to start the Newton Raphson
procedure. This start is preferable if k is substantially different from 1. From [, < 1, so
T, < 3/g, we can derive the constraint

k—11—-3/g—exp(—3k/g)
k2 9/2

kb,
1—r

< k+gk—-1)+g° (2.50)
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Table 2.3: The estimated energy conductance, v, and its value corrected for a temperature of
30°C, and the time lag for the start of development, ¢;, for mammalian embryos.

species 0 (cv) 030 t (cv)  reference
(race) emd! mmd~! d
Homo sapiens 0.84
males 0.180 (0.3) 2.8 (2.0) [1233]
females 0.179 (0.4) 26.5 (2.9)
Oryctolagus cuniculus  0.560 (0.9) 2.6 10.7  (1.5) [695]
small litters 0.602 (1.5) 115 (2.4) [60]
large litters 0.571 (1.5) 11.5 (2.4) [60]
0.504 (5.6 104 (10) [62]
Lepus americanus 0.573 (3.1) 2.7 13.1 (4.2) [129]
Cavia porcellus 0.269 (3.3) 1.1 15.7 (8.3) [291]
0.239 (2.3) [541]
Cricetus auratus 0.570 (2.1) 2.6 9.29 (1.3) [927]
Mus musculus 0.278 (0.1) 1.25 82 (0.1) [728]
Rattus norvegicus 2.5
wistar 0.487 (0.5) 114 (0.3) [346]
albino 0531 (0.8) 122 (0.5) [1119]
0525 (0.2) 118 (0.2) [536]
albino 0.568 (3.3) 127 (2.1) [29]
albino 0542 (3.1) 124 (2.0) [355]
Clethrionomys glareolus 0.374 (9.3) 1.8 8.29 (11) [224]
Aepyceros melampus 0.316 (1.2) 1.4 39.4 (3.8) [331]
Odocoileus virginianus  0.296  (6.7) 1.3 34.9 (28) [978]
0274 (1.6) 951 (8.5) [1191]
Dama dama 0.345 (6.4) 1.7 9.94 (46) [36]
Cervus canadensis 0.336 (3.1) 1.5 24.9 (19) [811]
Lama pacus 0.120 (7.6) 0.56 7.47 (83) [347]
Ovis aries 1.9
welsh 0.482  (5.6) 43.9 (12)  [536]
merino 0.341 (8.6) 149 (1) [737)
0.346 (4.6) 152 (32)
0.433 (4.4) 333 (13) [214]
karakul 0.436  (3.7) 31.0 (13)  [300]
0.403 (2.6) 275 (8.2) [568]
hampshire x 0.382 (1.5) 204 (7.9) [1264)
Capra hircus 0.339 (6.5) 1.7 24.3 (29) [317]
0.365 (4.5) 31.3 (14)  [61]
Bos taurus 0.475 (2.6) 2.3 59.5 (7.5) [1265]
Equus caballus 0.370 (11) 1.8 37.0 (81) [790]
Sus scrofa 0.266 (0.6) 473 (12) [1222]
Yorkshire 0.283  (0.9) 549 (16) [1180]
Large white 0.383 (1.3) 23.6 (4.2) [909]
Essex 0.321 (4.8) 141 (30)
Feliz catus 0371 (1.2) 1.8 18.8 (2.3) [223]
Pipistrellus pipistrellus 0.97
1978 0.237 (1.9) 9.95 (2.9) [929]
1979 0.181 (3.5) 137 (4.7)
Halichoerus grypus 0.375 (10) 1.8 145  (9.2) [501]
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For u% = up(m), the cost for a foetus amounts to

4

ul, = u%—i—&li’%—ul}{—k/o%(nlg(ﬂ—|—k:uH(T)) dr = ub, +13 jlg, Ey = ulg|E,|L3 (2.51)
where the five terms correspond with the costs of reserve, structure, maturity, somatic
and maturity maintenance, respectively. The second equality follows from the structure of
DEB theory: the investment in maturity plus maturity maintenance equals 1_7“ times the
investment in structure plus somatic maintenance and [(7) = g7/3. The foetal cost of a
foetus is somewhat smaller than that of an egg, (2.42).

Foetal development obviously affects the energetics of the mother. This is discussed at
{275}.

2.6.3 States at puberty

Puberty occurs as soon as Ey = E¥%, or Uy = U}y = E%/{pam} = Ul or ug = ul; =

ﬁ. If k; = kys, and so maturity density is constant, we have
EY/E,,
V, = Ei/1En) (2.52)
(1—r)g

Otherwise the structural volume at puberty V, = Li can vary with food density history
and even more than Vj, can. It must be found numerically from integration of %V till
Ey(t) = EY.

Generally little can be said about age and length at puberty, but if food density X,
and so scaled functional response f, remains constant, (2.23), (2.22) and (2.43) show that
age and scaled length at puberty amount to

1. Leo—1Ly
_ ] 2.53
ayp ab_l—?'"BnLoo—Lp ( )
. d (f—1—1Ir)g/3
I, = 1(v5) with [ =
p = k) G TRy D~ koulg + 1)

and I(v%) =1, (2.54)

where k = ky / kias as before. This differential equation has to be integrated numerically
and results in a satiating function [,(f) if £ < 1. We must have that f > [, + 1 to allow
for adolescence.

The parameters values in Figure 2.10 for D. magna imply a length at puberty of 2.46
and 2.45mm at f = 1 and 0.5, respectively. These values hardly differ much because kj is
close to I%M.

2.6.4 Reduction of the initial amount of reserve

The embryonic period is elongated if the initial amount of reserve is reduced, while the
cumulative energy investment to complete the embryonic stage is the same. The mechanism
is that reducing the amount of reserve reduces the mobilisation of reserve, so it takes longer
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Figure 2.16: Egg dimorphism occurs as
standard in crested penguins (genus Eu-
dyptes). The small egg is laid first, but it
hatches later than the big one, which is 1.5
times as heavy. The DEB theory explains
why the large egg requires a shorter incu-
bation period. The illustration shows the
Snares crested penguin E. atratus.

to reach a certain maturity level. Large eggs, so large initial energy supplies, result in
short incubation times if eggs of one species are compared. Crested penguins, Fudyptes,
are known for egg dimorphism [1221]; see Figure 2.16. They first lay a small egg and, some
days later a 1.5 times bigger one. As predicted by the DEB model, the bigger one hatches
first, if fertile, in which case the parents cease incubating the smaller egg, because they are
only able to raise one chick. They continue to incubate the small egg only if the big one
fails to hatch. This is probably an adaptation to the high frequency of unfertilised eggs or
other causes of loss of eggs (aggression [1221]), which occurs in this species.

Incubation periods only decrease for increasing egg size if all other parameters are
constant. The incubation period is found to increase with egg size in some beetle species,
lizards and marine invertebrates [211, 327, 1068]. In these cases, however, the structural
biomass at hatching also increases with egg size. This is again consistent with the DEB
theory, although the theory does not explain the variation in egg sizes.

Hart [466] studied the effect of separation of the embryonic cells of the sea urchin
Strongylocentrotus droebachiensis in the two-cell stage on the energetics of larval develop-
ment. Both the size and the feeding capacity of the resulting larva were reduced by about
one-half, but the time to metamorphosis is about the same (7 d at 8-13°C). The maximum
clearance rate of dwarf and normal larvae was found to be the same function of the ciliated
band length. Larvae fed at smaller ration had longer larval periods, but food ration hardly
affected size at metamorphosis. Egg size affected juvenile test diameter only slightly.

Armadillo’s typically separate cells in the four-cell stage of the embryo, giving birth
to four identical offspring. Humans rarely do this successfully, then giving birth to four
babies of about 1 kg each, rather than the typical 3 kg. In terms of an effect on length

this reduction amounts to a factor (1/3)Y/? = 0.69. The human growth curve fits the von



66 2. Standard DEB model in time, length € energy

Bertalanfty curve very well, with a von Bertalanffy growth rate of 75 = Sfé‘i% y = 0.123 a™ 1,
see {282}. We can safely assume that the scaled reserve density was close to its maximum

e = 1 for the post-embryonic stages. Moreover the age at birth is a, = ZZ” = 0.75 a for

humans. If we take a typical maximum adult weight of 70 kg, then the scaled length at birth
equals [, = (3/70)'/3 = 0.35. So the energy investment ratio equals g = l" —1=2.79,

the somatic maintenance rate coefficient kj, = _illb = 0.5 a~! and the scaled age at birth

T = abkM = 0.375. With these values for g, e, and [, the scaled cost amounts to uOE = 0.062
from 2.51. In the case of 4 babies with a reduced length by a factor 0.69, the scaled cost
per baby equals u% = 0.02, so summed over the 4 babies this is 1.3 times the amount of a
single baby; not a surprising result, in view of the 4 kg of babies relative to the 3 kg for a
single baby.

If the separation of the cells would affect the required cumulative investment in devel-
opment, however, other predictions result. It is then quite well possible that incubation
is hardly affected, while size at birth is. Standard DEB theory correctly predicts that a
reduction of the feeding level elongates the larval period and hardly affects size at puberty
for a particular relationship between the somatic and maturity maintenance costs.

As discussed at {292}, the reserve density capacity [E,,] = {pam}/v scales with maxi-
mum structural length of a species. So species with a larger ultimate body size tend to have
a relatively larger reserve capacity. It turned out that for the combination of parameter
values as found for D. magna we have to apply a zoom factor of at least z = 1.87 to arrive
at a minimum maximum body size for which cell separation might be successful.

For k£ > 1, the structural volume at birth increases after halving, and decreases for
k < 1. Since reserve contributes to weight, the weight at birth is close to half of the
original weight at birth, irrespective of the value of k. The age of the two-cell stage is
probably smaller than 7,/3, but the results are very similar.

The removal of an amount of reserve at the start of the development, as is frequently
done [351, 555, 1068, 809, 550], elongates the incubation time (as observed in the gypsy
moth [995]), and reduces the reserve at hatching. This experiment simulates the natural
situation, where the nutritional status of the mother affects to initial amount of reserve.
The pattern is rather similar to that of the separation of cells at an early stage, because
reductions of structure and maturity at an early stage have little effect. The initial amount
of reserve is a U-shaped function of the reserve at birth. The right branch is explained
by the larger amount of reserve at birth, the left branch by the larger age at birth, which
comes with larger cumulative somatic maintenance requirements.

The size of neonates of trout and salmon was found to increase with initial egg size
[314, 478], suggesting that k& < 1 for samonids. This also applies to the emu Dromaius
novaehollandiae [305], and probably represents a general pattern.

2.7 Reproduction: excretion of wrapped reserve

Organisms can achieve an increase in numbers in many ways. Sea anemones can split off
foot tissue that can grow into a new individual. This is not unlike the strategy of budding
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yeasts. Colonial species usually have several ways of propagating. Fungi have intricate
sexual reproduction patterns involving more than two sexes. Under harsh conditions some
animals can switch from parthenogenic to sexual reproduction, others develop spores or
other resting phases. It would not be difficult to fill a book with descriptions of all the
possibilities. The standard DEB model assumes propagation via eggs; dividing organisms
don’t have an embryo or adult stage, and divide when the maturity exceeds a threshold.
This resets maturity and reduces the amount of structure and reserve.
Energy allocation to reproduction equals

pr=(1—r)pc — ks EY (2.55)

cf (2.18), where Ep is now replaced by the constant E7Y;, because the flux to maturity
is redirected to reproduction at puberty, which makes that maturity does not change in
adults. The costs of an egg Ey or a foetus is given in (2.42) or (2.51), so the mean
reproduction rate R in terms of number of eggs per time equals

. IQR].)R KJR]%?M 6[2
R = = Iy + 1) — k¥ 2.56
st (g i ) - ) (2560

for v}, = %, cf Table 2.1.
At constant food density, where e = f, the reproduction rate is, according to (2.56)

proportional to _
- 2, kum 3 2
Rx L —|—7L - Ly (2.57)

where Lpg is just a constant, which depends on the nutritional status. Comparison of
reproduction rates for different body sizes thus involves three compound parameters, i.e.
the proportionality constant, ks /v and Lg, if all individuals experience the same food
density for a long enough time. Figure 2.17 illustrates that this relationship is realistic, but
that the notorious scatter for reproduction data is so large that access to the parameter
Iy /v is poor. The fits are based on guestimates for the maintenance rate coefficient,
ky = 0.011 d', and the energy conductance, © = 0.433 mmd~! at 20°C. The main
reason for the substantial scatter in reproduction data is that they are usually collected
from the field, where food densities are not constant, and where spatial heterogeneities,
social interactions, etc., are common.

The reproduction rate of spirorbid polychaetes has been found to be roughly propor-
tional to body weight [498]. On the assumption by Strathmann and Strathmann [1126]
that reproduction rate is proportional to ovary size and that ovary size is proportional to
body size (an argument that rests on isomorphy), the reproduction rate is also expected to
be proportional to body weight. They observed that reproduction rate tends to scale with
body weight to the power somewhat less than one for several other marine invertebrate
species, and used their observation to identify a constraint on body size for brooding inside
the body cavity. The DEB theory gives no direct support for this constraint; an allometric
regression of reproduction rate against body weight would result in a scaling parameter
between 2/3 and 1, probably close to 1, depending on parameter values.
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green frog Rana esculenta [142]
0.124(L? + 0.0128L3 — 32.5)

rock goby Gobius paganellus [797]
0.120(L? + 0.0026 L* — 16.8)
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Figure 2.17: The clutch size, as a measure for the reproduction rate, as a function of body length
L for two randomly selected species. The data sources and DEB-based curves are indicated. The
parameter that is multiplied by L? in both fits has been guestimated on the basis of common
values for the maintenance rate coefficient and the energy conductance, with a shape coefficient
of 1 = 0.1 for the goby and of d,q = 0.5 for the frog. Both other parameter values represent
least-squares estimates.

The maximum (mean) reproduction rate for an individual of maximum volume , i.e.
[ =1— Iy, amounts to
(1 — lT)2 — /{ZU%

0
Vg

0
with v}, = {2, where uY; is given in (2.42) for eggs and in (2.51) for foetuses.
Under conditions of prolonged starvation, organisms can deviate from the standard

reproduction allocation, as is discussed on {113}.

2.7.1 Cumulative reproduction

Oikopleura sports a heroic way of reproduction which leads to instant death. During its
week-long life at 20°C and abundant food, it accumulates energy for reproduction which
is deposited at the posterior end of the trunk; see Figure 2.18. This allows an easy test of
the allocation rule against experimental data. Except for this accumulation of material for
reproduction, the animal remains isomorphic. The total length of the trunk, L;, including
the gonads, can be partitioned into the true trunk length, L, and the length of the gonads,
Lg. Since the reproduction material is deposited on a surface area of the trunk, the
length of the gonads is about proportional to the accumulated investment of energy in
reproduction divided by the squared true trunk length. Fenaux and Gorsky [341] measured
both the true and the total trunk length under laboratory conditions. This allows us to
test the consequences of the DEB theory for reproduction.

Let er(t1,t2) denote the cumulative investment of energy in reproduction between t;
and to, as a fraction of the maximum energy reserves [E,,|V,,. From Table 2.5 we know
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Figure 2.18: The larvacean
Oikopleura grows isomorphi-

cally; during its short life it
accumulates reproductive ma-
terial at the posterior end of
the trunk. The energy in-
terpretation of data on total
trunk lengths should take ac-
count of this. Larvaceans of
the genus Oikopleura are an
important component of the
zooplankton of all seas and
oceans and have an impact as
algal grazers comparable with
that of copepods.

that this investment amounts for adults to

BR(tl,tg) = HR(l — K,)gk’M

2 (g+1(t) 2 3
(g—i—e(t)e(t)l (t) — lp> dt (2.59)

t1

Oikopleura has a non-feeding larval stage and starts investing in reproduction as soon as it
starts feeding, so £% = E¥,. From an energetic point of view, it thus lacks a juvenile stage,
and the larva should be classified as an embryo. The total trunk length then amounts to
Li(t) = L(t) + Vgrer(0,t)/L?(t). The volume Vg is a constant that converts the scaled
cumulative reproductive energy per squared trunk length into the contribution to the total
length. At abundant food, the true trunk length follows the von Bertalanffy growth curve
(2.23) and e(t) = 1. If the data set {t;, L(t;), L+(t;) }I~, is available, the five parameters Ly,
Lo, ks, g and Virp can be estimated in principle. Dry weight relates to trunk length and
reproductive energy as Wy(t) = [Wra]L*(t) + Wgaer(0,t), where the two coefficients give
the contribution of cubed trunk length and cumulative scaled reproductive energy to dry
weight. If dry weight data are available as well, there are seven parameters to be estimated
from three curves.

Figure 2.19 gives an example. The data appear to contain too little information to
determine both kj; and g, so either ks or g has to be fixed. The more or less arbitrary

choice g = 0.4 is made here. The estimates are tied by the relationship that ﬁ—fg is almost
constant. The high value for the maintenance rate coefficient %, probably relates to the
investment of energy in the frequent synthesis of new filtering houses. The cummulative
reproduction fitts the data for D. magna also very well, see Figure 2.10, where k,; is even
higher, probably related to moulting.

2.7.2 Buffer handling rules

Individuals are discrete units, which implies the existence of a buffer, where the energy
allocated to reproduction is accumulated and converted to eggs at the moment of repro-



70 2. Standard DEB model in time, length € energy

1000 |

IN
Q

BBB ||

length, um

dry weight, ug

608 ||

20
480 |

200 ||

a 2 4 S] (5] 2 4 [S]
time, d time, d

Figure 2.19: The total trunk length, L; (O and upper curve, left), the true trunk length, L (<&
and lower curve, left) and the dry weight (right) for Oikopleura longicauda at 20°C. Data from
Fenaux and Gorsky [341]. The DEB-based curves account for the contribution of the cumulated
energy, allocated to reproduction, to total trunk length and to dry weight. The parameter
estimates are L, = 822 um, I = I, = 0.157, ks = 1.64d~", g = 0.4, Vgkg = 0.0379 mm?®. Given
these parameters, the weight data give Wiy = 0.0543gcem™3, Wgry = 15.2 ug. The last data
point is excluded in both data sets because here structure is rapidly converted to gametes, and
maintenance probably ceased. This ‘detail’ is not implemented in the standard DEB model.

duction. The translation of reproduction rate into number of eggs in Figure 2.17 assumes
that this accumulation is over a period of one year. The energy content of the buffer is
denoted by Fg.

The strategies for handling this buffer are species-specific. Some species (e.g. some
rotifers) reproduce when enough energy for a single egg has been accumulated, others
wait longer and produce a large clutch. If the reproduction buffer is used completely, the
size of the clutch equals the ratio of the buffer content to the energy costs of one young,
krER/Ey, where Ejy is given in (2.42). This resets the buffer. So after reproduction Er = 0
and further accumulation continues from there. That is to say, the bit of energy that was
not sufficient to build the last egg can become lost or still remains in the buffer; fractional
eggs do not exist. In the chapter on population dynamics, {344,346}, I show that this
uninteresting detail substantially affects dynamics at low population growth rates, which
occur most frequently in nature. If food is abundant, the population will evolve rapidly
to a situation in which food per individual is sparse and reproduction low if harvesting
processes do not prevent this.

Reproduction is coupled to the moulting cycle in daphnids; neonates in the brood pouch
are released, the old moult is shedded, the new eggs are deposited in the brood pouch and
the new carapax hardens out and the cycle repeats some 1.5 till 2 days later at 20°C.
The moulting cycle is linked to somatic maintenance and, therefore, is independent of the
nutritional status, while the incubation time is. This means that there must be a variable
diapause.

Many species use environmental triggers for spawning at particular times tz. Many
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molluscs pawn if temperature exceeds a threshold value, while [Fg| is larger than a thresh-
old value [920]. Other species use food availability as trigger; Pecten mazimus spawns just
after an algal bloom. The spectacular synchronisation of reproduction in corals [1052], the
pelagic palolo worms Funice viridis, South East Asian dipterocarps and bamboo forests
probably reduce losses, because potential predators have little to eat between the events.
Most species are able to synchronise the moment of reproduction with seasonal cycles such
that food availability just matches the demand of the offspring. Clutch size in birds typ-
ically relates to food supply during a two-month period prior to egg laying and tends to
decrease if breeding is postponed in the season [780]. The laying date is determined by a
rapid increase in food supply. Since feeding conditions tend to improve during the season,
internal factors must contribute to the regulation of clutch size. These conclusions result
from an extensive study of the energetics of the kestrel Falco tinnunculus by Serge Daan
and co-workers [269, 755, 779]. 1 see reproductive behaviour like this for species that cease
growth at an early moment in their life span, as variations on the general pattern that the
DEB theory is aiming to grasp. Aspects of reproduction energetics for species that cease
growth are worked out on {277}.

Multiple spawning

Batch preparation in adult anchovy is initiated when temperature in spring exceeds a
threshold (14°C in anchovy [877, 879]); juveniles that mature after this time point have
to wait with batch preparation till the next spring. The batch size expressed to total
amount of reserves is proportional to structural volume; division by the cost per eggs this
translates the number of eggs per spawning, but this involves the reserve density of the
spawner. This means that if the scaled functional response decreases during the spawning
season, the numbers of eggs increases (if length would remain constant).

The rate of batch preparation equals the maximum allocation to reproduction (i.e. as
if e = 1) and batch preparation is ceased for that spawning season if the reproduction
buffer is emptied. The rate still depends on length of the individual and is motivated by
the avoidance of an unbounded accumulation of the reproduction buffer at abundant food
(during the whole year). The spawning season, however, lasts less than a year, so the
rate of batch preparation is divided by the fraction of the year that has good spawning
conditions, which is about 7/12. Only in the last batch of the spawning season the batch
size will be smaller than the target size. If food would be abundant, this rule for spawning
implies that spawning, once initiated, continues till death.

2.7.3 Post-reproductive period

Many animal species have a post-reproductive period. In the context of DEB theory, this
is (or can be) implemented as an aspect of ageing, cf {209}, which is taken to be an effect
of Reactive Oxygen Species (ROS). Effects of compounds are, in general, implemented as
affects on particular DEB parameters, like effects of temperature. This implementation
requires more state variables than the standard DEB model has.
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2.8 Parameter estimation I: numbers, lengths & time

Parameters with energy or moles in their dimension require measurements of energy and
moles, respectively. The compound parameter ¢ is dimensionless, and ks has only time in
its dimension, so they don’t need such measurements to be estimated. The DEB parameters
that can be extracted from observations on length and reproduction over time at several
food densities are: &, g, ky, kar, 0, UY = E% /{pam} and U5 = E? /{pam}, see [661] and
Figure 2.10. These parameters also determine the initial scaled reserve U% = Ey/{pam} as
a function of scaled functional response f. A data set using a single measured time-varying
food density would be enough, in principle, but the estimation process is more complex,
compared to a set (> 1) of constant food densities. The food densities only have to be
measured in the latter case if {Fm} needs to be obtained. The parameter Kz must be
obtained from mass balances; a default value of kg = 0.95 would probably be appropriate
in most cases.

Common practice is that these observations are not always available, and the question
is: what can be done with less data? If observations on just a single food density are
available, we don’t know how size at birth and/or puberty depends on food availability,
and we are forced to assume that k J= I%M.

The (compound) DEB parameters that only have time and length in their dimension
can be obtained from growth and reproduction data with functions in DEBtool. These
parameters don’t depend on food level, while the growth and reproduction data do. To
emphasise this, the quantities that depend on food level are printed bold in the following
table:

Growth at a single food level: debtool/animal/get_pars_g
(Lb, L007 ayp, T;B at .fl) I (ga kM - kJ? Ua Uga Ug‘ at fl)
Growth at several food levels: debtool/animal/get_pars_h

LbaLooa";B at f1 . . . Ug,Ugv at f1
( LbuLooali'B at f2 ) — (gjk:M?kJ’U7 Ug'7Ug at f2

Growth at several food levels: debtool/animal/get_pars_i

Looa'f'B at f1 - ) . U%,Ug at fl
<L”’ Lo, 7 at f ) - (WW =k, 0, UL, U at f

Growth & reproduction at a single food level: debtool/animal/get_pars_r

given xp

(Lb7LpaLooaab>7:'BaRoo at .fl) I ('%797 kJ:kMavaU}bbUIZ;aUg‘aUgaUg‘ at fl)
Growth & reproduction at several food levels: debtool/animal/get_pars_s

( LbaLpaLooaer 0o atb .fl UE7UE7 Ugv at fl )

given kg . .
k k b) 7U 7U b
Ly, L, Lo, 75, R atf2> - (“’g’ S M0 B Vi Y Ut U at £,
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Growth & reproduction at several food levels: debtool/animal/get_pars_t

Lo, 75, Ry at f1 \ given sp L UL UL UL at fy
<Lb7 LP7 Looa"‘“ByRoo at f2 I K, g, kJ - kM7quH7UH7 U%)U%)Ug at f2

The unscaled reserve E and maturity Fy require energies, and so knowledge of {pm, }-
This can be obtained from observations on the feeding process and the mass at zero and
birth. These extra observations give access to more parameters, and are discussed at {163}.
DEBtool also has functions iget_pars that do the inverse mapping from (compound) DEB
parameters to easy-to-measure quantities. This can be used for checking the mapping and
testing against empirical data.

2.9 Summary of the standard DEB model

The standard DEB model applies to an isomorph that feeds on a single type of food and has
a single reserve and a single structure. In this chapter we used time, length and energy only;
this is not always most convenient. The model has three state variables: structural volume
V', reserve energy F and maturity, expressed in terms of cumulative energy investment, Fy.
Maturity has no mass or energy, however, and represents information. The input variable
is food density X (t), and temperature T'(¢) modifies all rates (which can be recognised
by the dots); they typically vary in time in harmony. The model has twelve individual-
specific parameters: specific searching rate {Fm}, assimilation efficiency kyx, maximum
specific assimilation rate {pa,}, energy conductance o, allocation fraction to soma k,
reproduction efficiency kg, volume-specific somatic maintenance cost [py], surface area-
specific somatic maintenance cost {pr}, maturity maintenance rate coefficient k 7, specific
cost for structure [Eg|, maturity at birth EY, maturity at puberty E¥,. Typical parameter
values are discussed in Chapter 8.

The ten assumptions that fully specify the standard DEB model are listed in Table
2.4. If the somatic and maturity rate coefficients are equal, birth and puberty occur at
fixed amounts of structure, so that there is no longer a need for maturity as an explicit
state variable; otherwise the scaled length at birth [, and [, are not constant. Other DEB
models are modified versions of the standard DEB model to include dividing organisms,
changing of shapes, multiple types of food, reserve and structure, adaptation, etc. Effects
of compounds, such as ageing, need more state variables.

Table 2.5 gives the resulting energy fluxes, called powers, as functions of the scaled
energy density e and scaled length [, where the scaled length at birth [, and puberty [,
are can depend on the food history if k., =+ kar. The relationships between compound
and primary parameters are summarised in Table 3.3. Notice that all powers are cubic
polynomials in the (scaled) length, while the weight coefficients depend on (scaled) reserve
density.

The mobilisation power equals the sum of the non-assimilative powers, and x times the
mobilisation power equals the sum of somatic maintenance and growth:

pc = ps +Dg +ps+pr Wwith kpe = ps + pa (2.60)
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Table 2.4: The assumptions that specify the standard DEB model quantitatively.

1 The amounts of reserve, structure and maturity are the state variables of the individual;
reserve and structure have a constant composition (strong homeostasis) and maturity rep-
resents information.

2 Substrate (food) uptake is initiated (birth) and allocation to maturity is redirected to
reproduction (puberty) if maturity reaches certain threshold values.

3 Food is converted into reserve and reserve is mobilised at a rate that depends on the state
variables only to fuel all other metabolic processes.

4 The embryonic stage has initially a negligibly small amount of structure and maturity (but
a substantial amount of reserve). The reserve density at birth equals that of the mother at
egg formation (maternal effect). Foetuses develop in the same way as embryos in eggs, but
at a rate unrestricted by reserve availability.

5 The feeding rate is proportional to the surface area of the individual and the food handling
time is independent of food density.

6 The reserve density at constant food density does not depend on the amount of structure
(weak homeostasis).

7 Somatic maintenance is proportional to structural volume, but some components (osmosis
in aquatic organisms, heating in endotherms) are proportional to structural surface area.

8 Maturity maintenance is proportional to the level of maturity

9 A fixed fraction of mobilised reserves is allocated to somatic maintenance plus growth, the
rest to maturity maintenance plus maturation or reproduction (the x-rule).

10 The individual does not change in shape during growth (isomorphism). This assumption
applies to the standard DEB model only.

A three-stage individual invests either in maturation, or in reproduction. This is why these
powers have the same index, the stage determines the destination.

The dissipating power excludes assimilation and somatic growth overheads by definition
and amounts to

pp = Ps +ps+ (1 — kr)pr (2.61)

where kg = 0 for the embryo and juvenile stages. Reproduction power pgr has a special
status because reserve of the adult female are converted into reserve of the embryo(s) which
have the same composition; (1 — kg)pg is dissipating and kgpg returns to the reserve, but
now of the embryo.
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Table 2.5: The scaled powers p./{pam L2, as specified by the standard DEB model for an
isomorph of scaled length | = L/L,, and scaled reserve density e = [E]/[E,,] at scaled functional

response f = KX?, where X denotes the food density and K the saturation constant.

The

powers px and pp for ingestion and defecation occur in the environment, not in the individual.
Assimilation is switched on at scaled length [, and allocation to maturation is redirected to
reproduction at [ = [,,. Compound parameters: allocation fraction s, investment ratio g, somatic
maintenance rate coefficient I%M., scaled heating length [7. Implied dynamics for e > [ > I:

d _ f—ejg dj_ e=l-lr k
Ge=""kygand 3l = e1+e/; =L
embryo juvenile adult
% 0<1<l <1<l I, <l<1
assimilation, pg 0 fi? f12
Tiaats : 2 g+l 2g+i+l1 2g+1+1
mobilisation, pco el e el T@T el TeT
somatic maintenance, pg Kl° /flz(l +I7) HlQ(l +I7)
maturity maintenance, py (1 — k)3 (1— k)3 (1-— R)Zlg
growth, pg K15l RIZ rIZ T
maturation, pr (1 — k)12 14(:}9 (1-— H)ZZW 0
reproduction, pr 0 0 (1-— n)(le + 1213
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Chapter 3

Energy, compounds & metabolism

Metabolism is about the transformation of compounds by organisms; some aspects of this
process can only be understood by considering the abundance of the various compounds,
and deal with the links with energy and entropy. This chapter discusses the basic concepts
for these links and considers a framework for the quantification of metabolic rates. Like
the first chapter, this is a concepts-chapter to prepare for the further development of DEB
theory.

3.1 Energy & entropy

Energy fluxes through living systems are difficult to measure and even more difficult to
interpret. Let me briefly mention some of the problems.

Although it is possible to measure the enthalphy of food through complete combustion,
we need the free energy to quantify the amount of (metabolic) work that can be done
with it. Food has a dual role in providing the capacity to do work as well as elementary
compounds for anabolism. Another problem is that of digestive efficiency. The difference
between the energy contents of food and faeces is just an upper boundary for the uptake by
the animal, because there are energy losses in the digestion process. Part of this difference
is never used by the organism, but by the gut flora instead. Another part is lost through
enhanced respiration coupled to digestion, especially of proteins, called the ‘heat increment
of feeding’, which is discussed on {146}.

Growth involves energy investment, which is partially preserved in the new biomass. In
addition to the energy content of the newly formed biomass, energy is invested to give it
its structure. Part of this energy is lost during growth and can be measured as dissipating
heat. This heat can be thought of as an overhead of the growth process. The energy that is
fixed in the new biomass is present partly as energy bearing compounds. Cells are highly
structured objects and the information contained in their structure is not measured by
bomb calorimetry.

The thermodynamics of irreversible or non-equilibrium processes offers a framework for
pinpointing the problem; see for instance [446, 669]. While bomb calorimetry measures the
change in enthalpy, Gibbs free energy is the more useful concept for quantifying the energy
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performance of individuals. Enthalpy and Gibbs free energy are coupled by the concept
of entropy: the enthalpy of a system equals its Gibbs free energy plus the entropy times
the absolute temperature. This basic relationship was formulated by J. W. Gibbs in 1878.
The entropy depends on the (local) chemical environment, including the spatial structure
and the transformations that are going on. It is, therefore, hard to quantify directly.

The concept of strong homeostasis offers a solution to the problem of defining and
measuring free energies and entropies. This solution is based on the assumption that the
free energy per C-mole of structural biomass and of reserves is constant, i.e. it does not
depend on the (absolute) amounts. Most chemists probably find this assumption offensive,
since free energies depend on the concentration of a compound in spatially homogeneous
systems. The reason for the dependence is that the molecules interfere, which affects
their ability to do work in the thermodynamic sense. Yet, I think that the assumption
is more than just a conceptual trick to solve problems; it is the way living cells solve the
problem of a compound’s capacity to do (chemical) work depending on the concentration.
If this capacity changes substantially as a function of the changing cell composition, the
cell would have an immensely complex problem to solve when regulating its metabolic
processes. It is not just a coincidence that cells use large amounts of polymers (i.e. proteins,
carbohydrates and lipids) to store bulk compounds, and small amounts of monomers to run
their metabolism. Cells keep the concentration of monomers low and relatively constant,
and prevent any interference that makes the monomers’ capacity to do work depend on
their abundance. They also solve their osmotic problems this way. Their osmotic pressure
equals that of seawater, which is frequently seen as a relic of the evolutionary process: life
started in the sea.

I assume that the Gibbs relationship still applies in the complex setting of living or-
ganisms. If the free energy per C-mole does not change, then neither will the entropy per
C-mole, because the enthalpy per C-mole is constant. The Gibbs relationship can be used
to obtain the entropy and the free energy of complex organic compounds, such as food,
faeces, structural biomass and reserves, as is worked out on {157}. The mean specific
Gibbs free energy (i.e. chemical potential) of biomass is —67 kJ C-mol~! (pH= 7, 10° Pa
at 25°C, thermodynamic reference) or +474.6 kJ C-mol~! (pH= 7, combustion reference)
[485]. Since biomass composition is not constant, such crude statistics are of limited value
and a more subtle approach is necessary to quantify dissipating heat. We will quantify
entropy of reserve(s) and structure(s) via the entropy balance: the dynamics of what goes
in and out from a living individual. Since the entropy balance rests on the energy bal-
ance, and the energy balance rests on the mass balance, a detailed discussion is delayed to
chapter 4, see {157}.

3.2 Body mass & composition

3.2.1 Mass quantified as gram

Common practice is to take wet weight proportional to physical volume, W,, = dy,,V,.
This mapping in fact assumes that the compositions of structural mass and reserves are
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identical. Much literature is based on this relationship or on the similar one for dry weights:
Wy =dyqViy.

The contribution made by reserves, relative to that made by structure, to size measures
depends on their nature. For example, energy allocated to reproduction, but temporarily
stored in a buffer, will contribute to dry weight, but much less to wet weight [394]. While
wet weight is usually easier to measure and can be obtained in a non-destructive way,
dry weight has a closer link to chemical composition and mass balance implementations.
I show on {138} how to separate structural body mass from reserves and determine the
relative abundances of the main elements for both categories on the basis of dry weight.

The relationships between physical volume V,,, wet weight W, and dry weight W, with
structural body volume V', non-allocated energy reserves F/, and energy reserves allocated
to reproduction Fr are

WE  Ep=0 [Em] wi

Vo = V4+(E+ FE — = V(14 wye) forwy =-—— 3.1
(B+Br) g 2 P2 V(1 wve) forwy = 2 (3.1)
_ E
W = dyV+ (E+ ) YE P 0 v (1 4 wue) for wy = Loml 28 (3.2)
HE dyv Tig
_ E,.
Wd = dVdV + (E + ER)@ ER:_O dVdV(l + wde) for Wy = [ ] @ (33)
HE dva Tig

where d, are densities, which convert volumes to weights, 7i; the chemical potential of
reserves (energy per C-mole), and w, are molecular weights (weight per C-mole, see {81}).
The parameters w, weigh the contribution of reserve to weight.

The contribution of reserves to weight has long been recognised, and is used to indicate
the nutritional condition of fish and birds [896]. A series of coefficients has been proposed,
e.g. (weight in g)x (length in cm)™!, known as the condition factor, Hile’s formula or the
ponderal index [11, 382, 507, 538].

Although the relationship between weight and reserves plus structural volume is more
accurate than a mere proportionality, it is by no means ‘exact’ and depends on species-
specific details. The gut contents of earthworms, shell of molluscs, exoskeleton of crus-
taceans do not require maintenance and for this reason they should be excluded from
biovolume and weight for energetic purposes. The contribution of inorganic salts to the
dry weight of small marine invertebrates is frequently substantial. Because weights com-
bine structural and reserve mass, they should not be used to set up a theory of substrate
uptake and use, and their role is restricted to link model predictions to data. The problem
can be illustrated by the observation that the weight-specific maintenance costs of fungi
and trees are extremely low. This does not point, however, to exceptional metabolic quali-
ties, but to the fact that their weights include products (cell wall material, wood), that do
not require maintenance. The production rates are quantified by the DEB theory, {159},
which allows weights to be decomposed into the contributions from structure, reserves and
products.

Figure 3.1 illustrates an interpretation problem in the measurement of the ash-free dry
weight of cheatognats. Length measurements follow the expected growth pattern closely
when food is abundant, while the description of weight requires an ad hoc reasoning,
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Figure 3.1: The ash-free dry weight and the length of the cheatognat Sagitta hispida. Data
from Reeve [949, 950]. The curve through the lengths is L(t) = Lo — (Loo — Lo) exp(—75t).
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Figure 3.2: The weight to the power 1/3 and the head length of the long-nosed bandicoot
Perameles nasuta. Data from Lyne [723]. The curves are again L(t) = Loo— (Loo—Lo) exp(—75t).

possibly involving gut contents. Although quickly said, this is an important argument in
the use of measurements within a theoretical context: if an explanation that is not species-
specific competes one that is, the first explanation should be preferred if the arguments are
otherwise equally convincing. Since energy reserves contribute to weight and are sensitive
to feeding conditions, weights are usually much more scattered, in comparison to length
measurements. This is illustrated in Figure 3.2.

The determination of the size of an embryo is complicated by the extensive system of
membranes that the embryo develops in order to mobilise stored energy and materials and
the decrease in water content during development [1249]. In some species, the embryo can
be separated from ‘external’ yolk. As long as external yolk is abundant, the energy reserves
of the embryo without that yolk, if present at all, will, on the basis of DEB theory, turn out
to be a fixed fraction of wet and dry weight, so that the embryo volume is proportional
to weight. Uncertainty about the proportionality factor will hamper the comparison of
parameter values between the embryonic stage and the post-embryonic one.
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Weights play no role in the DEB theory itself, but they are important for relating
theoretical predictions to measurements.

