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Preface to the third edition

What to expect in this book?

This book is about a formal consistent and coherent theory for the processes of substrate
uptake and use by organisms, which I called the Dynamic Energy Budget (DEB) theory.
Over the thirty years of research on this theory, it became well established; some 140 papers
on DEB theory appeared since the second edition in 2000. The application of the theory by
the international research group AQUAdeb, http://www.ifremer.fr/aquadeb/, and of
this book in the DEB tele-courses, http://www.bio.vu.nl/thb/deb/course/, urged for a
new edition. This book gives a fresh update of the present state of the theory. In view of its
accelerating development, this update will probably not be the last one. To accommodate
all new material, I had to cut out most methodological parts of the previous edition, which
is a pity because opponents of DEB theory typically seem to differ in opinion on ‘details’,
but actually differ in opinion on the role of models in research and related methodological
issues. I wrote a document on methods in theoretical biology, which also summarises the
mathematics that is used in this book, see http://www.bio.vu.nl/thb/deb/.

Many empirical models, ranging from Lavoisier’s model for indirect calorimetry, Kleiber’s
model for the respiration as function of body weight, von Bertalanffy’s model for animal
growth and Droop’s model for nutrient-limited algal growth turned out to be special cases
of DEB models that follow from the theory. This makes that DEB theory is the best tested
quantitative theory in biology.

Support of this book

Although I tried hard to avoid errors, experience tells me that they are unavoidable. A
list of detected errors can be found at the DEB information page http://www.bio.vu.

nl/thb/deb/, and I offer my apologies for any inconvenience. The errata, and all support
material mentioned below will frequently be updated.

I tried to emphasise the concepts in this book, and to reduce on technicalities. Math-
ematical derivations of results are important, however, especially for people who want to
contribute to the further development of the theory. These derivations are collected in
the comments on DEB theory, which can also be found at DEB information page. These
comments also give further background information and summarise the developments of
the theory and its applications since this book appeared.

Software package DEBtool can be downloaded freely from the electronic DEB labo-
ratory, http://www.bio.vu.nl/thb/deb/deblab/; the manual is included (run file in-

http://www.ifremer.fr/aquadeb/
http://www.bio.vu.nl/thb/deb/course/
http://www.bio.vu.nl/thb/deb/
http://www.bio.vu.nl/thb/deb/
http://www.bio.vu.nl/thb/deb/
http://www.bio.vu.nl/thb/deb/deblab/
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dex.html in subdirectory manual in a browser, such as firefox ). DEBtool is written in
Octave and in Matlab. The purpose of this package is a mix of demo’s for what the the-
ory can do, routines that can be used to fit DEB models to data, to calculate quantities
such as the initial amount of reserve in eggs, to reconstruct food density trajectories from
observations on an individual, to run numerical simulations for plant growth, etc. Toolbox
fig collects the files that have been used to create the figures of this book. Here you can
see how the data are set, how the model is specified and how it is fitted to the data. The
files give the figures in colours, and also presents standard deviations of parameters that
are estimated. These standard deviations are not presented in this book. If you want to
apply the theory to your own data, and your application resembles one of the figures, an
efficient way to do this is to go the file that produces the figure, replace the data by your
own data and re-run the file.

This book is used in the international biannual DEB tele-course. Its setup can be found
on http://www.bio.vu.nl/thb/deb/course/; starting in 2009, the course will be linked
to an international symposium on DEB theory, organised by previous participants of the
tele-courses. The DEB-information page also gives access to other material that is used
and produced in this course. This includes collections quizzes, exercises and solutions,
powerpoint sheets, questions and answers, essays that are written by participants and,
typically, later used in publications.

The book mentions many names of taxa; I collected recent ideas on the evolution-
ary relationships between living organisms. Both documents can be found on the DEB
information page.

The DEB information page also presents a number of papers that introduce DEB theory,
ongoing activities, job opportunities etc. Examples of application of DEB theory can be
found in the special issues of the Journal of Sea Research, 56 (2006), issue 2 and 62 (2009),
issue 1/2.

Setup of this book

The logical structure of the chapters is indi-1 - 2 - 3 - 4
��	

6
?
7

@@R
8

- 5 - 9 - 10 - 11
cated in the diagram (left). A first quick glance
through the section on notation and symbols,
page {469}, saves time and annoyance.

A glossary at {463} explains technical terms
Chapter 1 gives introductory concepts, namely the notion of the individual, its life

stages, the various varieties of homeostasis and the effects of temperature on metabolic
rates. The choice of topics is based on their relevance for the standard deb model.

Chapter 2 specifies the standard deb model, which represents the simplest non-degenerated
model in deb theory, so a canonical form, which uses one type of substrate (food), one
reserve, one structure for an isomorph, i.e. an organism that does not change in shape
during growth. It neglects all sorts of complications for educational purposes, to illustrate
the basic DEB concepts in action; a summary section presents the list of assumptions from
which the standard DEB model follows.

Chapter 3 discusses the relationships between energy, compounds and biomass, and

http://www.bio.vu.nl/thb/deb/course/


Preface xv

presents basic concept on metabolism. It presents the actions of synthesising units (SUs),
i.e. a generalised form of enzymes that basically follow enzyme kinetics, but with an im-
portant modification: SU kinetics is based on fluxes, not on concentrations. The material
in this chapter prepares for the next one.

Chapter 4 describes univariate deb models, which have one type of substrate (food), one
reserve and one structure, and starts with extending the standard deb model of chapter
2 by accounting for changes in food density and of shapes. The various chemical com-
pounds, isotopes and energies are followed, product formation is specified and respiration
is discussed in some detail. The quantification of entropy of living biomass is discussed.
The parameter estimation section of chapter 2 is now extended to include mass, energy
and entropy parameters. The final section shows the use of observations on individuals to
reconstruct how the food availability and temperature changed in time. This is useful e.g.
to study size-dependent food selection.

Chapter 5 extends the theory to include several substrates, reserves and structural
masses to increase the metabolic versatility that is found in organisms that acquire nutrients
and light independently, and have to negotiate the problem of simultaneous limitation
caused by stoichiometric coupling. The various ways in which substrate can take part in
metabolic transformations are discussed. The processes of photosynthesis and calcification
are discussed; the implications for plant development are evaluated.

Chapter 6 starts with a discussion of aging that is caused by the effects of reactive
oxygen species, which are formed as side-products of respiration; the ageing kinetics have
direct links with energetics. This chapter considers the uptake and effects of non-essential
compounds, such as toxicants. The significance of effects of toxicants for energetics is that
deb parameter values are changed and the response to these changes reveal the metabolic
organisation of individuals.

Chapter 7 extends deb theory to include more detail for the various applications,
especially if the shorter time scales need to be included to link to developments in molecular
biology. The purpose of this chapter is to show how deb theory fits into a wider context
of biological research. Some parameter values turn out to change sometimes during the
development of an organism and are discussed; it prepares the topic of the next chapter.

Chapter 8 analyses the intra- and inter-specific variation of parameter values among
individuals. It compares the energetics of different species by studying the implications
of deb theory for the covariation of parameter values among species. The chapter shows
how, for a wide variety of biological variables, body size scaling relationships can be derived
from first principles rather than established empirically. This approach to body size scaling
relationships is fundamentally different from that of existing studies.

Chapter 9 considers interactions between individuals and develops population conse-
quences. The population, after its introduction as a collection of individuals, is considered
as a new entity in terms of systems analysis, with its own relationships between input,
output and state. These new relationships are expressed in terms of those for individuals.
The coupling between mass and energy fluxes at the population level is studied and the
behaviour of food chains and of canonical communities is discussed briefly.

Chapter 10 presents scenarios for the evolution of metabolic organisation and the grad-
ual coupling and uncoupling of the dynamics of partners in symbiotic interactions; it also
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aims to make deb theory biologically explicit. Apart from showing how deb theory fits
into an evolutionary context, this chapter demonstrates a key issue: two species that fol-
low deb rules can merge such that the merged new species again follows deb rules. The
process that life became increasingly dependent on life is discussed and illustrated with
examples.

Chapter 11 places the approach taken by the deb theory in existing eco-energetic
research, and highlights some differences in concepts. A collection of well-known empirical
models is presented that turn out to be special cases of DEB theory and their empirical
support also supports deb theory.
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Chapter 1

Basic concepts

The purpose of this chapter is to introduce some general concepts to prepare for the devel-
opment of the simplest version of deb theory, which is discussed in the next chapter. I start
with the explanation why the organisation level of the individual plays a key role in deb
theory, followed by homeostasis concepts. Mechanisms for homeostasis and evolutionary
aspects are discussed later. Then we need to introduce the notion of life stages and effects
of temperature in some detail.

1.1 Individuals as dynamic systems

1.1.1 The basic level of metabolic organisation

From a systems analysis point of view, individuals are special for metabolic organisation
because at this organisational level it is relatively easy to make energy and mass balances.
This is important, because the conservation law for energy and mass is one of the few hard
laws available in biology. At the sub- and supra-individual levels it is much more difficult
to measure and model mass and energy flows.

Life started as an individual in evolutionary history, see {370}, and individuals are the
units of selection and the survival machines of life; differences between individuals are,
in combination with selection, key to evolution. deb theory captures these differences by
parameter values, which can differ between individuals, see chapter 8.

Individuals are also special because behaviour is key to food intake and food selec-
tion (food fuels metabolism) and to mate selection; reproduction controls survival across
generations in many species.

The analysis of metabolic organisation should, therefore, start at the level of the indi-
vidual. Many species are unicellular, which links subcellular organisation directly to the
individual level.

1.1.2 Vague boundaries: the cell-population continuum

The emphasis on individuals should not mask that the boundaries between cells, individ-
uals, colonies, societies and populations are not always sharp. Fungal mycelia can cover



2 1. Basic concepts

up to 15 hectares as in the basiodiomycete Armillaria bulbosa, but they can also fragment
easily. Cellular slime moulds (dictyostelids) have a single-celled free-living amoeboid stage,
as well as a multicellular one; the cell boundaries dissolve in the multicellular stage of acel-
lular slime moulds (eumycetozoa), which can now creep as a multi-nucleated plasmodium
over the soil surface.

The mycetozoans are not the only amoebas with multi-nuclear stages; Mastigamoeba
(a pelobiont) is another example[91]. Many other taxa also evolved multi-nucleated cells,
plasmodia or stages, e.g. ciliates, Xenophyophores, Actinophryids, Biomyxa, Loukozoans,
Diplomonads, Gymnosphaerida, Haplosporids, Microsporidia, Nephridiophagids, Nucle-
ariidae, Plasmodiophorids, Pseudospora, Xanthophyta (e.g. Vaucheria), most classes of
Chlorophyta (Chlorophyceae, Ulvophyceae, Charophyceae (in mature cells) and all Clado-
phoryceae, Bryopsidophyceae and Dasycladophyceae)) [871, 516]. Many higher fungi have
hyphen where cells are fused in a multi-nucleated plasma, and nuclei of several rhodophytes
can crawl from one cell into another. The Paramyxea have cells inside cells. The Myxozoa
have multicellular spores, but a single-cellular adult stage. Some bacteria have multicellular
tendencies [1045].

Certain plants, such as grasses and sedges, can form runners that give off many sprouts
and cover substantial surface areas; sometimes, these runners remain functional in trans-
porting and storing resources as tubers, whereas in other cases they soon disintegrate. A
similar situation can be found in, for example, corals and bryozoans, where the tiny polyps
can exchange resources through stolons.

Behavioural differentiation between individuals, such as between those in syphono-
phorans, invites to consider the whole colony an integrated individual, whereas the differ-
entiation in colonial insects and mammals is still that loose that it is recognised as a group
of coordinated individuals. Schools of fish {334}, bacterial colonies and forests {130} can
behave as a super individual,

These examples illustrate the vague boundaries of multicellularity, and even those of
individuality. A sharpening of definitions or concepts may reduce the number of transition
cases to some extent, but this cannot hide the fact that we are dealing here with a con-
tinuum of metabolic integration in the twilight-zone between individuals and populations.
This illustrates that organisms, and especially eukaryotes, need each other metabolically.

1.1.3 Why reserves apart from structure?

deb theory partitions biomass into one or more reserves and one or more structures.
Reserves complicate the dynamics of the individual and the application of the model con-
siderably, so it makes sense to think about its necessity and become motivated to deal with
this more complex dynamics.

We need reserve because of the following reasons

• to include metabolic memory. A variable substrate (food) supply does not combine
easily with constant maintenance needs. Organisms use reserve(s) to smooth out
fluctuations. The metabolic behaviour of an individual does not depend on the actual
food availability, but of that of the (recent) past. Individuals react slowly to changes



1.1. Individuals as dynamic systems 3

in their feeding conditions. This cannot be described realistically with the digestive
system as a buffer, because its relaxation time is too short. Spectacular examples of
prolonged action without food intake are the European, North American and New
Zealand eels, Anguilla, which stop feeding at a certain moment. Their alimentary
canal even degenerates, before the 3000-km-long journey to their breeding grounds
where they spawn. The male emperor penguin Aptenodytes forsteri breeds its egg in
Antarctic midwinter for two months and feeds the newly hatched chick with milky
secretions from the stomach without access to food. The male loses some 40 % of its
body weight before assistance from the female arrives.

• to smooth out fluctuations in resource availability to make sure that no essential
type of resource is temporarily absent, cf {379}; growth can only proceed if all
essential resources are available in certain relative amounts. This argument concerns
a different form of memory that is used by multiple reserve systems. Single reserve
systems evolved from multiple reserve systems. This will be discussed in chapter 10.
Non-limiting reserves can dam up, which causes strong changes in the composition
of biomass, see {193}.

• the chemical composition of the individual depends on the growth rate. This can
only be captured if biomass has more than one component.

• fluxes (e.g. dioxygen, carbon dioxide, nitrogen waste, heat) are linear sums of three
basic energy fluxes: assimilation, dissipation and growth (as we will see). The method
of indirect calorimetry is based on this fact. Without reserve, using a single structure
only, two rather than three basic energy fluxes would suffice, while experimental
evidence shows that this is not true.

• to explain observed patterns in respiration and in body size scaling relationships.
Eggs decrease in mass during development, but increase in respiration, while juve-
niles increase in mass as well as in respiration. This cannot be understood without
reserve. A freshly laid egg consists (almost) fully of reserve and does hardly respire;
a simple and direct empirical support for the deb assumption that structure requires
maintenance, but reserve does not. We will see that reserve plays a key role in body
size scaling relationships, and to understand, for instance, why respiration increases
approximately with weight to the power 3/4 among species.

• to understand how the cell decides on the use of a particular (organic) substrate, as
building block or as source of energy. This problem will be discussed in the section
on organelle-cytoplasm interactions at {275}.

The term reserve does not mean ‘set apart for later use’; reserve ‘molecules’ can have
active metabolic functions while ‘waiting’ for being used. Ribosomal rna, for instance,
turns out to belong to the reserve, see {139}; it is used for peptide elongation. The primary
difference between reserve and structure is in their dynamics: all chemical compounds in
the reserve have the same turnover time, in the structure they can be different. Reserves
are used to fuel all metabolic needs of the individual.
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Most metabolic behaviour of animals, i.e. organisms that live of other organisms, can be
understood using a single reserve, but autotrophs, which obtain nutrients independently
from the environment, require the delineation of more reserves, as will be discussed in
chapter 5.

1.1.4 Metabolic switching is linked to maturation

Metabolic switches occur, for instance, at the start of development of an individual, the
moment at which age is initiated in deb theory. Another switch occurs when assimilation
is initiated, a moment called birth, or when allocation to maturation is redirected to repro-
duction, a moment called puberty, or when cell division occurs or at which dna duplication
is initiated. The age at which such switches occur differs widely among individuals of the
same species, depending on the food uptake in the past. The size at which the switches
occur differs already much less, but still shows some scatter.

deb theory links the occurrence of such metabolic switches to the level of maturity, i.e.
the set of regulation systems that control metabolic performance. Although allocation to
reproduction does not occur as long as maturity is still increasing, this does not imply that
maturity directly relates to preparation of the reproductive machinery only. I see maturity
as a much more general investment to prepare the body for the adult state, which involves,
among other things, extensive gene regulation switching and cell and tissue differentiation.
Its formal status is information, not energy, mass, or entropy. The building up of maturity
costs energy, and maturity is quantified as the cumulated energy or amount of reserve that
is invested in maturity. After being used to build up maturity, this energy becomes lost.
Maturation can be conceived as metabolic learning and can be compared with reading a
book or a newspaper; this costs considerable energy but forgetting the information does
not give and extra release of heat or an extra carbon dioxide emission.

In multicellular organisms birth typically precedes puberty, which naturally leads to
three life-stages: embryo, juvenile and adult.

Embryo

The first stage is the embryonic one, which is defined as a state early in the development
of the individual, when no food is ingested. The embryo relies on stored energy supplies.
Freshly laid eggs consist, almost entirely, of stored energy, and for all practical purposes
the initial structural volume of the embryo can realistically be assumed to be negligibly
small. At this stage it hardly respires, i.e. it uses no dioxygen and does not produce carbon
dioxide. (The shells of bird eggs initially produce a little carbon dioxide [127, 469].) In
many species, this is a resting stage. This especially holds for plants, where seeds are
equivalent to eggs; seeds can be dormant for many years and the number of dormant seeds
greatly exceeds the number of non-dormant individuals [462]. Many seeds (particularly
berries) require to be treated by the digestive juices of a particular animal species for
germination; others need fire, see {412}. Although the seed or egg exchanges gas and
water with the environment, it is otherwise a rather closed system.

Foetal development represents a variation on embryo development, where the mother
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provides the embryo with reserve material, such as in the Placentalia, some species of velvet
worm Peripatus and the Devonian placoderm Materpiscus [717]. Complicated intermedi-
ates between reproduction by eggs and foetuses exist in fish [1279, 1280, 957], reptiles and
amphibians [113, 901, 1113]. The evolutionary transition from egg to foetal development
occurred several times independently. From the viewpoint of energetics, foetuses are em-
bryos because they do not take food. The digestive system is not functional and the embryo
does not have a direct impact on food supplies in an ecological sense. The crucial difference
from an energetics point of view is the supply of energy to the embryo. In lecithotrophic
species, nutrients are provided by the yolk of the ovum, whereas in matrotrophic species
nutrients are provided by the mother as the foetus grows, not just in vitellogenesis. The
fact that eggs are kept in the body (viviparity) or deposited in the environment (ovipar-
ity) is of no importance from an energetic perspective. (The difference is important in a
wider evolutionary setting, of course.) As in eggs, a number of species of mammal have a
developmental delay just after fertilisation, called diapause [1053].

Juvenile

The second stage in life history is the juvenile one, in which food is taken but resources are
not yet allocated to the reproductive process. In some species, the developing juvenile takes
a sequence of types of food or sizes of food particles. Most herbivores, for instance, initially
require protein-rich diets that provide nitrogen for growth, cf. {180}. Some species, such as
Oikopleura, seem to skip the juvenile stage. It does not feed as a larva, a condition known
as lecithotrophy, and it starts allocating energy to reproduction at the moment it starts
feeding. A larva is a morphologically defined stage, rather than an energy defined one. If
the larva feeds, it is treated as a juvenile; if not, it is considered to be an embryo. So, the
tadpole of the gastric-brooding frog Rheobatrachus , which develops into a frog within the
stomach of the parent, should for energy purposes be classified as an embryo, because it
does not feed. The switch from feeding to non-feeding as a larva seems to be made easily,
from an evolutionary perspective. Sea urchins have developed a complex pattern of species
that do or do not feed as a larva, even within the same genus, which comes with dramatic
differences in larval morphology [1281, 1282, 1283]. Sperm of the sea urchin Heliocidaris
tuberculata, which has feeding larvae, can fertilise eggs of H. erythrogramma, which has
non-feeding larvae; the zygote develops into feeding hybrid larvae that resemble starfish
larvae, similar to that of the distant ancestor of sea urchins and starfishes, some 450 Ma
ago [930].

Parthenogenetic aphids have a spectacular mode of repro-
duction: embryos producing new embryos [596] cf. {343}.
Since aphids are ovoviviparous, females carry daughters and
grand-daughters at the same time. From a formal point of
view, the juvenile period is negative; the embryonic stage
overlaps with the adult one. Aphids illustrate that the meta-
bolic events of switching on feeding and reproduction matter,
rather than the stages.
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The word ‘mammal’ refers to the fact that the young usually receive milk from the
mother during the first stage after birth, called the baby stage. Pigeons, flamingos and
penguins also do this. The length of the baby stage varies considerably. If adequate food
is available, the guinea-pig Cavia can do without milk [1053]. At weaning the young ex-
perience a dramatic change in diet, and after weaning the growth rate frequently drops
substantially. Few biochemical transformations are required from milk to building blocks
for new tissue. The baby, therefore, represents a transition stage between embryo and ju-
venile. The baby stage relates to the diet in the first instance, cf. {180}, and not directly to
a stage in energetic development, such as embryo and juvenile. This can best be illustrated
by the stoat Mustela erminea. Although blind for some 35–45 days, the female offspring
reaches sexual maturity when only 42–56 days of age, before they are weaned. Copulation
occurs whilst they are still in the nest [597, 1053].

Asexually propagating unicellular organisms take food from their environment, though
they do not reproduce in a way comparable to the production of eggs or young by most
multicellular organisms. For this reason, I treat them as juveniles in this energy-based
classification of stages. Although I realize that this does not fit into standard biologi-
cal nomenclature, it is a logical consequence of the present delineations. I do not know
of better terms to indicate energy-defined stages, which highlights the lack of literature
dealing with the individual-based energetics of both micro- and multicellular organisms.
This book shows that both groups share enough features to try to place them in a single
theoretical framework. Some multicellular organisms, such as some annelids, triclads and
sea cucumbers (e.g. Holothuria parvula [323]), also propagate by division. Some of them
sport sexual reproduction as well, causing the distinction between both groups to become
less sharp and the present approach perhaps more amenable.

The eukaryotic cell cycle is usually partitioned into the interphase and mitotic phases;
the latter is here taken to be infinitesimally short. The interphase is further decomposed
into the first gap-phase, the synthesis phase (of dna) and the second gap-phase. Most cell
components are made continuously through the interphase, so that this distinction is less
relevant for energetics. The second gap-phase is usually negligibly short in prokaryotes.
Since the synthesis phase is initiated upon exceeding a certain cell size, size at division
depends on growth conditions and affects the population growth rate. These phenomena
are discussed in some detail on {272}.

In many species, the switch from the juvenile to the adult stage is hardly noticeable,
but in the paradoxical frog, for instance, the switch comes with a dramatic change in
morphology and a substantial reduction in size from 20 to 2 cm; the energy parameters differ
between the stages. Holo-metabolic insects are unique in having a pupal stage between the
juvenile and adult ones. It closely resembles the embryonic stage from an energetics point
of view, cf. {277}. Pupae do not take food, and start synthesising (adult) tissue from tiny
imaginal disks. A comparable situation occurs in echinoderms, bryozoans, sipunculans
and echiurans, where the adult stage develops from a few undifferentiated cells of the
morphologically totally different larva. In some cases, the larval tissues are resorbed, and
so converted to storage materials; in other cases the new stage develops independently.
When Luidia sarsi steps off its bipinnaria larva as a tiny starfish, the relatively large
larva may continue to swim actively for another 3 months, [1138] in [1260]. Some jelly
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fishes (Scyphomedusae) alternate between an asexual stage, i.e. small sessile polyps, and
a sexual stage, i.e. large free swimming medusae. Many parasitic trematods push this
alternation of generations to the extreme. Mosses, ferns and relatives alternate between
a gametophyte and a sporophyte stage; the former is almost completely suppressed in
flowering plants. From an energetics perspective, the sequence embryo, juvenile is followed
by a new sequence, embryo, juvenile, adult, with different values for energy parameters for
the two sequences. The coupling between parameter values is discussed on {287}.

Adult

The third stage is the adult one, in which energy is allocated to the reproduction process.
The switch from the juvenile to the adult stage, puberty, is here taken to be infinitesimally
short. The actual length differs from species to species and behavioural changes are also
involved. The energy flow to reproduction is continuous and usually quite slow, while
reproduction itself is almost instantaneous. This can be modelled by the introduction of a
buffer, which is emptied or partly emptied upon reproduction. The energy flow in females
is usually larger than that in males, and differs considerably from species to species.

Some Florideophyceae (red algae) and Ascomyceta (fungi) have three sexes; most an-
imals and plants have two, male and female, but even within a set of related taxa, an
amazing variety of implementations can occur. Some species of mollusc and annelid, and
most plants, are hermaphroditic, being male and female at the same time; some species of
fish and shrimp are male during one part of their life and female during another part; plants
such as the bog-myrtle Myrica gale can change sex yearly; some have very similar sexes
while other species show substantial differences between males and females; see Figure 1.1.
The male can be bigger than the female, as in many mammals, especially sea elephants, or
the reverse can occur, as in spiders and birds of prey. Males of some fish, rotifers and some
echiurans are very tiny, compared to the female, and parasitise in or on the female or do
not feed at all. The latter group combines the embryo stage with the adult one, not unlike
aphids. Differences in ultimate size reflect differences in values for energy parameters, see
{291}. Parameter values, however, are tied to each other, because it is not possible to
grow rapidly without eating a lot (in the long run). Differences in energy budgets between
sexes are here treated in the same way as differences between species.

Reproduction, in terms of the production of offspring, does not always have a simple
relationship with gamete production. All oocytes are already present at birth for future
ovulations in birds and mammals, where they are arrested at Prophase I of meiosis [799]
(which occurs at the transition from the second gap-phase to the mitotic phase). In some
species of tapeworm, wasp and at least eighteen species of mammal (e.g. armadillo) there
is a mode, called polyembryony, in which a sexually produced embryo splits into several
genetically identical offspring. The opposite also occurs in several species of mammal
(e.g. pronghorn, elephant shrews, bats, viscacha), where the mother reduces a considerable
number of ova to usually two, early in the development, but also later on, by killing embryos
[111]. Cannibalism among juveniles inside the mother has been described for Salamandra,
some sharks and the sea star Patiriella, {180}. Parent coots, Fulica, are known to drown
some hatchlings of large litters, possibly to increase the likelihood of the healthy survival
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Figure 1.1: Sexual dimorphy can be extreme. The male of the southern sea elephant Mirounga
leonina is ten times as heavy as the female, while the parasitic males of the angler fish Haplophryne
mollis are just pustules on the female’s belly.

of the remaining ones.

In some species, e.g. humans, a senile stage exists, where reproduction diminishes or
even ceases. This relates to the process of aging, see {209}. An argument is presented
for why this stage cannot be considered as a natural next stage within the context of deb
theory.

The summary of the nomenclature used here reads:

embryo juvenile adult

fertilisation birth puberty deathweaning

baby infant

1.2 Homeostasis is key to life

Homeostasis is the ability to run metabolism independent of the (fluctuating) environment.
All living systems do this to some extent and to capture this extent deb theory makes use
of several homeostasis concepts, which are discussed in this section.

The compounds that cells use to drive metabolism require enzymes for their chemical
transformation. Compounds that react spontaneously are excluded or stored such that
this cannot occur. In this way cells achieve full control over all transformations, because
they synthesise enzymes, consisting of protein, themselves. No reaction runs without the
assistance of enzymes. The properties of enzymes depend on their micro-environment. So
homeostasis is essential for full control. Changes in the environment in terms of resource
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availability, both spatial and temporal, require the formation of reserve pools to ensure a
continuous supply of essential compounds for metabolism. This implies a deviation from
homeostasis for cells (or individuals) as a whole. The cell’s solution to this problem is to
make use of polymers that are not soluble. In this way these reserves do not change the
osmotic value, and neither do they affect the capacity of monomers to do chemical work (cf.
{77}). In many cases cells encapsulate the polymers in membranes, to reduce interference
even further, at the same time increasing access, as many cellular activities are membrane
bound.

1.2.1 Strong homeostasis: stoichiometric constraints

The chemical composition in small volumes, such as in bacterial cells and eukaryotic cell
compartments is intrinsically stochastic, see {413}, and therefore fluctuates. So homeosta-
sis is never perfect. deb theory assumes that the chemical composition of reserve(s) and
structure(s) are constant, an assumption called the strong homeostasis assumption. The
basic idea is to delineate enough reserve(s) and structure(s) to approximate this situation,
but for animals a single reserve and a single structure already captures most variation in
the chemical composition of biomass, mainly because the variation in the chemical com-
position of their food is limited. The amounts of reserve(s) and structure(s) can vary, but
not their chemical composition. The mixture of chemical compounds that make up these
pools can, therefore, be considered as a single generalised compound.

To produce a compound of constant chemical composition, substrates for this produc-
tion are required in particular relative amounts, which gives what is called stoichiometric
constraints on production. A lot of ecological literature focuses on the availability of chem-
ical elements [1111], but the production is from chemical compounds, however, not from
chemical elements directly and the problem is that compounds can be transformed into
other compounds, which complicates matters considerably. Primary production on earth
is mainly limited by nitrogen, for instance, while 70 % of the atmospheric gases consist of
dinitrogen; only few organisms can use this nitrogen, however. The problem of specify-
ing the constraints on production is one of the main tasks of deb theory, which a rather
complex one because some compounds can partly replace others.

Reserve materials can be distinguished from materials of the structural mass by a
change in relative abundance if resource levels change. This defining property breaks
down in case of extreme starvation, when structural materials are degraded as well when
reserves are exhausted. An example of this is the break down of muscle tissue during
extreme starvation. Even if food intake is resumed, the structural component of muscle
tissue does not recover in mammals such as ourselves.

Since the amount of reserves can change relative to the amount of structural material,
the chemical composition of the whole body can change. That is, it can change in a
particular way. This is a consequence of choosing energy as a state variable rather than
the complete catalogue of all compounds.
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1.2.2 Weak homeostasis: restrictions on dynamics

deb theory also uses another homeostasis assumption: weak homeostasis. Its definition is
that if food density does not change reserve density, i.e. the ratio between the amounts of
reserve and structure, becomes constant even when growth continues ; reserve and struc-
ture grow in harmony and biomass no longer changes in composition. This makes sense
only if reserve and structure obey strong homeostasis, so weak homeostasis implies strong
homeostasis, but is more restrictive. The fact that growth still can continue is essential
for the weak homeostasis concept. Weak homeostasis applies to the whole body, not to
its compartments, but under steady state conditions only. Strong homeostasis has nothing
to do with reserve dynamics, but weak homeostasis turns out to fully determine reserve
dynamics, see {36}.

1.2.3 Structural homeostasis: isomorphy

Structural homeostasis is about shapes, not about chemical composition. For an under-
standing of energetics, only two aspects of size and shape are relevant, as is explained
later: surface areas for acquisition processes and volumes for maintenance processes. The
shape defines how these measures relate to each other. If an individual does not change
in shape during growth, it is called an isomorph. Isomorphism is an important property
that applies to the majority of species on Earth by approximation. The shape can be any
shape and the comparison is only between the shapes that a single individual takes during
its development. If organisms have a permanent exoskeleton, however, there are stringent
constraints on their shape [637].

Two bodies of a different size are isomorphic if it is possible to transform one body
into the other by a simple geometric scaling in three dimensional space: scaling involves
only multiplication, translation and rotation. This implies, as Archimedes already knew,
that if two bodies have the same shape and if a particular length takes value L1 and L2 in
the different bodies, the ratio of their surface areas is (L1/L2)2 and that of their volumes
(L1/L2)3, irrespective of their actual shape. It is, therefore, possible to make assertions
about the surface area and the volume of the body relative to some standard, on the basis
of lengths only. One only needs to measure the surface area or volume if absolute values
are required. This property is used extensively in this book.

Structural homeostasis is an assumption of the standard deb model, but not of deb
models generally. Notice that length itself does not play a role in deb theory and every-
where where it occurs while isomorphy is assumed, length actually stands for the ratio of
volume and surface area. Section 4.2 at {120} considers changes in shape and its conse-
quences for energetics.

Shape coefficients convert physical to volumetric lengths

Each length measure Lw needs a definition of how the length is taken. If we would relate
quantities about the performance of an individual to its length, the parameter values in
the description can differ substantially between two species, not because they would differ
in performance, but because they differ in shape. To eliminate this effect, I typically work
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Figure 1.2: The sample survivor function
(see Glossary) of shape coefficients for Eu-
ropean birds (left) and Neotropical mam-
mals (right). The lengths include the tail
for the birds, but not for mammals. Data
are from Bergmann and Helb [89] and Em-
mons and Feer [321]. The fitted survivor
functions are those of the normal distribu-
tion. shape coefficient, δM
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Table 1.1: The means and coefficients of variation of shape coefficients of European birds and
mammals and Neotropical mammals.

Taxon Source Number Mean cv Mean cv
tail included tail excluded

European birds [169, 321] 418 0.186 0.14
European mammals [151] 128 0.233 0.27 0.335 0.28
Neotrop. mammals [89] 246 0.211 0.41 0.328 0.18

with volumetric length, being the cubic root of the volume, L = V 1/3; it is independent of
the shape.

The shape coefficient δM is defined as volume1/3 length−1, so the physical volume is
given by Vw = (δMLw)3. The practical purpose of shape coefficients is to convert shape-
specific length measures to volumetric lengths: L = δMLw. It is specific for the particular
way the length measure has been chosen. Thus the inclusion or exclusion of a tail in the
length of an organism results in different shape coefficients. A simple way to obtain an
approximate value for the shape coefficient belonging to length measure Lw is via the wet
weight Ww, i.e. the weight of a living organism without adhering water, and the specific
density dV w to convert weight into volume: δM = ( Ww

dV w
)1/3L−1

w ; the specific density dV w is

typically close to 1 g cm−3. So Ww = dV wVw.

The following considerations may help in getting acquainted with the shape coefficient.
For a sphere of diameter Lw and volume L3

wπ/6, the shape coefficient is 0.806 with respect
to the diameter. For a cube with edge Lw, the shape coefficient takes the value 1, with
respect to this edge. The shape coefficient for a cylinder with length Lw and diameter Lφ
is (π

4
)1/3(Lw/Lφ)−2/3 with respect to the length.

The shapes of organisms can be compared in a crude way on the basis of shape co-
efficients. Figure 1.2 shows the distributions of shape coefficients among European birds
and Neotropical mammals; they fit the normal distribution closely. Summarizing statis-
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tics are given in Table 1.1, which includes European mammals as well. Some interesting
conclusions can be drawn from the comparison of shape coefficients. They have an amaz-
ingly small coefficient of variation (cv), especially in birds (including sphere-like wrens and
stick-like flamingos), which probably relates to constraints for flight. Mammals have some-
what larger shape coefficients than birds. They tend to be more spherical, which possibly
relates to differences in mechanics. The larger coefficient of variation indicates that the
constraints are perhaps less stringent than for birds. The spherical shape is more efficient
for energetics because cooling is proportional to surface area and a sphere has the smallest
surface area/volume ratio, namely 6/Lφ. When the tail is included in the length, Euro-
pean mammals have somewhat larger shape coefficients than Neotropical mammals, but
the difference does not arise when the tail is excluded. Neotropical mammals tend to have
longer tails, which is probably because most of them are tree dwellers. The temperature
difference between Europe and the Neotropics does not result in mammals in Europe being
more spherical to reduce cooling.

Shape at the subcellular level: membrane-cytosol interactions

Surface-area-volume relationships play an essential role in the communication between the
extensive variable body size and intensive variables such as concentrations of compounds
and rates of reaction between compounds. It is not difficult to imagine the physiological
significance of isomorphism. Process-regulating substances in the body tend to have a short
lifetime to cope with changes, so such substances have to be produced continuously. If some
organ secretes at a rate proportional to its volume (i.e. number of cells), isomorphism will
result in a constant concentration of the substance in the body. The way the substance
exercises its influence does not have to change with changing body volume in order to
obtain the same effect in isomorphs. Organisms and cells monitor their size, but the way
they do this is considered to be an open problem [1216, p 123]; the argument in Figure 1.3
shows that organisms and cells do not need to accumulate compounds with increasing size
to monitor their size.

Most enzymes can be conceived of as fluffy structures, with performance depending
on the shape of the molecule’s outer surface and the electrical charge distribution over it.
If bound to a membrane, the outer shape of the enzyme changes into the shape required
for the catalysis of the reaction specific to the enzyme. Membranes thus play a central
role in cellular physiology [395, 465, 1242]. The change in surface area/volume ratios has
important kinetic implications at all scales, including the micro-scale .

Many pathways require a series of transformations and so involve a number of enzymes.
The binding sites of these enzymes on the membrane are close to each other, so that the
product of one reaction does not disperse in the cytosol before being processed further.
The product is just handed over to the neighbouring enzyme in a process called piping.
Interplay between surface areas and volumes is basic to life, not only at the level of the
individual, but also at the molecular level.
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Figure 1.3: Each cell in the body ‘knows’ its vol-
ume by the ratio between its volume and the sur-
face area of its membranes. This is because most
enzymes only function if bound to a membrane,
with their substrates and products in the cell vol-
ume as illustrated; the production of enzymes is a
relatively slow process, while regulation is fast.
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Figure 1.4: The structural cell volume V
is growing to the right by a factor two,
i.e. the cell diameter is growing by a fac-
tor 21/3. The reserve E is growing to the
bottom by a factor two, i.e. the number of
blobs of E in V is growing by a factor two.
V and E typically grow simultaneously; if
E/V remains constant, the blobs of E in
V grow as if we look through a magni-
fication glass of increasing strength. The
consequence is that the surface area of the
interface between E and V is proportional
to EV −1/3.

Reserve-structure interface at subcellular level

Figure 1.4 illustrates how isomorphy works out at the subcellular level for the distribution
of reserve material in a matrix of structural material. Since monomers are osmotically
active, their concentration in cells is typically very low, and reserve and structure are
mainly present in form of polymers (carbohydrates, proteins, rna) and lipids. The surface
area of their interface is proportional to EV −1/3 = E/L, where E stands for the energy in
reserve and V for the volume of structure of the cell and L for (volumetric) length. This
implies that the number of reserve vesicles reduces, if the structural cell volume grows, but
not the amount of reserves. This property is used in the mechanism for reserve dynamics,
{39}.

1.2.4 Thermal homeostasis: ecto-, homeo- & endothermy

Temperature affects metabolic rates, cf {16}, so control over metabolic rates requires con-
trol over body temperature. Heat is a side product of all uses of energy, cf. {155}. In
ectotherms, this heat simply dissipates without increasing the body temperature above
that of the environment to any noticeable amount as long as the temperature is sufficiently
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low, especially in the aquatic environment. If the environmental temperature is high, as
in incubated bird eggs just prior to hatching, metabolic rates are high as well, cf {16},
releasing a lot more energy in the form of heat, which increases the body temperature
even further, cf. {167}. This is called positive feedback in cybernetics. The rate of heat
dissipation obviously depends on the degree of insulation and is directly related to surface
area.

A small number of species, known as endotherms, use energy to maintain their body
temperature at a predetermined high level, 27 ◦C in sloths(Bradypus), 34 ◦C in monothremes,
37 ◦C in most mammals, 39 ◦C in non-passerine birds, 41 ◦C in passerine birds. Mammals
and birds change from ectothermy to endothermy during the first few days of their juve-
nile stage. Some species temporarily return to the ectothermic state or partly so at night
(hummingbirds, insectivores) or during hibernation (poorwills [705], rodents, bats) or dry
seasons (tenrecs, cf. {119}). Not all parts of the body are kept at the target temperature,
especially not the extremities. The naked mole rat Heterocephalus glaber (see Figure 1.5)
has a body temperature that is almost equal to that of the environment [719] and actually
behaves as an ectotherm. Huddling in the nest plays an important role in the thermoreg-
ulation of this colonial species [1267]. The body temperature of the Grant’s golden mole
Eremitalpa granti normally matches that of the sand in which it lives, but it is able to
maintain the diurnal cycle of its body temperature if the temperature of the sand is kept
constant [720].

Many ectotherms can approach the state of homeothermy under favourable conditions
by moving from shady to sunny places, and back, in an appropriate way. In an extensive
study of 82 species of desert lizards from three continents, Pianka [895] found that body
temperature Tb relates to ambient air temperature Te as

Tb = 311.8 + (1− β)(Te − 311.8) (1.1)

where β stands for the species-specific thermoregulatory capacity, spanning the full range
from perfect regulation, β = 1, for active diurnal heliothermic species, to no regulation, β =
0, for nocturnal thigmothermic species. The target temperature of 311.8 K or 38.8 ◦C varies
somewhat between the different sub-groups and is remarkably close to that of mammals.
Many species of plants enhance the interception of radiation by turning their flowers to
the moving sun. The parabolic shape of flowers helps to focus radiation on the developing
ovum. Sunflowers, Helianthus annuus , follow the sun with their leaves and developing
inflorescence, but when the flowers open they are oriented towards the east [682]. This
probably relates to thermoregulation.

Several species can raise their temperature over 10 ◦C above that of the environment
(bumble bees and moths [487], tuna fish, mackerel shark, leatherback turtles Dermochelys).
Some species of Arum, which live in dark forests, heat their flowers metabolically. These
examples do make it clear that energy investment in heating is species-specific and that
the regulation of body temperature is a different problem.

The ‘advantages’ of homeothermy are that enzymes can be used that have a narrow
tolerance range for temperatures and that activity can be maintained at a high level in-
dependent of environmental temperature. At low temperatures ectotherms are easy prey
for endotherms. Development and reproduction are enhanced, which opens niches in areas
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Figure 1.5: The naked mole rat Hetero-
cephalus glaber (30 gram) is one of the few
mammals that are essentially ectother-
mic. They live underground in colonies
of some 60 individuals. The single breed-
ing female suppresses reproductive devel-
opment of all ‘frequent working’ females
and of most ‘infrequent working’ females,
a social system that reminds us of termites
[721].

with short growing seasons that are closed to ectotherms. The costs depend on the envi-
ronmental temperature, insulation and body size. If temperature is high and/or insulation
is excellent and/or body size is large, there may be hardly any additional costs of heating;
the range of temperatures to which this applies is called the thermo-neutral zone.

1.2.5 Acquisition homeostasis: supply & demand

Individuals can be ranked on the spectrum from supply to demand systems. For supply
systems, the lead is in the feeding process, which offers an energy input to the individual.
The available energy flows to different destinations, more or less as water flows through
a river delta. A sea-anemone is an example of a ‘supply’ type of animal. It is extremely
flexible in terms of growth and shrinkage, which depend on feeding conditions. It can
survive a broad range of food densities. Japanese bonsai cultures cannot illustrate better
that plants are typical supply systems as well. Supply organisms typically move less and
find their food via a kind of (activated) diffusion process. Supply systems typically have
less developed sensors and are metabolically more flexible and vary more in the chemical
composition of their bodies. By far the majority of species are supply systems, but the few
demand systems got relatively more research attention.

For demand systems, the lead is in some process that uses energy, such as maintenance
and/ or growth, which requires energy intake of matching size. Food-searching behaviour
is then subjected to regulation processes in the sense that an animal eats what it needs;
the nervous system plays an important role in this regulation [812]. The range of possible
growth curves is thus much more restricted. Demand systems evolved from supply systems,
cf {406}, and froze existing metabolic rules, lost metabolic flexibility (to deal with extreme
starvation conditions), but increased in behavioural flexibility. All demand systems are
animals, i.e. organisms that feed on other organisms; they are often mobile and move to
there were the food is. Hence they encounter less frequently extreme starvation conditions;
they typically cannot shrink during starvation, but die. The increased behavioural flex-
ibility gives them the possibility to specialise on one type of food species and translates
in a small value for the half saturation coefficient for demand systems. They also have a
relatively large difference between the peak and the standard metabolic rate, and have typi-
cally closed circulation systems (efficient transport under extreme metabolic performance),
some developed endothermy (birds and mammals) and many have highly developed sen-
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sors. Closed circulation systems developed in vertebrates, echinoderms, cephalopods and
annelids. Altogether only a small fraction of the animal species have a closed circulatory
system and most of these species still have a position near the supply end of the spectrum.
Demand systems typically sport accelerated aging, where a high survival probability dur-
ing the juvenile period is combined with a relatively fast aging during the adult stage, see
{213}.

Even in the ‘supply’ case, growth is typically regulated carefully by hormonal control
systems, cf Figure 2.14. This is because growth should not proceed faster than the rate
at which the energy and elementary compounds necessary to build the new structures can
be mobilised, nor should growth proceed slower, else metabolites accumulate locally which
gives several problems. Models that describe growth as a result of hormonal regulation
should deal with the problem of what determines the hormone levels. This requires study-
ing organisation at the individual level. The conceptual role of hormones is linked to the
similarity of growth patterns despite the diversity of regulating systems, cf Figure {2.11}.
In the deb theory, messengers such as hormones are part of the physiological machin-
ery that an organism uses to regulate its growth. Their functional aspects can only be
understood by looking at other variables and compounds.

The development of demand systems from supply systems can be seen as a step up in
the degree of homeostasis.

1.3 Temperature affects metabolic rates

1.3.1 Arrhenius temperature

All metabolic rates depend on the body temperature. For a species-specific range of tem-
peratures, the description proposed by S. Arrhenius in 1889, see, e.g. [410], usually fits
well

k̇(T ) = k̇1 exp
(
TA
T1

− TA
T

)
(1.2)

with T the absolute temperature (in Kelvin), T1 a chosen reference temperature, the pa-
rameter TA the Arrhenius temperature, k̇ a (metabolic) reaction rate and k̇1 its value at
temperature T1. So, when ln k̇ is plotted against T−1, a straight line results with slope
−TA, as Figure 1.6 illustrates.

Arrhenius based this formulation on the van’t Hoff equation for the temperature co-
efficient of the equilibrium constant and amounts to k̇(T ) = k̇∞ exp(−Ea

RT
), where k̇∞ is

known as the frequency factor, R is the gas constant 8.31441 J K−1 mol−1, and Ea is called
the activation energy. Justification rests on the collision frequency which obeys the law of
mass action, i.e. it is proportional to the product of the concentrations of the reactants.
The Boltzmann factor exp(−Ea

RT
) stands for the fraction of molecules that manage to obtain

the critical energy Ea to react.

In chemistry, the activation energy is known to differ widely between different reac-
tions. Processes such as the incorporation of [14C]leucine into protein by membrane-bound
rat-liver ribosomes have an activation energy of 180 kJ mol−1 in the range 8–20 ◦C and
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Figure 1.6: The Arrhenius plot for the
development rate for eggs of the waterflea
Chydorus sphaericus, i.e. the inverse time
between egg laying and hatching. Data
from Meyers [791]. 104T−1, K−1
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67 kJ mol−1 in the range 22–37 ◦C. The difference is due to a phase transition of the mem-
brane lipids, [1169] after [15]. Many biochemical reactions seem to have an activation
energy in this range [1098]. This supports the idea that the value of activation energy is a
constraint for functional enzymes in cells.

Glasstone et al. [410] studied the thermodynamic basis of the Arrhenius relationship in
more detail. They came to the conclusion that this relationship is approximate for bimolec-
ular reactions in the gas phase. Their absolute rate theory for chemical reactions proposes
a more accurate description where the reaction rate is proportional to the absolute tem-
perature times the Boltzmann factor. This description, however, is still an approximation
[410, 510].

The step from a single reaction between two types of particles in the gas phase to
metabolic rates where many compounds are involved and gas kinetics do not apply is,
of course, enormous. Due to the somewhat nebulous application of thermodynamics to
describe how metabolic rates depend on temperature, I prefer to work with the Arrhenius
temperature, rather than the activation energy. I even refrain from the improvement
offered by Glasstone’s theory, because the small correction does not balance the increase
in complexity of the interpretation of the parameters for biological applications. The
Arrhenius relationship seems to describe the effect of temperature on metabolic rates with
acceptable accuracy in the range of relevant temperatures.

1.3.2 Coupling of rates in single reserve systems

Figure 1.7 shows that the Arrhenius temperatures for different rates in a single species are
practically the same. If each reaction would depend in a different way on temperature, cells
or individuals would have a hard time coordinating the different processes at fluctuating
temperatures. Metabolism is about the conversion of chemical compounds by organisms,
for which they use a particular biochemical machinery that operates with a particular
efficiency in ways that do not depend on temperature. Obviously, animals cannot respire
more without eating more. As a first approximation it is realistic to assume that all
metabolic rates in a single individual are affected by temperature in the same way, so that
a change in temperature amounts to a simple transformation of time.