3.2.2 Mass quantified as C-mole

Microbiologists frequently express the relative abundances n,y of the elements hydrogen,
oxygen and nitrogen in dry biomass relative to that of carbon, and conceive the combined
compound so expressed as a kind of abstract ‘molecule’ that can be counted and written
as CH,,,,, Ongw Ny - S0 one mole of glucose, CgH120g, equals 6 C-moles of glucose. As
is standard in the microbiological literature, the concept of the C-mole is extended to
(simple) substrates, the difference from an ordinary mole being that it always has at most
1 C-atom.

While mass quantified as gram does not consider the chemical composition, mass quan-
tified as C-mole rapidly become less valuable if the chemical composition varies.

I denote structural mass in terms of C-moles by My, reserve mass by Mg, and the ratio
of reserve to structural mass by mg = Mg/M,. Table 3.3 on {91} gives useful conversions
between volumes, masses and energies.

3.2.3 Composition of biomass

The aqueous fraction of an organism is important in relation to the kinetics of toxicants.
Water is treated just like any other compound in the decomposition of biomass. The
aqueous weight is the difference between wet weight and dry weight, so Wy = W,, — Wj.
It can be written as Wy = [Wg|V, for

[WH] = dV _dVd+ (wE—wEd)(E—l—ER)/ﬂE = dV —dvd+ (wE—wEd)(e+eR)[MEm] (34)

where [Mg,,| = [En]/fg is the maximum molar reserve density of juveniles and adults.
The volume occupied by water is Vg = Wy /dy ~ (dy — dyq)V/dg, where dy stands for
the specific density of water, which is close to 1 gem™. The aqueous fraction of body
volume Vy /V,, typically takes values between 0.7 and 0.9.

For each C-atom in dry biomass, there are typically ngw ~ 1.8 H-atoms, now =~ 0.5
O-atoms and nyw ~ 0.2 N-atoms for a randomly chosen micro-organism [982]. This gives a
mean degree of reduction of 4.2 and a ‘molecular weight’ of wy, = 24.6 g mol~!. The latter
can be used to convert dry weights into ‘C-moles’. The relative abundances of elements in
biomass-derived sediments largely remain unaltered on a geological time scale, apart from
the excretion of water. The Redfield ratio C:N:P = 105:15:1 is popular [948] in geology and
oceanography, or for silica bearing organisms such as diatoms, radiolarians, silico-flagellates
and (some) sponges C:Si:N:P = 105:40:15:1. This literature usually excludes hydrogen and
oxygen, because their abundances in biomass-derived sediments change considerably during
geological time. Other bulk elements in organisms are S, Cl, Na, Mg, K and Ca, while
some 14 other trace elements play an essential role, as reviewed by Fratsto da Silva and
Williams [369]. The ash that remains when dry biomass is burnt away is rich in these
elements. Ash weight typically amounts to some 5% of dry weight only, and the elements
C, H, O and N comprise more than 95% of the total dry weight. I focus on these four



82 3. Energy, compounds & metabolism

elements only, which happen to be the four lightest of the periodic table that can make
covalently bounded compounds [201]. The inclusion of more elements is straightforward,;
as stated before, some taxa require special attention on this point.

Reserves and structural mass are thought of as generalised compounds: rich mixtures
of compounds that do not change in chemical composition. The concept rests fully on
the strong homeostasis assumption. If a ‘molecule’ of structural biomass is denoted by
CH,,,, Onpy Ny and a ‘molecule’ of energy reserves by CH,,,,, OnpnNpy s, then their rel-
ative abundances in biomass consisting of structural mass My, reserves Mg and reserves
allocated to reproduction Mg, are given by

— ney My + n.g(Mg + Mg,,) _ v + n.p(me +mgg) (3.5)
W MV+ME+MER 1—|—mE—|—mER '

where * stands for H, O or N and mg = Mg/My and mg, = Mg, /My are molar reserve
densities.
The molar weights of structural biovolume and energy reserves are given by

wy =~ 12+ ngy + 16noy + 14nyy  gram mol ™!
wp ~ 124 nyg+ 16nog + 1dnyg gram mol !

since the contribution of the other elements to weight is negligibly small. The problem of
uncovering the relative abundances n,, and n,g from measurements of n,y, is discussed
on {138}.

Similarly we have My = fiz'E and My = [My]V, where [My] denotes the conversion
coefficient from structural volume to C-mole. Using a specific density of wet mass of dy = 1
gem ™3, a wet weight - dry weight ratio of 10 and a molecular weight of wy = 24.6 g mol~!
for structure, a typical value for [My] would be 4.1 mmol cm™3.

We need the link between generalised and “pure” chemical compounds in applications
of isotopes, for instance. Like generalised compounds, we quantify organic compounds in
terms of C-moles. Suppose that compound i is present in My, (C-)moles in structure,
for example. So structure has mass My = Y-, My.ncy,, where ney, is either 0 (anorganic
compounds) or 1 (organic compounds). The chemical indices of the generalised compound
relate to that of the chemical compounds as

E’LM ’Ln* i . MZ )
- X:JWI‘//nC‘\// - anv with w; = MZ and i € {C,H,O,N}  (3.6)

Nyv

This decomposition can also be done for other generalised compounds, such as reserve
and food. Notice that any chemical compound can potentially partake in all generalised
compounds and all chemical elements can be included.

The delineation of more than one type of reserve (or structural mass) comes with
additional contributions to mass and weight. For n reserves, a single structural mass, and
no reserves allocated to reproduction, (total) biomass can be decomposed into the masses
(in C-moles) {Mg,, Mg,, -+, Mg,, My} which, in combination with maturity, define the
state of the organism. The strong homeostasis assumption states that these masses do
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not change in chemical composition and, therefore, they can be treated as generalised
compounds.

The wet weight of the n-reserves organism amounts to W,, = wy My + >, wg, Mp,,
where the w’s stand for the C-molar weights. The dry weight of this organism can be
expressed similarly as Wy = wy My + 3, wg,aMp,, where the w,4’s represent the C-molar
weights, after removal of water. This can be done in this way because the assumption that
neither reserves nor structural biomass can change in composition means that their water
fractions are constant.

The weight of any particular chemical compound Y in the n-reserves organism can
be expressed as Wy = wy (nyv My + Y; ny g, Mg,), where wy is the molar weight of the
compound Y and the n’s denote the molar amounts of the compound per C-mole of reserve
or structural biomass. This again is a consequence of the strong homeostasis assumption.
The n’s are zero if the compound does not happen to occur in that biomass components.
The density of the compound in biomass can be expressed as Wy /Wy on the basis of
weights, or as Wy (wy My + wy Y, ]\4]51.)*1 on the basis of moles per mole of carbon.

The chemical composition of biomass becomes increasingly flexible with the number of
delineated reserves, and depends on the nutritional conditions of the environment. In terms
of relative frequencies of chemical elements, all restrictions in the composition of (total)
biomass disappear if the number of reserves exceeds the number of chemical elements minus
one.

3.3 Classes of compounds in organisms
Chemical elements obey conservation laws, not compounds, and we need this to quantify

fluxes of compounds. Two sets of chemical compounds partake in three (sets of) transfor-
mations:

compounds — || minerals, M org. comp. O
2
n
<
g g =
5 : 5 5 5 3
% 8 = ‘;E o0 s P z
= 2 g K 2l= = 3 8
g 5 8 & £|%8 & % ¢
B S B 8 |8 & & &
! C H O N|X V E P
assimilation A || + + — + | — T
growth G|+ + — + + -
dissipation D || + + — + -

The organic compounds V' and E constitute the individual, the other organic compounds
and the minerals define the chemical environment of the individual. The signs indicate ap-
pearance (+) or disappearance (—); a blank indicates that the compound does not partake
in that transformation.

The following subsections briefly discuss some features of the different compounds to
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supplement earlier introductions.

3.3.1 Mineral compounds
Dioxygen € carbon dioxide

Most organisms use dioxygen as an electron acceptor in the respiration chain, the final
stage in the oxidation of pyruvate, see Figure 3.11. If an electron acceptor is not available,
a substantial amount of energy cannot be extracted from pyruvate, and metabolic products
have to be excreted. Photosynthetic bacteria, algae and plants not only use dioxygen, but
also produce dioxygen, see {184,410}. This production exceeds the consumption if light
intensity is high enough.

Most organisms consume and excrete carbon dioxide, see {409}, consumption exceeds
excretion in photosynthetic organisms in the light, and in bacteria that use methane as
substrate.

Water

Water is formed metabolically from other compounds. This rate of water production is
studied first; the direct exchange of water with the environment via drinking and evapo-
ration, and its use for transport, are discussed on {149}.

Nitrogenous waste

From an energy perspective, the cheapest form of nitrogenous waste is ammonia. Since
ammonia is rather toxic at high concentrations, terrestrial animals usually make use of more
expensive, less toxic nitrogenous wastes. Terrestrial isopods are an exception; Dutchmen
call them ‘pissebed’, a name referring to the smell of ammonia that microbes produce
from urine in a bed. Terrestrial eggs have to accumulate the nitrogenous waste during
development; they usually make use of even more expensive, less soluble nitrogenous wastes
that crystallise outside the body, within the egg shell. Table 3.1 lists the different chemical
forms of nitrogenous waste. The nitrogenous waste (urine) includes its water in its chemical
‘composition’, for simplicity’s sake.

Nitrogenous waste mainly originates from protein turnover, which is part of to somatic
maintenance. A second origin of nitrogenous waste can be assimilation, when metazoans
feed on protein-rich food, and nitrogen is excreted in the transformation of food to reserves.
The (energy/carbon) substrate for micro-organisms can be poor in nitrogen, such that
nitrogen must be taken up from the environment, rather than excreted. Though the term
nitrogenous waste not longer applies, this does not matter for the analysis; the sign of the
flux defines uptake or excretion. Bacteria that live on glucose as an energy source will have
negative nitrogenous waste.



3.3. Classes of compounds in organisms 85

Table 3.1: Various nitrogenous wastes that animals use [1266].

nitrogenous waste  formula solubility
wn
g 2 = B Z
(mM) g 8 & & §
ammonia NHj; 52.4 o o
amm. bicarbonate NH4HCO;3 1.5 o
urea CO(NHz), 39.8 o
allantoin C4HgO3N4 0.015 o
allantoic acid C4HgO4Ny4 slight
uric acid CsH4O03N, 0.0015 o
sodium urate CsHs03N4Nay  0.016 o o
potassium urate CsHoO3N4Ks  slight ) o
guanine C4H5ONj5 0.0013 ) o
xanthine CsH405Ny 0.068 o o
hypoxanthine Cs;H4ONy 0.021 o )
arginine CgH1405Ny 3.4 o o

3.3.2 Organic compounds

I here briefly introduce the chemical aspects of food, products, and storage materials.
Observed changes in the elemental composition of the body mass, as a function of growth
rate, or starvation time, can be used to obtain the elemental composition of reserves and
structure, as is discussed on {138}.

Food

Food for micro-organisms is usually called ‘substrate’, which can be very simple chemical
compounds, such as glucose. Most animals feed on other organisms, i.e. complex substrates.
For simplicity’s sake, I assume that the composition of food is constant, but this is not
essential; the composition of faeces is taken to be constant as a consequence. This condition
will be relaxed on {180}.

Products

Faeces is the remains of food after it has passed through the gut. Animals add several
products to these remains, such as bile and enzymes that are excreted in the gut, and
excreted micro-flora formed in the gut. Mammals in particular also add substantial quan-
tities of methane, which is produced by the bacterial gut flora, see {410}; the Amazonian
hoatzins (Opisthocomus) smell like cows, because these birds have a similar gut flora and
digestion. I include these products in faeces, since these excretions are tightly coupled to
the feeding process.

The ‘faeces’ of micro-organisms is usually called ‘metabolic products’. Sometimes, sub-
strate molecules are taken up entirely, and completely metabolised to carbon dioxide and



86 3. Energy, compounds & metabolism

water; in this case no faeces is produced. In other cases products are formed that generally
do not originate from substrate directly, but indirectly with a more complex link to the
metabolic machinery of the organism. The role of such products is then similar to that
of nitrogenous wastes in animals. I cope with these situations by including such products
in the overheads of the three basic energy fluxes, the assimilation flux, the dissipating
flux and the somatic growth flux. The number of different products can be extended in a
straightforward manner, see {159}.

Two chemically related organic products changed the world: chitine (C;6H26010N2)s,
because of its role in the organic carbon pump, cf {409}, and cellulose (C19H20O10), be-
cause of its accumulation in soils, cf {408}, and its transformation to coal. Both prod-
uct serve mechanical support functions (carapax and wood respectively) and are difficult
to degrade (no animal can degrade cellulose without help of bacteria and/or fungi), so
they accumulate in the environment (and change e.g. the water retention properties of
soils). Opisthokonts (= fungi + animals) produce chitine and most bikonts, which com-
prise all eukaryotes except amoebas and opisthokonts, and some amoebas (Dictyostelium)
produce cellulose. Eukaryotic cellulose production originates from cyanobacteria [843].
Two opisthokont taxa produce cellulose, however, rather than chitine: Urochordates [757]
and Aspergillus fumigastus [843]. They got this ability from a-proteobacteria via lateral
gene transfer. Deuterostomes don’t produce chitine but calcium carbonate and tetrapods
produce keratine for mechanical support. Other well-known animals products are mucus,
hair, scales, otoliths cf {154,174}).

If dioxygen is poorly available, a variety of products are formed and released in the
environment:

product chemical formula rel. freq. p
ethanol CH3CH30 CH30¢ 5 657
lactate CH3CH>;OCHO9 CH>,0O 442

succinate CHO,CH>;CH;CHO5 CH; 50 376
propionate CH3CH>;CHOq CH50p66 493
acetate CH3CHOq CH->O 442

where the last column gives the Gibbs energy of formation in kJ/ C-mole at pH = 7 in the
combustion frame of reference [484]. The kind of product depends on the species and the
environmental conditions. The quantitative aspects are discussed on {160}.

Storage materials

Storage material can be classified into several categories; see Table 3.2. These categories do
not point to separate dynamics. Carbohydrates can be transformed into fats, for instance,
see Figure 3.11. Most compounds have a dual function as a reserve pool for both energy
and elementary compounds for anabolic processes. For example, protein stores supply
energy, amino acids and nitrogen. Ribosomal RNA (rRNA) catalyses protein synthesis. In
rapidly growing cells such as those of bacteria in rich media, rRNA makes up to 80 % of
the dry weight, while the relative abundance in slowly growing cells is much less. For this
reason, it should be included in the storage material. I show how this point of view leads
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Table 3.2: Some frequently used storage materials in heterotrophs.

phosphates
pyrophosphate bacteria
polyphosphate bacteria (Azotobacter, Acinetobacter)
polysaccharides
(6-1,3-glucans
leucosin Chrysomonadida, Prymnesiida
chrysolaminarin Chrysomonadida
paramylon FEuglenida
a-1,4-glucans
starch Cryptophyceae, Dinozoa, Volvocida, plants
glycogen blue green bacteria, protozoa, yeasts, molluscs
amylopectin FEucoccidiida, Trichotomatida, Entodiniomorphida
trehalose fungi, yeasts
lipoids
poly (8 hydroxybutyrate  bacteria
triglyceride oleaginous yeasts, most heterotrophs
wax marine animals
proteins most heterotrophs
ovalbumin egg-white protein
casein milk protein (mammals)
ferritin iron storage in spleen (mammals)
cyanophycine bluegreen bacteria
phycocyanin bluegreen bacteria

ribosomal RNA all organisms

to realistic descriptions of peptide elongation rates and growth-rate-related changes in the
relative abundance of rRNA, {139}. There is no requirement for storage compounds to be
inert.

Waxes can be transformed into fats (triglycerides) and play a role in buoyancy, e.g. of
zooplankton in the sea [84]. By increasing their fat/wax ratio, zooplankters can ascend
to the surface layers, which offer different food types (phytoplankton), temperatures and
currents. Since surface layers frequently flow in directions other than deeper ones, they
can travel the Earth by just changing their fat/wax ratio and stepping from one current
to another. Wax ester biosynthesis may provide a mechanism for rapidly elaborating lipid
stores from amino acid precursors [1012].

Unsaturated lipids, which have one or more double bonds in the hydrocarbon chain, are
particularly abundant in cold water species, compared with saturated lipids. This possibly
represents a homeo-viscous adaptation [1049].
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Figure 3.3: Some storage deposits are really eye-catching.

The amount of storage materials depends on the feeding conditions in the (recent)
past, cf. {35}. Storage density, i.e. the amount of storage material per unit volume of
structural biomass, tends to be proportional to the volumetric length for different species,
if conditions of food (substrate) abundance are compared, as explained on {292} and tested
empirically on {303}. This means that the maximum storage density of bacteria is small.
However, under conditions of nitrogen limitation for instance, bacteria can become loaded
with energy storage materials such as polyphosphate or polyhydroxybutyrate, depending on
the species, see {193}. This property is used in biological plastic production and phosphate
removal from sewage water. Intracellular lipids can accumulate up to some 70 % of the cell
dry weight in oleaginous yeasts, such as Apiotrichum [940, 1287]. This property is used
in the industrial production of lipids. The excess storage is due to simultaneous nutrient
limitation that is associated with what is called ‘luxurious’ uptake.

Storage deposits

Lipids, in vertebrates, are stored in cell lysosomes in specialised adipose tissue, which
occurs in rather well-defined surface areas of the body. The cells themselves are part of
the structural mass, but the contents of the vacuole are part of the reserves, cf {389}.
In molluscs specialised glycogen storage cells are found in the mantle [490]. The areas
for storage deposits are usually found scattered over the body and therefore appear to be
an integral part of the structural body mass, unless super-abundant; see Figure 3.3. The
occurrence of massive deposits is usually in preparation for a poor feeding season. The
rodent Glis glis is called the ‘edible doormouse’, because of its excessive lipid deposits
just prior to dormancy, {119}. Stewed in honey and wine, doormice were a gourmet meal
for the ancient Romans. Tasmania’s yellow wattlebird Anthochaera paradoza accumulates
lipid deposits during the rich season to the extent that it has problems with flight; it then
becomes exceedingly wary for a good reason [431].
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Figure 3.4: Colony members of honey ants, Myrmecocys-
tus, show function differentiation. The energy storage func-
tion is taken by a guild that can be considered as the adipose
tissue of the ant colony.

Figure 3.5: Plants can store large amounts of carhohy-
drates and/or water.

In most invertebrate groups, storage deposits do not occur in specialised tissues, but
only in the cells themselves in a quantity that relates to requirements. So reproductive
organs tend to be rich in storage products. The mesoglea of sea-anemones, for instance, has
mobile cells that are rich in glycogen and lipid, called ‘glycocytes’, which migrate to sites
of demand during gametogenesis and directly transfer the stored materials to developing
oocytes [1049]. Glycogen that is stored for a long time typically occurs in rosettes, and for
short time in particles [512, 1049]. A guild of honey ants specialises in the storage function
for the colony, not unlike adipose tissue in vertebrates, see Figure 3.4.

The recently discovered anaerobic sulfur bacterium Thiomargarita namibiensis [1033]
accumulates nitrate to up 0.8 M in a vacuole of up to 750 um in diameter; it can survive
over 2 years without nitrate or sulfur at 5°C. The bacterium Acinetobacter calcoaceticus
accumulates polyphosphates to spectacular levels under carbon-limiting aerobic conditions,
and releases phosphates under energy-limiting anaerobic conditions, which is used techni-
cally in sewage water treatment, see {193}.

Since autotrophs acquire energy and the various nutrients independently from each
other, they usually store possibly limiting substrates independently in specialised or-
ganelles: the vacuoles [694]. Carbohydrate (starch) and water storage are most bulky
in plants that live in seasonal environments, see Figure 3.5.
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3.4 Conversions of energy, mass & volume

There is not a single most useful notation for energetics. Volumes are handy in relation
to surface areas, which are needed for the process of food/substrate uptake in the DEB
model, while moles are handy for mass fluxes and mass conservation. Table 3.3 gives
conversions between volume-based, mole-based and energy-based quantities, some of which
are introduced in the next chapter. The specific fluxes j, relate to the total fluxes .J, by
Ge = J. /My, but contrary to the total fluxes, they are always taken to be non-negative.
Because of strong homeostasis [My| = My /V is a constant.

The three state variables for maturity, reserve and structure of the standard DEB
model can be written as maturity energy, reserve energy density and structural volume
(Eg, [E],V), with dynamics given in (2.18), (2.10) and (2.21), or in dimensionless scaled
variables (e, e, 1) with dynamics given in (2.31), (2.11) and (2.22), or in masses (Mg, mg, My)
using Table 3.3:

d b . My \M?
SMy = (M < M) ((1 — )mpMy(3 ) - kJMH) with L = <[M¥]> (3.7)
d . . . . _ _

7mE = Jeam(f —mg/mEgy)  with jpa, = {JEAm}MVl/S[MV] 2/3 (3.8)
d . v . Jeam(me/Mmp, —Ir) — jEm/K

— My = Myr withr =

= (3.9)

mg + Yyev /K

where ygy denotes the moles of reserves required to synthesise a mole of structural mass.
Equation (3.8) shows that the parameter mpg,, can be interpreted as the maximum value
of the molar reserve density mg. The scaled heating length [ is zero for most ectotherms.

The twelve primary parameters expressed in a mass-length-time frame are: specific
searching rate {Fm}, yield of reserve on food ygyx, maximum specific assimilation rate
{JE am ), energy conductance 0, allocation fraction to soma k, reproduction efficiency kg,
volume-specific somatic maintenance cost [J ), surface area-specific somatic maintenance
cost {J Er}, maturity maintenance rate coefficient ky, yield of structure on reserve yy g,
maturity at birth M2, maturity at puberty MZ%.

3.5 Macrochemical reaction equations

Suppose that substrates S = (S1,5,--+) and products P = (P, P,,---) partake in a
transformation &k with fluxes Jg;, = (ngk, JSQk, 9T and Jpp = (Jplk, JIpyk, - )1 collected
in column vectors. The rate of the transformation is fully specified by the vector J =
(jgk; j’pk>. If ns denotes the matrix of chemical indices for the substrates, with typical
element n;, for substrate s € §, and np that for the products, the constraint

0= ngjgk + ’I’ijpk (310)

applies to the vector of rates to ensure conservation of chemical elements. Substrates disap-
pear, so Jsi < 0, and products appear, so Jpr > 0. For all transformations simultaneously
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Table 3.3: Conversions and compound parameters

relationship unit description
— pam} molm—3 half-saturation constant
yEx{Fm}

{Ixam} = —{Jpam}/yEx
Mg =V[Mp] = 7= = My

€YEV

Kg
My =V[My]
MVm = Vm[MV]
[My] = dv /wy
(M) = 1ean} — yEVgEiMV]
me = Mig ~ g [Miy\r;]
mpg = MH/MV

YypPE = fip/ltap = jPA/JEA
YPX = HAX /AP = jPA/ixA

YvE = L%V %g _[A[JMI]gME Mo

_ M yEV vIv __ Em|V
YEX = uax = “gnlixam} | {xam}
[Eg] = nav [My]
[ m] = {Pam} /0 = Tg[Mpm]

= V13 = (My /[My])"/?

_ {JEAm} _ {pAm} _ 0
Lm - K/‘ [J'E]\/[]. o [pM] k]y[g
Lt = {pT}/]\[}?M} .

3 _

V=L1°= 0y = mim
Vin = L3 MVm/[MV]

Ug = Mg/{Jpam} = E/{pam}

Un = My /{Jpam} = En /{Pam}
{Pam} =p{JEAm} = —pax{Jxam}
{pr} = —{JET}ME

] = —[Jemlig = karpay [My]
ps] = ~Jpslip = ks[Ex]

kv = [puml/[Ec) = jev yve

Jpg = —k;Myg

Jxa = jealyex .
—[Jev]/[Mv] = km yev

JEV =

Ey =ppMp

E=npMg

[Ec] = fig[Mv]/yvE
— {pAm} _ Em]

/JJE {JEAm} [MEm]

pax = {pam}/{Ixam} = ip/yxe
pap = {Pam}/{Jpam} = lip/yPE

pav = [Egl/[Mv] = Tig/yvE
g= [Ec] _ _ 9[My]
K[ Em] k{JEam}yvE
f=X/(K+X)
| = (My/My,,)"? = L/Ly,
o= mp _ [Mglo _ [E]
MEm {JEAm} [Em]

molm—2d~!

mol

mol

mol
molm™3

molm—3

mol mol~1

mol mol 1

mol mol 1
mol mol—1
mol mol~1

mol mol 1
mol mol 1
-3
-3

Jm
Jm
m

m
m3
m?)

dm?
dm?

Jd tm2

Jd=tm—3

Jd=tm™3

Jd1m™3

d—l
mold—1!

molmold™—!
molmold~!
J
J

Jm
Jmol~!

Jmol~!
Jmol ™!
Jmol1!

-3

maximum specific ingestion rate
mass of reserve

structural mass

maximum structural mass
specific structural mass

maximum reserve density
maximum reserve density

reserve density

maturity density

coupler of faeces and reserve prod.
coupler of faeces prod. and food cons.
coupler of struct. prod. and res. invest.

coupler of food cons. and reserve prod.

specific costs for structure
maximum reserve density
structural (volumetric) length

maximum structural length

heating length

structural volume

maximum structural volume

scaled reserve

scaled maturity

maximum specific assim. flux
surface area-specific maint. flux
specific somatic maint. flux

specific maturity maint. flux
somatic maintenance rate coeflicient
maturity maintenance flux

specific food uptake flux

specific somatic maintenance flux
maturity

reserve energy

energy costs per structural volume
chemical potential of reserve
energy-mass coupler for assimilation

energy-mass coupler for defecation
energy-mass coupler for growth

energy investment ratio
scaled functional response
scaled length

scaled reserve density
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we can write 0 = n.J, where n = (ns, np). The number of constraints equals the number
of chemical elements that are followed; the constraints can be used to specify some of the
fluxes. If appropriate, these constraints could be extended with e.g. constraints on energy,
electrical charge and isotopes.

To separate information on rates from that on stoichiometric coupling, it is frequently
useful to divide the fluxes by one of the fluxes, say of reference compound j € (S,P), and
introduce the yield coefficients Yskj = Jgk/ij and Yﬁj = ka/ij

If one or more of the compounds stand for some generalised compound, rather than
pure compounds, we speak of a macrochemical reaction equation, which can typically be
split up into two or more microchemical reactions equations. A macrochemical reaction
equation is defined for Yg,; < 0 and j € P as

_Y‘Slyljsl _Y‘Slfzjsl - _>Yl§1jP1+Y1§2jP2+“. or 0= Z Y;;CZ (311)
€SP

Notice that the macrochemical reaction equation is not a mathematical equation; ¢ in this
equation stands for a label (i.e. a type), not for a concentration or other quantity.
Conservation of chemical elements translates to constraints on yield coefficient for ref-
erence compound j as
k k

Suppose that there are not one but several chemical transformations simultaneously.
Let M be the column matrix of the masses of all compounds. Then %M = J1, where
the summation is over all transformations.

3.6 Isotopes dynamics: reshuffling & fractionation

Isotope dynamics can be followed in the context of DEB theory, due to the fact that DEB
theory specifies all mass fluxes. We here derive the dynamics, excluding physiological
effects of isotopes. Applications of isotope dynamics could include history reconstructions
and monitoring particular fluxes.

We neglect the decay of isotopes, so if this decay can’t be neglected (e.g. for some
unstable isotopes), the present treatment should be adjusted. Transformations convert
substrates into products; the isotope ratios of the substrates are assumed to be known.
The isotope ratios of the products are assumed to be known at time zero only, and the
task is to specify the trajectory of the ratio given a specification of the transformation rate
as function of time. We first discuss the process of reshuffling of atoms in transformations,
which leads to a re-distribution of isotopes, then we study fractionation.

We take the fluxes of substrate in a transformation to be negative by definition and
that of products positive. Since the roles of substrates and products are asymmetrical with
respect to isotope transduction, the next section assumes that all substrates and products
are specified, even if they happen to be chemically identical. Some transformations might
use e.g. water both as substrate and as product; water should then appear twice in the
equation for the transformation.
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The literature on isotope distributions, see e.g. [231], uses the isotope ratio R, which
stands for the ratio of the frequencies of one isotope of a certain element (typically the rare
type) and that of another (typically the most common type). Sometimes R is the ratio of
masses, rather than frequencies. This ratio relates to the relative isotope frequency of type

0
0 of element ¢ in compound 7, 7%, as R = 11;0 Data typically refer to isotope frequencies

relative to a standard “ref” and are denoted %y

R; — R, b=
5 = 1000275 _ 1000 ( T Ty _ 1) (3.13)

0 Oref
Rref ]' - ’Y’Lj ryife

This notation does not make explicit the compound(s) in which the element i occurs. If
the compound occurs in phases A and B, two other frequently used definitions are
C1000+04 ot 1=
- - 0A~ 0B

1000 +dp 1= i

AA,BzéA—éB; aA—_B (314)

We use this notation only in auxiliary theory (to link predictions to measurements) because
in the core theory we need more notational detail in compounds and transformations and
a closer link to the underlying processes. The notation in the literature is rather natural
for selection of isotopes from pools, but not for that from fluxes, as we will see.

3.6.1 Reshuffling

Let § be the set of substrates and P be the set of products. The dimensionless reshuffling

parameter a;’;, with 0 < agz < 1 specifies what fraction of the atoms of chemical element

7 in substrate s ends up in product p in transformation k. Given the relative frequency of

isotope 0 of element 7 in substrate s € S in transformation k, nd*, the coefficients n%’f are

given for p € P by

0= n?fjpk +Y ok n Ty or =% alndr /Y (3.15)

ps'Yis ip ps'Yis
seS seS

with 1 = 3 cpail. If n, substrates and n, products exist, the number of reshuffling
parameters « is (n, — 1)ns.
In matrix notation we can write

0=J2% +a*J2% with 1Ta* =17 (3.16)

where (column) vector J% has elements n%.J,, and vector J% has elements n%.J ;. and
Sk s Pk ip Yk

matrix o’* has elements o/ with p € P and s € S. Notice that the use of the reshuffling
parameters is via the product with the chemical indices, aé’ing’;, so the requirement that

the sum of the rows of each column of a'* equals 1 is only essential for elements that
actually occur in that substrate. If element ¢ does not occur in substrate s, the entries of
o' in column s don’t matter. From the conservation of elements and isotopes, we must
have

0=17J5, +17J%, and 0=17J% +17J% (3.17)
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where vector Jfgk and J'%,C have elements nisjsk and nipjpk, respectively.
To illustrate the application of the reshuffling matrix, consider the oxygenic photosyn-
thesis L:

COy 4+ 2H50 + light — CH,O + Ho O + Oy or C+2H —- X+ H +0
where the oxygen atoms of dioxygen are known (from biochemistry) to come from water,
not from carbon dioxide; this is why water is both substrate and product in this transfor-
mation. Water as product is labelled H' because its isotope composition can deviate for
water as substrate H. For this transformation L and isotopes *C, 2H and 80 we have

HL _ 1 OL _ 1 18L _ 1,18L

O‘é%‘ By W O e BNS i
— _ . — _ 13 13L HX HH . 18L __ 18
(3 18)

ot = 3 tells that half of the oxygen of carbon dioxide ends up in carbohydrate; a3 = 1

tells that all of the oxygen of water ends up in dioxygen. So the oxygen-isotope distribution
in carbon dioxide has no relevance for that in dioxygen (in this transformation).

Suppose we have the absurd reaction mechanism that all substrate atoms of element
1 are allocated to product molecules after complete randomisation. The isotope ratios of
that element are equal in all products, so for product p € P we have
L R L
nip  17Jg, 17Jg, 17 Jpy, 17 Jpy,

(3.19)

Division of the numerator and denumerator by one of the fluxes, typically a flux of sub-
strate, converts fluxes to yield coefficients which are not time-dependent. Although the
mechanism is unrealistic, this choice of reshuffle coefficients can serve as baseline to reduce
the number of parameters in specific applications where no information about the mecha-
nism is available. If the transformation is really complex, like in living systems, complete
reshuffling might be not too far from reality.

Addition of transformations

Macrochemical reaction equations are typically additions of several (or even many) equa-
tions. Transfer of isotopes comes with an asymmetry of the roles of substrates and products,
which makes that a particular compound in a macrochemical reaction equation can play
both roles, even if no net synthesis or decay of that compound occurs.

Before adding transformations k and [ to a new transformation m, we extend the set of
substrates S and products P, such that these sets include all substrates and compounds,
and allow that some of the fluxes are zero, and some compounds occur in both sets. Let
{jgm, me} = {Jsk + Js, Jpi + jpl} be the sets of fluxes of the total transformation. To
define transformation m properly, we must have nd% = nd = nd™ for s €S, so Jgjn =
J% + J%  Although generally we will have nd¥ # nl, we still have JY = + JY

Further O/’mJ’ =l Ji + ol J,. We then have

= JY +a™JY  with 1Ta™ =17 (3.20)
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and
adiag(Jsn) = a*diag(Js;) + a'ldiag(Js) (3.21)

Notice that the reshuffle parameters become time-dependent if the ratio of the rates of
transformation k£ and [ changes in time. The practice we will only add fully coupled
transformations.

3.6.2 Fractionation

Selection of substrate molecules on the basis of their possession of isotopes of particular
elements (at particular positions) can occur from (large) pools and from fluxes, which
corresponds to selection from small pools by integrating the flux over a time increment.
Simple chemical transformations don’t allow for fractionation in the transformation (so a
flux), because the reaction mechanism determines which atoms of the substrates become
each of the atoms of the products. This situation is, however, more complex in macroscopic
reactions that involve a network of transformations and alternative routes exist for the
intermediary metabolites. These intermediary metabolites serve the role of substrates.

Fractionation from pools

Preamble: Suppose we have mg white balls with weight 3, each and m; = m — my black
balls with weight ;. The number of white balls in a sample of size n follows a binomial
distribution if mq and m; are large relative to n and selection is randomly, but proportional
to the weight of the balls. For odds ratio 8 = (y//, the expected number of white balls
in the sample is

nm
ng = _mmof (3.22)
moB + my
0
Notice that this number only depends on %‘f = 112'0_, and not on my and m; separately.

ij
Applied to molecules with isotopes, the physical mechanism of differential selection relates

to the differential mean velocity of molecules with isotopes. All molecules have the same
kinetic energy mc?/2; if the mass m of an isotope is larger, its velocity c is smaller.

Fractionation can occur in the selective uptake of dioxygen and carbon dioxide (mostly
by phototrophs) and in the selective release of carbon dioxide, N-waste and water. The
latter might be of some importance for terrestrial organisms, where this release is asso-
ciated with a phase transition for liquid (= organism) to gas. The isotope frequency in
assimilation, dissipation and/or growth has expectation

0k
noF — il S0 now = 20960 (3.23)
YA -1+ 1/ 5o — 1+ 1/7%0
For odds ratio 3" = 1, this gives n{¥ = n;;7};. In the case of dioxygen, there is little reason

to expect that this relationship depends on the transformation k.
Suppose that the odds ratio equals the ratio of molecular velocities and that *O and
160 combine randomly in dioxygen. So a fraction (1 —~3y)? of the dioxygen molecules has
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velocity ¥39, a fraction (74y)? has velocity 036, and a fraction 275, (1 — v5,) has velocity
U34 at some given temperature. All dioxygen molecules have the same kinetic energy so
3203, = 3402, = 3613. So

e (1= 760)0sa +1botss 1 — 100 T 160/ 34/36 \/7 (3.24)

00 (1= 50)0s + 500 (1 —~) 34/32 Al

The latter approximation applies for small 7}y,. However, it is very doubtful that this sim-
ple reasoning applies; the link between molecular and macroscopic phenomena is typically
less direct.

The observations for *C' in the oxidative photosynthesis L are: 36 C' = —8 for CO, in
the atmosphere, and —28 from carbohydrate in Csz-plants [376, p44]. The R, = 0.01191
for carbon in the PDB standard [376, p34]. So R = 0.011091 for 13002 and 0.010750
for CH,0. This gives 75, = R/(1 + R) = 0.010969 for *CO, and %, = 0.010750 for

13CH,0. The odds ratio for 3CO, is S&F = 17%07 = 0.97982; a small deviation from 1

gives a strong fractionation.

Selection from food, reserve and structure as pools is less likely. Food is processed as
whole items; at the interface of reserve and structure mobilisation SUs are at work locally
with no “knowledge” of the neighbouring reserve molecules. Selection is more likely in
mobilised fluxes that have several fates; isotopes can affect binding strength in a molecule
and so the energy required to transform the compound; compounds with light isotopes
are more easily degraded, so more likely to be used for catabolic, rather than anabolic
purposes.

Fractionation from fluxes

Preamble: Suppose we have mg white balls with weight (3, each and m; = m—my black balls
with weight (3;. The number of white balls in a sample of size n follows Fisher’s noncentral
hypergeometric distribution if selection is random, non-interactive, and proportional to
weight. For odds ratio 8 = (5y/f1 and n € (0, m), the expected number of white balls in
the sample is

min(n,mo)
ng = P/Py with P, = Z ( Mo ) ( nnzly ) BYyF  or

y=max(0,n—m1) Yy

-2
¢ = rmof3 with » > 0 such that n = rmof3 rm

= +
b—Vb2 —4ac rpB+1 rB+1 r+1

where a = 3 —1,b=n—my — (mg+n)fB, ¢ = menf. Multivariate extensions are known.
For isotope applications we focus on fractions mg/m in the total flux and ng/n in the sub-
flux (the anabolic flux). For large mq and m; relative to n, this non-central hypergeometric
distribution converges to the binomial distribution. Wallenius’ noncentral hypergeometric
distribution should not be used here, because interactive selection is excluded within a time
increment. The physical mechanism is in the differential strength of chemical bounds; the

Q

no (3.25)
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larger the mass, the stronger the bound. This makes that light molecules have a preference
for the catabolic route.

Suppose that a molecule of a compound has more than one possible fate in a trans-
formation. Selection occurs if the probability on the fate of a molecule depends on the
presence of one or more isotopes. We here assume that each molecule in a well-mixed pool
has the same probability to be selected to partake in a transformation, independent of its
isotope composition; selection only interferes with the fate of the mobilised molecule.

Suppose that the fluxes of substrates Js;, are partitioned into two fluxes (e.g. a catabolic
and an anabolic one) as jgka = kypJs, and jgke =(1- lik)jgk. The partitioning is, however,
selective for the isotope of element ¢ in compound 7.

We must have n0%Jy, = n2% J. + nd¥J, or n% = n% x4 nd%(1 — ;). Again we
write nY* = 49 n;, and introduce an odds ratio ﬁOka for an isotope of type 0 of element ¢
in compound s in transformation k,. The number of isotopes in the anabolic flux times a
time increment follows Fisher’s noncentral hypergeometric distribution with approximate
mean for B = nl%* — (1 — k) — (n% + k)30

nok’l ~ ZnOkﬁ%“ : anc = —n?‘f _ n?skaﬁk (3.26)
Y B a0 - e~ B L= ry,

If 3% = 1, we have noF = n% and the process is unselective. We must have
ni® > ndap, and B2 +4(1 — gF)3%en gk, > 0 (3.27)

Notice that only molecules can be selected on the basis of having a particular isotope
of a particular element; the selection is not on elements independently. Once the selective
element 7 is determined for a compound s, ﬁOka =1 for all h # s. The selection on a single
isotope of a particular atom in a particular compound is the simplest possibility; many
more complex forms of selection can exist.

Suppose that substrate S is subjected to selection with respect to element I and that
a'*s and a'*c are the reshuffling parameters of the anabolic and the catabolic sub-fluxes.
So the fraction ry, applies to flux Jg. Let n% = nrsy%. In adding these two fluxes, we
should take into account that the anabolic flux experiences a different isotope frequency for
element 7 than the catabolic flux: J2% = JI +.J% = (n%‘%k —i—n(}]gﬂ(l —kr))Jgk. Let JOb*
be Jgi, but with element S replaced by this modlﬁed flux J . The reshuffle parameters

a!* are not affected by selection. The coefficients n in J 97 are now given by

= Ik + ot T with  a'*diag(Js) = a'fediag(Jsy, ) + oFdiag(Jsr.)  (3.28)

3.7 Enzyme mediated transformations based on fluxes

Enzymes are compounds that catalyse a transformation without being transformed them-
selves. They are typically proteins, frequently only working in combination with an RNA
co-factor at the binding site of the enzyme. The protein just enhances the binding of the
substrates and bringing them in an orientation such that the transformation occurs. The
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transformation rates are constrained by the time budget of the enzyme. The enzyme can
be in a state where it can bind substrate(s) or where it is processing substrates. In the
simplest formulations these traits exclude each other, so they compete for the time of the
enzyme, but in more advanced formulations they do that only partly.

Classic enzyme kinetics specifies fluxes of product in terms of substrate concentrations.
This catenates two different processes, arrival process of substrate molecules to the binding
site(s) of the enzyme molecules and the transformation of bounded substrate into product,
which can better be dealt with separately. In homogeneous environments, arrival rates of
substrate molecules to the enzyme molecules are proportional to the concentration, on the
basis of diffusive transport. The rejected substrate molecules return to the environment,
which makes it difficult, if not impossible, to determine their existence. When growth is
modelled as a function of mobilised reserve fluxes (see {188}), the situation is different,
because this process represents arrival and replaces diffusive transport. Transformations
are hard to link to concentrations in those situations.

The concept concentration implies spatially homogeneous mixing at the molecular level;
it hardly applies to the living cell, cf {413}. Another argument for avoiding the use of
concentrations as much as possible is that concentrations should be thought of as states
of the system. The inclusion of concentrations of intermediary metabolites in a metabolic
pathway increases the number of state variables of the system. A reduction of this number,
to simplify the model, is only possible when the amounts are small enough. This problem
is avoided by using fluxes, where intermediaries do not accumulate.

Thinking in terms of fluxes, rather than concentrations, allows us to treat light in
a similar way to compounds, with stoichiometric coupling coefficients in photochemical
reactions, see {184}. This idea may be less wild than might first appear; cells extract a
fixed amount of energy from the photons that are able to excite the pigment system, the
remaining energy dissipates as heat. The light flux can be quantified in Einstein (or mole)
per second, i.e. in 6.023 10** photons per second [449].

Synthesising Units (SUs) [640] solve these problems. They are generalised enzymes
that follow the rules of classic enzyme kinetics with two modifications: transformation is
based on fluxes, rather than on concentrations of substrates, and the backward fluxes are
assumed to be negligibly small in the transformation. The arrival flux can be taken to be
proportional to the density in spatially homogeneous environments. In spatially structured
situations, SUs can interfere and handshaking protocols can be formulated to understand
the relationships between organelles and the cytosol, see {249}.

The specification of behaviour of enzyme molecules has strong parallels with that of
individuals from an abstract point of view, cf {256,257}. If we identify the enzyme with an
individual, and the product with reserve, the transformation rate is directly given by the
functional response (2.2). We encountered the SU fed by a flux already in the mechanism
behind the reserve dynamics {39}.
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A Figure 3.6: Uptake of a single substrate is well quantified on the basis of a fixed

} handling time of substrate (prey) by the uptake machinery. The time need not be

9, constant, but it must be independent of substrate density [784, 785]. The handling

,7 time not only includes mechanical handling but also metabolic processing. This

B is why eating prey by predators and transformation rate by enzymes depend in
a similar way on substrate (food) density.

0.

3.7.1 From substrate to product
The simplest transformation of substrate S to product P by enzyme £ can be written as
S+E€E=SE=PE=PH+E,

The backward fluxes (controlled by the rates bp, kpg and kg) might be small, not because
of enzyme performance as such, but because of the spatial organisation of the supply of
substrate and the removal of product by transporters. The transformation can then be
captured in a simple diagram, see Figure 3.6. The differences from classic enzyme kinetics
do not affect the simple one-substrate one-product conversion in spatially homogeneous
environments, but do affect more complex transformations.

3.7.2 Rejection vs Synthesising Units

Let us consider a very simple chemical transformation, where an enzyme requires one copy
of each of two substrates, present in concentrations X, and Xpg, to produce a product,
present in concentration X¢.

Classic enzyme kinetics states that substrate-enzyme association follows the law of mass
action, so the rate is proportional to the product of the concentrations, and dissociation
is a first-order process, so the rate is proportional to the concentration of the complex.
Given the dissociation rate parameters kA, kp and kc, and the association parameters ba
and bp, the change in in the fractions of enzyme in the various binding states is given by

1 = 0.404+05+04p (3.29)
jte = keOap+ kaba + kpbp — (baX4+ bpXp)b.. (3.30)
Z@A = kpOap +baXa0. — (ka+ bpXp)0a. (3.31)
57593 = ksOap+ bpXph. — (kg +baX4)0.5 (3.32)

where 6.. is the fraction of free enzymes. Steady state is reached when the substrate—
enzyme complexes do not change in concentration, so %9** = 0. The relative abundance
of enzyme-substrate complexes is now given by

-1

6. 1 1 1 1 1
QA. . QSA]CA —$B—]{,‘A 0 1 0
9.3 - rp 0 —1—£L’AI€A kA 0 (333)
GAB 0 B IAkA —1—]€A—/€C 0
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with 24 = XAEA/I%A, rp = XBbB/kB, ka= I%:A/I%B, ko = kc/kB. The appearance rate of
product is for Jcm = I%CXJF given by
d . .
%XC = JC = JCmeAB (334)
Two limiting cases are of special interest: the Synthesising Unit (SU), where the
substrate-enzyme dissociation rates are small, and the Rejection Unit (RU), where these
rates are high, but the association rates are high as well. (Another way to obtain the same
RU is when the product—enzyme dissociation rate ke is small, and the total amount of
enzyme X is high, but this hardly applies to organisms.) These limiting cases give the
following results:

SU: kg, kg — 0 RU: k4, kg, ba, bg — o0 and IZ—A, ’5—3 constant
A B
for x4 = X4 and 25 = Xp2& for g = X424 and 25 = Xpl&
ko ke ka kg
c 1+a:A1+mBl—(xA+wB)*1 ¢ (1+xA1)(1+xBl)
0. (xa+zp)! 0. (warp)~!
-1 -1 . —1 .
04 _ an;Bl(a;A +xpB) Jc Oa. _ J}Bl Jo
0.5 zpxy (xa+xp)~! | Jom 0.5 T, Jom
OB 1 OaB 1

Despite of its popularity [69, 336, 337, 846], the RU has a number of problems that make
it less attractive than the SU. The first, but perhaps not the most important, problem is
a mild form of inconsistency at the molecular level. The law of mass action is used for
association between substrate and enzyme. It requires completely homogeneous mixing,
which is hard to combine with infinitely large dissociation and association rates; as soon
as a substrate molecule is rejected by an enzyme molecule, it becomes attracted again
if the mixing rate is not infinitely large, which is obviously not realistic. Moreover, it
is hard to see in terms of molecular geometry and electrical charge distributions how a
high association rate can combine with a high dissociation rate. The SU is much more
natural in this respect, because the binding sites on the enzyme molecule mirror-match the
substrates in shape and electrical charge, which makes it likely that the substrate-enzyme
dissociation rate is small compared to the product—enzyme dissociation rate, because of the
shape and charge changes during the substrates-product transition. Product molecules do
not mirror-match the substrate-bindings sites in shape and electrical charge, and products,
not substrates, are rejected by the enzyme.

For very large concentrations xp, both SU and RU simplify to what is known as
Michaelis-Menten kinetics (MM-kinetics): Jo = Jom(1 + 23')~!, but the convergence
for SU is much faster than for RU. In fact, the RU converges really slowly to MM-kinetics,
which means that substrate concentrations must exceed the saturation constant by at least
an order of magnitude to become (almost) non-limiting. A substrate is defined to be non-
limiting if a change in substrate concentration does not affect the production rate. Given
the fact that models for uptake and use of nutrients are likely to include only a small sub-
set of the required nutrients and compounds, the implication that compounds that are not
included must be really abundant is not acceptable. Last, but not least, the multiplicative
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model for nutrient uptake, as implied by the RU, is found to be inconsistent with empirical
data [295]. MM-kinetics, and its various generalisations, plays a central role in models
for enzyme kinetics and substrate (food, nutrient) acquisition by organisms; it was first
described by Henri in 1902 [494].

Given identical production rates if only one substrate is limiting (this is when the other
substrate is abundant), the production rate of the RU is always smaller than that of the
SU, JC su > Jo ry, while their ratio tends to infinity for small substrate concentrations
(x4, xp — 0).

3.7.3 Four basic classes of transformations

When two substrates are complementary (or supplementary if you wish), i.e. they are
both required in fixed stoichiometric proportions, the absence of one substrate prevents
the uptake of the other; think, for instance, of ammonia and carbon dioxide as substrates
and amino acids as reserves. Empirical evidence frequently indicates that the uptake of
the most abundant substrate (relative to the needs) is set by the least abundant substrate:
the popular minimum rule of von Liebig [703]. The rule originally related biomass yields
to nutrient levels, but was later applied to uptake processes [42]. However, this application
becomes complex if reserves are included; the environment may not contain the substrate,
but growth is not restricted because of the presence of reserves. If the role of limiting and
non-limiting substrate does not switch at the same time for all individuals in the population
in a variable environment, it is almost impossible to evaluate population behaviour on the
basis of individual behaviour. Moreover, sharp switches are not realistic at the molecular
level, because of the intrinsic stochasticity of the substrate arrival process.

Let us characterise the states of the SUs in bounded fractions with vector 8, while
170 = 1 and 0 < ; < 1 for all states i. The change in bounded fractions of SUs can be
written as —0 k:O for a matrix of rates k with diagonal elements k:u = =>4 k:w, while
ku > 0, so 1Tk: = 0. Using a time scale separation argument, a flux of metabolite X can
be written as Jxy = J76*, with weight coefficients J and fractions @* such that 0 = k6*.
Substrates can be clas&ﬁed as substitutable or complementary and binding schemes as
sequential or parallel. These four classes comprise the standard SU kinetics see Figure 3.7,
and, in retrospection, have direct links with waiting time theory derived by O’neil et al
[852].

Mixtures of the four classes of standard kinetics have the property that k = > k;,
where k is the matrix of rates of the mixture, and k; that of a standard type.

Cows eat lots of grass because of the low protein content of grass. The micro-organisms
in their stomaches transform cellulose into products such as acetate, propionate, butyrate
and valerate [1018], which they cannot use as substrate in this anaerobic environment. The
cow absorbs these products only partly, so energy supply is ad libitum. Feeding the cow
some extra protein allows to reduce the required grass intake by a factor of 10. Grass and
protein are to some extent substitutable for a cow; the conversion from grass and protein to
cow must be described by a mixture between substitutable and complementary compounds
to capture that the yield of the combination of grass and protein is much higher, especially
if proteins are extracted from the cow in the form of milk. It is a consequence of work
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substitutable complementary
ycaA — CsyopB — C | ycaA+ycpB — C Figure 3.7: The interaction of sub-
strates A and B in transformations
A 0. B A 0. into product C' can be understood
)Z x )/ on the basis of a classification of
substrates into substitutable and
2 ¢ 0.1 O ¢ complementary, and of binding into
= X\ sequential or parallel. The symbol
'é B 0.5 0.+, represents a SU that is bound
2 - to the substrates *; and x*g9, the
Sl Jatis . 1 .
e |JC = m Jc = W dot representing no substrate, so 6..
= G _ it = jo/yoa represents a unbounded SU. The
AT 14 [katil ke A symbol y., «, denotes a stoichio-
metric coupling coefficient. jX is
A 0. B A 0. B the accepted flux of A; j. = pij«,
)Z x )/ \Q where p, is the binding probability;
N C 0.5 o1 C 0p §" = yesjl; ks is the dissociation
N 2%4 X\ / rate. Modified from [642].
% B 0ap A B 0ap A
&
3
&l Jo = kzlyi?xl kg%li?};l Jc = l%al-l-jxfl-i-jgll—(jx-f—jg)*l
Jh = ﬁ Jx =Jc/yca

with generalised compounds; some chemical compounds serve as energy substrate, others
as nutrient (building blocks). Grass and protein weigh these functions differently. Another
example of the use of mixtures between substitutable and complementary compounds is
in the gradual transition between these basic types which occurs in evolution of symbiosis
that is based on syntrophy, see {393}.

Number of SUs

When a flux of substrate arrives at a set of N SUs, it depends on the local spatial organisa-
tion how this translates to the arrival rate of substrate for each SU. Classic enzyme kinetics
works with the law of mass action, which takes the meeting frequency proportional to the
product of the concentrations of substrate and enzyme, using a diffusion argument; the
arrival rate is proportional to the concentration of substrate. The enzyme molecules don’t
interact and the arrival rate per SU is the substrate flux divided by N. SUs dynamics,
however, allows for interaction.

Suppose that the SUs are localised on a membrane and can bind substrate molecules
that are within a threshold distance from the binding site. If the distance between the SUs
is smaller than two times this threshold distance, they start to interact, and the accepted
substrate flux becomes a satiating function of the number of SUs. Such a situation occurs,
for instance, in the case of carriers for the uptake of substrate in the outer membrane.
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Figure 3.8: Left: Interaction between the conversions S; — P and Sy — P, with preference
for the first transformation. 6, indicates the fraction of synthesising units that are bound to
substrates. Right: The standard inhibition scheme, where S5 inhibits the transformation S; — P.

3.7.4 Inhibition & preference

Preference frequently occurs in the uptake of substrates, sometimes for nutritional require-
ments, or when a predator became specialised on particular prey species, or to minimise
risks on injury (selection of old or weak prey individuals). Inhibition occurs in gene ex-
pression, where carriers for a particular substrate are not synthesised as long as another
substrate is present. We here deal with interacting substitutable substrates that are bound
in a parallel fashion. Standard inhibition makes part of the SUs unavailable for catalysing
transformations (Figure 3.8). Stronger forms of interaction can occur if one substrate is
able to replace another that is already bound to an SU (Figure 3.8).

Let js, and jg, be the fluxes of substrate S; and S, that arrive at an SU, and pg, and
ps, be the binding probabilities. The binding kinetics, i.e. the changes in the bounded
fractions of SUs, for scaled fluxes j§ = ps,js;, js, = ps,js, and 1 = 0. 4 0g, + 0O, are

d

d ) :
% 705’1 = ij'l (‘9 + 052) - kS1951 (335)

05’2 - jgge - (]g’l + k52)052; dt

where l%:gl and I%S2 are the dissociation constants of the SU-substrate complexes.

Supply kinetics

For the binding fraction at steady state, the production flux of P equals jp = ypg, j;l +

yPSQj:g;, while the fluxes of S; and Sy that are used are

' ks, ~ ks, ks,

. * 1J5; 4 * 1752/ 5

Jg, = ks, = ———; g, = ks,05, = - . 5
S A )

(3.36)

Although their derivation has been set up slightly differently, this formulation is used in
[140] to model substrate preference and diauxic growth in microorganisms, see {284}.

Demand kinetics

If the flux of P is given (and constant), we require that

jp = ypsiks,0s, + yps,ks,0s, (3.37)



104 3. Energy, compounds & metabolism

Figure 3.9: The scheme for general co-

W metabolism of the transformations A — C with

B — D.

is constant at value /%p, say, by allowing /%S1 and I%SQ to depend on 6,. The following rates
fulfils the constraint:

ks, = kp/0 and ks, = pkp/0 with 6 = yps,0s, + yps,wls,, (3.38)

where the preference parameter pg, = kg, /ks, has the interpretation of the ratio of disso-
ciation rates. For the fractions in steady state, the fluxes of S; and S5 that are used to
produce P are

*

952 2akp/yp52

0~ 2A + yps, (VB2 — 4AC — B)’

with A = pg,js,kpypsy, B = yps,C + (1 = ps,)js, + Js,)kp, C = —j5, (Js, +Js,)-

Tolla [1166] proposed this model to quantify the preference to pay maintenance (flux
jp) from reserve (flux jg,) rather than from structure (flux jg,). Figure 3.8 presents a
numerical study that shows that this model can mimic a switch model, without having a
switch.

Another variation on the demand version of (partly) substitutable compounds was
studied by [675], where carbohydrate reserve is preferred above protein reserve for pay-
ing the energy-maintenance in zooplankton, but protein reserve is required to pay the
building-block maintenance. This increase in metabolic flexibility has the consequence
that a nutrient-light-phytoplankton-zooplankton system evolves to a situation in which it
becomes both energy and nutrient limited, rather than a single limitation only.

Jg = (kp — Yrs,jd)ysip and  jg = pkp (3.39)

3.7.5 Co-metabolism

The biodegradation of organic pollutants in soils can sometimes be enhanced by adding
readily degradable substrates. This is a special case of a more general phenomenon that
the processing of one substrate affects that of another.

Suppose that substrates A and B are substitutable and are bounded parallelly and that
the binding probability of each substrate depends on binding with the other substrate as
described and applied in [142]. We study the process 1 A — yca C and 1 B — yop C. So
we have three binding probabilities of each substrate; for substrate A we have the binding
probabilities 0 if A is already bounded; p,4 if A and B are not bounded; p4p if B is bounded,
but A is not.

No interaction occurs if p4 = pap; full co-metabolism occurs if py = 0. See Figure 3.9.
Sequential processing occurs if pag = ppa = 0. The dissociation rates k 4 and I%B of product
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C, and the stoichiometric coefficients yac and ypc, might differ for both substrates. The
binding period is measured as the period between arrival of substrate and dissociation of
product, so it includes the production period.

For 7%\ = japa, j4 = japas, jp = JBPB, j5 = jBPBA, the fractions of bounded SUs
follow the dynamics

d . .
1 = 0.4+04 +05+04p; £9U = —(jy +J5)0. + kaba + kpb.p (3.40)
d

d y
EQA = A9 —(k’A +j )HA +k‘BeAB, %93 :]BG (k‘B —|—j )6B+kA9AB

Assuming pseudo steady state (i.e. dg . =0 for 0,, = = 07,), the production flux amounts

to

dt

jo = jea+jon =ycaka(0 +04s) +yopks(05 + 045) (3.41)

kA+kB)+J”(J +ig) //J (ka+kp)+i'%4 (34 +3%)
i A //JB( sUatiB i i A AUAtIp
YocarkAa .]A B + ] +]//+kA+kB + YcBRB jB A + ] +]//+kA+kB /o i

- "0 (- 14’)

g : k+JJkA+JJ(J+J)
s k‘ k‘ k JaIBkB+iBi AIBUaTIp
Jakp + jpka+ kakp + JiA i katkp

If B represents a xenobiotic substrate, and A a natural one, the case ps = pap and
pp = 0 is of special interest. The use of A is not effected by B, but B can only be processed
if A is present. The expression for the product flux simplifies for j/; = j’{ and j5 = 0 to

_ Yeaka yokp I + ka + kB)
1+ kajyt 1+ k?AJA Je(h + k) + k(i + ka+ kp)

(3.43)

The accepted flux of substrate B, so the specific biodegradation rate of B, is j}; = ypcjo.s
with ypc = yop, and jop is given by the second term in the expression for jc.

3.8 Metabolism

3.8.1 Trophic modes: auto-, hetero- & mixotrophy

Trophic strategies are labelled with respect to the energy and the carbon source, as indi-
cated Table 3.4. Animals typically feed on other organisms, which makes them organo-
chemotrophs, and so heterotrophs. If these organisms are only animals, we call them
carnivores, if they are only veridiplants (glaucophytes, rhodophytes, or chlorophytes, in-
cluding plants), we call them herbivores, and in all other cases we call them omnivores.
The implication is that daphnids, which also feed on heterokonts, ciliates and dinoflag-
ellates, should be classified as omnivores, although many authors call them herbivores.
Many trophic classifications are very imprecise and sensitive to the context.

Animals food has a complex composition (mixtures of polysaccharides, lipids and pro-
teins), from which animals extract energy, electrons, as well as all necessary ‘building’
blocks: carbon, nitrogen, vitamins, etc. As is the case in many other organisms, some of
the amino acids, purines and pyrimidines in food are taken up and used as building blocks
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trophy hetero- _auto- Table 3.4: The classification of trophic modes
among organismes.

energy source chemo photo
carbon source organo litho

Figure 3.10: The next time you look at your car or
bike, you will remember that corrosion is an exam-
ple of chemolithotrophy. Most corrosion is microbe-
mediated and the main culprit is the iron bacterium
Gallionella; it uses 220 g of iron-II and produces 430
g of rust to make just 1 g of cells from carbon dioxide,
water and ammonia [738]. It excretes long strands of
rust at one side of the cell.

directly, while other amino acids are synthesised de novo if not available in food. They thus
obtain energy from oxidation-reduction reactions, and carbon from organic compounds.
This classifies them as chemo-organotrophs (chemo- is opposite to photo-; organo- is op-
posite to litho-; the latter dichotomy is synonymous with hetero- versus auto-). They
frequently use dioxygen as an electron acceptor. As a consequence, they excrete carbon
dioxide and nitrogen waste, such as ammonia or urea, see Figure 3.11.

Most plants, in contrast, use light energy, and take carbon dioxide as a carbon source.
This classifies them as photolithotrophs. Energy that comes from light is usually stored in
polysaccharides and /or lipids, which also serve as carbon reserves. Plants use water, rather
than organic compounds, as an electron donor, and, with carbon dioxide as the electron
acceptor, dioxygen is produced in the light. Most plants can synthesise all compounds they
need from very simple minerals (nitrate, phosphate, etc), but some plants also use complex
organic compounds (for instance the parasitic plants that lack chlorophyll, or the hemi-
parasites that still have chlorophyll). Quite a few species of plants in unrelated families
are purely heterotrophic. So plants combine chemo-organotrophic with photo-lithotrophic
properties, which classifies them as mixotrophs.

Bacteria, as a group, use a wide range of metabolic modes, some resembling those
of animals or plants. The purple non-sulfur bacteria Rhodospirallacea use light as their
energy source, but different kinds of organic compounds as the electron donor and acceptor.
This classifies them as photo-organotrophs. Most photo-assimilable organic compounds
can also be respired, but benzoate, for instance, can be used in the light, but cannot be
respired [1100]. Sulfur bacteria use light as an energy source, carbon dioxide as a carbon
source, and HsS, elemental sulfur or Hy as an electron donor. Like plants, they classify as
photolithotrophs. Most bacteria are chemotrophs, however, which use oxidation—reduction
or fermentation reactions to fuel energy-demanding reactions. Figure 3.10 gives an example
of chemolithotrophy.

Chemolithotrophy is mostly confined to the bacteria. However, several eukaryotes can
respire nitrate non-symbiotically. The ciliate Lozodes (Karyorelicta) reduces nitrate to
nitrite; the fungi Fusarium oxysporum and Cylindrocarpon tonkinense reduce nitrate to ni-
trous oxide; the foraminifera Globobulimina and Nonionella live in anoxic marine sediments
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and are able to denitrify nitrate completely to Ny [976].

Individuals of many phototrophic prokaryotes and protoctists can also activate the
chemotrophic mode, depending on the environmental conditions, which somewhat degrades
the usefulness of the classification. They are, therefore, mixotrophs. Figure 3.11 illustrates
that organisms can differ in their assimilation strategies, but otherwise have substantial
similarities in the organisation of metabolism.

Some organisms, like ourselves, rapidly die when dioxygen is not available. Intertidal
animals (crustaceans, molluscs), animals in sediments, parasitic animals, yeasts and gold-
fish can survive its absence for some time, by switching from respiration to fermentation
(cf. {160}), see [170] for a review. (At some stage, all need some dioxygen to synthesise
steroids or collagen [343]). Some bacteria do not need dioxygen, but can survive in its
presence, but others rapidly die when exposed to dioxygen. This is because dioxygen is
rather reactive and can form free radicals in the cell, which are extremely reactive. Or-
ganisms can only survive in the presence of dioxygen (aerobic conditions) if they ‘catch’
these free radicals efficiently with specialised enzymes, called superoxide dismutases (some
prokaryotes use high concentrations of Mn?" or other means), to convert the radicals to
the highly toxic hydrogen peroxide, and subsequently back to dioxygen, using the enzyme
catalase. The handling of dioxygen remains rather tricky, however, and is at the basis of
the process of aging, cf. {209}.

From a dynamic point of view, it is important to realize that the availability of the
various nutrients and light can fluctuate wildly, while autotrophs must couple them to
synthesise structural biomass with a constant chemical composition. This requires the in-
stallation of reserves, one for each nutrient (mineral) that has to be taken up, with rules
for the use of these reserves and their replenishment. This is less necessary for chemo-
organotrophs such as animals; an imbalance between the composition of food and their
needs to synthesise structural biomass can be modelled realistically, as a first approxima-
tion, by a conversion of food into reserves that is not very efficient. The match is perfect for
animals that feed on closely related species, and explains why they evolved in many taxa:
mammal-eating mammals, starfish-eating starfish, comb jelly-eating comb jellies, etc.

Animals can buffer varying availabilities of food with a single reserve, because all re-
quired nutrients covary, while plants also need auxiliary reserves, because mineral nutrients
and light vary independently. Since growth of structural biomass can change, the machin-
ery to synthesise biomass would face very busy and very quiet periods if they were a fixed
part of the structural biomass. (The part must be fixed on the basis of the homeostasis
assumption.) If the synthesis machinery is part of the reserves, however, the fluctuations
in activity would be much less, and the amount of required machinery could be ‘chosen’
much more economically, see {139}. This is because growth tends to increase with the re-
serves, as we will see. Auxiliary reserves for a particular nutrient, in contrast, can increase
considerably if growth is limited by other nutrients or energy, see {193}. This is how large
(auxiliary) reserves can accompany low growth rates. The homeostasis assumption also
applies to each auxiliary reserve. Homeostasis for the organism as a whole decreases with
an increasing number of reserves, and the composition of the body increases in flexibility.
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Figure 3.11: A simplified map of metabolism.
food The second line gives the main polymers that are
-~ )% N used as reserves, below that are the monomers
) i . that play an active role in metabolism. The bot-
protein RNA polysaccharide lipid wax ester . . .
tom line gives the main end products and ex-
ternal sources. Dioxygen is used as an electron
nucleotide fatty acid acceptor by the respiratory chain, but some-
amino acid _J 5,6-C sugar  glycerol times other electron acceptors are used. Most
glu(‘;ose pathways are reversible, although different sets
pyru‘vate D of enzymes are usually involved. Most animals
Acety‘l—CoA ) can synthe&se lipids from polysaccharides, but
not vice versa. Heterotrophs use food to supply
TCA"Cyde the reserve polymers, autotrophs use light and
resglﬁflory minerals to synthesise sugar and animo acids (in
l? “ I grey), mixotrophs do both. TCA = tricarboxylic-
NH; Op light H0  CO acid.

3.8.2 Central metabolism

Central metabolism is the core of metabolism that deals with energy extraction from
glucose, and the formation of building blocks for other main compounds, such as lipids,
animo acids and RNA. Its evolution is discussed at {372}.

The central metabolic pathway of many prokaryotes and almost all eukaryotes (Figure
3.11) consists of four main modules [657].

The Pentose Phosphate (PP) Cycle comprises a series of extra-mitochondrial trans-
formations by which glucose-6-phosphate is oxidised with the formation of carbon
dioxide, reduced NADP and ribulose 5-phosphate. Some of this latter compound is
subsequently transformed to sugar phosphates with 3 to 7 or 8 carbon atoms, whereby
glucose-6-phosphate is regenerated. Some ribulose 5-phosphate is also used in the
synthesis of nucleotides and amino acids. Higher plants can use the same enzymes
also in reverse, thus running the reductive pentose phosphate cycle. The PP cycle
is primarily used to inter-convert sugars as a source of precursor metabolites and to
produce reductive power. Theoretical combinatorial optimisation analysis indicated
that the number of steps in the PP cycle is evolutionarily minimised [782; 781], which
maximises the flux capacity [488, 1209].

The Glycolytic Pathway (aerobically) converts glucose-6-phosphate to pyruvate or (an-
aerobically) to lactate, ethanol or glycerol, with the formation of 2 ATP and 2 NADH.
The transformations occur extra-mitochondrially in the free cytoplasm. However, in
kinetoplastids they are localised in an organelle, the glycosome, which is probably
homologous to the peroxisome of other organisms [52, 196]. The flux through this
pathway is under control by phospho fructokinase and by hormones. Heinrich &
Schuster [488] studied some design aspects of the glycolytic pathway. Most pyruvate
is converted to acetyl and bound to coenzyme A.
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The TriCarboxylic Acid (TCA) Cycle also known as the citric acid or the Krebs cy-
cle, oxidises (without the use of dioxygen) the acetyl group of acetyl coenzyme A to
two carbon dioxide molecules, under the reduction of 4 molecules NAD(P) to NAD(P)H.
In eukaryotes that contain them, these transformations occur within their mitochon-
dria. Some plants and micro-organisms have a variant of the TCA cycle, the glyoxylate
cycle, which converts pyruvate to glyoxylate and to malate (hence a carbohydrate)
with another pyruvate. Since pyruvate can also be obtained from fatty acids, this
route is used for converting fatty acids originating from lipids into carbohydrates.
Some plants possess the enzymes of the glyoxylate cycle in specialised organelles, the
glyoxysomes.

The Respiratory Chain oxidises the reduced coenzyme NAD(P)H, and succinate with
dioxygen, which leads to ATP formation through oxidative phosphorylation. Simi-
larly to the TCA cycle it occurs inside mitochondria. Amitochondriate eukaryotes
process pyruvate through pyruvate-ferredoxin oxidoreductase, rather than through
the pyruvate dehydrogenase complex. If the species can live anaerobically, the respi-

ratory chain can use fumarate, nitrate, or nitrite as electron acceptors in the absence
of dioxygen [1164].

The glycolysis, TCA cycle and respiratory chain in series convert

aneaerobic: glucose +2ADP 4+ 2P — 2ethanol +2CO; +2ATP + 2H50
aerobic:  glucose + 60, +30ADP +30P — 6CO; 4+ 30ATP + 36 H,O

Many intermediary metabolites escape further conversion, however. In combination
with nutrients (phosphates, sulphates, ammonia, iron oxides, etc), the first three pathways
of the central metabolic pathway provide almost all the essential cellular building blocks,
including proteins, lipids, and RNA. The universality of this central metabolic pathway is
partly superficial or, if you like, the result of convergent evolution because the enzymes run-
ning it can differ substantially. This diversity in enzymes partly results from the modular
make-up of the enzymes themselves. Some variation occurs in the intermediary metabolites
as well.

Obviously, glucose plays a pivotal role in the central metabolism. However, its accu-
mulation as a monomer for providing a metabolism with a permanent source of substrate
would give all sorts of problems, such as osmotic ones. This also applies to metabolic
products. To solve these problems, cells typically store the supplies in polymeric form
(polyglucose (i.e. glycogen), starch, polyhydroxyalkanoate, polyphosphate, sulphur, pro-
teins, RNA), which are osmotically neutral. Their storage involves so-called inclusion
bodies, the inherent solid/liquid interface of which controlling their utilisation dynamics
(see reserve dynamics in chap 8).

3.9 Summary

The quantification of the amount and composition of biomass is discussed, including the
energy and entropy aspects. Classes of organic and inorganic compounds are briefly intro-
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duced for later use and conversions between volumes, masses and energies are discussed.

Macrochemical reaction equations are presented and applied in the dynamics of iso-
topes. This dynamics has mixing and fractionation aspects. The dynamics of fractiona-
tion from pools and from fluxes differ. Selection from pools is on the basis of differential
velocities of molecules; anabolic versus catabolic fluxes select on the basis of differential
strength of bounds.

DEB theory makes frequent use of Synthesising Units (SUs): generalised enzymes that
follow the rules of classic enzyme kinetics with two modifications: their dynamics is spec-
ified in terms of substrate fluxes, rather then substrate concentrations, and the backward
fluxes are taken to be negligibly small as a result of the spatial organisation of transport
processes. Processing can be classified into sequential and parallel and compounds in com-
plementary and substitutable. Mixtures of these basic types are possible, and variations
are discussed to deal with e.g. co-metabolism and inhibition. Demand processes can be
modelled with SUs by letting dissociation rates depend on the relative frequency of SUs
in the various binding states. As a result of working with fluxes, SUs dynamics can deal
spatial structure, with flexibility for how the rates depend on the number of copies. SUs
can interact on the basis of handshaking protocols.

The trophic modes auto-, hetero- and mixotrophy are described and the four modules
of central metabolism are summarised.



Chapter 4

Univariate DEB models

This chapter discusses the fluxes of compounds in univariate DEB models (one type of
substrate, one reserve and one structure). Univariate DEB models follow directly from the
assumptions of Table 2.4 for the standard DEB model, but the assumption of isomorphy is
no longer used.

Figure 4.16 shows the example of Klebsiella that lives on glycerol. It must have many,
rather than a single reserve. Multiple reserve systems, which are discussed in the next
chapter, can behave as single reserve systems in the context of DEB theory, if growth is
limited by a single nutrient and all rejected reserve fluxes are excreted.

I start with a more detailed discussion of phenomena at varying food densities, followed
by effects of changes in shape during growth. The rest of the chapter discusses mass and
energy aspects that are implied by the assumptions of Table 2.4 and show, for instance,
why the fluxes of essential compounds, as well as the dissipating heat, are weighted sums
of the three basic powers assimilation, dissipation and growth. Therefore, dissipating heat
can also be written as a weighted sum of three mineral fluxes: carbon dioxide, dioxygen
and nitrogenous waste. This relationship is the basis of the method of indirect calorimetry.
After half a century of wide application, this empirical method is finally underpinned theo-
retically. Simple extensions of univariate DEB models can deal with drinking by terrestrial
organisms.

4.1 Changing feeding conditions

Food density, as experienced by an individual, is never really constant and feeding fre-
quently takes the form of meals. The next subsections analyse phenomena of changing
food availability at an increasing time scale. Adaptations to seasonal variations in food
availability are further discussed at {288}.

4.1.1 Scatter structure of weight data

For simplicity’s sake, the processes of feeding and growth have been modelled determin-
istically, so far. This is not very realistic, as (feeding) behaviour especially is notoriously
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Figure 4.1: Computer-simulated scaled weight'/3, (W,,/dy V;,)'/3, is plotted against scaled time
in the left figure, if feeding follows an alternating Poisson process. The shade areas give frequency
intervals of 99, 90 and 50 %, the drawn curve gives the mean and the dotted one gives the
deterministic growth curve, if feeding is constant at the same mean level. The coefficient of
variation is given in the right figure. The parameters are Ag = 11.666, Ay =5, g = 1, [, = 0.05
and wg[Mgm|/dy = 0.5. The small difference between the mean and deterministic curves relates
to the step size of the numerical integration (Mrs F. D. L. Kelpin, pers. comm.).

erratic. This subsection discusses growth if feeding follows a special type of random pro-
cess, known as an alternating Poisson process or a random telegraph process. Because of
the resulting complexity, I rely here on computer simulation studies.

Suppose that feeding occurs in meals that last an exponentially distributed time interval
t, with parameter \;, so Pr{t; > t} = exp(—t\;). The mean length of a meal is then
}\fl. The time intervals of fasting between the meals is also exponentially distributed,
but with parameter Mo. Food intake during a meal is copious, so the scaled functional
response switches back and forth between f = 1 and f = 0. The mean value for f is
Ef = /.\0(/.\0 + ).\1)*1. This on/off process is usually smoothed out by the digestive system,
but let us here assume that this is of minor importance. In the change of scaled length
and scaled reserve density in (2.22), time can be scaled out as well, using 7 = thy and a
single parameter, g, is involved in this growth process, while two others, Ay and A\, occur
in the description of the on/off process of f. (Note that the A’s do not have dots, because
scaled time is dimensionless.) The process is initiated with [(0) = [, and e(0) equals the
scaled energy density of a randomly chosen adult.

Figure 4.1 shows the results of a computer simulation study, where scaled weight relates
to scaled length and scaled energy density, according to (3.2) as

Ww(dvvm)_l = (1 + ewE[MEm]/dv)l3 (41)

The resemblance of the scatter structure with experimental data is striking, see for instance
Figure 3.2. This does not imply, however, that the feeding process is the only source of
scatter. Differences of parameter values between individuals are usually important as well.
The results do suggest a mechanism behind the generally observed phenomenon that scatter
in weights increases with the mean.
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4.1.2 Step up/down in food availability

The difference between age-based and size-based models becomes apparent in situations of
changing food densities. As long as food density remains constant, size-based models can
always be converted into age-based ones, which makes it impossible to tell the difference.

Figure 4.2 shows the result of an experiment with Daphnia magna at 20°C, exposed to
constant high food densities with a single instantaneous switch to a lower food density at 1,
2 or 3 weeks. The reverse experiment with a single switch from low to high food densities
has also been done, together with continuous exposure to both food densities. Figure 2.10
has already shown that the maintenance rate coefficient feas and energy conductance ¥ can
be obtained by comparing growth at different constant food densities. These compound
parameters, together with ultimate and maximum lengths and the common length at birth,
have been obtained from the present experiment without a switch. These five parameters
completely determine growth with a switch, both up and down, leaving no free parameters
to fit in this situation. The excellent fit strongly supports to the DEB theory.