Table 1.2 gives Arrhenius temperatures, TA, for several species. It ranges somewhere
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Figure 1.7: The Arrhenius
plot for reproduction, inges-
tion, von Bertalanffy growth
and Weibull aging of Daphnia
magna; from [658]. The
Arrhenius temperature is
6400 K. � males, 2 females.
Food: the algae Scenedesmus
subspicatus (open symbols) or
Chlorella pyrenoidosa (filled
symbols). The ingestion and
reproduction rates refer to
4 mm individuals. 104T−1, K−1
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between 6 and 12.5 kK. Many experiments do not allow for an adaptation period, which
affects the resulting value. The problem is that allo-enzymes are produced with somewhat
different temperature–activity relationships when temperature changes. This takes time,
depending on species and body size. Without an adaptation period, the performance of
enzymes adapted to one temperature is measured at another temperature, which affect the
apparent Arrhenius temperature.

1.3.3 States can depend on temperature via rates

The standard deb model implies that ultimate size results from a ratio of two rates, cf
{49}, so it should not depend on the temperature, as all rates are affected in the same
way. Table 1.3 confirms this for two species of daphnids cultured under well standardised
conditions and abundant food [636]. It is also consistent with the observation by Beverton,
see appendix to [204], that the walleye Stizostedion vitreum matures at 2 years at the
southern end of its range in Texas and at 7 or 8 years in northern Canada, while the size
at maturation of this fish is the same throughout its range.

Although ultimate sizes are not rates, they are frequently found to decrease with in-
creasing temperature. The reason may well be that the feeding rate increases with temper-
ature, so, at higher temperatures, food supplies are likely to become limited, which reduces
ultimate size. I discuss this phenomenon in more detail in relation to the Bergmann rule,
{288}. For a study of the effects of temperature on size, it is essential to test for the
equality of food density. This requires special precautions.

Apart from effects on rate parameters, temperature can affect egg size [327] and sex.
High temperatures produce males in lizards and crocodiles, and females in turtles [255,
1050], within a range of a few degrees.

We will see that the fractionation of isotopes depends on temperature, {150}, not
because the fractionation mechanism itself does, {95}, but the rates that generate frac-
tionation depend on temperature.
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Table 1.2: Arrhenius temperatures as calculated from literature data on the growth of ectother-
mic organisms. The values for the mouse cells are obtained from Pirt [903]. The other values
were obtained using linear regressions.

species range TA type of source
(◦C) (K) data

Escherichia coli 23–37 6 590 population growth [803]
Escherichia coli 26–37 5 031 population growth [545]
Escherichia coli 12–26 14 388 population growth [545]
Psychrophilic pseudomonad 12–30 6 339 population growth [545]
Psychrophilic pseudomonad 2–12 11 973 population growth [545]
Klebsiella aerogenes 20–40 7 159 population growth [1168]
Aspergillus nidulans 20–37 7 043 population growth [1170]
9 species of algae 13.5–39 6 842 population growth [418]
mouse tissue cells 31–38 13 834 population growth [1223]
Nais variabilis 14–29 9 380 population growth [569]
Pleurobrachia pileus 5–20 10 000 Bertalanffy growth [433]
Mya arenaria 7–15 13 000 Bertalanffy growth [31]
Daphnia magna 10–26.5 6 400 Bertalanffy growth [636]
Ceriodaphnia reticulata 20–26.5 6 400 Bertalanffy growth [636]
Calliopius laeviusculus 6.5–15 11 400 Bertalanffy growth [241]
Perna canaliculus 7–17 5 530 lin. growth [506]
Mytilus edulis 6.5–18 8 460 lin. growth larvae [1096]
Cardium edule & C. glaucum 10–30 8 400 lin. growth larvae [598]
Scophthalmus maximum 8–15 15 000 lin. growth larvae [560]
25 species of fish 6–29 11 190 embryonic period [770]
Brachionus calyciflorus 15–25 7 800 embryonic period [448]
Chydorus sphaericus 10–30 6 600 embryonic period [791]
Canthocampus staphylinus 3–12 10 000 embryonic period [1013]
Moraria mrazeki 7–16.2 13 000 embryonic period [1013]

1.3.4 Patterns in Arrhenius temperatures

The catalising rate of enzymes in metabolic transformations can be adapted by the in-
dividual to the current temperature by changing the tertiary configuration. This takes
time, up to days to weeks depending on the detailed nature of the adaptation. This time-
dependence is frequently a reason for conflicting results on the effects of temperature on
rates as reported in the literature.

Species living in habitats that typically sport large (and rapid) temperature fluctuations
(e.g. juvenile and adult bivalves that live in the intertidal zones of sea coasts) have to use
enzymes that function well in a broad temperature range, with the result that they have
a relatively low Arrhenius temperature (around 6 kK). Species that live in habitats with
a rather constant temperature (e.g. the larvae of the intertidal bivalves that live in the
pelagic, or the deep ocean) typically have a high Arrhenius temperature (around 12 kK).
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Table 1.3: The von Bertalanffy growth rate for the waterfleas Ceriodaphnia reticulata and Daph-
nia magna, reared at different temperatures in the laboratory both having abundant food. The
length at birth is 0.3 and 0.8 mm respectively.

Ceriodaphnia reticulata Daphnia magna

temp growth sd ultimate sd growth sd ultimate s.d
rate length rate length

◦C a−1 a−1 mm mm a−1 a−1 mm mm

10 15.3 1.4 4.16 0.16
15 20.4 4.0 1.14 0.11 25.9 1.3 4.27 0.06
20 49.3 3.3 1.04 0.09 38.7 2.2 4.44 0.09
24 57.3 2.6 1.06 0.01 44.5 1.8 4.51 0.06
26.5 74.1 4.4 0.95 0.02 53.3 2.2 4.29 0.06

The Arrhenius temperature can thus change with the stage in some species.

1.3.5 van’t Hoff coefficient

A common way to correct for temperature differences in physiology is on the basis of Q10

values, known as van’t Hoff coefficients. The Q10 is the factor that should be applied to
rates for every 10 ◦C increase in temperature: k̇(T ) = k̇(T1)Q

(T−T1)/10
10 . The relationship

with the Arrhenius temperature is thus Q10 = exp( 10TA
T (T+10)

). Because the range of relevant
temperatures is only from about 0 to 40 ◦C, the two ways to correct for temperature
differences are indistinguishable for practical purposes.

1.3.6 Temperature tolerance range

At low temperatures, the actual rate of interest is usually lower than expected on the
basis of (1.2). If the organism survives, it usually remains in a kind of resting phase, until
the temperature rises again. For many seawater species, this lower boundary is between
0 and 10 ◦C, but for terrestrial species it can be much higher; caterpillars of the large-
blue butterfly Maculinea rebeli , for instance, cease to grow below 14 ◦C [318]. The lower
boundary of the temperature tolerance range frequently sets boundaries for geographical
distribution. Tropical reef-building corals only occur in waters where the temperature
never drops below 18 ◦C; cold deep-water reefs have different species. Plants can experience
chilling injury if the temperature drops below a species-specific threshold.

At temperatures that are too high, the organism usually dies. At 27 ◦C, Daphnia magna
grows very fast, but at 29 ◦C it dies almost instantaneously. The tolerance range is sharply
defined at the upper boundary. A few degrees rise of the seawater temperature, due to the



1.3. Temperature affects metabolic rates 21

intense 1998 El Niño event, caused death and the subsequent bleaching of vast areas of
coral reef. It will take them decades to recover. Nisbet [838] gives upper temperature limits
for 46 species of protozoa, ranging from 33 to 58 ◦C. Thermophilic bacteria and organisms
living in deep ocean thermal vents thrive at temperatures of 100 ◦C or more. The width
of the tolerance range depends on the species; many endotherms have an extremely small
one around a body temperature of 38 ◦C.

The existence of a tolerance range for temperatures is of major evolutionary impor-
tance; many extinctions are thought to be related to changes in temperature. This is the
conclusion of an extensive study by Prothero, Berggren and others [926] on the change in
fauna during the middle-late Eocene (40–41 Ma ago). This can most easily be understood
if the ambient temperature makes excursions outside the tolerance range of a species. If
a leading species in a food chain is the primary victim, many species that depend on it
will follow. The wide variety of indirect effects of changes in temperature complicate a
detailed analysis of climate-related changes in faunas. Grant and Porter [426] discuss in
more detail the geographical limitations for lizards set by temperature, if feeding during
daytime is only possible when the temperature is in the tolerance range, which leads to
constraints on ectotherm energy budgets.

1.3.7 Outside the temperature tolerance range

Sharpe et al. [1030, 1046] proposed a quantitative formulation for the reduction of rates
at low and high temperatures, based on the idea that the rate is controlled by an enzyme
that has an inactive configuration at low and high temperatures. The reaction to these
two inactive configurations is taken to be reversible with rates depending on temperature
in the same way as the reaction that is catalysed by the enzyme, however the Arrhenius
temperatures might differ. This means that the reaction rate has to be multiplied by the
enzyme fraction that is in its active state, which is assumed to be at its equilibrium value.
This fraction is (

1 + exp
(
TAL
T
− TAL

TL

)
+ exp

(
TAH
TH
− TAH

T

))−1

(1.3)

where TL and TH relate to the lower and upper boundaries of the tolerance range and
TAL and TAH are the Arrhenius temperatures for the rate of decrease at both boundaries.
All are taken to be positive and all have dimension temperature. We usually find TAH �
TAL � TA. Figure 1.8 illustrates the quantitative effect of applying the correction factor.

The effects of chemical compounds on individuals can be captured using three ranges
of internal concentrations: ‘too little’, ‘enough’ and ‘too much’, {229}. This approach has
a nice similarity with the effects of temperature using the temperature tolerance range.

1.3.8 Uncoupling of rates in multiple reserve systems

The interception of photons by chlorophyll is less effected by temperature than dioxygen
or carbon dioxide binding by Rubisco, which implies an enhanced electron leak at low
temperatures. Photosynthesis is known to depend on temperature at high light levels, but
hardly so at low light levels [114, 756]. A build up of carbohydrate reserve in a multiple
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Figure 1.8: The Arrhenius plot for the pop-
ulation growth rate of Escherichia coli B/r on
rich complex medium. Data from Herendeen et
al. [496]. The Arrhenius temperature for the
growth rate, and for both deactivation rates are
TA = 4 370 K, TAL = 20 110 K, and TAH =
69 490 K. The dotted line shows the Arrhenius
relationship with the same value for TA and
the population growth rate (1.94 h−1 at T1 =
310 K), but without accounting for the deac-
tivation, between the upper and lower bound-
aries of the tolerance range, TL = 293 K and
TH = 318 K.
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reserve system can occur at low temperature, so a shift in the composition in biomass,
which affects its nutritional value for consumers of this biomass. In the case of a single
generalised reserve, this flexibility is absent, and the other rates (growth, reproduction,
etc) must follow the temperature dependence of the assimilation process to avoid changes
in conversion efficiencies.

The solubility of dioxygen in water decreases less with temperature than that of car-
bon dioxide, which means that the compensation point, cf {186}, i.e. the ratio of the
carbon dioxide to the dioxygen partial pressures for which photorespiration balances pho-
tosynthesis, increases with temperature [680]. This leads to an optimum relationship of
photosynthesis with temperature, but the location of the optimum is highly adaptable, and
can change during the season in a single individual.

1.4 Summary

This chapter dealt with some basic concepts that are required to set up the deb theory
systematically, without too many asides.

The individual is introduced as the basic level of organisation with typically three stages
(embryo, juvenile and adult) for multicellulars and one (juvenile) for unicellulars. The
delineation is motivated of structure that requires maintenance, of reserve that quantifies
metabolic memory and of maturity that controls metabolic switching.

The concept of homeostasis is discussed, which is subtle because homeostasis is not per-
fect and takes several qualities: strong, weak, structural, thermal and acquisition. Struc-
tural homeostasis is discussed in some detail because it controls surface area to volume
relationships. This is important because uptake is coupled to surface area, and mainte-
nance to volume. I argued that changes in surface area to volume relationships inform
molecules about the size of the structure.

The effects of temperature on metabolic rates are quantified and I argued why the
different rates in an single reserve systems depend on temperature in the same way, while
multiple reserves allow for more degrees of freedom.



Chapter 2

Standard deb model in time, length
& energy

This chapter discusses the simplest non-degenerated deb model that is implied by deb
theory, the standard or canonical deb model, to show the concepts of the previous chapter
in action. The next chapter introduces more concepts on chemical transformations to
deal with more complex situations. The standard deb model assumes isomorphy and
has a single reserve and a single structure, which is appropriate for many aspects of the
metabolic performance of animals; other organisms typically require more reserves, and
some (e.g. plants) also more structures. So in this chapter, we keep an animal in mind
as a reference, which helps to simplify the phrasing. In this chapter substrate (food) has
a constant composition that matches the needs of the individual. Food density in the
environment might vary in the standard deb model, but the discussion of what happens
during prolonged starvation is delayed to chapter 4. The discussion of mass aspects is also
delayed and we here only use time t, length L and energy E. Length L is the volumetric
length, L = V 1/3, where V is the structural volume. We use energy only conceptually, and
typically in scaled form, and also delay the discussion of its quantification. The discussion
of energy aspects does not imply that the individual should be energy-limited.

The logic of the energy flows will be discussed in this chapter and we start with a brief
overview in this introductory section. We here keep the amount of detail to a minimum,
neglecting all fast process, and focusing on the slow ones that matter on a life-cycle basis.
Since reserve dynamics is slow relative to gut content dynamics, cf {256}, the latter is
not part of the standard deb model. The dynamics of blood composition is linked to the
dynamics of gut contents, so we neglect the blood compartment as well. Most aspects of
behaviour are even faster than the dynamics of gut contents, so behaviour is here treated
in very much reduced form.

The relationships between the different processes are schematically summarised in Fig-
ure 2.1. Food is ingested by a post-embryonic animal, transformed into faeces and egested;
defecation is a special case of product formation. The feeding rate depends on food avail-
ability and the amount of structure. Energy, in the form of metabolites, is derived from
food and added to the reserve. The reserve is mobilised at a rate that depends on the
amount of reserve and the amount of structure, and used for metabolic purposes. A frac-
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Figure 2.1: Energy fluxes in the standard deb
model. The rounded boxes indicate sources or
sinks. The symbols stand for: X food intake;
P defecation; A assimilation; C mobilisation; S
somatic maintenance; J maturity maintenance;
G growth; R reproduction. See Figure 10.4 for
an evolutionary setting of this diagram.

tion κ of the mobilised reserve flux is used for somatic maintenance plus growth, the rest
for maturity maintenance plus maturation (in juveniles) or reproduction (in adults). So-
matic maintenance has priority over growth, so growth ceases if all energy available for
maintenance plus growth is used for somatic maintenance. Likewise maturity maintenance
has priority over maturation or reproduction. Reserve that is allocated to reproduction
is first collected in a buffer; the reproduction buffer has species-specific handling rules
for transformation into eggs that typically leave the body upon formation. Eggs consist
initially almost exclusively of reserve, the amount of structure, and the level of maturity
being negligibly small. The reserve density at birth (hatching) equals that of the mother
at egg formation, a maternal effect.

Each of these processes will be quantified in the following sections on the basis of a set
of simple assumptions that are collected in Table 2.4.

2.1 Feeding

Feeding is part of the behavioural repertoire and, therefore, notoriously erratic compared
with other processes involved in energetics. The three main factors that determine feeding
rates are food availability, body size and temperature.

2.1.1 Food availability is per volume or surface area of environ-
ment

For some species it is sensible to express food availability per surface area of environment,
for others food per volume makes more sense, and intermediates also exist. The body
size of the organism and spatial heterogeneity of the environment hold the keys to the
classification. Food availability for krill, which feed on algae, is best expressed in terms
of biomass or biovolume per volume of water, because this links up with processes that
determine filtering rates. The spatial scale at which algal densities differ is large with
respect to the body size of the krill. Baleen whales, which feed on krill, are intermediate
between surface and volume feeders because some dive below the top layer, where most
algae and krill are located, and sweep the entire column to the surface; so it does not
matter where the krill is in the column. Cows and lions are typically surface feeders and
food availability is most appropriately expressed in terms of biomass per surface area.

To avoid notational complexity, we here express food densityX relative to the value that
results in half of the maximum food uptake rate, K, and treat x = X/K as a dimensionless
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quantity. K is known as the half-saturation coefficient or Michaelis–Menten constant.

2.1.2 Food transport is across surface area of individual

Organisms use many methods to obtain their meal; some sit and wait for the food to
pass by, others search actively. Figure 2.2 illustrates a small sample of methods, roughly
classified with respect to active movements by prey and predator. The food items can be
very small with respect to the body size of the individual and rather evenly distributed
over the environment, or the food can occur in a few big chunks. This section briefly
mentions some feeding strategies and explains why feeding rates tend to be proportional
to the surface area when a small individual is compared to a large one of the same species.
(Comparisons between species are made in Chapter 8, {287}.) The examples illustrate a
simple physical principle: mass transport from one environment to another, namely to the
organism, must be across a surface, so the ingestion rate in Watts is

ṗX = {ṗX}L2 (2.1)

where L is the volumetric length of the individual, and the specific ingestion rate {ṗX} is
some function of food density. Notice that not all of the surface of an isomorph needs to
be involved in food acquisition, it might a fixed fraction of it, such as gut surface area.

Marine polychaetes, sea-anemones, sea lilies and other species that feed on blind prey
are rather apathetic. Sea lilies simply orient their arms perpendicular to an existing current
(if mild) at an exposed edge of a reef and take small zooplankters by grasping them one by
one with many tiny feet. The arms form a rather closed fan in mild currents, so the active
area is proportional to the surface area of the animal. Sea-gooseberries stick plankters to
the side branches of their two tentacles using cells that are among the most complex in
the animal kingdom. Since the length of the side branches as well as the tentacles are
proportional to the length of the animal, the encounter probability is proportional to a
surface area.

Filter feeders, such as daphnids, copepods and larvaceans, generate water currents of
a strength that is proportional to their surface area [160], because the flapping frequency
of their limbs or tails is about the same for small and large individuals [913], and the
current is proportional to the surface area of these extremities. (Allometric regressions
of currents gives a proportionality with length to the power 1.74 [149], or 1.77 [312] in
daphnids. In view of the scatter, they agree well with a proportionality with squared
length.) The ingestion rate is proportional the current, so to squared length. Allometric
regressions of ingestion rates resulted in a proportionality with length to the power 2.2
[772], 1 [914], 2.4–3 [262], and 2.4 [863] in daphnids. This wide range of values illustrates
the limited degree of replicatability of these types of measurements. This is partly due to
the inherent variability of the feeding process, and partly to the technical complications
of measurement. Feeding rate depends on food density, as is discussed on {32}, while

Figure 2.2: A small sample of feeding methods classified with respect to the moving activities of
prey and predator.
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Figure 2.3: Filtration rate as a func-
tion of shell length, L, of the blue mus-
sel Mytilus edulis at constant food den-
sity (40 × 106 cells l−1 Dunaliella marina) at
12 ◦C. Data from Winter [1263]. The least-
squares-fitted curve is {Ḟ}L2, with {Ḟ} =
0.041 l h−1 cm−2.

Figure 2.4: Lettuce intake as a function
of shell length, L, in the pond snail Lym-
naea stagnalis at 20 ◦C [1298]. The weighted
least-squares-fitted curve is {J̇XA}L2, with
{J̇XA} = 2.81 cm2 d−1 cm−2.

most measurement methods make use of changes in food densities so that the feeding rate
changes during measurement. Figure 2.10 illustrates results obtained with an advanced
technique that circumvents this problem [330].

The details of the filtering process differ from group to group. Larvaceans are filterers
in the strict sense; they remove the big particles first with a coarse filter and collect the
small ones with a fine mesh, cf Figure 2.19. The collected particles are transported to the
mouth in a mucous stream generated by a special organ, the endostyle. Copepods take
their minute food particles out of the water, one by one with grasping movements [1184].
Daphnids exploit centrifugal force and collect them in a groove; Figure 2.10 shows that the
resulting feeding rate is proportional to squared length. Ciliates, bryozoans, brachiopods,
bivalves and ascidians generate currents, not by flapping extremities but by beating cilia
on part of their surface area. The ciliated part is a fixed portion of the total surface area
[366], and this again results in a filtering rate proportional to squared length; see Figure
2.3.

Some surface feeding animals, such as crab spiders, trapdoor spiders, praying mantis,
scorpion fish and frogs, lie in ambush; their prey will be snatched upon arrival within
reach, i.e. within a distance that is proportional to the length of a leg, jaw or tongue. The
catching probability is proportional to the surface area of the predatory isomorphs. When
aiming at a prey with rather keen eye sight, they must hide or apply camouflage.

Many animals search actively for their meal, be it plant or animal, dead or alive.
The standard cruising rate of surface feeders tends to be proportional to their length,
because the energy investment in movement as part of the maintenance costs tends to be
proportional to volume, while the energy costs of transport are proportional to surface area;
see {31}. Proportionality of cruising rate to length also occurs if limb movement frequency
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Figure 2.5: The von Bertalanffy growth curve applies to the black-capped chickadee, Parus
atricapillus (left figure, data from Kluyver [607, 1083]. Brood size was a modest 5.) The amount
of food fed per male (•) or female (◦) nestling in the closely related mountain chickadee, P.
gambeli, is proportional to weight2/3 (right figure), as might be expected for individuals that
grow in a von Bertalanffy way. Data from Grundel [439, 1083]. The last five data points were
not included in the fit; the parents stop feeding, and the young still have to learn gathering food
while rapidly losing weight.

is more or less constant [924]. The width of the path searched for food by cows or snails
is proportional to length if head movements perpendicular to the walking direction scale
isomorphically. So feeding rate is again proportional to surface area, which is illustrated
in Figure 2.4 for the pond snail.

The duration of a dive for the sperm whale Physeter macrocephalus , which primarily
feeds on squid, is proportional to its length, as is well known to the whalers [1224]. This can
be understood, since the respiration rate of this endotherm is approximately proportional
to surface area, as I argue on {142}, and the amount of reserve dioxygen is proportional to
volume on the basis of a homeostasis argument. It is not really obvious how this translates
into the feeding rate, if at all; large individuals tend to feed on large prey, which occur less
frequently than small prey. Moreover, time investment in hunting can depend on size as
well. If the daily swimming distance during hunting were independent of size, the searched
water volume would be about proportional to surface area for a volume feeder such as the
sperm whale. If the total volume of squid per volume of water is about constant, this
would imply that feeding rate is about proportional to surface area.

The amount of food parent birds feed per nestling relates to the requirements of the
nestling, which is proportional to surface area; Figure 2.5 illustrates this for chickadees.
This is only possible if the nestlings can make their needs clear to the parents, by crying
louder: demand systems in the strict sense of the word.

Catching devices, such as spider or pteropod webs and larvacean filter houses [19], have
effective surface areas that are proportional to the surface area of the owner.

Bacteria, floating freely in water, are transported even by the smallest current, which
implies that the current relative to the cell wall is effectively nil. Thus bacteria must obtain
substrates through diffusion, {259}, or attach to hard surfaces (films) or each other (flocs,
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{132}) to profit from convection, which can be a much faster process. Some species develop
more flagellae at low substrate densities, which probably reduces diffusion limitation (L.
Dijkhuizen, pers. comm.). Uptake rate is directly proportional to surface area, if the
carriers that bind substrate and transport it into the cell have a constant frequency per
unit surface area of the cell membrane [8, 179]. Arthrobacter changes from a rod shape
into a small coccus at low substrate densities to improve its surface area/volume ratio.
Caulobacters do the same by enhancing the development of stalks under those conditions
[906].

Some fungi, slime moulds and bacteria glide over or through the substrate, releasing
enzymes and collecting elementary compounds via diffusion. Upon arrival at the cell
surface, the compounds are taken up actively. The bakers’ yeast Saccharomyces cerevisiae
typically lives as a free floating, budding unicellular, but under nitrogen starvation it
can switch to a filamentous multicellular phase, which can penetrate solids [519]. Many
protozoans engulf particles (a process known as phagocytosis) with their outer membrane
(again a surface), encapsulate them into a feeding vacuole and digest them via fusion with
bodies that contain enzymes (lysosomes). Such organisms are usually also able to take
up dissolved organic material, which is much easier to quantify. In giant cells, such as
the Antarctic foraminiferan Notodendrodes , the uptake rate can be measured directly and
is found to be proportional to surface area [257]. Ciliates use a specialised part of their
surface for feeding, which is called the ‘cytostome’; isomorphic growth here makes feeding
rate proportional to surface area again.

All these different feeding processes relate to surface areas in comparisons between
different body sizes within a species at a constant low food density. At high food densities,
the encounter probabilities are no longer rate limiting, this becomes the domain of digestion
and other food processing activities involving other surface areas, for example the mouth
opening and the gut wall. The gradual switch in the leading processes becomes apparent
in the functional response, i.e. the ingestion rate as function of food density, {32}.

2.1.3 Feeding costs are paid from food directly

As feeding methods are rather species-specific, costs of feeding will also be species-specific
if they contribute substantially to the energy budget. I argue here that costs of feeding and
movements that are part of the routine repertoire are usually insignificant with respect to
the total energy budget. For this reason this subsection does not do justice to the volumi-
nous amount of work that has been done on the energetics of movements [880], a field that
is of considerable interest in other contexts. Alexander [14] gives a most readable and en-
tertaining introduction to the subject of energetics and biomechanics of animal movement.
Differences in respiration between active and non-active individuals give a measure for the
energy costs of activity, but metabolic activity might be linked to behavioural activity
more generally, which complicates the interpretation. The resting metabolic rate is a mea-
sure that excludes active movement. The standard or basal metabolic rate includes a low
level of movement only. The field metabolic rate is the daily energy expenditure for free
ranging individuals. Karasov [576] found that the field metabolic rate is about twice the
standard metabolic rate for several species of mammal, and that the costs of locomotion
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ranges 2–15 % of the field metabolic rate. Mammals are among the more active species.
The respiration rate associated with filtering in animals such as larvaceans and ascidians
was found to be less than 2 % of the total dioxygen consumption [356]. Energy investment
in feeding is generally small, which does not encourage the introduction of many parame-
ters to describe this investment. Feeding costs can be accommodated in two ways within
the deb theory without the introduction of new parameters, and this subsection aims to
explore to what extent this accommodation is realistic.

The first way to accommodate feeding costs is when they are proportional to feeding
rate. They then show up as a reduction of the energy gain per unit of food. One can,
however, argue that feeding costs per unit of food should increase with decreasing food
density, because of the increased effort of extracting it from the environment. This type
of cost can only be accommodated without complicating the model structure if these costs
cancel against increased digestion efficiency, caused by the increased gut residence time,
cf. {266}.

The second way to accommodate feeding costs without complicating the model struc-
ture applies if the feeding costs are independent of the feeding rate and proportional to
body volume. They then show up as part of the maintenance costs, cf. {42}. This argu-
ment can be used to understand how feeding rates for some species tend to be proportional
to surface area if transportation costs are also proportional to surface area, so that the
cruising rate is proportional to length, {28}. In this case feeding costs can be combined
with costs of other types of movement that are part of the routine repertoire. A fixed (but
generally small) fraction of the maintenance costs then relates to movement.

Schmidt-Nielsen [1023] calculated 0.65 ml O2 cm−2 km−1 to be the surface-area-specific
transportation costs for swimming salmon, on the basis of Brett’s work [150]. (He found
that transportation costs are proportional to weight to the power 0.746, but respiration
was not linear with speed. No check was made for anaerobic metabolism of the salmon.
Schmidt-Nielsen obtained, for a variety of fish, a power of 0.7, but 0.67 also fits well.) Fedak
and Seeherman [339] found that the surface-area-specific transportation cost for walking
birds, mammals and lizards is about 5.39 ml O2 cm−2 km−1 ' 118 J cm−2 km−1. (They
actually report that the transportation costs are proportional to weight to the power 0.72
as the best fitting allometric relationship, but the scatter is such that 0.67 fits as well.) This
is consistent with data from Taylor et al. [1139] and implies that the costs of swimming
are some 12 % of the costs of running. Their data also indicate that the costs of flying are
between those of swimming and running and amount to some 1.87 ml O2 cm−2 km−1.

The energy costs of swimming are frequently taken to be proportional to squared speed
on sound mechanical grounds [672], which questions the usefulness of the above-mentioned
costs and comparisons because the costs of transportation become dependent on speed. If
the inter-species relationship that speeds scale with the square root of volumetric length, see
{302}, also applies to intra-species comparisons, the transportation costs are proportional
to volume if the travelling time is independent of size.

The energy required for walking and running is found to be proportional to velocity
for a wide diversity of terrestrial animals including mammals, birds, lizards, amphibians,
crustaceans and insects [388]. This means that the energy costs of walking or running a
certain distance are independent of speed and just proportional to distance. If the costs of
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Figure 2.6: The ingestion rate, ṗX of
an individual (female) rotifer Brachionus
rubens, feeding on the green alga Chlorella
at 20 ◦C, as a function of food density, X.
Data from Pilarska [900]. The curve is
the hyperbola (2.2), with maximum feed-
ing rate 15.97 103 cells d−1 and saturation
coefficient K = 1.47 105 cells ml−1. The
stippled curve allows for an additive error
in the measurement of the algal density of
0.35 105 cells ml−1.
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covering a certain distance are dependent on speed, and temperature affects speeds, these
costs would work out in a really complex way at the population and community levels.

The conclusion is that, for the purposes of studying how energy budgets change during
the life span, transportation costs either show up as a reduction of energy gain from food,
or as a fixed fraction of the somatic maintenance costs when these costs are proportional
to structural mass.

2.1.4 Functional response converts food availability to ingestion
rate

The feeding or ingestion rate, ṗX , of an organism as a function of scaled food density,
x = X/K, expressed in Watts, is described well by the hyperbolic functional response

ṗX = fṗXm = f{ṗXm}L2 with f =
x

1 + x
(2.2)

where ṗXm the maximum ingestion rate, {ṗXm} the specific maximum ingestion rate and
L the volumetric length. This functional response, proposed by Holling [523] as type
II, is illustrated in Figure 2.6. It applies to the uptake of organic particles by ciliates
(phagocytosis), the filtering of algae by daphnids, the catching of flies by mantis, the uptake
of substrates by bacteria, the nutrient uptake by algae and plants, and the transformation
of substrates by enzymes. Although these processes differ considerably in detail, some
common abstract principle gives rise to the hyperbolic functional response: the busy period,
which is characteristic of the Synthesising Unit, cf. {101}. To reveal the connection, I
rephrase the basic derivation in terms that make sense in the context of a simple model for
feeding, or substrate processing, that will be generalised subsequently in various directions,
cf. {180}.

All behaviour is classified into just two categories: food acquisition and food process-
ing, which not only includes food handling, but also digestion and other metabolic steps
that keep the individual away from food acquisition. These two behavioural components
compete for time allocation by the individual.

Let Ḟ denote the filtering rate (in volume per time), a rate that is taken to depend
on mean particle density only, and not on particle density at a particular moment. The
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arrival rate of food particles (in number per time), present in density N (in number per
volume), equals ḣ = ḞN . Notice that we have to multiply N with the mass per particle
MX to arrive at the mass of food per volume of environment X = NMX , and that we
have to multiply ḣ with MX to arrive at the ingestion rate J̇XA = MX ḣ in terms of C-
moles per time. The mean time between the end of a handling period and the next arrival
(the binding period) is tb = ḣ−1. The mean handling period is tp = ḣ−1

m , which is the
maximum value of ḣ, where no time is lost in waiting for particles. The time required
to find and eat one particle is thus given by tc = tb + tp and the mean ingestion rate is
ḣ = t−1

c = (ḣ−1
m + ḣ−1)−1 = ḣmN(ḣm/Ḟ +N)−1, which is hyperbolic in the density X. The

(half) saturation coefficient is inversely proportional to the product of the handling time
and the filtering (or searching) rate, i.e. K = MX(tpḞ )−1 = J̇XAm/Ḟ , where J̇XAm is the
maximum surface area specific food uptake rate in moles per time per squared length.

Filter feeders, such as rotifers, daphnids and mussels, reduce filtering rate with increas-
ing food density [365, 913, 973, 974], rather than maintain a constant rate, which would
imply the rejection of some food particles. They reduce the rate by such an amount that
no rejection occurs because of the handling (processing) of particles. If all incoming water
is swept clear, the filtering rate is found from Ḟ (X) = ḣ/N , which reaches a maximum
if no food is around (temporarily), so that Ḟm = {ḣm}L2/N , and Ḟ approaches zero for
high food densities. An alternative interpretation of the saturation coefficient in this case
would be K = J̇XAm/Ḟm = {J̇XAm}/{Ḟm}, which is independent of the size of the animal,
as long as only intra-specific comparisons are made. It combines the maximum capacity
for food searching behaviour, only relevant at low food densities, with the maximum ca-
pacity for food processing, which is only relevant at high food densities. This mechanistic
interpretion of the saturation coefficient is a special case of the dynamics of Synthesizing
Units, which will be discussed in chapter 3.

Because the specific searching rate {Ḟm} is closer to the underlying feeding process,
it will be treated as primary parameter, rather than the descriptive saturation coefficient
K = {J̇XAm}/{Ḟm}.

A most interesting property of the hyperbolic functional response is that it is the only
one with a finite number of parameters that maps onto itself. For instance, an exponential
function of an exponential function is not again an exponential function. A polynomial (of
degree higher than one) of a polynomial is also a polynomial, but it is of an increasingly
higher degree if the mapping is repeated over and over again. The ratio of two linear
functions of a ratio of two linear functions as in (2.2) is, however, again such a ratio;
the linear function is a special case of this. In a metabolic pathway each product serves
as a substrate for the next step. Neither the cell nor the modeller needs to know the
exact number of intermediate steps to relate the production rate to the original substrate
density, if and only if the functional responses of the subsequent intermediate steps are of
the hyperbolic type. If, during evolution, an extra step is inserted in a metabolic pathway
the performance of the whole chain does not change in functional form. This is a crucial
point because each pathway has to be integrated with other pathways to ensure the proper
functioning of the individual as a whole. If an insert in a metabolic pathway simultaneously
required a qualitative change in regulation at a higher level, the probability of its occurrence
during the evolutionary process would be remote. This suggests that complex regulation
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systems in metabolic pathways fix and optimise the kinetics that originate from the simpler
kinetics on which Synthesising Units are based.

A most useful property of the hyperbolic functional response is that it has only two
parameters that serve as simple scaling factors on the food density and ingestion rate axis.
So if food density is expressed in terms of the saturation coefficient, and ingestion rate
in terms of maximum ingestion rate, the functional response no longer has dimensions or
parameters.

When starved animals are fed, they often ingest at a higher rate for a short time [1225],
but this is here neglected. Starved daphnids, for instance, are able to fill their guts within
7.5 minutes [393].

2.1.5 Generalisations: differences in size of food particles

The derivation of the functional response can be generalised in different ways without
changing the model. Each arriving particle can have an attribute that stands for its
probability of becoming caught. The i-th particle has some fixed probability ρi of being
caught upon encountering an animal if the animal is not busy handling particles, and a
probability of 0 if it is. The mass of each particle does not need to be the same. The flux
J̇X should be interpreted as the mean mass flux (in C-moles per time), where the mass of
each particle represents a random trial from some frequency distribution.

It is not essential for the handling time to be the same for all particles; handling
time can be conceived of as a second attribute attached to each particle, but it must be
independent of food density. The amount of time required for food processing is taken
to be proportional to the amount of mass of the food item to ensure that the maximum
uptake capacity is not exceeded.

The condition of zero catching probability when the animal is busy can be relaxed. Metz
and van Batenburg [784, 785] and Heijmans [482] tied catching probability to satiation
(thought to be related to gut content in the mantis). An essential condition for hyperbolic
functional responses is that catching probability equals zero if satiation (gut content) is
maximal.

When offered different food items, individuals can select for size. Shelbourne [1047]
reports that the mean length of Oikopleura eaten by plaice larvae increases with the size
of the larvae. Copepods appear to select the larger algal cells [1127]. Daphnids do not
collect very small particles, < 0.9µm cross-section [421], or large ones, > 27 and > 71µm;
the latter values were measured for daphnids of length 1 and 3 mm respectively [177].
Kersting and Holterman [593] found no size-selectivity between 15 and 105µm3 (and prob-
ably 165µm3) for daphnids. Size selection is rarely found in daphnids [971], or in mussels
[365, 1253], but selection of food type does occur frequently [134].

Deviations from the hyperbolic functional response can be expected if the mass per
particle is large, while the intensity of the arrival process is small. They can also result
from, e.g. more behavioural traits, see {256}, social interactions, see {257}, transport
processes of resources, see {259}.
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2.2 Assimilation

The term ‘assimilated’ energy here denotes the free energy fixed into reserves; it equals
the intake minus free energy in faeces and in all losses in relation to digestion. Unlike
in typical static budgets, cf {416}, the energy in urine is included in assimilation energy,
because urine does not directly derive from food and is excreted by the organism, cf. {84}
and {147}. (Faeces is not excreted, because it has never been inside the organism.)

The assimilation efficiency of food is here taken to be independent of the feeding rate.
This makes the assimilation rate proportional to the ingestion rate, which seems to be
realistic, cf. Figure 7.17. I later discuss the consistency of this simple assumption with
more detailed models for enzymatic digestion, {266}. The conversion efficiency of food
into assimilated energy is denoted by κX , so that {ṗAm} = κX{ṗXm}, where {ṗAm} stands
for the maximum surface-area-specific assimilation rate. Both κX and {ṗAm} are diet-
specific parameters. The assimilated energy that comes in at food density X is now given
by

ṗA = κX ṗX = {ṗAm}fL2 where f =
X

K +X
(2.3)

and L the volumetric length. It does not involve the parameter {ṗXm} in the notation,
which turns out to be useful in the discussion of processes of energy allocation in the next
few sections.

2.3 Reserve dynamics

The change of the reserve energy E in time t can be written as d
dt
E = ṗA − ṗC , where the

assumption is that the mobilisation rate of reserve, ṗC , is some function of the amount of
reserve energy E and of structural volume V only. This function is fully determined by the
assumptions of strong and weak homeostasis; see {10}, but its derivation is not the easiest
part of this book. Since mobilised reserve fuels metabolism, reserve dynamics is discussed
in some detail. For the sake of parameter estimation from data that has no energy in its
units, I will use the scaled reserve UE = E/{ṗAm}, which has the un-intuitive dimension
time × length2, and treat it as ‘something that is proportional to reserve energy’.

The dynamics for the reserve density has to be set up first, in general form. It can
be written as the difference between the volume-specific assimilation rate, [ṗA] = ṗA/V =
f{ṗAm}/L, and some function of the state variables: the reserve density [E] = E/V and
the structural volume V . The freedom of choice for this function is greatly restricted by
the requirement that [E] at steady state does not depend on size, while [ṗA] ∝ L−1. It
implies that the dynamics can be written as

d

dt
[E] = [ṗA]− L−1Ḣ([E]|θ) + ([E]∗ − [E])Ġ([E], L) (2.4)

where Ḣ([E]|θ) is some function of [E] and a set of parameters θ, that does not depend on
L, and Ġ([E], L) some function of [E] and L. The value [E]∗ represents the steady-state
reserve density, which can be found from d

dt
[E] = 0. Since [E]∗ depends on food density
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Figure 2.7: When the reserve is partitioned in
two parts, the somatic maintenance costs and
the costs for structure also need to be parti-
tioned to arrive at a situation where the parti-
tioning remains without effects for the individ-
ual.

via the assimilation power [ṗA], the requirement that the rate of use of reserves should not
depend on food density implies that Ġ([E], L) = 0 and (2.4) reduces to

d

dt
[E] = [ṗA]− Ḣ([E]|θ)/L (2.5)

The mass balance for the reserve density can be written as

d

dt
[E] = [ṗA]− [ṗC ]− [E]ṙ (2.6)

where ṙ = d
dt

lnV stands for the specific growth rate; the third term stands for the di-
lution by growth, which directly follows from the chain rule for differentiation of E/V .
Because maintenance (work) and growth are among the destinations of mobilised reserve,
the volume-specific mobilisation rate [ṗC ] = ṗC/V relates to these fluxes as κ([E], V )[ṗC ] =
[ṗS]+[ṗG], or ṙ = [ṗG]/[EG] = (κ([E], V )[ṗC ]− [ṗS])/[EG], where the specific somatic main-
tenance costs [ṗS] is some function of V and the volume-specific costs of structure [EG] is
constant, in keeping with the homeostasis assumption for structural mass. The fraction
κ([E], V ) is, at this stage in the reasoning, some function of the state variables [E] and V .
Substitution of the expression for growth into (2.6) results in

d

dt
[E] = [ṗA]− [ṗC ](1 + κ[E]/[EG]) + [E][ṗS](V )/[EG] (2.7)

Substitution of (2.5) leads to the volume-specific mobilisation rate

[ṗC ] =
Ḣ([E]|θ◦)/L+ [E][ṗS](V )/[EG]

1 + κ([E], V |θ◦)[E]/[EG]
(2.8)

where θ◦ is a subset of θ = (θ◦, [ṗS], [EG]). Note that the functions Ḣ and κ cannot depend
on [ṗS] or [EG] because allocation occurs after mobilisation.

2.3.1 Partitionability follows from weak homeostasis

The next step in the derivation of reserve dynamics follows from the partitionability of
reserve kinetics, meaning that the partitioning of reserves should not affect its dynamics, i.e.
the sum of the dynamics of the partitioned reserves should be identical to that of the lumped
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one in terms of growth, maintenance, development and reproduction. Partitionability is
implied by weak (and strong) homeostasis, as shown in [1088]. This originates from the
fact that the reserves are generalised compounds, i.e. mixtures of various kinds of proteins,
lipids, etc. Each of these compounds follows its own kinetics, which are functions of the
amounts of that compound and of structural mass, but their relative amounts do not
change; all reserve compounds have identical kinetics. The strong homeostasis assumption
ensures that the amount of any particular compound of the reserves is a fixed fraction, say
κA, of the total amount of reserves. This compound must account for a fraction κA of the
maintenance costs and growth investment, see Figure 2.7.

In quantitative terms, partitionability means

κA[ṗC ]([E], V |[ṗS], [EG],θ◦) = [ṗC ](κA[E], V |κA[ṗS], κA[EG],θ◦) (2.9)

for an arbitrary factor κA in the interval (0, 1). This factor not only applies to [E], but also
to the specific maintenance [ṗS] and structure costs [EG], because the different fractions of
the reserves contribute to these costs. The factor does not apply to V and the parameters
θ◦. We can check in (2.8) that [ṗC ] is partitionable if

• the function Ḣ is a first-degree homogeneous function, which means that κAḢ([E]|θ◦) =
Ḣ(κA[E]|θ◦). It follows that this function can be written as Ḣ([E]) = v̇[E], for some
constant v̇, which will be called the energy conductance (dimension length per time).
The inverse, v̇−1, has the interpretation of a resistance. Conductances are often used
in applied physics. Therefore, it is remarkable that the biological use of conductance
measures seems to be restricted to plant physiology [562, 842] and neurobiology [674].

• the function κ is a zero-th degree homogeneous function in E, which means that
κ(κA[E], V ) = κ([E], V ). In other words: κ may depend on V , but not on [E].
Later, I argue that κ(V ) is a rather rudimentary function of V , namely a constant,
see {40}.

Substitution of the function Ḣ into (2.5) gives

d

dt
[E] = [ṗA]− [E]v̇/L = ({ṗAm}f − [E]v̇)/L (2.10)

The reserve density at steady state is [E]∗ = L[ṗA]/v̇ = f{ṗAm}/v̇. The maximum reserve
density at steady state occurs at f = 1, which gives the relationship [Em] = {ṗAm}/v̇. So
the reserve capacity [Em] represents the ratio of the assimilation and mobilisation fluxes.
The scaled reserve density e = [E]/[Em] is a dimensionless quantity and has the simple
dynamics

d

dt
e = (f − e)v̇/L (2.11)

Notice that, if f is constant, e converges to f .
The reserve dynamics (2.10) results in the specific mobilisation and growth rates

[ṗC ] = [ṗA]− d

dt
[E]− [E]ṙ = [E](v̇/L− ṙ) = [E]

[EG]v̇/L+ [ṗS]

κ[E] + [EG]
(2.12)

ṙ =
[E]v̇/L− [ṗS]/κ

[E] + [EG]/κ
(2.13)
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After further specification of κ and [ṗS], the mobilisation and specific growth rates are fully
specified.

The mean time compounds stay in the reserve amounts to tE = E/ṗC , which increases
with length. For metabolically active compounds that loose their activity spontaneously,
this phenomenon might contribute to the ageing process, to be discussed at {209}. This
storage residence time must be large with respect to that of the stomach and the gut to
justify neglecting the smoothing effect of the digestive tract.

If the reserve capacity, [Em], is extremely small, the dynamics of the reserves degen-
erates to [E] = f [Em], while both [E] and [Em] tend to 0. The mobilisation rate then
becomes ṗC = {ṗAm}fV 2/3. This case has been studied by Metz and Diekmann [787], but
some consistency problems arise in variable environments where maintenance costs cannot
always be paid.

2.3.2 Mergeability is almost equivalent to partitionability

Mergeability means that reserves can be added without effects on the reserve (density)
dynamics if assimilation of the resources to synthesise the reserves is coupled and the total
intake is constant. This is also implied by weak homeostasis; partitionable dynamics is also
mergeable. This property is essential to understand the gradual reduction of the number
of reserves during evolution, see {384}. The mergeability is also essential to understand
symbiogenesis in a deb theory context, cf {391}: Given that species 1 and 2 each follow deb
rules, and species 1 evolves into an endosymbiont of species 1, the new symbiosis again
should follow the deb rules [648] (else the theory becomes species-specific), see {391}.
Evolution might have found several mechanisms to obtain mergeability of reserves, but the
fact that they are mergeable is essential for evolution, see {380}.

A quantitative definition of mergeability is as follows. Given d
dt

[Ei] = [ṗAi ]− Ḟ ([Ei], V )
for i = 1, 2, · · · and [ṗAi ] = κAi [ṗA] with

∑
i κAi = 1, two reserves E1 and E2 are mergeable if

d
dt

∑
i[Ei] = [ṗA]−Ḟ (

∑
i[Ei], V ). The mergeability condition summarises to

∑
i Ḟ ([Ei], V ) =

Ḟ (
∑
i[Ei], V ).

Weak homeostasis implies that Ḟ ([E], V ) = V −1/3Ḣ([E]), see (2.5), so together with the
mergeability requirement this translates into the requirement that

∑
i Ḣ([Ei]) = Ḣ(

∑
i[Ei])

or κAḢ([E]) = Ḣ(κA[E]) for an arbitrary positive value of κA. In other words: H must
be first degree homogeneous in [E]. From this follows directly Ḣ([E]) = v̇[E].

Since from partitionability also follows that κ is a zero-th degree homogeneous function
in E, while this does not follow from mergeability, the latter requirement is less restric-
tive. In other words, partitionability imposes constraints on the fate of mobilised reserve,
mergeability does not. More specifically, partitionability involves maintenance explicitly,
mergeability does not.

To demonstrate the difference I now translate the mergeability constraint on Ḟ to a
constraint on the mobilisation flux ṗC . These two fluxes relate to each other as Ḟ =
[ṗC ] + [E]ṙ, where the specific growth rate ṙ = [ṗG]/[EG] = (κ[ṗC ]− [ṗS])/[EG]. So

Ḟ = [ṗC ] + (κ[ṗC ]− [ṗS])[E]/[EG] =

(
1 +

κ[E]

[EG]

)
[ṗC ]− [E]

[EG]
[ṗS] (2.14)
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The mergeability constraint κAḞ ([E], V ) = Ḟ (κA[E], V ) can be written as

κA[ṗC ]([E], V ) = [ṗC ](κA[E], V )
[EG] + κAκ[E]

[EG] + κ[E]
(2.15)

which can now be compared with the partitionability definition (2.9).

2.3.3 Mechanism for mobilisation & weak homeostasis

Although Lemesle and Mailleret [696] correctly observed that the use of food and reserve
are both Michaelis-Menten type functions of their densities, and the mechanism behind
the use of food is known, the use of reserve must have a different mechanism because the
parameters have a specific interpretation and reserve and structure are not homogeneously
mixed. Also first-order kinetics, which is very popular in chemistry, cannot apply because
it is not partitionable for isomorphs. Finding a mechanism for reserve mobilisation has
been a challenge; a elegant and realistic mechanism for the reserve dynamics rests on the
structural homeostasis concept, see {10}. The arguments are as follows.

Since reserve primarily consists of polymers (RNA, proteins, carbohydrates) and lipids,
an interface exists between reserve and structure and the gross mobilisation rate of reserve
is now taken to be proportional to the surface area of the reserve-structure interface, so
Ev̇/L, see Figure 1.4, and allocated to the mobilisation SUs. This flux is partitioned for
ṙ ≥ 0 into a net mobilisation flux ṗC = Ev̇/L − Eṙ that is accepted by the mobilisation
SUs and used for metabolism, and a flux Eṙ is rejected and fed back to the reserve. This
particular partitioning follows from the weak homeostasis argument, where the ratio of
formation of reserve, ṙE, and structure, ṙV , equals the existing ratio of both amounts,
E/V , and the rejected flux is formally considered as a ‘synthesis’ of reserve. From (2.6)
now directly follows (2.10).