4.1.3 Mild starvation

If a growing individual is starved for some time, it will (like the embryo) continue to grow
(at a decreasing rate) till it hits the non-growth boundary of the state space (e = I).
Equation (2.37) describes the e, l-path. Depending on the amount of reserves, the change
in volume will be small for animals not far from maximum size. Strémgren and Cary
[1128] found that mussels in the range of 12-22 mm grew 0.75 mm. If the change in size
is neglected, the scaled reserve density changes as e(7) = e(0) exp(—g7/l) and the growth
of scaled length is L1 = ¢ Ei(ﬁ((:ﬁ://f))lé//i((%)) Figure 4.3 confirms this prediction.
Respiration during starvation is proportional to the use of reserves; see {142}. It should,
therefore, decrease exponentially in time at a rate of v/L if size changes can be neglected;
see (2.10). Figure 4.4 confirms this prediction for a daphnid. If a shape coefficient of
op = 0.6 is used to transform the length of D. pulez into a volumetric one, the energy
conductance becomes v = 0.6 x 1.62 x 0.23 = 0.22mmd~!. This value seems to be
somewhat small in comparison with that for D. magna, cf Figure 2.10, and the mean
energy conductance of many species, cf. {303}. The next section suggests an explanation

in terms of changes in allocation rules to reproduction during starvation.

4.1.4 Prolonged starvation

As long as growth is non-negative, i.e. e < [+ lp, see (2.22), standard dynamics applies. If
(full or partial) starvation continues, the response can be at the following levels depending
on the species and environmental factors

1 continue the standard reserve dynamics till death follows; don’t change the k-rule for
allocation; use the buffer for reproduction (little data are available to tell us how exactly,
but see [309] for studies on polychaetes and [877] for studies on anchovy); if necessary
shrink (i.e. pay somatic maintenance from structure). Variant 1: partially reduce somatic
maintenance costs. Variant 2: migrate to better locations or switch to the dormant state.
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Figure 4.2: Length-at-age for the waterflea
Daphnia magna at 20°C feeding at a high (e)
and a low (o) constant density of the green
alga Chlorella pyrenoidosa (a), and with a
single interchange of these two densities at 1
(bye), 2 (c,f) or 3 (d,g) weeks. The curves b
to g describe the slow adaptation to the new
feeding regime. They are completely based on
the 5 parameters obtained from a, so no ad-
ditional parameters were estimated. From [634].
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Figure 4.3: Growth rate in the starved Figure 4.4: The dioxygen consumption rate
mussel Mytilus edulis at 21.8°C. Data from () and the carbon dioxide production rate
Stromgren and Cary [1128]. The param- (o) in starved Daphnia pulex of 1.62mm at
eter estimates are ﬁ = 1259, ky = 20°C. Data from Richman [962]. The expo-
2.361073d! and v = 0.252cmd L. nential decay rate is 0.23d1.

2 like the previous rule, but change the x-rule for allocation when the reproduction
buffer is empty.

3 change the reserve dynamics to pay somatic maintenance only; no allocation to ma-
turity maintenance, maturation or reproduction.

4 change the reserve dynamics by converting reserve to eggs (seeds); convert structure
to eggs (as far as possible). This is the case of emergency reproduction, typically followed
by death. It is a popular strategy among plants.

Sometimes systems start to respond at level 1, but then continue to level 2, 3 and 4.

Pond snails seem to continue energy allocation to reproduction during prolonged star-
vation under a light:dark 16:8 cycle (summer conditions, denoted by LD), but they cease
reproduction under a 12:12 cycle (spring/autumn conditions, denoted by MD) [126, 1298].
This makes sense because under summer conditions, an individual can expect high primary
production, so, if it has consumed a plant, it will probably find another one in the direct
neighbourhood. Under spring/autumn conditions, however, it can expect a long starvation
period. By ceasing allocation to reproduction, it can increase its survival period by a factor
of two; see Figure 4.6. Another aspect is that offspring have a remote survival probability if
there is no food around. They are more vulnerable than the parent, as follows from energy
reserve dynamics. These dynamics can be followed on the basis of the assumption that LD
snails do not change the rule for utilisation of energy from the reserves, and neither MD
nor LD snails cut somatic maintenance.

This example shows that the diurnal cycle also affects the allocation under non-starvation
conditions in the pond snail Lymnaea stagnalis. This is obvious from the ultimate length.
Snails kept under a 12 h:12 h cycle (MD conditions) have a larger ultimate length than
under a 16 h:8 h cycle (LD conditions) [1298]. MD snails also have a smaller von Berta-
lanffy growth rate and a smaller volume at puberty, but MD and LD snails are found to
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Figure 4.5: Dry weight during starvation of long-day (LD, left) and mid-day (MD, right) pond

snails Lymnaea stagnalis at 20°C. The left figure gives dry weights (z-axis) as a function of
starvation time (z-axis) and length (y-axis: 1.6-3.3 cm). In the right figure, the length of the MD
pond snails was 3cm. From [1298]. The surface and curve are fitted DEB-based expectations.
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Figure 4.6: Survival time during starvation of LD (left) and MD (right) pond snails as a function
of length. From [1298]. The data points x in the right figure are not included in the DEB-based

fit. These large individuals had deformations of the shell.
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have the same energy conductance of v ~ 1.55 mmd~! at 20 °C. This is a strong indication
that the photoperiod only affects the partition coefficient .

If starvation is complete and volume does not change, i.e. f = 0 and [ is constant, the
energy reserves will be e(t) = e(0) exp(—gkyt/1); see (2.11). Dry weight is a weighted sum
of volume and energy reserves, so according to (3.3) for LD snails we must have

Wa(l,t) = Viul* (dyg + wga[Mpm)e(0) exp(—gl%;Mt/l)) (4.2)

if the buffer of energy allocated to reproduction is emptied frequently enough (Ex small).
For MD snails, where e(t) = e(0) — ([par]/[Em))t, dry weight becomes

Wa(l,t) = Vil (dva + wra[Mem)(e(0) — t{pu]/[En])) (4.3)

So the dry weight of LD snails decreases exponentially and that of MD snails linearly.
Figure 4.5 confirms this. It also supports the length dependence of the exponent.

If we exclude the possibility of prolonging life through decomposition of structural body
mass, and if death strikes when the utilisation rate drops below the maintenance level, the
time till death by starvation can be evaluated.

In animals such as LD snails, that do not change storage dynamics, the utilisation rate,
—4[E], equals the maintenance rate, [py] for [E]/[En] = VY3[pr]/{pam} or e = kl. Since
e(t) = e(0) exp(—katg/l), death strikes at t; = k]ngln %. This only holds if the length
increase is negligibly small.

In animals such as MD snails, which change storage dynamics to %e = —[py]/[En] or
e(t) = e(0) — t[pu]/[En], death strikes when e = 0, that is at t; = e(0)[En]/[pa] = 555

This only holds as long as there is no growth, so e(0) < [. In practice, this is a more
stringent condition than the previous one. The first part of the starvation period usually
includes a period where growth continues, because e > [. This complicates the analysis of
starvation data, as illustrated in the following example. In a starvation experiment with
MD snails, individuals were taken from a standardised culture and initially fed ad libitum
for 4 days prior to complete starvation. If we assume that food density in the culture has
been constant, so e(0) = f., say, with f. being about 0.7, and f = 1 during the 4 days prior
to the starvation experiment, the change in length is negligibly small. The initial storage
density is e(0) = 1—(1— f.) eXp(—4/%Mg/l), according to (2.10). The time till growth ceases
is found again from (2.10) and the boundary condition I = e(0) exp(—tkyrg/l). (Although
the length increase is negligibly small, energy allocation to growth can be substantial.)
After a period [(kkyrg)~" death will strike, so

[ 1 .
=g (K {7 (1= (1= £) eXp(—4/~cMg/l))}> (4.4)
Figure 4.6 confirms model predictions for the way survival time depends on length in LD
and MD snails, and shows that MD snails can prolong life by a factor of two by not
reproducing during starvation. In contrast to the situation concerning embryonic growth,
this confirmation gives little support to the theory, because the shape of the survival time—
length curve is very flexible for the LD case, although there are only two free parameters.
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The upper size class of the MD snails has been left out of the model fit, because the shape
of their shell suggested a high age, which probably affected energy dynamics.

When storage levels become too low for maintenance, some species can decompose
their structural biomass to some extent. If feeding conditions then become less adverse,
recovery may be only partial. The distinction between structural biomass and energy
reserves fades at extreme starvation. The priority of storage materials over structural
biomass is perhaps even less strict in species that shrink during starvation. Species with
(permanent or non-permanent) exoskeletons usually do not shrink in physical dimensions,
but the volume-specific energy content nonetheless decreases during starvation.

If an individual ceases reproduction during starvation, any consistent specification of %e
must be continuous in f, e and [. One possibility is by first obeying maturity maintenance
requirements, then switching on reproduction gradually if food intake increases from a low
level.

4.1.5 Shrinking & the turnover of structure

Many species can, to some extent, shrink in structural mass during starvation, as a way
to pay their somatic maintenance costs. Even animals with a skeleton, such as shrews of
the genus Sorezr, can exhibit a geographically varying winter size depression, known as the
Dehnel phenomenon [396]. Molluscs seem be to able to reduce shell size [290].

The turnover of structure as part of the somatic maintenance process directly relates
to the quantification of shrinking during starvation. This turnover implies a mobilisation
of structure at a fixed specific rate, say Jyc = jyeMy = [JVC]V and I suppose that
this flux is large enough to pay somatic maintenance costs if necessary. Normally this
mobilised flux equals the synthesised flux, as part of the turnover process, but not during
shrinking. Somatic maintenance is normally payed from reserve at rate Jpg = [J EM]L3 +
{Jpr}L? = (]EM + {Jer} M, 1/3 [My]~2/3) My, and if it would be fully paid from structure
the costs are Jy g = [JVM]L3 + {JVT}L2 (Jvm + {jVT}M;l/S[MV]_Q/S)MV. The surface-
linked component is only paid after birth, so a worst case scenario learns jyco > jym +
{Jvr (M) =3[ My ]2,

When shrinking becomes opportune, the somatic maintenance SUs receive a reserve
flux J ec and a structure flux Jvc, reserve and structure are substitutable compounds for
somatic maintenance, with a strong preference for reserve. The demand version of the
preference case for SUs, {103}, specifies the somatic maintenance fluxes for reserve and

structure
2A

.S . S /. S
jg =Jes(L = jv/ivs); Jv =Jvs 24 B2 — 4AC —

with A = pyjveiis/ivs, B =C+((1—pv)jec +yevive)ies, C = —jec(jec +yevive).
So shrinking occurs at rate %MV = —j:My. Given appropriate parameter values shrinking
hardly occurs if maintenance can be paid from reserve.

Shrinking thus comes with four extra parameters: jy ¢, [jVM], {jVT} and preference
parameter py. The relationships [jVM] / [JEM] = {JVT}/ {JET} > yyE seem reasonable.
The latter inequality is based on thermodynamic considerations, which imply losses for
each transformation; payment via structure involves an extra transformation, so extra

(4.5)
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losses. The equality sign can considered to be the thermodynamic edge for shrinking.
Close to this edge, two shrinking parameters are left. For absolute priority for reserve as
substrate for somatic maintenance, py = 0, we have

jg = min{jps, jrc} and  jp = jvs(1 - j3/jes) (4.6)

so that jy¢ is no longer relevant for the mass dynamics; it still is for the dynamics of
isotopes. I will call this the switch special case for shrinking.

If the turnover rates of compounds in the structure differ between compounds, shrinking
gives deviations from homeostasis with this mechanism. Compounds with no turnover can
be treated as products and formally excluded from structure to preserve strong homeostasis
for structure.

4.1.6 Migration

Seasonal forcing of food availability induces quite a few animal species (vertebrates, butter-
flies) to migrate. Long distance migration requires quite a bit of physiological preparation.
Many bird species manage to increase the size of their guts temporarily, fat-up, reduce the
size of their guts and increase the size of their muscles before they go. All these changes
occur in a matter of days [835]. Such hormonally controlled adaptations of organ size can
only be captured by multiple structure versions of DEB models, cf {196}.

4.1.7 Dormancy

Some species manage to escape adverse feeding conditions (and/or extreme temperature
or drought) by switching to a torpor state in which growth and reproduction cease, while
maintenance (and heating) costs greatly diminish. The finding that metabolic rate in
homeotherms is proportional to body weight during hibernation [585] suggests that main-
tenance costs are reduced by a fixed proportion.

As heating is costly, a reduction in the body temperature of endotherms saves a lot
of energy. Bats and hummingbirds lower their body temperature in a daily cycle. This
probably relates to the relatively long life span of bats (for their size) [350]. Although most
bird embryos have a narrow temperature tolerance range, swifts survive significant cooling.
This relates to the food-gathering behaviour of the parents. Dutch swifts are known to
collect mosquitoes above Paris at a distance of 500 km, if necessary. During hibernation,
not only is the body temperature lowered, but other maintenance costs are reduced as well.

Hochachka and Guppy [513] found that the African lungfish Protopterus and the South
American lungfish Lepidosiren reduce maintenance costs during torpor in the dry season,
by removing ion channels from the membranes. This saves energy expenses for maintain-
ing concentration gradients over membranes, which proves to be a significant part of the
routine metabolic costs. This metabolic arrest also halts aging. The life span of lungfish
living permanently submerged, so always active, equals the cumulative submerged periods
for lungfish that are regularly subjected to desiccation. This is consistent with the DEB
interpretation of aging.
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If maintenance cannot be reduced completely in a torpor state, it is essential that
some reserves are present, {88}. This partly explains why individuals frequently survive
adverse conditions as freshly laid eggs, because the infinitesimally small embryo requires
little maintenance; it only has to delay development. The start of the pupal stage in holo-
metabolic insects is also very suitable for inserting a diapause in order to survive adverse
conditions, {277}.

4.1.8 Emergency reproduction

The determination of sex in some species is coupled to dormancy in a way that can be
understood in the context of the DEB model. Daphnids use special winter eggs, packed in
an ephippium. The diploid female daphnids usually develop diploid eggs that hatch into
new diploid females. If food densities rapidly switch from a high level to a low one and the
energy reserves are initially high, the eggs hatch into diploid males, which fertilise females
that now produce haploid eggs [1074]. After fertilisation, the ‘winter eggs’ or resting eggs
develop into new diploid females. The energy reserves of a well-fed starving female are just
sufficient to produce males, to wait for their maturity and to produce winter eggs.

The trigger for male/winter egg development is not food density itself, but a change
of food density. If food density drops gradually, females do not switch to the sexual
cycle [633], cf. Figure 9.13. Sex determination in species such as daphnids is controlled
by environmental factors, so that both sexes are genetically identical [174, 480]. Mrs D.
van Drongelen and Mrs J. Kaufmann informed me that a randomly assembled cohort of
neonates from a batch moved to one room proved to consist almost exclusively of males
after some days of growth, while in another cohort from the same batch moved to a different
room all individuals developed into females as usual. This implies that sex determination
in Daphnia magna, and probably in all other daphnids and most rotifers as well, can be
affected even after hatching. More observations are needed. Male production does not
seem to be a strict prerequisite for winter egg production [604]. Kleiven, Larsson and
Hobeak [604] found that crowding and shortening of day length also affect male production
in combination with a decrease in food availability at low food densities. The females that
hatch from winter eggs grow faster, mature earlier and reproduce at a higher rate than
those from subitaneous eggs [33]; the size at maturation and the ultimate body size are
also larger for the exephippial generation. The physiological nature of these interesting
differences is still unknown.

The switch to sexual reproduction as a reaction to adverse feeding conditions frequently
occurs in unrelated species, such as slime moulds, myxobacteria, oligochaetes (Nais) and
plants. The difference between emergency and suicide reproduction, see {282}, is that the
individual can still switch back to standard behaviour if the conditions improve.

4.2 Changing shapes

The structural volume is of interest because of maintenance processes, and surface area for
acquisition processes; this gives a focus on the scaling between volumes and surface areas
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that are involved in uptake. I will argue that not only the shape itself matters, but also
the local environment that affects uptake.

The fact that wing development, for instance, is delayed in birds is of little relevance
to whole body growth. Some species such as echinoderms, molluscs and some insects
change shape over different life-stages. Plants are extreme in this, and environmental
factors contribute substantially to changes in shape. Some of these changes do not cause
problems because food intake is sometimes restricted to one stage only. If the shape
changes considerably during development, and if volume has been chosen as the basis for
size comparisons, the processes related to surface area should be corrected for these changes
in shape.

Surface areas are only proportional to volume to the power 2/3 for isomorphs. If
organisms change in shape during growth, surface areas relate to volume in different ways,
which can be captured by the dimensionless shape correction function M(V'), which stands
for the actual surface area relative to the isomorphic one for a body with volume V', where
a particular shape has been chosen as the reference. So M(V) = 1 for an isomorph.
The derivation of this function will be illustrated for what I call VO-, and V1-morphs:
idealised morphs that change in shape during growth in a particular way. Many organisms
approach these idealised changes quite accurately, others can be conceived as static or
dynamic mixtures of two or more of these idealised growing morphs, as will be shown.

4.2.1 VO0-morphs

The surface area of a VO-morph is, per definition, proportional
to volume, so it remains constant. Only the surface area matters ©
that is involved in the uptake process. A biofilm on a plane,
diatoms and dinoflagellates are examples, see Figure 4.8. The outer dimensions do not
increase during the synthesis of cytoplasm. The vacuoles shrink during growth of the cell,
and should be excluded from the structural volume that requires maintenance costs. The
surface area of a VO-morph is Ay, say. An isomorph has surface area Ay(V/V;)%3. The
value V is a reference that is required to compare both types of morphs; at this volume
they have the same surface area. The shape correction function for a VO-morph is

M) = (V/Va) ™2 (4.7)

In the section on diffusion limitation on {259}, I discuss situations where the outer bound-
ary of the stagnant water mantle around a small organism restricts uptake. If the mantle
is thick enough, the uptake will resemble that of a VO-morph, whatever the actual changes
in shape of the organism.

The ingestion rate, storage dynamics and growth for VO-morphs can be found from
that of isomorphs by multiplying {pa,} and v with the shape correction function M(V)
in (4.7). This results in

Jxa = {JxamtV2f (4.8)
jte = (f—eV}?)v (4.9)
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Figure 4.7: Male Spraque-Dawley rats eat
at constant rate, irrespective of their size,
in a particular laboratory situation. Their
specific growth rate is given by (2.21) and
the scaled reserve density changes as %e =

%(p(jlmz#)z — e). Body weight is given by - 600 | /
(3.2) with dy = 1gem™ and w,, = 0.94. Data %D %
from Hubert et al [534], who used feeding lev- =
els p = 1, 0.75 and 0.45. Parameter values:

e(0) = 1 (fixed), V(0) = 73.7cm?, Ly = Ocm

(fixed), kpy = 0.0059d1, & = 0.317cmd™!, 0 _ time since birth, d

g=T1. 0 200 400 600 800
dy 0 (Vi = vV, ) (4.10)
dt e+g "

where Vj is the volume at division and V;, is defined by V}/3 = L,, = gg’M.

Figure 4.7 shows that, in the situation of feeding laboratory male Spraque-Dawley rats,
Rattus norvegicus, a fixed amount of food each day, irrespective of their size, isomorphs
can numerically behave similar to VO-morphs, although reserve and structure change dif-
ferently; the data points almost hide the curves. Possibly due to social interaction, rats in
a group in the laboratory eat all there is [693]; this implies hyperphagia in the at libitum
cohort {256}. The details of food supply matter; fish in a tank that daily receive a fixed
number of food particles rapidly develop substantial size differences as a result of social
interaction [646].

4.2.2 V1-morphs

The surface area of a V1-morph is, per definition, proportional to volume!. Tt (usually)
grows in one dimension only, and it is possible to the orient the body such that the direction
of growth is along the x-axis, while no growth occurs along the y- and z-axes. The different
body sizes can be obtained by multiplying the z-values by some scalar [. An example of
a V1-morph is the filamentous hyphae of a fungus with variable length, and thus variable
volume V', but a fixed diameter, see Figure 4.8. Its surface area equals A(V) = A;V/Vy,
where A, denotes the surface area at V' = V;. The surface area of an isomorph equals
A(V) = Aq(V/Vy)*3. So the shape correction function for V1-morphs becomes

AV IV

= (V/Va)'? (4.11)

It is not essential that the cross section through a filament is cir-
cular; it can be any shape, as long as it does not change during
growth.

A V1-morph can also grow in two dimensions, however, as is illustrated by sheets, i.e.
flat bodies with a constant, but small, height. The archaebacterium Methanoplanus, and
Walsby’s bacterium [594, 1219] fit this description. Several colonies, such as the sulphur
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bacterium Thiopedia, the cyanobacterium Merismopedia and the green alga Pediastrum,
also fall into this category; see Figure 4.8. How sheets grow in two dimensions does not
matter: they may change wildly in shape during growth. Height must be small to neglect
the contribution of the sides to the total surface area. The surface area of the sheet relates
to its volume as A(V) = 2V L; !, where L; denotes the height of the sheet and the factor
2 accounts for the upper and lower surface areas of the sheet. Division by the isomorphic
surface area A(V;)(V/Vy)*? gives M(V) = (V/Vy)'/3, as for filaments, i.e. V1-morphs.

V1-morphs play an important role in DEB theory because of
their simple dynamics, especially for organisms that divide into
two daughter cells. Even if the actual changes in shape differ
from V1-morphy, the dynamics can be approximated very well by that of V1-morphs,
because of the narrow range in body sizes. From a population perspective the detailed
morphology of the growth curve hardly matters, only the time it takes to double the initial
volume. All individuals converge to the same reserve density in homogeneous space and
the change of the total structure in a population behaves similar to that of any individual.
In other words a population of many small individuals behaves identical to that of few
big individuals, as long as the parameters are identical. Size at division is irrelevant at
the population level, which means that maturity only needs to be evaluated in connection
with details of the cell cycle. Moreover, the somatic maintenance cost are proportional
to volume (because the surface area-linked maintenance now scales with volume as well)
and can be added to the maturity maintenance cost (because dividers are always in the
juvenile stage and the maturity does not stick at some threshold value). This is also the
reason why the maturity costs can be combined with that of structure. Thanks to the
k-rule, there is no need to evaluate maturity explicitly. Whether or not unicellulars and
particularly prokaryotes invest in cell differentiation during the cell cycle is still open to
debate. Dworkin [304] reviewed development in prokaryotes and points to the striking
similarities between myxobacteria and cellular slime moulds and between Actinomyceta
and some fungi.

To avoid excessive notation by introducing new symbols for combinations of fluxes
and amounts, I take k = 1, {pr} = 0, so [ps] = [pn], and k; = 0 for Vl1-morphs and
don’t discuss maturity dynamics. The consequence of these choices is that in fact the
interpretation of some parameters changes for V1-morphs.

The ingestion rate, storage dynamics and growth for V1-morphs can be found from that
of isomorphs by multiplying {pam}, {Fm}, {pr} and © with the shape correction function

M(V) in (4.11). The result is for [Jxam| = {Jxam}/La and [F,] = {F,}/Lq
Jxa = [Jxam|fV with f = o And K= [Tx am]/[Fim] (4.12)
d : , :
ae = (f - 6)]€E or ng = JEA — kEmE (413)
. oM M
Yy~ v with = TR IE —Yeviy (4.14)
dt mg + Yev

The reserve turnover rate kg = 0/Lg = [Pam]/[Em], With [pam] = {pAm}Vd*1/3, has di-
mension ‘per time’. The expressions for j¥ and j{/ are given in (4.5) or (4.6), where
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VO-morph. The dinoflagellate Ceratium has a
rigid cell wall, which does not grow during the
cell cycle, nor does the adjacent outer membrane
that takes up nutrients. Cytoplasm growth is at
the expense of internal vacuoles.

V1-morph. A mycelium of a fungus, such as Mu-
cor, can be conceived as a branching filament,
with a constant diameter. If the mycelium be-
comes dense, uptake is usually no longer propor-
tional to the total filament length or number of
growing tips of branches.

Vi-morph. The blue-green bacterial colony
Merismopedia is only one cell layer thick. Al-
though this sheet grows in two dimensions, it is
a V1-morph. The arrangement of the cells re-
quires an almost perfect synchronisation of the
cell cycles.

Figure 4.8: A sample of organisms that change in shape during growth in very particular ways.

Table 4.1: The powers as specified
by the DEB model for a dividing V1-
morph of scaled length [ and scaled re-
serve density e at scaled functional re-
sponse f; cf Table 2.5 for reproducing iso-
morphs. An individual of structural vol-
ume V = My /[My] takes up substrate
at rate [Jxm,]fV. The implied dynamics
for e and I: %e = fl—;el%:Mg and %l
division occurs when [ = [;.

le/ldfl m_
e/g+1 37

power

T juvenil
{(Pam}L2, juventie

B/l

assimilation, pa

e . . 14g/1
mobilisation, pe el3%/ed
somatic maintenance, pg K3
maturity maintenance, p; (1 — /f)l?’
. . 3 E/ld— 1
somatic growth, pg Kl 1+e/g

13 e/la—1

(1—k) Ty

maturity growth, pr
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8 \ Figure 4.9: The poly-B-hydroxybutyrate
E’ 5 7\\ | (PHB) density (on the basis of C-mol/C-mol)
<3 ‘\\ in aerobic activated sludge at 20°C. The fitted
g Al N | curve is an exponential one with parameter
O N 0.15h. Data from [103]. She pointed in her
B 5| \\\ | thesis to [26] who found that the number of
% et PHB granules per cell is fixed at the earliest
; 0 ‘ R X x| stage of polymer accumulation. This supports
E 0 10 20 30 the structural homeostasis hypothesis.

time, h

the volume-linked somatic maintenance process M for V1-morphs plays the role of total
maintenance, S and J for isomorphs. The smallest turnover rate of structure that covers
the maintenance costs is jyc = jyar. The specific reserve mobilisation rate is found from
(2.12) and (4.13). The switch case amounts to

Pc] = [Paml(e —#/kg) or jpc = jram(e —7/kp) (4.15)
jg = min{jea,jpct and 5yt =jva(l—jg /jem) (4.16)
while the more general preference formulation gives for jyc = jyu

2A
Jp =Jem(l = v [ivm); v JVM2A+ B? —4AC - B

with A = pyjga, B = C+ (1 = pv)iec + yevivm)iem, C = —jec(jec + yevivm). As
before (4.17) reduces to (4.16) for py — 0. Substitution into (4.14) gives

(4.17)

mEi{fE — JEM ce—lg

) JEM
r = ————"" =k for mp>"""ore>1 4.18
mg + Yev E€+9 b= kg = ( )
kg —j . e—1 '
ro= mEE, jE,M :kge d formE<ij—More<ld (4.19)
mg + jem/jvm e+ gy kg

where gy = laike and 1, = (Va)Vi)'3 = Lq/ Ly, = k;ETAf; = gk /kg and V is the volume

Jjvm

at division, V,, = L3 is defined by L,, = glfM. The latter compound parameter lost its

interpretation as maximum length.

Table 4.1 summarises the basic powers for V1-morphs. The implication is that the
residence time of compounds in the reserve of a V1-morph is independent of the amount
of structure. The maximum reserve density is mg, = jpam/ kE

If no structure is used to pay (somatic) maintenance costs the specific gross growth
rate jyg equals the specific nett growth rate 7, but if (some) maintenance is paid from
structure at rate ji¥, then the growth rates relate to each other as 7 = jyq — ji¥.

Figure 4.9 provides empirical support for the reserve dynamics; notice that the reserve
density decays exponentially, as expected, not the reserve.
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3 tococcus bovis on glucose is plotted against the

é 001 | inverse growth rate, an U-shaped curve results.

~ ' Data from Russell & Baldwin (1979) as reported

& 0 e in [1000] at 370C (I assume). The parameters are

y 0 2 4 6 8 10 12 14 Yy, = 62.84 mg cell/mmol glucose, kg = 5.93h~!
1/spec. growth rate, h—! and kps = 0.042 h—t

Ezxponential growth at constant food density
If substrate density X and, therefore, the scaled functional response f are constant long

enough, energy density tends to [E] = f[F,,] and the volume of V1-morphs as a function
of time since division becomes for V(0) = V/2

J =1

1 .
V(t) = 5V exp(tr) or t(V) =7"1In{2V/V,} with 7 = kg T (4.20)
g
The time taken to grow from V;/2 to Vj is thus ¢(V;) = 7~ !In 2.
The maximum specific growth rate is
mkm — BAm — J kp —k 11
fm:mE E— JEM _ ']EA. JEM  _ NE My _ . d (4.21)
Mpm + YEV ]EAm/kE+yEV 1+g 14+g¢
so that g = ,ljff%& and jeam = yEV% = ypvke/g for jem = ypvku.

Exponential growth can be expected if the surface area at which nutrients are taken
up is proportional to volume. For V1-morphs, this happens when the total surface area is
involved, or a fixed fraction of it. If uptake only takes place at tips, the number of tips
should increase with total filament length to ensure exponential growth. This has been
found for the fungi Fusarium [1171], and Penicillium [832, 904], which do not divide; see
Figure 4.11. The ascomycetous fungus Neurospora does not branch this way [320]; it has
a mycelium that grows like a crust, see {130}.

Exponential growth of individuals should not be confused with that of populations. All
populations grow exponentially at resource densities that are constant for long enough,
whatever the growth pattern of individuals; see {333}. This is simply because the progeny
repeats the growth/reproduction behaviour of the parents. Only for V1-morphs it is un-
necessary to distinguish between the individual and the population level. This is a char-
acteristic property of exponential growth of individuals and is discussed on {337}.
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Yield of bromass on substrate at constant food

r

The yield of structure on substrate is given by Y = on a mole per mole basis. Simple

. f]XAm
substitution of f = k’g]l;%}”g from (4.20) gives
1+ kg /7 k
Y_l = ng_l;l\i./r with ng = K,NAX = — £ = m and Yyx = yViE (422)
1 —7/kg Hev  9)xAm  Yvx YxE

is known as the “true” yield in microbiology. This specifies a three-parameter U-shaped
relationship between Y ~! and 7~!. It typically fits data very well; see Figure 4.10. The
right branch of the U-shaped curve relates to maintenance, as is well understood [747]. The
left branch relates to reserve in DEB theory, while popular explanations in microbiology
speculate on mechanisms for enhanced maintenance at high growth rates [1000].

Only ygx is likely to depend on the chemical potential of the substrate, i.e. yyx =~
Nyafiy with ny4 = 0.001 C-mol/kJ. Since animals are biotrophs, so their food mainly
consists of polysaccharides, lipids and proteins, we expect that yyx = 0.4 till 0.6 C-mol/C-
mol for animals (see the table at {137}).

If no reserve is used to pay (somatic) maintenance, so j¥ = 0 and j{/ = jy s, and the
reserve turnover rate is large kg — oo, the DEB model reduces to the Marr et al. [747] and
Pirt [902] model. If also jyar = 0, the model further reduces to that of Monod [803]. If
JEMm = Jvm = 0 but kp not very large, the model reduces to that of Droop [294, 296]. The
Droop model is typically applied for nutrient-limited growth, and the maintenance costs
for nutrient reserves might be small.

The Marr—Pirt model does not distinguish between maintenance and death, and is
typically applied at the population level. Although the difference between maintenance
and death in terms of effects on the population might be small, the difference in products
that are formed is substantial; dead biomass is a nutritious substrate for many organisms.
Refractory material is formed only during shrinking of bacterium Alteromonas infernus
[313]. This strongly supports the existence of two maintenance fluxes with different prod-
ucts. Marie Eichinger also found little quantitative differences between the Marr—Pirt and
the DEB model under constant environmental conditions, but substantial differences un-
der varying conditions. At small spatial and temporal scales, environmental conditions
typically vary substantially.

[P]
0 >0
[Em]

Monod  Marr—Pirt
The yield coefficients of the Monod, Droop, Marr- 0 (;10 ;H;,ldlr
Pirt and the DEB models relate to each other as g v f
at the right. The spem'ﬁc growth rates of these Droop  DEB for V1's
4 models are compared in Figure 9.3 and the dy- =0 v o v g f-la
namic behaviour in Figure 9.2. 9f+f 9F f+g

4.2.3 Static mixtures of morphs: rods

Cooper [222] argues that at constant substrate density Escherichia grows in length only,
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while the diameter/length ratio at division remains constant for different substrate densi-
ties. This mode of growth and division is typical for most rod-shaped bacteria, and most
bacteria are rod-shaped. Shape and volume at division, at a given substrate density, are
selected as a reference. The cell then has, say, length Ly, diameter § L4, surface area Ay
and volume V. The fraction 0 is known as the aspect ratio of a cylinder. The index d
will be used to indicate length, surface area and volume at division at a given substrate
density. The shape of the rod shaped bacterium is idealized by a cylinder with hemispheres
at both ends and, in contrast to a filament, the caps are now included. Length at division

. _ 4v, 1/3 N 3 4y ((-8/3)82n\2/3
is Ly = (W) , making length L = (W) + 5 (T) . Surface

area becomes A = 52 V . The surface area of an isomorphically growing rod equals
Ag(V/Vy)?3. The shape correctlon function is the ratio of these surface areas. If volume,
rather than length, is used as an argument, the shape correction function becomes

A«V%:i(é)dm+<1—g>(;)vg (4.23)

@Q @ When § = 0.6, the shape just after division is a sphere as in
cocci, so this is the upper boundary for the aspect ratio §. This

value is obtained by equating the volume of a cylinder to that of two spheres of the same
diameter. When d — 0, the shape tends to that of a V1-morph.

NN 7 The shape correction function for rods can now be conceived as

a weighted sum of those for a VO- and a V1-morph, with a simple

geometric interpretation of the weight coefficients. A cylinder that

grows in length only, with flat caps and an aspect ratio § at V' = V, has the shape correction

function 23 s
) VN~ 2 Vv
_ - (= 4.24
M(V) (5—|—2(Vd> +5+2<Vd) ( )

which is again a weighted sum of correction functions for VO- and V1-morphs. For the
aspect ratio 6 — oo, the shape can become arbitrary close to that of a VO-morph. The
exact geometry of the caps is thus less important for surface area/volume relationships.
Rods and cylinders are examples of static mixtures of VO- and V1-morphs, i.e. the weight
coefficients do not depend on volume. Crusts are examples of dynamic mixtures of VO-
and V1-morphs, and are discussed on {130}.

The growth of rods is on the basis of the shape correction function (4.23)

dt-  3Vee+yg

(Voo = V) (4.25)

where Vo = Va3 (e (34)'/? — 14 2)7" and, as before, V,)/* = g— If substrate density X
and, therefore, the scaled functlonal response f are constant long enough, scaled energy
density tends to e = f and volume as a function of time since division becomes

V(t) = Voo — (Voo — Via/2) exp(—t7,) (4.26)

. Vafkgd/3
where 7, = afkpd/

= The interpretation of V., depends on its value.
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Fusarium graminearum, 6 = 0 [1171] Bacillus cereus, 6 = 0.2 [215]
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Figure 4.11: DEB-based growth curves for cells of static mixtures between V1- and VO-morphs.
The larger the aspect ratio, ¢, the more the growth curve turns from the V1-type (exponential) to
the VO-type (satiation), reflecting the different surface area/volume relationships and supporting
the assumption that uptake is linked to the surface area.

If Vo, = 00, ie. if f(1—6/3) = (Va/Vim)'/3, the volume of rods grows linearly at rate

%Vdg. This is frequently found empirically [50].

If 0 < Vi < 00, V4 is the ultimate volume if the cell ceases to divide but continues to
grow. For these values, V/(¢) is a convex function and is of the same type as V/(¢)'/?
for isomorphs, (2.23). Note that volume, and thus cubed length, grows skewly S-
shaped for isomorphs. When V, is positive, the cell will only be able to divide when
Voo > Vg, thus when f > (V,/V,,)'/3.

If ) =0, Vo = 0 and the rod behaves as a V1-morph, which grows exponentially.

For V,, < 0, V(t) is a concave function, tending to an exponential one. The cell no
longer has an ultimate size if it ceases to divide. V, is then no longer interpreted as
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? * Figure 4.12: Biofilms (green) on the surface of a
sphere (brown) can behave between an isomorph (top;

W \6/ radius of sphere V) = 0) and a VO-morph (bottom;

radius of sphere V; = o0). The shape correction
2/3
function is M(V) = (% %11%) .

-

ultimate size, but this does not invalidate the equations.

The shape of the growth curve, convex, linear or concave, thus depends on substrate density
and the aspect ratio. Figure 4.11 illustrates the perfect fit of growth curves (4.26) with only
three parameters: volume at ‘birth’, V;;/2, ultimate volume, V,, and growth rate, 7.. The
figure beautifully reveals the effect of the aspect ratio; the larger the aspect ratio, the more
important the effect of the caps, so a change from V1-morphic behaviour to a VO-morphic
behaviour. A sudden irreversible change in morphology from spherical to filamentous cells
has been observed in the yeast Kluyveromyces marzianus [435], while no other changes
could be detected. The associated increase of 30 % in the maximum specific growth rate
could be related to the observed increase in specific surface area.

The time required to grow from V;;/2 to V' at constant substrate density is found from
(4.26)

(f+g)voo Voo_vd/2

V) = v L — (4.27)

4.2.4 Dynamic mixtures of morphs

Some organisms change in shape during growth in a complex fashion. Frequently it is still
possible, however, to take these changes in shape into account in a rather simple way.

Biofilms on curved surfaces

Figure 4.12 shows that a biofilm on a curved surface can behave somewhere between a V0-
and an isomorph.

Crusts

Crusts, i.e. biofilms of limited extent that grow on solid surfaces, are mixtures of VO-morphs
in the centre and V1-morphs in the periphery where the new surface is covered. Lichenes
on rocks or trees behave like crusts as well as bacterial colonies on an agar plate, conceived
as super-organisms. A forest or peat of limited extent on a spatially homogeneous plain
is a crust. The spatial expansion of geographical distribution areas of species, such as the
musk rat in Europe, and of infectious diseases, cf. [132, 133, 481], closely resembles that
of crusts. They all share the property that what happens in the centre has little relevance
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Figure 4.13: The lichens As-
picilia cinerea (above) and Rhi-
zocarpon  geographicum (below)
grow almost linearly in a period
of more than three centuries on
moraine detritus of known age in s
the European Alps. Data from

Richarson [960]. Linear growth

32

28

24

diameter, cm

20

is to be expected from the DEB 8
model, when such lichens are "
conceived as dynamic mixtures of p— p—: p— p—
VO0- and V1-morphs. year of moraine deposition

for the moving border. I will now demonstrate that this has the consequence that, in
constant environments, the border moves at a constant rate: biomass in the border area
grows exponentially and causes expansion, but that in the inner area settles at a constant
density (amount per surface area) and hardly contributes to the expansion. In inner part
behaves as a VO-morph and represents an increasing proportion of the biomass; the outer
part behaves as a V1-morph, while the width of the annulus is determined by the horizontal
transport rate of the limiting resource (in the case of lichenes) or individuals (in the case
of musk rats).

Let L. denote the width as well as the thickness of the outer annulus of the circular
crust of radius L, that is growing exponentially in an outward direction. The width and
the thickness of the outer annulus remain constant. This biomass thus behaves as a V1-
morph; all other biomass in the centre of the crust behaves as a VO-morph. The surface
area of the crust is A,(t) = wL?(t), and of the exponentially growing annulus A.(t) =
7 (L2(t) — (L.(t) — L)?) = 7w (2L,(t)L. — L?). The total surface area is growing at rate

2 A, = 1A, so the radius is growing at rate

d , L.
L =7Le <1 - 2Lr> (4.28)

from which it follows that the diameter of the crust is growing linearly in time for L, < L.
Strong empirical support for the linear growth of the diameter of the crustose saxicolous
lichen Caloplaca trachyphylla is given by [210]. This linear growth in diameter has also
been observed experimentally by Fawcett [338], and the linear growth model originates
from Emerson [320] in 1950 according to Fredrickson et al. [370]. Figure 4.13 shows that
this linear growth applies to lichen growth on moraines. Richardson [960] discusses the
value of gravestones for the study of lichen growth, because of the reliable dates. Lichen
growth rates are characteristic of the species, so the diameter distribution of the circular
patches can be translated into arrival times, which can then be linked to environmental
factors, for instance.

If substrate transport in the vertical direction on the plate is sufficient to cover all
maintenance costs, and transport in the horizontal direction is small, the growth rate of
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the VO-morph on top of an annulus of surface area dA is

@’ = Bl + Blf (4.29)

The denominator stands for the volume-specific costs of structural biomass and reserves.
Division by the surface area of the annulus gives the change in height L; of the VO-morph

on the top of an annulus of surface area dA = \/212/ %. the height is found from (4.10) by

substituting V = Lth2/3

d D d
— L, = — V8L —1, = 3r5(f —1 4.30
o Ln e+g(€ '/ "Ly) or i ra(f — ) (4.30)

with the scaled height I, = L,V,-'/3. The initial growth rate in scaled height is 375(f —I).
The parameter I, = L.V7'/3 can be eliminated, on the assumption that the growth rate in
the outward direction equals the initial growth rate in the vertical direction, which gives
le =14/2 for Iy < f. For I < I, with [, = LTV,;l/?’, the end result amounts to

f=la

The scaled height of the crust is thus growing asymptotically to f. Different crust shapes
can be obtained by accounting for horizontal transport of biomass and diffusion limitation
of food transport to the crust.

b(t1) = (f — la/2) exp ( L _ 3th) (431)

Flocs and tumours

Growth in the thickness of a biofilm on a plane, which behaves as a VO-morph, is thus
similar to that of a spherical biofilm on a small core in suspension, which behaves as an
isomorph as long as mass transport in the film is sufficiently large to consider the biomass
as homogeneous. Films are growing in a von Bertalanffy way in both situations, if growth
via settling of suspended cells on the film is not important. Note that if maintenance is
small, so that the asymptotic depth of the film is large, the increase in diameter is linear
with time, so that volume increases as time®, as has been found for foetuses in (2.47) by
different reasoning. This mode of growth was called the ‘cube root’ phase by Emerson
[320], who found it applicable to submerged mycelia of the fungus Neurospora. The model
was originally formulated by Mayneord for tumour growth [762], and frequently applied
since then [679, 783, 1104, 1246].

If mass transport in a spherical biofilm on a small core in suspension is not large, the
biomass in the centre will become deprived of substrate by the peripheral mass, and die from
starvation. Such a film is called a (microbial) floc. A concentration gradient of substrate
develops in the living peripheral mass, such that the organisms at the living/dead boundary
layer just receive enough substrate to survive, and do not grow. The organisms at the outer
edge grow fastest. The thickness of the living layer directly relates to the transport rate
of substrate, and so depends on the porosity of the floc. Flocs again behave as dynamic
mixtures of VO- and V1-morphs, and, just like crusts, the floc diameter eventually grows
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Figure 4.14: Just after germination, plants usually grow as V1-morphs, but when the number of
leaves increases, self-shading becomes important, and the plant gradually behaves as an isomorph.
If they make contact with other plants, and leaves and roots form a closed layer, they behave as
V0-morphs; an increase in mass no longer results in an increase of surface area that is effectively
involved in nutrient or light uptake.

linearly in time at constant substrate densities in the environment, if it does not fall apart
because of the increasing mechanic instability. This can be seen as follows.

Let L. denote the thickness of the thin living layer of a spherical floc of radius L,. The
thickness remains constant, while the living mass is growing exponentially at rate . The
outer layer behaves as a V1-morph, the kernel as a degenerated VO-morph. The total vol-
ume of the flocis V,.(t) = 3w L3(t) and of the living layer V. (¢) = 37 (L, (t)® — (L,(t) — L.)*) =
am (3LA(t)Le — 3L, (t)L? + L?). The growth of the floc is given by 4V, = #V,, so the radius

is growing at rate

d L. L
N P 432
Qi “( LT+3L$> (4.32)

For L, > L., the change in the radius L, becomes constant, and the floc grows lin-
early in time. The steady-state population growth rate of flocs can be obtained analyt-
ically, given a fixed size at fragmentation into n parts. The dead volume increases with
LVi(t) = 4m(L,(t) — Le)*24L,(t). Bernd Brandt [141] showed that the combination of
diffusive transport of substrate into the floc, cf {259}, and a hyperbolic functional re-

~ 1/2 ~1/2
sponse leads to a living layer of thickness (%> / [ixo (y —x+ +In IHT) / dy, where

2jxmX1 Ty 1+y
D is the diffusion coefficient, the scaled substrate density at the living/ dead boundary is
Ty = % with specific maintenance power [pys| and specific maximum assimilation

power [pam], scaled substrate concentration zo = Xo/Xx with saturation constant Xy,
biomass density in the floc X; and maximum specific substrate uptake rate [jx.,] [141].
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Roots and shoots

The modelling step from algae to plants involves a number of extensions that primarily
relate to the fact that plants take up nutrients through roots, while shoots (including leaves)
are used for light and carbon dioxide uptake and water transpiration, which affect internal
nutrient and metabolite transport. This makes the allocation of resources to root versus
shoot growth of special interest, as well as shape changes that affect surface area/ volume
relationships via the scaling of assimilation and maintenance, respectively, with structural
mass. As illustrated in Figure 4.14, most plants naturally develop from a V1-morphic, via
an isomorphic, to a VO-morphic growth during their life cycle. Procumbant plants almost
skip the isomorphic phase and directly develop from V1- to VO-morphic growth, similar to
crusts [108]. Climbing plants seem to stay in the V1-morphic phase.

These changes in shape can be incorporated using the shape correction function M(V),
which can be chosen differently for roots and shoots. Given the wild diversity of plant
shapes and the extreme extent of local adaptations, it is hard to see how a choice can
be based on mechanistic arguments. Empirical and convenience arguments can hardly be
avoided at this point. A simple choice would be

M(V) = (V[ V) /3= IVm)? (4.33)

which starts from V1- and ends with VO-morphic growth when it reaches its maximum
volume V.

4.3 Mass aspects of univariate DEB models

4.3.1 Three basic fluxes

In this subsection I show that all energy and mass fluxes of univariate DEB models are
weighted sums of three basic fluxes: assimilation dissipation and growth. The mineral
fluxes follow from the organic fluxes, and the organic fluxes follow from the assumptions
of Table 2.4.

The chemical indices of the minerals and the organic compounds are collected in two
matrices m gy and ne, respectively. A typical element of such a matrix, n,,,, denotes the
chemical index of compound %, with respect to element *;. The chemical indices of the
organic compounds for carbon equal 1 by definition. The strong homeostasis assumption
amounts to the condition that the chemical indices do not change.

Let J, denote the rate of change of the compound *. The conservation of mass amounts
to

0 1 0 0 nen Jp nox Mcov Noe Nop J X
01_[0 20 nyn Ju 4 | max navo nae nap v

0 2 1 2 non Jo nox MNov Nore nNop Jg + JEg
0 0 0 0 nyn Jn nNx NNV NNE NNP Jp

(4.34)
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This can be summarised in matrix form as 0 = nyJy + nodo or 0 = nd, for n =

(nacne) and J = (Jug; Jo); the only difference with (3.10) is in the grouping of the
compounds. Thus the fluxes for the ‘mineral’ compounds Jx can be written as a weighted
sum of the fluxes of the organic compounds Jp

jM = —’I’LX,}’I’I,(QJ'O (435)
with
1 0 0 —fox
NNN
0o 27! 0 —aN
ny = 1 g1 g InvN |y n=dnen +npn — 2non (4.36)
AnNN
1

0 0 0 nyy

I will now explain why the ‘organic’ fluxes Jo relate to the basic powers p as

J:X —nxa 0 0 b
JV 0 0 nva . ; .
) . = o o Ve , or Jp= 4.37
Je + Jeg iz —fp —Hp ig © = Mob (437)
Jp npa  NMpp  NpG

where iy is the chemical potential of the reserve, and 7,,., the mass flux of compound
%1 per unit of power %o, i.e. the coupling between mass and energy fluxes. The latter
coefficients serve as model parameters, and are collected in matrix 7.

The fluxes Jx = —nxapa and Jp follow from the strong homeostasis asumption and
from (2.2). Assimilation energy is quantified by its fixation in reserves, so reserves are
formed at a rate p4/fig, and the yield of food on reserve, yxg = fip/1ax, stands for the
C-moles of food ingested per C-mole of reserves formed, where psx = nxy. The rate at
which work can be done by ingested food is fiyJx; the flux py is fixed in reserves, the
flux pafipnpa is fixed in product, the rest dissipates as heat and mineral fluxes that are
associated with this conversion. The coefficient ypx = paxnpa stands for the C-mole of
product that is derived directly from food per C-mole of food ingested (products can also
be formed indirectly from assimilated energy).

If the individual happens to be a metazoan and the product is interpreted as faeces,
then npp = npg = 0. Faeces production is coupled to food intake only. Alcohol production
by yeasts that live on glucose is an example of product formation where npp # npg # 0.
At this point there is no need for molecular details about the process of digestion being
intra- or extra-cellular. This knowledge only affects details in the interpretation of the
coefficients in n.

The flux Jy, = Panve indicates that pugy = ny4 is the invested energy per C-mole of
structural biomass, which directly follows from assumption 1 in Table 2.4. Note that [, is
the energy that is actually fixed in a C-mole of structural biomass, so gy — iy, dissipates
(as heat or via products that are coupled to growth) per C-mole.

The flux of reserves is given by Jg = I (pa — Pc): reserve energy is generated by
assimilation and mobilised for further use. The flux of embryonic reserves (i.e. reproduc-
tion), J Ep = Iz KrPR, appears as a return flux to the reserve because embryonic reserves
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have the same composition as adult reserves because of the strong homeostasis assumption.
Since pc = pp + Pa + KrPr, see (2.60) and (2.61), we have Jg + Jg, = lig (P4 — Pp — Pa),
which is the relationship given in (4.37). So Jg + Jg,, is a weighted sum of three powers,
but J £ and J £, themselves are not.

Substitution of (4.37) into (4.35) shows that the mass balance equation can be re-
formulated as 0 = n M”? M + none, which provides the matrix of energy-—mineral coupling
coefficients Ny = —n 'nono and the mineral fluxes Ju = = NuP-

Table 2.5 shows that all basic powers are cubic polynomials in length, from which
follows that also all mass fluxes are cubic polynomials in length.

The matrix ny of coefficients (4.36) has an odd interpretation in terms of reduction
degrees if the nitrogenous waste is ammonia. The third row, i.e. the one that relates to
dioxygen, represents the ratio of the reduction degree of the elements C, H, O, N to that
of O,, which is —4. That is to say, N atoms account for —3 of these reduction degrees,
whatever their real values in the rich mixture of components that are present. The third
row of the matrix nxjn@ thus represents the ratio of the reduction degrees of X, V|, E
and P to that of O. Sandler and Orbey [1011] discuss the concept of generalised degree of
reduction.

Figure 4.15 illustrates Jo and Ju, of the DEB model as a function of the structural
biomass (i.e. scaled length, see next section), when food is abundant. The embryonic
reserve flux is negative, because embryos do not eat. The growth just prior to birth is
reduced, because the reserves become depleted. The switch from juvenile to adult, so
from development to reproduction, implies a discontinuity in the mineral fluxes, but this
discontinuity is negligibly small.

Partitioning of mass fluxes

The mineral and organic fluxes can be decomposed into contributions from assimilation,
dissipation power and growth. Let J, = Joa + Jip + Joq for x € {M, O}, and let us collect
these fluxes in two matrices, then

Jo. = nodiag(p) and Ju, = na diag(p) (4.38)

where diag(p) represents a diagonal matrix with the elements of p on the diagonal, so
that diag(p)1l = p, and Jviel = Juq, Joxl = Jo. These results are used in later sections.
The fluxes assimilation, dissipation and growth can be further subdivided into and
catabolic and an anabolic aspect, even for the dissipation flux. This is because somatic
maintenance includes the turnover of structure, where structure serves the function of both
substrate and product. We need this for the specification of fractionation of isotopes.

4.3.2 State versus flux

The mass of reserves and the structural biomass relate to the fluxes as Mg(a) = My +
Jo Je(t)dt and My (a) = [5 Jv(t)dt (the initial structural mass is negligibly small). The
mass of reserves of an embryo in C-moles at age 0 is MY = Ey/fip, where Ej is given in
(2.42).
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Figure 4.15: The organic fluxes Jo (top) and the mineral fluxes J s (bottom) for the DEB model
as functions of the scaled length [ at abundant food (e =1 for [ > l; 0 < [ < 1). The various
fluxes are multiplied by the indicated scaling factors for graphical purposes, while a common
scaling factor involves model parameters. The parameters: scaled length at birth [, = 0.16,
scaled length at puberty I, = 0.5 (both indicated on the abscissa), scaled heating length I7 = 0
(ectotherm), energy investment ratio g = 1, partition coefficient x = 0.8, reproduction efficiency
kr = 0.8. The coefficient matrices are

15 0 0 1000 11 1 1
0O 0 05 020 3 18 1.8 1.8 18
M=1 1 1 4™ 12120 [™7 |05 05 05 05
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The change in structural biomass My and reserve mass Mg relate to the powers as
%MV = Jy = Penve and %ME = Jg = %. If the model for these powers implies the
existence of a maximum for the structural biomass, My,,, and for the reserve mass, Mg,,,
it can be convenient to replace the state of the individual, My and Mg, by the scaled

length | = (My/My,,)"? and the scaled energy reserve density e = % The change
of the scaled state then becomes
d Pcnva PG
] = = 4.39
dt 3M‘2/3M‘1/f; 312kgE,, (4.39)
ie _ _Mywm  (pa—pPc Mg I (4.40)
dt My Mg, g My baniva 7E’m I3 ba —Dpc — Pc P :

The reproduction rate, in terms of the number of offspring per time, is given by R =
jER /M?Y. Therefore, the three basic powers, supplemented by the reproductive power,
fully specify the individual as a dynamic system. The purpose of the specific assumptions
of the DEB model is, therefore, to specify these three powers.

4.3.3 Mass investment in neonates

Several simple expressions can be obtained for changes over the whole incubation period
that are useful for practical work. The initial weight (age a = 0) and the weight at birth
(i.e. hatching, age a = @;), excluding membranes and nitrogenous waste, are

Mgmnleo Mg eblg)
( Wyw(0) Wy (ap) ) = Vm< Wg Wy ) ( | 0 | | [MV]]lg’ )

(4.41)
where wg and wy denote the molecular weights of reserves and structural biomass. The
scaled reserve densities ey and e, are defined as e, = F,([E,,]V;,)™!, where E, denotes the
initial amount of reserves or the amount at hatching.

The relative weight at hatching is W, (ay) /W (0) = (ey + wy /wg)l/eo.
The total production of ‘minerals’ during incubation, My,(ap), amounts to

My(a) = /Oa" Ju(a)da = —nyino (0 ~[MyVy 7 (Bo—Ey) 0)  (442)

4.3.4 Composition of reserves & structural mass

Figure 4.16 illustrates that the change in composition of biomass for increasing growth
rates can be used to obtain the composition of the reserves and of the structural mass.
This method can be applied not only to elements but also to any chemical compound
that can be measured in organisms. Indirect evidence can be used to obtain the amounts,
without separating structure and reserve physically, see Figure 9.7.

The relative contributions of the three basic powers to the mass conversions depend on
the substrate density, and therefore on throughput rate of a chemostat, as is illustrated in
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Figure 4.16 for the conversion process of glycerol into the bacterium Klebsiella aerogenes
at steady state. The data on the elemental composition, and on the yield of dry weight and
the specific Oy and CO; fluxes, lead to the following relationship between mineral fluxes

and the three basic powers for Jy = Jul = Juy and p, = diag(p)l = p

014 1.00 —0.49
: 115 036 —042 | .
IMe=| 535 _097 063 |P/PE (4.43)

—-0.31 0.31  0.02

rRNA belongs to reserve

RNA, mainly consisting of ribosomal RNA, is an example of a compound known to increase
in abundance with the growth rate [609]. This property is used to measure the growth rate
of fish, for example [173, 531]. In prokaryotes, which can grow much faster, the increase in
TRNA is much stronger. Within the DEB model, we can only account for this relationship
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Figure 4.17: The concentration of RNA as
a function of the population growth rate in
E. coli. Data from Koch [609]. The least-
squares estimates of the parameters are 6, =
0.44, 91; = 0.087 and [WEd]/[WVd] = 20.7.

Figure 4.18: Elongation rate in E. coli for
6 = 03, lg = 024, g = 32.4. Data
from Bremer and Dennis [148]. Both elonga-
tion rate and population growth rate are ex-
pressed as fractions of their maximum value

of 7, = 1.73h~! with an elongation rate of
21 aas 'rib™1.

when (part of the) RNA is included in the energy reserves. This does not seem unrealistic,
because when cells experience a decline in substrate density and thus a decline in energy
reserves, they are likely to gain energy through the degradation of ribosomes [249]. It also
makes sense, because the kinetics of reserve energy density is first order, which implies that
the use of reserves increases with their density. The connection between the abundance of
I'RNA, i.e. the apparatus for protein synthesis, and energy density is, therefore, a logical
one. No assumption of the DEB model implies that the energy reserves should be inert
materials that only wait for further use.

RNA as a fraction of dry weight is given in Figure 4.17. If the weight of RNA is a fraction
0, of the dry weight of structural biomass and a fraction 6. of the dry weight of the energy
reserves, the fraction of dry weight that is RNA equals

Wia/ Wy = 0. [Wva]V + 0. Wed [V _ 0y + 0cf[Wra]/[Wvd] (4.44)
(WvalV + [Wed fV 1+ f[Wgdl/[Wvd]
The data are consistent with the assumption that all rRNA belongs to the reserve in E. coli
most RNA, and about half the energy reserves consist of RNA. The rate of RNA turnover is
completely determined by this assumption.

It also has strong implications for the translation rate and the total number of trans-
lations made from a particular RNA molecule. The mean translation rate of a ribosome,
known as the peptide elongation rate, is proportional to the ratio of the rate of protein
synthesis to the energy reserves, E. The rate of protein synthesis is proportional to the
growth rate plus part of the maintenance rate, which is higher the lower the growth rate in
bacteria [1121]. The peptide elongation rate is plotted in Figure 4.18 for E. coli at 37°C.
If the contribution of maintenance to protein synthesis can be neglected, the elongation
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rate at constant substrate density is proportional to the ratio of the growth rate %V to the
stored energy [E,,|fV. As shown by (4.25), the elongation rate in a rod of mean volume
should be proportional to 7/f at population growth rate 7. The relationship allows the
estimation of the parameter l;, which is hard to obtain in another way.

The lifetime of a compound in the reserve of a rod is exponentially distributed with a
mean residence time of (kﬂg% +1—2))~!. The mean residence time thus increases during
the cell cycle. At division it is l%,;l, independent of the (population) growth rate. The total
number of transcriptions of a ribosome, in consequence, increases with the population
growth rate. Outside the cell, RNA is rather stable. The fact that the RNA fraction of dry
weight depends on feeding conditions indicates that an RNA molecule has a restricted life
span inside the cell.

Analyses of this type are required to see if the conclusion that rRNA belongs to the
reserve also holds more generally for (isomorphic) eukaryotes. If so, rRNA can be used as
a proxy for reserve.

DNA belongs to structure

Nuclear DNA belongs to structure, not because of any chemical property or function it has,
but because of its dynamics. Each cell has just a single set of DNA molecules, irrespective of
its nutritional state. This means than its amount follows that of structure and the amount
of DNA per cell weight decreases as a function of the growth rate, because the weight of
the cell increases due to the contribution of the reserve. A slightly more complex exists
in some bacteria that grow fast, such as fast growing Escherichia coli, which can reduce
their division interval till some 20 minutes, while is takes an hour to copy their DNA. Their
amount of DNA per cell increases this the growth rate, but the amount of DNA per cell
hardly varies, as discussed at {272}. This simple reasoning shows that DNA can be used
as a proxy for structure.

If mitochondrial DNA follows the dynamics of mitochondrial activity, it must at least
partly belong to the reserve; to my knowledge little is known about its dynamics.

Composition changes during starvation

The linear decrease of compounds during starvation can be used to gain info on the com-
position of reserve and structure, using the following reasoning.

We first try to understand the decrease of a compound C' in an organism during star-
vation, having measurements of how the amount M (in C-mol) changes in time ¢. At
the start of the experiment, the organism has amounts of structure My and reserve Mg.
Suppose that reserve mobilisation during starvation is just enough to cover the somatic
maintenance costs. The amount of structure My remains constant, so if we focus on some
compound C, e.g. protein, and follow it backward in time, with the time origin at the
moment on which the reserve is fully depleted, we have

Mc(t*) = Moy + (Mo /M)t Jpu (4.45)



142 4. Unwvariate DEB models

where M (t*) is the amount of compound at revered time t*, M¢y the (constant) amount
of compound in structure, Mcg /Mg the constant density of the compound in reserve and
Jgur the (constant) rate of use of reserve for somatic maintenance purposes.

Reverting time back into the standard direction, we substitute ¢ =ty — t* and obtain

Mo(t) = Moy 4+ (Mceg/Mg)(to — t)Jgy  and for Moo = Mey + Jouto  (4.46)
= MCO - tJCM with JC’M = (MCE/ME>JEM (447)

This shows that each compound can decrease linearly at its own rate, even under the strong
homeostasis assumption, which prescribes that the densities of the compound in reserve
Mcg/Mpg and in structure Mey /My remain constant.

It also shows that, if we only know how the compound changes in time, we have access to
Mo and Jgyy, but not to the more informative Moy and Mop (i.e. info on the composition
of structure and reserve).

We do have some relative information on the composition of reserve, if we know the time
trajectories of several compounds: Je,ar/Joynr = Meyp/Me,p. If we would know when
the reserve is depleted (namely at time ty), we have access to the composition of structure
Mecvy /My, since Mc(tg) = Mey, but the individual will probably start to use structure
to pay maintenance costs during prolonged starvation (causing deviations from linear de-
crease). Moreover it is likely that the reserve buffer that is allocated to reproduction is
used under extreme starvation. This makes it difficult to have access to t.

Suppose now that we have info for all compounds, that is >°; M,y = My and Y-, Mc,p =
Mpg. Although the actual number of chemical compounds is formidable, they can be
grouped into a limited number of chemical categories (e.g. proteins, lipids etc) We have
Z JC’M = JEM, SO JCM/E JCM = MCE/ME We also have Z MCO = MV + JEMt(b
so My =3 Mc,o —to2; JCZ. m, which we know if we would have and estimate for t,. We
obviously must have that ¢y < >; Meo/>; J.CZ. v- The composition of structure is then
found from MC’,L-V/MV = (MCiO - tOJCiM)/MV~

Figure 4.19 gives an example of application. The composition of reserve and structure
turns out to insensitive for the unknown moment of reserve depletion, and reserve of oyster
is rich in carbohydrates, compared to structure.

4.4 Respiration

Respiration, i.e. the use of dioxygen or the production of carbon dioxide, is usually taken
to represent the total metabolic rate in an organism. The latter is a rather vague concept,
however. The conceptual relationship between respiration and use of energy has changed
with time. Von Bertalanffy identified it with anabolic processes, while the Scope For
Growth concept, {417}, relates it to catabolic processes. The respiration rate can now be
deﬁne_d concisely as the dioxygen flux jo = NoaPa+NopPp +NoacPa, or the carbon dioxide
flux Jo = ncapa + neppp + nocpa-

If product formation, such as faeces, is only linked to assimilation, the carbon dioxide
production rate that is not associated with assimilation, Ji for p4 = 0, follows from (4.35),
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T~ Figure 4.19: The amounts of energy in starving
ol T oyster Crassostrea gigas. Data from [1251].

~__ The parameter estimates (right), conversions,
T~ and their translation into composition info for
3 choices for the time ty at which the reserve is
depleted. The caloric values fi are from Table

Energy, kcal/100 g wet weight

. ‘ o 49 1cal = 41847,
0 100 200 300 400
time, d
100 g wet weight | tg, d  total protein lipid carbohydrate
e Meo, keal 64.81 30.54  16.80 16.87
eJdom, keal/d 0.1042 0.0408 0.0200 0.0358
Mg, mol 0.570  0.319 0.114 0.137
Joy, mmol/d 0.426  0.136 0.290
Mcg /Mg, = 0.500  0.159 0.341
Mey /My, =% | 200 0.546  0.191 0.263
Mcy /My, 22 | 400 0.537  0.185 0.278
Mcy /My, 2% | 600 0.531  0.181 0.288
(4.36) and (4.37)
. ; n 1y . n .
Jop + Joc = (1 - nNECN> Iig (o + Pa) — (1 - nNECN) nvehba (4.48)
nNN NN

where the second term represents the carbon from the reserve flux that is allocated to
growth and actually fixed into new tissue. The relationship simplifies if the nitrogenous
waste contains no carbon (ngy = 0). For embryos and juveniles we have pg + pp =
pc, but adults fix carbon in embryonic reserves. This change at puberty results in a
stepwise decrease in carbon dioxide production as illustrated in Figure 4.15. Table 2.5
gives the required powers: for adults we have the growth power pg = V,, [pM]P% and
the dissipating power

, _ 1 1 e—l+1r/g
_ 3 - 3 2 - - 2 3 13
Pp = Viulpa] <l +(/<; DI+ Pl + (1 RR)(H 1) (l Tty +1 lp>>
(4.49)

Initially, eggs hardly use dioxygen, but dioxygen consumption rapidly increases during
development; see Figure 4.20. In juveniles and adults, dioxygen consumption is usually
measured in individuals that have been starved for some time, to avoid interpretation prob-
lems related to digestion. (For micro-organisms this is not possible without a substantial
decrease of reserves.) The expression for the dissipating power is consistent with the obser-
vation that respiration rate increases with reserve density [602], while reserves themselves
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Figure 4.20: The water stick insect Ranatra lin-
earis deposits its eggs in floating decaying plant
material, where dioxygen availability is usually
poor. The eggs are easily spotted by the special
respiratory organs that peek out of the plant.
Just prior to hatching, eggs typically need a lot
of dioxygen, cf. Figure 2.12.

Figure 4.21:  The respiration rate of
Daphnia pulex with few eggs at 20°C as 6.2
a function of length. Data from Richman
[962]. The DEB-based curve 0.0336L% +
0.01845L3 as well as the standard allomet- °.12
ric curve 0.0516L%437 are plotted on top

of each other, but they are so similar that

this is hardly visible. If you look hard, ©.24
you will notice that the line width varies ‘
a little. B B.

O2 consumption, ul/h

do not use dioxygen. Moreover, it explains the reduction of respiration during starvation;
see {113}.

The following subsection shows that respiration is a weighted sum of volume and sur-
face area in steady-state conditions for the reserves. This is, for all practical purposes,
numerically indistinguishable from the well known Kleiber’s rule, which takes respiration
to be proportional to weight to the power 0.75 or length to the power 2.25; see Figure 4.21.
There are three major improvements in comparison to Kleiber’s rule. This model does not
suffer from dimensional problems, it provides an explanation rather than a description and
it accommodates species that deviate from Kleiber’s rule; endotherms respire in proportion
to surface area (approximately), which has given rise to Rubner’s surface law.

As already mentioned, this result solves the long standing problem of why the volume-
specific respiration of ectotherms decreases with increasing size when organisms of the same
species are compared. This problem has been identified as one of the central problems of
biology [1266]. Many theories have been proposed, see e.g. [951] for a discussion, but all
use arguments that are too specific to be really satisfactory: heating (but many species
are ectothermic), muscle power (but movement costs are relatively unimportant), gravity
(but aquatic species escape gravity), branching transport systems (but open circulatory
systems are frequent). Peters [886] even argued that we should stop looking for a general
explanation. The DEB theory, however, does offer a general explanation: the overhead of
growth. A comparison of different species is covered in a later chapter, {287}, where it is
shown that interspecies comparisons work out a bit differently.
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Table 4.2: Structural biomass and mainly reserves consist of three groups of polymers. The RQ
value for protein relates to urea as nitrogenous waste. The formula for lipid refers to tripalmitin;
octanol (CgHig0, or CHg.9500.125) is frequently used as a chemical model for a typical animal
fat, see {315}.

compound symbol formula RQ kJ/g kJ/C-mol
polysaccharides Ps CH,0 1.00 17.2 516
lipids Li CH;{.9200.12 0.67 38.9 616
proteins Pr CH14610033Np2s 0.84 17.6 401

Since embryos do not assimilate, their respiration has contributions from growth plus
maturation and maintenance only. The observation that respiration is proportional to a
weighted sum of volume and change in volume goes back to the 1957 Smith study [1082]
of salmon eggs. At constant food density, the change in volume is of the von Bertalanffy
type, which makes respiration proportional to 3rg(V.Y/3V2/3 — V) + kia/V. This gives five
parameters to be estimated from two data sets on respiration and growth: V;, V., 7p,
a proportionality constant for respiration and the maintenance rate coefficient, kar. This
gives 2.5 parameters per data set, which is acceptable if the scatter is not too large.

4.4.1 Respiration Quotient

The Respiration Quotient (RQ) is of practical interest because it yields information on
the relative contributions of protein, carbohydrates and lipids. The R(Q for a particular
compound X with chemical indices nx can be obtained by decomposing the compound into
minerals with chemical indices n . The composition of the nitrogenous waste (N), which
can also contain C and O, affects the RQ if the compound contains N. The stoichiometric
coefficients are yux = ( yox ymx Yox ynx )T =mnynx, and RQ= yox/vox.

The RQ value can be used to make inferences about the composition of reserves, see
Table 4.2. Proteins are by far the most diverse polymers; the composition (and function)
of protein differs over the taxa, the RQ varying between 0.8 and 0.9.

The chemical indices of the structural biomass and the reserves relate to that of the
three groups of polymers as

Nixg = n*lpSYps7*2 + n*1LiYL,‘,*2 + n*lerpT,*z *1 c {C, H, O, N} , k9 € {V, E} (450)

where Y., is the molar yield of x3 € {P;, L;, P}, on %9, and 1 = Yp_,, + Y7 ., + Y5, 4.
Given the composition of the three polymers, the composition of structural biomass and
that of reserves have two degrees of freedom each. The constraint that the RQ is indepen-
dent of the state of the individual eliminates all degrees of freedom and the value of the
RQ can be directly translated into the composition of reserves and structure in terms of
the three groups of polymer.

For living organisms, the situation is a bit more complex, because the ratio between

the produced carbon dioxide and the consumed dioxygen is not necessarily constant. The



146 4. Unwvariate DEB models

standard assumption in animal physiology that the RQ is constant imposes constraints
on the composition of reserve relative to structure that I now evaluate, assuming that
the gas fluxes that are associated with the assimilation process, and so with feeding, are
excluded, as usual, from the measurements of the RQ, by starving the individual prior to
the measurement. An explicit expression for the RQ) can be obtained from the relationships
Ju = nump and g = —nxjn@n@. As is usually done, we set the first row of np equal
to 17, set npp = npe = 0, and obtain

' ‘ - ) R . T
RQ — Jep + Joa (n)omno ( 0 Petve _% ’ ) (4.51)
= — — - - — . ) ) T '
Jop + Joa (n]j)ono ( 0 panve _% 0 )
_ RN (] — pypRol) bV LD
) L —nyy 228 — (1 —nyplet) tev (14 22) 4.52)
1424y — ngv _ mmwv _ (] 4 ngn _nge _ nmwe) sov (] 4 bo)

where (n). denotes the row of m; that corresponds to compound *. The contribution
of energetics to the RQ is thus via the ratio of growth to dissipation power. The RQ is in
practice usually taken to be a constant for a particular species. Within the DEB model, the
RQ is independent of the state of the animal (size [ and reserve density e) if the following
condition on the composition of £, V and N holds

NHE _ MOE __ NNNE _ ncN
1 + 4 2 4nyN _ 1 nNEnNN (4 53)
1+NHv_nov_ﬁan 1—n CN :
4 2 4nNN NVTLNN
in which case
1—n nCcN 1—n ncN
RQ _ NEnNN _ NVnNN (4 54)
1+m_nOE_QnNE 1+nHv_nov_ﬁan ’
4 2 4nNN 4 2 4nNN

The respiration rate (the dioxygen consumption rate as well as the carbon dioxide pro-
duction rate) is then proportional to the mobilisation power if the contribution via assim-
ilation is excluded. The literature (which typically treats biomass as being homogeneous)
frequently identifies respiration with catabolism; this has been the motivation for the no-
tation peo. This link is not correct in the context of DEB theory. Condition (4.53) simplifies
considerably if the Urination Quotient (UQ) is constant as well, see (4.60). The elemen-
tal composition of the reserves has to be equal to that of the structural biomass, if the
Watering Quotient (WQ) is also independent of the state of the animal, see {148}.

4.4.2 Heat increment of feeding

The heat increment of feeding, also known as ‘specific dynamic action’, and many other
terms, is defined (strangely enough) as the diozygen consumption that is associated with
the feeding process. Apart from a small part that relates to the processing of proteins, the
heat increment of feeding is little understood [1266]. It can be obtained, however, from the
conservation law for mass. The dioxygen consumption per C-mole of food is independent



4.5. Nitrogen balance 147

of the states of the animal (reserves e and size [) as

T

. 1 —% ncx NCE NCP 1
Joa 1 0 -7 NHx MNHE MNHP BAX
— = (ny)osno 1 | = . ~ i (4.55)
Jx —HAXHE 2 nox NOE NoOP  JAX
—HAXTIPA 4,3, ~ NNX TNNE NNP rap

where (1) 0. denotes the row of ny; that relates to O, which is the third row. The expres-
sion shows how assimilation-associated dioxygen consumption depends on the composition
of food, faeces, reserves and nitrogenous waste, and the digestion efficiency through the
parameters pax, pap and fig.

4.5 Nitrogen balance

Standard ‘static’ energy budget studies treat energy in urine similar to energy in faeces, by
subtracting both from energy contained in food to arrive as metabolisable energy that is
available to the animal, cf. {416}. Since the gut contents still belong to the ‘outside world’,
this is reasonable for energy in faeces, but not for energy in urine. The DEB model leads to
a different point of view, where dissipating power and anabolic power also contribute to the
nitrogenous waste. The energy (and nitrogen) in urine originates from all powers, where
the contributions to urine appear as overhead costs. Without reserves, the two points
of view can be translated into each other, but with reserves the two become essentially
different.

If nyg < [éw_‘{] %V—GV], the flux of nitrogenous waste that relates to anabolic power, Jyg,
is negative, megning that nitrogen is built in rather than wasted in the transformation of
reserves to structural biomass. The flux of nitrogenous waste that relates to dissipating
power amounts to Jyp = %%, which can be a substantial part of the total flux of
nitrogenous waste.

4.5.1 Urination Quotient

Analogous to the Respiration Quotient, we can define the Urination Quotient (UQ) as

: : _ : 4 T
Uq - Jnp + JIne (n/\j)NnO( 0 penve —PEPE 0 ) (456)
= — v = — - ; ; T .
Jo + Joa (”Xx})ono( 0 peve —PEPE 0 )
NNV _ MNE KGV bp
L g - nge g (14 e nge g ber (] 4 Do)

The UQ is independent of the states of the animal (size | and reserve density e) if the
following condition on the composition of £, V and N holds

NHE _ NOE _ NNNE
] 4 mHY. ROV nnNv o '
4 2 AnnN NV
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in which case

nNE NE
— NN — NN
vQ = 14 MHE _ Nop _ nnNE | 4 MHV _ TQV _ RNV (4.59)
4 2 47’LNN 4 2 47’LNN

The UQ and the RQ are both constant if

nNg = NNV (460)
Nge — QHOE = Ngy — 2nOV (461)
Analogous to the RQ and UQ, we can define a Watering Quotient WQ = —%:

the ratio of the water production to dioxygen consumption that relates to dissipation and
growth. (For terrestrial animals, the evaporation of water invokes a drinking behaviour,
which is discussed on {149}.) The condition that the RQ, UQ and W(Q are all independent
of the state of the animal directly translates to the condition that the reserves and the
structural biomass have the same elemental composition. The dioxygen consumption, the
carbon dioxide production, the nitrogenous waste production and the water production
that relate to dissipation and growth are all proportional to the reserve mobilisation rate,
comparing individuals of the same species (i.e. the same parameter values), but different
states (structural biomass and/or reserves).

If the RQ and the UQ are bﬁgl constant, the ratio of the carbon dioxide to the nitroge-

—_— NNN

nous waste production equals UG = nnp — MON excluding contributions via assimilation

as before. If the WQ is constant as well, the ratio of the water to the nitrogenous waste
production equals \{}Z—Q = BB BNN _ BN,

4.5.2 Ammonia excretion

Many algae take up nitrogenous compounds, such as ammonia, from the environment, but
even algae also excrete ammonia, associated with maintenance and growth. This follows
from the balance equation for nitrogen, given the composition of reserves and structural
mass. Ammonia excretion can be quantified for V1-morphs as follows.

Let nyg and nyy denote the chemical indices for nitrogen in reserves and structural
mass. The ammonia excretion that is associated with maintenance and growth can then
be written as

Ingp+Inga = (ng.p + ing.c)My = nne(Bp + 06)/fip — nyvie/uay (4.62)

JNup +ivec = nneypv (ke + ) — nyvr (4.63)

with dissipating power pp = MquVI%M and growth power pg = My ugyr (see Table 4.1);
the mass—mass coupler ygy is the ratio of two energy—mass couplers, ypy = pugv /iy, where
iy is the reserve energy investment per unit increase of structural mass.