A beautiful property of this mechanism is that the correct partitioning of the gross
mobilisation flux automatically follows from SUs kinetics, see {98}, if the specific number
of mobilisation SUs (in C-moles) equals yEV v̇

Lk̇
, where yEV is the yield of reserve on structure

(in C-moles), and k̇ is the (constant) dissociation rate of the SUs [662]. An increased
deviation from this value results in an increased deviation from weak homeostasis, and the
selection of the proper value possibly links directly to the evolution of weak homeostatis.
If membranes wrap reserve vesicles, the SU density in these membranes would be constant.
Strong homeostasis can only apply strictly if mobilisation SUs switch to the active state if
bound to these membranes.

This mechanism has a problem for embryo’s (eggs, seeds), because L is initially very
small, so the gross mobilisation rate as well as the rejected flux are very large. This is
unrealistic, because the absence of respiration in the early embryo excludes substantial
metabolic activity. This problem hardly exists for organisms that propagate by division,
so it became a problem when embryos evolved during evolution. Also organisms with
a large body size suffer from the problem, because they have a relatively large amount
of reserve, cf {292}. This problem can be solved by an self-inhibition mechanism for
monomerisation; polymers as such do not take part in metabolism as substrates. The SUs
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take their substrate from a small pool of reserve monomers, and the pool size of the reserve
monomers is proportional to that of the reserve polymers; this is implied by the strong
homeostasis assumption.

The self-inhibition mechanism might be by rapid inter-conversion of the first order type,
but this comes with metabolic costs. A more likely possibility is that monomerisation
is product inhibited and ceases if the monomers per polymer reach a threshold. The
monomerisation cost is then covered by maintenance and growth. For an individual with
an amount of structure MV and reserve ME, the kinetics of the amount of monomers MF

could be

d

dt
ME = −ME(k̇EF −

mF

mE

k̇FE);
d

dt
MF = yFEME(k̇EF −

mF

mE

k̇FE) (2.16)

with mE = ME/MV and mF = MF/MV . This kinetics makes that in steady state
m∗F
m∗E

= k̇EF
k̇FE

. The monomerisation occurs at the E-V interface, which has a surface area

proportional to E/L in isomorphs. This makes that kEF and kEF are proportional to L−1

as well.

2.4 The κ-rule for allocation to soma

The motivation for a κ-rule originates from the maturation concept, see {44}, which im-
plies four destinies of mobilised reserve: growth plus somatic maintenance, summarised
by the term “soma”, and maturation (or reproduction) plus maturity maintenance. The
partitionability requirement states that the fraction κ of mobilised reserve that is allocated
to the soma cannot depend on the amount of reserve (or on the reserve density) but still
can depend on the amount of structure. The simplest assumption is that κ is constant and
does also not depend on the amount of structure. This assumption is used by the standard
deb model.

The empirical evidence for a constant value of κ is that then the von Bertalanffy growth
curve results at constant food density, see {49}, which typically fit data from many species
very well. Even stronger support is provided by the resulting body size scaling relationships,
which are discussed in Chapter 8. Moreover Huxley’s allometric model for relative growth
of body parts closely links up with multivariate extensions of this κ-rule, see {196}. Strong
support for the κ-rule also comes from situations where the value for κ is changed to a
new fixed value. Such a simple change affects reproduction as well as growth and so food
intake in a very special way. Parasites such as the trematod Schistosoma in snails harvest
all energy to reproduction and increase κ to maximise the energy flow they can consume;
see [564] for a detailed physiological discussion. Parasite-induced gigantism, coupled to a
reduction of the reproductive output, is also known from trematod-infested chaetognats
(Sagitta), [821], for instance. The daily light cycle also affects the value for κ in snails, and
the allocation behaviour during prolonged starvation; see {113}. The effect of some toxic
compounds can be understood as an effect on κ, as is discussed on {235}.

A possible mechanism for a constant κ is as follows. At separated sites along the path
the blood follows, somatic cells and ovary cells pick up energy. The only information
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the cells have is the energy content of the blood and body size, cf. {12}. They do not
have information about each other’s activities in a direct way. This also holds for the
mechanism by which energy is added to or taken from energy reserves. The organism only
has information on the energy density of the blood, and on size, but not on which cells
have removed energy from the blood. This is why the parameter κ does not show up in
the dynamics of energy density. The activity of all carriers that remove energy from the
body fluid and transport it across the cell membrane depends, in the same way, on the
energy density of the fluid. Somatic cells and ovary cells both may use the same carriers,
but the concentration in their membranes may differ so that 1−κ may differ from the ratio
of ovary to body weight. This concentration of active carriers is controlled, by hormones
for example, and depends on age, size and environment. Once in a somatic cell, energy
is first used for maintenance, the rest is used for growth. This makes maintenance and
growth compete directly, while development and reproduction compete with growth plus
maintenance at a higher level. The κ-rule makes growth and development parallel processes
that interfere only indirectly, as is discussed by Bernardo [92], for instance.

If conditions are poor, the system can block allocation to reproduction, while somatic
maintenance and growth continue to compete in the same way, see {113}.

The κ-rule solves quite a few problems from which other allocation rules suffer. Al-
though it is generally true that reproduction is maximal when growth ceases, a simple
allocation shift from growth to reproduction leaves similarity of growth between different
sexes unexplained, since the reproductive effort of males is usually much less than that of
females. The κ-rule implies that size control is the same for males and females and for
organisms such as yeasts and ciliates, which do not spend energy on reproduction but do
grow in a way that is comparable to species that reproduce; see Figure 2.14. It is impor-
tant to realize that although the fraction of mobilised reserve that is allocated to the soma
remains constant, the absolute size of the flow tends to increase during growth at constant
food densities.

The value of κ can be extracted from combined observations on growth and reproduc-
tion. The observed value of 0.8 for D. magna in Figure 2.10 is well above the value that
would maximise the reproduction rate, given the other parameter values. This questions
the validity of maximisation of fitness without much attention for mechanisms, a line of
thinking that has become popular among evolutionary biologists, e.g. [1102, 983]. The
reason why the measured value of κ is so high is an open problem, but might be linked
with the length at birth and at puberty, which increases sharply with κ in the standard
deb model.

2.5 Dissipation excludes overheads of assimilation &

growth

Dissipation is defined as the use of reserve that is not coupled to net production, where
reproduction is seen as an excretion process, rather than a production process in the
strict sense of the word. Assimilation and growth have overheads that also appear in the
environment, and are excluded from dissipation. So dissipation is not all that dissipates,
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Figure 2.8: The leaves of most plant species grow
during a relatively short time period, and are shed
yearly, after the plant has recovered useful compounds.
The leaves of some species, however, such as Wel-
witschia mirabilis, grow and weather continuously.
The life span of this remarkable gymnosperm can ex-
ceed 2000 years. Leaves have a very limited functional
life span, but plants have found different ways to deal
with that problem.

but less than that. The reason to group these fluxes together under one label, dissipation,
becomes clear in the discussion on the organisation of mass fluxes.

Dissipation represents metabolic work. Reserve is metabolised and the metabolites are
generally excreted into the environment, frequently in mineralised form (mainly water,
carbon dioxide and ammonia), cf {159}. Dissipation has four components: somatic and
maturity maintenance, maturation and reproduction overhead.

2.5.1 Somatic maintenance is linked to volume & surface area

Maintenance costs can generally be decomposed in contributions that are proportional to
structural body volume, and to surface area, which gives the quantification

[ṗS] = [ṗM ] + {ṗT}/L (2.17)

where the costs that comprise the volume-linked maintenance costs [ṗM ] and the surface
area-linked maintenance costs {ṗT} are discussed below.

Volume-linked maintenance costs

Maintenance processes include the maintenance of concentration gradients across mem-
branes, the turnover of structural body proteins, a certain (mean) level of muscle tension
and movement, and the (continuous) production of hairs, feathers, scales, leaves (of trees),
see Figure 2.8.

The idea that maintenance costs are proportional to biovolume is simple and rests on
strong homeostasis: a metazoan of twice the volume of a conspecific has twice as many
cells, which each use a fixed amount of energy for maintenance. A unicellular of twice the
original volume has twice as many proteins to turn over. Protein turnover seems to be
low in prokaryotes [613]. Another major contribution to maintenance costs relates to the
maintenance of concentration gradients across membranes. Eukaryotic cells are filled with
membranes, and this ties the energy costs for concentration gradients to volume. (The
argument for membrane-bound food uptake works out differently in isomorphs, because
feeding involves only the outer membrane directly.) Working with mammals, Porter and
Brand [915] argued that proton leak in mitochondria represents 25 % of the basal respiration
in isolated hepatocytes and may contribute significantly to the standard metabolic rate of
the whole animal.
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The energy costs of movement are also taken to be proportional to volume if averaged
over a sufficiently long period. Costs of muscle tension in isomorphs are likely to be
proportional to volume, because they involve a certain energy investment per unit volume
of muscle. In the section on feeding, I discuss briefly the energy involved in movement,
{31}, which has a standard level that includes feeding. This can safely be assumed to
be a small fraction of the total maintenance costs. Sustained powered movement such
as in migration requires special treatment. Such activities involve temporarily enhanced
metabolism and feeding. The occasional burst of powered movement hardly contributes
to the general level of maintenance energy requirements. Sustained voluntary powered
movement seems to be restricted to humans and even this seems of little help in getting
rid of weight!

There are many examples of species-specific maintenance costs. Daphnids produce
moults every other day at 20 ◦C. The synthesis of new moults occurs in the intermoult
period and is a continuous and slow process. The moults tend to be thicker in the larger
sizes. The exact costs are difficult to pin down, because some of the weight refers to
inorganic compounds, which might be free of energy cost. Larvaceans produce new feeding
houses every 2 hours at 23 ◦C [340], and this contributes substantially to organic matter
fluxes in oceans [17, 18, 248]. These costs are taken to be proportional to volume. The
inclusion of costs of moults and houses in maintenance costs is motivated by the observation
that these rates do not depend on feeding rate [340, 634], but only on temperature.

It will be convenient to introduce the maintenance rate coefficient k̇M = [ṗM ]/[EG] as
compound parameter. It stands for the ratio of the costs of somatic maintenance and of
structure and has dimension time−1. It was introduced by Marr et al. [747] for the first
time and publicised by Pirt [902].

Surface-area-linked maintenance costs

Some specialised maintenance costs relate to surface areas of individuals.

Aquatic insects are chemically fairly well isolated from the environment. Euryhaline
fishes, however, have to invest energy in osmoregulation when in waters that are not iso-
osmotic. The cichlid Oreochromis niloticus is iso-osmotic at 11.6 ◦/◦◦ and 29 % of the
respiration rate at 30 ◦/◦◦ can be linked to osmoregulation [1277]. Similar results have
been obtained for the brook trout Salvelinus fontinalis [377].

Endotherms (birds, mammals) use reserve to heat their body such that a particular part
of the body (the head and the heart region in humans) has a constant temperature during
the post-embryonic stages; embryos don’t do this. Heat loss is not only proportional to
surface area but, according to I. Newton, also to the temperature difference between body
and environment. This is incorporated in the concept of thermal conductance {ṗT}/(Te −
Tb), where Te and Tb denote the temperature of the environment and the body. It is about
5.43 J cm−2 h−1 ◦C−1 in birds and 7.4–9.86 J cm−2 h−1 ◦C−1 in mammals, as calculated from
[497]. The unit cm−2 refers to volumetric squared length, not to real surface area which
involves shape. The values represent crude means in still air. The thermal conductance is
roughly proportional to the square root of wind speed.

This is a simplified presentation. Birds and mammals moult at least twice a year, to
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replace their hair and feathers which suffer from wear, and change the thick winter coat for
the thin summer one. Cat owners can easily observe that when their pet is sitting in the
warm sun, it will pull its hair into tufts, especially behind the ears, to facilitate heat loss.
Many species have control over blood flow through extremities to regulate temperature.
People living in temperate regions are familiar with the change in the shape of birds in
winter to almost perfect spheres. This increases insulation and generates heat from the
associated tension of the feather muscles. These phenomena point to the variability of
thermal conductance.

There are also other sources of heat exchange, through ingoing and outgoing radiation
and cooling through evaporation. Radiation can be modulated by changes in colour, which
chameleons and tree frogs apply to regulate body temperature [719]. Evaporation obviously
depends on humidity and temperature. For animals that do not sweat, evaporation is tied
to respiration and occurs via the lungs. Most non-sweaters pant when hot and lose heat by
enhanced evaporation from the mouth cavity. A detailed discussion of heat balances would
involve a considerable number of coefficients [804, 1093], and would obscure the main line
of reasoning. I discuss heating in connection with the water and energy balances on {155,
154}. It is important to realize that all these processes are proportional to surface area,
and so affect the heating rate {ṗT} and in particular its relationship with the temperature
difference between body and environment.

It turns out to be convenient to introduce the heating length LT ≡ {ṗT}/[ṗM ] or the
heating volume VT ≡ L3

T as compound parameters of interest. Heating volume stands
for the reduction in volume endotherms experience due to the energy costs of heating. It
can be treated as a simple parameter as long as the environmental temperature remains
constant. Sometimes, it will prove to be convenient to work with the scaled heating length
lT ≡ {ṗT}/κ{ṗAm} as a compound parameter. If the temperature changes slowly relative
to the growth rate, the heating volume is a function of time. If environmental temperature
changes rapidly, body temperature can be taken to be constant again while the effect
contributes to the stochastic nature of the growth process, cf. {111}.

2.5.2 Maturation for embryos & juveniles

The κ-rule makes that growth and development are parallel processes, which links up beau-
tifully with the concepts of acceleration and retardation of developmental phenomena such
as sexual maturity [423]. These concepts are used to describe relative rates of development
in species that are similar in other respects.

The ideas on maturation and maturation maintenance in the deb context rest on four
observations

• Contrary to age, the volume at the first appearance of eggs hardly depends on food
density, typically; see Figure 2.9. The same holds for the volume at birth.

• Some species, such as daphnids, continue to grow after the onset of reproduction.
Daphnia magna starts to reproduce at a length of 2.5 mm, while its ultimate size is
5 mm, if well-fed. This means an increase of well over a factor eight in volume during
the reproductive period. Other species, however, such as birds, only reproduce well
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Figure 2.9: The carapace length of the
daphnid Daphnia magna at 20 ◦C for 5
different food levels at the moment of egg
deposition in the brood pouch. Data from
Baltus [58]. The data points for short ju-
venile periods correspond with high food
density and growth rate. They are diffi-
cult to interpret because length increase
is only possible at moulting in daphnids. age, d
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after the growth period. The giant petrel wanders seven years over Antarctic waters
before it starts to breed for the first time. This makes that stage transitions cannot
be linked to size.

• The total cumulative energy investment in development at any given size of the in-
dividual depends on food density. Indeed, if feeding conditions are so poor that the
ultimate volume is less than the threshold for allocation to reproduction, the cumu-
lated energy investment in development becomes infinitely large if survival allows.

• If food density is constant, the reproduction rate at ultimate size is a continuous
function of the food density; it is zero for low food densities, and increases from zero
for increasing food densities. So it does not make a big jump if the various food
densities differ sufficiently little.

The combination of the four graphs in Figure 2.10 illustrates a basic problem for the
energy allocation rules quantitatively. The problem becomes visible as soon as one realizes
that a considerable amount of energy is invested in reproductive output. The volume of
young produced exceeds one-quarter of that of the mother each day. The problem is that
growth is not retarded in animals crossing the 2.5 mm barrier; they do not feed much more
and simply follow the surface area rule with a fixed proportionality constant at constant
food densities; they do not change sharply in respiration, so it seems unlikely that they
digest their food much more efficiently. So where does the energy allocated to reproduction
come from?

These observations fit naturally if stage transitions are linked to maturity and a matu-
rity maintenance flux exist that is proportional to the level of maturity. The recognition
of the problem and it solution is the cornerstone of deb theory.

A solution to this problem can be found in maturation. Juvenile animals have to
mature and become more complex. They have to develop new organs and install regulation
systems. The increase in size (somatic growth) of the adult does not include an increase
in complexity. The energy spent on development in juveniles is spent on reproduction in
adults. This switch does not affect growth and suggests the ‘κ-rule’: a fixed proportion
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length, mm

 0

 50

 100

 150

 200

 0  5  10  15  20  25

Reproduction ∝
L2 + k̇M

v̇ L
3 − L2

R

age, d

cu
m

.
#

of
yo

un
g

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25

Growth: d
dtL = ṙB(L∞ − L)
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Figure 2.10: Respiration (upper left), and ingestion (upper right) as a function of body length,
and reproduction (lower left) at high food level and body length (lower right) as function of
age at different food levels in the waterflea Daphnia magna at 20 ◦C. Original data and from
[330, 652]; the deb model specifies the curves. The reproduction curve shows that D. magna starts
to reproduce at the age of 7 d, i.e. when its length exceeds 2.5 mm. However, respiration, and
ingestion do not increase steeply at this size, nor does growth decrease. Where did the substantial
reproductive energy come from? The κ-rule gives the explanation. The open symbols in the graph
for respiration relate to individuals with eggs in their brood pouch. Parameter values: δM = 0.54
(fixed), κ = 0.799, κR = 0.95 (fixed), g = 0.15, k̇J = 3.57 d−1, k̇M = 4.06 d−1, v̇ = 1.62 mm d−1,
U bH = 0.001 mm2d, UpH = 0.049 mm2d, [O2] = 2.033µg mm−3, {ḣXm} = 1.53 105cells h−1mm−2,
f = 0.88, 0.81, 0.73, 0.63, 0.56 in lower-right graph. The observation that Lb = 0.8 mm and
Lp = 2.5 mm at f = 1 and 0.5 has been used to stabilise the estimate for k̇J . The calculated
lengths are Lb = 0.686, 0.685 mm and Lp = 2.46, 2.45 mm, respectively. All length measures in
the parameters are volumetic. The shape coefficient δM affects physical lengths and is probably
too large because of the water pockets inside daphnid’s carapax. A multiplication of δM by a
factor z means a multiplication of v̇ by z, of U bH and UpH by z2, of [O2] by z−3, and of {ḣXm} by
z−2. This can be seen from the units of the parameters.
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κ of energy mobilised from the reserves is spent on somatic maintenance plus growth, the
remaining portion 1−κ on maturity maintenance plus maturation plus reproduction. The
partitionability of reserve kinetics has led to the conclusion that κ cannot depend on the
reserve density (see {37}). The argument that allocation is an intensive process, not an
extensive one, suggests that κ is independent of V as well.

If the maturity maintenance ratio equals the somatic one, the maturity density, so the
ratio of the maturity and the amount of structure, remains constant and stage transitions
then also occur at fixed amounts of structure, cf {51}. Some species do show variations
in the size at first reproduction, however, see [92]. Little is known about the molecular
machinery that is involved in the transition from the juvenile to the adult stage. Recent
evidence points to a trigger role of the hormone leptin in mice, which is excreted by the
adipose tissue [205]. This finding supports the direct link between the transition and
energetics.

The increase in the level of maturity, quantified as cumulative investment of reserve
into maturity equals

d

dt
EH = ṗR(EH < Ep

H) with ṗR = (1− κ)ṗC − ṗJ (2.18)

where Ep
H is the maturity threshold at puberty. Because of the arbitrariness of a unit

for information, I refrain from an explicit conversion to information, but the mass as well
as the energy in this investment is typically excreted into the enviroment in the form of
metabolites and heat.

The literature distinguishes determinate growers, which cease growth during the adult
stage, and interdeterminate growers, which continue growth. In deb theory, this is just
a matter of the value of Ep

H relative to other deb parameters; even for ecdysozoans that
reproduce only in their final moult, typically follow von Bertalanffy growth curves, cf {49}.
The only real determinate growers in the deb context are the holometabolic insects, which
insert a pupal stage between the juvenile and adult stages, cf {277}, and don’t grow as
adults; their growth as larvae to pupation is not asymptotic.

2.5.3 Maturity maintenance: defence systems

The maturity maintenance is assumed to be proportional to the maturity level

ṗJ = k̇JEH (2.19)

where k̇J is the maturity maintenance rate coefficient. It can be compared with the somatic
maintenance rate coefficient k̇M , and we will see, {51}, that if the maintenance ratio
k = k̇J/k̇M = 1, stage transitions also occur at fixed structural volumes. Notice that k̇M
expresses the maintenance costs relative to the cost for structure; likewise k̇J expresses the
maintenance costs relative to the cost of a unit of maturity, but since we quantify maturity
as the cumulative reserve investment into maturity this unit equals 1 by definition; we
don’t make the conversion to maturity as information explicitly.
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An observation that strongly supports the existence of maturity maintenance concerns
pond snails, where the day/night cycle affects the fraction of utilized energy spent on main-
tenance plus growth [1298] such that κ at equal day/equal night, κmd, is larger than that
at long day/short night, κld. Apart from the apparent effects on growth and reproduc-
tion rates, volume at the transition to adulthood is also affected. If the cumulated energy
investment in the increase of maturity does not depend on the value for κ and if the matu-
rity maintenance costs are ṗJ = 1−κ

κ
ṗM , the expected effect is

Vp,ld
Vp,md

= κld(1−κmd)
κmd(1−κld)

, which is

consistent with the observations on the coupling of growth and reproduction investments
to size at puberty [1298].

Maturity maintenance can be thought to relate to the maintenance of regulating mech-
anisms and concentration gradients, such as those found in Hydra, that maintain head/foot
differentiation [406].

During extreme forms of starvation, many organisms shrink {118}. They can only
recover enough energy from the degradation of structural mass to pay the somatic main-
tenance costs if they can reduce the maturity maintenance costs under those conditions.
Thomas & Ikeda [1152] concluded from studies on laboratory populations of Euphausia
superba that female krill can regress from the adult to the juvenile state during starvation.

Organisms also become more vulnerable to diseases during starvation. This suggests
that defence systems, cf {382}, such as the immune system of vertebrates is fuelled from
maturity maintenance. and that maturity maintenance is more facultative than somatic
maintenance. All species have several defence systems, also to protect themsevels against
effects of toxicants. This also explains why maturity maintance can be substantial.

2.5.4 Reproduction overhead

Since embryos initially exist almost exclusively of reserve, the allocation to reproduction
consists of reserve, and the strong homeostasis assumption makes that reserve cannot
change in composition, little metabolic work is involved in reproduction. Yet some work is
involved in the conversion of (part of) the buffer of reserve that is allocated to reproduction
into eggs. A fraction κR of the reproduction flux, called the reproduction efficiency, is
assumed to be fixed in embryo reserve, and the rest, a fraction 1−κR is used as reproduction
overhead.

2.6 Growth: increase of structure

Now that the allocation fraction κ and the specific maintenance costs [ṗS] are specified,
the specific mobilisation (2.12) and growth rates (2.13) can be written as

[ṗC ] = [Em](v̇/L+ k̇M(1 + LT/L))
eg

e+ g
(2.20)

d

dt
V = ṙV with ṙ = v̇

e/L− (1 + LT/L)/Lm
e+ g

(2.21)

where the investment ratio g = [EG]/κ[Em] stands for the costs of new biovolume relative to
the maximum potentially available energy for growth plus maintenance. It is dimensionless.
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The maximum length Lm = κ{ṗAm}/[ṗM ] = v̇/k̇Mg represents the ratio of the part
of the assimilation flux that is allocated to the soma and the somatic maintenance flux.
Notice the conceptual similarity with the reserve capacity [Em] = {ṗAm}/v̇, which is also
a ratio of in- and out-going fluxes. The maximum volume Vm = L3

m is also a compound
parameter of interest.

On the island Gough, the house mouse Mus musculus changed diet and turned to
prey on the chicks of the Tristan albatross Diomedea dabbenena and the Atlantic petrel
Pterodroma incerta, despite the fact that these birds are 250 times heavier. From an energy
point of view, this had the remarkable effect that the weight of the adult mice are 40 g,
rather than the typical 15 g. The reason is probably that the conversion efficiency from
birds to mice is higher than their typical conversion efficiency. This supports the idea that
ultimate (structural) weight represents the ratio of assimilation and maintenance. From a
nature conservation point of view the problem is that 99 % of the world population these
two bird species live on this island; the birds are now threatened with extinction.

For some applications, it will be convenient to work in scaled length l = L/Lm and
with d

dt
l = lṙ/3 and scaled reserve density e. From (2.11) and (2.21) we have

d

dt
l = k̇M

g

3

e− l − lT
e+ g

and
d

dt
e = (f − e)gk̇M/l (2.22)

Animals that have non-permanent exoskeletons, the Ecdysozoa, have to moult to grow.
The rapid increase in size during the brief period between two moults relates to the uptake
of water or air, not to synthesis of new structural biomass, which is a slow process occurring
during the intermoult period. This minor deviation from the deb model relates more to
size measures than to model structure.

2.6.1 Von Bertalanffy growth at constant food

If food density X and, therefore, the scaled functional response f , are constant, and if
the initial energy density equals [E] = f [Em], energy density will not change and e = f .
Volumetric length as a function of time since birth can then be solved from d

dt
L = Lṙ/3

and results in

L(t) = L∞ − (L∞ − Lb) exp(−tṙB) or t(L) =
1

ṙB
ln
L∞ − Lb
L∞ − L

(2.23)

ṙB =
1

3/k̇M + 3fLm/v̇
=

k̇M/3

1 + f/g
(2.24)

L∞ = fLm − LT (2.25)

where length at birth Lb ≡ L(0) is a quantity that will be discussed at {60}. See Figure
2.14 for a graphical interpretation of the L(t) curve. I will follow tradition and call this
curve the von Bertalanffy growth curve despite its earlier origin and von Bertalanffy’s
contribution of introducing allometry, which I reject. Equations (2.24) and (2.25) give a
physiological interpretation of the von Bertalanffy growth rate ṙB and the ultimate length
L∞
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Figure 2.11: These von Bertalanffy growth curves fit data very well of organisms that differ
considerably in their growth regulating systems. This suggests that hormones are used to match
local supply and demand of metabolites, but growth is controlled at the level of the individual,
including hormonal activity.
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The von Bertalanffy growth curve results for post-natal isomorphs at constant food
density and temperature and has been fitted successfully to the data of some 270 species
from many different phyla, which have very different hormonal systems to control growth;
see Figure 2.11 and Table 8.3. The gain in insight since A. Pütter’s original formulation
in 1920 [928] is in the interpretation of the parameters in terms of underlying processes.
It appears that heating cost does not affect the von Bertalanffy growth rate ṙB. Food
density affects both the von Bertalanffy growth rate and the ultimate length. The inverse
of the von Bertalanffy growth rate is a linear function of the ultimate volumetric length;
see Figure 2.10. This is in line with Pütter’s original formulation, which took this rate to
be inversely proportional to ultimate length, as has been proposed again by Gallucci and
Quinn [385]. deb theory shows, however, that the intercept cannot be zero.

The requirement that food density is constant for a von Bertalanffy curve can be relaxed
if food is abundant, because of the hyperbolic functional response. As long as food density
is higher than four times the saturation coefficient, food intake is higher than 80 % of
the maximum possible food intake, which makes it hardly distinguishable from maximum
food intake. Since most birds and mammals have a number of behavioural traits aimed at
guaranteed adequate food availability, they appear to have a fixed volume–age relationship.
This explains the popularity of age-based models for growth in ‘demand’ systems. Later, on
{167}, I discuss deviations from the von Bertalanffy growth curve that can be understood
in the context of the present theory.

In contrast, at low food densities, fluctuations in food density soon induce deviations
from the von Bertalanffy curve. This phenomenon is discussed further in the section on
genetics and parameter variation, {288}. Growth ceases, i.e. d

dt
V = 0, if the reserve density

equals a threshold value, [E] = [ṗS]L/κv̇.

2.6.2 States at birth and initial amount of reserve

During the embryo stage, dry weight decreases, but the amount of structure increases:
reserve is converted into structure. The initial amount of reserve is not a free parameter
because the reserve density, i.e. the ratio of the amounts of reserve and structure, at birth
tends to covary with that of the mother at egg production; well-fed mothers give birth
to well-fed offspring. Such maternal effects are typical and have been found in e.g. birds
[824], reptiles, amphibians [715], fishes [478], insects [771, 995, 994], crustaceans [411],
rotifers [1291], echinoderms and bivalves [101]. Maternal effects explain, for instance, why
the batch fecundity of the anchovy Engraulis increases during the spawning season in
response to a decrease in food availability [879]. However, some species seem to produce
large eggs under poor feeding conditions, e.g. some poeciliid fishes [956], daphnids [413]
and Sancassania mites [85]. Moreover, egg size can vary within a clutch [314, 1221, 823],
according to geographical distribution [1068], with age [771] and race. Nonetheless, the
pattern that the reserve density at birth [Eb] equals the reserve density [E] of the mother
at egg formation generally holds; this not only removes a parameter, but also has the nice
implication the von Bertalanffy growth applies from birth on, at constant food density.
Embryo’s don’t feed, f = 0, and even embryo’s of endothemic species don’t allocate to
heating, LT = 0.
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Table 2.1: The dimensionless scaled variables and parameters that are used to find the initial
amount of scaled reserve.

τ = ak̇M τb = abk̇M l = L/Lm lb = Lb/Lm

uE = E
g[Em]L3

m
u0
E = E0

g[Em]L3
m

uH = EH
g[Em]L3

m
ubH = EbH

g[Em]L3
m

e = guE/l
3 eb = gubE/l

3
b eH = guH/l

3 ebH = gubH/l
3
b

x = g
e+g xb = g

eb+g
α = 3gx1/3/l αb = 3gx1/3

b /lb

y = xeH
1−κ yb = xbe

b
H

1−κ = gxbv
b
H l
−3
b vbH = ubH

1−κ k = k̇J/k̇M

The state variables (EH , E, L) evolve from (0, E0, 0) at age a = 0 to (Eb
H , [Eb]L

3
b , Lb)

at age a = ab, the age at birth. To find E0, ab, and Lb, given Eb
H and [Eb] is a bit of a

challenge, which has been overwon recently only [645].
For this purpose, it is most convenient to remove parameters by scaling to dimensionless

quantities: (τ, uE, l, uH), see Table 2.1. The reformulated problem is now: Find τb, lb, u
0
E

given ubH , k, g, κ and ubE = ebl
3
b/g, where eb is the scaled reserve density at birth.

For the variable (τ, uE, l, uH) evolving from the value (0, u0
E, 0, 0) to the value (τb, u

b
E, lb, u

b
H),

the scaled model amounts to

d

dτ
uE = −uEl2

g + l

uE + l3
(2.26)

d

dτ
l =

1

3

guE − l4

uE + l3
(2.27)

d

dτ
uH = (1− κ)uEl

2 g + l

uE + l3
− kuH (2.28)

or alternatively for variable (τ, e, l, eH) evolving from the value (0,∞, 0, e0
H) to the value

(τb, eb, lb, e
b
H)

d

dτ
e = −ge

l
(2.29)

d

dτ
l =

g

3

e− l
e+ g

(2.30)

d

dτ
eH = (1− κ)

ge

l

l + g

e+ g
− eH

(
k +

g

l

e− l
e+ g

)
(2.31)

where the initial scaled maturity density e0
H = (1 − κ)g is such that d

dτ
eH(0) = 0, else

d
dτ
eH(0) = ±∞.

If k = 1, so k̇J = k̇M , we have eH(τ) = e0
H for all τ and uH(τ) = (1 − κ)l3b . In other

words: the maturity density remains constant, so maturity exceeds threshold values when
structure exceeds threshold values. We then have the relationship for the structural volume
at birth

Vb = L3
b =

Eb
H/[Em]

(1− κ)g
(2.32)

For k > 1, eH is decreasing in (scaled) age, and for k < 1 increasing.
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Figure 2.12 shows that data on embryo weight, yolk and respiration are in close agree-
ment with model expectations. As is discussed later, {142}, respiration is taken to be
proportional to the mobilisation rate. The two or three curves per species have been fitted
simultaneously by Zonneveld [1300], and the total number of parameters is five exclud-
ing, or seven including, respiration. This is less than three parameters per curve and
thus approaches a straight line for simplicity when measured this way. I have not found
comparable data for plant seeds, but I expect a very similar pattern of development.

The examples are representative of the data collected in Table 2.2, which gives pa-
rameter estimates of some 40 species of snails, fish, amphibians, reptiles and birds. The
model tends to underestimate embryo weight and respiration rate in the early phases of
development. This is partly because of deviations in isomorphism, the contributions of
extra-embryonic membranes (both in weight and in the mobilisation of energy reserves),
and the loss of water content during development. The parameter estimates for the altricial
birds such as the parrot Agapornis should be treated with some reservation, because ne-
glected acceleration caused by the temperature increase during development substantially
affects the estimates, as discussed on {167}.

The values for the energy conductance v̇, as given in Table 2.2, are in accordance with
the average value for post-embryonic development, as given on {303}, which indicates that
no major changes in energy parameters occur at birth. The maintenance rate constant
k̇M for reptiles and birds is about 0.08 d−1 at 30 ◦C, implying that the energy required to
maintain tissue for 12 days at 30 ◦C is about equal to the energy necessary to synthesise
the tissue from the reserves. The maintenance rate constant for fresh water species seems
to be much higher, ranging from 0.3 to 2.3 d−1. Data from Smith [1082] on the rainbow
trout Oncorhynchus mykiss result in 1.8 d−1 and Figure 2.10 gives 4.06 d−1 at 20 ◦C, which
corresponds to some 8.5 d−1 at 30 ◦C (if it would survive that) for the waterflea Daphnia
magna. The costs of osmosis might contribute to these high maintenance costs, as has
been suggested on {43}, but for Ecdysozoa (to which Daphnia belongs), moulting might
be costsly. The high value for Oikopleura, see Figure 2.19, probably relates to house
production. Although information on parameter values is still sparse, it indicates that no
(drastic) changes in these values occur at the transition from the embryonic to the juvenile
state.

The general pattern of embryo development in eggs is characterised by unrestricted fast
development during the first part of the incubation period (once it has started the process)
due to unlimited energy supply, at a rate that would be impossible to reach if the animal
had to refill reserves by feeding. This period is followed by a retardation of development
due to the increasing depletion of energy reserves. Apart from the reserves of the juvenile,
the model works out very similar to that of Beer and Anderson [77] for salmonid embryos.

In view of the goodness of fit of the model in species that do not possess shells (see
the turtle data), retardation is unlikely to be due to limitation of gas diffusion across the
shell, as has been frequently suggested for birds [934]. The altricial and precocial modes of
development have been classified as being basically different; the precocials show a plateau
in respiration rates towards the end of the incubation period, whereas the altricials do
not. Figure 2.13 shows that this difference can be traced back to the simple fact that
altricial birds hatch relatively early. A frequently used argument for diffusion limitation
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Figure 2.12: Yolk-free embryo weight (�), yolk weight (×), and respiration rate (+) during
embryo development, and fits on the basis of the deb model. Data sources are indicated.

pond snail Lymnaea stagnalis [527]

time, d

w
ei

gh
t,
µ

g

ga
la

ct
og

en
,
µ

g

time, d

O
2
-c

on
su

m
pt

io
n,

nl
/h

sea trout Salmo trutta [430]

time, d

dr
y

w
ei

gh
t,

g

American racer Coluber constrictor [859]

time, d

dr
y

w
ei

gh
t,

g

Australian crocodile Crocodylus johnstoni [741, 1248]

time, d

w
et

w
ei

gh
t,

g

time, d

O
2
-c

on
su

m
pt

io
n,

m
l/

d



2.6. Growth: increase of structure 55

Figure 2.12 continued
New Guinea soft-shelled turtle Carettochelys insculpta [1229]
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Table 2.2: Survey of re-analysed egg data, and parameter values standardised to a temperature
of 30 ◦C, taken from [1300]. *1* P. J. Whitehead, pers. comm., 1989 ; *2* M. B. Thompson, pers.
comm., 1989; ‘galac.’, stands for galactogen content.

species temp. type of data v̇30 k̇M 30 Eb/E0 reference
◦ C mm d−1 d−1

Lymnaea stagnalis 23 ED, galac, O 0.80 2.3 0.55 [527]

Salmo trutta 10 ED, YD 3.0 0.31 0.37 [430]

Rana pipiens 20 EW, O 2.5 0.87 [41]

Crocodylus johnstoni 30 EW, YW 1.9 0.060 0.31 [741]
29, 31 O [1248]

Crocodylus porosus 30 EW, YW 2.7 0.024 0.19 [1230]
30 O *1*

Alligator mississippiensis 30 EW, YW 2.7 0.34 [256]
30 O [1155]

Chelydra serpentina 29 ED, YD 1.9 0.35 [859]
29 O [399]

Carettochelys insculpta 30 EW, YW, O 1.9 0.040 0.08 [1229]
Emydura macquarii 30 EW, O 1.6 0.14 0.35 [1155]
Caretta caretta 28–30 EW, O 3.0 0.65 [4, 3]
Chelonia mydas 28–30 EW, O 3.0 0.57 [4, 3]
Amphibolurus barbatus 29 ED, YD 0.92 0.061 0.47 [860]
Coluber constrictor 29 ED, YD 1.4 0.69 [861]
Sphenodon punctatus 20 HW, O 0.85 0.062 0.25 *2*

Gallus domesticus 39 EW, O, C 3.2 0.039 0.34 [988]
Gallus domesticus 38 EW, C 3.4 0.52 [127]
Leipoa ocellata 34 EE, YE, O 1.7 0.031 0.55 [1203]
Pelicanus occidentalis 36.5 EW, O 3.2 0.10 0.77 [64]
Anous stolidus 35 EW, O 2.0 0.11 0.59 [889]
Anous tenuirostris 35 EW, O 1.8 0.20 0.59 [889]
Diomedea immutabilis 35 EW, O 2.5 0.069 0.57 [888]
Diomedea nigripes 35 EW, O 2.5 0.049 0.58 [888]
Puffinus pacificus 38 EW, O 0.92 0.084 0.61 [5]
Pterodroma hypoleuca 34 EW, O 1.9 0.20 [888]
Larus argentatus 38 EW, C 2.7 0.15 0.56 [293]
Gygis alba 35 EW, O 1.4 0.53 [887]
Anas platyrhynchos 37.5 EW 2.5 0.10 0.67 [923]

37.5 O [578]
Anser anser 37.5 EW 4.1 0.039 0.23 [987]

37.5 O [1201]
Coturnix coturnix 37.5 EW, O 1.7 0.49 [1201]
Agapornis personata 36 EW, O 0.8 0.79 [172]
Agapornis roseicollis 36 EW, O 0.84 0.81 [172]
Troglodytes aëdon 38 EW, O 1.4 0.82 [590]
Columba livia 38 EW 2.7 0.80 [582]

37.5 O [1201]

EW: Embryo Wet weight YW: Yolk Wet weight ED: Embryo Dry weight
EE: Embryo Energy content YE: Yolk Energy content YD: Yolk Dry weight
O: Dioxygen consumption rate C: Carbon dioxide prod. rate HW: Hatchling Wet weight
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Figure 2.13: The embryonic development of altricial (wren, pelican) and precocial (chicken,
goose) birds. Data from the sources indicated; fits are on the basis of the deb model (parameters
in Table 2.2). The underestimation of the initial development possibly relates to embryonic
membranes. Pelican’s high respiration rate just prior to hatching is attributed to internal pipping,
which is not modelled. The drawings show hatchlings and adults.
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is the strong negative correlation between diffusion rates across the egg shell and diffusion
resistance, when different egg sizes are compared, ranging from hummingbirds to ostriches;
the product of diffusion rate and resistance does not vary a lot. This correlation probably
results from a minimisation of water loss by eggs. Data from fossil plants from Greenland
show a dramatic drop in stomata frequency at the end of the Triassic (208 Ma ago), which
has been linked to a steep rise of the atmospheric CO2 concentration to three times the
present values, possibly as a result of the activity of volcanoes that mark the breakup of
Pangaea [78, p98]. The plants no longer needed many stomata, and reduced the number
to reduce the water loss by evaporation.

To find τb, lb, u
0
E, I first observe that from Table 2.1 and ode’s (2.26 – 2.27), we have

d

dτ
x = gx

1− x
l

;
d

dτ
l =

g − xg − lx
3

;
d

dτ
α =

x1/3

1− x
d

dτ
x (2.33)

so

α = 3g(u0
E)−1/3 +Bx(

4

3
, 0) (2.34)

for the incomplete beta function

Bx(
4

3
, 0) ≡

∫ x

0
y1/3(1− y)−1 dy (2.35)

=
√

3

(
arctan

1 + 2x1/3

√
3

− arctan
1√
3

)
+

1

2
log(1 + x1/3 + x2/3)− log(1− x1/3)− 3x1/3

Consequently we have

αb − α = Bxb(
4

3
, 0)−Bx(

4

3
, 0) (2.36)

1

l
=

1

lb

(
xb
x

)1/3

−
Bxb(

4
3
, 0)−Bx(

4
3
, 0)

3gx1/3
(2.37)

We need this expression for l(x) later in the derivation of lb.

Scaled age at birth τb

The scaled age at birth τb follows from (2.33) and (2.37) by separation of variables and
integration

τb = 3
∫ xb

0

dx

(1− x)x2/3(αb −Bxb(
4
3
, 0) +Bx(

4
3
, 0))

(2.38)

Notice that τb requires lb in αb, which is given below.

The parameters values in Figure 2.10 for D. magna imply an incubation time of 0.76 d
at f = 1 till 0.80 d at f = 0.5. The eggs are deposited in the brood pouch just after
moulting and develop there till birth just before the next moult, some 1.5 till 2 d later at
20 ◦C. This suggests a food-level dependent diapause of around 0.5 d in D. magna.
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The age at birth simplifies for small g and large k̇M , while ṙB = k̇Mg
3(eb+g)

remains fixed

[661]:

ab =
3

k̇M

∫ xb

0

dx

(1− x)x2/3(3gx
1/3
b l−1

b −Bxb(
4
3
, 0) +Bx(

4
3
, 0))

(2.39)

g,k̇−1
M small
' 1

3ebṙB

∫ xb

0

dx

(1− x)x2/3x
1/3
b (l−1

b − (x
4/3
b − x4/3)/(4eb))

g,k̇−1
M very small
' lb

3ebṙB

∫ xb

0

dx

(1− x)x2/3x
1/3
b

g,k̇−1
M →0
=

lb
ebṙB

eb=f=
3lb

k̇Mg

(
1 +

g

f

)
(2.40)

where xb ≡ g
eb+g

. The significance of this result is in the fact that for fixed ṙB, Lb and L∞,

g → 0 while k̇M →∞ if ab is running from 0 to this upper boundary. See Figure 2.14 for
a graphical interpretation.

The chameleon Furcifer labordi is reported to live 8-9 months as egg and only 4-5
months as juvenile plus adult [577]. The males grow from some 3 cm to 10.2 cm (snout-to-
vent length) with a von Bertalanffy growth rate of 0.035 d−1, and the females from 2.6 cm
to 7.8 cm with a von Bertalanffy growth rate of 0.04 d−1. The maximum age at birth that
is consistent with deb theory is thus some 8.3 d, rather than the observed 8-9 months.
The eggs are buried in the soil, where it might be some 10 ◦C cooler than during post-
embryonic growth. Even after correction for this difference, this suggests that this species
is on a metabolic hold for most of the time.

The foetal special case, where ab = 3Lb/v̇ = 3lb
k̇Mg

represents a lower boundary for the

age at birth (of eggs). So the possible range for ab is

3lb

k̇Mg
< ab <

3lb

k̇Mg
(1 + g/eb) or 1 < ab

k̇Mg

3lb
< 1 + g/eb (2.41)
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Scaled initial amount of reserve u0
E

The scaled initial amount of reserve u0
E directly follows from (2.34) for x = xb and α = αb

u0
E =

 3g

αb −Bxb

(
4
3
, 0
)
3

so E0 = u0
Eg[Em]L3

m (2.42)

which again requires lb in αb.

The parameters values in Figure 2.10 for D. magna imply a scaled initial amount of
reserve of U0

E = 0.04 mm2d at f = 1 and 0.0246 mm2d at f = 0.5 at 20 ◦C. The scaled
amount at birth equals U b

E = f [Em]L3
b = 0.0313 and 0.0156 mm2d, respectively. So a

fraction of 0.79 and 0.63 for f = 1 and 0.5, respectively, of the initial reserve is still left
at birth. Figure 2.10 has, however, no data on embryo development or reserve, which
demonstrates the strength of deb theory.

Data on embryo development, Table 2.2, also shows that about half of the reserves are
used during embryonic development. The deviating values for altricial birds are artifacts,
caused by the abovementioned acceleration of development by increasing temperatures.
Congdon et al. [217] observed that the turtles Chrysemus picta and Emydoidea blandingi
have 0.38 of the initial reserves at birth. Respiration measurements on sea birds by Pettit
et al. [890] indicate values that are somewhat above the ones reported in the table. The
extremely small value for the soft shelled turtle, see also Figure 2.12, relates to the fact
that these turtles wait for the right conditions to hatch, after which they have to run the
gauntlet as a cohort at night from the beach to the water, where a variety of predators
wait for them.

Scaled length at birth lb

For the variable (τ, eH) evolving from the value (0, e0
H) to the value (τb, e

b
H) we have

d

dτ
eH = (1− κ)g(1− x)

(
g

l(x)
+ 1

)
− eH

(
k − x+ g

1− x
l(x)

)
(2.43)

Now consider the variable (x, eH) evolving from the value (0, e0
H) to the value (xb, e

b
H) or

the variable (x, y) evolving from the value (0, 0) to the value (xb, yb):

d

dx
eH =

e0
H

x

(
l(x)

g
+ 1

)
− eH

x

(
k − x
1− x

l(x)

g
+ 1

)
for e0

H = eH(0) = (1− κ)g

d

dx
y = r(x)− ys(x) for r(x) = g + l(x); s(x) =

k − x
1− x

l(x)

gx
(2.44)

where l(x) is given in (2.37). The ode for y can be solved to

y(x) = v(x)
∫ x

0

r(x1)

v(x1)
dx1 with v(x) = exp(−

∫ x

0
s(x1) dx1) (2.45)
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The quantity lb must be solved from yb = y(xb) = gxbv
b
H l
−3
b , see Table 2.1. So we need to

find the root of t as function of lb with

t(lb) =
xbgv

b
H

v(xb)l3b
−
∫ xb

0

r(x)

v(x)
dx = 0 (2.46)

From this equation it becomes clear that the parameters κ and ubH affect lb only via

vbH =
ubH
1−κ ; a conclusion that is more difficult to obtain using the ode for the scaled maturity

density eH rather than that for abstract variable y. Notice that the solution of lb (and that
of u0

E and τb) for the boundary value problem for the ode for (uE, l, eH) as given in (2.26–
2.28) depends on the four parameters g, k, vbH and eb only. The solution for lb must be
substituted into (2.42) to obtain u0

E and in (2.38) to obtain τb; the scaled reserve at birth
is ubE = ebl

3
b/g.

The parameters values in Figure 2.10 for D. magna imply a birth length of 0.686 and
0.685 mm at f = 1 and 0.5, respectively. These values hardly differ much because k̇J is
close to k̇M .

Special case e→∞: foetal development

Foetal development differs from that in eggs in that energy reserves are supplied continu-
ously via the placenta. The feeding and digestion processes are not involved. Otherwise,
foetal development is taken to be identical to egg development, with initial reserves that
can be taken to be infinitely large, for practical purposes. At birth, the neonate receives
an amount of reserves from the mother, such that the reserve density of the neonate equals
that of the mother. So the approximation [E]→∞ or e→∞ for the foetus can be made
for the whole gestation period, because the foetus lives on the reserves of the mother. In
other words: unlike eggs, the development of foetuses is not restricted by energy reserves.
Initially the egg and foetus develop in the same way, but the foetus keeps developing at a
rate not restricted by the amount of reserves till the end of the gestation time, while the
development of the egg becomes retarded, due to depletion of the reserves.

The special case e → ∞ makes that d
dτ
l = g/3, or l(τ) = gτ/3. The foetal structural

volume thus behaves as
d

dt
V = v̇V 2/3 so V (t) = (v̇t/3)3 (2.47)

This growth curve was proposed by Huggett and Widdas [536] in 1951. Payne and Wheeler
[875] explained it by assuming that the growth rate is determined by the rate at which
nutrients are supplied to the foetus across a surface that remains in proportion to the
total surface area of the foetus itself. This is consistent with the deb model, which gives
the energy interpretation of the single parameter. The graph of foetal weight against age
resembles an exponential growth curve, but in fact it is less steep; the model has the
property that subsequent weight doubling times increase by a factor 21/3 = 1.26, while
there is no increase in the case of exponential growth.