The flux of nitrogenous waste that relates to assimilation amounts to J.N7 A = NNAPA,

with nyanyy = —nxannvx + NNE/HE + Npannp.
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4.6 Water balance

The drinking rate equals the water flux, Jux = Jy for aquatic animals, but terrestrial ani-
mals have to deal with evaporation of water. The water balance implies that the sum of the
water fluxes by metabolism, evaporation and drinking amounts to zero. Embryos usually
do not drink and are ‘designed’ such that evaporation takes care of water outflux, although
small changes in water content have been found. The water content of tissues in birds grad-
ually decreases during growth, which led Ricklefs and Webb [968] and Konarzewski [616] to
model juvenile growth on the basis of the water content of the tissue. Here, we idealize the
process by assuming strict homeostasis for both the structural biomass and the reserves,
while focusing on juveniles and adults. Note that water emission via urine is incorporated
in the composition of the nitrogenous waste, which could be large enough to let the water
outflux Jy be negative and turn it into a water influx.

Evaporation has two main routes, one via water loss linked to respiration, Jgo, and one
via transpiration, Jy . Water loss via respiration is proportional to dioxygen consumption
via the amount of inhaled air, so Jyo = JoyHo, while transpiration is proportional to
surface area, so Jyy = {JHH}V2/3l2, where {JHH} does not depend on the state of the
animal. Both loss rates depend on water pressure in the air, temperature, wind speed and
behavioural components. The DEB model leads to a drinking rate of

Jux=(0 1 yno 0 )Ju+ {Jun}VZ3 (4.64)

This two-parameter model for the drinking process is, of course, an idealised picture which
pushes the concept of homeostasis to the extreme. The water content of urine is actually
rather variable, depending on environmental and behavioural factors. However, the model
might be helpful as a first approximation to reveal the coupling that must exist between
drinking and energetics.

Water plays an essential role in the transport of nutrients from the environment to
terrestrial plants, and in the translocation of their metabolites. Its quantitative role can
only be understood in a multi-variate setting, see next subsection.

4.6.1 Plant—water relationships

Terrestrial plants have intimate relationships with water, and total biomass production
is found to vary almost proportionally to the annual precipitation across the globe [837,
page 124]. Since plants cannot move, the local availability of water is the main factor
determining the distribution of plants species [1276]. Like all organisms they need water
for metabolic purposes, as autotrophs they need it as electron donor, but, above all, they
need it for transport [937]. From a geophysiological perspective, plants are structures that
pump water from the soil into the atmosphere. The evaporation of water from the leaves
generates a water flux from the roots to the shoot, which is used for internal transport
and for nutrient uptake from the soil. Factors that control evaporation include tempera-
ture, relative humidity, wind speed, and water supply in the soil [1008, 1072]. Plants can
modify evaporation by stomata in the leaves, but this regulation is limited by the need to
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acquire carbon dioxide. Jones [562], Nobel [842] and Lambers et al. [680] give an excellent
discussion of quantitative aspects.

Suppose that the arrival rate of nutrients at the receptor in the root, J,, is proportional
to its concentration in the water, X,,, and the water flux per receptor. The water flux
is proportional to the shoot area where transpiration takes place, which controls nutrient
transport, and to the availability of water in the soil, Xy. The proportionality factor
includes the regulation of stomata opening by the plant, and atmospheric factors (tem-
perature, wind, humidity). The number of receptors is proportional to the surface area of
the root. The surface areas of roots and shoot are proportional to A, = M,.(V,)V,2/3 and

Ay = M(V,)V2/3, respectively. The uptake rate of nutrient is proportional to the number
kpJ,

k4-pJd,’
between receptor and bound nutrient. This leads to the uptake rate of nutrient

where p is the binding probability, and k the dissociation rate

of receptors times

In = {Invam YA (14 X /XN) 7Y, Xy o (XgAg/A4,) 7! (4.65)

The surface area of the shoot appears in the saturation ‘constant’ Xy, which is no longer
constant.

Nutrient uptake is arrested by lack of water transport in this formulation, because the
saturation constant becomes very large. This mechanism gives a direct coupling between
nutrient uptake and precipitation. In water-rich soils, the control of transport on nutrient
uptake might be less, and in subaquatic conditions even absent. This boils down to an
additive term Xy, which relates to diffusive transport of the nutrient: Xgn o (Xo +
XA, /Ar) -1

4.7 Isotope dynamics in the standard DEB model

The isotope dynamics for macrochemical reactions as discussed at {92} can now be applied
to the standard DEB model, where dioxygen is a non-limiting substrate. This excludes
applications in micro-aerobic environments (e.g. parasites inside hosts), where we have to
deal with transitions from aerobic metabolism to fermentation. The focus is on the isotope
dynamics of reserve E and structure V' with food X as substrate.

4.7.1 Three contributions to isotope fluxes

The three basic fluxes assimilation, dissipation and growth each have a catabolic and an
anabolic aspect. In the catabolic aspect energy is generated by oxidation of substrate that
is used in the anabolic aspect where the same substrate is used to provide building blocks
for products. For simplicity’s sake, I now assume that the atoms of the mineral products
all originate from the organic substrate or from dioxygen and that the carbon dioxide
production in the anabolic aspect is negligibly small. Since it is known that e.g. carbon
dioxide is both product and substrate, at least in some transformations, this assumption
need not be correct and applications might urge to change this assumption.

Under extreme starvation conditions shrinking might occur; the anatomy of this trans-
formation is basically identical to that of dissipation.
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The chemical indices for the minerals M = (C, H,O, N) and the organic compounds
O = (X,V,E,P) are assumed to be known and 0 = ny Yy, + noYS, so Y, =
—nynoY4h, for any choice of organic substrate s. Many aquatic organisms use ammonia
as N-waste, so noy = 0, nyny = 3, noy = 0, nyny = 1. Since n]j is well-defined, YA’ZS is
known, once Y3, is given.

Assimilation
Assimilation A is defined as the transformation
YipX + Y350 — YipE + YppP + YipH + YipN + Y¢pC

for food X, dioxygen O, reserve E, feaces P, water H, N-waste N, carbon dioxide C. The
organic yield coefficients are

Y(’SL‘E :( Y)?E YI?AE Y}?E Y134E )T :( _yE% 0 1 z,:;x )T (4-66)
from which follow the mineral yield coefficients Yy = ( Yy Yiep Yos Yip )T =

—n/_\/}noYé“E; the assimilation flux Jg4 is determined by DEB theory.

The anabolic fraction is k% = ypx = 1/yxe, so 5 =1 —ypx. fypx + ypx = 1, we
have Yz = 0.

If selection occurs for isotope 0 of element 7 of food X in assimilation A, we need
to use the apparent coefficient nlg® for reserve, rather than the actual coefficient nlg,
using 04 Likewise we need to use nlge for feaces with £%¢. We have isotope flux

07 __ 0Aq ,.a 0Ac .c\ T
Jxa = (nix K% +nix°K9) Ixa.

Dissipation

The catabolic aspect of dissipation just oxidises reserve into minerals. Somatic mainte-
nance, Jgu, which is one of the components of the dissipation flux, is partly used for the
turnover of structure, which means that structure is both a substrate and a product. No
net synthesis of structure occurs in association with dissipation.

Dissipation D is defined as the transformation

for reserve E, structure V', dioxygen O, water H, N-waste N, carbon dioxide C'
YODE = ( YXDE (YVDE - YVDE) YEPE Y}PE )T =(0 010 )T (4-67)

from which follow the mineral yield coefficients Y& = ( Y2, Y& Y, Y& )T =
—nxjnoYoDE; the dissipation flux Jgp is given by DEB theory.

A fixed fraction of the somatic maintenance flux is used for the turnover of structure; a
fraction of this flux is used to generate energy to drive the turnover; the flux JE M, = KM Jeur
is used as building blocks for turnover, where k,; is a new parameter. Let Jvp denote the
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turnover flux of structure, which enters as well as leaves the pool of structure. Using Jg,
as a reference flux, the formation and use of structure in the turnover process read

E+ylaV — 14+ yle)V + Y H + Y R0 + YN (4.68)
(1 +yie)V — ydfaV + Y2EC + YYsH + Y 50 + YN (4.69)

where yMe = Jyp/Jgu, — 1 is a model parameter. The carbon dioxide that is produced in
the turnover can be associated with the catabolic reserve flux that generates the energy to
drive turnover or with the catabolic structure flux that leaves the structure. This is why
it is not implemented in the formation of structure. Fractionation in the turnover process
can thus occur in the reserve flux that is used for synthesis, and in the structure flux that
partitions in an anabolic and a catabolic aspect. The fraction of the mobilised structure

that re-enters the structure pool is .
1+yV?E

The simplest assumption is that all atoms of the flux J gy, are fixed into new structure.
So for selection of isotope 0 of element 7 in reserve E in the dissipation process D, we
might use the apparent coefficient nige for structure with B'5*. We have isotope flux
JEip = (n{g" KD + n5e k%) Jup.

During shrinking, the product-yield of structure is less than the substrate-yield, but
otherwise also some synthesis of structure still occurs and the equations remain the same.

Growth

Growth G is defined as the transformation
Y E+ Y50 — YSV + Y5 H+YSN+YS.C (4.70)
for reserve E, dioxygen O, structure V', water H, N-waste N, carbon dioxide C'.
YOGE =(Y¥p YVGE Vi Yig )T =(0 —yvp 1 0 )T (4.71)

from which follow the mineral yield coefficients Y.Gp = ( Y&; Y Y& Y5 )T =
—nyunoYSy; the growth flux Jee is determined by DEB theory.

The anabolic fraction is k& = yyr = 1/ypy, so kG = 1 — yyr. We must have ygy > 1.
Since all structure originates from reserve in the anabolic route. If selection occurs on
reserve with isotope 0 in element 7 in reserve F in growth G, we need to use the apparent
coefficient n, E” for structure, rather than the actual coefficient n?S, using . We have
isotope flux J%, = (n%SGe k% + n%Se k) Juq.

4.7.2 Changes in isotope fractions

The coefficients n” , i.e. the isotope frequency in element i of compound j, relative to the
carbon frequency in that compound in the various fluxes are quantified in (3.15). Now we
focus on the dynamics of the fraction of isotopes in the pools.
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Let fraction 70 denote the amount isotopes of element ¢ in the pool of compound j
as a fraction of the amount of element ¢ in that pool, i.e. n;;M; and let no M; denote the
amount of isotopes of type 0 of element ¢ in the pool of compound j. So

d 0 _ in?JMJ_ dt Z]M OdtM an ij Ozk ]k

I — = = 4.72
at' T dtngM; | ngM; 9 M, ngM; M, (4.72)
nOk J. nk max(0, J;)
ij 0 gk ij 0 ) ik
_ _A0 ) ik o (Mo | ax(0, Jik) 473
zk: <”z‘j %J> M; zk: (”ij %J> M; o

The last equality holds because for the processes with ij < 0, so for which compound j

serves as substrate rather than as product, we have n* = 49 n;, = n?

We now apply this for j = E,V and k = A, D,, G to the standard DEB model. The
changes in isotope fractions 79, and ~9%,, given those in the substrates v;x(t) and yoo(t)

are

d _(ME Jea d Mg = Jga+ Jge for Jpe <0 (4.74)
- . : = r .
dt %E Tim YiE My dt E EA ECc 10r Jgo
d n0€ JVG no{/j @ 0 JVD d
= MR VA0 ) e E N = Jy 4.75
dt%v (niv ’7 > IMV n;v Tiv IMV ’ dt v Ve VD, ( )

where JVDa represents the (negative) flux of structure turnover as part of the somatic
maintenance process and the (negative) flux Jy p, the shrinking, which only occurs during
extreme starvation.

4.7.3 Effects of temperature

Temperature affects rates, and selection depends on odds ratios, which are dimensionless.
So effects of temperature on fractionation is only indirect, via effects on metabolic rates
(assimilation, dissipation, growth). An increase in temperature causes an increase in dis-
sipation, so an increase in the rate at which the isotope-fraction in structure increases.
Isotope-enrichment in the food chain has several components: 1) the isotope-fraction of
food increases, which cause an increase in the isotope fraction of reserve and structure of
the predator 2) body size typically increases with the trophic level, so the life span and
mean age, which makes that dissipation-linked enrichment has more time to proceed (in-
dependent of food characteristics). So the observation that isotope-fractions increase with
the trophic level does not imply an enrichment in the assimilation process.

If the trajectory of isotope-enrichment is well-captured with enrichment in dissipation
only (including responses to changes in food availability and temperature), this would give
support for the position of maintenance in the metabolic organisation within the context
of DEB theory. Notice that the Marr-Pirt model (for prokaryotes) specifies that structure is
used for maintenance, rather than reserve, so it would be impossible to obtain enrichment
linked to dissipation with this model.
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4.7.4 Persistent products & reconstruction

Products that accumulate in solid form (hair, nails, shells, bones, earplugs, otoliths, wood)
‘write’ a record of the food-temperature history, which can be reconstructed using chemical
identifiers, including the isotope signal. DEB theory specifies that these products are formed
in association with assimilation, dissipation and/or growth. Work with Laure Pecquerie
on otoliths of anchovy [877] indicates that the contribution of assimilation is neglectable,
and that those of dissipation and of growth differs in opacity, which produces that typical
banded pattern in otoliths. The opacity as function of the length in slices of otoliths can
be used to reconstruct (scaled) food intake.

Given that fractionation occurs at the separation of the anabolic and catabolic sub-
fluxes of assimilation, dissipation and growth, the isotope frequency of an element in
the products of any of these three fluxes might equal that before separation, that of the
catabolic or that of the anabolic flux depending from which flux the product is actually
formed..

4.7.5 Doubly labelled water

An ingenious method to measure the carbon dioxide flux indirectly is via the differential
loss of isotopes of (injected) doubly labelled water. The method overcomes the problem
that direct measurement of the carbon dioxide flux gives an instantaneous value only, and
its measurement affects (the behaviour of) the animal. The interest in carbon dioxide
fluxes stems from their relationship with energy fluxes, which is discussed on {157}. The
method is based on the assumptions that labelled oxygen of water is exchanged (rapidly)
with dioxygen of carbon dioxide, and that the loss of deuterium reflects the loss of water.
A few additional simplifying assumptions are also useful to obtain a simple interpretation
of the results, such as labelled and unlabelled body water are completely mixed, and loss
of label other than via water and carbon dioxide loss, is negligible [704].

The total water flux equals Jur = Jux + yHNJN, where ygny denotes the moles of
water in the nitrogenous waste, per mole of nitrogenous waste. The amount of body water
equals My = ygv My +ygeMEg, so that the specific rate at which deuterium is lost equals
hH = Jyr /M. An estimate for My can be obtained by back-extrapolation of the oxygen
label density at time zero, given a known amount of injected label. The specific loss rate of
deuterium, combined with the total amount of body water, leads to an estimate for total
water flux JHL The Spemﬁc loss rate of oxygen label equals ho = (JHL + QJC)/MH, which
can be used to obtain J(;, when JHL and My are known.

4.8 Enthalpy, entropy & free energy balances

Thornton’s rule [1156] relates dissipating heat to dioxygen consumption, by a fixed con-
version of 519 (£13) kJ(mol Oy)~! [50]. This choice is not fully satisfactory, because it
lacks a mechanistic underpinning, and because it is obviously not applicable to anaerobic
conditions. The correlation between dissipating heat and carbon dioxide production has
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Formula State Enthalpy Entropy Table 4.3: Formation enthalpies

keal/mol _ cal/mol.K and absolute entropies of COaq,
CO g -94.05 51.07 HyO and Os at 25°C were taken
H>0 . -68.32 16.71 from [252]. The formation enthalpy
% 8 U 49.00 and absolute entropy for NHjs at
NH; ad. -19.20 26.63 25 ° C were taken from [40].

been found to be reduced by variations in the type of substrate [221]. Heijnen [484] re-
lated dissipating heat to C-moles of formed biomass. This choice is problematic because
of maintenance. If substrate density is low enough, no new biomass will be produced but
heat will still dissipate. Given the chemical coefficients, the proportionality between heat
dissipation and dioxygen consumption can be translated into a condition on the specific
enthalpies within the context of DEB theory.

The strong homeostasis assumption for structural biomass and reserves implies a direct
link between the dissipating heat and the free energies and entropies of structural mass
and reserve as worked out in [1089] and provides a theoretical underpinning of the method
of indirect calorimetry. We first need to study the energy balance of the system ‘individual
plus relevant compounds’.

4.8.1 Energy balance: dissipating heat

Work that is involved in changes in volumes are typically negligibly small at the surface
of the earth, but in the deep ocean, this work has profound effects on energetics and
biochemistry [401, 1039]. Neglecting this effect, the dissipating heat pr, follows from the
energy balance equation using (4.35) and (4.37)
0= 5y + bl + hodo = 3, + (ho — haynaine)nop (4.76)
where
hy=(he hy ho hy) and ho=(hx hy hg hp)

are the specific enthalpies of the minerals and the organic compounds, respectively, and
D74 is the net heat release by all chemical reactions. If the temperature of the organism is
constant, the net heat release p7., is equal to the net heat dissipated by the organism pr. .

This balance equation can be used to obtain the molar enthalpies of the organic com-
pounds, Eg, given the molar enthalpies for the minerals, Ei,l from the literature (see
Table 4.3), and the measured dissipating heat. This heat can be negative if heat from
the environment is required to keep the temperature of the individual constant. Gener-
ally measurements of dissipating heat at four different food levels are required to obtain
the four enthalpies for the organic compounds; if the enthalpies of food X and faeces P
are known then only measurements of dissipated heat at two different food densities are
required. The specific enthalpy of biomass equals hy = %Ej:h"

The chemical potentials iz have to be computed simultaneously with the molar entropies
5. The chemical potential and entropies of food iy and Sy, structure i, and 3y, reserve
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Iip and Sg, and faeces Jip and Sp can be obtained from (4.76) with
0 = (B +T50m) I + (o + T30) Jo + b5, (4.77)
= ((h./\/l Ve T§M) nyuno — ho + fip + T§o) Jo, (4.78)

by measuring the dissipated heat pr; ~ p7. and computing the organic and mineral flows
at 8 different food densities (or 4 different food densities if molar entropies and chemical
potentials of food X and faeces P are known), where fr,, and S collect the values of
the molar chemical potentials and molar entropies for the four minerals, while 1z, and sp
do that for the organic compounds, as before. Rather than measuring dissipating heat,
the method of indirect calorimetry can be used, cf {157}. The specific entropy of biomass
equals 5y = %

Convection € radiation

The dissipating heat contributes to the thermal fluxes to and from the individual. The
individual loses heat via convection and radiation at a rate prp = {#p}(T, — T.)V?/3 +
{7 (T} — THV?3. Here T, denotes the absolute temperature in the environment, in-
cluding a relatively large sphere that encloses the individual. For radiation considera-
tions, the sphere and individual are assumed to have grey, opaque diffuse surfaces. Tj is
the absolute temperature of the body; V?/3 is the body surface area; {#r} is the ther-
mal conductance and {7} = € is the emissivity times the Stefan—Boltzmann constant
o =5.6710"% Jm~2s7 1 K™; see for instance [668]. The body temperature does not change
if the heat loss via convection and radiation matches the dissipating heat, pr, = prr.
This relationship can be used to obtain the body temperature or the heating costs, given
knowledge about the other components. It specifies, for instance, how a temporary in-
crease in activity reduces heating costs, using complementary physiological information
about activity efficiencies [168, 1231, 1255].

Most animals, especially the aquatic ones, have a high thermal conductance, which gives
body temperatures only slightly above the environmental ones. Endotherms, however, heat
their body to a fixed target value, usually some 7T, = 312 K, and have a thermal conductance
as small as {77} = 5.43 Jem ?h™' K~! in birds and 7.4-9.86 Jem™?h™' K™! in mammals,
as calculated from [497]. The thermal conductance can be modified by environmental and
behaviour factors, see e.g. [897, 898].

Heat loss by evaporation & thermo-neutral zone

Most endotherms are terrestrial and lose heat also via evaporation of water at a rate pry,
say. The relationship pr > prg + prr determines the lower boundary of the thermo-—
neutral zone: the minimum environmental temperature at which no endothermic heating
is required. It also specifies the heating requirement at a given environmental temperature.
To see how, we first have to consider the water balance in more detail, to quantify the heat
pru that goes into the evaporation of water. The individual loses water via respiration
at a rate proportional to the use of dioxygen, i.e. Jyo = ynoJo, see [638, 1189], and
via transpiration, i.e. cutaneous losses. The latter route varies between 2% and 84 % of
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the total water loss in birds, despite the lack of sweat glands [250]. Water loss, J HH, Via
transpiration is proportional to body surface area, to the difference in vapour pressure of
water in the skin and the ambient air, to the square root of the wind speed, and depends
on behavioural components. The heat loss by evaporation amounts to prg = ,uTH(j g+
J Ho + JHH)7 with purg = 6 kJmol™!. Within the thermo-neutral zone, endotherms control
their body temperature among others by evaporation, through panting or sweating, which
affects the water balance via enhanced drinking.

Entropy production

The rate of entropy production by the organism ¢ is a measure of the amount of dissipation
that is occurring. It can be quantified for each food density if the temperature of the
organism and the entropies of the organic compounds are known:

0:d+%+§ﬂjﬁ4 +36Jo = To + T Im + B5To (4.79)

4.8.2 Indirect calorimetry: aerobic conditions

The relationships between enthalpies, entropies and free energies are simpler for aerobic
conditions because for most important reactions in aerobic biological systems T' A3 is very
small compared to Ah and therefore the enthalpy of the reaction Ak, is approximated
using its Gibbs energy Afi_, since at constant temperature we have At = Ah—T As ~ Ah
[386]. Consequently we have

—T6 =pry and 0= pi, + Epedm + BoJo (4.80)

see [1089] and (4.79), (4.77).

The method of computing entropy from (4.77) simplifies under aerobic conditions and
has been applied to the data and the fitted DEB model reported in Figure 4.16 on Klebsiella
[1089], which resulted in a molar entropy of reserve of 74.8 J/C-mol K and of structure of
52.0J/C-mol K. This value gives an entropy for biomass that is almost two times higher
than the value obtained using the biochemical method of Battley [68], which does not
account for spatial structure or the processes of life.

Indirect calorimetry uses measurements of dioxygen consumption, carbon dioxide and
nitrogen production to estimate dissipating heat pp.:

pri = prdam with pl = ( prc HrH HTO HTN ) (4.81)

Its basis is just empirical when applied to individuals, rather than pure compounds, and
has ancient roots, {157}. Examples are: purc = 60 kJmol™, pury = 0, uro = —350
kJmol™ and pry = —590 kJmol™! in aquatic animals [138] that excrete ammonia as
nitrogenous waste, or —862<% kJmol™' in birds [119]. For mammals, corrections for
methane production have been proposed [163]. The coefficients pr can be obtained by
direct calorimetry, using multiple regression. The mass fluxes prove to be a weighted sum
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Figure 4.22: The molar yield of biomass corrected ~ Figure 4.23: The amount of dissipating
for a fixed population growth rate of 7+ = 0.2h~! heat at maximum population growth rate
is proportional to the chemical potential of sub- is linear in the free energy per C-mole of
strate, expressed per C-mole in combustion refer- substrate on the basis of combustion refer-
ence. Data from Rutgers [1006] for Pseudomonas  ence (pH = 7). Data from Rutgers [1006]
ozalaticus (e) and from van Verseveld, Stouthamer  and Heijnen and van Dijken [484, 485] for
and others [778, 1193, 1194, 1195, 1196] for Para- Pseudomonas oxalaticus, growing aerobi-
coccus denitrificans (o) under aerobic conditions cally at 30°C on a variety of substrates.
with NHI as the nitrogen source, corrected for a

temperature of 30°C. No product, or a negligible

amount, is formed during these experiments [1193].

of the three basic powers, see {134}. Dissipating heat is again a weighted sum of the three
powers and so of (three) mass fluxes, which justifies the method of indirect calorimetry.
Now we can reverse the argument and wonder how measurements of heat dissipation

can be used to obtain the chemical potentials of the organic compounds. Substitution of
(4.80) and (4.81) into (4.79) results in

Bo = (17 + Py )nyno (4.82)

Under anaerobic conditions, the amount of metabolic work substrates can do is typically
very much reduced, not because of substantial changes in specific entropy, but because the
products are not carbon dioxide and water, but fermentation products, such as ethanol and
acetate. These products should be taken into account in (4.80), but otherwise the way to
obtain the chemical potentials is similar. In special situations changes in specific entropies
cannot be neglected, but then the detailed chemical composition of the environment should
be taken into account as well.

4.8.3 Substrate dependent heat dissipation

When different substrates are compared, the conversion efficiency of substrate to biomass
tends to be proportional to the chemical potential iy, on the basis of C-moles. It seems
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reasonable to assume that p4x is proportional to the chemical potential of substrate, and
consequently to the yield, cf (4.22). This is confirmed in Figure 4.22.

The dissipating heat pr, from a chemostat at steady state, with total structural mass
My and reserve density e is found from (4.81), (4.35) and (4.37)

0 =prs + (B — im0 )nop(e, 1) My, /My, (4.83)

where p(e,l) = ( pa ps+ps Pc+pr )T as further specified in Table 4.1. If the popula-

tion is growing at maximum rate, we have that f =e =1, and
p(L,1) = (52 oy Rechas ) pgy My, (4.84)

When different substrates are compared, the dissipating heat tends to increase with the
free energy of substrate. This is to be expected, because the maximum volume-specific
assimilation rate [pa,,| and the maximum reserve capacity [E,,] are proportional to the
free energy per C-mole of substrate iy, see on {158}, so, the reserve turnover rate kE is
independent of iy, g o fiy', and the dissipating heat at maximum population growth rate
is approximately linear in fiy if the combustion frame of reference is used. This frame
of reference is necessary because a high free energy of substrate corresponds with a high
degree of reduction, which requires more dioxygen to release the energy. In the combustion
reference, this extra use of oxygen does not affect the relationship between free energy of
substrate and heat dissipation. This is confirmed by the data of Rutgers [1006]; see Figure
4.23.

The idea that the type of substrate and environmental conditions affect the sub-
strate/energy conversion pax (and [E,,]) but nothing else is consistent with analyses of data

from Pirt [902]. V1-morphs with small reserve capacities [E,,] have ﬁ = Zf%;(lju%), see
(4.22). As S. J. Pirt noted, this relationship is linear in 7~!, but the slope depends on the
substrate-energy conversion 4 x. Pirt found a wide range of 0.083-0.55h™! on a weight ba-
sis for two species of bacteria (Aerobacter species and a lipolytic bacterium) growing on two
substrates at 37°C, aerobically and anaerobically. The ratio of the slope to the intercept
equals the maintenance rate coefficient, k M, which does not depend on the substrate-energy
conversion. Pirt’s data fall in the narrow range of ky; = 0.0393 — —0.0418 h~" [634]. These
findings support the funnel concept, which states that a wide variety of substrates is de-
composed to a limited variety of building blocks, which depend of course on the nature of
the substrate and environmental conditions; these products are then built into biomass,
which only depends on internal physiological conditions, subject to homeostasis.

4.9 Products

From a dynamic systems point of view, minerals can be considered as products, with con-
tributions from the basic powers, apart from the fact that their fluxes can become negative
(e.g. dioxygen for heterotrophs). Faeces is a product as well, where the contributions from
dissipating and growth powers are zero, which ties faeces production directly to assimila-
tion. Many micro-organisms produce a variety of products via several routes. If the DEB
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model still applies in the strict sense, the mere fact that product formation costs energy
implies that product formation must be a weighted sum of the basic powers: assimilation,
dissipation (maintenance) and growth. The energy drain to product formation can then
be considered as an overhead cost in these three processes.

The necessity to tie product formation to all the three energy fluxes in general be-
comes obvious in a closer analysis of fermentation. If product formation is independent
of one or more energy fluxes, mass balance equations dictate that more than one product
must be made under anaerobic conditions, and that the relative amounts of these prod-
ucts must depend on the (population) growth rate in a very special way. In the Monod
model, which does not include maintenance and reserves (see {337}), assimilation is pro-
portional to growth investment, which leaves just a single energy flux available to couple to
product formation. In the Marr—Pirt model, which does not include reserves, assimilation
is proportional to maintenance plus growth investment, which leaves two energy fluxes
available to couple to product formation. Maintenance and reserves together allow for a
three-dimensional base for product formation: Jp = panpa + Dpnpp + Panpa, see (4.37).
The quantitative aspects of products only differ from that of ‘minerals’ in that the weight
coefficients for products are free parameters, while those for ‘minerals’ follow from mass
conservation.

Since most unicellulars behave approximately as V1-morphs, assimilation rate and
maintenance are both proportional to biomass, with constant proportionality coefficients
at steady state. Leudeking and Piret [698] proposed in 1959 that product formation is a
weighted sum of biomass and change in biomass (growth). They studied lactic acid fer-
mentation by Lactobacillus delbruekii. The Leudeking—Piret kinetics has proved extremely
useful and versatile in fitting product formation data for many different fermentations [50].
It now turns out to be a special case of the DEB theory, where the biomass component
links to maintenance.

For practical applications where no energies are measured, it might be useful to convert
powers to mass fluxes via the coefficients (i, = M, 4, LM Em, Which leads to the specific
production flux for V1-morphs

jp = Cpakag + Cpakp f + Cparg. (4.85)

Milk of female mammals is an example of a product that is coupled to maintenance,
which requires a temporal change in parameter values to describe its production in asso-
ciation with giving birth. The same holds for plant secretions (e.g. resin), in response to
wounds, for example.

4.9.1 Fermentation

Many organisms can live in anaerobic environments, partly as a relic from their evolutionary
history, as life originated in a world without free oxygen. Most parasites [1162, 1163], as
well as gut and sediment dwellers [343, 345] do not usually encounter much dioxygen, and
aquatic environments can be low in dioxygen as well. Some fish [1226, 1227] and mollusc
[161] survive periods without dioxygen. Parasitic helminths sport anaerobic metabolism
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in the core of their bodies, and aerobic metabolism in the peripheral layers, which become
relatively less important during growth [1161].

The mass balance equation reveals that such organisms must produce at least one
product, with an elemental composition that is independent (in the sense of linear alge-
bra) of the composition of the other ‘minerals’ (carbon dioxide, water and nitrogenous
waste). Usually, several products are formed. Under anoxic conditions, lipids cannot be
metabolised, because their degree of reduction is too high, and the respiration chain cannot
be used.

Fermentation is an anaerobic process in which organic compounds act as electron donor
as well as electron acceptor. Usually several products are made rather than just one. These
products can be valuable substrates under aerobic conditions, but under anaerobic condi-
tions mass balances force organisms to leave them untouched. Under anaerobic conditions
we have the constraints that

(16 1po Hao ) =0 (4.86)

The practical implementation of these constraints in non-linear regressions is via Lagrange
multipliers, which can be found in standard texts on calculus. An interesting consequence
of these constraints is that there are no free parameters for product formation if just
one product is made. Figure 4.24 illustrates that the DEB model accurately describes
the fermentation process (biomass composition, substrate and product fluxes) with only
17/11 = 1.5 parameter per curve. The experimental data do not obey the mass balance
for carbon and oxygen in detail. Measurements of the volatile ethanol seem to be less
reliable. The mass balance-based model fit of Figure 4.24 suggests that the measured
values represent 75 % of the real ones when the measurement error is considered as a free
parameter. The saturation coefficient X was poorly fixed by the data, and the chosen
value should be considered as an educated guess.

Yeasts appear to be relatively rich in proteins when they grow fast, but their maximum
growth rate is about half that of Klebsiella. Three products are made by the yeast: glycerol
(ngp, = 8/3, nop, = 1), ethanol (nyp, = 3, nop, = 0.5) and pyruvate (ngp, = 4/3, nop, =
1). A negative parameter for product formation means that the product is consumed,
rather than produced, in the corresponding energy flux. So it is possible that compounds
are produced at a rate proportional to one energy flux and consumed at a rate proportional
to another energy flux. No theoretical problems occur as long as there is an overall net
production.

Note that the maintenance rate coeflicient kM for Klebsiella at 35°C is about ten times
that for Saccharomyces at 30 °C. The maintenance rate coefficient for fungi is usually found
to be much smaller in the literature [95], which Bulthuis [176] explained by the fact that
fungi make a lot of protein at high population growth rates, which costs a lot of energy. As
the maintenance rate coefficient is the ratio of maintenance to structure costs, its value for
fungi is low. Since protein density is coupled to the growth rate, however, the assumption
of homeostasis dictates that most protein must be conceived as part of the reserves, so the
costs of synthesis of structural biomass are not higher for this reason.

Figure 4.24 shows that biomass density hardly depends on the throughput rate. In prac-
tice, this also holds for most other compounds, except for the concentration of substrate.



162 4. Unwvariate DEB models

relative abundances of the elements densities of substrate (glucose, <) and
H (o), O (¢) and N (O) in the biomass biomass (dry weight, O)

" M — = o

'-q'é [ o nHW E 18

R A )

g g

= 6

o

now 4

e e e NNW o
(2] | 8.,‘1 | B.,‘Z .‘ 8.,‘3 (2] B.1 B.2 . 8.3
throughput rate h, h=! throughput rate h, h=!
densities of products weight-specific consumption/prod. rates
ethanol, /A, glycerol, 37, pyruvate, X of glucose, O, CO4, & and ethanol, AC
2

@
N
ul

eth

pyruvate, mg/1

glycerol, ethanol, g/1

spec. prod./cons, mM/gh

2] 2.1 2.2 2.3

throughput rate h, h—!

a 2.1 8.2 2.3

throughput rate h, h~!

Figure 4.24: All these functions of population growth rate of Saccharomyces cerevisiae at
30°C and a glucose concentration of 30 gl~! in the feed have been fitted simultaneously [457].
The observation that the maximum throughput rate is 0.34h~! has also been used. Data from
Schatzmann [1017]. The curves are based on expectations of the DEB model for V1-morphs, with
parameters
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If changes in concentrations affect chemical potentials substantially, the chemical potential
for substrate will be the first point to check (although substrate is usually processed intra-

cellularly, rather than in the environment) The extremes of the substrate concentration

XngM
gk:
where Xy = X, if death is negligible. The chenncal potentlal of a compound depends on

its concentration X as i = 7, + RT In X/X,,;, where R = 8.31441 JK 'mol™! is the gas
constant. The maximum relative effect of differences in concentrations of substrate on the
chemical potential is

are found for throughput rate i = 0, where X, = , and for throughput rate i = h,p,

i i RT kg — ghkn X,
ILLXO,max /’onymlﬂ _ ln{ E g M } (487)

ﬁXO,ref B ﬁXo,ref ng XK
In the example of Figure 4.24, where the chemical potential of glucose is 2856 kJ mol~! in
the combustion frame of reference, the maximum relative effect amounts to 0.00777, which
is negligibly small in view of many other uncertainties. Although the effect of changes in
concentrations should be tested in each practical application.

4.10 Parameter estimation II: mass, energy & entropy

In the initial stages of estimation of DEB parameters [661], it is useful to avoid the use of
moles and energies, which motivates the use of scaled reserve Ug and scaled maturity Ug.
The initial scaled reserve UY can be known from g, ka, kg, o, and f, or from Ly, Leo, ap,
7p and f, using the assumption fere = k.

Suppose that the amount of carbon in a freshly laid egg M9 and in a neonate MY, =
M + M} are known, in combination with U%. We first use the information in MY
and obtain {Jgam} = M%/UY, and then yrx = —{Jpam/{Ixam}t, MY = {Jgam}/ Uk,
MY = {Jgam}y/U%, MY = —U%{Jxam}. We then use the information in M}, and ob-
tain MY, = M}, — My and [My] = MY L, (in actual length, if L, is in actual length),
yve = O[My](k{Jpan}g) ™", [Jem| = —ku[My]/yve.

If the weight of a freshly laid egg W, and of a neonate W), is known, as well as the moles
of carbon in a freshly laid egg MY, we can obtain the molecular weights of reserve and
structure: wy = Wo/M%, W = Wy, — wg MY and wy = Wl /M. The shape coefficient is
om = (M /[My])'/? Ly = (di W)/ Ly,

The parameter yyg, and so mg,, = kgyye can also be obtained from the gonado-
somatic index Q) = Mffll\%/lv where the reproduction buffer Mg, has accumulated over a

period t; in an individuals that is fully grown at constant scaled functional response f.
For an individual of structural volume V =V, = f3L3 (or L = fL,,) and reserve mass
Mg = [E\V/iig = [Enf*L3, /lig, the index relates to s, g, kas, ky, Ul (see {72}) as

t1/%Mg/f3

[ (1= k) f2 =0 22,6%k,U") (4.88)

Q=
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4.10.1 Composition parameters

If the elemental composition of a freshly laid egg (so of reserve) and that of a neonate is
known, the chemical index of structure, i.e. the frequency of element * in structure, relative
to carbon, is given by

Ney = n*Wml;V — n*Em% for x =H,O,N,--- (4.89)

where mb, = MY, /M.

This is just one of a series of related techniques to unravel the composition of reserve and
structure using measurements of biomass. Suppose that we have the elemental frequencies
of two individuals of the same length (so the same amount of structure) at two scaled
functional responses. We have My, = My + Mg, and Mg = fmg, My, where mg,, =
(mw — 1)/f is the maximum reserve density. The structural mass My of an individual of
total mass My equals My = My, /(1 +mpg). Moreover, if an organism has physical length
L and structural mass My, the shape coefficient is 5 = (My/[My])'/3/L.

We also have

Mw nyw = My nyy + Mgn.g (490)

so the chemical indices of reserve and structure are

Mmwi1 — Mw2

fl mwi — mWQ' Nev = My Ny — fl— (491)
fi— [

mw1—1  fi—fo
This technique to compute the concentrations in reserve and structure can also be applied
to compounds rather than chemical elements. The contribution of the reproduction buffer
in the weight (and composition) of adults should be taken into account, but for juveniles
we don’t have these complications.

Knowledge about the chemical indices can be used to determine the molecular weights
of reserve and structure, so to link masses and weights. A pertinent question is to include
or exclude water in mass, volume and weight measurements. If water replaces reserve in
starving organisms (likely in aquatic arthropods and other taxa with exoskeletons), strong
homeostasis can only apply when we exclude water. In many other cases the inclusion of
water is more handy.

Nyp =

4.10.2 Thermodynamic parameters

The estimation of the specific enthalpies, entropies, and chemical potentials is discussed
below the balance equations (4.76) and (4.78). These equations make full use of the mass
balances for all (generalised) compounds, which makes these thermodynamic parameters
difficult to access.