The fit is again excellent; see Figure 2.15. It is representative for the data collected in
Table 2.3 taken from [1300]. A time lag for the start of foetal growth has to be incorpo-
rated, and this diapause may be related to the development of the placenta, which possibly
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Figure 2.15: Foetal weight development in mammals, cf Figure 6.2. Parameters are given in
Table 2.3.

depends on body volume as well. The long diapause for the grey seal Halichoerus proba-
bly relates to timing with the seasons to ensure adequate food supply for the developing
juvenile. Variations in weight at birth are primarily due to variations in gestation period,
not in foetal growth rate. For comparative purposes, energy conductance v̇ is converted
to 30 ◦C, on the assumption that the Arrhenius temperature, TA, is 10 200 K and the body
temperature is 37 ◦C for all mammals in the table. This is a rather crude conversion be-
cause the cat, for instance, has a body temperature of 38.6 ◦C. Weights were converted to
volumes using a specific density of [Ww] = 1 g cm−3.

One might expect that precocial development is rapid, resulting in advanced develop-
ment at birth and, therefore, comes with a high value for the energy conductance. The
values collected in Table 2.3, however, do not seem to have an obvious relationship with
altricial–precocial rankings. The precocial guinea-pig and alpaca as well as the altricial hu-
man have relatively low values for the energy conductance. The altricial–precocial ranking
seems to relate only to the relative volume at birth Vb/Vm.

We further have

d

dτ
uH = (1− κ)l2(g + l)− kuH (2.48)

uH(τ) =
g3(1− κ)

33k4

(
k2τ 2(3k + kτ − 3) + 6(k − 1)(1− τ − exp(−kτ))

)
(2.49)

The equation uH(τb) = ubH has to be solved numerically for τb, but for k = 1 we have
ubH = (1 − κ)3−3g3τ 3

b = (1 − κ)l3b . The solution of this equation is stable and fast; the
resulting scaled length at birth lb = gτb/3 can be used to start the Newton Raphson
procedure. This start is preferable if k is substantially different from 1. From lb < 1, so
τb < 3/g, we can derive the constraint

k2ubH
1− κ

< k + g(k − 1) + g3k − 1

k2

1− 3/g − exp(−3k/g)

9/2
(2.50)
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Table 2.3: The estimated energy conductance, v̇, and its value corrected for a temperature of
30 ◦C, and the time lag for the start of development, tl, for mammalian embryos.

species v̇ (cv) v̇30 tl (cv) reference
(race) cm d−1 mm d−1 d

Homo sapiens 0.84
males 0.180 (0.3) 26.8 (2.0) [1233]
females 0.179 (0.4) 26.5 (2.9)

Oryctolagus cuniculus 0.560 (0.9) 2.6 10.7 (1.5) [695]
small litters 0.602 (1.5) 11.5 (2.4) [60]
large litters 0.571 (1.5) 11.5 (2.4) [60]

0.504 (5.6) 10.4 (10) [62]
Lepus americanus 0.573 (3.1) 2.7 13.1 (4.2) [129]
Cavia porcellus 0.269 (3.3) 1.1 15.7 (8.3) [291]

0.239 (2.3) [541]
Cricetus auratus 0.570 (2.1) 2.6 9.29 (1.3) [927]
Mus musculus 0.278 (0.1) 1.25 8.2 (0.1) [728]
Rattus norvegicus 2.5

wistar 0.487 (0.5) 11.4 (0.3) [346]
albino 0.531 (0.8) 12.2 (0.5) [1119]

0.525 (0.2) 11.8 (0.2) [536]
albino 0.568 (3.3) 12.7 (2.1) [29]
albino 0.542 (3.1) 12.4 (2.0) [355]

Clethrionomys glareolus 0.374 (9.3) 1.8 8.29 (11) [224]
Aepyceros melampus 0.316 (1.2) 1.4 39.4 (3.8) [331]
Odocoileus virginianus 0.296 (6.7) 1.3 34.9 (28) [978]

0.274 (1.6) 25.1 (8.5) [1191]
Dama dama 0.345 (6.4) 1.7 9.94 (46) [36]
Cervus canadensis 0.336 (3.1) 1.5 24.9 (19) [811]
Lama pacus 0.120 (7.6) 0.56 7.47 (83) [347]
Ovis aries 1.9

welsh 0.482 (5.6) 43.9 (12) [536]
merino 0.341 (8.6) 14.9 (71) [737]

0.346 (4.6) 15.2 (32)
0.433 (4.4) 33.3 (13) [214]

karakul 0.436 (3.7) 31.0 (13) [306]
0.403 (2.6) 27.5 (8.2) [568]

hampshire × 0.382 (1.5) 20.4 (7.9) [1264]
Capra hircus 0.339 (6.5) 1.7 24.3 (29) [317]

0.365 (4.5) 31.3 (14) [61]
Bos taurus 0.475 (2.6) 2.3 59.5 (7.5) [1265]
Equus caballus 0.370 (11) 1.8 37.0 (81) [790]
Sus scrofa 0.266 (0.6) 4.73 (12) [1222]

Yorkshire 0.283 (0.9) 5.49 (16) [1180]
Large white 0.383 (1.3) 23.6 (4.2) [909]
Essex 0.321 (4.8) 14.1 (30)

Felix catus 0.371 (1.2) 1.8 18.8 (2.3) [223]
Pipistrellus pipistrellus 0.97

1978 0.237 (1.9) 9.95 (2.9) [929]
1979 0.181 (3.5) 13.7 (4.7)

Halichoerus grypus 0.375 (10) 1.8 145 (9.2) [501]
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For ubE = uE(τb), the cost for a foetus amounts to

u0
E = ubE +κl3b +ubH +

∫ τb

0
(κl3(τ)+kuH(τ)) dτ = ubE + l3b +

3

4

l4b
g

; E0 = u0
Eg[Em]L3

m (2.51)

where the five terms correspond with the costs of reserve, structure, maturity, somatic
and maturity maintenance, respectively. The second equality follows from the structure of
deb theory: the investment in maturity plus maturity maintenance equals 1−κ

κ
times the

investment in structure plus somatic maintenance and l(τ) = gτ/3. The foetal cost of a
foetus is somewhat smaller than that of an egg, (2.42).

Foetal development obviously affects the energetics of the mother. This is discussed at
{275}.

2.6.3 States at puberty

Puberty occurs as soon as EH = Ep
H , or UH = Up

H = Ep
H/{ṗAm} = Up

H or uH = upH =
EpH

g[Em]L3
m

. If k̇J = k̇M , and so maturity density is constant, we have

Vp =
Ep
H/[Em]

(1− κ)g
(2.52)

Otherwise the structural volume at puberty Vp = L3
p can vary with food density history

and even more than Vb can. It must be found numerically from integration of d
dt
V till

EH(t) = Ep
H .

Generally little can be said about age and length at puberty, but if food density X,
and so scaled functional response f , remains constant, (2.23), (2.22) and (2.43) show that
age and scaled length at puberty amount to

ap = ab +
1

ṙB
ln
L∞ − Lb
L∞ − Lp

(2.53)

lp = l(vpH) with
d

dvH
l =

(f − l − lT )g/3

fl2(g + l)− kvH(g + f)
and l(vbH) = lb (2.54)

where k = k̇J/k̇M as before. This differential equation has to be integrated numerically
and results in a satiating function lp(f) if k < 1. We must have that f > lp + lT to allow
for adolescence.

The parameters values in Figure 2.10 for D. magna imply a length at puberty of 2.46
and 2.45 mm at f = 1 and 0.5, respectively. These values hardly differ much because k̇J is
close to k̇M .

2.6.4 Reduction of the initial amount of reserve

The embryonic period is elongated if the initial amount of reserve is reduced, while the
cumulative energy investment to complete the embryonic stage is the same. The mechanism
is that reducing the amount of reserve reduces the mobilisation of reserve, so it takes longer



2.6. Growth: increase of structure 65

Figure 2.16: Egg dimorphism occurs as
standard in crested penguins (genus Eu-
dyptes). The small egg is laid first, but it
hatches later than the big one, which is 1.5
times as heavy. The deb theory explains
why the large egg requires a shorter incu-
bation period. The illustration shows the
Snares crested penguin E. atratus.

to reach a certain maturity level. Large eggs, so large initial energy supplies, result in
short incubation times if eggs of one species are compared. Crested penguins, Eudyptes ,
are known for egg dimorphism [1221]; see Figure 2.16. They first lay a small egg and, some
days later a 1.5 times bigger one. As predicted by the deb model, the bigger one hatches
first, if fertile, in which case the parents cease incubating the smaller egg, because they are
only able to raise one chick. They continue to incubate the small egg only if the big one
fails to hatch. This is probably an adaptation to the high frequency of unfertilised eggs or
other causes of loss of eggs (aggression [1221]), which occurs in this species.

Incubation periods only decrease for increasing egg size if all other parameters are
constant. The incubation period is found to increase with egg size in some beetle species,
lizards and marine invertebrates [211, 327, 1068]. In these cases, however, the structural
biomass at hatching also increases with egg size. This is again consistent with the deb
theory, although the theory does not explain the variation in egg sizes.

Hart [466] studied the effect of separation of the embryonic cells of the sea urchin
Strongylocentrotus droebachiensis in the two-cell stage on the energetics of larval develop-
ment. Both the size and the feeding capacity of the resulting larva were reduced by about
one-half, but the time to metamorphosis is about the same (7 d at 8–13 ◦C). The maximum
clearance rate of dwarf and normal larvae was found to be the same function of the ciliated
band length. Larvae fed at smaller ration had longer larval periods, but food ration hardly
affected size at metamorphosis. Egg size affected juvenile test diameter only slightly.

Armadillo’s typically separate cells in the four-cell stage of the embryo, giving birth
to four identical offspring. Humans rarely do this successfully, then giving birth to four
babies of about 1 kg each, rather than the typical 3 kg. In terms of an effect on length
this reduction amounts to a factor (1/3)1/3 = 0.69. The human growth curve fits the von
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Bertalanffy curve very well, with a von Bertalanffy growth rate of ṙB = k̇Mg
3(e+g)

= 0.123 a−1,

see {282}. We can safely assume that the scaled reserve density was close to its maximum
e = 1 for the post-embryonic stages. Moreover the age at birth is ab = 3lb

gk̇M
= 0.75 a for

humans. If we take a typical maximum adult weight of 70 kg, then the scaled length at birth
equals lb = (3/70)1/3 = 0.35. So the energy investment ratio equals g = lb

abṙB
− 1 = 2.79,

the somatic maintenance rate coefficient k̇M = 3lb
gab

= 0.5 a−1 and the scaled age at birth

τb = abk̇M = 0.375. With these values for g, eb and lb, the scaled cost amounts to u0
E = 0.062

from 2.51. In the case of 4 babies with a reduced length by a factor 0.69, the scaled cost
per baby equals u0

E = 0.02, so summed over the 4 babies this is 1.3 times the amount of a
single baby; not a surprising result, in view of the 4 kg of babies relative to the 3 kg for a
single baby.

If the separation of the cells would affect the required cumulative investment in devel-
opment, however, other predictions result. It is then quite well possible that incubation
is hardly affected, while size at birth is. Standard deb theory correctly predicts that a
reduction of the feeding level elongates the larval period and hardly affects size at puberty
for a particular relationship between the somatic and maturity maintenance costs.

As discussed at {292}, the reserve density capacity [Em] = {ṗAm}/v̇ scales with maxi-
mum structural length of a species. So species with a larger ultimate body size tend to have
a relatively larger reserve capacity. It turned out that for the combination of parameter
values as found for D. magna we have to apply a zoom factor of at least z = 1.87 to arrive
at a minimum maximum body size for which cell separation might be successful.

For k > 1, the structural volume at birth increases after halving, and decreases for
k < 1. Since reserve contributes to weight, the weight at birth is close to half of the
original weight at birth, irrespective of the value of k. The age of the two-cell stage is
probably smaller than τb/3, but the results are very similar.

The removal of an amount of reserve at the start of the development, as is frequently
done [351, 555, 1068, 809, 556], elongates the incubation time (as observed in the gypsy
moth [995]), and reduces the reserve at hatching. This experiment simulates the natural
situation, where the nutritional status of the mother affects to initial amount of reserve.
The pattern is rather similar to that of the separation of cells at an early stage, because
reductions of structure and maturity at an early stage have little effect. The initial amount
of reserve is a U-shaped function of the reserve at birth. The right branch is explained
by the larger amount of reserve at birth, the left branch by the larger age at birth, which
comes with larger cumulative somatic maintenance requirements.

The size of neonates of trout and salmon was found to increase with initial egg size
[314, 478], suggesting that k < 1 for samonids. This also applies to the emu Dromaius
novaehollandiae [305], and probably represents a general pattern.

2.7 Reproduction: excretion of wrapped reserve

Organisms can achieve an increase in numbers in many ways. Sea anemones can split off
foot tissue that can grow into a new individual. This is not unlike the strategy of budding
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yeasts. Colonial species usually have several ways of propagating. Fungi have intricate
sexual reproduction patterns involving more than two sexes. Under harsh conditions some
animals can switch from parthenogenic to sexual reproduction, others develop spores or
other resting phases. It would not be difficult to fill a book with descriptions of all the
possibilities. The standard deb model assumes propagation via eggs; dividing organisms
don’t have an embryo or adult stage, and divide when the maturity exceeds a threshold.
This resets maturity and reduces the amount of structure and reserve.

Energy allocation to reproduction equals

ṗR = (1− κ)ṗC − k̇JEp
H (2.55)

cf (2.18), where EH is now replaced by the constant Ep
H , because the flux to maturity

is redirected to reproduction at puberty, which makes that maturity does not change in
adults. The costs of an egg E0 or a foetus is given in (2.42) or (2.51), so the mean
reproduction rate Ṙ in terms of number of eggs per time equals

Ṙ =
κRṗR
E0

=
κRk̇M
v0
E

(
el2

e+ g
(g + lT + l)− kvpH

)
(2.56)

for v0
E =

u0
E

1−κ , cf Table 2.1.
At constant food density, where e = f , the reproduction rate is, according to (2.56)

proportional to

Ṙ ∝ L2 +
k̇M
v̇
L3 − L2

R (2.57)

where LR is just a constant, which depends on the nutritional status. Comparison of
reproduction rates for different body sizes thus involves three compound parameters, i.e.
the proportionality constant, k̇M/v̇ and LR, if all individuals experience the same food
density for a long enough time. Figure 2.17 illustrates that this relationship is realistic, but
that the notorious scatter for reproduction data is so large that access to the parameter
k̇M/v̇ is poor. The fits are based on guestimates for the maintenance rate coefficient,
k̇M = 0.011 d−1, and the energy conductance, v̇ = 0.433 mm d−1 at 20 ◦C. The main
reason for the substantial scatter in reproduction data is that they are usually collected
from the field, where food densities are not constant, and where spatial heterogeneities,
social interactions, etc., are common.

The reproduction rate of spirorbid polychaetes has been found to be roughly propor-
tional to body weight [498]. On the assumption by Strathmann and Strathmann [1126]
that reproduction rate is proportional to ovary size and that ovary size is proportional to
body size (an argument that rests on isomorphy), the reproduction rate is also expected to
be proportional to body weight. They observed that reproduction rate tends to scale with
body weight to the power somewhat less than one for several other marine invertebrate
species, and used their observation to identify a constraint on body size for brooding inside
the body cavity. The deb theory gives no direct support for this constraint; an allometric
regression of reproduction rate against body weight would result in a scaling parameter
between 2/3 and 1, probably close to 1, depending on parameter values.
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rock goby Gobius paganellus [797]
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Figure 2.17: The clutch size, as a measure for the reproduction rate, as a function of body length
L for two randomly selected species. The data sources and deb-based curves are indicated. The
parameter that is multiplied by L3 in both fits has been guestimated on the basis of common
values for the maintenance rate coefficient and the energy conductance, with a shape coefficient
of δM = 0.1 for the goby and of δM = 0.5 for the frog. Both other parameter values represent
least-squares estimates.

The maximum (mean) reproduction rate for an individual of maximum volume , i.e.
l = 1− lT , amounts to

Ṙm = κRk̇M
(1− lT )2 − kvpH

v0
E

(2.58)

with v0
E =

u0
E

1−κ , where u0
E is given in (2.42) for eggs and in (2.51) for foetuses.

Under conditions of prolonged starvation, organisms can deviate from the standard
reproduction allocation, as is discussed on {113}.

2.7.1 Cumulative reproduction

Oikopleura sports a heroic way of reproduction which leads to instant death. During its
week-long life at 20 ◦C and abundant food, it accumulates energy for reproduction which
is deposited at the posterior end of the trunk; see Figure 2.18. This allows an easy test of
the allocation rule against experimental data. Except for this accumulation of material for
reproduction, the animal remains isomorphic. The total length of the trunk, Lt, including
the gonads, can be partitioned into the true trunk length, L, and the length of the gonads,
LR. Since the reproduction material is deposited on a surface area of the trunk, the
length of the gonads is about proportional to the accumulated investment of energy in
reproduction divided by the squared true trunk length. Fenaux and Gorsky [341] measured
both the true and the total trunk length under laboratory conditions. This allows us to
test the consequences of the deb theory for reproduction.

Let eR(t1, t2) denote the cumulative investment of energy in reproduction between t1
and t2, as a fraction of the maximum energy reserves [Em]Vm. From Table 2.5 we know
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Figure 2.18: The larvacean
Oikopleura grows isomorphi-
cally; during its short life it
accumulates reproductive ma-
terial at the posterior end of
the trunk. The energy in-
terpretation of data on total
trunk lengths should take ac-
count of this. Larvaceans of
the genus Oikopleura are an
important component of the
zooplankton of all seas and
oceans and have an impact as
algal grazers comparable with
that of copepods.

that this investment amounts for adults to

eR(t1, t2) = κR(1− κ)gk̇M

∫ t2

t1

(
g + l(t)

g + e(t)
e(t)l2(t)− l3p

)
dt (2.59)

Oikopleura has a non-feeding larval stage and starts investing in reproduction as soon as it
starts feeding, so Eb

H = Ep
H . From an energetic point of view, it thus lacks a juvenile stage,

and the larva should be classified as an embryo. The total trunk length then amounts to
Lt(t) = L(t) + VReR(0, t)/L2(t). The volume VR is a constant that converts the scaled
cumulative reproductive energy per squared trunk length into the contribution to the total
length. At abundant food, the true trunk length follows the von Bertalanffy growth curve
(2.23) and e(t) = 1. If the data set {ti, L(ti), Lt(ti)}ni=1 is available, the five parameters Lb,
Lm, k̇M , g and VRκR can be estimated in principle. Dry weight relates to trunk length and
reproductive energy as Wd(t) = [WLd]L

3(t) + WRdeR(0, t), where the two coefficients give
the contribution of cubed trunk length and cumulative scaled reproductive energy to dry
weight. If dry weight data are available as well, there are seven parameters to be estimated
from three curves.

Figure 2.19 gives an example. The data appear to contain too little information to
determine both k̇M and g, so either k̇M or g has to be fixed. The more or less arbitrary

choice g = 0.4 is made here. The estimates are tied by the relationship that k̇Mg
1+g

is almost

constant. The high value for the maintenance rate coefficient k̇M probably relates to the
investment of energy in the frequent synthesis of new filtering houses. The cummulative
reproduction fitts the data for D. magna also very well, see Figure 2.10, where k̇M is even
higher, probably related to moulting.

2.7.2 Buffer handling rules

Individuals are discrete units, which implies the existence of a buffer, where the energy
allocated to reproduction is accumulated and converted to eggs at the moment of repro-
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Figure 2.19: The total trunk length, Lt (2 and upper curve, left), the true trunk length, L (3
and lower curve, left) and the dry weight (right) for Oikopleura longicauda at 20 ◦C. Data from
Fenaux and Gorsky [341]. The deb-based curves account for the contribution of the cumulated
energy, allocated to reproduction, to total trunk length and to dry weight. The parameter
estimates are Lm = 822µm, lb = lp = 0.157, k̇M = 1.64 d−1, g = 0.4, VRκR = 0.0379 mm3. Given
these parameters, the weight data give WLd = 0.0543 g cm−3, WRd = 15.2µg. The last data
point is excluded in both data sets because here structure is rapidly converted to gametes, and
maintenance probably ceased. This ‘detail’ is not implemented in the standard deb model.

duction. The translation of reproduction rate into number of eggs in Figure 2.17 assumes
that this accumulation is over a period of one year. The energy content of the buffer is
denoted by ER.

The strategies for handling this buffer are species-specific. Some species (e.g. some
rotifers) reproduce when enough energy for a single egg has been accumulated, others
wait longer and produce a large clutch. If the reproduction buffer is used completely, the
size of the clutch equals the ratio of the buffer content to the energy costs of one young,
κRER/E0, where E0 is given in (2.42). This resets the buffer. So after reproduction ER = 0
and further accumulation continues from there. That is to say, the bit of energy that was
not sufficient to build the last egg can become lost or still remains in the buffer; fractional
eggs do not exist. In the chapter on population dynamics, {344,346}, I show that this
uninteresting detail substantially affects dynamics at low population growth rates, which
occur most frequently in nature. If food is abundant, the population will evolve rapidly
to a situation in which food per individual is sparse and reproduction low if harvesting
processes do not prevent this.

Reproduction is coupled to the moulting cycle in daphnids; neonates in the brood pouch
are released, the old moult is shedded, the new eggs are deposited in the brood pouch and
the new carapax hardens out and the cycle repeats some 1.5 till 2 days later at 20 ◦C.
The moulting cycle is linked to somatic maintenance and, therefore, is independent of the
nutritional status, while the incubation time is. This means that there must be a variable
diapause.

Many species use environmental triggers for spawning at particular times tR. Many
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molluscs pawn if temperature exceeds a threshold value, while [ER] is larger than a thresh-
old value [920]. Other species use food availability as trigger; Pecten maximus spawns just
after an algal bloom. The spectacular synchronisation of reproduction in corals [1052], the
pelagic palolo worms Eunice viridis , South East Asian dipterocarps and bamboo forests
probably reduce losses, because potential predators have little to eat between the events.
Most species are able to synchronise the moment of reproduction with seasonal cycles such
that food availability just matches the demand of the offspring. Clutch size in birds typ-
ically relates to food supply during a two-month period prior to egg laying and tends to
decrease if breeding is postponed in the season [780]. The laying date is determined by a
rapid increase in food supply. Since feeding conditions tend to improve during the season,
internal factors must contribute to the regulation of clutch size. These conclusions result
from an extensive study of the energetics of the kestrel Falco tinnunculus by Serge Daan
and co-workers [269, 755, 779]. I see reproductive behaviour like this for species that cease
growth at an early moment in their life span, as variations on the general pattern that the
deb theory is aiming to grasp. Aspects of reproduction energetics for species that cease
growth are worked out on {277}.

Multiple spawning

Batch preparation in adult anchovy is initiated when temperature in spring exceeds a
threshold (14 ◦C in anchovy [877, 879]); juveniles that mature after this time point have
to wait with batch preparation till the next spring. The batch size expressed to total
amount of reserves is proportional to structural volume; division by the cost per eggs this
translates the number of eggs per spawning, but this involves the reserve density of the
spawner. This means that if the scaled functional response decreases during the spawning
season, the numbers of eggs increases (if length would remain constant).

The rate of batch preparation equals the maximum allocation to reproduction (i.e. as
if e = 1) and batch preparation is ceased for that spawning season if the reproduction
buffer is emptied. The rate still depends on length of the individual and is motivated by
the avoidance of an unbounded accumulation of the reproduction buffer at abundant food
(during the whole year). The spawning season, however, lasts less than a year, so the
rate of batch preparation is divided by the fraction of the year that has good spawning
conditions, which is about 7/12. Only in the last batch of the spawning season the batch
size will be smaller than the target size. If food would be abundant, this rule for spawning
implies that spawning, once initiated, continues till death.

2.7.3 Post-reproductive period

Many animal species have a post-reproductive period. In the context of deb theory, this
is (or can be) implemented as an aspect of ageing, cf {209}, which is taken to be an effect
of Reactive Oxygen Species (ROS). Effects of compounds are, in general, implemented as
affects on particular deb parameters, like effects of temperature. This implementation
requires more state variables than the standard deb model has.
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2.8 Parameter estimation I: numbers, lengths & time

Parameters with energy or moles in their dimension require measurements of energy and
moles, respectively. The compound parameter g is dimensionless, and k̇M has only time in
its dimension, so they don’t need such measurements to be estimated. The deb parameters
that can be extracted from observations on length and reproduction over time at several
food densities are: κ, g, k̇J , k̇M , v̇, U b

H = Eb
H/{ṗAm} and Up

H = Ep
H/{ṗAm}, see [661] and

Figure 2.10. These parameters also determine the initial scaled reserve U0
E = E0/{ṗAm} as

a function of scaled functional response f . A data set using a single measured time-varying
food density would be enough, in principle, but the estimation process is more complex,
compared to a set (> 1) of constant food densities. The food densities only have to be
measured in the latter case if {Ḟm} needs to be obtained. The parameter κR must be
obtained from mass balances; a default value of κR = 0.95 would probably be appropriate
in most cases.

Common practice is that these observations are not always available, and the question
is: what can be done with less data? If observations on just a single food density are
available, we don’t know how size at birth and/or puberty depends on food availability,
and we are forced to assume that k̇J = k̇M .

The (compound) deb parameters that only have time and length in their dimension
can be obtained from growth and reproduction data with functions in DEBtool. These
parameters don’t depend on food level, while the growth and reproduction data do. To
emphasise this, the quantities that depend on food level are printed bold in the following
table:

Growth at a single food level: debtool/animal/get pars g

(Lb,L∞,ab, ṙB at f1) −→ (g, k̇M = k̇J , v̇;U 0
E,U

b
E at f1)

Growth at several food levels: debtool/animal/get pars h(
Lb,L∞, ṙB at f1

Lb,L∞, ṙB at f2

)
−→

(
g, k̇M , k̇J , v̇,

U 0
E,U

b
E at f1

U 0
E,U

b
E at f2

)

Growth at several food levels: debtool/animal/get pars i(
Lb,

L∞, ṙB at f1

L∞, ṙB at f2

)
−→

(
g, k̇M = k̇J , v̇,

U 0
E,U

b
E at f1

U 0
E,U

b
E at f2

)

Growth & reproduction at a single food level: debtool/animal/get pars r

(Lb, Lp,L∞,ab, ṙB, Ṙ∞ at f1)
given κR−→ (κ, g, k̇J = k̇M , v̇, U

b
H , U

p
H ;U 0

E,U
b
E,U

p
E at f1)

Growth & reproduction at several food levels: debtool/animal/get pars s(
Lb,Lp,L∞, ṙB, Ṙ∞ at f1

Lb,Lp,L∞, ṙB, Ṙ∞ at f2

)
given κR−→

(
κ, g, k̇J , k̇M , v̇, U

b
H , U

p
H ,

U 0
E,U

b
E,U

p
E at f1

U 0
E,U

b
E,U

p
E at f2

)
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Growth & reproduction at several food levels: debtool/animal/get pars t(
Lb, Lp,

L∞, ṙB, Ṙ∞ at f1

L∞, ṙB, Ṙ∞ at f2

)
given κR−→

(
κ, g, k̇J = k̇M , v̇, U

b
H , U

p
H ,

U 0
E,U

b
E,U

p
E at f1

U 0
E,U

b
E,U

p
E at f2

)

The unscaled reserve E and maturity EH require energies, and so knowledge of {ṗAm}.
This can be obtained from observations on the feeding process and the mass at zero and
birth. These extra observations give access to more parameters, and are discussed at {163}.
DEBtool also has functions iget pars that do the inverse mapping from (compound) deb
parameters to easy-to-measure quantities. This can be used for checking the mapping and
testing against empirical data.

2.9 Summary of the standard deb model

The standard deb model applies to an isomorph that feeds on a single type of food and has
a single reserve and a single structure. In this chapter we used time, length and energy only;
this is not always most convenient. The model has three state variables: structural volume
V , reserve energy E and maturity, expressed in terms of cumulative energy investment, EH .
Maturity has no mass or energy, however, and represents information. The input variable
is food density X(t), and temperature T (t) modifies all rates (which can be recognised
by the dots); they typically vary in time in harmony. The model has twelve individual-
specific parameters: specific searching rate {Ḟm}, assimilation efficiency κX , maximum
specific assimilation rate {ṗAm}, energy conductance v̇, allocation fraction to soma κ,
reproduction efficiency κR, volume-specific somatic maintenance cost [ṗM ], surface area-
specific somatic maintenance cost {ṗT}, maturity maintenance rate coefficient k̇J , specific
cost for structure [EG], maturity at birth Eb

H , maturity at puberty Ep
H . Typical parameter

values are discussed in Chapter 8.
The ten assumptions that fully specify the standard deb model are listed in Table

2.4. If the somatic and maturity rate coefficients are equal, birth and puberty occur at
fixed amounts of structure, so that there is no longer a need for maturity as an explicit
state variable; otherwise the scaled length at birth lb and lp are not constant. Other deb
models are modified versions of the standard deb model to include dividing organisms,
changing of shapes, multiple types of food, reserve and structure, adaptation, etc. Effects
of compounds, such as ageing, need more state variables.

Table 2.5 gives the resulting energy fluxes, called powers, as functions of the scaled
energy density e and scaled length l, where the scaled length at birth lb and puberty lp
are can depend on the food history if k̇J 6= k̇M . The relationships between compound
and primary parameters are summarised in Table 3.3. Notice that all powers are cubic
polynomials in the (scaled) length, while the weight coefficients depend on (scaled) reserve
density.

The mobilisation power equals the sum of the non-assimilative powers, and κ times the
mobilisation power equals the sum of somatic maintenance and growth:

ṗC = ṗS + ṗG + ṗJ + ṗR with κṗC = ṗS + ṗG (2.60)
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Table 2.4: The assumptions that specify the standard deb model quantitatively.

1 The amounts of reserve, structure and maturity are the state variables of the individual;
reserve and structure have a constant composition (strong homeostasis) and maturity rep-
resents information.

2 Substrate (food) uptake is initiated (birth) and allocation to maturity is redirected to
reproduction (puberty) if maturity reaches certain threshold values.

3 Food is converted into reserve and reserve is mobilised at a rate that depends on the state
variables only to fuel all other metabolic processes.

4 The embryonic stage has initially a negligibly small amount of structure and maturity (but
a substantial amount of reserve). The reserve density at birth equals that of the mother at
egg formation (maternal effect). Foetuses develop in the same way as embryos in eggs, but
at a rate unrestricted by reserve availability.

5 The feeding rate is proportional to the surface area of the individual and the food handling
time is independent of food density.

6 The reserve density at constant food density does not depend on the amount of structure
(weak homeostasis).

7 Somatic maintenance is proportional to structural volume, but some components (osmosis
in aquatic organisms, heating in endotherms) are proportional to structural surface area.

8 Maturity maintenance is proportional to the level of maturity

9 A fixed fraction of mobilised reserves is allocated to somatic maintenance plus growth, the
rest to maturity maintenance plus maturation or reproduction (the κ-rule).

10 The individual does not change in shape during growth (isomorphism). This assumption
applies to the standard deb model only.

A three-stage individual invests either in maturation, or in reproduction. This is why these
powers have the same index, the stage determines the destination.

The dissipating power excludes assimilation and somatic growth overheads by definition
and amounts to

ṗD = ṗS + ṗJ + (1− κR)ṗR (2.61)

where κR = 0 for the embryo and juvenile stages. Reproduction power ṗR has a special
status because reserve of the adult female are converted into reserve of the embryo(s) which
have the same composition; (1− κR)ṗR is dissipating and κRṗR returns to the reserve, but
now of the embryo.
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Table 2.5: The scaled powers ṗ∗/{ṗAm}L2
m as specified by the standard deb model for an

isomorph of scaled length l = L/Lm and scaled reserve density e = [E]/[Em] at scaled functional
response f ≡ X

K+X , where X denotes the food density and K the saturation constant. The
powers ṗX and ṗP for ingestion and defecation occur in the environment, not in the individual.
Assimilation is switched on at scaled length lb, and allocation to maturation is redirected to
reproduction at l = lp. Compound parameters: allocation fraction κ, investment ratio g, somatic
maintenance rate coefficient k̇M , scaled heating length lT . Implied dynamics for e > l > lb:
d
dte = f−e

l k̇Mg and d
dt l = e−l−lT

1+e/g
k̇M
3 .

embryo juvenile adult
power
{ṗAm}L2

m
0 < l ≤ lb lb < l ≤ lp lp < l < 1

assimilation, ṗA 0 fl2 fl2

mobilisation, ṗC el2 g+lg+e el2 g+l+lTg+e el2 g+l+lTg+e

somatic maintenance, ṗS κl3 κl2(l + lT ) κl2(l + lT )
maturity maintenance, ṗJ (1− κ)l3 (1− κ)l3 (1− κ)l3p
growth, ṗG κl2 e−l

1+e/g κl2 e−l−lT1+e/g κl2 e−l−lT1+e/g

maturation, ṗR (1− κ)l2 e−l
1+e/g (1− κ)l2 e−l+lT e/g1+e/g 0

reproduction, ṗR 0 0 (1− κ)(l2 e−l+lT e/g1+e/g + l3 − l3p)
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Chapter 3

Energy, compounds & metabolism

Metabolism is about the transformation of compounds by organisms; some aspects of this
process can only be understood by considering the abundance of the various compounds,
and deal with the links with energy and entropy. This chapter discusses the basic concepts
for these links and considers a framework for the quantification of metabolic rates. Like
the first chapter, this is a concepts-chapter to prepare for the further development of deb
theory.

3.1 Energy & entropy

Energy fluxes through living systems are difficult to measure and even more difficult to
interpret. Let me briefly mention some of the problems.

Although it is possible to measure the enthalphy of food through complete combustion,
we need the free energy to quantify the amount of (metabolic) work that can be done
with it. Food has a dual role in providing the capacity to do work as well as elementary
compounds for anabolism. Another problem is that of digestive efficiency. The difference
between the energy contents of food and faeces is just an upper boundary for the uptake by
the animal, because there are energy losses in the digestion process. Part of this difference
is never used by the organism, but by the gut flora instead. Another part is lost through
enhanced respiration coupled to digestion, especially of proteins, called the ‘heat increment
of feeding’, which is discussed on {146}.

Growth involves energy investment, which is partially preserved in the new biomass. In
addition to the energy content of the newly formed biomass, energy is invested to give it
its structure. Part of this energy is lost during growth and can be measured as dissipating
heat. This heat can be thought of as an overhead of the growth process. The energy that is
fixed in the new biomass is present partly as energy bearing compounds. Cells are highly
structured objects and the information contained in their structure is not measured by
bomb calorimetry.

The thermodynamics of irreversible or non-equilibrium processes offers a framework for
pinpointing the problem; see for instance [446, 669]. While bomb calorimetry measures the
change in enthalpy, Gibbs free energy is the more useful concept for quantifying the energy
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performance of individuals. Enthalpy and Gibbs free energy are coupled by the concept
of entropy: the enthalpy of a system equals its Gibbs free energy plus the entropy times
the absolute temperature. This basic relationship was formulated by J. W. Gibbs in 1878.
The entropy depends on the (local) chemical environment, including the spatial structure
and the transformations that are going on. It is, therefore, hard to quantify directly.

The concept of strong homeostasis offers a solution to the problem of defining and
measuring free energies and entropies. This solution is based on the assumption that the
free energy per C-mole of structural biomass and of reserves is constant, i.e. it does not
depend on the (absolute) amounts. Most chemists probably find this assumption offensive,
since free energies depend on the concentration of a compound in spatially homogeneous
systems. The reason for the dependence is that the molecules interfere, which affects
their ability to do work in the thermodynamic sense. Yet, I think that the assumption
is more than just a conceptual trick to solve problems; it is the way living cells solve the
problem of a compound’s capacity to do (chemical) work depending on the concentration.
If this capacity changes substantially as a function of the changing cell composition, the
cell would have an immensely complex problem to solve when regulating its metabolic
processes. It is not just a coincidence that cells use large amounts of polymers (i.e. proteins,
carbohydrates and lipids) to store bulk compounds, and small amounts of monomers to run
their metabolism. Cells keep the concentration of monomers low and relatively constant,
and prevent any interference that makes the monomers’ capacity to do work depend on
their abundance. They also solve their osmotic problems this way. Their osmotic pressure
equals that of seawater, which is frequently seen as a relic of the evolutionary process: life
started in the sea.

I assume that the Gibbs relationship still applies in the complex setting of living or-
ganisms. If the free energy per C-mole does not change, then neither will the entropy per
C-mole, because the enthalpy per C-mole is constant. The Gibbs relationship can be used
to obtain the entropy and the free energy of complex organic compounds, such as food,
faeces, structural biomass and reserves, as is worked out on {157}. The mean specific
Gibbs free energy (i.e. chemical potential) of biomass is −67 kJ C-mol−1 (pH= 7, 105 Pa
at 25 ◦C, thermodynamic reference) or +474.6 kJ C-mol−1 (pH= 7, combustion reference)
[485]. Since biomass composition is not constant, such crude statistics are of limited value
and a more subtle approach is necessary to quantify dissipating heat. We will quantify
entropy of reserve(s) and structure(s) via the entropy balance: the dynamics of what goes
in and out from a living individual. Since the entropy balance rests on the energy bal-
ance, and the energy balance rests on the mass balance, a detailed discussion is delayed to
chapter 4, see {157}.

3.2 Body mass & composition

3.2.1 Mass quantified as gram

Common practice is to take wet weight proportional to physical volume, Ww = dV wVw.
This mapping in fact assumes that the compositions of structural mass and reserves are
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identical. Much literature is based on this relationship or on the similar one for dry weights:
Wd = dV dVw.

The contribution made by reserves, relative to that made by structure, to size measures
depends on their nature. For example, energy allocated to reproduction, but temporarily
stored in a buffer, will contribute to dry weight, but much less to wet weight [394]. While
wet weight is usually easier to measure and can be obtained in a non-destructive way,
dry weight has a closer link to chemical composition and mass balance implementations.
I show on {138} how to separate structural body mass from reserves and determine the
relative abundances of the main elements for both categories on the basis of dry weight.

The relationships between physical volume Vw, wet weight Ww and dry weight Wd with
structural body volume V , non-allocated energy reserves E, and energy reserves allocated
to reproduction ER are

Vw = V + (E + ER)
wE
dEµE

ER=0
= V (1 + ωV e) for ωV =

[Em]

dE

wE
µE

(3.1)

Ww = dV V + (E + ER)
wE
µE

ER=0
= dV V (1 + ωwe) for ωw =

[Em]

dV

wE
µE

(3.2)

Wd = dV dV + (E + ER)
wEd
µE

ER=0
= dV dV (1 + ωde) for ωd =

[Em]

dV d

wEd
µE

(3.3)

where d∗ are densities, which convert volumes to weights, µE the chemical potential of
reserves (energy per C-mole), and w∗ are molecular weights (weight per C-mole, see {81}).
The parameters ω∗ weigh the contribution of reserve to weight.

The contribution of reserves to weight has long been recognised, and is used to indicate
the nutritional condition of fish and birds [896]. A series of coefficients has been proposed,
e.g. (weight in g)×(length in cm)−1, known as the condition factor, Hile’s formula or the
ponderal index [11, 382, 507, 538].

Although the relationship between weight and reserves plus structural volume is more
accurate than a mere proportionality, it is by no means ‘exact’ and depends on species-
specific details. The gut contents of earthworms, shell of molluscs, exoskeleton of crus-
taceans do not require maintenance and for this reason they should be excluded from
biovolume and weight for energetic purposes. The contribution of inorganic salts to the
dry weight of small marine invertebrates is frequently substantial. Because weights com-
bine structural and reserve mass, they should not be used to set up a theory of substrate
uptake and use, and their role is restricted to link model predictions to data. The problem
can be illustrated by the observation that the weight-specific maintenance costs of fungi
and trees are extremely low. This does not point, however, to exceptional metabolic quali-
ties, but to the fact that their weights include products (cell wall material, wood), that do
not require maintenance. The production rates are quantified by the deb theory, {159},
which allows weights to be decomposed into the contributions from structure, reserves and
products.

Figure 3.1 illustrates an interpretation problem in the measurement of the ash-free dry
weight of cheatognats. Length measurements follow the expected growth pattern closely
when food is abundant, while the description of weight requires an ad hoc reasoning,
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Figure 3.1: The ash-free dry weight and the length of the cheatognat Sagitta hispida. Data
from Reeve [949, 950]. The curve through the lengths is L(t) = L∞ − (L∞ − L0) exp(−ṙBt).
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Figure 3.2: The weight to the power 1/3 and the head length of the long-nosed bandicoot
Perameles nasuta. Data from Lyne [723]. The curves are again L(t) = L∞−(L∞−L0) exp(−ṙBt).

possibly involving gut contents. Although quickly said, this is an important argument in
the use of measurements within a theoretical context: if an explanation that is not species-
specific competes one that is, the first explanation should be preferred if the arguments are
otherwise equally convincing. Since energy reserves contribute to weight and are sensitive
to feeding conditions, weights are usually much more scattered, in comparison to length
measurements. This is illustrated in Figure 3.2.

The determination of the size of an embryo is complicated by the extensive system of
membranes that the embryo develops in order to mobilise stored energy and materials and
the decrease in water content during development [1249]. In some species, the embryo can
be separated from ‘external’ yolk. As long as external yolk is abundant, the energy reserves
of the embryo without that yolk, if present at all, will, on the basis of deb theory, turn out
to be a fixed fraction of wet and dry weight, so that the embryo volume is proportional
to weight. Uncertainty about the proportionality factor will hamper the comparison of
parameter values between the embryonic stage and the post-embryonic one.
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Weights play no role in the deb theory itself, but they are important for relating
theoretical predictions to measurements.

3.2.2 Mass quantified as C-mole

Microbiologists frequently express the relative abundances n∗W of the elements hydrogen,
oxygen and nitrogen in dry biomass relative to that of carbon, and conceive the combined
compound so expressed as a kind of abstract ‘molecule’ that can be counted and written
as CHnHWOnOWNnNW . So one mole of glucose, C6H12O6, equals 6 C-moles of glucose. As
is standard in the microbiological literature, the concept of the C-mole is extended to
(simple) substrates, the difference from an ordinary mole being that it always has at most
1 C-atom.

While mass quantified as gram does not consider the chemical composition, mass quan-
tified as C-mole rapidly become less valuable if the chemical composition varies.

I denote structural mass in terms of C-moles by MV , reserve mass by ME, and the ratio
of reserve to structural mass by mE = ME/MV . Table 3.3 on {91} gives useful conversions
between volumes, masses and energies.

3.2.3 Composition of biomass

The aqueous fraction of an organism is important in relation to the kinetics of toxicants.
Water is treated just like any other compound in the decomposition of biomass. The
aqueous weight is the difference between wet weight and dry weight, so WH = Ww −Wd.
It can be written as WH = [WH ]V , for

[WH ] = dV −dV d + (wE−wEd)(E+ER)/µE = dV −dV d + (wE−wEd)(e+ eR)[MEm] (3.4)

where [MEm] = [Em]/µE is the maximum molar reserve density of juveniles and adults.
The volume occupied by water is VH = WH/dH ' (dV − dV d)V/dH , where dH stands for
the specific density of water, which is close to 1 g cm−3. The aqueous fraction of body
volume VH/Vw typically takes values between 0.7 and 0.9.

For each C-atom in dry biomass, there are typically nHW ' 1.8 H-atoms, nOW ' 0.5
O-atoms and nNW ' 0.2 N-atoms for a randomly chosen micro-organism [982]. This gives a
mean degree of reduction of 4.2 and a ‘molecular weight’ of wW = 24.6 g mol−1. The latter
can be used to convert dry weights into ‘C-moles’. The relative abundances of elements in
biomass-derived sediments largely remain unaltered on a geological time scale, apart from
the excretion of water. The Redfield ratio C:N:P = 105:15:1 is popular [948] in geology and
oceanography, or for silica bearing organisms such as diatoms, radiolarians, silico-flagellates
and (some) sponges C:Si:N:P = 105:40:15:1. This literature usually excludes hydrogen and
oxygen, because their abundances in biomass-derived sediments change considerably during
geological time. Other bulk elements in organisms are S, Cl, Na, Mg, K and Ca, while
some 14 other trace elements play an essential role, as reviewed by Fraústo da Silva and
Williams [369]. The ash that remains when dry biomass is burnt away is rich in these
elements. Ash weight typically amounts to some 5 % of dry weight only, and the elements
C, H, O and N comprise more than 95 % of the total dry weight. I focus on these four
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elements only, which happen to be the four lightest of the periodic table that can make
covalently bounded compounds [201]. The inclusion of more elements is straightforward;
as stated before, some taxa require special attention on this point.

Reserves and structural mass are thought of as generalised compounds: rich mixtures
of compounds that do not change in chemical composition. The concept rests fully on
the strong homeostasis assumption. If a ‘molecule’ of structural biomass is denoted by
CHnHV OnOV NnNV and a ‘molecule’ of energy reserves by CHnHEOnOENnNE , then their rel-
ative abundances in biomass consisting of structural mass MV , reserves ME and reserves
allocated to reproduction MER are given by

n∗W =
n∗VMV + n∗E(ME +MER)

MV +ME +MER

=
n∗V + n∗E(mE +mER)

1 +mE +mER

(3.5)

where ∗ stands for H, O or N and mE = ME/MV and mER = MER/MV are molar reserve
densities.

The molar weights of structural biovolume and energy reserves are given by

wV ' 12 + nHV + 16nOV + 14nNV gram mol−1

wE ' 12 + nHE + 16nOE + 14nNE gram mol−1

since the contribution of the other elements to weight is negligibly small. The problem of
uncovering the relative abundances n∗V and n∗E from measurements of n∗W , is discussed
on {138}.

Similarly we have ME = µ−1
E E and MV = [MV ]V , where [MV ] denotes the conversion

coefficient from structural volume to C-mole. Using a specific density of wet mass of dV = 1
g cm−3, a wet weight - dry weight ratio of 10 and a molecular weight of wV = 24.6 g mol−1

for structure, a typical value for [MV ] would be 4.1 mmol cm−3.
We need the link between generalised and “pure” chemical compounds in applications

of isotopes, for instance. Like generalised compounds, we quantify organic compounds in
terms of C-moles. Suppose that compound i is present in MVi (C-)moles in structure,
for example. So structure has mass MV =

∑
iMVinCVi , where nCVi is either 0 (anorganic

compounds) or 1 (organic compounds). The chemical indices of the generalised compound
relate to that of the chemical compounds as

n∗V =

∑
iMVin∗Vi∑
iMVinCVi

=
∑
i

win∗Vi with wi =
MVi

MV

and i ∈ {C,H,O,N} (3.6)

This decomposition can also be done for other generalised compounds, such as reserve
and food. Notice that any chemical compound can potentially partake in all generalised
compounds and all chemical elements can be included.

The delineation of more than one type of reserve (or structural mass) comes with
additional contributions to mass and weight. For n reserves, a single structural mass, and
no reserves allocated to reproduction, (total) biomass can be decomposed into the masses
(in C-moles) {ME1 ,ME2 , · · · ,MEn ,MV } which, in combination with maturity, define the
state of the organism. The strong homeostasis assumption states that these masses do
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not change in chemical composition and, therefore, they can be treated as generalised
compounds.

The wet weight of the n-reserves organism amounts to Ww = wVMV +
∑
iwEiMEi ,

where the w’s stand for the C-molar weights. The dry weight of this organism can be
expressed similarly as Wd = wV dMV +

∑
iwEidMEi , where the w∗d’s represent the C-molar

weights, after removal of water. This can be done in this way because the assumption that
neither reserves nor structural biomass can change in composition means that their water
fractions are constant.

The weight of any particular chemical compound Y in the n-reserves organism can
be expressed as WY = wY (nY VMV +

∑
i nY EiMEi), where wY is the molar weight of the

compound Y and the n’s denote the molar amounts of the compound per C-mole of reserve
or structural biomass. This again is a consequence of the strong homeostasis assumption.
The n’s are zero if the compound does not happen to occur in that biomass components.
The density of the compound in biomass can be expressed as WY /Wd on the basis of
weights, or as WY (wYMV + wY

∑
iMEi)

−1 on the basis of moles per mole of carbon.
The chemical composition of biomass becomes increasingly flexible with the number of

delineated reserves, and depends on the nutritional conditions of the environment. In terms
of relative frequencies of chemical elements, all restrictions in the composition of (total)
biomass disappear if the number of reserves exceeds the number of chemical elements minus
one.

3.3 Classes of compounds in organisms

Chemical elements obey conservation laws, not compounds, and we need this to quantify
fluxes of compounds. Two sets of chemical compounds partake in three (sets of) transfor-
mations:

compounds → minerals, M org. comp. O
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assimilation A + + − + − + +
growth G + + − + + −
dissipation D + + − + −

The organic compounds V and E constitute the individual, the other organic compounds
and the minerals define the chemical environment of the individual. The signs indicate ap-
pearance (+) or disappearance (−); a blank indicates that the compound does not partake
in that transformation.

The following subsections briefly discuss some features of the different compounds to
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supplement earlier introductions.

3.3.1 Mineral compounds

Dioxygen & carbon dioxide

Most organisms use dioxygen as an electron acceptor in the respiration chain, the final
stage in the oxidation of pyruvate, see Figure 3.11. If an electron acceptor is not available,
a substantial amount of energy cannot be extracted from pyruvate, and metabolic products
have to be excreted. Photosynthetic bacteria, algae and plants not only use dioxygen, but
also produce dioxygen, see {184,410}. This production exceeds the consumption if light
intensity is high enough.

Most organisms consume and excrete carbon dioxide, see {409}, consumption exceeds
excretion in photosynthetic organisms in the light, and in bacteria that use methane as
substrate.

Water

Water is formed metabolically from other compounds. This rate of water production is
studied first; the direct exchange of water with the environment via drinking and evapo-
ration, and its use for transport, are discussed on {149}.

Nitrogenous waste

From an energy perspective, the cheapest form of nitrogenous waste is ammonia. Since
ammonia is rather toxic at high concentrations, terrestrial animals usually make use of more
expensive, less toxic nitrogenous wastes. Terrestrial isopods are an exception; Dutchmen
call them ‘pissebed’, a name referring to the smell of ammonia that microbes produce
from urine in a bed. Terrestrial eggs have to accumulate the nitrogenous waste during
development; they usually make use of even more expensive, less soluble nitrogenous wastes
that crystallise outside the body, within the egg shell. Table 3.1 lists the different chemical
forms of nitrogenous waste. The nitrogenous waste (urine) includes its water in its chemical
‘composition’, for simplicity’s sake.

Nitrogenous waste mainly originates from protein turnover, which is part of to somatic
maintenance. A second origin of nitrogenous waste can be assimilation, when metazoans
feed on protein-rich food, and nitrogen is excreted in the transformation of food to reserves.
The (energy/carbon) substrate for micro-organisms can be poor in nitrogen, such that
nitrogen must be taken up from the environment, rather than excreted. Though the term
nitrogenous waste not longer applies, this does not matter for the analysis; the sign of the
flux defines uptake or excretion. Bacteria that live on glucose as an energy source will have
negative nitrogenous waste.
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Table 3.1: Various nitrogenous wastes that animals use [1266].
nitrogenous waste formula solubility

(mM) in
se

ct
s

cr
us

ta
ce

an
s

fis
h

bi
rd

s

m
am

m
al

s

ammonia NH3 52.4 ◦ ◦
amm. bicarbonate NH4HCO3 1.5 ◦
urea CO(NH2)2 39.8 ◦
allantoin C4H6O3N4 0.015 ◦
allantoic acid C4H8O4N4 slight ◦
uric acid C5H4O3N4 0.0015 ◦
sodium urate C5H2O3N4Na2 0.016 ◦ ◦
potassium urate C5H2O3N4K2 slight ◦ ◦
guanine C4H5ON5 0.0013 ◦ ◦
xanthine C5H4O2N4 0.068 ◦ ◦
hypoxanthine C5H4ON4 0.021 ◦ ◦
arginine C6H14O2N4 3.4 ◦ ◦

3.3.2 Organic compounds

I here briefly introduce the chemical aspects of food, products, and storage materials.
Observed changes in the elemental composition of the body mass, as a function of growth
rate, or starvation time, can be used to obtain the elemental composition of reserves and
structure, as is discussed on {138}.

Food

Food for micro-organisms is usually called ‘substrate’, which can be very simple chemical
compounds, such as glucose. Most animals feed on other organisms, i.e. complex substrates.
For simplicity’s sake, I assume that the composition of food is constant, but this is not
essential; the composition of faeces is taken to be constant as a consequence. This condition
will be relaxed on {180}.

Products

Faeces is the remains of food after it has passed through the gut. Animals add several
products to these remains, such as bile and enzymes that are excreted in the gut, and
excreted micro-flora formed in the gut. Mammals in particular also add substantial quan-
tities of methane, which is produced by the bacterial gut flora, see {410}; the Amazonian
hoatzins (Opisthocomus) smell like cows, because these birds have a similar gut flora and
digestion. I include these products in faeces, since these excretions are tightly coupled to
the feeding process.

The ‘faeces’ of micro-organisms is usually called ‘metabolic products’. Sometimes, sub-
strate molecules are taken up entirely, and completely metabolised to carbon dioxide and
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water; in this case no faeces is produced. In other cases products are formed that generally
do not originate from substrate directly, but indirectly with a more complex link to the
metabolic machinery of the organism. The role of such products is then similar to that
of nitrogenous wastes in animals. I cope with these situations by including such products
in the overheads of the three basic energy fluxes, the assimilation flux, the dissipating
flux and the somatic growth flux. The number of different products can be extended in a
straightforward manner, see {159}.

Two chemically related organic products changed the world: chitine (C16H26O10N2)n
because of its role in the organic carbon pump, cf {409}, and cellulose (C12H20O10)n be-
cause of its accumulation in soils, cf {408}, and its transformation to coal. Both prod-
uct serve mechanical support functions (carapax and wood respectively) and are difficult
to degrade (no animal can degrade cellulose without help of bacteria and/or fungi), so
they accumulate in the environment (and change e.g. the water retention properties of
soils). Opisthokonts (= fungi + animals) produce chitine and most bikonts, which com-
prise all eukaryotes except amoebas and opisthokonts, and some amoebas (Dictyostelium)
produce cellulose. Eukaryotic cellulose production originates from cyanobacteria [843].
Two opisthokont taxa produce cellulose, however, rather than chitine: Urochordates [757]
and Aspergillus fumigastus [843]. They got this ability from α-proteobacteria via lateral
gene transfer. Deuterostomes don’t produce chitine but calcium carbonate and tetrapods
produce keratine for mechanical support. Other well-known animals products are mucus,
hair, scales, otoliths cf {154,174}).

If dioxygen is poorly available, a variety of products are formed and released in the
environment:

product chemical formula rel. freq. µ

ethanol CH3CH3O CH3O0.5 657
lactate CH3CH2OCHO2 CH2O 442
succinate CHO2CH2CH2CHO2 CH1.5O 376
propionate CH3CH2CHO2 CH2O0.66 493
acetate CH3CHO2 CH2O 442

where the last column gives the Gibbs energy of formation in kJ/ C-mole at pH = 7 in the
combustion frame of reference [484]. The kind of product depends on the species and the
environmental conditions. The quantitative aspects are discussed on {160}.

Storage materials

Storage material can be classified into several categories; see Table 3.2. These categories do
not point to separate dynamics. Carbohydrates can be transformed into fats, for instance,
see Figure 3.11. Most compounds have a dual function as a reserve pool for both energy
and elementary compounds for anabolic processes. For example, protein stores supply
energy, amino acids and nitrogen. Ribosomal rna (rrna) catalyses protein synthesis. In
rapidly growing cells such as those of bacteria in rich media, rrna makes up to 80 % of
the dry weight, while the relative abundance in slowly growing cells is much less. For this
reason, it should be included in the storage material. I show how this point of view leads
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Table 3.2: Some frequently used storage materials in heterotrophs.

phosphates
pyrophosphate bacteria
polyphosphate bacteria (Azotobacter, Acinetobacter)

polysaccharides
β-1,3-glucans

leucosin Chrysomonadida, Prymnesiida
chrysolaminarin Chrysomonadida
paramylon Euglenida

α-1,4-glucans
starch Cryptophyceae, Dinozoa, Volvocida, plants
glycogen blue green bacteria, protozoa, yeasts, molluscs
amylopectin Eucoccidiida, Trichotomatida, Entodiniomorphida

trehalose fungi, yeasts

lipoids
poly β hydroxybutyrate bacteria
triglyceride oleaginous yeasts, most heterotrophs
wax marine animals

proteins most heterotrophs
ovalbumin egg-white protein
casein milk protein (mammals)
ferritin iron storage in spleen (mammals)
cyanophycine bluegreen bacteria
phycocyanin bluegreen bacteria

ribosomal rna all organisms

to realistic descriptions of peptide elongation rates and growth-rate-related changes in the
relative abundance of rrna, {139}. There is no requirement for storage compounds to be
inert.

Waxes can be transformed into fats (triglycerides) and play a role in buoyancy, e.g. of
zooplankton in the sea [84]. By increasing their fat/wax ratio, zooplankters can ascend
to the surface layers, which offer different food types (phytoplankton), temperatures and
currents. Since surface layers frequently flow in directions other than deeper ones, they
can travel the Earth by just changing their fat/wax ratio and stepping from one current
to another. Wax ester biosynthesis may provide a mechanism for rapidly elaborating lipid
stores from amino acid precursors [1012].

Unsaturated lipids, which have one or more double bonds in the hydrocarbon chain, are
particularly abundant in cold water species, compared with saturated lipids. This possibly
represents a homeo-viscous adaptation [1049].
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Figure 3.3: Some storage deposits are really eye-catching.

The amount of storage materials depends on the feeding conditions in the (recent)
past, cf. {35}. Storage density, i.e. the amount of storage material per unit volume of
structural biomass, tends to be proportional to the volumetric length for different species,
if conditions of food (substrate) abundance are compared, as explained on {292} and tested
empirically on {303}. This means that the maximum storage density of bacteria is small.
However, under conditions of nitrogen limitation for instance, bacteria can become loaded
with energy storage materials such as polyphosphate or polyhydroxybutyrate, depending on
the species, see {193}. This property is used in biological plastic production and phosphate
removal from sewage water. Intracellular lipids can accumulate up to some 70 % of the cell
dry weight in oleaginous yeasts, such as Apiotrichum [940, 1287]. This property is used
in the industrial production of lipids. The excess storage is due to simultaneous nutrient
limitation that is associated with what is called ‘luxurious’ uptake.

Storage deposits

Lipids, in vertebrates, are stored in cell lysosomes in specialised adipose tissue, which
occurs in rather well-defined surface areas of the body. The cells themselves are part of
the structural mass, but the contents of the vacuole are part of the reserves, cf {389}.
In molluscs specialised glycogen storage cells are found in the mantle [490]. The areas
for storage deposits are usually found scattered over the body and therefore appear to be
an integral part of the structural body mass, unless super-abundant; see Figure 3.3. The
occurrence of massive deposits is usually in preparation for a poor feeding season. The
rodent Glis glis is called the ‘edible doormouse’, because of its excessive lipid deposits
just prior to dormancy, {119}. Stewed in honey and wine, doormice were a gourmet meal
for the ancient Romans. Tasmania’s yellow wattlebird Anthochaera paradoxa accumulates
lipid deposits during the rich season to the extent that it has problems with flight; it then
becomes exceedingly wary for a good reason [431].
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Figure 3.4: Colony members of honey ants, Myrmecocys-
tus, show function differentiation. The energy storage func-
tion is taken by a guild that can be considered as the adipose
tissue of the ant colony.

Figure 3.5: Plants can store large amounts of carhohy-
drates and/or water.

In most invertebrate groups, storage deposits do not occur in specialised tissues, but
only in the cells themselves in a quantity that relates to requirements. So reproductive
organs tend to be rich in storage products. The mesoglea of sea-anemones, for instance, has
mobile cells that are rich in glycogen and lipid, called ‘glycocytes’, which migrate to sites
of demand during gametogenesis and directly transfer the stored materials to developing
oocytes [1049]. Glycogen that is stored for a long time typically occurs in rosettes, and for
short time in particles [512, 1049]. A guild of honey ants specialises in the storage function
for the colony, not unlike adipose tissue in vertebrates, see Figure 3.4.

The recently discovered anaerobic sulfur bacterium Thiomargarita namibiensis [1033]
accumulates nitrate to up 0.8 M in a vacuole of up to 750 µm in diameter; it can survive
over 2 years without nitrate or sulfur at 5 ◦C. The bacterium Acinetobacter calcoaceticus
accumulates polyphosphates to spectacular levels under carbon-limiting aerobic conditions,
and releases phosphates under energy-limiting anaerobic conditions, which is used techni-
cally in sewage water treatment, see {193}.

Since autotrophs acquire energy and the various nutrients independently from each
other, they usually store possibly limiting substrates independently in specialised or-
ganelles: the vacuoles [694]. Carbohydrate (starch) and water storage are most bulky
in plants that live in seasonal environments, see Figure 3.5.
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3.4 Conversions of energy, mass & volume

There is not a single most useful notation for energetics. Volumes are handy in relation
to surface areas, which are needed for the process of food/substrate uptake in the deb
model, while moles are handy for mass fluxes and mass conservation. Table 3.3 gives
conversions between volume-based, mole-based and energy-based quantities, some of which
are introduced in the next chapter. The specific fluxes j∗ relate to the total fluxes J̇∗ by
j∗ = J̇∗/MV , but contrary to the total fluxes, they are always taken to be non-negative.
Because of strong homeostasis [MV ] = MV /V is a constant.

The three state variables for maturity, reserve and structure of the standard deb
model can be written as maturity energy, reserve energy density and structural volume
(EH , [E], V ), with dynamics given in (2.18), (2.10) and (2.21), or in dimensionless scaled
variables (eH , e, l) with dynamics given in (2.31), (2.11) and (2.22), or in masses (MH ,mE,MV )
using Table 3.3:

d

dt
MH = (MH < Mp

H)
(

(1− κ)mEMV (
v̇

L
− ṙ)− k̇JMH

)
with L =

(
MV

[MV ]

)1/3

(3.7)

d

dt
mE = jEAm(f −mE/mEm) with jEAm = {J̇EAm}M−1/3

V [MV ]−2/3 (3.8)

d

dt
MV = MV ṙ with ṙ =

jEAm(mE/mEm − lT )− jEM/κ
mE + yEV /κ

(3.9)

where yEV denotes the moles of reserves required to synthesise a mole of structural mass.
Equation (3.8) shows that the parameter mEm can be interpreted as the maximum value
of the molar reserve density mE. The scaled heating length lT is zero for most ectotherms.

The twelve primary parameters expressed in a mass-length-time frame are: specific
searching rate {Ḟm}, yield of reserve on food yEX , maximum specific assimilation rate
{J̇EAm}, energy conductance v̇, allocation fraction to soma κ, reproduction efficiency κR,
volume-specific somatic maintenance cost [J̇EM ], surface area-specific somatic maintenance
cost {J̇ET}, maturity maintenance rate coefficient k̇J , yield of structure on reserve yV E,
maturity at birth M b

H , maturity at puberty Mp
H .

3.5 Macrochemical reaction equations

Suppose that substrates S = (S1, S2, · · ·) and products P = (P1, P2, · · ·) partake in a
transformation k with fluxes J̇Sk = (J̇S1k, J̇S2k, · · ·)T and J̇Pk = (J̇P1k, J̇P2k, · · ·)T collected
in column vectors. The rate of the transformation is fully specified by the vector J̇ =
(J̇Sk; J̇Pk). If nS denotes the matrix of chemical indices for the substrates, with typical
element nis for substrate s ∈ S, and nP that for the products, the constraint

0 = nSJ̇Sk + nP J̇Pk (3.10)

applies to the vector of rates to ensure conservation of chemical elements. Substrates disap-
pear, so J̇Sk < 0, and products appear, so J̇Pk > 0. For all transformations simultaneously
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Table 3.3: Conversions and compound parameters
relationship unit description

K = {J̇EAm}
yEX{Ḟm}

mol m−3 half-saturation constant

{J̇XAm} = −{J̇EAm}/yEX mol m−2d−1 maximum specific ingestion rate
ME = V [ME ] = E

µE
= MV

eyEV
κg mol mass of reserve

MV = V [MV ] mol structural mass
MV m = Vm[MV ] mol maximum structural mass
[MV ] = dV /wV mol m−3 specific structural mass

[MEm] = {J̇EAm}
v̇ = yEV [MV ]

gκ mol m−3 maximum reserve density
mEm = [MEm]

[MV ] = yEV
gκ mol mol−1 maximum reserve density

mE = ME
MV

= e
µE

[Em]
[MV ] mol mol−1 reserve density

mH = MH/MV mol mol−1 maturity density
yPE = µE/µAP = jPA/jEA mol mol−1 coupler of faeces and reserve prod.
yPX = µAX/µAP = jPA/jXA mol mol−1 coupler of faeces prod. and food cons.
yV E = µE

µGV
= jV G

jEG
= [MV ]µE

[EG] mol mol−1 coupler of struct. prod. and res. invest.

yEX = µE
µAX

= − yEV [MV ]v̇

gκ{J̇XAm}
= − [MEm]v̇

{J̇XAm}
mol mol−1 coupler of food cons. and reserve prod.

[EG] = µGV [MV ] J m−3 specific costs for structure
[Em] = {ṗAm}/v̇ = µE [MEm] J m−3 maximum reserve density
L = V 1/3 = (MV /[MV ])1/3 m structural (volumetric) length

Lm = κ{J̇EAm}
[J̇EM ]

= κ{ṗAm}[ṗM ] = v̇
k̇Mg

m maximum structural length

LT = {ṗT }/[ṗM ] m heating length
V = L3 = MV

[MV ] = EV
µV [MV ] m3 structural volume

Vm = L3
m = MV m/[MV ] m3 maximum structural volume

UE = ME/{J̇EAm} = E/{ṗAm} d m2 scaled reserve
UH = MH/{J̇EAm} = EH/{ṗAm} d m2 scaled maturity
{ṗAm} = µE{J̇EAm} = −µAX{J̇XAm} J d−1 m−2 maximum specific assim. flux
{ṗT } = −{J̇ET }µE J d−1 m−3 surface area-specific maint. flux
[ṗM ] = −[J̇EM ]µE = k̇MµGV [MV ] J d−1 m−3 specific somatic maint. flux
[ṗJ ] = −[J̇EJ ]µE = k̇J [EH ] J d−1 m−3 specific maturity maint. flux
k̇M = [ṗM ]/[EG] = jEV yV E d−1 somatic maintenance rate coefficient
J̇EJ = −k̇JMH mol d−1 maturity maintenance flux
jXA = jEA/yEX mol mol d−1 specific food uptake flux
jEV = −[J̇EV ]/[MV ] = k̇M yEV mol mol d−1 specific somatic maintenance flux
EH = µEMH J maturity
E = µEME J reserve energy
[EG] = µE [MV ]/yV E J m−3 energy costs per structural volume
µE = {ṗAm}

{J̇EAm}
= [Em]

[MEm] J mol−1 chemical potential of reserve

µAX = {ṗAm}/{J̇XAm} = µE/yXE J mol−1 energy-mass coupler for assimilation
µAP = {ṗAm}/{J̇PAm} = µE/yPE J mol−1 energy-mass coupler for defecation
µGV = [EG]/[MV ] = µE/yV E J mol−1 energy-mass coupler for growth
g = [EG]

κ[Em] = v̇[MV ]

κ{J̇EAm}yV E
– energy investment ratio

f = X/(K +X) – scaled functional response
l = (MV /MV m)1/3 = L/Lm – scaled length
e = mE

mEm
= [ME ]v̇

{J̇EAm}
= [E]

[Em] – scaled reserve density
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we can write 0 = nJ̇ , where n = (nS ,nP). The number of constraints equals the number
of chemical elements that are followed; the constraints can be used to specify some of the
fluxes. If appropriate, these constraints could be extended with e.g. constraints on energy,
electrical charge and isotopes.

To separate information on rates from that on stoichiometric coupling, it is frequently
useful to divide the fluxes by one of the fluxes, say of reference compound j ∈ (S,P), and
introduce the yield coefficients Y k

Sj = J̇Sk/J̇jk and Y k
Pj = J̇Pk/J̇jk.

If one or more of the compounds stand for some generalised compound, rather than
pure compounds, we speak of a macrochemical reaction equation, which can typically be
split up into two or more microchemical reactions equations. A macrochemical reaction
equation is defined for YS∗j < 0 and j ∈ P as

− Y k
S1j
S1 − Y k

S2j
S1 − · · · → Y k

P1j
P1 + Y k

P2j
P2 + · · · or 0 =

∑
i∈S,P

Y k
ij i (3.11)

Notice that the macrochemical reaction equation is not a mathematical equation; i in this
equation stands for a label (i.e. a type), not for a concentration or other quantity.

Conservation of chemical elements translates to constraints on yield coefficient for ref-
erence compound j as

0 = nSY
k
Sj + nPY

k
Pj (3.12)

Suppose that there are not one but several chemical transformations simultaneously.
Let M be the column matrix of the masses of all compounds. Then d

dt
M = J̇1, where

the summation is over all transformations.

3.6 Isotopes dynamics: reshuffling & fractionation

Isotope dynamics can be followed in the context of deb theory, due to the fact that deb
theory specifies all mass fluxes. We here derive the dynamics, excluding physiological
effects of isotopes. Applications of isotope dynamics could include history reconstructions
and monitoring particular fluxes.

We neglect the decay of isotopes, so if this decay can’t be neglected (e.g. for some
unstable isotopes), the present treatment should be adjusted. Transformations convert
substrates into products; the isotope ratios of the substrates are assumed to be known.
The isotope ratios of the products are assumed to be known at time zero only, and the
task is to specify the trajectory of the ratio given a specification of the transformation rate
as function of time. We first discuss the process of reshuffling of atoms in transformations,
which leads to a re-distribution of isotopes, then we study fractionation.

We take the fluxes of substrate in a transformation to be negative by definition and
that of products positive. Since the roles of substrates and products are asymmetrical with
respect to isotope transduction, the next section assumes that all substrates and products
are specified, even if they happen to be chemically identical. Some transformations might
use e.g. water both as substrate and as product; water should then appear twice in the
equation for the transformation.
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The literature on isotope distributions, see e.g. [231], uses the isotope ratio R, which
stands for the ratio of the frequencies of one isotope of a certain element (typically the rare
type) and that of another (typically the most common type). Sometimes R is the ratio of
masses, rather than frequencies. This ratio relates to the relative isotope frequency of type

0 of element i in compound j, γ0
ij, as R =

γ0
ij

1−γ0
ij

. Data typically refer to isotope frequencies

relative to a standard “ref” and are denoted by

δi = 1000
Ri −Rref

Rref

= 1000

(
γ0
ij

1− γ0
ij

1− γ0ref
ij

γ0ref
ij

− 1

)
(3.13)

This notation does not make explicit the compound(s) in which the element i occurs. If
the compound occurs in phases A and B, two other frequently used definitions are

∆A−B = δA − δB; αA−B =
1000 + δA
1000 + δB

=
γ0A
ij

1− γ0A
ij

1− γ0B
ij

γ0B
ij

(3.14)

We use this notation only in auxiliary theory (to link predictions to measurements) because
in the core theory we need more notational detail in compounds and transformations and
a closer link to the underlying processes. The notation in the literature is rather natural
for selection of isotopes from pools, but not for that from fluxes, as we will see.

3.6.1 Reshuffling

Let S be the set of substrates and P be the set of products. The dimensionless reshuffling
parameter αikps, with 0 ≤ αikps ≤ 1 specifies what fraction of the atoms of chemical element
i in substrate s ends up in product p in transformation k. Given the relative frequency of
isotope 0 of element i in substrate s ∈ S in transformation k, n0k

is , the coefficients n0k
ip are

given for p ∈ P by

0 = n0k
ip J̇pk +

∑
s∈S

αikpsn
0k
is J̇sk or n0k

ip = −
∑
s∈S

αikpsn
0k
is /Y

k
ps (3.15)

with 1 =
∑
p∈P α

ik
ps. If ns substrates and np products exist, the number of reshuffling

parameters α is (np − 1)ns.
In matrix notation we can write

0 = J̇0i
Pk +αikJ̇0i

Sk with 1Tαik = 1T (3.16)

where (column) vector J̇0i
Sk has elements n0k

is J̇sk and vector J̇0i
Pk has elements n0k

ip J̇pk and
matrix αik has elements αikps with p ∈ P and s ∈ S. Notice that the use of the reshuffling
parameters is via the product with the chemical indices, αikpsn

0k
ns, so the requirement that

the sum of the rows of each column of αik equals 1 is only essential for elements that
actually occur in that substrate. If element i does not occur in substrate s, the entries of
αik in column s don’t matter. From the conservation of elements and isotopes, we must
have

0 = 1T J̇ iPk + 1T J̇ iSk and 0 = 1T J̇0i
Pk + 1T J̇0i

Sk (3.17)
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where vector J̇ iSk and J̇ iPk have elements nisJ̇sk and nipJ̇pk, respectively.
To illustrate the application of the reshuffling matrix, consider the oxygenic photosyn-

thesis L:
CO2 + 2 H2O + light → CH2O + H2O + O2 or C + 2H → X +H ′ +O

where the oxygen atoms of dioxygen are known (from biochemistry) to come from water,
not from carbon dioxide; this is why water is both substrate and product in this transfor-
mation. Water as product is labelled H ′ because its isotope composition can deviate for
water as substrate H. For this transformation L and isotopes 13C, 2H and 18O we have

αCLXC = 1
αCLH′C = 0
αCLOC = 0

...
αHLXH = 1

2

αHLH′H = 1
2

αHLOH = 0

...
αOLXC = 1

2
αOLXH = 0

αOLH′C = 1
2

αOLH′H = 0
αOLOC = 0 αOLOH = 1

... n13L
CX = n13L

CC

...
n2L
HX = n2L

HH

n2L
HH′ = n2L

HH

...
n18L
OX = 1

2
n18L
OC

n18L
OH′ = 1

2
n18L
OC

n18L
OO = 2n18L

OH

(3.18)
αOLXC = 1

2
tells that half of the oxygen of carbon dioxide ends up in carbohydrate; αOLOH = 1

tells that all of the oxygen of water ends up in dioxygen. So the oxygen-isotope distribution
in carbon dioxide has no relevance for that in dioxygen (in this transformation).

Suppose we have the absurd reaction mechanism that all substrate atoms of element
i are allocated to product molecules after complete randomisation. The isotope ratios of
that element are equal in all products, so for product p ∈ P we have

n0k
ip

nip
=

1T J̇0i
Sk

1T J̇ iSk
or J̇0i

Pk = J̇ iPk
1T J̇0i

Sk

1T J̇ iSk
and αikps =

J̇ ipk

1T J̇ iPk
or αik =

J̇ iPk1
T

1T J̇ iPk
(3.19)

Division of the numerator and denumerator by one of the fluxes, typically a flux of sub-
strate, converts fluxes to yield coefficients which are not time-dependent. Although the
mechanism is unrealistic, this choice of reshuffle coefficients can serve as baseline to reduce
the number of parameters in specific applications where no information about the mecha-
nism is available. If the transformation is really complex, like in living systems, complete
reshuffling might be not too far from reality.

Addition of transformations

Macrochemical reaction equations are typically additions of several (or even many) equa-
tions. Transfer of isotopes comes with an asymmetry of the roles of substrates and products,
which makes that a particular compound in a macrochemical reaction equation can play
both roles, even if no net synthesis or decay of that compound occurs.

Before adding transformations k and l to a new transformation m, we extend the set of
substrates S and products P , such that these sets include all substrates and compounds,
and allow that some of the fluxes are zero, and some compounds occur in both sets. Let
{J̇Sm, J̇Pm} = {J̇Sk + J̇Sl, J̇Pk + J̇Pl} be the sets of fluxes of the total transformation. To
define transformation m properly, we must have n0k

is = n0l
is = n0m

is for s ∈ S, so J̇0i
Sm =

J̇0i
Sk + J̇0i

Sl. Although generally we will have n0k
ip 6= n0l

ip, we still have J̇0i
Pm = J̇0i

Pk + J̇0i
Pl.

Further αimps J̇
i
sm = αikpsJ̇

i
sk + αilpsJ̇

i
sl. We then have

0 = J̇0i
Pm +αimJ̇0i

Sm with 1Tαim = 1T (3.20)
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and

αimdiag(J̇Sm) = αikdiag(J̇Sk) +αildiag(J̇Sl) (3.21)

Notice that the reshuffle parameters become time-dependent if the ratio of the rates of
transformation k and l changes in time. The practice we will only add fully coupled
transformations.

3.6.2 Fractionation

Selection of substrate molecules on the basis of their possession of isotopes of particular
elements (at particular positions) can occur from (large) pools and from fluxes, which
corresponds to selection from small pools by integrating the flux over a time increment.
Simple chemical transformations don’t allow for fractionation in the transformation (so a
flux), because the reaction mechanism determines which atoms of the substrates become
each of the atoms of the products. This situation is, however, more complex in macroscopic
reactions that involve a network of transformations and alternative routes exist for the
intermediary metabolites. These intermediary metabolites serve the role of substrates.

Fractionation from pools

Preamble: Suppose we have m0 white balls with weight β0 each and m1 = m −m0 black
balls with weight β1. The number of white balls in a sample of size n follows a binomial
distribution if m0 and m1 are large relative to n and selection is randomly, but proportional
to the weight of the balls. For odds ratio β = β0/β1, the expected number of white balls
in the sample is

n0 =
nm0β

m0β +m1

(3.22)

Notice that this number only depends on m0

m1
=

γ0
ij

1−γ0
ij

, and not on m0 and m1 separately.

Applied to molecules with isotopes, the physical mechanism of differential selection relates
to the differential mean velocity of molecules with isotopes. All molecules have the same
kinetic energy mc2/2; if the mass m of an isotope is larger, its velocity c is smaller.

Fractionation can occur in the selective uptake of dioxygen and carbon dioxide (mostly
by phototrophs) and in the selective release of carbon dioxide, N-waste and water. The
latter might be of some importance for terrestrial organisms, where this release is asso-
ciated with a phase transition for liquid (= organism) to gas. The isotope frequency in
assimilation, dissipation and/or growth has expectation

n0k
ij =

nijβ
0k
ij

β0k
ij − 1 + 1/γ0

ij

, so n0k
OO =

2β0k
OO

β0k
OO − 1 + 1/γ0

OO

(3.23)

For odds ratio β0k
ij = 1, this gives n0k

ij = nijγ
0
ij. In the case of dioxygen, there is little reason

to expect that this relationship depends on the transformation k.
Suppose that the odds ratio equals the ratio of molecular velocities and that 18O and

16O combine randomly in dioxygen. So a fraction (1−γ18
OO)2 of the dioxygen molecules has



96 3. Energy, compounds & metabolism

velocity v̇32, a fraction (γ18
OO)2 has velocity v̇36, and a fraction 2γ18

OO(1− γ18
OO) has velocity

v̇34 at some given temperature. All dioxygen molecules have the same kinetic energy so
32v̇2

32 = 34v̇2
34 = 36v̇2

36. So

β18k
OO =

(1− γ18
OO)v̇34 + γ18

OOv̇36

(1− γ18
OO)v̇32 + γ18

OOv̇34

=
1− γ18

OO + γ18
OO

√
34/36

(1− γ18
OO)

√
34/32 + γ18

OO

'
√

32

34
= 0.97 (3.24)

The latter approximation applies for small γ18
OO. However, it is very doubtful that this sim-

ple reasoning applies; the link between molecular and macroscopic phenomena is typically
less direct.

The observations for 13C in the oxidative photosynthesis L are: 13δ C = −8 for CO2 in
the atmosphere, and −28 from carbohydrate in C3-plants [376, p44]. The Rref = 0.01191
for carbon in the PDB standard [376, p34]. So R = 0.011091 for 13CO2 and 0.010750
for 13CH2O. This gives γ13

CC = R/(1 + R) = 0.010969 for 13CO2 and γ13
CX = 0.010750 for

13CH2O. The odds ratio for 13CO2 is β13L
CC =

1/γ13
CC−1

1/γ13
CX−1

= 0.97982; a small deviation from 1

gives a strong fractionation.
Selection from food, reserve and structure as pools is less likely. Food is processed as

whole items; at the interface of reserve and structure mobilisation SUs are at work locally
with no “knowledge” of the neighbouring reserve molecules. Selection is more likely in
mobilised fluxes that have several fates; isotopes can affect binding strength in a molecule
and so the energy required to transform the compound; compounds with light isotopes
are more easily degraded, so more likely to be used for catabolic, rather than anabolic
purposes.

Fractionation from fluxes

Preamble: Suppose we havem0 white balls with weight β0 each andm1 = m−m0 black balls
with weight β1. The number of white balls in a sample of size n follows Fisher’s noncentral
hypergeometric distribution if selection is random, non-interactive, and proportional to
weight. For odds ratio β = β0/β1 and n ∈ (0,m), the expected number of white balls in
the sample is

n0 = P1/P0 with Pk =
min(n,m0)∑

y=max(0,n−m1)

(
m0

y

)(
m1

n− y

)
βyyk or

n0 ≈
−2c

b−
√
b2 − 4ac

=
rm0β

rβ + 1
with r > 0 such that n =

rm0β

rβ + 1
+

rm1

r + 1
(3.25)

where a = β − 1, b = n−m1 − (m0 + n)β, c = m0nβ. Multivariate extensions are known.
For isotope applications we focus on fractions m0/m in the total flux and n0/n in the sub-
flux (the anabolic flux). For large m0 and m1 relative to n, this non-central hypergeometric
distribution converges to the binomial distribution. Wallenius’ noncentral hypergeometric
distribution should not be used here, because interactive selection is excluded within a time
increment. The physical mechanism is in the differential strength of chemical bounds; the
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larger the mass, the stronger the bound. This makes that light molecules have a preference
for the catabolic route.

Suppose that a molecule of a compound has more than one possible fate in a trans-
formation. Selection occurs if the probability on the fate of a molecule depends on the
presence of one or more isotopes. We here assume that each molecule in a well-mixed pool
has the same probability to be selected to partake in a transformation, independent of its
isotope composition; selection only interferes with the fate of the mobilised molecule.

Suppose that the fluxes of substrates J̇Sk are partitioned into two fluxes (e.g. a catabolic
and an anabolic one) as J̇Ska = κkJ̇Sk and J̇Skc = (1−κk)J̇Sk. The partitioning is, however,
selective for the isotope of element i in compound j.

We must have n0k
is J̇sk = n0ka

is J̇ska + n0kc
is J̇skc or n0k

is = n0ka
is κk + n0kc

is (1 − κk). Again we
write n0k

is = γ0
isnis and introduce an odds ratio β0ka

is for an isotope of type 0 of element i
in compound s in transformation ka. The number of isotopes in the anabolic flux times a
time increment follows Fisher’s noncentral hypergeometric distribution with approximate
mean for B = n0k

is − (1− κk)− (n0k
is + κk)β

0ka
is

n0ka
is '

2n0k
is β

0ka
is√

B2 + 4(1− β0ka
is )β0ka

is n0k
is κk −B

; n0kc
is =

n0k
is − n0ka

is κk
1− κk

(3.26)

If β0ka
is = 1, we have n0ka

is = n0k
is and the process is unselective. We must have

n0k
is ≥ n0ka

is κk and B2 + 4(1− β0ka
is )β0ka

is n0k
is κk ≥ 0 (3.27)

Notice that only molecules can be selected on the basis of having a particular isotope
of a particular element; the selection is not on elements independently. Once the selective
element i is determined for a compound s, β0ka

hs = 1 for all h 6= s. The selection on a single
isotope of a particular atom in a particular compound is the simplest possibility; many
more complex forms of selection can exist.

Suppose that substrate S is subjected to selection with respect to element I and that
αika and αikc are the reshuffling parameters of the anabolic and the catabolic sub-fluxes.
So the fraction κk applies to flux J̇S. Let n0k

IS = nISγ
0
IS. In adding these two fluxes, we

should take into account that the anabolic flux experiences a different isotope frequency for
element I than the catabolic flux: J̇0I

Sk = J̇0I
Ska + J̇0I

Skc = (n0ka
IS κk +n0kc

IS (1−κk))J̇Sk. Let J̇0I∗
Sk

be J̇0I
Sk, but with element S replaced by this modified flux J̇0I

Sk. The reshuffle parameters
αIk are not affected by selection. The coefficients n0I

Ip in J̇0I
Pk are now given by

0 = J̇0I
Pk +αIkJ̇0I∗

Sk with αIkdiag(J̇Sk) = αIkadiag(J̇Ska) +αIkcdiag(J̇Skc) (3.28)

3.7 Enzyme mediated transformations based on fluxes

Enzymes are compounds that catalyse a transformation without being transformed them-
selves. They are typically proteins, frequently only working in combination with an rna
co-factor at the binding site of the enzyme. The protein just enhances the binding of the
substrates and bringing them in an orientation such that the transformation occurs. The
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transformation rates are constrained by the time budget of the enzyme. The enzyme can
be in a state where it can bind substrate(s) or where it is processing substrates. In the
simplest formulations these traits exclude each other, so they compete for the time of the
enzyme, but in more advanced formulations they do that only partly.

Classic enzyme kinetics specifies fluxes of product in terms of substrate concentrations.
This catenates two different processes, arrival process of substrate molecules to the binding
site(s) of the enzyme molecules and the transformation of bounded substrate into product,
which can better be dealt with separately. In homogeneous environments, arrival rates of
substrate molecules to the enzyme molecules are proportional to the concentration, on the
basis of diffusive transport. The rejected substrate molecules return to the environment,
which makes it difficult, if not impossible, to determine their existence. When growth is
modelled as a function of mobilised reserve fluxes (see {188}), the situation is different,
because this process represents arrival and replaces diffusive transport. Transformations
are hard to link to concentrations in those situations.

The concept concentration implies spatially homogeneous mixing at the molecular level;
it hardly applies to the living cell, cf {413}. Another argument for avoiding the use of
concentrations as much as possible is that concentrations should be thought of as states
of the system. The inclusion of concentrations of intermediary metabolites in a metabolic
pathway increases the number of state variables of the system. A reduction of this number,
to simplify the model, is only possible when the amounts are small enough. This problem
is avoided by using fluxes, where intermediaries do not accumulate.

Thinking in terms of fluxes, rather than concentrations, allows us to treat light in
a similar way to compounds, with stoichiometric coupling coefficients in photochemical
reactions, see {184}. This idea may be less wild than might first appear; cells extract a
fixed amount of energy from the photons that are able to excite the pigment system, the
remaining energy dissipates as heat. The light flux can be quantified in Einstein (or mole)
per second, i.e. in 6.023 1023 photons per second [449].

Synthesising Units (SUs) [640] solve these problems. They are generalised enzymes
that follow the rules of classic enzyme kinetics with two modifications: transformation is
based on fluxes, rather than on concentrations of substrates, and the backward fluxes are
assumed to be negligibly small in the transformation. The arrival flux can be taken to be
proportional to the density in spatially homogeneous environments. In spatially structured
situations, SUs can interfere and handshaking protocols can be formulated to understand
the relationships between organelles and the cytosol, see {249}.

The specification of behaviour of enzyme molecules has strong parallels with that of
individuals from an abstract point of view, cf {256,257}. If we identify the enzyme with an
individual, and the product with reserve, the transformation rate is directly given by the
functional response (2.2). We encountered the SU fed by a flux already in the mechanism
behind the reserve dynamics {39}.



3.7. Enzyme mediated transformations based on fluxes 99

θ·
-

θA�

A

B

?

Figure 3.6: Uptake of a single substrate is well quantified on the basis of a fixed
handling time of substrate (prey) by the uptake machinery. The time need not be
constant, but it must be independent of substrate density [784, 785]. The handling
time not only includes mechanical handling but also metabolic processing. This
is why eating prey by predators and transformation rate by enzymes depend in
a similar way on substrate (food) density.

3.7.1 From substrate to product

The simplest transformation of substrate S to product P by enzyme E can be written as

S + E ⇀↽ SE ⇀↽ PE ⇀↽ P + E ,

The backward fluxes (controlled by the rates ḃP , k̇PS and k̇S) might be small, not because
of enzyme performance as such, but because of the spatial organisation of the supply of
substrate and the removal of product by transporters. The transformation can then be
captured in a simple diagram, see Figure 3.6. The differences from classic enzyme kinetics
do not affect the simple one-substrate one-product conversion in spatially homogeneous
environments, but do affect more complex transformations.

3.7.2 Rejection vs Synthesising Units

Let us consider a very simple chemical transformation, where an enzyme requires one copy
of each of two substrates, present in concentrations XA and XB, to produce a product,
present in concentration XC .

Classic enzyme kinetics states that substrate-enzyme association follows the law of mass
action, so the rate is proportional to the product of the concentrations, and dissociation
is a first-order process, so the rate is proportional to the concentration of the complex.
Given the dissociation rate parameters k̇A, k̇B and k̇C , and the association parameters ḃA
and ḃB, the change in in the fractions of enzyme in the various binding states is given by

1 = θ·· + θA· + θ·B + θAB (3.29)

d

dt
θ·· = k̇CθAB + k̇AθA· + k̇Bθ·B − (ḃAXA + ḃBXB)θ·· (3.30)

d

dt
θA· = k̇BθAB + ḃAXAθ·· − (k̇A + ḃBXB)θA· (3.31)

d

dt
θ·B = k̇AθAB + ḃBXBθ·· − (k̇B + ḃAXA)θ·B (3.32)

where θ·· is the fraction of free enzymes. Steady state is reached when the substrate–
enzyme complexes do not change in concentration, so d

dt
θ∗∗ = 0. The relative abundance

of enzyme-substrate complexes is now given by
θ··
θA·
θ·B
θAB

 =


1 1 1 1

xAkA −xB − kA 0 1
xB 0 −1− xAkA kA
0 xB xAkA −1− kA − kC


−1

1
0
0
0

 (3.33)
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with xA = XAḃA/k̇A, xB = XB ḃB/k̇B, kA = k̇A/k̇B, kC = k̇C/k̇B. The appearance rate of
product is for J̇Cm = k̇CX+ given by

d

dt
XC = J̇C = J̇CmθAB (3.34)

Two limiting cases are of special interest: the Synthesising Unit (SU), where the
substrate–enzyme dissociation rates are small, and the Rejection Unit (RU), where these
rates are high, but the association rates are high as well. (Another way to obtain the same
RU is when the product–enzyme dissociation rate k̇C is small, and the total amount of
enzyme X+ is high, but this hardly applies to organisms.) These limiting cases give the
following results:

SU: k̇A, k̇B → 0 RU: k̇A, k̇B, ḃA, ḃB →∞ and k̇A
ḃA

, k̇B
ḃB

constant

for xA = XA
ḃA
k̇C

and xB = XB
ḃB
k̇C

for xA = XA
ḃA
k̇A

and xB = XB
ḃB
k̇B

J̇C = J̇Cm
1+x−1

A +x−1
B −(xA+xB)−1

J̇C = J̇Cm
(1+x−1

A )(1+x−1
B )

θ··
θA·
θ·B
θAB

 =


(xA + xB)−1

xAx
−1
B (xA + xB)−1

xBx
−1
A (xA + xB)−1

1

 J̇C
J̇Cm


θ··
θA·
θ·B
θAB

 =


(xAxB)−1

x−1
B

x−1
A

1

 J̇C
J̇Cm

Despite of its popularity [69, 336, 337, 846], the RU has a number of problems that make
it less attractive than the SU. The first, but perhaps not the most important, problem is
a mild form of inconsistency at the molecular level. The law of mass action is used for
association between substrate and enzyme. It requires completely homogeneous mixing,
which is hard to combine with infinitely large dissociation and association rates; as soon
as a substrate molecule is rejected by an enzyme molecule, it becomes attracted again
if the mixing rate is not infinitely large, which is obviously not realistic. Moreover, it
is hard to see in terms of molecular geometry and electrical charge distributions how a
high association rate can combine with a high dissociation rate. The SU is much more
natural in this respect, because the binding sites on the enzyme molecule mirror-match the
substrates in shape and electrical charge, which makes it likely that the substrate-enzyme
dissociation rate is small compared to the product–enzyme dissociation rate, because of the
shape and charge changes during the substrates-product transition. Product molecules do
not mirror-match the substrate-bindings sites in shape and electrical charge, and products,
not substrates, are rejected by the enzyme.

For very large concentrations xB, both SU and RU simplify to what is known as
Michaelis–Menten kinetics (MM-kinetics): J̇C = J̇Cm(1 + x−1

A )−1, but the convergence
for SU is much faster than for RU. In fact, the RU converges really slowly to MM-kinetics,
which means that substrate concentrations must exceed the saturation constant by at least
an order of magnitude to become (almost) non-limiting. A substrate is defined to be non-
limiting if a change in substrate concentration does not affect the production rate. Given
the fact that models for uptake and use of nutrients are likely to include only a small sub-
set of the required nutrients and compounds, the implication that compounds that are not
included must be really abundant is not acceptable. Last, but not least, the multiplicative
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model for nutrient uptake, as implied by the RU, is found to be inconsistent with empirical
data [295]. MM-kinetics, and its various generalisations, plays a central role in models
for enzyme kinetics and substrate (food, nutrient) acquisition by organisms; it was first
described by Henri in 1902 [494].

Given identical production rates if only one substrate is limiting (this is when the other
substrate is abundant), the production rate of the RU is always smaller than that of the
SU, J̇C, SU > J̇C,RU, while their ratio tends to infinity for small substrate concentrations
(xA, xB → 0).

3.7.3 Four basic classes of transformations

When two substrates are complementary (or supplementary if you wish), i.e. they are
both required in fixed stoichiometric proportions, the absence of one substrate prevents
the uptake of the other; think, for instance, of ammonia and carbon dioxide as substrates
and amino acids as reserves. Empirical evidence frequently indicates that the uptake of
the most abundant substrate (relative to the needs) is set by the least abundant substrate:
the popular minimum rule of von Liebig [703]. The rule originally related biomass yields
to nutrient levels, but was later applied to uptake processes [42]. However, this application
becomes complex if reserves are included; the environment may not contain the substrate,
but growth is not restricted because of the presence of reserves. If the role of limiting and
non-limiting substrate does not switch at the same time for all individuals in the population
in a variable environment, it is almost impossible to evaluate population behaviour on the
basis of individual behaviour. Moreover, sharp switches are not realistic at the molecular
level, because of the intrinsic stochasticity of the substrate arrival process.

Let us characterise the states of the SUs in bounded fractions with vector θ, while
1Tθ = 1 and 0 ≤ θi < 1 for all states i. The change in bounded fractions of SUs can be
written as d

dt
θ = k̇θ, for a matrix of rates k̇ with diagonal elements k̇ii = −∑j 6=i k̇ij, while

k̇ij ≥ 0, so 1T k̇ = 0. Using a time scale separation argument, a flux of metabolite X can
be written as J̇X = J̇Tθ∗, with weight coefficients J̇ and fractions θ∗ such that 0 = k̇θ∗.
Substrates can be classified as substitutable or complementary and binding schemes as
sequential or parallel. These four classes comprise the standard SU kinetics see Figure 3.7,
and, in retrospection, have direct links with waiting time theory derived by O’neil et al
[852].

Mixtures of the four classes of standard kinetics have the property that k̇ =
∑
i k̇i,

where k̇ is the matrix of rates of the mixture, and k̇i that of a standard type.
Cows eat lots of grass because of the low protein content of grass. The micro-organisms

in their stomaches transform cellulose into products such as acetate, propionate, butyrate
and valerate [1018], which they cannot use as substrate in this anaerobic environment. The
cow absorbs these products only partly, so energy supply is ad libitum. Feeding the cow
some extra protein allows to reduce the required grass intake by a factor of 10. Grass and
protein are to some extent substitutable for a cow; the conversion from grass and protein to
cow must be described by a mixture between substitutable and complementary compounds
to capture that the yield of the combination of grass and protein is much higher, especially
if proteins are extracted from the cow in the form of milk. It is a consequence of work
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Figure 3.7: The interaction of sub-
strates A and B in transformations
into product C can be understood
on the basis of a classification of
substrates into substitutable and
complementary, and of binding into
sequential or parallel. The symbol
θ∗1∗2 represents a SU that is bound
to the substrates ∗1 and ∗2, the
dot representing no substrate, so θ··
represents a unbounded SU. The
symbol y∗1∗2 denotes a stoichio-
metric coupling coefficient. j+

A is
the accepted flux of A; j′∗ = ρ∗j∗,
where ρ∗ is the binding probability;
j′′∗ = yC∗j

′
∗; k̇∗ is the dissociation

rate. Modified from [642].

with generalised compounds; some chemical compounds serve as energy substrate, others
as nutrient (building blocks). Grass and protein weigh these functions differently. Another
example of the use of mixtures between substitutable and complementary compounds is
in the gradual transition between these basic types which occurs in evolution of symbiosis
that is based on syntrophy, see {393}.