The specific chemical potential i of a compound converts a flux of this compound (in
moles per time) into a flux of Gibbs energy, for instance the assimilation energy flux is
Pa = ﬁEj ga. The chemical potentials of organic compounds are essential to obtain the
energy parameters {pam}, [Ecl, {pr}, [pam] and [ps], see Table 3.3.
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Figure 4.25: The reconstruction
of the scaled functional response
since the first of August from mean
length—time data for four length
classes of the mussel Mytilus edulis
as reported by Kautsky [583] (up-
per four curves). The reconstruc-
tion (the curve in the middle with
two peaks) is based on a cubic
spline description of the measured
temperature (lower curve and capri-
cious line) and the parameter val-
ues Ly, = 100mm, g = 0.13, ky =
0.03d~" at 15°C and T4 = 7600 K.

w
®

temp, °C; length, mm
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4.11 Trajectory reconstruction

4.11.1 Reconstruction of food intake from growth data

Many data sets on growth in the literature do not provide adequate information about
food intake. Sometimes it is really difficult to gain access to this type of information
experimentally. The blue mussel Mytilus edulis filters what is called ‘particulate organic
matter’ (POM). Apart from the problem of monitoring the POM concentration relevant
to a particular individual, its characterisation in terms of nutritional value is problematic.
The relative abundances of inert matter, bacteria and algae change continuously [644]. In
the search for useful characterisations, it can be helpful to invert the argument: given an
observed size and temperature pattern, can the assimilation energy be reconstructed in
order to relate it to measurements of POM? The practical gain of such a reconstruction is
in the use of correlation measures to determine the nutrition value of bacteria, alga, etc.
Since the correlation coefficient is a linear measure, a direct correlation between bacteria
numbers and mussel growth, for instance, only has limited value because assimilation and
growth are related in a non-linear way.

Kautsky [583] measured mussels from four size classes kept individually in cages (diam-
eter 10 cm) at a depth of 15 m in the Baltic at a salinity of 7°/,.. Suppose that (the mean)
food density changes slowly enough to allow an approximation of the energy reserves with
e = f. The growth equation (2.22) then reduces for a reference temperature 7, to

4, Jm-0.
at' = 3(/(0) + )

ref

gl (T(t) > Tp) exp (TA <T1 — Tiﬂ)) (4.92)

where Ty is at the lower end of the tolerance range. The next step is to choose cubic
spline functions to describe the observed temperature pattern 7'(t) and the unobserved
scaled functional response f(t). The reconstruction of f(¢) from length-time data then
amounts to the estimation of the knot values of the spline at chosen time points, given
realistic choices for the growth parameters. Figure 4.25 shows that the simultaneous least-
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Figure 4.26: Weight ontogeny of the small adelie penguin Pygoscelis adeliae (left) and the large
emperor penguin Aptenodytes forsteri (right). Data from Taylor [1145] and Stonehouse [1116].
The adelie data follow the fitted von Bertalanffy growth curve, which suggests food abundance
during the nursery period. The cubic spline through the emperor data is used to reconstruct food
intake fV2%/3 = JX/{JXm} dy = 0.3gem ™3, wg[Mgn,) = 0.7gem ™3, g = 0.1, ¥ = 0.6cmd ™1,
lr = 0.01, V,, = 6000 cm?, eg = 0.6.

squares fit of the numerically integrated growth description (4.92) is acceptable in view of
the scatter in the length data (not shown), which increases in time in the upper size class
in the original data. The scaled functional response (i.e. the hyperbolically transformed
food abundance in terms of its nutritional value) appears to follow the temperature cycle
during the year. Such a reconstructed food abundance can be correlated with POM and
chlorophyll measurements to evaluate their significance for the mussel.

If food intake changes too fast to approximate the reserve density with its equilibrium
value, the reserve density should be reconstructed as well. Figure 4.26 illustrates this for
the penguin. The von Bertalanffy growth is shown to apply to the adelie penguin, which
indicates that body temperature is constant and food is abundant. The deviation at the
end of the growth period probably relates to the refusal of the parents to feed the chicks
in order to motivate them to enter the sea. The small bodied adelie penguin manages to
synchronise its breeding cycle with the local peaks in plankton density in such a way that
it is able to offer the chicks abundant food. Typically there are two such peaks a year in
northern and southern cold and temperate seas. The plankton density drops sharply when
the chicks are just ready to migrate to better places. This means that a larger species, such
as the king penguin, is not able to offer its chicks this continuous wealth of food, because
its chicks require a longer growth period (see Chapter 8 on comparison of species for an
explanation, {287}). So they have to face the meager period between plankton peaks.
(Food for king penguins, squid and fish, follows plankton in abundance.) The parents
do not synchronise their breeding season with the calendar; they follow a 14-17 month
breeding cycle [1065]. The largest living penguin, the emperor penguin, also has to use
both plankton peaks for one brood, which implies a structural deviation from a simple von
Bertalanffy growth curve.

Given weight-time data, food intake can be reconstructed on the basis of the DEB
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theory. The relationship between (wet) weights, volumes and energy reserves is given in
(3.2). For juveniles, where Er = 0, we have [W,,] = dy +wg|[Mg,,]e and specific wet weight
is thus not considered to be a constant. Growth according to (2.21) and (2.10) is given by

d d d
: Wy
= V23 ((Eﬂ]} (e —lp — (V/Vm)1/3) + Wewl(f — e)) (4.94)
Solution of f and substitution of (2.10) gives

_ W2 d o W/ Wed (W P
f =e+ U[WEW]WS/B dt Ww g Te € lT Vm[Ww] (495)

Wephop d_dy o 0 (0 (W)
W e In W, o (e —Ir) W |7 (4.96)

The steps to reconstruct feeding are as follows: first fit a cubic spline through the weight
data, which gives W, (t) and so %Ww(t). Use realistic values for e(0), dy, wg[MEgn,], g,
Vim, I and 0 and recover e(t) through numerical integration of (4.96) and then f(t) by
substitution. Figure 4.26 gives an example. The peaks in the reconstruction will probably
be much sharper if the chick’s stomach contents are taken into account. This reconstruction
can be useful in cases where feeding behaviour that is hard to observe directly is studied
and knowledge concerning energetics from captive specimens is available. The significance
of this example is to show that the DEB theory hardly poses constraints for growth curves
in general. The simple von Bertalanffy growth curve only emerges under the conditions of
constant food density and temperature.

4.11.2 Reconstruction of body temperature from growth data

Empirical growth curves of birds frequently deviate from the von Bertalanffy growth curve,
even if food is abundant. The body temperature of endotherms can be well above the
environmental temperature. If insulation or heat transfer from mother to chick changes in
time, deviations from the von Bertalanffy growth curve are to be expected. Altricial birds
provide an excellent case to illustrate the problem of the energy interpretation of growth
measurements in the case of an unknown body temperature.

Birds become endothermic around hatching; precocial species usually make the transi-
tion just before hatching, and altricial ones some days after. The ability to keep the body
temperature at some fixed level is far from perfect at the start, so the body temperature
depends on that of the environment and the behaviour of the parent(s) during that period.
Unless insulation of the nest is perfect, the parents cannot heat the egg to their own body
temperature. There will be a few degrees difference, but this is still a high temperature,
which means that the metabolic rate of the embryo is high. So it produces an increasing
amount of heat as a byproduct of its general metabolism before the start of endothermic
heating.
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Figure 4.27: Embryo weight and respiration ontogeny in the parrot Agapornis personata. Data
from Bucher [172]. The curves are DEB model predictions accounting for a temperature increase
of 4°C during development; see text. The temporary respiration increase at day 23 relates to
hatching. This detail is not part of the model.

The process of pre-endothermic heating can be described by: %Tb = arpry — kbe(Tb -
T.), where T, is the body temperature of the embryo, T, the temperature of the envi-
ronment, ar the heat generated per unit of utilised energy and k. the specific heat flux
from the egg to the environment. The latter is here taken to be independent of the body
size of the embryo, because the contents of the egg are assumed to be homogeneous with
respect to the temperature. (The Brunnich’s guillemot seems to need a 40 °C temperature
difference between one side of the egg and the other to develop [955].)

Figure 4.27 illustrates the development of the lovebird Agapornis, with changing body
temperature (74 = 10kK). The curves hardly differ from those with a constant temper-
ature, but the parameter estimates differ substantially. The magnitude of the predicted
temperature rise depends strongly on the parameter values chosen. The information con-
tained in the data of Figure 4.27 did not allow a reliable estimation of all parameters; the
predicted temperature difference of 4°C is arbitrary, but not unrealistic.

It is interesting that the red-headed lovebird, A. pullaria from Africa, and at least 11
other parrot species in South America, Australia and New Guinea breed in termite nests,
where they profit from the heat generated by the termites. Breeding Golden-shouldered
parrots, Psephotus chrysopterygius, in captivity failed frequently, until it became known
that one has to heat the nest to 33°C for some days before hatching and for two weeks
after.

The significance of this exercise is the following: the least-squares-fitted curves remain
almost exactly the same, whether or not the body temperature changes, but the parameter
estimates for, for example the energy conductance, differ considerably. It follows that these
data are not suitable for estimating energy parameters unless the temperature is known
as a function of time. This holds specially for altricial birds because they hatch too early
to show the reduction in respiration rate that gives valuable information about parameter
values. The few studies on bird development that include temperature measurements
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indicate that the temperature change during incubation is not negligibly small. Drent
[293] found an increase from 37.6 to 39 °C in the precocial herring gull Larus argentatus.
The main reason why the (empirical) logistic growth curve sometimes fits bird data
better than the von Bertalanffy curve at food abundance is probably because body tem-
perature changed. The ontogeny of body temperature can be reconstructed as follows.
At abundant food, (2.22) reduces to 4] = (1 — I), where the von Bertalanffy growth

rate rgp = kTM ﬁ is now considered not as a constant but as a function of time, since the

temperature and thus the maintenance rate coefficient &y, change. Integration gives

() = 1—(1—1(0))exp (— / th(tl)dtl) with (4.97)
() = Tpeexp(Ta(T' — To(t)™1)) (4.98)

where 7g,, is the ultimate growth rate when the body temperature is kept constant at
some target temperature in the range 39 — 41°C, or T, = 312 (non-passerines) or 314 K
(passerine birds). Body temperature is thus given by

TR (E S SR [ (4.99)
T Ta o ipe(1 1) '

Given an observed growth and size pattern, this equation tells us how to reconstruct the
temperature. The reconstruction of body temperature, therefore, rests on the assumption
of (time inhomogeneous) von Bertalanffy growth (4.97) and an empirical description of the
observed growth pattern. It is a problem, however, that both the growth rate and the length
difference with its asymptote 1 vanish, which means that their ratio becomes undetermined
if inevitable scatter is present. General purpose functions such as polynomials or splines
to describe size-at-age are not suitable in this case.
A wuseful choice for an empirical description of growth is
4, _ B

p 5 (7% =11 or I(t) = (1— (1 —1(0)") exp(—7psot)) " (4.100)

because it covers both von Bertalanffy growth (shape parameter §; = 1), and the frequently
applied logistic growth (6, = —3) and all shapes in between. For the shape parameter
61 = 0, the well-known Gompertz curve arises: [(t) = [(0)*P(="5%_ Nelder [830] called this
model the generalised logistic equation. It was originally proposed by Richards [958] to
describe plant growth. The graph of volume as a function of age is skewly sigmoid, with
an inflection point at V/V, = (1 — §;/3)%% for § < 3. Substitution of (4.100) into (4.99)

gives
1 1. 11—7"%\"
Tt =({———In— —— 4.101

Note that if growth is of the von Bertalanffy type, so §; = 1, this reconstruction amounts to
Ty(t) = T, which does not come as a surprise. This interpretation of growth data implies
that the growth parameters of the logistic, Gompertz and von Bertalanffy growth curves
are comparable in their interpretation and refer to the target body temperature. The DEB
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Figure 4.28: The empirical, generalised, logistic growth curves have been fitted to measured
data for some birds. The von Bertalanffy growth rate 7. at the ultimate body temperature and
shape parameter §; are given. On the basis of these fits the body temperature was reconstructed,
on the assumption that T, = 312K and T4 = 10kK. The shaded areas around the body tem-
perature curves indicate the 95 % confidence interval based on the marginal distribution for k.
The reconstruction method is tested on the guillemot data (lower right figure) where measured
body temperatures were available. The bars indicate the standard deviation. Both tempera-
ture parameters, T, = 312.3K and T4 = 8.225kK, have been estimated from the combined
weight /temperature data. Data from Furness, de Korte in [384], Thompson in [159] and [735]
respectively.
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theory gives the physiological backgrounds. Figure 4.28 gives examples of reconstructions,
which indicate that the body temperature at hatching can be some 10°C below the target
and it increases almost as long as growth lasts. The reconstruction method has been
tested on several data sets where the body temperature has been measured during growth
[1299]. Tt has been found to be quite accurate given the scatter in the temperature data.
Figure 4.28 gives one example. Although the Arrhenius temperature can be estimated
from combined weight /temperature data, its value proved to be poorly defined.

4.11.3 Reconstruction from reproduction data

Food intake can also be reconstructed from reproduction data of e.g. Daphnia hyalina.
Data provided by Stella Berger include body length, egg length, width & number of eggs
in the brood pouch in weekly hauls from enclosures. The general idea is to reconstruct
food density and then try to link measured quantities in the enclosures, such as chlorophyll
concentration, POM, and DOC to this reconstructed food density to learn more about the
nutritional value of these quantities for daphnids. These links are less than direct (daphnids
cannot digest chlorophyll or cellulose) and involves the (unknown) half saturation constant.

These data also allow the study of maternal effects: is the reserve density at birth
indeed equal to the reserve density of the mother at egg formation as the DEB theory
assumes? Eggs initially fully consist of reserve. If reserve density at birth is small, initial
egg size will be small as well, but less than linear: a low amount of initial reserve leads
to low maturation, so long incubation and high cumulated maintenance costs. Hatching
(which coincides with start of feeding in Daphnia) occurs if maturity exceeds a threshold
value. The differences in egg size are small only since only half of the initial reserve is used
during the embryo stage in daphnids [661].

I evaluate two different ideas on the main sources of scatter.

Scenario 1: Individuals are idential, local environments are different Each individual
experienced a different food history and I use the observed number of eggs N to estimate the
scaled functional response f for each individual. To find f, N = tzR with reproduction rate
R given in Eq 2.56 was solved numerically for each individual, starting from the analytical
solution using the scaled reserve UY for f = 1. Using these values of f, the sum of squared
deviations between observed egg volumes and expected egg volume 9,U% was minimised
to find an estimate for the conversion factor ¥y. In this scenario all scatter is in the local
food density of individual daphnids. The environment is supposed to be spatially and
temporary heterogeneous. These individuals have identical parameter values. Since eggs
grow in volume during incubation (see below), we need to correct the measured egg volumes
for growth during development. The “observed” initial egg volume Vp; of individual ¢ is
estimated by Y, w;Vo;/ 3; wy, where w;; = exp(—cs(fi — f;)* — ev(Vo; — Vom)?) and Vo,
is the minimum observed egg volume. So the closer the reconstructed functional response
is to the individual at hand and the smaller the egg volume is, the larger is the weight
coefficient for the estimated initial egg volume.

Scenario 2: Individuals are different, local environments are identical individuals in a
single haul experienced the same food history and I use the different individuals in one haul
to estimate a common scaled functional response. To find f, the sum of squared deviations
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was minimised between the observed number of eggs N and the expected number of eggs
trR with R given in (2.56) for individuals of different lengths, simultaneously with that
between observed and expected egg volumes. In this scenario part of the scatter is in the
translation of food to eggs, and part in difference of parameter values amount individuals.
Since eggs grow in volume during incubation (see below), the smallest egg volume each
haul represents the best estimate for the initial volume for that scaled functional response
if individuals do not synchronise moulting cycles.

Since sampling is weekly only, reserve is supposed to be in pseudo-equilibrium and the
scaled reserve density e in p¢ is replaced by the scaled functional response f in reproduction
rate is given in (2.56).

The volume of an ellipse of radii a, b, ¢ equals 4wabc/3. Expressed in egg length L; = 2a
and egg width L, = 2b = 2¢, egg volume equals V, = L, L2 /6.

We have no reproduction, R = 0, if (1 — k)S¢ = k:;U?., which happens for

1% = (1= R)(L + Lk f0) ) (ks UR) — g7 (4.102)

Using only individuals with eggs, we know that the reconstructed f must be in the interval
(f%,1). Notice that the larger the individual, the lower the reserve density can be to
continue reproduction. We have no growth, £L3 = 0, if kS¢ = kL?/L,,, which happens
for

fo=1L/Ly (4.103)

Notice that the larger the individual, the higher the reserve density must be to fulfil the
somatic maintenance costs.

Maximum reproduction is given in (2.58). The maximum number of eggs accumulated
over a time interval tg is N, =t RRm, so if N,, represents the maximum observed number
we have tg > N,/ R,,. If tr does not meet this constraint we can obtain estimates of f
that exceed the value 1.

The range of lengths of individuals with eggs is (1.12, 2.36) mm, which translates in
estimates L, = 1 mm and L,, = 2.75 mm. The latter value is well above the maximum
observed length because maximum length can only be reached after prolonged exposure to
abundant food, which is not likely in natural situations. The range of egg lengths is (0.137,
0.488) mm, which translates in an estimate L, = 0.48 mm. The range of egg volumes is
(0.0006, 0.1) mm3, this covers a range of a factor 16. In view of the finding that around
half of the initial reserve is still present at birth in D. magna [661], this factor is much too
large to be explained by differences in initial reserve. I conclude that during the incubation
period, the volume of the egg must grow due to the uptake of water.

The values k = 0.8, ©» = 3.24 mmd ™, k; = ky = 1.7 d~* are chosen from D. magna
[661] for a reference temperature of 20°C, while g = 0.69 was corrected for differences in
max body length. This leads to U% = 0.0046 d mm? and U}, = 0.042 d mm? to arrive at
the mentioned values for L, and L,. The implications are age at birth a; = 0.51 d and von
Bertalanffy growth rate 75 = 0.23 d=! at f = 1. About half of the initial reserve is used
during the embryonic stage at f = 1 with these parameter settings.

The maximum number of eggs in the brood pouch is 41 in an individual of length 2.24
mm. To accommodate all these eggs with the above-mentioned parameter values, we need
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Figure 4.29: The reconstructed scaled functional response for D. hyalina as function of the
week number (left), and the egg volume as function of the scaled functional response (right), for
scenario 1 (top) and 2 (bottom). Colour coding for the functional responses: Experiment 1 green,
2 red, 3 blue, 4 magenta by Stella Berger. The blue crosses represent measured egg volumes, the
green points the estimated initial egg volumes and the red curve the expected initial egg volume.

an inter-moult period of tgkr = 4.8 d, which seems somewhat long for kr = 0.95. If data
on the real period would be available, this could be used to adjust s or g, which both have
a large effect on the minimum period that is required. Two large observed number of eggs,
depress the reconstructed scaled food density considerably.

The conversion from initial scaled reserve UY to initial volume was obtained by regres-
sion, like the scale functional responses. Notice that all parameters with length in their
units refer to physical length, not volumetric length. The shape coefficient for D. hyalina
is probably close to drq = 0.54.

The estimates can be improved by including ecophysiological info on DEB parameters
of D. hyalina.

Both scenario’s produced similar f(t) reconstructions, see Figure 4.29. The 4 experi-
ments showed a very similar profile, but the peak in experiment 1 and 2 is before that of 3
and 4. A major difference is that in the scenario 1, some individuals have such a large num-
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ber of eggs, that the DEB parameters are forced to values such the mean scaled functional
response in rather low. If only scenario 2 would have been tried, a wider choice of DEB
parameters would have been possible, such that the reconstructed mean scaled functional
response fluctuates on wider range of values. The large number of eggs in few individuals
is then explained by deviating parameter values for those individuals. Scenario 2 involves
relationships between number of eggs in the brood pouch and body length. Given the
scatter, these relationships generally applied well.

The maternal effect is supported weakly only, see Figure 4.29, but reports in the litera-
ture on the contrary, i.e. that large eggs are produced at low food density (e.g. [413]), are
not confirmed; I did not check the empirical basis of their claims. Apart from the problem
of an increase in egg volume during development, another source of scatter in egg volume
is that some individuals are likely to be in the stage of converting the reproduction buffer
to eggs in the brood pouch. The number of eggs in the brood pouch might be small at
the moment of sampling, but much larger a few moments later. Notice that the expected
initial egg size is an U-shaped function of the functional response. The left branch has no
ecological relevance because at the minimum of the function we have f = L/L,, = f%, so
no growth at birth. For k; = kys this also means no maturation, so no birth. This calls
for a revision of the parameter values, so for more info on the energetics of D. hyalina.

By decomposing observed egg volume into contributions from reserve and structure,
they can also be used to study to what extend synchronisation of moulting cycles oc-
cur among individuals. The dry weights can be used to further test ideas on reserve, in
combination with reproduction. Weights have contributions from structure, reserve, repro-
duction buffer, and eggs. By adding assumptions about the relationship between number
of individuals in a haul and that in the enclosure, these data can also be used to study
population dynamics and the effect of sampling on population dynamics.

4.11.4 Reconstruction from otolith data

Collaborative work with Laure Pecquerie [878, 877] allowed to reconstruct the scaled food
density x(t) for ¢t € (¢, t+) from otolith data (from anchovy), where t; is the time at mouth
opening; first feeding often produces a specific mark on the otolith. The reconstruction
supposes that otolith’s opacity O as function otolith length Lo is known from data for
a particular individual fish as well as all required parameter values and the temperature
trajectory.

We here make a number of simplifications, but none of them is essential, however, and
all of them can be avoided. We assume that the maturity and somatic maintenance rate
coefficients are equal, k; = kjs and so we have the scaled maturity Uy = V(1 — K)g/v and

%UH =3(1— /ﬁi)’-mf;m %L and S; = 1’T"‘SJVI, Sp = 1’T"“Sg. Temperature affects ks and v

given at reference temperature 7., via a temperature correction factor cr = exp (;—"‘f — %‘)
re:

, we only have to

o
kg
take those on ¥ into account. We can use elaborate methods to relate metabolic rates
to temperatures that take deviations from the Arrhenius relationship into account at the

high and low boundaries of the environmental temperature range, but here we only use the

Since the temperature effects on these two rates cancel in L,, =
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Arrhenius correction. We further assume that shrinking does not occur. Shrinking typically
can happen at extreme starvation when the individual is relatively large, and we assume
that the reproduction buffer of such individuals is large enough to cover maintenance costs.

Data suggested that the contribution of assimilation to otolith growth and opacity
could be neglected. By setting the contribution from growth to opacity equal to zero, and
that from dissipation equal to one, the opacity as function of time is given by O(t) =
ys Eng(yg Jep + ygEJ.E(;)*l. It takes values between zero (in absence of growth) and
one.

Scaled food density relates to scaled functional response as © = ﬁ, which translates
the problem of finding z(¢) to that of finding f(¢). Given the states at the moment of
observation (opacity, otolith length, fish length, scaled reserve density, scaled functional
response, temperature), we might try to find f(ty), cr(to) and work our way backwards in
time. This scheme, however, turns out to be hopelessly unstable, to the extent that it is
useless. A stable scheme is to start from birth and integrate over otolith length, not time.
This is possible because otolith length increases strictly monotonously in time (contrary
to body length). Feeding starts at birth, so opacity at birth has no information about the
food level. So we have to assume that between the first and the second data point food
density is constant, and changes linearly in time since then at rates that we reconstruct
from opacity data.

A continuation method for this change from one data point to the next one turns out
to be satisfactory, except when growth is resumed after starvation. For these points we
need a more robust method.

Figure 4.30 illustrates the reconstruction using parameters that are appropriate for
anchovy. The first reconstruction uses the ’'true’ trajectory of the correction factor for
temperature and reconstructs the otolith and body length trajectories perfectly. The scaled
functional response and the reserve density trajectories are also perfectly reconstructed,
except if the reserve density no longer supports growth. The second reconstruction assumes
a constant temperature correction factor of 1, still leading to a very good reconstruction.

The reconstruction of f(t) from O(Le) data is coded in routine 02f in toolbox “animal”
of software package “debtool”. The inverse routine, to construct O(Lo) from f(t) data,
as done in routine f2o0 can be useful for checking the method. The comparison of the
reconstructed body length at otolith collection with the measured one is other very useful
check for consistency of the reconstruction method.

A weak component of our reconstruction method is the required knowledge about the
temperature trajectory during the lifetime of the fish. It turns out, however, that the (un-
realistic) assumption that the temperature was constant, despite that fact that it changed
in reality, hardly affected the reconstructed food history in our simulations. The second
reconstruction in Figure 4.30 illustrates this.

Modifications of this reconstruction can make use of other types of data and/or infor-
mation, for instance that temperature extremes should match known points on the yearly
cycle. Such calibrations transform an “exact” reconstruction problem into a minimisa-
tion of deviations between predictions and measurements, but doubtlessly will improve the
quality of the reconstruction.

Similar reconstruction methods can be applied to opacity variations in ear plugs of
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Figure 4.30: The construction (green) of the opacity profile from the functional response tra-
jectory and reconstruction of the functional response trajectory from the opacity profile. The
first reconstruction (red) uses the ’true’ trajectory of the correction factor for temperature, the
second reconstruction (blue) assumes a constant temperature correction factor. The match of the
first reconstruction with the construction is almost perfect, so the green curves hide behind the
red ones. Parameters: L, = 1cm, L, = 1.5cm, v = 0.526 emd™ !, vop = 1.186 x 10 ecmd !,
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whales, to rings in tree trunks or to ribbles on bivalve shells, for instance.

4.12 Summary

Reactions to variations in food levels depend on the time scale of starvation; allocation rules
are affected first, then follow reserve dynamics, and dormancy. During extreme starvation
shrinking can occur; its dynamics can involve up to four extra parameters, but a first
approximation does not require extra parameters.

Changes of shape are important if they affect the relationship between volumes and
surface areas that are involved in food uptake. These changes can be implemented via the
shape correction function, which quantifies the surface area relative to that of an isomorph.
An important special case results if surface area is proportional to volume to the power
one, V1-morphy, which is a good and simple approximation for dividing microorganisms.
The distinction between the individual and population levels disappears for V1-morphs.
The popular models by Monod, Marr—Pirt and Droop turn out to be special cases of the
univariate DEB model for V1-morphs.

The standard DEB model, as specified by the assumptions listed in Table 2.4 at {74},
fully determines the fluxes of organic compounds (food, faeces, reserves and structural
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mass); those of mineral compounds (carbon dioxide, dioxygen, water and nitrogenous
waste) follow from the conservation law for chemical elements. The assumptions, there-
fore, specifies all mass fluxes. These mass fluxes can all be written as weighted sums
of three basic energy fluxes (powers): assimilation, dissipation and growth. Dissipating
heat can also be written as weighted sums of the three basic powers, which means that
dissipating heat is a also weighted sum of three mineral fluxes (carbon dioxide, dioxygen
and nitrogenous waste). This is well known in empery, and used in the widely applied
method of indirect calorimetry to obtain dissipating heat from the three mineral fluxes.
Growth-related changes in biomass composition can be used to obtain the composition of
reserves and structure, as is illustrated by examples.

Respiration is one of two mineral fluxes, carbon dioxide or dioxygen, or dissipating heat.
The fluxes are proportional to each other, given certain constraints on the composition of
reserves, relative to structural mass. Respiration that is not associated with assimilation
is then proportional to the mobilisation rate of reserve. The theory also quantifies the
respiration that is associated with assimilation, known as the Specific Dynamic Action; its
nature is still considered to be enigmatic, but now explained in first principles.

Similar to other mineral fluxes, nitrogenous waste not only originates from assimilation
directly, but also from maintenance (dissipation) and growth. Although this might not
seem surprising, it differs from its treatment in Static Energy Budgets, see {416}, and
turns out to be most useful in the analysis of trophic interactions, {324}.

Products can be included in just one single way, without changing the assumptions of
Table 2.4; they, too, must be weighted sums of the three basic energy fluxes, the three
weight coefficients per product are free parameters. In this way, products are included in
the overhead costs of the three powers. Consequently, fermentation gives three constraints,
which fully determine the three weight coefficients of a single product, or partly determine
those of more products.

The drinking of water by terrestrial organisms and plants, to balance the metabolic
turnover of water, can be quantified on the basis of two supplementary assumptions about
water loss

1 water evaporates in proportion to the surface area at a rate that depends on
environmental conditions (temperature, humidity, wind speed)

2 water evaporates in proportion to respiration

These assumptions apply to animals as well as plants. Drinking by plants has complex
interactions with nutrient uptake and is shown to affect the saturation constant. The water
balance has intimate relationships with the thermal balance, and so with the energetics of
endotherms. These routes have been explored briefly.

There is just one way to include isotope dynamics in DEB theory, and this follows natu-
rally from the isotope balance and has a mixing and a fractionation aspect. Fractionation
can be from pools (nutrients, including dioxygen), but typically occurs from fluxes, by sep-
arating the anabolic and catabolic aspects in assimilation, dissipation and growth. This
flux-based theory links up with that of Synthesising Units.
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Simple measurements on amounts and composition of biomass can be used to access
the primary DEB parameters from some compound DEB parameters and to separate re-
serve from structure, both in amounts and in composition. Methods are discussed to find
chemical proxies for reserve (rRNA) and structure (DNA) to access reserve and structure
more directly.

The entropy and chemical potentials of reserve and structure follow from the strong
homeostasis assumption. They can be accessed indirectly from input-output relationships
of the individual, or of the microbial population, but this method makes full use of mass
balances.

Observations on growth can be used to reconstruct the trajectory of body temperature.
Observations on growth, or reproduction, or opacity in (fish) otoliths, can be used to
reconstruct the trajectory of (scaled) food density. In the latter two cases that can even be
done from a single (dead) individual. In combination with isotope data, also trajectories
of temperature can be reconstructed.



Chapter 5

Multivariate DEB models

As long as all required nutrients and energy are available to the organism in fixed relative
amounts, it can buffer temporal variations in abundance using a single reserve. This situ-
ation is approximated in organisms that eat other organisms, as discussed in the previous
chapters. If energy and various nutrients are taken up independently, however, a reserve is
required for each of them to buffer variations in abundance. The surface layers of seas are
poor in nutrients and rich in light, while the reverse holds for the bottom of the photozone.
Algal cells, which commute between these two environments on the wind-induced currents,
can barely grow and survive, unless they use intracellular energy and nutrient reserves.

The purpose of this chapter is to show how the univariate DEB models can be extended
to include several substrates, reserves and structural masses, in a way that reduces to
the one-reserve, one-structure case if just one nutrient (or light) is limiting, or if nutrient
abundances covary, and the reserve turnover times are identical. The concept of the Syn-
thesising Unit, cf. {98} will be used to show that a nutrient becomes almost non-limiting
as soon as its availability exceeds that of the limiting nutrient, only by a small amount,
relative to its needs. Simultaneous limitations of growth by nutrients and light only occur
incidentally, and usually during a short period. This is why the simple one-reserve DEB
theory can be applied so widely.

Each reserve requires specifications of its assimilation process and of its contribution to
maintenance costs. Together with a single structural mass, and so a single growth process,
2n+1 powers have to be specified to delineate n reserves. Each of these powers contributes
to the dissipation of heat; the fixed weight coefficients directly follow from the conservation
law for energy. Product formation is directly associated with these powers, and generally
requires 2n + 1 coupling parameters per product for quantification; excretion is basic to
multiple reserve systems and follows a deviating dynamics. Fluxes of non-limiting nutrients
are also directly associated with the powers, and the 2n + 1 coupling parameters follow
from the conservation law for mass.

To structure the model appropriately, fast processes are separated from slow ones,
and many transport processes are only included implicitly at the whole-individual level.
Transport of metabolites through phloem in plants, for instance, shares important system
properties with blood in animals: a small capacity is combined with a high turnover, which
means that material in phloem should not play an explicit role at the whole-individual level.
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The transformation from nutrients and light to reserves is taken as a single step, while in
fact many intermediary metabolites are formed.

5.1 Several substrates

Several extensions are possible from one to more types of food (or substrate). Details of
growth and reproduction patterns can only be understood in relation to selection of food
items and choice of diet. The reverse relationship holds as well, especially for ‘demand’
systems. I will, therefore, mention some aspects briefly.

5.1.1 Diet and preference

Many species change their diet during development in relation to their shifting needs
with an emphasis on protein synthesis during the juvenile period and on maintenance
during the adult one. Many juvenile holo-metabolic insects live on different types of food
compared with adults. Most wasps and butterflies, for instance, feed on nectar as adults,
but on animals and leaves, respectively, as juvenile. Stickleback fish change from being
carnivorous to being herbivorous at some stage during development [267]. Plant-eating
ducks live on insects during the first period after hatching. The male emperor penguin
Aptenodytes and mouth-brooding frog Rhinoderma darwinii provide their young initially
with secretions from the stomach. Mammals live on milk during the baby stage, cf. {6}.

The first hatching tadpoles of the alpine salamander Salamandra atra live on their sib-
lings inside the mother, where they are also supported by blood from her reproductive
organs, and the one to four winners leave the mother when fully developed. The same type
of prenatal cannibalism seems to occur in the coelacanth Latimeria [1154], and several
sharks (sand tiger sharks Odontaspidae, mackerel sharks Lamnidae, thresher sharks Alopi-
idae [938]), and the sea star Patiriella [180]. Some species of poison dart frog Dendrobatus
feed their offspring with unfertilised eggs in the water-filled leaf axils of bromeliads, high
up in the trees [299, 300].

Shifts in food selection that relate to shifts in nutritional requirements can be modelled
using at least two reserves, e.g. carbohydrates plus lipids and proteins, which differ in
their contributions to maintenance costs, and in the requirements for growth. Changes in
behavioural aspects, such as food selection, can then be based on efficiency arguments.

Some species select for different food items in different seasons for reasons other than
changes in the relative abundance of the different food sources. This is because of the
tight coupling between feeding and digestion. The bearded tit Panurus biarmicus is a
spectacular example; it lives on the seed of bulrush, Typha, and reed, Phragmites, from
September to March and on insects in summer [1092, 1228]. This change in diet comes
with an adaptation of the stomach which is much more muscular in winter when it contains
stones to grind the seeds. Once converted to summer conditions, the bearded tit is unable
to survive on seeds. The example is remarkable because the bearded tit stays in the same
habitat all year round. Many temperate birds change habitats over the seasons. Divers, for
instance, inhabit fresh water tundra lakes during the breeding season and the open ocean
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during winter. Such species also change prey, of course, but the change is usually not as
drastic as the one from insects to seeds.

The relationship between feeding rates and diet composition gives a clue as to what
actually sets the upper limit to the ingestion rate. An indication that the maximum
ingestion rate is determined by the digestion rate comes from the observation that the
maximum ingestion rate of copepods feeding on diatoms expressed as the amount of carbon
is independent of the size of the diatom cells, provided that the chemical composition of the
cells is similar [373]. The maximum ingestion rate is inversely related to protein, nitrogen
and carbon contents fed to the copepod Acartia tonsa [530]. The observation that the
maximum ingestion rate is independent of cell size on the basis of ingested volume [393]
points to the capacity of gut volume being the limiting factor.

These examples should make clear that the quantitative details of the feeding process
cannot be understood without some understanding of the fate of the food. This involves
the digestion process in the first place, but a whole sequence of other processes follow.

Prokaryotes show a diversity and adaptability of metabolic pathways that is huge in
comparison to that of eukaryotes. Many bacteria, for example, are able to synthesise all the
amino acids they require, but will only do so if these are not available from the environment.
The fungus Aspergillus niger only feeds on cellulose if no compounds are available that are
easier to decompose. The relationship between food quality and physiological performance
is discussed again in the treatment of food intake reconstructions {165}, dissipating heat
{155} and adaptation {283}.

The decomposition of biomass into a structural component and a reserve component
implies that a predator feeds on a mixture of two compounds, rather than just a single
one, even if it specialises on a single species of prey. The significance of the contribu-
tion of prey reserves to predator nutrition is obvious in the example of waterfleas feeding
on algae. Most of the organic carbon of algae consists of cellulose in the cell wall, and
of chlorophyll. However, the waterflea cannot digest both compounds of the structural
biomass, and mainly feeds on starch and lipids. The quantitative aspects of feeding on
prey differs from the general case of sequentially processed substitutable substrates by the
tight coupling of the abundances structural mass and reserves. The reserves of the prey
can be treated as a kind of nutritional quality of prey biomass.

Suppose that the prey’s reserves do not extend the predator’s handling time. If the
prey does not have an energy buffer allocated to its reproduction, the assimilation power
of the predator amounts to p4 = (pav + f1a Emj’g)J x A, Where p 4y stands for the conversion
of prey structural mass into predator assimilative power, pag for the conversion of prey
reserves into predator assimilative power, m$, = Mp/M{ = e°m,, for the ratio of the
reserve to the structural mass of the prey, and the feeding rate Jy 4 for the molar flux of
prey structural biomass. Parameters and variables that relate to the prey are indicated
with ° to distinguish them from those of the predator.

Let pax = pay + pagmy,, denote the conversion of well-fed prey biomass into as-
—1 —1

similation power, and Kk, = <1 + -1 “”) = (14 rog°Le “”) the fraction of
Mg, HAE Hgy HAE

the assimilative power of the predator that originates from the digestion of prey re-
serves, when feeding on well-fed prey. The assimilative power can then be represented as
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pa=(1 —I{A—i—I{Aeo)quj)(A, so that the maximum assimilative power is pa,, = MAXJXAm,
where J x am denotes the maximum ingestion rate in terms of structural biomass. This can
be summarized as ps = (1 — k4 + £4€°) fPam, since Jxa = ijAm. The dynamics of the
scaled reserve density of a V1-morph predator becomes

jte:k‘E(f—mAf—i—mAeof—e) (5.1)

Energy extracted from reserves through digestion cannot exceed the energy invested
in reserves, pap < [y, and energy extracted from structural biomass through digestion
cannot, exceed energy contained in this mass, which itself cannot exceed energy invested
in the synthesis of this mass, pay < @iy, < gy Therefore pax < pgy (1 + ﬁ), and Ky
is probably, but not necessarily, larger than (1 + x°¢°)~1.

If the prey has a reproduction buffer, it is possible that the assimilative power exceeds
Dam, in this scaling, which indicates that the scaled reserve density of the predator can
exceed 1, in principle. The quantitative description of feeding on prey can be further
detailed by accounting for the selection of prey by the predator, based on the structural
biomass and reserves of the prey, and/or by allowing the handling time to depend on
these state variables. In this way, the saturation constant becomes dependent on the state
variables of the prey as well. Although this might be realistic in particular applications,
these mechanisms are not worked out here.