Number of SUs

When a flux of substrate arrives at a set of N SUs, it depends on the local spatial organisa-
tion how this translates to the arrival rate of substrate for each SU. Classic enzyme kinetics
works with the law of mass action, which takes the meeting frequency proportional to the
product of the concentrations of substrate and enzyme, using a diffusion argument; the
arrival rate is proportional to the concentration of substrate. The enzyme molecules don’t
interact and the arrival rate per SU is the substrate flux divided by N . SUs dynamics,
however, allows for interaction.

Suppose that the SUs are localised on a membrane and can bind substrate molecules
that are within a threshold distance from the binding site. If the distance between the SUs
is smaller than two times this threshold distance, they start to interact, and the accepted
substrate flux becomes a satiating function of the number of SUs. Such a situation occurs,
for instance, in the case of carriers for the uptake of substrate in the outer membrane.
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Figure 3.8: Left: Interaction between the conversions S1 → P and S2 → P , with preference
for the first transformation. θ∗ indicates the fraction of synthesising units that are bound to
substrates. Right: The standard inhibition scheme, where S2 inhibits the transformation S1 → P .

3.7.4 Inhibition & preference

Preference frequently occurs in the uptake of substrates, sometimes for nutritional require-
ments, or when a predator became specialised on particular prey species, or to minimise
risks on injury (selection of old or weak prey individuals). Inhibition occurs in gene ex-
pression, where carriers for a particular substrate are not synthesised as long as another
substrate is present. We here deal with interacting substitutable substrates that are bound
in a parallel fashion. Standard inhibition makes part of the SUs unavailable for catalysing
transformations (Figure 3.8). Stronger forms of interaction can occur if one substrate is
able to replace another that is already bound to an SU (Figure 3.8).

Let jS1 and jS2 be the fluxes of substrate S1 and S2 that arrive at an SU, and ρS1 and
ρS2 be the binding probabilities. The binding kinetics, i.e. the changes in the bounded
fractions of SUs, for scaled fluxes j′S1

= ρS1jS1 , j
′
S2

= ρS2jS2 and 1 = θ· + θS1 + θS2 are

d

dt
θS2 = j′S2

θ· − (j′S1
+ k̇S2)θS2 ;

d

dt
θS1 = j′S1

(θ· + θS2)− k̇S1θS1 (3.35)

where k̇S1 and k̇S2 are the dissociation constants of the SU-substrate complexes.

Supply kinetics

For the binding fraction at steady state, the production flux of P equals jP = yPS1j
+
S1

+
yPS2j

+
S2

, while the fluxes of S1 and S2 that are used are

j+
S1

= k̇S1θ
∗
S1

=
k̇S1j

′
S1

k̇S1 + j′S1

; j+
S2

= k̇S2θ
∗
S2

=
k̇S1 k̇S2j

′
S2

k̇S2 + j′S1
+ j′S2

(3.36)

Although their derivation has been set up slightly differently, this formulation is used in
[140] to model substrate preference and diauxic growth in microorganisms, see {284}.

Demand kinetics

If the flux of P is given (and constant), we require that

jP = yPS1 k̇S1θS1 + yPS2 k̇S2θS2 (3.37)
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Figure 3.9: The scheme for general co-
metabolism of the transformations A→ C with
B → D.

is constant at value k̇P , say, by allowing k̇S1 and k̇S2 to depend on θ∗. The following rates
fulfils the constraint:

k̇S1 = k̇P/θ and k̇S2 = ρk̇P/θ with θ = yPS1θS1 + yPS2wθS2 , (3.38)

where the preference parameter ρS2 = k̇S2/k̇S1 has the interpretation of the ratio of disso-
ciation rates. For the fractions in steady state, the fluxes of S1 and S2 that are used to
produce P are

j+
S1

= (k̇P − yPS2j
+
S2

)yS1P and j+
S2

= ρk̇P
θ∗S2

θ∗
=

2ak̇P/yPS2

2A+ yPS1(
√
B2 − 4AC −B)

, (3.39)

with A = ρS2j
′
S2
k̇PyPS2 , B = yPS1C + ((1− ρS2)j

′
S1

+ j′S2
)k̇P , C = −j′S1

(j′S1
+ j′S2

).
Tolla [1166] proposed this model to quantify the preference to pay maintenance (flux

jP ) from reserve (flux jS1) rather than from structure (flux jS2). Figure 3.8 presents a
numerical study that shows that this model can mimic a switch model, without having a
switch.

Another variation on the demand version of (partly) substitutable compounds was
studied by [675], where carbohydrate reserve is preferred above protein reserve for pay-
ing the energy-maintenance in zooplankton, but protein reserve is required to pay the
building-block maintenance. This increase in metabolic flexibility has the consequence
that a nutrient-light-phytoplankton-zooplankton system evolves to a situation in which it
becomes both energy and nutrient limited, rather than a single limitation only.

3.7.5 Co-metabolism

The biodegradation of organic pollutants in soils can sometimes be enhanced by adding
readily degradable substrates. This is a special case of a more general phenomenon that
the processing of one substrate affects that of another.

Suppose that substrates A and B are substitutable and are bounded parallelly and that
the binding probability of each substrate depends on binding with the other substrate as
described and applied in [142]. We study the process 1A → yCAC and 1B → yCB C. So
we have three binding probabilities of each substrate; for substrate A we have the binding
probabilities 0 if A is already bounded; ρA if A and B are not bounded; ρAB if B is bounded,
but A is not.

No interaction occurs if ρA = ρAB; full co-metabolism occurs if ρA = 0. See Figure 3.9.
Sequential processing occurs if ρAB = ρBA = 0. The dissociation rates k̇A and k̇B of product
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C, and the stoichiometric coefficients yAC and yBC , might differ for both substrates. The
binding period is measured as the period between arrival of substrate and dissociation of
product, so it includes the production period.

For j′A = jAρA, j′′A = jAρAB, j′B = jBρB, j′′B = jBρBA, the fractions of bounded SUs
follow the dynamics

1 = θ·· + θA· + θ·B + θAB;
d

dt
θ·· = −(j′A + j′B)θ·· + k̇AθA· + k̇Bθ·B (3.40)

d

dt
θA· = j′Aθ·· − (k̇A + j′′B)θA· + k̇BθAB;

d

dt
θ·B = j′Bθ·· − (k̇B + j′′A)θ·B + k̇AθAB

Assuming pseudo steady state (i.e. d
dt
θ∗∗ = 0 for θ∗∗ = θ∗∗∗), the production flux amounts

to

jC = jC,A + jC,B = yCAk̇A(θ∗A· + θ∗AB) + yCBk̇B(θ∗·B + θ∗AB) (3.41)

=
yCAk̇A

(
j′Ak̇B + j′′A

j′B(k̇A+k̇B)+j′′B(j′A+j′B)

j′′A+j′′B+k̇A+k̇B

)
+ yCBk̇B

(
j′Bk̇A + j′′B

j′A(k̇A+k̇B)+j′′A(j′A+j′B)

j′′A+j′′B+k̇A+k̇B

)
j′Ak̇B + j′Bk̇A + k̇Ak̇B +

j′′Aj
′
B k̇B+j′′Bj

′
Ak̇A+j′′Aj

′′
B(j′A+j′B)

j′′A+j′′B+k̇A+k̇B

(3.42)

If B represents a xenobiotic substrate, and A a natural one, the case ρA = ρAB and
ρB = 0 is of special interest. The use of A is not effected by B, but B can only be processed
if A is present. The expression for the product flux simplifies for j′A = j′′A and j′B = 0 to

jC =
yCAk̇A

1 + k̇Aj
′−1
A

+
yCBk̇B

1 + k̇Aj
′−1
A

j′′B(j′A + k̇A + k̇B)

j′′B(j′A + k̇B) + k̇B(j′A + k̇A + k̇B)
(3.43)

The accepted flux of substrate B, so the specific biodegradation rate of B, is j+
B = yBCjC,B

with yBC = y−1
CB, and jC,B is given by the second term in the expression for jC .

3.8 Metabolism

3.8.1 Trophic modes: auto-, hetero- & mixotrophy

Trophic strategies are labelled with respect to the energy and the carbon source, as indi-
cated Table 3.4. Animals typically feed on other organisms, which makes them organo-
chemotrophs, and so heterotrophs. If these organisms are only animals, we call them
carnivores, if they are only veridiplants (glaucophytes, rhodophytes, or chlorophytes, in-
cluding plants), we call them herbivores, and in all other cases we call them omnivores.
The implication is that daphnids, which also feed on heterokonts, ciliates and dinoflag-
ellates, should be classified as omnivores, although many authors call them herbivores.
Many trophic classifications are very imprecise and sensitive to the context.

Animals food has a complex composition (mixtures of polysaccharides, lipids and pro-
teins), from which animals extract energy, electrons, as well as all necessary ‘building’
blocks: carbon, nitrogen, vitamins, etc. As is the case in many other organisms, some of
the amino acids, purines and pyrimidines in food are taken up and used as building blocks
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trophy hetero- auto-

energy source chemo photo
carbon source organo litho

Table 3.4: The classification of trophic modes
among organisms.

4 H2O
10 H2O

2 O2

O2

4 H2

4 Fe2+

CO2

NH3 H2O

4 Fe

4 Fe(OH)3 8 H+

Figure 3.10: The next time you look at your car or
bike, you will remember that corrosion is an exam-
ple of chemolithotrophy. Most corrosion is microbe-
mediated and the main culprit is the iron bacterium
Gallionella; it uses 220 g of iron-II and produces 430
g of rust to make just 1 g of cells from carbon dioxide,
water and ammonia [738]. It excretes long strands of
rust at one side of the cell.

directly, while other amino acids are synthesised de novo if not available in food. They thus
obtain energy from oxidation–reduction reactions, and carbon from organic compounds.
This classifies them as chemo-organotrophs (chemo- is opposite to photo-; organo- is op-
posite to litho-; the latter dichotomy is synonymous with hetero- versus auto-). They
frequently use dioxygen as an electron acceptor. As a consequence, they excrete carbon
dioxide and nitrogen waste, such as ammonia or urea, see Figure 3.11.

Most plants, in contrast, use light energy, and take carbon dioxide as a carbon source.
This classifies them as photolithotrophs. Energy that comes from light is usually stored in
polysaccharides and/or lipids, which also serve as carbon reserves. Plants use water, rather
than organic compounds, as an electron donor, and, with carbon dioxide as the electron
acceptor, dioxygen is produced in the light. Most plants can synthesise all compounds they
need from very simple minerals (nitrate, phosphate, etc), but some plants also use complex
organic compounds (for instance the parasitic plants that lack chlorophyll, or the hemi-
parasites that still have chlorophyll). Quite a few species of plants in unrelated families
are purely heterotrophic. So plants combine chemo-organotrophic with photo-lithotrophic
properties, which classifies them as mixotrophs.

Bacteria, as a group, use a wide range of metabolic modes, some resembling those
of animals or plants. The purple non-sulfur bacteria Rhodospirallacea use light as their
energy source, but different kinds of organic compounds as the electron donor and acceptor.
This classifies them as photo-organotrophs. Most photo-assimilable organic compounds
can also be respired, but benzoate, for instance, can be used in the light, but cannot be
respired [1100]. Sulfur bacteria use light as an energy source, carbon dioxide as a carbon
source, and H2S, elemental sulfur or H2 as an electron donor. Like plants, they classify as
photolithotrophs. Most bacteria are chemotrophs, however, which use oxidation–reduction
or fermentation reactions to fuel energy-demanding reactions. Figure 3.10 gives an example
of chemolithotrophy.

Chemolithotrophy is mostly confined to the bacteria. However, several eukaryotes can
respire nitrate non-symbiotically. The ciliate Loxodes (Karyorelicta) reduces nitrate to
nitrite; the fungi Fusarium oxysporum and Cylindrocarpon tonkinense reduce nitrate to ni-
trous oxide; the foraminifera Globobulimina and Nonionella live in anoxic marine sediments
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and are able to denitrify nitrate completely to N2 [976].

Individuals of many phototrophic prokaryotes and protoctists can also activate the
chemotrophic mode, depending on the environmental conditions, which somewhat degrades
the usefulness of the classification. They are, therefore, mixotrophs. Figure 3.11 illustrates
that organisms can differ in their assimilation strategies, but otherwise have substantial
similarities in the organisation of metabolism.

Some organisms, like ourselves, rapidly die when dioxygen is not available. Intertidal
animals (crustaceans, molluscs), animals in sediments, parasitic animals, yeasts and gold-
fish can survive its absence for some time, by switching from respiration to fermentation
(cf. {160}), see [170] for a review. (At some stage, all need some dioxygen to synthesise
steroids or collagen [343]). Some bacteria do not need dioxygen, but can survive in its
presence, but others rapidly die when exposed to dioxygen. This is because dioxygen is
rather reactive and can form free radicals in the cell, which are extremely reactive. Or-
ganisms can only survive in the presence of dioxygen (aerobic conditions) if they ‘catch’
these free radicals efficiently with specialised enzymes, called superoxide dismutases (some
prokaryotes use high concentrations of Mn2+ or other means), to convert the radicals to
the highly toxic hydrogen peroxide, and subsequently back to dioxygen, using the enzyme
catalase. The handling of dioxygen remains rather tricky, however, and is at the basis of
the process of aging, cf. {209}.

From a dynamic point of view, it is important to realize that the availability of the
various nutrients and light can fluctuate wildly, while autotrophs must couple them to
synthesise structural biomass with a constant chemical composition. This requires the in-
stallation of reserves, one for each nutrient (mineral) that has to be taken up, with rules
for the use of these reserves and their replenishment. This is less necessary for chemo-
organotrophs such as animals; an imbalance between the composition of food and their
needs to synthesise structural biomass can be modelled realistically, as a first approxima-
tion, by a conversion of food into reserves that is not very efficient. The match is perfect for
animals that feed on closely related species, and explains why they evolved in many taxa:
mammal-eating mammals, starfish-eating starfish, comb jelly-eating comb jellies, etc.

Animals can buffer varying availabilities of food with a single reserve, because all re-
quired nutrients covary, while plants also need auxiliary reserves, because mineral nutrients
and light vary independently. Since growth of structural biomass can change, the machin-
ery to synthesise biomass would face very busy and very quiet periods if they were a fixed
part of the structural biomass. (The part must be fixed on the basis of the homeostasis
assumption.) If the synthesis machinery is part of the reserves, however, the fluctuations
in activity would be much less, and the amount of required machinery could be ‘chosen’
much more economically, see {139}. This is because growth tends to increase with the re-
serves, as we will see. Auxiliary reserves for a particular nutrient, in contrast, can increase
considerably if growth is limited by other nutrients or energy, see {193}. This is how large
(auxiliary) reserves can accompany low growth rates. The homeostasis assumption also
applies to each auxiliary reserve. Homeostasis for the organism as a whole decreases with
an increasing number of reserves, and the composition of the body increases in flexibility.
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Figure 3.11: A simplified map of metabolism.
The second line gives the main polymers that are
used as reserves, below that are the monomers
that play an active role in metabolism. The bot-
tom line gives the main end products and ex-
ternal sources. Dioxygen is used as an electron
acceptor by the respiratory chain, but some-
times other electron acceptors are used. Most
pathways are reversible, although different sets
of enzymes are usually involved. Most animals
can synthesise lipids from polysaccharides, but
not vice versa. Heterotrophs use food to supply
the reserve polymers, autotrophs use light and
minerals to synthesise sugar and animo acids (in
grey), mixotrophs do both. tca = tricarboxylic-
acid.

3.8.2 Central metabolism

Central metabolism is the core of metabolism that deals with energy extraction from
glucose, and the formation of building blocks for other main compounds, such as lipids,
animo acids and rna. Its evolution is discussed at {372}.

The central metabolic pathway of many prokaryotes and almost all eukaryotes (Figure
3.11) consists of four main modules [657].

The Pentose Phosphate (PP) Cycle comprises a series of extra-mitochondrial trans-
formations by which glucose-6-phosphate is oxidised with the formation of carbon
dioxide, reduced nadp and ribulose 5-phosphate. Some of this latter compound is
subsequently transformed to sugar phosphates with 3 to 7 or 8 carbon atoms, whereby
glucose-6-phosphate is regenerated. Some ribulose 5-phosphate is also used in the
synthesis of nucleotides and amino acids. Higher plants can use the same enzymes
also in reverse, thus running the reductive pentose phosphate cycle. The PP cycle
is primarily used to inter-convert sugars as a source of precursor metabolites and to
produce reductive power. Theoretical combinatorial optimisation analysis indicated
that the number of steps in the PP cycle is evolutionarily minimised [782, 781], which
maximises the flux capacity [488, 1209].

The Glycolytic Pathway (aerobically) converts glucose-6-phosphate to pyruvate or (an-
aerobically) to lactate, ethanol or glycerol, with the formation of 2 atp and 2 nadh.
The transformations occur extra-mitochondrially in the free cytoplasm. However, in
kinetoplastids they are localised in an organelle, the glycosome, which is probably
homologous to the peroxisome of other organisms [52, 196]. The flux through this
pathway is under control by phospho fructokinase and by hormones. Heinrich &
Schuster [488] studied some design aspects of the glycolytic pathway. Most pyruvate
is converted to acetyl and bound to coenzyme A.
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The TriCarboxylic Acid (TCA) Cycle also known as the citric acid or the Krebs cy-
cle, oxidises (without the use of dioxygen) the acetyl group of acetyl coenzyme A to
two carbon dioxide molecules, under the reduction of 4 molecules nad(p) to nad(p)h.
In eukaryotes that contain them, these transformations occur within their mitochon-
dria. Some plants and micro-organisms have a variant of the tca cycle, the glyoxylate
cycle, which converts pyruvate to glyoxylate and to malate (hence a carbohydrate)
with another pyruvate. Since pyruvate can also be obtained from fatty acids, this
route is used for converting fatty acids originating from lipids into carbohydrates.
Some plants possess the enzymes of the glyoxylate cycle in specialised organelles, the
glyoxysomes.

The Respiratory Chain oxidises the reduced coenzyme nad(p)h, and succinate with
dioxygen, which leads to atp formation through oxidative phosphorylation. Simi-
larly to the tca cycle it occurs inside mitochondria. Amitochondriate eukaryotes
process pyruvate through pyruvate-ferredoxin oxidoreductase, rather than through
the pyruvate dehydrogenase complex. If the species can live anaerobically, the respi-
ratory chain can use fumarate, nitrate, or nitrite as electron acceptors in the absence
of dioxygen [1164].

The glycolysis, tca cycle and respiratory chain in series convert

aneaerobic: glucose + 2 ADP + 2 P → 2 ethanol + 2 CO2 + 2 ATP + 2 H2O

aerobic: glucose + 6 O2 + 30 ADP + 30 P → 6 CO2 + 30 ATP + 36 H2O

Many intermediary metabolites escape further conversion, however. In combination
with nutrients (phosphates, sulphates, ammonia, iron oxides, etc), the first three pathways
of the central metabolic pathway provide almost all the essential cellular building blocks,
including proteins, lipids, and RNA. The universality of this central metabolic pathway is
partly superficial or, if you like, the result of convergent evolution because the enzymes run-
ning it can differ substantially. This diversity in enzymes partly results from the modular
make-up of the enzymes themselves. Some variation occurs in the intermediary metabolites
as well.

Obviously, glucose plays a pivotal role in the central metabolism. However, its accu-
mulation as a monomer for providing a metabolism with a permanent source of substrate
would give all sorts of problems, such as osmotic ones. This also applies to metabolic
products. To solve these problems, cells typically store the supplies in polymeric form
(polyglucose (i.e. glycogen), starch, polyhydroxyalkanoate, polyphosphate, sulphur, pro-
teins, RNA), which are osmotically neutral. Their storage involves so-called inclusion
bodies, the inherent solid/liquid interface of which controlling their utilisation dynamics
(see reserve dynamics in chap 8).

3.9 Summary

The quantification of the amount and composition of biomass is discussed, including the
energy and entropy aspects. Classes of organic and inorganic compounds are briefly intro-
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duced for later use and conversions between volumes, masses and energies are discussed.
Macrochemical reaction equations are presented and applied in the dynamics of iso-

topes. This dynamics has mixing and fractionation aspects. The dynamics of fractiona-
tion from pools and from fluxes differ. Selection from pools is on the basis of differential
velocities of molecules; anabolic versus catabolic fluxes select on the basis of differential
strength of bounds.

deb theory makes frequent use of Synthesising Units (SUs): generalised enzymes that
follow the rules of classic enzyme kinetics with two modifications: their dynamics is spec-
ified in terms of substrate fluxes, rather then substrate concentrations, and the backward
fluxes are taken to be negligibly small as a result of the spatial organisation of transport
processes. Processing can be classified into sequential and parallel and compounds in com-
plementary and substitutable. Mixtures of these basic types are possible, and variations
are discussed to deal with e.g. co-metabolism and inhibition. Demand processes can be
modelled with SUs by letting dissociation rates depend on the relative frequency of SUs
in the various binding states. As a result of working with fluxes, SUs dynamics can deal
spatial structure, with flexibility for how the rates depend on the number of copies. SUs
can interact on the basis of handshaking protocols.

The trophic modes auto-, hetero- and mixotrophy are described and the four modules
of central metabolism are summarised.



Chapter 4

Univariate deb models

This chapter discusses the fluxes of compounds in univariate deb models (one type of
substrate, one reserve and one structure). Univariate deb models follow directly from the
assumptions of Table 2.4 for the standard deb model, but the assumption of isomorphy is
no longer used.

Figure 4.16 shows the example of Klebsiella that lives on glycerol. It must have many,
rather than a single reserve. Multiple reserve systems, which are discussed in the next
chapter, can behave as single reserve systems in the context of deb theory, if growth is
limited by a single nutrient and all rejected reserve fluxes are excreted.

I start with a more detailed discussion of phenomena at varying food densities, followed
by effects of changes in shape during growth. The rest of the chapter discusses mass and
energy aspects that are implied by the assumptions of Table 2.4 and show, for instance,
why the fluxes of essential compounds, as well as the dissipating heat, are weighted sums
of the three basic powers assimilation, dissipation and growth. Therefore, dissipating heat
can also be written as a weighted sum of three mineral fluxes: carbon dioxide, dioxygen
and nitrogenous waste. This relationship is the basis of the method of indirect calorimetry.
After half a century of wide application, this empirical method is finally underpinned theo-
retically. Simple extensions of univariate deb models can deal with drinking by terrestrial
organisms.

4.1 Changing feeding conditions

Food density, as experienced by an individual, is never really constant and feeding fre-
quently takes the form of meals. The next subsections analyse phenomena of changing
food availability at an increasing time scale. Adaptations to seasonal variations in food
availability are further discussed at {288}.

4.1.1 Scatter structure of weight data

For simplicity’s sake, the processes of feeding and growth have been modelled determin-
istically, so far. This is not very realistic, as (feeding) behaviour especially is notoriously
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Figure 4.1: Computer-simulated scaled weight1/3, (Ww/dV Vm)1/3, is plotted against scaled time
in the left figure, if feeding follows an alternating Poisson process. The shade areas give frequency
intervals of 99, 90 and 50 %, the drawn curve gives the mean and the dotted one gives the
deterministic growth curve, if feeding is constant at the same mean level. The coefficient of
variation is given in the right figure. The parameters are λ0 = 11.666, λ1 = 5, g = 1, lb = 0.05
and wE [MEm]/dV = 0.5. The small difference between the mean and deterministic curves relates
to the step size of the numerical integration (Mrs F. D. L. Kelpin, pers. comm.).

erratic. This subsection discusses growth if feeding follows a special type of random pro-
cess, known as an alternating Poisson process or a random telegraph process. Because of
the resulting complexity, I rely here on computer simulation studies.

Suppose that feeding occurs in meals that last an exponentially distributed time interval
t1 with parameter λ̇1, so Pr{t1 > t} = exp(−tλ̇1). The mean length of a meal is then
λ̇−1

1 . The time intervals of fasting between the meals is also exponentially distributed,
but with parameter λ̇0. Food intake during a meal is copious, so the scaled functional
response switches back and forth between f = 1 and f = 0. The mean value for f is
Ef = λ̇0(λ̇0 + λ̇1)−1. This on/off process is usually smoothed out by the digestive system,
but let us here assume that this is of minor importance. In the change of scaled length
and scaled reserve density in (2.22), time can be scaled out as well, using τ = tk̇M and a
single parameter, g, is involved in this growth process, while two others, λ0 and λ1, occur
in the description of the on/off process of f . (Note that the λ’s do not have dots, because
scaled time is dimensionless.) The process is initiated with l(0) = lb and e(0) equals the
scaled energy density of a randomly chosen adult.

Figure 4.1 shows the results of a computer simulation study, where scaled weight relates
to scaled length and scaled energy density, according to (3.2) as

Ww(dV Vm)−1 = (1 + ewE[MEm]/dV )l3 (4.1)

The resemblance of the scatter structure with experimental data is striking, see for instance
Figure 3.2. This does not imply, however, that the feeding process is the only source of
scatter. Differences of parameter values between individuals are usually important as well.
The results do suggest a mechanism behind the generally observed phenomenon that scatter
in weights increases with the mean.
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4.1.2 Step up/down in food availability

The difference between age-based and size-based models becomes apparent in situations of
changing food densities. As long as food density remains constant, size-based models can
always be converted into age-based ones, which makes it impossible to tell the difference.

Figure 4.2 shows the result of an experiment with Daphnia magna at 20 ◦C, exposed to
constant high food densities with a single instantaneous switch to a lower food density at 1,
2 or 3 weeks. The reverse experiment with a single switch from low to high food densities
has also been done, together with continuous exposure to both food densities. Figure 2.10
has already shown that the maintenance rate coefficient k̇M and energy conductance v̇ can
be obtained by comparing growth at different constant food densities. These compound
parameters, together with ultimate and maximum lengths and the common length at birth,
have been obtained from the present experiment without a switch. These five parameters
completely determine growth with a switch, both up and down, leaving no free parameters
to fit in this situation. The excellent fit strongly supports to the deb theory.

4.1.3 Mild starvation

If a growing individual is starved for some time, it will (like the embryo) continue to grow
(at a decreasing rate) till it hits the non-growth boundary of the state space (e = l).
Equation (2.37) describes the e, l-path. Depending on the amount of reserves, the change
in volume will be small for animals not far from maximum size. Strömgren and Cary
[1128] found that mussels in the range of 12–22 mm grew 0.75 mm. If the change in size
is neglected, the scaled reserve density changes as e(τ) = e(0) exp(−gτ/l) and the growth

of scaled length is d
dτ
l = g

3
exp(−gτ/l)−l/e(0)
exp(−gτ/l)+g/e(0)

. Figure 4.3 confirms this prediction.

Respiration during starvation is proportional to the use of reserves; see {142}. It should,
therefore, decrease exponentially in time at a rate of v̇/L if size changes can be neglected;
see (2.10). Figure 4.4 confirms this prediction for a daphnid. If a shape coefficient of
δM = 0.6 is used to transform the length of D. pulex into a volumetric one, the energy
conductance becomes v̇ = 0.6 × 1.62 × 0.23 = 0.22 mm d−1. This value seems to be
somewhat small in comparison with that for D. magna, cf Figure 2.10, and the mean
energy conductance of many species, cf. {303}. The next section suggests an explanation
in terms of changes in allocation rules to reproduction during starvation.

4.1.4 Prolonged starvation

As long as growth is non-negative, i.e. e ≤ l+ lT , see (2.22), standard dynamics applies. If
(full or partial) starvation continues, the response can be at the following levels depending
on the species and environmental factors

1 continue the standard reserve dynamics till death follows; don’t change the κ-rule for
allocation; use the buffer for reproduction (little data are available to tell us how exactly,
but see [309] for studies on polychaetes and [877] for studies on anchovy); if necessary
shrink (i.e. pay somatic maintenance from structure). Variant 1: partially reduce somatic
maintenance costs. Variant 2: migrate to better locations or switch to the dormant state.
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Figure 4.3: Growth rate in the starved
mussel Mytilus edulis at 21.8 ◦C. Data from
Strömgren and Cary [1128]. The param-
eter estimates are g

e(0) = 12.59, k̇M =
2.36 10−3 d−1 and v̇ = 0.252 cm d−1.

Figure 4.4: The dioxygen consumption rate
(•) and the carbon dioxide production rate
(◦) in starved Daphnia pulex of 1.62 mm at
20 ◦C. Data from Richman [962]. The expo-
nential decay rate is 0.23 d−1.

2 like the previous rule, but change the κ-rule for allocation when the reproduction
buffer is empty.

3 change the reserve dynamics to pay somatic maintenance only; no allocation to ma-
turity maintenance, maturation or reproduction.

4 change the reserve dynamics by converting reserve to eggs (seeds); convert structure
to eggs (as far as possible). This is the case of emergency reproduction, typically followed
by death. It is a popular strategy among plants.

Sometimes systems start to respond at level 1, but then continue to level 2, 3 and 4.

Pond snails seem to continue energy allocation to reproduction during prolonged star-
vation under a light:dark 16:8 cycle (summer conditions, denoted by LD), but they cease
reproduction under a 12:12 cycle (spring/autumn conditions, denoted by MD) [126, 1298].
This makes sense because under summer conditions, an individual can expect high primary
production, so, if it has consumed a plant, it will probably find another one in the direct
neighbourhood. Under spring/autumn conditions, however, it can expect a long starvation
period. By ceasing allocation to reproduction, it can increase its survival period by a factor
of two; see Figure 4.6. Another aspect is that offspring have a remote survival probability if
there is no food around. They are more vulnerable than the parent, as follows from energy
reserve dynamics. These dynamics can be followed on the basis of the assumption that LD
snails do not change the rule for utilisation of energy from the reserves, and neither MD
nor LD snails cut somatic maintenance.

This example shows that the diurnal cycle also affects the allocation under non-starvation
conditions in the pond snail Lymnaea stagnalis . This is obvious from the ultimate length.
Snails kept under a 12 h:12 h cycle (MD conditions) have a larger ultimate length than
under a 16 h:8 h cycle (LD conditions) [1298]. MD snails also have a smaller von Berta-
lanffy growth rate and a smaller volume at puberty, but MD and LD snails are found to
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Figure 4.5: Dry weight during starvation of long-day (LD, left) and mid-day (MD, right) pond
snails Lymnaea stagnalis at 20 ◦C. The left figure gives dry weights (z-axis) as a function of
starvation time (x-axis) and length (y-axis: 1.6–3.3 cm). In the right figure, the length of the MD
pond snails was 3 cm. From [1298]. The surface and curve are fitted deb-based expectations.
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Figure 4.6: Survival time during starvation of LD (left) and MD (right) pond snails as a function
of length. From [1298]. The data points × in the right figure are not included in the deb-based
fit. These large individuals had deformations of the shell.
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have the same energy conductance of v̇ ' 1.55 mm d−1 at 20 ◦C. This is a strong indication
that the photoperiod only affects the partition coefficient κ.

If starvation is complete and volume does not change, i.e. f = 0 and l is constant, the
energy reserves will be e(t) = e(0) exp(−gk̇M t/l); see (2.11). Dry weight is a weighted sum
of volume and energy reserves, so according to (3.3) for LD snails we must have

Wd(l, t) = Vml
3(dV d + wEd[MEm]e(0) exp(−gk̇M t/l)) (4.2)

if the buffer of energy allocated to reproduction is emptied frequently enough (ER small).
For MD snails, where e(t) = e(0)− ([ṗM ]/[Em])t, dry weight becomes

Wd(l, t) = Vml
3(dV d + wEd[MEm](e(0)− t[ṗM ]/[Em])) (4.3)

So the dry weight of LD snails decreases exponentially and that of MD snails linearly.
Figure 4.5 confirms this. It also supports the length dependence of the exponent.

If we exclude the possibility of prolonging life through decomposition of structural body
mass, and if death strikes when the utilisation rate drops below the maintenance level, the
time till death by starvation can be evaluated.

In animals such as LD snails, that do not change storage dynamics, the utilisation rate,
− d
dt

[E], equals the maintenance rate, [ṗM ] for [E]/[Em] = V 1/3[ṗM ]/{ṗAm} or e = κl. Since

e(t) = e(0) exp(−k̇M tg/l), death strikes at t† = l
k̇Mg

ln e(0)
κl

. This only holds if the length

increase is negligibly small.
In animals such as MD snails, which change storage dynamics to d

dt
e = −[ṗM ]/[Em] or

e(t) = e(0)− t[ṗM ]/[Em], death strikes when e = 0, that is at t† = e(0)[Em]/[ṗM ] = e(0)

κk̇Mg
.

This only holds as long as there is no growth, so e(0) < l. In practice, this is a more
stringent condition than the previous one. The first part of the starvation period usually
includes a period where growth continues, because e > l. This complicates the analysis of
starvation data, as illustrated in the following example. In a starvation experiment with
MD snails, individuals were taken from a standardised culture and initially fed ad libitum
for 4 days prior to complete starvation. If we assume that food density in the culture has
been constant, so e(0) = fc, say, with fc being about 0.7, and f = 1 during the 4 days prior
to the starvation experiment, the change in length is negligibly small. The initial storage
density is e(0) = 1−(1−fc) exp(−4k̇Mg/l), according to (2.10). The time till growth ceases
is found again from (2.10) and the boundary condition l = e(0) exp(−tk̇Mg/l). (Although
the length increase is negligibly small, energy allocation to growth can be substantial.)
After a period l(κk̇Mg)−1 death will strike, so

t† =
l

k̇Mg

(
1

κ
+ ln

{
l−1

(
1− (1− fc) exp(−4k̇Mg/l)

)})
(4.4)

Figure 4.6 confirms model predictions for the way survival time depends on length in LD
and MD snails, and shows that MD snails can prolong life by a factor of two by not
reproducing during starvation. In contrast to the situation concerning embryonic growth,
this confirmation gives little support to the theory, because the shape of the survival time–
length curve is very flexible for the LD case, although there are only two free parameters.
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The upper size class of the MD snails has been left out of the model fit, because the shape
of their shell suggested a high age, which probably affected energy dynamics.

When storage levels become too low for maintenance, some species can decompose
their structural biomass to some extent. If feeding conditions then become less adverse,
recovery may be only partial. The distinction between structural biomass and energy
reserves fades at extreme starvation. The priority of storage materials over structural
biomass is perhaps even less strict in species that shrink during starvation. Species with
(permanent or non-permanent) exoskeletons usually do not shrink in physical dimensions,
but the volume-specific energy content nonetheless decreases during starvation.

If an individual ceases reproduction during starvation, any consistent specification of d
dt
e

must be continuous in f , e and l. One possibility is by first obeying maturity maintenance
requirements, then switching on reproduction gradually if food intake increases from a low
level.

4.1.5 Shrinking & the turnover of structure

Many species can, to some extent, shrink in structural mass during starvation, as a way
to pay their somatic maintenance costs. Even animals with a skeleton, such as shrews of
the genus Sorex , can exhibit a geographically varying winter size depression, known as the
Dehnel phenomenon [396]. Molluscs seem be to able to reduce shell size [290].

The turnover of structure as part of the somatic maintenance process directly relates
to the quantification of shrinking during starvation. This turnover implies a mobilisation
of structure at a fixed specific rate, say J̇V C = jV CMV = [J̇V C ]V and I suppose that
this flux is large enough to pay somatic maintenance costs if necessary. Normally this
mobilised flux equals the synthesised flux, as part of the turnover process, but not during
shrinking. Somatic maintenance is normally payed from reserve at rate J̇ES = [J̇EM ]L3 +

{J̇ET}L2 = (jEM + {J̇ET}M−1/3
V [MV ]−2/3)MV , and if it would be fully paid from structure

the costs are J̇V S = [J̇VM ]L3 +{J̇V T}L2 = (jVM +{J̇V T}M−1/3
V [MV ]−2/3)MV . The surface-

linked component is only paid after birth, so a worst case scenario learns jV C ≥ jVM +
{J̇V T}(M b

V )−1/3[MV ]−2/3.
When shrinking becomes opportune, the somatic maintenance SUs receive a reserve

flux J̇EC and a structure flux J̇V C ; reserve and structure are substitutable compounds for
somatic maintenance, with a strong preference for reserve. The demand version of the
preference case for SUs, {103}, specifies the somatic maintenance fluxes for reserve and
structure

jSE = jES(1− jSV /jV S); jSV = jV S
2A

2A+
√
B2 − 4AC −B

(4.5)

with A = ρV jV Cj
2
ES/jV S, B = C + ((1− ρV )jEC + yEV jV C)jES, C = −jEC(jEC + yEV jV C).

So shrinking occurs at rate d
dt
MV = −jSVMV . Given appropriate parameter values shrinking

hardly occurs if maintenance can be paid from reserve.
Shrinking thus comes with four extra parameters: jV C , [J̇VM ], {J̇V T} and preference

parameter ρV . The relationships [J̇VM ]/[J̇EM ] = {J̇V T}/{J̇ET} ≥ yV E seem reasonable.
The latter inequality is based on thermodynamic considerations, which imply losses for
each transformation; payment via structure involves an extra transformation, so extra
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losses. The equality sign can considered to be the thermodynamic edge for shrinking.
Close to this edge, two shrinking parameters are left. For absolute priority for reserve as
substrate for somatic maintenance, ρV = 0, we have

jSE = min{jES, jEC} and jSV = jV S(1− jSE/jES) (4.6)

so that jV C is no longer relevant for the mass dynamics; it still is for the dynamics of
isotopes. I will call this the switch special case for shrinking.

If the turnover rates of compounds in the structure differ between compounds, shrinking
gives deviations from homeostasis with this mechanism. Compounds with no turnover can
be treated as products and formally excluded from structure to preserve strong homeostasis
for structure.

4.1.6 Migration

Seasonal forcing of food availability induces quite a few animal species (vertebrates, butter-
flies) to migrate. Long distance migration requires quite a bit of physiological preparation.
Many bird species manage to increase the size of their guts temporarily, fat-up, reduce the
size of their guts and increase the size of their muscles before they go. All these changes
occur in a matter of days [835]. Such hormonally controlled adaptations of organ size can
only be captured by multiple structure versions of deb models, cf {196}.

4.1.7 Dormancy

Some species manage to escape adverse feeding conditions (and/or extreme temperature
or drought) by switching to a torpor state in which growth and reproduction cease, while
maintenance (and heating) costs greatly diminish. The finding that metabolic rate in
homeotherms is proportional to body weight during hibernation [585] suggests that main-
tenance costs are reduced by a fixed proportion.

As heating is costly, a reduction in the body temperature of endotherms saves a lot
of energy. Bats and hummingbirds lower their body temperature in a daily cycle. This
probably relates to the relatively long life span of bats (for their size) [350]. Although most
bird embryos have a narrow temperature tolerance range, swifts survive significant cooling.
This relates to the food-gathering behaviour of the parents. Dutch swifts are known to
collect mosquitoes above Paris at a distance of 500 km, if necessary. During hibernation,
not only is the body temperature lowered, but other maintenance costs are reduced as well.

Hochachka and Guppy [513] found that the African lungfish Protopterus and the South
American lungfish Lepidosiren reduce maintenance costs during torpor in the dry season,
by removing ion channels from the membranes. This saves energy expenses for maintain-
ing concentration gradients over membranes, which proves to be a significant part of the
routine metabolic costs. This metabolic arrest also halts aging. The life span of lungfish
living permanently submerged, so always active, equals the cumulative submerged periods
for lungfish that are regularly subjected to desiccation. This is consistent with the deb
interpretation of aging.
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If maintenance cannot be reduced completely in a torpor state, it is essential that
some reserves are present, {88}. This partly explains why individuals frequently survive
adverse conditions as freshly laid eggs, because the infinitesimally small embryo requires
little maintenance; it only has to delay development. The start of the pupal stage in holo-
metabolic insects is also very suitable for inserting a diapause in order to survive adverse
conditions, {277}.

4.1.8 Emergency reproduction

The determination of sex in some species is coupled to dormancy in a way that can be
understood in the context of the deb model. Daphnids use special winter eggs, packed in
an ephippium. The diploid female daphnids usually develop diploid eggs that hatch into
new diploid females. If food densities rapidly switch from a high level to a low one and the
energy reserves are initially high, the eggs hatch into diploid males, which fertilise females
that now produce haploid eggs [1074]. After fertilisation, the ‘winter eggs’ or resting eggs
develop into new diploid females. The energy reserves of a well-fed starving female are just
sufficient to produce males, to wait for their maturity and to produce winter eggs.

The trigger for male/winter egg development is not food density itself, but a change
of food density. If food density drops gradually, females do not switch to the sexual
cycle [633], cf. Figure 9.13. Sex determination in species such as daphnids is controlled
by environmental factors, so that both sexes are genetically identical [174, 480]. Mrs D.
van Drongelen and Mrs J. Kaufmann informed me that a randomly assembled cohort of
neonates from a batch moved to one room proved to consist almost exclusively of males
after some days of growth, while in another cohort from the same batch moved to a different
room all individuals developed into females as usual. This implies that sex determination
in Daphnia magna, and probably in all other daphnids and most rotifers as well, can be
affected even after hatching. More observations are needed. Male production does not
seem to be a strict prerequisite for winter egg production [604]. Kleiven, Larsson and
Hobæk [604] found that crowding and shortening of day length also affect male production
in combination with a decrease in food availability at low food densities. The females that
hatch from winter eggs grow faster, mature earlier and reproduce at a higher rate than
those from subitaneous eggs [33]; the size at maturation and the ultimate body size are
also larger for the exephippial generation. The physiological nature of these interesting
differences is still unknown.

The switch to sexual reproduction as a reaction to adverse feeding conditions frequently
occurs in unrelated species, such as slime moulds, myxobacteria, oligochaetes (Nais) and
plants. The difference between emergency and suicide reproduction, see {282}, is that the
individual can still switch back to standard behaviour if the conditions improve.

4.2 Changing shapes

The structural volume is of interest because of maintenance processes, and surface area for
acquisition processes; this gives a focus on the scaling between volumes and surface areas
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that are involved in uptake. I will argue that not only the shape itself matters, but also
the local environment that affects uptake.

The fact that wing development, for instance, is delayed in birds is of little relevance
to whole body growth. Some species such as echinoderms, molluscs and some insects
change shape over different life-stages. Plants are extreme in this, and environmental
factors contribute substantially to changes in shape. Some of these changes do not cause
problems because food intake is sometimes restricted to one stage only. If the shape
changes considerably during development, and if volume has been chosen as the basis for
size comparisons, the processes related to surface area should be corrected for these changes
in shape.

Surface areas are only proportional to volume to the power 2/3 for isomorphs. If
organisms change in shape during growth, surface areas relate to volume in different ways,
which can be captured by the dimensionless shape correction functionM(V ), which stands
for the actual surface area relative to the isomorphic one for a body with volume V , where
a particular shape has been chosen as the reference. So M(V ) = 1 for an isomorph.
The derivation of this function will be illustrated for what I call V0-, and V1-morphs:
idealised morphs that change in shape during growth in a particular way. Many organisms
approach these idealised changes quite accurately, others can be conceived as static or
dynamic mixtures of two or more of these idealised growing morphs, as will be shown.

4.2.1 V0-morphs

The surface area of a V0-morph is, per definition, proportional
to volume0, so it remains constant. Only the surface area matters
that is involved in the uptake process. A biofilm on a plane,
diatoms and dinoflagellates are examples, see Figure 4.8. The outer dimensions do not
increase during the synthesis of cytoplasm. The vacuoles shrink during growth of the cell,
and should be excluded from the structural volume that requires maintenance costs. The
surface area of a V0-morph is Ad, say. An isomorph has surface area Ad(V/Vd)

2/3. The
value Vd is a reference that is required to compare both types of morphs; at this volume
they have the same surface area. The shape correction function for a V0-morph is

M(V ) = (V/Vd)
−2/3 (4.7)

In the section on diffusion limitation on {259}, I discuss situations where the outer bound-
ary of the stagnant water mantle around a small organism restricts uptake. If the mantle
is thick enough, the uptake will resemble that of a V0-morph, whatever the actual changes
in shape of the organism.

The ingestion rate, storage dynamics and growth for V0-morphs can be found from
that of isomorphs by multiplying {ṗAm} and v̇ with the shape correction function M(V )
in (4.7). This results in

J̇XA = {J̇XAm}V 2/3
d f (4.8)

d

dt
e = (f − e)v̇V 2/3

d /V (4.9)
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Figure 4.7: Male Spraque-Dawley rats eat
at constant rate, irrespective of their size,
in a particular laboratory situation. Their
specific growth rate is given by (2.21) and
the scaled reserve density changes as d

dte =
v̇
L

(
ρ (Lm−LT )2

L2 − e
)
. Body weight is given by

(3.2) with dV = 1 g cm−3 and ωw = 0.94. Data
from Hubert et al [534], who used feeding lev-
els ρ = 1, 0.75 and 0.45. Parameter values:
e(0) = 1 (fixed), V (0) = 73.7 cm3, LT = 0 cm
(fixed), k̇M = 0.0059 d−1, v̇ = 0.317 cm d−1,
g = 7.1.
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(4.10)

where Vd is the volume at division and Vm is defined by V 1/3
m = Lm = v̇

gk̇M
.

Figure 4.7 shows that, in the situation of feeding laboratory male Spraque-Dawley rats,
Rattus norvegicus , a fixed amount of food each day, irrespective of their size, isomorphs
can numerically behave similar to V0-morphs, although reserve and structure change dif-
ferently; the data points almost hide the curves. Possibly due to social interaction, rats in
a group in the laboratory eat all there is [693]; this implies hyperphagia in the at libitum
cohort {256}. The details of food supply matter; fish in a tank that daily receive a fixed
number of food particles rapidly develop substantial size differences as a result of social
interaction [646].

4.2.2 V1-morphs

The surface area of a V1-morph is, per definition, proportional to volume1. It (usually)
grows in one dimension only, and it is possible to the orient the body such that the direction
of growth is along the x-axis, while no growth occurs along the y- and z-axes. The different
body sizes can be obtained by multiplying the x-values by some scalar l. An example of
a V1-morph is the filamentous hyphae of a fungus with variable length, and thus variable
volume V , but a fixed diameter, see Figure 4.8. Its surface area equals A(V ) = AdV/Vd,
where Ad denotes the surface area at V = Vd. The surface area of an isomorph equals
A(V ) = Ad(V/Vd)

2/3. So the shape correction function for V1-morphs becomes

M(V ) =
AdV/Vd

Ad(V/Vd)2/3
= (V/Vd)

1/3 (4.11)

It is not essential that the cross section through a filament is cir-
cular; it can be any shape, as long as it does not change during
growth.

A V1-morph can also grow in two dimensions, however, as is illustrated by sheets, i.e.
flat bodies with a constant, but small, height. The archaebacterium Methanoplanus , and
Walsby’s bacterium [594, 1219] fit this description. Several colonies, such as the sulphur
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bacterium Thiopedia, the cyanobacterium Merismopedia and the green alga Pediastrum,
also fall into this category; see Figure 4.8. How sheets grow in two dimensions does not
matter: they may change wildly in shape during growth. Height must be small to neglect
the contribution of the sides to the total surface area. The surface area of the sheet relates
to its volume as A(V ) = 2V L−1

h , where Lh denotes the height of the sheet and the factor
2 accounts for the upper and lower surface areas of the sheet. Division by the isomorphic
surface area A(Vd)(V/Vd)

2/3 gives M(V ) = (V/Vd)
1/3, as for filaments, i.e. V1-morphs.

V1-morphs play an important role in deb theory because of
their simple dynamics, especially for organisms that divide into
two daughter cells. Even if the actual changes in shape differ
from V1-morphy, the dynamics can be approximated very well by that of V1-morphs,
because of the narrow range in body sizes. From a population perspective the detailed
morphology of the growth curve hardly matters, only the time it takes to double the initial
volume. All individuals converge to the same reserve density in homogeneous space and
the change of the total structure in a population behaves similar to that of any individual.
In other words a population of many small individuals behaves identical to that of few
big individuals, as long as the parameters are identical. Size at division is irrelevant at
the population level, which means that maturity only needs to be evaluated in connection
with details of the cell cycle. Moreover, the somatic maintenance cost are proportional
to volume (because the surface area-linked maintenance now scales with volume as well)
and can be added to the maturity maintenance cost (because dividers are always in the
juvenile stage and the maturity does not stick at some threshold value). This is also the
reason why the maturity costs can be combined with that of structure. Thanks to the
κ-rule, there is no need to evaluate maturity explicitly. Whether or not unicellulars and
particularly prokaryotes invest in cell differentiation during the cell cycle is still open to
debate. Dworkin [304] reviewed development in prokaryotes and points to the striking
similarities between myxobacteria and cellular slime moulds and between Actinomyceta
and some fungi.

To avoid excessive notation by introducing new symbols for combinations of fluxes
and amounts, I take κ = 1, {ṗT} = 0, so [ṗS] = [ṗM ], and k̇J = 0 for V1-morphs and
don’t discuss maturity dynamics. The consequence of these choices is that in fact the
interpretation of some parameters changes for V1-morphs.

The ingestion rate, storage dynamics and growth for V1-morphs can be found from that
of isomorphs by multiplying {ṗAm}, {Ḟm}, {ṗT} and v̇ with the shape correction function
M(V ) in (4.11). The result is for [J̇XAm] ≡ {J̇XAm}/Ld and [Ḟm] ≡ {Ḟm}/Ld

J̇XA = [J̇XAm]fV with f =
X

K +X
and K = [J̇XAm]/[Ḟm] (4.12)

d

dt
e = (f − e)k̇E or

d

dt
mE = jEA − k̇EmE (4.13)

d

dt
V = ṙV with ṙ =

mE k̇E − jME − yEV jMV
mE + yEV

(4.14)

The reserve turnover rate k̇E = v̇/Ld = [ṗAm]/[Em], with [ṗAm] = {ṗAm}V −1/3
d , has di-

mension ‘per time’. The expressions for jME and jMV are given in (4.5) or (4.6), where
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V0-morph. The dinoflagellate Ceratium has a
rigid cell wall, which does not grow during the
cell cycle, nor does the adjacent outer membrane
that takes up nutrients. Cytoplasm growth is at
the expense of internal vacuoles.

V1-morph. A mycelium of a fungus, such as Mu-
cor , can be conceived as a branching filament,
with a constant diameter. If the mycelium be-
comes dense, uptake is usually no longer propor-
tional to the total filament length or number of
growing tips of branches.

V1-morph. The blue-green bacterial colony
Merismopedia is only one cell layer thick. Al-
though this sheet grows in two dimensions, it is
a V1-morph. The arrangement of the cells re-
quires an almost perfect synchronisation of the
cell cycles.

Figure 4.8: A sample of organisms that change in shape during growth in very particular ways.

Table 4.1: The powers as specified
by the deb model for a dividing V1–
morph of scaled length l and scaled re-
serve density e at scaled functional re-
sponse f ; cf Table 2.5 for reproducing iso-
morphs. An individual of structural vol-
ume V ≡ MV /[MV ] takes up substrate
at rate [J̇Xm]fV . The implied dynamics
for e and l: d

dte = f−e
ld
k̇Mg and d

dt l =

l e/ld−1
e/g+1

k̇M
3 ; division occurs when l = ld.

power
{ṗAm}L2

m
juvenile

assimilation, ṗA fl3/ld
mobilisation, ṗC el3 1+g/ld

g+e

somatic maintenance, ṗS κl3

maturity maintenance, ṗJ (1− κ)l3

somatic growth, ṗG κl3 e/ld−1
1+e/g

maturity growth, ṗR (1− κ)l3 e/ld−1
1+e/g
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Figure 4.9: The poly-β-hydroxybutyrate
(PHB) density (on the basis of C-mol/C-mol)
in aerobic activated sludge at 20 ◦C. The fitted
curve is an exponential one with parameter
0.15 h. Data from [103]. She pointed in her
thesis to [26] who found that the number of
PHB granules per cell is fixed at the earliest
stage of polymer accumulation. This supports
the structural homeostasis hypothesis.

the volume-linked somatic maintenance process M for V1-morphs plays the role of total
maintenance, S and J for isomorphs. The smallest turnover rate of structure that covers
the maintenance costs is jV C = jVM . The specific reserve mobilisation rate is found from
(2.12) and (4.13). The switch case amounts to

[ṗC ] = [ṗAm](e− ṙ/k̇E) or jEC = jEAm(e− ṙ/k̇E) (4.15)

jME = min{jEM , jEC} and jMV = jVM(1− jME /jEM) (4.16)

while the more general preference formulation gives for jV C = jVM

jME = jEM(1− jMV /jVM); jMV = jVM
2A

2A+
√
B2 − 4AC −B

(4.17)

with A = ρV j
2
EM , B = C + ((1 − ρV )jEC + yEV jVM)jEM , C = −jEC(jEC + yEV jVM). As

before (4.17) reduces to (4.16) for ρV → 0. Substitution into (4.14) gives

ṙ =
mE k̇E − jEM
mE + yEV

= k̇E
e− ld
e+ g

for mE ≥
jEM

k̇E
or e ≥ ld (4.18)

ṙ =
mE k̇E − jEM
mE + jEM/jVM

= k̇E
e− ld
e+ gV

for mE <
jEM

k̇E
or e < ld (4.19)

where gV = ldk̇E
jVM

and ld = (Vd/Vm)1/3 = Ld/Lm = jEM
k̇EmEm

= gk̇M/k̇E and Vd is the volume

at division, Vm = L3
m is defined by Lm = v̇

gk̇M
. The latter compound parameter lost its

interpretation as maximum length.
Table 4.1 summarises the basic powers for V1-morphs. The implication is that the

residence time of compounds in the reserve of a V1-morph is independent of the amount
of structure. The maximum reserve density is mEm = jEAm/k̇E.

If no structure is used to pay (somatic) maintenance costs the specific gross growth
rate jV G equals the specific nett growth rate ṙ, but if (some) maintenance is paid from
structure at rate jMV , then the growth rates relate to each other as ṙ = jV G − jMV .

Figure 4.9 provides empirical support for the reserve dynamics; notice that the reserve
density decays exponentially, as expected, not the reserve.
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Figure 4.10: When the inverse yield of Strep-
tococcus bovis on glucose is plotted against the
inverse growth rate, an U-shaped curve results.
Data from Russell & Baldwin (1979) as reported
in [1000] at 37 ◦C (I assume). The parameters are
Yg = 62.84 mg cell/mmol glucose, k̇E = 5.93 h−1

and k̇M = 0.042 h−1.

Exponential growth at constant food density

If substrate density X and, therefore, the scaled functional response f are constant long
enough, energy density tends to [E] = f [Em] and the volume of V1-morphs as a function
of time since division becomes for V (0) = Vd/2

V (t) =
1

2
Vd exp(tṙ) or t(V ) = ṙ−1 ln{2V/Vd} with ṙ ≡ k̇E

f − ld
f + g

(4.20)

The time taken to grow from Vd/2 to Vd is thus t(Vd) = ṙ−1 ln 2.

The maximum specific growth rate is

ṙm =
mEmk̇E − jEM
mEm + yEV

=
jEAm − jEM

jEAm/k̇E + yEV
=
k̇E − k̇Mg

1 + g
= k̇E

1− ld
1 + g

(4.21)

so that g = k̇E−ṙm
k̇M+ṙm

and jEAm = yEV
ṙm+k̇M

1−ṙm/k̇E
= yEV k̇E/g for jEM = yEV k̇M .

Exponential growth can be expected if the surface area at which nutrients are taken
up is proportional to volume. For V1-morphs, this happens when the total surface area is
involved, or a fixed fraction of it. If uptake only takes place at tips, the number of tips
should increase with total filament length to ensure exponential growth. This has been
found for the fungi Fusarium [1171], and Penicillium [832, 904], which do not divide; see
Figure 4.11. The ascomycetous fungus Neurospora does not branch this way [320]; it has
a mycelium that grows like a crust, see {130}.

Exponential growth of individuals should not be confused with that of populations. All
populations grow exponentially at resource densities that are constant for long enough,
whatever the growth pattern of individuals; see {333}. This is simply because the progeny
repeats the growth/reproduction behaviour of the parents. Only for V1-morphs it is un-
necessary to distinguish between the individual and the population level. This is a char-
acteristic property of exponential growth of individuals and is discussed on {337}.
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Yield of biomass on substrate at constant food

The yield of structure on substrate is given by Y = ṙ
fjXAm

on a mole per mole basis. Simple

substitution of f = k̇E ld+ṙg

k̇E−ḟ
from (4.20) gives

Y −1 = Y −1
g

1 + k̇M/ṙ

1− ṙ/k̇E
with Yg = κ

µAX
µGV

=
k̇E

gjXAm
=

κ

yV X
and yV X =

yV E
yXE

(4.22)

is known as the “true” yield in microbiology. This specifies a three-parameter U-shaped
relationship between Y −1 and ṙ−1. It typically fits data very well; see Figure 4.10. The
right branch of the U-shaped curve relates to maintenance, as is well understood [747]. The
left branch relates to reserve in deb theory, while popular explanations in microbiology
speculate on mechanisms for enhanced maintenance at high growth rates [1000].

Only yEX is likely to depend on the chemical potential of the substrate, i.e. yV X '
ηV AµX with ηV A = 0.001 C-mol/ kJ. Since animals are biotrophs, so their food mainly
consists of polysaccharides, lipids and proteins, we expect that yV X = 0.4 till 0.6 C-mol/C-
mol for animals (see the table at {137}).

If no reserve is used to pay (somatic) maintenance, so jME = 0 and jMV = jVM , and the
reserve turnover rate is large k̇E →∞, the deb model reduces to the Marr et al. [747] and
Pirt [902] model. If also jVM = 0, the model further reduces to that of Monod [803]. If
jEM = jVM = 0 but k̇E not very large, the model reduces to that of Droop [294, 296]. The
Droop model is typically applied for nutrient-limited growth, and the maintenance costs
for nutrient reserves might be small.

The Marr–Pirt model does not distinguish between maintenance and death, and is
typically applied at the population level. Although the difference between maintenance
and death in terms of effects on the population might be small, the difference in products
that are formed is substantial; dead biomass is a nutritious substrate for many organisms.
Refractory material is formed only during shrinking of bacterium Alteromonas infernus
[313]. This strongly supports the existence of two maintenance fluxes with different prod-
ucts. Marie Eichinger also found little quantitative differences between the Marr–Pirt and
the deb model under constant environmental conditions, but substantial differences un-
der varying conditions. At small spatial and temporal scales, environmental conditions
typically vary substantially.

The yield coefficients of the Monod, Droop, Marr-
Pirt and the deb models relate to each other as
at the right. The specific growth rates of these
4 models are compared in Figure 9.3 and the dy-
namic behaviour in Figure 9.2.

[ṗM ]
[Em]

0 > 0

Monod Marr–Pirt
0 Yg Yg

f−ld
f

Droop deb for V1’s
> 0 Yg

g
f+f

Yg
g
f
f−ld
f+g

4.2.3 Static mixtures of morphs: rods

Cooper [222] argues that at constant substrate density Escherichia grows in length only,
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while the diameter/length ratio at division remains constant for different substrate densi-
ties. This mode of growth and division is typical for most rod-shaped bacteria, and most
bacteria are rod-shaped. Shape and volume at division, at a given substrate density, are
selected as a reference. The cell then has, say, length Ld, diameter δLd, surface area Ad
and volume Vd. The fraction δ is known as the aspect ratio of a cylinder. The index d
will be used to indicate length, surface area and volume at division at a given substrate
density. The shape of the rod shaped bacterium is idealized by a cylinder with hemispheres
at both ends and, in contrast to a filament, the caps are now included. Length at division

is Ld =
(

4Vd
(1−δ/3)δ2π

)1/3
, making length L = δ

3

(
4Vd

(1−δ/3)δ2π

)1/3
+ 4V

πδ2

(
(1−δ/3)δ2π

4Vd

)2/3
. Surface

area becomes A = L2
d
π
3
δ2 + 4V

δLd
. The surface area of an isomorphically growing rod equals

Ad(V/Vd)
2/3. The shape correction function is the ratio of these surface areas. If volume,

rather than length, is used as an argument, the shape correction function becomes

M(V ) =
δ

3

(
V

Vd

)−2/3

+

(
1− δ

3

)(
V

Vd

)1/3

(4.23)

When δ = 0.6, the shape just after division is a sphere as in�� �-������	

cocci, so this is the upper boundary for the aspect ratio δ. This
value is obtained by equating the volume of a cylinder to that of two spheres of the same
diameter. When δ → 0, the shape tends to that of a V1-morph.

The shape correction function for rods can now be conceived as
a weighted sum of those for a V0- and a V1-morph, with a simple
geometric interpretation of the weight coefficients. A cylinder that

grows in length only, with flat caps and an aspect ratio δ at V = Vd, has the shape correction
function

M(V ) =
δ

δ + 2

(
V

Vd

)−2/3

+
2

δ + 2

(
V

Vd

)1/3

(4.24)

which is again a weighted sum of correction functions for V0- and V1-morphs. For the
aspect ratio δ → ∞, the shape can become arbitrary close to that of a V0-morph. The
exact geometry of the caps is thus less important for surface area/volume relationships.
Rods and cylinders are examples of static mixtures of V0- and V1-morphs, i.e. the weight
coefficients do not depend on volume. Crusts are examples of dynamic mixtures of V0-
and V1-morphs, and are discussed on {130}.

The growth of rods is on the basis of the shape correction function (4.23)

d

dt
V =

δVd
3V∞

k̇Ee

e+ g
(V∞ − V ) (4.25)

where V∞ ≡ Vd
δ
3
(e−1( Vd

Vm
)1/3 − 1 + δ

3
)−1 and, as before, V 1/3

m ≡ v̇
gk̇M

. If substrate density X

and, therefore, the scaled functional response f are constant long enough, scaled energy
density tends to e = f and volume as a function of time since division becomes

V (t) = V∞ − (V∞ − Vd/2) exp(−tṙr) (4.26)

where ṙr ≡ Vdfk̇Eδ/3
V∞(f+g)

. The interpretation of V∞ depends on its value.
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Figure 4.11: deb-based growth curves for cells of static mixtures between V1- and V0-morphs.
The larger the aspect ratio, δ, the more the growth curve turns from the V1-type (exponential) to
the V0-type (satiation), reflecting the different surface area/volume relationships and supporting
the assumption that uptake is linked to the surface area.

• If V∞ =∞, i.e. if f(1− δ/3) = (Vd/Vm)1/3, the volume of rods grows linearly at rate
k̇Ef
f+g

Vd
δ
3
. This is frequently found empirically [50].

• If 0 < V∞ <∞, V∞ is the ultimate volume if the cell ceases to divide but continues to
grow. For these values, V (t) is a convex function and is of the same type as V (t)1/3

for isomorphs, (2.23). Note that volume, and thus cubed length, grows skewly S-
shaped for isomorphs. When V∞ is positive, the cell will only be able to divide when
V∞ > Vd, thus when f > (Vd/Vm)1/3.

• If δ = 0, V∞ = 0 and the rod behaves as a V1-morph, which grows exponentially.

• For V∞ < 0, V (t) is a concave function, tending to an exponential one. The cell no
longer has an ultimate size if it ceases to divide. V∞ is then no longer interpreted as
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Figure 4.12: Biofilms (green) on the surface of a
sphere (brown) can behave between an isomorph (top;
radius of sphere V1 = 0) and a V0-morph (bottom;
radius of sphere V1 = ∞). The shape correction

function is M(V ) =
(
Vd
V

V1+V
V1+Vd

)2/3
.

ultimate size, but this does not invalidate the equations.

The shape of the growth curve, convex, linear or concave, thus depends on substrate density
and the aspect ratio. Figure 4.11 illustrates the perfect fit of growth curves (4.26) with only
three parameters: volume at ‘birth’, Vd/2, ultimate volume, V∞, and growth rate, ṙr. The
figure beautifully reveals the effect of the aspect ratio; the larger the aspect ratio, the more
important the effect of the caps, so a change from V1-morphic behaviour to a V0-morphic
behaviour. A sudden irreversible change in morphology from spherical to filamentous cells
has been observed in the yeast Kluyveromyces marxianus [435], while no other changes
could be detected. The associated increase of 30 % in the maximum specific growth rate
could be related to the observed increase in specific surface area.

The time required to grow from Vd/2 to V at constant substrate density is found from
(4.26)

t(V ) =
(f + g)V∞

fk̇EVdδ/3
ln
V∞ − Vd/2
V∞ − V

(4.27)

4.2.4 Dynamic mixtures of morphs

Some organisms change in shape during growth in a complex fashion. Frequently it is still
possible, however, to take these changes in shape into account in a rather simple way.

Biofilms on curved surfaces

Figure 4.12 shows that a biofilm on a curved surface can behave somewhere between a V0-
and an isomorph.

Crusts

Crusts, i.e. biofilms of limited extent that grow on solid surfaces, are mixtures of V0-morphs
in the centre and V1-morphs in the periphery where the new surface is covered. Lichenes
on rocks or trees behave like crusts as well as bacterial colonies on an agar plate, conceived
as super-organisms. A forest or peat of limited extent on a spatially homogeneous plain
is a crust. The spatial expansion of geographical distribution areas of species, such as the
musk rat in Europe, and of infectious diseases, cf. [132, 133, 481], closely resembles that
of crusts. They all share the property that what happens in the centre has little relevance
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Figure 4.13: The lichens As-
picilia cinerea (above) and Rhi-
zocarpon geographicum (below)
grow almost linearly in a period
of more than three centuries on
moraine detritus of known age in
the European Alps. Data from
Richarson [960]. Linear growth
is to be expected from the deb
model, when such lichens are
conceived as dynamic mixtures of
V0- and V1-morphs. year of moraine deposition
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for the moving border. I will now demonstrate that this has the consequence that, in
constant environments, the border moves at a constant rate: biomass in the border area
grows exponentially and causes expansion, but that in the inner area settles at a constant
density (amount per surface area) and hardly contributes to the expansion. In inner part
behaves as a V0-morph and represents an increasing proportion of the biomass; the outer
part behaves as a V1-morph, while the width of the annulus is determined by the horizontal
transport rate of the limiting resource (in the case of lichenes) or individuals (in the case
of musk rats).

Let Lε denote the width as well as the thickness of the outer annulus of the circular
crust of radius Lr that is growing exponentially in an outward direction. The width and
the thickness of the outer annulus remain constant. This biomass thus behaves as a V1-
morph; all other biomass in the centre of the crust behaves as a V0-morph. The surface
area of the crust is Ar(t) = πL2

r(t), and of the exponentially growing annulus Aε(t) =
π (L2

r(t)− (Lr(t)− Lε)2) = π (2Lr(t)Lε − L2
ε). The total surface area is growing at rate

d
dt
Ar = ṙAε, so the radius is growing at rate

d

dt
Lr = ṙLε

(
1− Lε

2Lr

)
(4.28)

from which it follows that the diameter of the crust is growing linearly in time for Lε � Lr.
Strong empirical support for the linear growth of the diameter of the crustose saxicolous
lichen Caloplaca trachyphylla is given by [210]. This linear growth in diameter has also
been observed experimentally by Fawcett [338], and the linear growth model originates
from Emerson [320] in 1950 according to Fredrickson et al. [370]. Figure 4.13 shows that
this linear growth applies to lichen growth on moraines. Richardson [960] discusses the
value of gravestones for the study of lichen growth, because of the reliable dates. Lichen
growth rates are characteristic of the species, so the diameter distribution of the circular
patches can be translated into arrival times, which can then be linked to environmental
factors, for instance.

If substrate transport in the vertical direction on the plate is sufficient to cover all
maintenance costs, and transport in the horizontal direction is small, the growth rate of
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the V0-morph on top of an annulus of surface area dA is

d

dt
V =

f{ṗAm} dA− [ṗM ]V

[EG] + [Em]f
(4.29)

The denominator stands for the volume-specific costs of structural biomass and reserves.
Division by the surface area of the annulus gives the change in height Lh of the V0-morph
on the top of an annulus of surface area dA = V

2/3
d ; the height is found from (4.10) by

substituting V = LhV
2/3
d

d

dt
Lh =

v̇

e+ g
(e− V −1/3

m Lh) or
d

dt
lh = 3ṙB(f − lh) (4.30)

with the scaled height lh ≡ LhV
−1/3
m . The initial growth rate in scaled height is 3ṙB(f− lε).

The parameter lε ≡ LεV
−1/3
m can be eliminated, on the assumption that the growth rate in

the outward direction equals the initial growth rate in the vertical direction, which gives
lε = ld/2 for ld � f . For ld � lr with lr ≡ LrV

−1/3
m , the end result amounts to

lh(t, lr) = f − (f − ld/2) exp

(
lr

f − ld
− 3ṙBt

)
(4.31)

The scaled height of the crust is thus growing asymptotically to f . Different crust shapes
can be obtained by accounting for horizontal transport of biomass and diffusion limitation
of food transport to the crust.

Flocs and tumours

Growth in the thickness of a biofilm on a plane, which behaves as a V0-morph, is thus
similar to that of a spherical biofilm on a small core in suspension, which behaves as an
isomorph as long as mass transport in the film is sufficiently large to consider the biomass
as homogeneous. Films are growing in a von Bertalanffy way in both situations, if growth
via settling of suspended cells on the film is not important. Note that if maintenance is
small, so that the asymptotic depth of the film is large, the increase in diameter is linear
with time, so that volume increases as time3, as has been found for foetuses in (2.47) by
different reasoning. This mode of growth was called the ‘cube root’ phase by Emerson
[320], who found it applicable to submerged mycelia of the fungus Neurospora. The model
was originally formulated by Mayneord for tumour growth [762], and frequently applied
since then [679, 783, 1104, 1246].

If mass transport in a spherical biofilm on a small core in suspension is not large, the
biomass in the centre will become deprived of substrate by the peripheral mass, and die from
starvation. Such a film is called a (microbial) floc. A concentration gradient of substrate
develops in the living peripheral mass, such that the organisms at the living/dead boundary
layer just receive enough substrate to survive, and do not grow. The organisms at the outer
edge grow fastest. The thickness of the living layer directly relates to the transport rate
of substrate, and so depends on the porosity of the floc. Flocs again behave as dynamic
mixtures of V0- and V1-morphs, and, just like crusts, the floc diameter eventually grows
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Figure 4.14: Just after germination, plants usually grow as V1-morphs, but when the number of
leaves increases, self-shading becomes important, and the plant gradually behaves as an isomorph.
If they make contact with other plants, and leaves and roots form a closed layer, they behave as
V0-morphs; an increase in mass no longer results in an increase of surface area that is effectively
involved in nutrient or light uptake.

linearly in time at constant substrate densities in the environment, if it does not fall apart
because of the increasing mechanic instability. This can be seen as follows.

Let Lε denote the thickness of the thin living layer of a spherical floc of radius Lr. The
thickness remains constant, while the living mass is growing exponentially at rate ṙ. The
outer layer behaves as a V1-morph, the kernel as a degenerated V0-morph. The total vol-
ume of the floc is Vr(t) = 4

3
πL3

r(t) and of the living layer Vε(t) = 4
3
π (Lr(t)

3 − (Lr(t)− Lε)3) =
4
3
π (3L2

r(t)Lε − 3Lr(t)L
2
ε + L3

ε). The growth of the floc is given by d
dt
Vr = ṙVε, so the radius

is growing at rate

d

dt
Lr = ṙLε

(
1− Lε

Lr
+

L2
ε

3L2
r

)
(4.32)

For Lr � Lε, the change in the radius Lr becomes constant, and the floc grows lin-
early in time. The steady-state population growth rate of flocs can be obtained analyt-
ically, given a fixed size at fragmentation into n parts. The dead volume increases with
d
dt
V†(t) = 4π(Lr(t) − Lε)

2 d
dt
Lr(t). Bernd Brandt [141] showed that the combination of

diffusive transport of substrate into the floc, cf {259}, and a hyperbolic functional re-

sponse leads to a living layer of thickness
(

ḊXk
2jXmX1

)1/2 ∫ x0
x†

(
y − x† + ln

1+x†
1+y

)−1/2
dy, where

Ḋ is the diffusion coefficient, the scaled substrate density at the living/ dead boundary is

x† = [ṗM ]
[ṗAm]−[ṗM ]

with specific maintenance power [ṗM ] and specific maximum assimilation

power [ṗAm], scaled substrate concentration x0 = X0/XK with saturation constant XK ,
biomass density in the floc X1 and maximum specific substrate uptake rate [jXm] [141].
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Roots and shoots

The modelling step from algae to plants involves a number of extensions that primarily
relate to the fact that plants take up nutrients through roots, while shoots (including leaves)
are used for light and carbon dioxide uptake and water transpiration, which affect internal
nutrient and metabolite transport. This makes the allocation of resources to root versus
shoot growth of special interest, as well as shape changes that affect surface area/ volume
relationships via the scaling of assimilation and maintenance, respectively, with structural
mass. As illustrated in Figure 4.14, most plants naturally develop from a V1-morphic, via
an isomorphic, to a V0-morphic growth during their life cycle. Procumbant plants almost
skip the isomorphic phase and directly develop from V1- to V0-morphic growth, similar to
crusts [108]. Climbing plants seem to stay in the V1-morphic phase.

These changes in shape can be incorporated using the shape correction functionM(V ),
which can be chosen differently for roots and shoots. Given the wild diversity of plant
shapes and the extreme extent of local adaptations, it is hard to see how a choice can
be based on mechanistic arguments. Empirical and convenience arguments can hardly be
avoided at this point. A simple choice would be

M(V ) = (V/Vd)
1/3−(V/Vm)β (4.33)

which starts from V1- and ends with V0-morphic growth when it reaches its maximum
volume Vm.

4.3 Mass aspects of univariate deb models

4.3.1 Three basic fluxes

In this subsection I show that all energy and mass fluxes of univariate deb models are
weighted sums of three basic fluxes: assimilation dissipation and growth. The mineral
fluxes follow from the organic fluxes, and the organic fluxes follow from the assumptions
of Table 2.4.

The chemical indices of the minerals and the organic compounds are collected in two
matrices nM and nO, respectively. A typical element of such a matrix, n∗1∗2 , denotes the
chemical index of compound ∗2 with respect to element ∗1. The chemical indices of the
organic compounds for carbon equal 1 by definition. The strong homeostasis assumption
amounts to the condition that the chemical indices do not change.

Let J̇∗ denote the rate of change of the compound ∗. The conservation of mass amounts
to 

0
0
0
0

 =


1 0 0 nCN
0 2 0 nHN
2 1 2 nON
0 0 0 nNN



J̇C
J̇H
J̇O
J̇N

+


nCX nCV nCE nCP
nHX nHV nHE nHP
nOX nOV nOE nOP
nNX nNV nNE nNP




J̇X
J̇V

J̇E + J̇ER
J̇P


(4.34)
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This can be summarised in matrix form as 0 = nMJ̇M + nOJ̇O or 0 = nJ̇ , for n =

(nM
...nO) and J̇ = (J̇M; J̇O); the only difference with (3.10) is in the grouping of the

compounds. Thus the fluxes for the ‘mineral’ compounds J̇M can be written as a weighted
sum of the fluxes of the organic compounds J̇O

J̇M = −n−1
MnOJ̇O (4.35)

with

n−1
M =


1 0 0 − nCN

nNN

0 2−1 0 − nHN
2nNN

−1 −4−1 2−1 n
4nNN

0 0 0 n−1
NN

 ; n ≡ 4nCN + nHN − 2nON (4.36)

I will now explain why the ‘organic’ fluxes J̇O relate to the basic powers ṗ as
J̇X
J̇V

J̇E + J̇ER
J̇P

 =


−ηXA 0 0

0 0 ηV G
µ−1
E −µ−1

E −µ−1
E

ηPA ηPD ηPG


 ṗA
ṗD
ṗG

 , or J̇O = ηOṗ (4.37)

where µE is the chemical potential of the reserve, and η∗1∗2 the mass flux of compound
∗1 per unit of power ∗2, i.e. the coupling between mass and energy fluxes. The latter
coefficients serve as model parameters, and are collected in matrix η.

The fluxes J̇X = −ηXAṗA and J̇P follow from the strong homeostasis asumption and
from (2.2). Assimilation energy is quantified by its fixation in reserves, so reserves are
formed at a rate ṗA/µE, and the yield of food on reserve, yXE = µE/µAX , stands for the
C-moles of food ingested per C-mole of reserves formed, where µAX = η−1

XA. The rate at
which work can be done by ingested food is µX J̇X ; the flux ṗA is fixed in reserves, the
flux ṗAµPηPA is fixed in product, the rest dissipates as heat and mineral fluxes that are
associated with this conversion. The coefficient yPX = µAXηPA stands for the C-mole of
product that is derived directly from food per C-mole of food ingested (products can also
be formed indirectly from assimilated energy).

If the individual happens to be a metazoan and the product is interpreted as faeces,
then ηPD = ηPG = 0. Faeces production is coupled to food intake only. Alcohol production
by yeasts that live on glucose is an example of product formation where ηPD 6= ηPG 6= 0.
At this point there is no need for molecular details about the process of digestion being
intra- or extra-cellular. This knowledge only affects details in the interpretation of the
coefficients in η.

The flux J̇V = ṗGηV G indicates that µGV = η−1
V G is the invested energy per C-mole of

structural biomass, which directly follows from assumption 1 in Table 2.4. Note that µV is
the energy that is actually fixed in a C-mole of structural biomass, so µGV − µV dissipates
(as heat or via products that are coupled to growth) per C-mole.

The flux of reserves is given by J̇E = µ−1
E (ṗA − ṗC): reserve energy is generated by

assimilation and mobilised for further use. The flux of embryonic reserves (i.e. reproduc-
tion), J̇ER = µ−1

E κRṗR, appears as a return flux to the reserve because embryonic reserves
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have the same composition as adult reserves because of the strong homeostasis assumption.
Since ṗC = ṗD + ṗG + κRṗR, see (2.60) and (2.61), we have J̇E + J̇ER = µ−1

E (ṗA− ṗD− ṗG),
which is the relationship given in (4.37). So J̇E + J̇ER is a weighted sum of three powers,
but J̇E and J̇ER themselves are not.

Substitution of (4.37) into (4.35) shows that the mass balance equation can be re-
formulated as 0 = nMηM +nOηO, which provides the matrix of energy–mineral coupling
coefficients ηM = −n−1

MnOηO and the mineral fluxes J̇M = ηMṗ.
Table 2.5 shows that all basic powers are cubic polynomials in length, from which

follows that also all mass fluxes are cubic polynomials in length.
The matrix n−1

M of coefficients (4.36) has an odd interpretation in terms of reduction
degrees if the nitrogenous waste is ammonia. The third row, i.e. the one that relates to
dioxygen, represents the ratio of the reduction degree of the elements C, H, O, N to that
of O2, which is −4. That is to say, N atoms account for −3 of these reduction degrees,
whatever their real values in the rich mixture of components that are present. The third
row of the matrix n−1

MnO thus represents the ratio of the reduction degrees of X, V , E
and P to that of O. Sandler and Orbey [1011] discuss the concept of generalised degree of
reduction.

Figure 4.15 illustrates J̇O and J̇M of the deb model as a function of the structural
biomass (i.e. scaled length, see next section), when food is abundant. The embryonic
reserve flux is negative, because embryos do not eat. The growth just prior to birth is
reduced, because the reserves become depleted. The switch from juvenile to adult, so
from development to reproduction, implies a discontinuity in the mineral fluxes, but this
discontinuity is negligibly small.

Partitioning of mass fluxes

The mineral and organic fluxes can be decomposed into contributions from assimilation,
dissipation power and growth. Let J̇∗ = J̇∗A+ J̇∗D + J̇∗G for ∗ ∈ {M,O}, and let us collect
these fluxes in two matrices, then

J̇O∗ = ηO diag(ṗ) and J̇M∗ = ηM diag(ṗ) (4.38)

where diag(ṗ) represents a diagonal matrix with the elements of ṗ on the diagonal, so
that diag(ṗ)1 = ṗ, and J̇M∗1 = J̇M, J̇O∗1 = J̇O. These results are used in later sections.

The fluxes assimilation, dissipation and growth can be further subdivided into and
catabolic and an anabolic aspect, even for the dissipation flux. This is because somatic
maintenance includes the turnover of structure, where structure serves the function of both
substrate and product. We need this for the specification of fractionation of isotopes.

4.3.2 State versus flux

The mass of reserves and the structural biomass relate to the fluxes as ME(a) = M0
E +∫ a

0 J̇E(t) dt and MV (a) =
∫ a

0 J̇V (t) dt (the initial structural mass is negligibly small). The
mass of reserves of an embryo in C-moles at age 0 is M0

E = E0/µE, where E0 is given in
(2.42).
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Figure 4.15: The organic fluxes J̇O (top) and the mineral fluxes J̇M (bottom) for the deb model
as functions of the scaled length l at abundant food (e = 1 for l > lb; 0 < l < 1). The various
fluxes are multiplied by the indicated scaling factors for graphical purposes, while a common
scaling factor involves model parameters. The parameters: scaled length at birth lb = 0.16,
scaled length at puberty lp = 0.5 (both indicated on the abscissa), scaled heating length lT = 0
(ectotherm), energy investment ratio g = 1, partition coefficient κ = 0.8, reproduction efficiency
κR = 0.8. The coefficient matrices are

ηO =


−1.5 0 0

0 0 0.5
1 −1 −1

0.5 0 0

, nM =


1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1

, nO =


1 1 1 1
1.8 1.8 1.8 1.8
0.5 0.5 0.5 0.5
0.2 0.2 0.2 0.2

.
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The change in structural biomass MV and reserve mass ME relate to the powers as
d
dt
MV = J̇V = ṗGηV G and d

dt
ME = J̇E = ṗA−ṗC

µE
. If the model for these powers implies the

existence of a maximum for the structural biomass, MV m, and for the reserve mass, MEm,
it can be convenient to replace the state of the individual, MV and ME, by the scaled
length l ≡ (MV /MV m)1/3 and the scaled energy reserve density e ≡ MEMVm

MVMEm
. The change

of the scaled state then becomes

d

dt
l =

ṗGηV G

3M
2/3
V M

1/3
V m

=
ṗG

3l2κgEm
(4.39)

d

dt
e =

MV m

MVMEm

(
ṗA − ṗC
µE

− ME

MV

ṗGηV G

)
=

1

Eml3

(
ṗA − ṗC − ṗG

e

κg

)
(4.40)

The reproduction rate, in terms of the number of offspring per time, is given by Ṙ =
J̇ER/M

0
E. Therefore, the three basic powers, supplemented by the reproductive power,

fully specify the individual as a dynamic system. The purpose of the specific assumptions
of the deb model is, therefore, to specify these three powers.

4.3.3 Mass investment in neonates

Several simple expressions can be obtained for changes over the whole incubation period
that are useful for practical work. The initial weight (age a = 0) and the weight at birth
(i.e. hatching, age a = ab), excluding membranes and nitrogenous waste, are

(
Ww(0) Ww(ab)

)
= Vm

(
wE wV

)( [MEm]e0 [MEm]ebl
3
b

0 [MV ]l3b

)
(4.41)

where wE and wV denote the molecular weights of reserves and structural biomass. The
scaled reserve densities e0 and eb are defined as e∗ ≡ E∗([Em]Vm)−1, where E∗ denotes the
initial amount of reserves or the amount at hatching.

The relative weight at hatching is Ww(ab)/Ww(0) = (eb + wV /wE)l3b/e0.

The total production of ‘minerals’ during incubation, MM(ab), amounts to

MM(ab) ≡
∫ ab

0
J̇M(a) da = −n−1

MnO
(

0 −[MV ]Vb µ−1
E (E0 − Eb) 0

)T
(4.42)

4.3.4 Composition of reserves & structural mass

Figure 4.16 illustrates that the change in composition of biomass for increasing growth
rates can be used to obtain the composition of the reserves and of the structural mass.
This method can be applied not only to elements but also to any chemical compound
that can be measured in organisms. Indirect evidence can be used to obtain the amounts,
without separating structure and reserve physically, see Figure 9.7.

The relative contributions of the three basic powers to the mass conversions depend on
the substrate density, and therefore on throughput rate of a chemostat, as is illustrated in
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h Figure 4.16: Relative abundances (upper left),

molar yield of biomass dry weight (upper right),
and specific O2 consumption rate and CO2 pro-
duction rate (lower) for Klebsiella aerogenes
growing on glycerol at 35 ◦C. Data from [328,
329]; fits modified from Hanegraaf [457]. Param-
eter estimates, given a maximum dilution rate of
1.05 h−1 and g = 1.

k̇E 2.11 h−1 k̇M 0.021 h−1

yV E 1.135 yXE 1.490

nHE 1.66 nOE 0.422 nNE 0.312
nHV 1.64 nOV 0.379 nNV 0.198

Figure 4.16 for the conversion process of glycerol into the bacterium Klebsiella aerogenes
at steady state. The data on the elemental composition, and on the yield of dry weight and
the specific O2 and CO2 fluxes, lead to the following relationship between mineral fluxes
and the three basic powers for J̇M+ = J̇M∗1 = J̇M and ṗ+ = diag(ṗ)1 = ṗ

J̇M+ =


0.14 1.00 −0.49
1.15 0.36 −0.42
−0.35 −0.97 0.63
−0.31 0.31 0.02

 ṗ+/µE (4.43)

rRNA belongs to reserve

rna, mainly consisting of ribosomal rna, is an example of a compound known to increase
in abundance with the growth rate [609]. This property is used to measure the growth rate
of fish, for example [173, 531]. In prokaryotes, which can grow much faster, the increase in
rrna is much stronger. Within the deb model, we can only account for this relationship
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Figure 4.17: The concentration of rna as
a function of the population growth rate in
E. coli . Data from Koch [609]. The least-
squares estimates of the parameters are θe =
0.44, θv = 0.087 and [WEd]/[WV d] = 20.7.

Figure 4.18: Elongation rate in E. coli for
δ = 0.3, ld = 0.24, g = 32.4. Data
from Bremer and Dennis [148]. Both elonga-
tion rate and population growth rate are ex-
pressed as fractions of their maximum value
of ṙm = 1.73 h−1 with an elongation rate of
21 aa s−1rib−1.

when (part of the) rna is included in the energy reserves. This does not seem unrealistic,
because when cells experience a decline in substrate density and thus a decline in energy
reserves, they are likely to gain energy through the degradation of ribosomes [249]. It also
makes sense, because the kinetics of reserve energy density is first order, which implies that
the use of reserves increases with their density. The connection between the abundance of
rrna, i.e. the apparatus for protein synthesis, and energy density is, therefore, a logical
one. No assumption of the deb model implies that the energy reserves should be inert
materials that only wait for further use.

rna as a fraction of dry weight is given in Figure 4.17. If the weight of rna is a fraction
θv of the dry weight of structural biomass and a fraction θe of the dry weight of the energy
reserves, the fraction of dry weight that is rna equals

WRNA/Wd =
θv[WV d]V + θe[WEd]fV

[WV d]V + [WEd]fV
=
θv + θef [WEd]/[WV d]

1 + f [WEd]/[WV d]
(4.44)

The data are consistent with the assumption that all rrna belongs to the reserve in E. coli
most rna, and about half the energy reserves consist of rna. The rate of rna turnover is
completely determined by this assumption.

It also has strong implications for the translation rate and the total number of trans-
lations made from a particular rna molecule. The mean translation rate of a ribosome,
known as the peptide elongation rate, is proportional to the ratio of the rate of protein
synthesis to the energy reserves, E. The rate of protein synthesis is proportional to the
growth rate plus part of the maintenance rate, which is higher the lower the growth rate in
bacteria [1121]. The peptide elongation rate is plotted in Figure 4.18 for E. coli at 37 ◦C.
If the contribution of maintenance to protein synthesis can be neglected, the elongation
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rate at constant substrate density is proportional to the ratio of the growth rate d
dt
V to the

stored energy [Em]fV . As shown by (4.25), the elongation rate in a rod of mean volume
should be proportional to ṙ/f at population growth rate ṙ. The relationship allows the
estimation of the parameter ld, which is hard to obtain in another way.

The lifetime of a compound in the reserve of a rod is exponentially distributed with a
mean residence time of (k̇E( δ

3
Vd
V

+1− δ
3
))−1. The mean residence time thus increases during

the cell cycle. At division it is k̇−1
E , independent of the (population) growth rate. The total

number of transcriptions of a ribosome, in consequence, increases with the population
growth rate. Outside the cell, rna is rather stable. The fact that the rna fraction of dry
weight depends on feeding conditions indicates that an rna molecule has a restricted life
span inside the cell.

Analyses of this type are required to see if the conclusion that rrna belongs to the
reserve also holds more generally for (isomorphic) eukaryotes. If so, rrna can be used as
a proxy for reserve.

DNA belongs to structure

Nuclear dna belongs to structure, not because of any chemical property or function it has,
but because of its dynamics. Each cell has just a single set of dna molecules, irrespective of
its nutritional state. This means than its amount follows that of structure and the amount
of dna per cell weight decreases as a function of the growth rate, because the weight of
the cell increases due to the contribution of the reserve. A slightly more complex exists
in some bacteria that grow fast, such as fast growing Escherichia coli, which can reduce
their division interval till some 20 minutes, while is takes an hour to copy their dna. Their
amount of dna per cell increases this the growth rate, but the amount of dna per cell
hardly varies, as discussed at {272}. This simple reasoning shows that dna can be used
as a proxy for structure.

If mitochondrial dna follows the dynamics of mitochondrial activity, it must at least
partly belong to the reserve; to my knowledge little is known about its dynamics.

Composition changes during starvation

The linear decrease of compounds during starvation can be used to gain info on the com-
position of reserve and structure, using the following reasoning.

We first try to understand the decrease of a compound C in an organism during star-
vation, having measurements of how the amount MC (in C-mol) changes in time t. At
the start of the experiment, the organism has amounts of structure MV and reserve ME.
Suppose that reserve mobilisation during starvation is just enough to cover the somatic
maintenance costs. The amount of structure MV remains constant, so if we focus on some
compound C, e.g. protein, and follow it backward in time, with the time origin at the
moment on which the reserve is fully depleted, we have

MC(t∗) = MCV + (MCE/ME)t∗J̇EM (4.45)
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where MC(t∗) is the amount of compound at revered time t∗, MCV the (constant) amount
of compound in structure, MCE/ME the constant density of the compound in reserve and
J̇EM the (constant) rate of use of reserve for somatic maintenance purposes.

Reverting time back into the standard direction, we substitute t = t0 − t∗ and obtain

MC(t) = MCV + (MCE/ME)(t0 − t)J̇EM and for MC0 = MCV + J̇CM t0 (4.46)

= MC0 − tJ̇CM with J̇CM = (MCE/ME)J̇EM (4.47)

This shows that each compound can decrease linearly at its own rate, even under the strong
homeostasis assumption, which prescribes that the densities of the compound in reserve
MCE/ME and in structure MCV /MV remain constant.

It also shows that, if we only know how the compound changes in time, we have access to
MC0 and J̇CM , but not to the more informative MCV and MCE (i.e. info on the composition
of structure and reserve).

We do have some relative information on the composition of reserve, if we know the time
trajectories of several compounds: J̇C1M/J̇C2M = MC1E/MC2E. If we would know when
the reserve is depleted (namely at time t0), we have access to the composition of structure
MCV /MV , since MC(t0) = MCV , but the individual will probably start to use structure
to pay maintenance costs during prolonged starvation (causing deviations from linear de-
crease). Moreover it is likely that the reserve buffer that is allocated to reproduction is
used under extreme starvation. This makes it difficult to have access to t0.

Suppose now that we have info for all compounds, that is
∑
iMCiV = MV and

∑
iMCiE =

ME. Although the actual number of chemical compounds is formidable, they can be
grouped into a limited number of chemical categories (e.g. proteins, lipids etc). We have∑
i J̇CiM = J̇EM , so J̇CiM/

∑
j J̇CjM = MCiE/ME. We also have

∑
iMCi0 = MV + J̇EM t0,

so MV =
∑
iMCi0 − t0

∑
i J̇CiM , which we know if we would have and estimate for t0. We

obviously must have that t0 <
∑
iMCi0/

∑
i J̇CiM . The composition of structure is then

found from MCiV /MV = (MCi0 − t0JCiM)/MV .
Figure 4.19 gives an example of application. The composition of reserve and structure

turns out to insensitive for the unknown moment of reserve depletion, and reserve of oyster
is rich in carbohydrates, compared to structure.

4.4 Respiration

Respiration, i.e. the use of dioxygen or the production of carbon dioxide, is usually taken
to represent the total metabolic rate in an organism. The latter is a rather vague concept,
however. The conceptual relationship between respiration and use of energy has changed
with time. Von Bertalanffy identified it with anabolic processes, while the Scope For
Growth concept, {417}, relates it to catabolic processes. The respiration rate can now be
defined concisely as the dioxygen flux J̇O = ηOAṗA+ηODṗD +ηOGṗG, or the carbon dioxide
flux J̇C = ηCAṗA + ηCDṗD + ηCGṗG.

If product formation, such as faeces, is only linked to assimilation, the carbon dioxide
production rate that is not associated with assimilation, J̇C for ṗA = 0, follows from (4.35),
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Figure 4.19: The amounts of energy in starving
oyster Crassostrea gigas. Data from [1251].
The parameter estimates (right), conversions,
and their translation into composition info for
3 choices for the time t0 at which the reserve is
depleted. The caloric values µC are from Table
4.2; 1 cal = 4.184 J.

100 g wet weight t0, d total protein lipid carbohydrate
µCMC0, kcal 64.81 30.54 16.80 16.87

µC J̇CM , kcal/d 0.1042 0.0408 0.0200 0.0358

MC0, mol 0.570 0.319 0.114 0.137

J̇CM , mmol/d 0.426 0.136 0.290

MCE/ME, mol

mol
0.500 0.159 0.341

MCV /MV , mol

mol
200 0.546 0.191 0.263

MCV /MV , mol

mol
400 0.537 0.185 0.278

MCV /MV , mol

mol
600 0.531 0.181 0.288

(4.36) and (4.37)

J̇CD + J̇CG =
(

1− nNE
nCN
nNN

)
µ−1
E (ṗD + ṗG)−

(
1− nNE

nCN
nNN

)
ηV GṗG (4.48)

where the second term represents the carbon from the reserve flux that is allocated to
growth and actually fixed into new tissue. The relationship simplifies if the nitrogenous
waste contains no carbon (nCN = 0). For embryos and juveniles we have ṗG + ṗD =
ṗC , but adults fix carbon in embryonic reserves. This change at puberty results in a
stepwise decrease in carbon dioxide production as illustrated in Figure 4.15. Table 2.5
gives the required powers: for adults we have the growth power ṗG = Vm[ṗM ]l2 e−l−lT

1+e/g
and

the dissipating power

ṗD = Vm[ṗM ]

(
l3 + (

1

κ
− 1)l3p + l2lT + (1− κR)(

1

κ
− 1)

(
l2
e− l + lT/g

1 + e/g
+ l3 − l3p

))
(4.49)

Initially, eggs hardly use dioxygen, but dioxygen consumption rapidly increases during
development; see Figure 4.20. In juveniles and adults, dioxygen consumption is usually
measured in individuals that have been starved for some time, to avoid interpretation prob-
lems related to digestion. (For micro-organisms this is not possible without a substantial
decrease of reserves.) The expression for the dissipating power is consistent with the obser-
vation that respiration rate increases with reserve density [602], while reserves themselves
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Figure 4.20: The water stick insect Ranatra lin-
earis deposits its eggs in floating decaying plant
material, where dioxygen availability is usually
poor. The eggs are easily spotted by the special
respiratory organs that peek out of the plant.
Just prior to hatching, eggs typically need a lot
of dioxygen, cf. Figure 2.12.

Figure 4.21: The respiration rate of
Daphnia pulex with few eggs at 20 ◦C as
a function of length. Data from Richman
[962]. The deb-based curve 0.0336L2 +
0.01845L3 as well as the standard allomet-
ric curve 0.0516L2.437 are plotted on top
of each other, but they are so similar that
this is hardly visible. If you look hard,
you will notice that the line width varies
a little.

length, mm

O
2

co
ns

um
pt

io
n,
µ

l/
h

do not use dioxygen. Moreover, it explains the reduction of respiration during starvation;
see {113}.

The following subsection shows that respiration is a weighted sum of volume and sur-
face area in steady-state conditions for the reserves. This is, for all practical purposes,
numerically indistinguishable from the well known Kleiber’s rule, which takes respiration
to be proportional to weight to the power 0.75 or length to the power 2.25; see Figure 4.21.
There are three major improvements in comparison to Kleiber’s rule. This model does not
suffer from dimensional problems, it provides an explanation rather than a description and
it accommodates species that deviate from Kleiber’s rule; endotherms respire in proportion
to surface area (approximately), which has given rise to Rubner’s surface law.