The four basic types of the uptake of substrates is discussed at {101}. The situation
for bacteria that feed on glucose and fructose, for instance, is different because the carriers
for glucose in the outer membrane of the bacterial cell cannot handle fructose, cf {284}.
These substrates, therefore, do not compete for access to the same carriers, and the uptake
processes just add the don’t interact in the transformation to reserve.

Data on the aerobic production of the yeasts Saccharomyces cerevisiae and Kluyvero-
myces fragilis strongly suggest the existence of two different uptake routes for glucose [457],
see Figure 5.1. A low-affinity high-capacity carrier is active under anaerobic and aerobic
conditions, and ethanol and acetaldehyde are produced in association with this assimilation
process. A high-affinity low-capacity carrier is active under aerobic conditions only, and no
products are produced in association with this assimilation process. Some strains, however,
produce glycerol in association with the latter assimilation. When the process of glucose
uptake and product formation is studied for increasing chemostat throughput rates under
aerobic conditions, the quantitative dominance of the two carriers switches at a throughput
rate of 0.2 h™!, but no metabolic switches are required to capture this behaviour.

5.1.2 Pseudo faeces & variations in half saturation coefficients

Apart from faeces, bivalves produce pseudo faeces: material, typically silt, that has been
filtered from the water, but separated from food, that leaves the body before it would
enter the gut. The production of pseudo faces can be quantified by considering silt as a
second substrate with zero conversion efficiency to reserve [644]; it is processed sequentially
with food by the filtering apparatus. Because silt competes with food for access to the
filtering apparatus, the silt density in the water modifies food uptake. Its quantitative
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Figure 5.1: Aerobic growth and production of the yeast Saccharomyces cerevisiae at 30°C in a
chemostat. Data from Postma et al. [918, 919] and Verduyn [1190]. The data fits, modified from
Hanegraaf [457], assume two assimilation processes for glucose, and product formation coupled
to one assimilation process, which reduces the energy gain from glucose for metabolism by a
factor k4 = 0.187. The glucose concentration in the feed is 83.3 mM; the maximum throughput
rate is i, = 0.5h™'; a measurement error on acetaldehyde is estimated to be 0.7 [457]. The
composition of structure and reserves have been set at ngy = 1.75, noy = 0.61, nyy = 0.14,
ngp = 1.7, nop = 0.62, nyg = 0.23. Parameters: jxami1 = 2.16 mM/Mh, jx am2 = 81 mM /M h,
Xg1=0.1mM, Xgo = 40mM, kg = 0.54h~L, kp; = 0.003h~1, g = 0.050, CPiAs = 95, Cpyay, =
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effect is increasing the half saturation coefficient linearly in the density. The apparent half
saturation coefficient amounts to

K'(Y)=K(1+Y/Ky) (5.2)

where Y is the silt density, K the half saturation coefficient for food and K, that for silt.
For varying silt densities, this means that the half saturation coefficient for food becomes
time-dependent as well. Given the half saturation coefficient for food in absence of silt,
and estimates for the apparent half saturation coefficient, relationship (5.2) can be used to
estimate mean silt densities.

5.1.3 Oxygenic photosynthesis

A detailed discussion of photosynthesis is beyond the scope of this book, see e.g. [333]; | here
focus on the links with DEB theory. Photosynthesis concerns the process of carbon fixation,
so the use of photons and Dissolved Inorganic Carbon (DIC) to synthesise carbohydrates
(starch or lipids in some taxa). This is just one of the assimilation processes in DEB theory,
which forms a single reserve of a multiple-reserve system. Other reserves also contribute
to the synthesis of structure (growth), so photosynthesis should not be identified with
growth. Since phototrophy hardly depends on temperature, and nutrient uptake does, the
composition of the biomass of phototrophs depends on temperature, with consequences for
the grazers of this biomass. This makes that photosynthesis can best be incorporated using
several reserves. Moreover, most phototrophs have substantial heterotrophic activity, see
{108} and chapter 10, and should be classified as mixotrophs.
Oxygenic photosynthesis can be summarised as

2HyO +4hv — Oy +4HT +4e”

COy + HyO + light — CH,0 + Oy { GO 4 A 4 dem —s CHy0 + Hy0

Since all oxygen in dioxygen comes from water, not from carbon dioxide, we need and
extra water molecule as substrate as well as product to follow oxygen isotopes, cf {94}.
Carbohydrate CH,O has the role of carbon as well as energy source for the synthesis of
structure.

light COq

Figure 5.2: Diagram of the simpli- LE oF

fied carbon fixation, where light L @ @
and carbon dioxide C are converted LA oA

2

into carbohydrates by Synthesising JLF jra Gema

Units (circles, see text). Photores- light — @ —~ (CH0),
piration and photoinhibition modify

the synthesis of carbohydrates. Mehler

Figure 5.2 gives a simplified schedule for the photosynthetic process. The photopigment
system of cyanobacteria, photoautotrophic protoctists and plants consists of two Photo
Systems (PSs). When a photon is captured by the antenna and transferred to an unexcited
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PS1I, it switches to the excited state, transfers an electron from water to PS1, and switches
back to the unexcited state. PST can likewise accept a photon from its antenna, and also
accepts an electron from PSII, which allows it to pass an electron via NADPH to the
carbon-fixation cycle (Calvin—Benson cycle). The enzyme Rubisco partakes in this cycle,
and accepts the electron and a carbon dioxide molecule from its carrier, and reduces the
latter to carbohydrate. Part of the carbohydrate is stored as such or excreted, part is
delivered to the synthesis machinery. All units behave as 1,1-SUs {101}.

The ‘binding’ probability of a photon depends on its wavelength and on the photopig-
ment, which differs between the various phototrophic taxa. In the water, the light extinc-
tion rate is constant according to the Beer-Lampert law, which makes that light intensity
decays exponentially with depth at rates that might depend on the chemical composition
of the water (e.g. the presence of humic acids) and particles, such as ‘detritus’ and algal
cells (self shading). The decay rates might depend on the wavelength, which rapidly makes
the model more complex.

Pigment systems

For (negative) photon flux j;r and large values for the flux ratios z;, and zr,, assimilated
light quantifies as

. —1 .

. . JLoFK ) . JLyAm

JioA = JLaAm (1 + 2‘> ~ —zp,jrrp  with zp, = == (5.3)
—JLF JLoFK
) . . . !

Jra = Jriam [ 1+ JIFK | JLaAK <__‘7LF 4 JLaA > (5.4)
—JLF JL2A JLLFK  JL:AK

12

. —1 . —1

. JL1A . . . JL.A o z

JL1Am (1 * LlK) with j,ax = jrirx + 720 — (JLllFK + = >(5'5)
—JLF ZL, JLoAK

12

JrA —zp jur With zp, = o, am/jr,ax (5.6)
where jr.px and jp, ax are specific half saturation fluxes, i.e. parameters that are associated
with the behaviour of SUs, and jr. 4, are the maximum specific assimilation rates for
photons for pigment system ¢ = 1,2. Although the electron input to the carbon-fixation
cycle is (approximately) proportional to the light intensity, this does not mean that there
is no upper limit to the light intensity that can be used, because the electrons experience
increasing resistance to their use in the process of carbon-fixation. Electrons that are not
used in carbon fixation or photorespiration ‘leak’” away via the Mehler reaction [907], also
known as pseudocyclic electron transport, which involves dioxygen uptake, and dioxygen
production of equal size [333]. The interception of light barely depends on temperature,
while other metabolic processes do, which explains the need to handle spoiled electrons.

Green, purple and heliobacteria photosynthesise under anaerobic conditions, using bac-
teriochlorophylls and a single pigment system (PSII in purple and green non-sulfur bacteria,
and PSI in green sulfur bacteria and heliobacteria). They must have an equivalent of the
Mehler reaction to get rid of the excess electrons.
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C 0.c L Figure 5.3: The couple photo-synthesis —

% [ photo-respiration — photoinhibition in the trans-

\ formations from carbon dioxide C' plus photons

1) 0. I Or.c (light) L (plus water) to hydrocarbon H (plus

dioxygen), C' + L — H, and from dioxygen O

)/ H / plus photons plus hydrocarbon to carbon diox-

0.0 0;. C ide (plus water), O + L + H — C. The state

x C/ \i 011, is inactive, and accommodates photoinhibition.
L Oro 0 OrL

Carbon fixation

The output from the carbon-fixation cycle can be derived according to a similar reasoning
as applied for electron production. For zc = X¢/X ke we have with substitution of (5.6)

joa = Joam(1+25Y) 7 = joamfe (5.7)

. ) ) . —1\ !
. . _ JCAK JLAK JcA JLA
Joua = Jogam(1+ zcl) (1 + = + = — ( + ) )

Jca Jra JCAK  JLAK
Jegam(1+2¢")

1+261f61+jLFK _ (ZCfC+ *jLF)

—JLF JLFK

Jopa — = Jogamfoy (5.8)

with zo = joam/Joak, JLFK = jLAKzZII, Jjoak the specific half saturation flux for carbon
dioxide, joay,, the maximum specific carbon dioxide assimilation rate, jco,, a4n, the maximum
specific carbohydrate assimilation rate.

Photorespiration

Rubisco is the most abundant enzyme on Earth, it constitutes 5-50 % of the soluble protein
in algal cells [333], and is involved in the fixation of carbon dioxide. Rubisco can operate
in two modes on the substrate ribulose-1,5-biphosphate (RuP»)

Carbozylase activity: RuPy 4+ COg + HoO — 2[3P-glycerate]
Ozygenase activity: RuPy + Og — 1[3P-glycerate] + 1[2P-glycolate]

The second reaction is known as photorespiration. The net effect is that the binding of CO,
or Oy leads to the synthesis or degradation of carbohydrates. The binding is competitive,
with widely varying relative strength among algal classes. The counterproductive effects
of dioxygen might be a historic accident, since Rubisco evolved in a period which was
essentially free of dioxygen [941]. Cj plants, which bind carbon dioxide to an organic
compound with four C-atoms in a micro-environment that is poor in dioxygen, avoid
photorespiration almost completely. They do not use Rubisco, but phosphoenolpyruvate
(PEP) carboxylase for the binding of CO,. Different species in the same genus can have
Cs and C; metabolism, and orache Atriplex prostrata, for instance, has both C3 and Cy
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metabolism. The dioxygen use that is associated with primary carboxylation only occurs
in light, and is called photorespiration. This can be modelled as follows.

Figure 5.3 illustrates the scheme of photo-synthesis and photo-respiration. Ignoring
photo-inhibition, this scheme translates into the dynamics of the variously bounded frac-
tions of SUs as follows. Let @ = 0.,00,0.0,0r.,010,0.c denote the fractions of the pho-
tosynthetic system (RuPy plus PSs) that is in complex with nothing, dioxygen, carbon
dioxide, photon, photon and dioxygen, or photon and carbon dioxide, respectively. The
changes in the fractions are given by

46 = kobro+kcOic — (i, + b +ic)0. 0. = Jib. — (o +Jc)0r.

%90 = j50.— 4100 L00 = jrbo+iobr. — kobro

w0c = Job. —ijtbc LOrc = jpbc+jebr. — k?CQL(,’( |
5.9

where j. = p.yc,«jx denotes the arrival flux j,. times the binding probability p., and the
coefficient y¢,,« couples * to Cy; ko and ke stand for the dissociation rates of oxygenase
and carboxylase products. The net flux of carbohydrate is found by equating the changes
in fractions to zero and solving for 8. The result is

-/ -/
. : ; Jo —Jo
JCHA = eLckc — eLOkO = v " T 7 (510)
14 ¢ 490 4 dco _ _JdcTio
ke ' ko it it +ictio

-1
- (jr, + j’c)*l) , which is identical

to (5.8). At the compensation point j,, = ji, no net synthesis of carbohydrate occurs.

For j;, = 0 this reduces to jo, 4 = (;;;51 o g

Photoinhibition € photoadaptation

At high irradiance, photoinhibition can occur, see e.g. [1297]. This can be incorporated
naturally into the carbon fixation model using SUs, see {103}. To this end, we need to
introduce a new state of the SU, where a photon can ‘bind’ to an SU that is already ‘bound’
to a photon, and send it into an inactive state, from which is can recover at a constant
probability rate, see Figure 5.3. Likewise we can delineate two further inactive states 0 .¢
and 61,70, which can be entered from the states 0, and 0, respectively. Such further
extensions should only be considered if necessary.

The light spectrum that is of relevance for phototrophy might in principle differ from
that for photoinhibition. Accounting for such difference would obviously complicate the
model considerably.

The amount of chlorophyll per cell turns out to be rather variable, see e.g. [1296].
Generally the relative amount is high at low mean levels of irradiance and the chlorophyll
density act as if it is compensation. Part of the variation of chlorophyll per cell weight
can be explained by the contribution of the various reserves to the cell weight. A more
detailed analysis might involve a workload allocation model, cf {199}, for chlorophyll. This
more detailed link between chlorophyll and primary production is of importance for the
interpretation of remote sensing data.
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5.1.4 Calcification

Bicarbonate is by far the dominant form of inorganic carbon
in seawater. At the typical pH of about 8.3, 98 % of the in-
organic carbon is in this form. Few organisms can use this
source, one problem is to deal with the electrical charge. Coc-
colithophorans, such as Emiliania huzleyi (right), mastered this
art, by using calcium in the transformation Ca?*+2HCO; —
CaCO3 4+ CO3 + HyO, where the calcium carbonate is exported
by the Golgi apparatus in the form of beautifully shaped extra-
cellular coccoliths, and the carbon dioxide is used as carbon sub-
strate for the synthesis of carbohydrates and lipids (for which they obviously need water
and light as well). The coccoliths accumulate in a polysaccharide layer, and are shedded
at cell death. Emiliania is so abundant that the coccoliths can easily be seen on satel-
lite images in huge areas in the northern Atlantic and Pacific Ocean where they bloom
regularly. A substantial fraction of carbonates in rocks originates from coccoliths, and
coccolithophorans may play a key role in the carbon metabolism of the Earth [1243].

Since carbon dioxide is relatively rare, and the transformation of carbonate and bi-
carbonate to carbon dioxide is slow, and the water that envelopes the cell is stagnant,
see {259}, cells in the sea can become limited by carbon under otherwise optimal growth
conditions [1273]. This points to the gain of using bicarbonate as an additional carbon
source, with an inherent gradient in the CO5/HCOj3 ratio in the diffusive boundary layer
[1274]. The process of calcification can be modelled in the context of the DEB theory by
treating carbon dioxide and bicarbonate as substitutable substrates, with light as a sup-
plementary ‘substrate’, for the synthesis of lipids as reserve, while calcium carbonate is
formed as a product in this assimilation process. This implementation ties calcification to
photosynthesis.

As long as calcium is not rate limiting, and the environment is homogeneous, the
carbohydrate production amounts to

. P . . _ g —1 . . P A
Jou = (kcl + (e +ie ) i = (e + i + i) ) (5.11)
where ji = pcjo and ji_ = po_jo—/2 are the effective arrival rates of carbon dioxide

and bicarbonate; and the factor 0.5 in ji_ relates to the stoichiometry of the calcification
process. The calcification rate now becomes

. Joudo—
JCa = 75— (5.12)
Jo+io-

Calcification is also reported to occur in the dark, to some extent. This might relate to
heterotrophic activity to acquire the energy for carbon fixation.
5.2 Several reserves

The number of reserves equals the number of nutrients and/or (generalised) substrates
that are taken up independently. The case of two reserves and two nutrients serves as an
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excretion Figure 5.4: A diagram of the

products
/ structure of a two-substrates, two-

reserves DEB model. The cir-

cles indicate SUs. The diagram

for a single-substrate, single-reserve

substrate model is in grey. Excretion products
o» are then included in the products

/ linked to growth and maintenance

excretion (work). The dynamics of other re-
products serves interact with this process.

assimilation
products

example, see Figure 5.4; the model extends to more reserves and possibly limiting nutrients
without causing additional problems. This will be worked out in some detail for V1-morphs
in this section.

The general idea is to apply the rules for SUs to quantify the transformation of nutrients
to each of the k reserves; each reserve is mobilised independently, first allocated to a
maintenance SU for each reserve, which also receives input from mobilised structure. The
remaining reserve fluxes are allocated to a (single) SU for growth. This takes 2k + 1 SUs.
The rejected nutrient and substrate fluxes do not pose any problem in the case of the
assimilation SUs, because they are fed back into the environment. The rejected reserve
fluxes, however, require special consideration, which is why I start with the specification
of growth, given the reserve densities, and then consider reserve dynamics.

For a k-reserve system, we have 2k maintenance parameters: jg,p;, and jyp, for i =
1,., k, where jya, > yve,je,m;- The actual fluxes of reserve and structure allocated to
maintenance are ]ﬁfl and jyi, respectively, and might vary in time, where ]ﬁfl < jg,m, and
Jvm; < jva;. The decision to allocate structure to maintenance is made for each reserve
separately, so jif =3, j‘]‘/l * where j‘]‘f " is specified in (4.17) for each reserve.

5.2.1 Growth

If no structure is used to pay (somatic) maintenance costs the specific gross growth rate
Jve equals the specific net growth rate 7, but if (some) maintenance is paid from structure
at rate ji¥ < 3, jyar,, then the growth rates relate to each other as 7 = jyg — jif.

Just like the univariate case, reserve densities mpg,, ¢ = 1,2, - - -, follow first-order kinet-
ics, which means that for a reserve mass Mp,, the specific mobilised from the ¢-th reserve,
equals

jmc = mpg,(kp, — 7) (5.13)

where k‘E denotes the turnover rate of the i-th reserve, and the net specific growth rate
r= % In My relates to the dilution by growth.

This means the i-th reserve sends a specific flux jp,¢ = jg,c —J % to the SU for growth
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Figure 5.5: The specific growth rate 7 of the Haptophyte Pavlova lutheri as a function of the
intracellular reserves of phosphorus (reserve 1) and vitamin Bis (reserve 2) at 20°C (left), and
the relationship between the observed growth rate and the calculated one (right). Data from
Droop [295]. The parameters are given in Figure 5.6.

of structural biomass which leads for 73/ = 3, j&'* in the bivariate case (i = 1,2) to

jve =7+ i = (Z (‘M) o (Z jEiG)_l) ) (5.14)

i \YE, v i YE,V

This equation can be solved numerically for the net specific growth rate » and readily
extended to more than 2 reserves.

Figure 5.5 illustrates that this model for simultaneous growth limitation by reserves
is realistic. Note that cell content on phosphorus and vitamin By have been measured,
rather than reserves. In view of the very small values, the reserves hardly contribute to
total biomass, which can then be conceived as structural biomass. The overhead costs in
the synthesis of structural mass and the maintenance costs for these nutrients have been
neglected.

5.2.2 Reserve dynamics & excretion

The growth-SU rejects the reserve fluxes at specific rates
JBR = (kEz - r>mEz N j;\_«?{l — YEVIVG (515)

where jg < jg;m; is the specific flux of the ¢-th reserve spend on somatic maintenance.
Each rejected reserve ‘molecule’ is excreted with probability (1 — kg,) in one form or
another, and fed back to the reserves with probability xg,, so the balance equation for
reserves densities mg, = Mg, /My becomes

d

S = Jma = Jme t KEjeR = T, (5.16)

= jEiA - (1 - "QEz)(kEz - T)mEz — RE; (]]]gj + yEiVjVG) - mei (517)
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5.2.3 Simultaneous nutrient limitation

Data from an experiment with the chemostat in steady state are used to test the simulta-
neous limitation model for realism. The balance equation for the nutrients in the medium
of a chemostat with throughput rate h are

d

=X = (X = Xp)h =3 yimJea (5.18)
d . . .
%X; = Z(l — KE,)YieJER + Z%E JEm, — X;h (5.19)

where X is the concentration of nutrient j, X7 the nutrient content of excretions due
to reserves that are mobilised but rejected by the growth SU and not fed back to the
reserves, and (the second term) nutrients involved in maintenance losses. X,; denotes the
concentration of substrate j in the feed. The summation is over all reserves F;. I suppose
that the excreted nutrients are metabolically changed such that they cannot be reused
immediately.

At steady state, the substrate concentrations X; in the chemostat do not change, so
4X;=0,j=1,2, and

(Xoj — Xj)h = My Z YiE,JEA (5.20)
X;h =My Ziji ((1 — rp;) (kEszz — (mg, + ?/EZV)T) + “EijEiMi> (5.21)

The biomass density in the chemostat follows from the fact that the specific growth rate
i = his known. The equations (5.14), (5.17) and (5.20) together define the biomass density
My, the nutrient concentrations X; and the reserve densities at steady state mg,, given the
throughput rate h and the nutrient concentrations in the feed X,j. Although the system
consists of five coupled equations, it can be reduced to a single one in X; for uncoupled
assimilation fluxes (y1g, = 1, Y1, = 0, Yor, = 0, y2m, = 1), while the range of X is given
by (6;' —1)7' < X;/Xk; < X,j/Xkj, with §; = kg, (jg,m, + Ye,v7)/iEam- 1t can be
shown that the resulting equation in X; has one or three roots, while only one root satisfies
the range restriction for X5. A bisection method can be used to arrive at a high quality
initial estimate for the proper root, followed by a Newton-Raphson method to obtain that
root accurately.

The details of the measurement method determine whether or not the excretions are
included in the medium concentrations. In the data presented and analysed in Figure 5.6,
phosphorus and cobalt (in vitamin Bjy) were measured using isotopes. As a consequence,
the measured medium concentrations include the excreted labelled phosphorus and cobalt,
and correspond to X; +X e The cellular contents correspond to Y, y;g, (Yg,v +mg,). If the
assimilation fluxes for phosphorus and vitamin Bis are not coupled, the cellular content
reduces to yg;v + mg,;. This simplification reduces the total number of parameters to be
estimated to 10 for 20 data sets, or 220 data points. The balance equation for nutrient j
in the medium plus that in the cells at steady state reads

Xoj=X;+ X, + > g, (yev My + Mg,) = X; + X5+ My Y yje(yey +me) (5.22)
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Figure 5.6: The phosphorus and vitamin By cellular contents and medium concentrations,
and the biomass density, as functions of throughput rate h of the Haptophyte Pavlova lutheri

at four levels of these nutrients in the feed. Data from Droop [295]. The parameters
are the reserve turnover rates kg, = 1.19d7!, kg, = 1.22d7!, stoichiometric requirements
YE, vV = 0.39 fmol cell 1, Yp,v = 2.35 1072  mol cell !, maximum specific assimilation rates

JE Am = 4.91fmol (celld)™!, jg,am = 76.6 1072 mol (celld) ™!, recovery fractions kg, = 0.69,
kg, = 0.96, maintenance rates I:::M1 = 0.0079d!, I%MQ = 0.135d7!, given the saturation con-
stants X, = 0.017 uM, Xk, = 0.12pM by Droop. The simultaneously fitted curves obey mass
balances, and reveal measurement errors in the vitamin concentrations.
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These balance equations have been checked for the model fits in Figure 5.6, but they apply
only approximately to the data, because of measurement errors. Since tiny deviations in
the amount of biomass and cellular content substantially change medium concentrations,
the latter has been given a low weight in the simultaneous regressions of the 20 curves in
Figure 5.6.

5.2.4 Non-limiting reserves can dam up

The significance of the excretion is in avoiding the possible occurrence of ‘explosion’; if a
cell cannot grow because of the absence of an essential nutrient, and it would continue to
take up other nutrients, the accumulation of those nutrients would be unbounded without
excretion. The combination of a first-order dynamics of reserve densities and 0 < kg, < 1
implies the existence of an upper boundary for reserve densities if upper boundaries for the
assimilation rates exist. The steady-state reserve density mpgs is maximal if assimilation is
maximal, jg,4 = jg,am, While expenditure is minimal, which occurs when growth is zero,
JVG = 0, i.e. when JElc = JE1M1 = JElA or mpg, = jElMl/kE1 The maximum reserve

density is found from (5.17) to be mg,, = W This illustrates the point that
2 2

excretion is essential: mpg,,,, — oo for kg, — 1. 1 will call the fractions kg, recovery
fractions. The density of the reserve that fully arrests growth is at minimum, and has
the value Jf—M Excretion is a common feature; extracellular release of organic carbon in

phytoplankton has been reported to be as high as 75 % of the totally fixed carbon [733].

The density of the limiting reserve increases (hyperbolically) with the growth rate, while
the non-limiting reserves can decrease with the growth rate. This very much depends on
the recovery fraction kg. The reserve density of the non-limiting nutrients can build up
to spectacular levels, which easily lead to the wrong conclusion that (all) reserve densities
decrease with the growth rate.

If (traces of) all essential nutrients are required for the assimilation of each reserve,
rare nutrients reduce the uptake of abundant ones and ‘explosion’ is avoided in almost all
cases of practical interest, even if kg, = 1; ‘explosion’ can still occur theoretically, in the
absence of maintenance costs (jg,n; = 0). The DEB model accommodates, therefore, two
controls on reserve accumulation: via assimilation of nutrients and via recovery.

Biological phosphate removal

The accumulation of reserves that are synthesised from non-limiting nutrients is exploited
technically in the process of phosphate removal in sewage treatment plants, using Acineto-
bacter calcoaceticus. These remarkable bacteria cannot use hexoses as carbon and energy
source [1099]. Sewage water typically contains 10-30 mg/ 1 phosphorus. Under aerobic con-
ditions, actinobacters decompose carbohydrates, such that they extract energy but little
carbon. The energy is fixed in polyphosphates, by taking up phosphate. Under anaero-
bic conditions, energy is limiting and volatile fatty acids, such as acetates, are taken up
and converted into poly 2-hydroxy butyrate (phb), while stored polyphosphates are used
for energy supply in this transformation [526]. The quantitative details of this coupling
are not quite clear yet; one possibility is that the rejected polyphosphate flux is used for
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light CH>0
NH; Figure 5.7: Diagram of nitrogen assim-
CO2 =0 work ilation, where light and carbon dioxide

are converted into carbohydrate reserves
FE¢, and nitrate into nitrate reserves Ey,
which are used to synthesise structure.
Ammonia can be used as an alternative
nitrogen source, but barely accumulates.
NOy The circles indicate Synthesising Units.

D structure

the assimilation of phb. The excreted phosphate is technically precipitated with calcium
carbonate. This gives the scope for phosphate removal by alternating between aerobic and
anaerobic conditions; the specific maintenance requirement jg; for phosphate is probably
very small.

5.2.5 Dioxygen flux

The physiological literature frequently presents Photosynthesis-Irradiance (PI) curves, where
photosynthesis is usually measured via dioxygen production. The rate of photosynthesis
is in practice frequently measured by the rate of dioxygen production, but the relation-
ship is, however, rather indirect; dioxygen is produced in association with assimilation,
but consumed in association with maintenance and growth. Almost all phototrophs have
heterotrophic capabilities which makes the presence of a generalised reserve likely; this
requires dioxygen in its assimilation.

The interpretation of experimental data is further hampered by the common practice of
presenting dioxygen fluxes relative to chlorophyll, usually Chlorophyll a; this is practical,
because chlorophyll is rather easy to measure. This compound represents, just like all
other compounds in the body, a weighted sum of the generalised reserves and the structural
mass: Mcw = Yo eME +Yonv My, or men = Yo eme + yenv. The chlorophyll-specific
dioxygen flux, therefore, amounts to jo/mcp;, which can be related to environmental and
growth conditions, but involves many aspects of physiology, not just photosynthesis.

5.2.6 Ammonia—nitrate interactions

Many organisms can use several nitrogen substrates for assimilation, including ammonia,
nitrite, nitrate, urea, amines and amino acids. Plants have access to nitrogen in organic
compounds via mycorrhizae. Ammonia is rather toxic, so it does not accumulate as such;
it is directly assimilated into amino acids, such as glutamate and glutamine. Nitrite is
also rather toxic, and has mutagenic properties, see {241}; nevertheless, it is stored by
some organisms. Nitrate is first reduced to nitrite, and then to ammonia, before further
use [358]. These reductions require substantial energy, which is probably the reason why
ammonia is usually strongly preferred as a substrate. It is even generally believed that
ammonia inhibits nitrate uptake, but this does not seem to hold true [284]. Organisms
vary in their properties with respect to nitrogen uptake. The intensively studied yeast
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Saccharomyces cerevisiae cannot assimilate nitrogen oxides [1216]. Some yeasts and bacte-
ria nitrify ammonia to nitrate. Selective preferences for ammonia and nitrate can explain
main patterns in plant associations [108]. Soil types differ substantially in ammonia and
nitrate availability for plants [332], and their ratio strongly influences the occurrence of
plant species, even at a very small spatial scale, such as the shifting mosaic of gap and
understory conditions in a forest [226, 670]. Probably because of its toxicity, ammonium
assimilation occurs in the roots and not in the shoots of plants.

Figure 5.7 indicates how an alternative nitrogen substrate for ammonia can be imple-
mented in a DEB framework. Ammonia is stored before use, just like nitrate, but the
maximum storage capacity is very low, and the turnover rate very high. Homeostasis of
structural mass requires that the product of the synthesis of ammonia and carbohydrate is
identical to the generalised reserve, which means that the synthesis occurs twice: just after
assimilation (prior to storage) from assimilates and after storage, just prior to synthesis of
structural mass from catabolised products. The rules for sequential processing of substi-
tutable substrates can be used to quantify the fluxes, cf. {101}. The extra requirement of
energy in the processing of nitrate can be taken into account by the stoichiometric coupling
with carbohydrates, which can depend on the substrate that is used. Many applications
allow a reduction of this redundancy, and a description without generalised reserves will be
adequate. Ammonia is not only taken up, but is also excreted in association with growth
and maintenance.

The assimilation of ammonia, nitrate and carbohydrates is given by (5.10) and (4.12).
Treating ammonia and nitrogen as substitutable substrates, and complementary to carbo-
hydrates, the specific assimilation of generalised reserves is

. pa— . . J— o) — . . . — 71

JEA = (]E,laxm + (Jnya + Inga) T+ ]/C'HlA — (Jnya + Inpa + Jogya) 1) (5.23)
where j, 4 = psysrjea, and yo, g = egHyggE + Qf\‘,oyggE, where Gj\‘fH + 6;(‘,0 =1, and 95% —
s (G atihga) "t The maximum of jp4 is not necessarily constant: jpam = 04, jp A+

O, jNe . Since the reduction of nitrate is rather energy consuming, and extracted from

the oxidation of carbohydrates, the relationship ygg g < ygg g holds. The requirement for
carbohydrates can vary in time, and depends on the nitrogen source.

The specific catabolic rates of the four reserves are j,o = (k* — jva)ms. The specific
catabolic rate of the reserves E is jpo, = (k;E — jvg)mg. The synthesis of a compound
identical to generalised reserves from catabolic products for metabolic use (maintenance
and growth), jpc, is similar to that from assimilation products (5.23), with j.c replacing
Jxa. The growth SU is assumed to be fast enough to avoid spoiling of reserves, so jyg =
yve(jec, + jec, — jEMm)-

Ammonia is hardly stored, which means that rejected ammonia is not fed back to
the reserves (kgy, = 0), but excreted. The turnover rate kp,, is large; this gives an
extremely low ammonia reserve, mg,, =~ 0, and the catabolic rate equals jg, ,c = jNya —
QﬁHyNEjEA. The rejected ammonia flux is je,,r = JEvyC — Qf,HyNE JEC,, With 91%{ +
05, =1 and 05, = jn,c(in,a — O8N, PNuiEa+ ihoc) ' The rejected fluxes of nitrate and
carbohydrate reserves are jpy,r = JExoC — Hf,oyNE Jjec, and jg.r = JjE.c — JEC,, from
which fractions kg, and kg, are fed back to the reserves, the rest being excreted. The
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dynamics of the reserve densities mg, and mg,,, is given by (5.17). The specific rate of
ammonium excretion amounts to jy, g = jexygr + YNEJEM + (MNEYEY — NNv)jve. The
middle term relates to maintenance, the third one to growth overheads.

When nitrogen is limiting, the assimilation of generalised reserves (5.23) reduces to
jea = (Jgam + (Ghya + Inoa) )" The carbohydrate reserve no longer limits growth
and jec, = (Jpam + WeN PNy (nga — 08, UnE TEA) + dhoe) ™)™ = (pam + (s —
O, PNpIEA + Ihpe) )

The nitrogen in biomass can be decomposed into contributions from structural mass
and the reserves, nyw = nyyv + nygmg + my,. The specific nitrogen content is not
constant during transient phases, but will become constant during the cell cycle in constant
environments. This is an implication of the weak homeostasis assumption that is basic to

the dynamics of reserves.

5.3 Several structural masses

The bill of the guillemot Uria
aalge is just one example of non-

isomorphic growth. Although of
little energetic significance, the
k-rule provides the structure to
describe such deviations.
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The assumption of isomorphy implies that any tissue is fixed fraction of the somatic
tissue, conceived as a lumped sum. Static and dynamic generalisations of the k-rule for
allocation, see at {40}, implies a particular type of growth regulation and reveals the
intimate connection between the s-rule and allometric growth.

5.3.1 Static generalisation of the x-rule

If structural volume V' can be decomposed in that of some organ (e.g. the heart) V and
of the rest Vg, so V = Vi 4+ Vy, the static multivariate extension of the xk-rule amounts to

KKgPc = [EGH]jtVH + Pyval Ve (5.24)
K(l — HH)].?C = [EG]CZVR + [pM]VR(l + LT/LR) (525)

where [Egg] and [pyy] are the specific costs for synthesis and maintenance of organ H.
The mobilisation power p¢ is given in (2.20), so these equations fully specify the growth
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Figure 5.8: Whole body weight and heart weight as function of time since birth in duck species:
mallards, 2 lines of white Pekins (Anas platyrhynchos), muscovys (Cairina moschata), and a
muscovy X white Pekin cross. Data from [408]. The static generalisation of the k-rule can
capture the decreasing relative size of the heart. This suggests that the relative workload of the
heart remains rather constant.
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Figure 5.9: Examples of allometric growth: logy = a + b logx. Left: The head length (from
the tip of the nose to the blow hole), with respect to total body length minus the head length in
the male blue whale, Balaenoptera musculus. The first four data points are from foetuses, where
growth is isomorphic (b = 1). Thereafter the head extends more rapidly (b = 1.65). Right: The
weight of the large chela with respect to that of the rest of the body in the male fiddler crab
Uca pugnazx. Initially the chela grows rapidly (b = 1.63) until a rest of body weight of 850 mg,
thereafter it slows down a little (b = 1.23). Data from Huxley [540].

of Vg and V. This dynamics still has full isomorphy as special case, and can show
near-allometric relationships between organ and whole body weight; see Figure 5.8. The
mechanism behind allometric growth of body parts is intimately connected to the x-rule.
If kyjr = kg, with kyp = [Davre]/[Ecr], and the heating length L is small, we have
%VR—i— Vr x %VH + Vi for scaled time 7 = /%]T/[l. The somatic maintenance rate coefficients
for the heart and the rest of the body for the ducks of Figure 5.8 differ by a factor 10 in
four cases, but by a factor 0.2 in the case of the NF 20 Pekin. This big difference needs
further explanation.

Allometric growth of a body part occurs if the contribution of part ¢ to total body
volume is insignificant, because V. # >, oy V7 if 8; # 1 for some i, whatever the values
of positive «;’s. Huxley [540] described how certain parts of the body can change in size
relative to the whole body using allometric functions and highlighted the problem that
if some parts change in an allometric way, other parts cannot. Absolute growth requires
specification of how feeding and digestion (and heating for endotherms) depend on the
volume and shape of the different tissues. It is likely to become complex. Allometric growth
of extremities and skeletal elements frequently occurs, as illustrated in Figure 5.9. Houck
et al. [529] used this growth as a criterion to delineate taxa in fossil bird Archaeopteryz. It
is improbable that whole-organism energetics is seriously affected by these relative changes.

Isomorphs thus require growth regulation over the different body parts. Without con-
trol, allometric growth results. For isomorphs [V;] = V;/V, must remain fixed, so that
LV; = [V;]4V, must hold. For the DEB model this implies that the organism must ac-
celerate or retard the growth of organ/tissue/part i by a factor [Vj] % ~ g:>;1V;l/ 95,
with ¢g; = H[Pfg]] (The approximation holds for py;; << k;pc.) The mechanism of control
may be via the density of carriers that transfer resources from the blood to the tissue.
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Figure 5.10: Macoma larvae
develop a large velum (a filtering
organ) and a small gut at low food
levels (left), and the other way
around at high food levels (right).

The carrier density in membranes of large tissues/parts should be less than that in small
tissues/parts for a particular value.

The acceleration /retardation factor demonstrates that the carrier density does not have
to change during growth. Other types of growth regulation are also possible. This discus-
sion is only about the effects of regulation, rather than about its mechanism.

5.3.2 Dynamic generalisation of the x-rule

The fraction x; of the mobilised reserve that is allocated to a particular organ ¢ can change
when the allocation is linked to the relative workload of that organ; this extension of
the k-rule is called the workload model and developed in collaboration with Ingeborg van
Leeuwen [691]. Such dynamic extensions are necessary to capture e.g. the differential
growth of velum and gut in bivalve larvae in response to changes in food levels [644],
see Figure 5.10. Although the workload allocation is really general, I will specify it for
the velum and the gut, assuming that the filtering rate is fully controlled by the size of
filtering organ (velum) of volume Vi, and the digestion by the food-processing organ (gut)
of volume V. The total structural volume thus amounts to V = Vr + Vx + Vg, where V5
is the general, i.e. non-assimilatory part of the body.

Isomorphy implies that Vi = 0V, for constant fraction 0, while F={F}Vg/ HF)Q/ 3
where {F } does not depend on the size of structure. The same applies for Vy, and Jxa =
{Jxa}(Vx/0x)*3. This couples organ size and function.

The arrival rate of food particles in density X at the individual that filters at rate F
equals FX. We assume a parsimonious design, so the filtering rate is such that FX = Jy4
and the amount of rejected particles is negligibly small. This makes that the filtering rate
equals F' = (F-1 4+ X J5Y,,)~", and half-saturation constant equals

oo B o () et () e () o

with {Jyan} = {Jxan}0y™* and {F,} = {F.}6:"° and K’ = {Ji,,}/{F},}. The
feeding rate amounts to Jxa = f{J% Am}VX with scaled functional response f = KLH(
Notice that this expression for the half-saturation constant is identical with that for
nutrient uptake by plant roots, see at {134}, where this uptake depends on the transport
of water in the soil, and so on the evaporation by the shoot, thus on the surface area of the

shoot. This resemblance of saturation constants is more than superficial if we look beyond
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morphology to functions of organs, where shoot and velum or root and gut have functional
properties in common.
The workload of the filtering and digestion organs can be defined as

fe