As already mentioned, this result solves the long standing problem of why the volume-
specific respiration of ectotherms decreases with increasing size when organisms of the same
species are compared. This problem has been identified as one of the central problems of
biology [1266]. Many theories have been proposed, see e.g. [951] for a discussion, but all
use arguments that are too specific to be really satisfactory: heating (but many species
are ectothermic), muscle power (but movement costs are relatively unimportant), gravity
(but aquatic species escape gravity), branching transport systems (but open circulatory
systems are frequent). Peters [886] even argued that we should stop looking for a general
explanation. The deb theory, however, does offer a general explanation: the overhead of
growth. A comparison of different species is covered in a later chapter, {287}, where it is
shown that interspecies comparisons work out a bit differently.
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Table 4.2: Structural biomass and mainly reserves consist of three groups of polymers. The RQ
value for protein relates to urea as nitrogenous waste. The formula for lipid refers to tripalmitin;
octanol (C8H18O, or CH2.25O0.125) is frequently used as a chemical model for a typical animal
fat, see {315}.

compound symbol formula RQ kJ/ g kJ/ C-mol

polysaccharides Ps CH2O 1.00 17.2 516
lipids Li CH1.92O0.12 0.67 38.9 616
proteins Pr CH1.61O0.33N0.28 0.84 17.6 401

Since embryos do not assimilate, their respiration has contributions from growth plus
maturation and maintenance only. The observation that respiration is proportional to a
weighted sum of volume and change in volume goes back to the 1957 Smith study [1082]
of salmon eggs. At constant food density, the change in volume is of the von Bertalanffy
type, which makes respiration proportional to 3ṙB(V 1/3

∞ V 2/3 − V ) + k̇MV . This gives five
parameters to be estimated from two data sets on respiration and growth: Vb, V∞, ṙB,
a proportionality constant for respiration and the maintenance rate coefficient, k̇M . This
gives 2.5 parameters per data set, which is acceptable if the scatter is not too large.

4.4.1 Respiration Quotient

The Respiration Quotient (RQ) is of practical interest because it yields information on
the relative contributions of protein, carbohydrates and lipids. The RQ for a particular
compound X with chemical indices nX can be obtained by decomposing the compound into
minerals with chemical indices nM. The composition of the nitrogenous waste (N), which
can also contain C and O, affects the RQ if the compound contains N. The stoichiometric
coefficients are yMX = ( yCX yHX yOX yNX )T = n−1

MnX , and RQ= yCX/yOX .
The RQ value can be used to make inferences about the composition of reserves, see

Table 4.2. Proteins are by far the most diverse polymers; the composition (and function)
of protein differs over the taxa, the RQ varying between 0.8 and 0.9.

The chemical indices of the structural biomass and the reserves relate to that of the
three groups of polymers as

n∗1∗2 = n∗1PsYPs,∗2 + n∗1LiYLi,∗2 + n∗1PrYPr,∗2 ∗1 ∈ {C,H,O,N} , ∗2 ∈ {V,E} (4.50)

where Y∗3∗2 is the molar yield of ∗3 ∈ {Ps, Li, Pr}, on ∗2, and 1 = YPs,∗2 + YLi,∗2 + YPr,∗2 .
Given the composition of the three polymers, the composition of structural biomass and
that of reserves have two degrees of freedom each. The constraint that the RQ is indepen-
dent of the state of the individual eliminates all degrees of freedom and the value of the
RQ can be directly translated into the composition of reserves and structure in terms of
the three groups of polymer.

For living organisms, the situation is a bit more complex, because the ratio between
the produced carbon dioxide and the consumed dioxygen is not necessarily constant. The
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standard assumption in animal physiology that the RQ is constant imposes constraints
on the composition of reserve relative to structure that I now evaluate, assuming that
the gas fluxes that are associated with the assimilation process, and so with feeding, are
excluded, as usual, from the measurements of the RQ, by starving the individual prior to
the measurement. An explicit expression for the RQ can be obtained from the relationships
J̇M = ηMṗ and ηM = −n−1

MnOηO. As is usually done, we set the first row of nO equal
to 1T , set ηPD = ηPG = 0, and obtain

RQ = − J̇CD + J̇CG

J̇OD + J̇OG
= −

(n−1
M)CnO

(
0 ṗGηV G − ṗD+ṗG

µE
0
)T

(n−1
M)OnO

(
0 ṗGηV G − ṗD+ṗG

µE
0
)T (4.51)

=
1− nNV nCN

nNN
− (1− nNE nCN

nNN
) µGV
µE

(
1 + ṗD

ṗG

)
1 + nHV

4
− nOV

2
− n

4
nNV
nNN
− (1 + nHE

4
− nOE

2
− n

4
nNE
nNN

) µGV
olµE

(
1 + ṗD

ṗG

) (4.52)

where (n−1
M)∗ denotes the row of n−1

M that corresponds to compound ∗. The contribution
of energetics to the RQ is thus via the ratio of growth to dissipation power. The RQ is in
practice usually taken to be a constant for a particular species. Within the deb model, the
RQ is independent of the state of the animal (size l and reserve density e) if the following
condition on the composition of E, V and N holds

1 + nHE
4
− nOE

2
− n

4
nNE
nNN

1 + nHV
4
− nOV

2
− n

4
nNV
nNN

=
1− nNE nCN

nNN

1− nNV nCN
nNN

(4.53)

in which case

RQ =
1− nNE nCN

nNN

1 + nHE
4
− nOE

2
− n

4
nNE
nNN

=
1− nNV nCN

nNN

1 + nHV
4
− nOV

2
− n

4
nNV
nNN

(4.54)

The respiration rate (the dioxygen consumption rate as well as the carbon dioxide pro-
duction rate) is then proportional to the mobilisation power if the contribution via assim-
ilation is excluded. The literature (which typically treats biomass as being homogeneous)
frequently identifies respiration with catabolism; this has been the motivation for the no-
tation ṗC . This link is not correct in the context of deb theory. Condition (4.53) simplifies
considerably if the Urination Quotient (UQ) is constant as well, see (4.60). The elemen-
tal composition of the reserves has to be equal to that of the structural biomass, if the
Watering Quotient (WQ) is also independent of the state of the animal, see {148}.

4.4.2 Heat increment of feeding

The heat increment of feeding, also known as ‘specific dynamic action’, and many other
terms, is defined (strangely enough) as the dioxygen consumption that is associated with
the feeding process. Apart from a small part that relates to the processing of proteins, the
heat increment of feeding is little understood [1266]. It can be obtained, however, from the
conservation law for mass. The dioxygen consumption per C-mole of food is independent
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of the states of the animal (reserves e and size l) as

J̇OA

J̇X
= (n−1

M)O∗nO


1
0

−µAXµ−1
E

−µAXηPA

 =


−1
−1

4
1
2
n

4nNN


T 

nCX nCE nCP
nHX nHE nHP
nOX nOE nOP
nNX nNE nNP


 1
−µAX

µE
−µAX
µAP

 (4.55)

where (n−1
M)O∗ denotes the row of n−1

M that relates to O, which is the third row. The expres-
sion shows how assimilation-associated dioxygen consumption depends on the composition
of food, faeces, reserves and nitrogenous waste, and the digestion efficiency through the
parameters µAX , µAP and µE.

4.5 Nitrogen balance

Standard ‘static’ energy budget studies treat energy in urine similar to energy in faeces, by
subtracting both from energy contained in food to arrive as metabolisable energy that is
available to the animal, cf. {416}. Since the gut contents still belong to the ‘outside world’,
this is reasonable for energy in faeces, but not for energy in urine. The deb model leads to
a different point of view, where dissipating power and anabolic power also contribute to the
nitrogenous waste. The energy (and nitrogen) in urine originates from all powers, where
the contributions to urine appear as overhead costs. Without reserves, the two points
of view can be translated into each other, but with reserves the two become essentially
different.

If nNE < [MV ]

µ−1
E

nNV
[EG]

, the flux of nitrogenous waste that relates to anabolic power, J̇NG,

is negative, meaning that nitrogen is built in rather than wasted in the transformation of
reserves to structural biomass. The flux of nitrogenous waste that relates to dissipating
power amounts to J̇ND = ṗD

µE

nNE
nNN

, which can be a substantial part of the total flux of
nitrogenous waste.

4.5.1 Urination Quotient

Analogous to the Respiration Quotient, we can define the Urination Quotient (UQ) as

UQ = − J̇ND + J̇NG

J̇OD + J̇OG
= −

(n−1
M)NnO

(
0 ṗGηV G − ṗD+ṗG

µE
0
)T

(n−1
M)OnO

(
0 ṗGηV G − ṗD+ṗG

µE
0
)T (4.56)

=

nNV
nNN
− nNE

nNN

µGV
µE

(
1 + ṗD

˙pG

)
1 + nHV

4
− nOV

2
− n

4
nNV
nNN
− (1 + nHE

4
− nOE

2
− n

4
nNE
nNN

) µGV
µE

(
1 + ṗD

˙pG

) (4.57)

The UQ is independent of the states of the animal (size l and reserve density e) if the
following condition on the composition of E, V and N holds

1 + nHE
4
− nOE

2
− n

4
nNE
nNN

1 + nHV
4
− nOV

2
− n

4
nNV
nNN

=
nNE
nNV

(4.58)
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in which case

UQ =
nNE
nNN

1 + nHE
4
− nOE

2
− n

4
nNE
nNN

=
nNE
nNN

1 + nHV
4
− nOV

2
− n

4
nNV
nNN

(4.59)

The UQ and the RQ are both constant if

nNE = nNV (4.60)

nHE − 2nOE = nHV − 2nOV (4.61)

Analogous to the RQ and UQ, we can define a Watering Quotient WQ = − J̇HD+J̇HG
J̇OD+J̇OG

:

the ratio of the water production to dioxygen consumption that relates to dissipation and
growth. (For terrestrial animals, the evaporation of water invokes a drinking behaviour,
which is discussed on {149}.) The condition that the RQ, UQ and WQ are all independent
of the state of the animal directly translates to the condition that the reserves and the
structural biomass have the same elemental composition. The dioxygen consumption, the
carbon dioxide production, the nitrogenous waste production and the water production
that relate to dissipation and growth are all proportional to the reserve mobilisation rate,
comparing individuals of the same species (i.e. the same parameter values), but different
states (structural biomass and/or reserves).

If the RQ and the UQ are both constant, the ratio of the carbon dioxide to the nitroge-

nous waste production equals RQ
UQ = nNN

nNE
− nCN , excluding contributions via assimilation

as before. If the WQ is constant as well, the ratio of the water to the nitrogenous waste

production equals WQ
UQ = nHE

2
nNN
nNE
− nHN

2
.

4.5.2 Ammonia excretion

Many algae take up nitrogenous compounds, such as ammonia, from the environment, but
even algae also excrete ammonia, associated with maintenance and growth. This follows
from the balance equation for nitrogen, given the composition of reserves and structural
mass. Ammonia excretion can be quantified for V1-morphs as follows.

Let nNE and nNV denote the chemical indices for nitrogen in reserves and structural
mass. The ammonia excretion that is associated with maintenance and growth can then
be written as

J̇NH ,D + J̇NH ,G = (jNH ,D + jNH ,G)MV = nNE(ṗD + ṗG)/µE − nNV ṗG/µGV (4.62)

jNH ,D + jNH ,G = nNEyEV (k̇E + ṙ)− nNV ṙ (4.63)

with dissipating power ṗD = MV µGV k̇M and growth power ṗG = MV µGV ṙ (see Table 4.1);
the mass–mass coupler yEV is the ratio of two energy–mass couplers, yEV = µGV /µE, where
µGV is the reserve energy investment per unit increase of structural mass.

The flux of nitrogenous waste that relates to assimilation amounts to J̇N,A = ηNAṗA,
with ηNAnNN = −ηXAnNX + nNE/µE + ηPAnNP .
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4.6 Water balance

The drinking rate equals the water flux, J̇HX = J̇H for aquatic animals, but terrestrial ani-
mals have to deal with evaporation of water. The water balance implies that the sum of the
water fluxes by metabolism, evaporation and drinking amounts to zero. Embryos usually
do not drink and are ‘designed’ such that evaporation takes care of water outflux, although
small changes in water content have been found. The water content of tissues in birds grad-
ually decreases during growth, which led Ricklefs and Webb [968] and Konarzewski [616] to
model juvenile growth on the basis of the water content of the tissue. Here, we idealize the
process by assuming strict homeostasis for both the structural biomass and the reserves,
while focusing on juveniles and adults. Note that water emission via urine is incorporated
in the composition of the nitrogenous waste, which could be large enough to let the water
outflux J̇H be negative and turn it into a water influx.

Evaporation has two main routes, one via water loss linked to respiration, J̇HO, and one
via transpiration, J̇HH . Water loss via respiration is proportional to dioxygen consumption
via the amount of inhaled air, so J̇HO = J̇OyHO, while transpiration is proportional to
surface area, so J̇HH = {J̇HH}V 2/3

m l2, where {J̇HH} does not depend on the state of the
animal. Both loss rates depend on water pressure in the air, temperature, wind speed and
behavioural components. The deb model leads to a drinking rate of

J̇HX =
(

0 1 yHO 0
)
J̇M + {J̇HH}V 2/3

m l2 (4.64)

This two-parameter model for the drinking process is, of course, an idealised picture which
pushes the concept of homeostasis to the extreme. The water content of urine is actually
rather variable, depending on environmental and behavioural factors. However, the model
might be helpful as a first approximation to reveal the coupling that must exist between
drinking and energetics.

Water plays an essential role in the transport of nutrients from the environment to
terrestrial plants, and in the translocation of their metabolites. Its quantitative role can
only be understood in a multi-variate setting, see next subsection.

4.6.1 Plant–water relationships

Terrestrial plants have intimate relationships with water, and total biomass production
is found to vary almost proportionally to the annual precipitation across the globe [837,
page 124]. Since plants cannot move, the local availability of water is the main factor
determining the distribution of plants species [1276]. Like all organisms they need water
for metabolic purposes, as autotrophs they need it as electron donor, but, above all, they
need it for transport [937]. From a geophysiological perspective, plants are structures that
pump water from the soil into the atmosphere. The evaporation of water from the leaves
generates a water flux from the roots to the shoot, which is used for internal transport
and for nutrient uptake from the soil. Factors that control evaporation include tempera-
ture, relative humidity, wind speed, and water supply in the soil [1008, 1072]. Plants can
modify evaporation by stomata in the leaves, but this regulation is limited by the need to
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acquire carbon dioxide. Jones [562], Nobel [842] and Lambers et al. [680] give an excellent
discussion of quantitative aspects.

Suppose that the arrival rate of nutrients at the receptor in the root, J̇r, is proportional
to its concentration in the water, Xn, and the water flux per receptor. The water flux
is proportional to the shoot area where transpiration takes place, which controls nutrient
transport, and to the availability of water in the soil, XH . The proportionality factor
includes the regulation of stomata opening by the plant, and atmospheric factors (tem-
perature, wind, humidity). The number of receptors is proportional to the surface area of
the root. The surface areas of roots and shoot are proportional to Ar =Mr(Vr)V

2/3
r and

As =Ms(Vs)V
2/3
s , respectively. The uptake rate of nutrient is proportional to the number

of receptors times k̇ρJ̇r
k̇+ρJ̇r

, where ρ is the binding probability, and k̇ the dissociation rate

between receptor and bound nutrient. This leads to the uptake rate of nutrient

J̇N = {J̇NAm}Ar(1 +XKN/XN)−1, XKN ∝ (XHAs/Ar)
−1 (4.65)

The surface area of the shoot appears in the saturation ‘constant’ XKN , which is no longer
constant.

Nutrient uptake is arrested by lack of water transport in this formulation, because the
saturation constant becomes very large. This mechanism gives a direct coupling between
nutrient uptake and precipitation. In water-rich soils, the control of transport on nutrient
uptake might be less, and in subaquatic conditions even absent. This boils down to an
additive term X0, which relates to diffusive transport of the nutrient: XKN ∝ (X0 +
XHAs/Ar)

−1.

4.7 Isotope dynamics in the standard deb model

The isotope dynamics for macrochemical reactions as discussed at {92} can now be applied
to the standard deb model, where dioxygen is a non-limiting substrate. This excludes
applications in micro-aerobic environments (e.g. parasites inside hosts), where we have to
deal with transitions from aerobic metabolism to fermentation. The focus is on the isotope
dynamics of reserve E and structure V with food X as substrate.

4.7.1 Three contributions to isotope fluxes

The three basic fluxes assimilation, dissipation and growth each have a catabolic and an
anabolic aspect. In the catabolic aspect energy is generated by oxidation of substrate that
is used in the anabolic aspect where the same substrate is used to provide building blocks
for products. For simplicity’s sake, I now assume that the atoms of the mineral products
all originate from the organic substrate or from dioxygen and that the carbon dioxide
production in the anabolic aspect is negligibly small. Since it is known that e.g. carbon
dioxide is both product and substrate, at least in some transformations, this assumption
need not be correct and applications might urge to change this assumption.

Under extreme starvation conditions shrinking might occur; the anatomy of this trans-
formation is basically identical to that of dissipation.
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The chemical indices for the minerals M = (C,H,O,N) and the organic compounds
O = (X, V,E, P ) are assumed to be known and 0 = nMY

k
Ms + nOY

k
Os so Y k

Ms =
−n−1

MnOY
k
Os for any choice of organic substrate s. Many aquatic organisms use ammonia

as N-waste, so nCN = 0, nHN = 3, nON = 0, nNN = 1. Since n−1
M is well-defined, Y k

Ms is
known, once Y k

Os is given.

Assimilation

Assimilation A is defined as the transformation

Y A
XEX + Y A

OEO → Y A
EEE + Y A

PEP + Y A
HEH + Y A

NEN + Y A
CEC

for food X, dioxygen O, reserve E, feaces P , water H, N-waste N , carbon dioxide C. The
organic yield coefficients are

Y A
OE = ( Y A

XE Y A
V E Y A

EE Y A
PE )T = ( − 1

yEX
0 1 yPX

yEX
)T (4.66)

from which follow the mineral yield coefficients Y A
ME = ( Y A

CE Y A
HE Y A

OE Y A
NE )T =

−n−1
MnOY

A
OE; the assimilation flux J̇EA is determined by deb theory.

The anabolic fraction is κaA = yEX = 1/yXE, so κcA = 1 − yEX . If yEX + yPX = 1, we
have Y A

CX = 0.
If selection occurs for isotope 0 of element i of food X in assimilation A, we need

to use the apparent coefficient n0Aa
iX for reserve, rather than the actual coefficient n0A

iX ,
using β0Aa

iX . Likewise we need to use n0Ac
iX for feaces with β0Ac

iX . We have isotope flux
J̇0i
XA = (n0Aa

iX κaA + n0Ac
iX κcA)J̇XA.

Dissipation

The catabolic aspect of dissipation just oxidises reserve into minerals. Somatic mainte-
nance, J̇EM , which is one of the components of the dissipation flux, is partly used for the
turnover of structure, which means that structure is both a substrate and a product. No
net synthesis of structure occurs in association with dissipation.

Dissipation D is defined as the transformation

Y D
EEE + Y D

V EV + Y D
OEO → −Y D

V EV + Y D
HEH + Y D

NEN + Y D
CEC

for reserve E, structure V , dioxygen O, water H, N-waste N , carbon dioxide C.

Y D
OE = ( Y D

XE (Y D
V E − Y D

V E) Y D
EE Y D

PE )T = ( 0 0 1 0 )T (4.67)

from which follow the mineral yield coefficients Y D
ME = ( Y D

CE Y D
HE Y D

OE Y D
NE )T =

−n−1
MnOY

D
OE; the dissipation flux J̇ED is given by deb theory.

A fixed fraction of the somatic maintenance flux is used for the turnover of structure; a
fraction of this flux is used to generate energy to drive the turnover; the flux J̇EMa = κM J̇EM
is used as building blocks for turnover, where κM is a new parameter. Let J̇V D denote the
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turnover flux of structure, which enters as well as leaves the pool of structure. Using J̇EMa

as a reference flux, the formation and use of structure in the turnover process read

E + yMa
V EV → (1 + yMa

V E)V + Y Ma
HEH + Y Ma

OE O + Y Ma
NEN (4.68)

(1 + yMa
V E)V → yMa

V EV + Y Mc
CEC + Y Mc

HEH + Y Mc
OEO + Y Mc

NEN (4.69)

where yMa
V E = J̇V D/J̇EMa − 1 is a model parameter. The carbon dioxide that is produced in

the turnover can be associated with the catabolic reserve flux that generates the energy to
drive turnover or with the catabolic structure flux that leaves the structure. This is why
it is not implemented in the formation of structure. Fractionation in the turnover process
can thus occur in the reserve flux that is used for synthesis, and in the structure flux that
partitions in an anabolic and a catabolic aspect. The fraction of the mobilised structure

that re-enters the structure pool is
yDaV E

1+yDaV E
.

The simplest assumption is that all atoms of the flux J̇EMa are fixed into new structure.
So for selection of isotope 0 of element i in reserve E in the dissipation process D, we
might use the apparent coefficient n0Da

iE for structure with β0Da
iE . We have isotope flux

J̇0i
ED = (n0Da

iE κaD + n0Dc
iE κcD)J̇ED.

During shrinking, the product-yield of structure is less than the substrate-yield, but
otherwise also some synthesis of structure still occurs and the equations remain the same.

Growth

Growth G is defined as the transformation

Y G
EVE + Y G

OVO → Y G
V V V + Y G

HVH + Y G
NVN + Y G

CVC (4.70)

for reserve E, dioxygen O, structure V , water H, N-waste N , carbon dioxide C.

Y G
OE = ( Y G

XE Y G
V E Y G

EE Y G
PE )T = ( 0 −yV E 1 0 )T (4.71)

from which follow the mineral yield coefficients Y G
ME = ( Y G

CE Y G
HE Y G

OE Y G
NE )T =

−n−1
MnOY

G
OE; the growth flux J̇EG is determined by deb theory.

The anabolic fraction is κaG = yV E = 1/yEV , so κcG = 1− yV E. We must have yEV > 1.
Since all structure originates from reserve in the anabolic route. If selection occurs on
reserve with isotope 0 in element i in reserve E in growth G, we need to use the apparent
coefficient n0Ga

iE for structure, rather than the actual coefficient n0G
iE , using β0Ga

iE . We have
isotope flux J̇0i

EG = (n0Ga
iE κaG + n0Gc

iE κcG)J̇EG.

4.7.2 Changes in isotope fractions

The coefficients n0k
ij , i.e. the isotope frequency in element i of compound j, relative to the

carbon frequency in that compound in the various fluxes are quantified in (3.15). Now we
focus on the dynamics of the fraction of isotopes in the pools.
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Let fraction γ0
ij denote the amount isotopes of element i in the pool of compound j

as a fraction of the amount of element i in that pool, i.e. nijMj and let n0
ijMj denote the

amount of isotopes of type 0 of element i in the pool of compound j. So

d

dt
γ0
ij =

d

dt

n0
ijMj

nijMj

=
d
dt
n0
ijMj

nijMj

− γ0
ij

d
dt
Mj

Mj

=

∑
k n

0k
ij J̇jk

nijMj

− γ0
ij

∑
k J̇jk
Mj

(4.72)

=
∑
k

(
n0k
ij

nij
− γ0

ij

)
J̇jk
Mj

=
∑
k

(
n0k
ij

nij
− γ0

ij

)
max(0, J̇jk)

Mj

(4.73)

The last equality holds because for the processes with J̇jk < 0, so for which compound j
serves as substrate rather than as product, we have n0k

is = γ0
isnis = n0

is.

We now apply this for j = E, V and k = A,Da, G to the standard deb model. The
changes in isotope fractions γ0

iE and γ0
iV , given those in the substrates γiX(t) and γOO(t)

are

d

dt
γ0
iE =

(
n0A
iE

niE
− γ0

iE

)
J̇EA
ME

;
d

dt
ME = J̇EA + J̇EC for J̇EC < 0 (4.74)

d

dt
γ0
iV =

(
n0G
iV

niV
− γ0

iV

)
J̇V G
MV

−
(
n0Da
iV

niV
− γ0

iV

)
J̇V Da
MV

;
d

dt
MV = J̇V G + J̇V Ds (4.75)

where J̇V Da represents the (negative) flux of structure turnover as part of the somatic
maintenance process and the (negative) flux J̇V Ds the shrinking, which only occurs during
extreme starvation.

4.7.3 Effects of temperature

Temperature affects rates, and selection depends on odds ratios, which are dimensionless.
So effects of temperature on fractionation is only indirect, via effects on metabolic rates
(assimilation, dissipation, growth). An increase in temperature causes an increase in dis-
sipation, so an increase in the rate at which the isotope-fraction in structure increases.
Isotope-enrichment in the food chain has several components: 1) the isotope-fraction of
food increases, which cause an increase in the isotope fraction of reserve and structure of
the predator 2) body size typically increases with the trophic level, so the life span and
mean age, which makes that dissipation-linked enrichment has more time to proceed (in-
dependent of food characteristics). So the observation that isotope-fractions increase with
the trophic level does not imply an enrichment in the assimilation process.

If the trajectory of isotope-enrichment is well-captured with enrichment in dissipation
only (including responses to changes in food availability and temperature), this would give
support for the position of maintenance in the metabolic organisation within the context
of deb theory. Notice that the Marr-Pirt model (for prokaryotes) specifies that structure is
used for maintenance, rather than reserve, so it would be impossible to obtain enrichment
linked to dissipation with this model.
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4.7.4 Persistent products & reconstruction

Products that accumulate in solid form (hair, nails, shells, bones, earplugs, otoliths, wood)
‘write’ a record of the food-temperature history, which can be reconstructed using chemical
identifiers, including the isotope signal. deb theory specifies that these products are formed
in association with assimilation, dissipation and/or growth. Work with Laure Pecquerie
on otoliths of anchovy [877] indicates that the contribution of assimilation is neglectable,
and that those of dissipation and of growth differs in opacity, which produces that typical
banded pattern in otoliths. The opacity as function of the length in slices of otoliths can
be used to reconstruct (scaled) food intake.

Given that fractionation occurs at the separation of the anabolic and catabolic sub-
fluxes of assimilation, dissipation and growth, the isotope frequency of an element in
the products of any of these three fluxes might equal that before separation, that of the
catabolic or that of the anabolic flux depending from which flux the product is actually
formed..

4.7.5 Doubly labelled water

An ingenious method to measure the carbon dioxide flux indirectly is via the differential
loss of isotopes of (injected) doubly labelled water. The method overcomes the problem
that direct measurement of the carbon dioxide flux gives an instantaneous value only, and
its measurement affects (the behaviour of) the animal. The interest in carbon dioxide
fluxes stems from their relationship with energy fluxes, which is discussed on {157}. The
method is based on the assumptions that labelled oxygen of water is exchanged (rapidly)
with dioxygen of carbon dioxide, and that the loss of deuterium reflects the loss of water.
A few additional simplifying assumptions are also useful to obtain a simple interpretation
of the results, such as labelled and unlabelled body water are completely mixed, and loss
of label other than via water and carbon dioxide loss, is negligible [704].

The total water flux equals J̇HL = J̇HX + yHN J̇N , where yHN denotes the moles of
water in the nitrogenous waste, per mole of nitrogenous waste. The amount of body water
equals MH = yHVMV + yHEME, so that the specific rate at which deuterium is lost equals
ḣH = J̇HL/MH . An estimate for MH can be obtained by back-extrapolation of the oxygen
label density at time zero, given a known amount of injected label. The specific loss rate of
deuterium, combined with the total amount of body water, leads to an estimate for total
water flux J̇HL. The specific loss rate of oxygen label equals ḣO = (J̇HL + 2J̇C)/MH , which
can be used to obtain J̇C , when J̇HL and MH are known.

4.8 Enthalpy, entropy & free energy balances

Thornton’s rule [1156] relates dissipating heat to dioxygen consumption, by a fixed con-
version of 519 (±13) kJ(mol O2)−1 [50]. This choice is not fully satisfactory, because it
lacks a mechanistic underpinning, and because it is obviously not applicable to anaerobic
conditions. The correlation between dissipating heat and carbon dioxide production has
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Formula State Enthalpy Entropy
kcal/mol cal/mol.K

CO2 g -94.05 51.07
H2O l -68.32 16.71
O2 g 0 49.00
NH3 aq. -19.20 26.63

Table 4.3: Formation enthalpies
and absolute entropies of CO2,
H2O and O2 at 25˚C were taken
from [252]. The formation enthalpy
and absolute entropy for NH3 at
25˚C were taken from [40].

been found to be reduced by variations in the type of substrate [221]. Heijnen [484] re-
lated dissipating heat to C-moles of formed biomass. This choice is problematic because
of maintenance. If substrate density is low enough, no new biomass will be produced but
heat will still dissipate. Given the chemical coefficients, the proportionality between heat
dissipation and dioxygen consumption can be translated into a condition on the specific
enthalpies within the context of deb theory.

The strong homeostasis assumption for structural biomass and reserves implies a direct
link between the dissipating heat and the free energies and entropies of structural mass
and reserve as worked out in [1089] and provides a theoretical underpinning of the method
of indirect calorimetry. We first need to study the energy balance of the system ‘individual
plus relevant compounds’.

4.8.1 Energy balance: dissipating heat

Work that is involved in changes in volumes are typically negligibly small at the surface
of the earth, but in the deep ocean, this work has profound effects on energetics and
biochemistry [401, 1039]. Neglecting this effect, the dissipating heat ṗT+ follows from the
energy balance equation using (4.35) and (4.37)

0 = ṗ◦T+ + h
T

MJ̇M + h
T

OJ̇O = ṗ◦T+ + (h
T

O − h
T

Mn
−1
MnO)ηOṗ (4.76)

where
h
T

M ≡ ( hC hH hO hN ) and h
T

O ≡ ( hX hV hE hP )

are the specific enthalpies of the minerals and the organic compounds, respectively, and
ṗ◦T+ is the net heat release by all chemical reactions. If the temperature of the organism is
constant, the net heat release ṗ◦T+ is equal to the net heat dissipated by the organism ṗT+.

This balance equation can be used to obtain the molar enthalpies of the organic com-

pounds, h
T

O, given the molar enthalpies for the minerals, h
T

M from the literature (see
Table 4.3), and the measured dissipating heat. This heat can be negative if heat from
the environment is required to keep the temperature of the individual constant. Gener-
ally measurements of dissipating heat at four different food levels are required to obtain
the four enthalpies for the organic compounds; if the enthalpies of food X and faeces P
are known then only measurements of dissipated heat at two different food densities are

required. The specific enthalpy of biomass equals hW = mEhE+hV
mE+1

.
The chemical potentials µ have to be computed simultaneously with the molar entropies

s. The chemical potential and entropies of food µX and sX , structure µV and sV , reserve
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µE and sE, and faeces µP and sP can be obtained from (4.76) with

0 = (µM + TsM)T J̇M + (µO + TsO)T J̇O + ṗ◦T+ (4.77)

=
((
hM − µM − TsM

)
n−1
MnO − hO + µO + TsO

)T
J̇O, (4.78)

by measuring the dissipated heat ṗT+ ' ṗ◦T+ and computing the organic and mineral flows
at 8 different food densities (or 4 different food densities if molar entropies and chemical
potentials of food X and faeces P are known), where µM and sM collect the values of
the molar chemical potentials and molar entropies for the four minerals, while µO and sO
do that for the organic compounds, as before. Rather than measuring dissipating heat,
the method of indirect calorimetry can be used, cf {157}. The specific entropy of biomass
equals sW = mEsE+sV

mE+1
.

Convection & radiation

The dissipating heat contributes to the thermal fluxes to and from the individual. The
individual loses heat via convection and radiation at a rate ṗTT = {π̇T}(Tb − Te)V

2/3 +
{π̇R}(T 4

b − T 4
e )V 2/3. Here Te denotes the absolute temperature in the environment, in-

cluding a relatively large sphere that encloses the individual. For radiation considera-
tions, the sphere and individual are assumed to have grey, opaque diffuse surfaces. Tb is
the absolute temperature of the body; V 2/3 is the body surface area; {π̇T} is the ther-
mal conductance and {π̇R} = εσ̇ is the emissivity times the Stefan–Boltzmann constant
σ̇ = 5.6710−8 J m−2 s−1 K−4; see for instance [668]. The body temperature does not change
if the heat loss via convection and radiation matches the dissipating heat, ṗT+ = ṗTT .
This relationship can be used to obtain the body temperature or the heating costs, given
knowledge about the other components. It specifies, for instance, how a temporary in-
crease in activity reduces heating costs, using complementary physiological information
about activity efficiencies [168, 1231, 1255].

Most animals, especially the aquatic ones, have a high thermal conductance, which gives
body temperatures only slightly above the environmental ones. Endotherms, however, heat
their body to a fixed target value, usually some Tb = 312 K, and have a thermal conductance
as small as {π̇T} = 5.43 J cm−2 h−1 K−1 in birds and 7.4–9.86 J cm−2 h−1 K−1 in mammals,
as calculated from [497]. The thermal conductance can be modified by environmental and
behaviour factors, see e.g. [897, 898].

Heat loss by evaporation & thermo-neutral zone

Most endotherms are terrestrial and lose heat also via evaporation of water at a rate ṗTH ,
say. The relationship ṗT > ṗTH + ṗTT determines the lower boundary of the thermo–
neutral zone: the minimum environmental temperature at which no endothermic heating
is required. It also specifies the heating requirement at a given environmental temperature.
To see how, we first have to consider the water balance in more detail, to quantify the heat
ṗTH that goes into the evaporation of water. The individual loses water via respiration
at a rate proportional to the use of dioxygen, i.e. J̇HO = yHOJ̇O, see [638, 1189], and
via transpiration, i.e. cutaneous losses. The latter route varies between 2 % and 84 % of
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the total water loss in birds, despite the lack of sweat glands [250]. Water loss, J̇HH , via
transpiration is proportional to body surface area, to the difference in vapour pressure of
water in the skin and the ambient air, to the square root of the wind speed, and depends
on behavioural components. The heat loss by evaporation amounts to ṗTH = µTH(J̇H +
J̇HO + J̇HH), with µTH = 6 kJ mol−1. Within the thermo-neutral zone, endotherms control
their body temperature among others by evaporation, through panting or sweating, which
affects the water balance via enhanced drinking.

Entropy production

The rate of entropy production by the organism σ̇ is a measure of the amount of dissipation
that is occurring. It can be quantified for each food density if the temperature of the
organism and the entropies of the organic compounds are known:

0 = σ̇ +
ṗT+

T
+ sTMJ̇M + sTOJ̇O = T σ̇ + µTMJ̇M + µTOJ̇O (4.79)

4.8.2 Indirect calorimetry: aerobic conditions

The relationships between enthalpies, entropies and free energies are simpler for aerobic
conditions because for most important reactions in aerobic biological systems T ∆s is very
small compared to ∆h and therefore the enthalpy of the reaction ∆h+ is approximated
using its Gibbs energy ∆µ+, since at constant temperature we have ∆µ = ∆h−T ∆s ' ∆h
[386]. Consequently we have

− T σ̇ = ṗT+ and 0 = ṗ◦T+ + µTMJ̇M + µTOJ̇O (4.80)

see [1089] and (4.79), (4.77).
The method of computing entropy from (4.77) simplifies under aerobic conditions and

has been applied to the data and the fitted deb model reported in Figure 4.16 on Klebsiella
[1089], which resulted in a molar entropy of reserve of 74.8 J/C-mol K and of structure of
52.0 J/C-mol K. This value gives an entropy for biomass that is almost two times higher
than the value obtained using the biochemical method of Battley [68], which does not
account for spatial structure or the processes of life.

Indirect calorimetry uses measurements of dioxygen consumption, carbon dioxide and
nitrogen production to estimate dissipating heat ṗT+:

ṗT+ = µTT J̇M with µTT ≡
(
µTC µTH µTO µTN

)
(4.81)

Its basis is just empirical when applied to individuals, rather than pure compounds, and
has ancient roots, {157}. Examples are: µTC = 60 kJ mol−1, µTH = 0, µTO = −350
kJ mol−1 and µTN = −590 kJ mol−1 in aquatic animals [138] that excrete ammonia as
nitrogenous waste, or −86 nCN

nNN
kJ mol−1 in birds [119]. For mammals, corrections for

methane production have been proposed [163]. The coefficients µT can be obtained by
direct calorimetry, using multiple regression. The mass fluxes prove to be a weighted sum
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Figure 4.22: The molar yield of biomass corrected
for a fixed population growth rate of ṙ = 0.2 h−1

is proportional to the chemical potential of sub-
strate, expressed per C-mole in combustion refer-
ence. Data from Rutgers [1006] for Pseudomonas
oxalaticus (•) and from van Verseveld, Stouthamer
and others [778, 1193, 1194, 1195, 1196] for Para-
coccus denitrificans (◦) under aerobic conditions
with NH+

4 as the nitrogen source, corrected for a
temperature of 30 ◦C. No product, or a negligible
amount, is formed during these experiments [1193].

Figure 4.23: The amount of dissipating
heat at maximum population growth rate
is linear in the free energy per C-mole of
substrate on the basis of combustion refer-
ence (pH = 7). Data from Rutgers [1006]
and Heijnen and van Dijken [484, 485] for
Pseudomonas oxalaticus, growing aerobi-
cally at 30 ◦C on a variety of substrates.

of the three basic powers, see {134}. Dissipating heat is again a weighted sum of the three
powers and so of (three) mass fluxes, which justifies the method of indirect calorimetry.

Now we can reverse the argument and wonder how measurements of heat dissipation
can be used to obtain the chemical potentials of the organic compounds. Substitution of
(4.80) and (4.81) into (4.79) results in

µTO = (µTT + µTM)n−1
MnO (4.82)

Under anaerobic conditions, the amount of metabolic work substrates can do is typically
very much reduced, not because of substantial changes in specific entropy, but because the
products are not carbon dioxide and water, but fermentation products, such as ethanol and
acetate. These products should be taken into account in (4.80), but otherwise the way to
obtain the chemical potentials is similar. In special situations changes in specific entropies
cannot be neglected, but then the detailed chemical composition of the environment should
be taken into account as well.

4.8.3 Substrate dependent heat dissipation

When different substrates are compared, the conversion efficiency of substrate to biomass
tends to be proportional to the chemical potential µX , on the basis of C-moles. It seems
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reasonable to assume that µAX is proportional to the chemical potential of substrate, and
consequently to the yield, cf (4.22). This is confirmed in Figure 4.22.

The dissipating heat ṗT+ from a chemostat at steady state, with total structural mass
MV+ and reserve density e is found from (4.81), (4.35) and (4.37)

0 = ṗT+ + (µTO − µTMn−1
MnO)ηOṗ(e, 1)MV+/MV m (4.83)

where ṗ(e, l) = ( ṗA ṗS + ṗJ ṗG + ṗR )T as further specified in Table 4.1. If the popula-
tion is growing at maximum rate, we have that f = e = 1, and

ṗ(1, 1) =
(

k̇E
g

k̇M
k̇E−k̇Mg

1+g

)
µGVMV m (4.84)

When different substrates are compared, the dissipating heat tends to increase with the
free energy of substrate. This is to be expected, because the maximum volume-specific
assimilation rate [ṗAm] and the maximum reserve capacity [Em] are proportional to the
free energy per C-mole of substrate µX , see on {158}, so, the reserve turnover rate k̇E is
independent of µX , g ∝ µ−1

X , and the dissipating heat at maximum population growth rate
is approximately linear in µX if the combustion frame of reference is used. This frame
of reference is necessary because a high free energy of substrate corresponds with a high
degree of reduction, which requires more dioxygen to release the energy. In the combustion
reference, this extra use of oxygen does not affect the relationship between free energy of
substrate and heat dissipation. This is confirmed by the data of Rutgers [1006]; see Figure
4.23.

The idea that the type of substrate and environmental conditions affect the sub-
strate/energy conversion µAX (and [Em]) but nothing else is consistent with analyses of data

from Pirt [902]. V1-morphs with small reserve capacities [Em] have 1
YWX

= µGV
µAX

(1+ k̇M
ṙ

), see

(4.22). As S. J. Pirt noted, this relationship is linear in ṙ−1, but the slope depends on the
substrate-energy conversion µAX . Pirt found a wide range of 0.083–0.55 h−1 on a weight ba-
sis for two species of bacteria (Aerobacter species and a lipolytic bacterium) growing on two
substrates at 37 ◦C, aerobically and anaerobically. The ratio of the slope to the intercept
equals the maintenance rate coefficient, k̇M , which does not depend on the substrate-energy
conversion. Pirt’s data fall in the narrow range of k̇M = 0.0393−−0.0418 h−1 [634]. These
findings support the funnel concept, which states that a wide variety of substrates is de-
composed to a limited variety of building blocks, which depend of course on the nature of
the substrate and environmental conditions; these products are then built into biomass,
which only depends on internal physiological conditions, subject to homeostasis.

4.9 Products

From a dynamic systems point of view, minerals can be considered as products, with con-
tributions from the basic powers, apart from the fact that their fluxes can become negative
(e.g. dioxygen for heterotrophs). Faeces is a product as well, where the contributions from
dissipating and growth powers are zero, which ties faeces production directly to assimila-
tion. Many micro-organisms produce a variety of products via several routes. If the deb
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model still applies in the strict sense, the mere fact that product formation costs energy
implies that product formation must be a weighted sum of the basic powers: assimilation,
dissipation (maintenance) and growth. The energy drain to product formation can then
be considered as an overhead cost in these three processes.

The necessity to tie product formation to all the three energy fluxes in general be-
comes obvious in a closer analysis of fermentation. If product formation is independent
of one or more energy fluxes, mass balance equations dictate that more than one product
must be made under anaerobic conditions, and that the relative amounts of these prod-
ucts must depend on the (population) growth rate in a very special way. In the Monod
model, which does not include maintenance and reserves (see {337}), assimilation is pro-
portional to growth investment, which leaves just a single energy flux available to couple to
product formation. In the Marr–Pirt model, which does not include reserves, assimilation
is proportional to maintenance plus growth investment, which leaves two energy fluxes
available to couple to product formation. Maintenance and reserves together allow for a
three-dimensional base for product formation: J̇P = ṗAηPA + ṗDηPD + ṗGηPG, see (4.37).
The quantitative aspects of products only differ from that of ‘minerals’ in that the weight
coefficients for products are free parameters, while those for ‘minerals’ follow from mass
conservation.

Since most unicellulars behave approximately as V1-morphs, assimilation rate and
maintenance are both proportional to biomass, with constant proportionality coefficients
at steady state. Leudeking and Piret [698] proposed in 1959 that product formation is a
weighted sum of biomass and change in biomass (growth). They studied lactic acid fer-
mentation by Lactobacillus delbruekii . The Leudeking–Piret kinetics has proved extremely
useful and versatile in fitting product formation data for many different fermentations [50].
It now turns out to be a special case of the deb theory, where the biomass component
links to maintenance.

For practical applications where no energies are measured, it might be useful to convert
powers to mass fluxes via the coefficients ζ∗1∗2 = η∗1∗2µEmEm, which leads to the specific
production flux for V1-morphs

jP = ζPM k̇Mg + ζPAk̇Ef + ζPGṙg. (4.85)

Milk of female mammals is an example of a product that is coupled to maintenance,
which requires a temporal change in parameter values to describe its production in asso-
ciation with giving birth. The same holds for plant secretions (e.g. resin), in response to
wounds, for example.

4.9.1 Fermentation

Many organisms can live in anaerobic environments, partly as a relic from their evolutionary
history, as life originated in a world without free oxygen. Most parasites [1162, 1163], as
well as gut and sediment dwellers [343, 345] do not usually encounter much dioxygen, and
aquatic environments can be low in dioxygen as well. Some fish [1226, 1227] and mollusc
[161] survive periods without dioxygen. Parasitic helminths sport anaerobic metabolism
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in the core of their bodies, and aerobic metabolism in the peripheral layers, which become
relatively less important during growth [1161].

The mass balance equation reveals that such organisms must produce at least one
product, with an elemental composition that is independent (in the sense of linear alge-
bra) of the composition of the other ‘minerals’ (carbon dioxide, water and nitrogenous
waste). Usually, several products are formed. Under anoxic conditions, lipids cannot be
metabolised, because their degree of reduction is too high, and the respiration chain cannot
be used.

Fermentation is an anaerobic process in which organic compounds act as electron donor
as well as electron acceptor. Usually several products are made rather than just one. These
products can be valuable substrates under aerobic conditions, but under anaerobic condi-
tions mass balances force organisms to leave them untouched. Under anaerobic conditions
we have the constraints that (

µ−1
AO µ−1

DO µ−1
GO

)
= 0 (4.86)

The practical implementation of these constraints in non-linear regressions is via Lagrange
multipliers, which can be found in standard texts on calculus. An interesting consequence
of these constraints is that there are no free parameters for product formation if just
one product is made. Figure 4.24 illustrates that the deb model accurately describes
the fermentation process (biomass composition, substrate and product fluxes) with only
17/11 = 1.5 parameter per curve. The experimental data do not obey the mass balance
for carbon and oxygen in detail. Measurements of the volatile ethanol seem to be less
reliable. The mass balance-based model fit of Figure 4.24 suggests that the measured
values represent 75 % of the real ones when the measurement error is considered as a free
parameter. The saturation coefficient XK was poorly fixed by the data, and the chosen
value should be considered as an educated guess.

Yeasts appear to be relatively rich in proteins when they grow fast, but their maximum
growth rate is about half that of Klebsiella. Three products are made by the yeast: glycerol
(nHP1 = 8/3, nOP1 = 1), ethanol (nHP2 = 3, nOP2 = 0.5) and pyruvate (nHP3 = 4/3, nOP3 =
1). A negative parameter for product formation means that the product is consumed,
rather than produced, in the corresponding energy flux. So it is possible that compounds
are produced at a rate proportional to one energy flux and consumed at a rate proportional
to another energy flux. No theoretical problems occur as long as there is an overall net
production.

Note that the maintenance rate coefficient k̇M for Klebsiella at 35 ◦C is about ten times
that for Saccharomyces at 30 ◦C. The maintenance rate coefficient for fungi is usually found
to be much smaller in the literature [95], which Bulthuis [176] explained by the fact that
fungi make a lot of protein at high population growth rates, which costs a lot of energy. As
the maintenance rate coefficient is the ratio of maintenance to structure costs, its value for
fungi is low. Since protein density is coupled to the growth rate, however, the assumption
of homeostasis dictates that most protein must be conceived as part of the reserves, so the
costs of synthesis of structural biomass are not higher for this reason.

Figure 4.24 shows that biomass density hardly depends on the throughput rate. In prac-
tice, this also holds for most other compounds, except for the concentration of substrate.
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Figure 4.24: All these functions of population growth rate of Saccharomyces cerevisiae at
30 ◦C and a glucose concentration of 30 g l−1 in the feed have been fitted simultaneously [457].
The observation that the maximum throughput rate is 0.34 h−1 has also been used. Data from
Schatzmann [1017]. The curves are based on expectations of the deb model for V1-morphs, with
parameters

k̇E = 0.461 h−1 g = 0.385 k̇M = 0.0030 h−1

yV E = 1.206 yXE = 10.28 XK = 1.79 g l−1

nHV = 1.70 nOV = 0.637 nNV = 0.071
nHE = 1.55 nOE = 0.572 nNE = 0.205

ethanol glycerol pyruvate
ζP1,A = 8.047 ζP2,A = 7.398 ζP3,A = 0.0313
ζP1,D = 3.019 ζP2,D = 2.711 ζP3,D = 0.0062
ζP1,G = 0.336 ζP2,G = 0.972 ζP3,G = −0.0365
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If changes in concentrations affect chemical potentials substantially, the chemical potential
for substrate will be the first point to check (although substrate is usually processed intra-
cellularly, rather than in the environment). The extremes of the substrate concentration

are found for throughput rate ḣ = 0, where X0 = XKgk̇M
k̇E−gk̇M

, and for throughput rate ḣ = ḣm,

where X0 = Xr if death is negligible. The chemical potential of a compound depends on
its concentration X as µ = µref + RT lnX/Xref, where R = 8.31441 JK−1mol−1 is the gas
constant. The maximum relative effect of differences in concentrations of substrate on the
chemical potential is

µX0,max − µX0,min

µX0,ref

=
RT

µX0,ref

ln

{
k̇E − gk̇M
gk̇M

Xr

XK

}
(4.87)

In the example of Figure 4.24, where the chemical potential of glucose is 2856 kJ mol−1 in
the combustion frame of reference, the maximum relative effect amounts to 0.00777, which
is negligibly small in view of many other uncertainties. Although the effect of changes in
concentrations should be tested in each practical application.

4.10 Parameter estimation II: mass, energy & entropy

In the initial stages of estimation of deb parameters [661], it is useful to avoid the use of
moles and energies, which motivates the use of scaled reserve UE and scaled maturity UH .
The initial scaled reserve U0

E can be known from g, k̇M , k̇J , v̇, and f , or from Lb, L∞, ab,
ṙB and f , using the assumption k̇M = k̇J .

Suppose that the amount of carbon in a freshly laid egg M0
E and in a neonate M b

W =
M b

E + M b
V are known, in combination with U0

E. We first use the information in M0
E

and obtain {J̇EAm} = M0
E/U

0
E, and then yEX = −{J̇EAm}/{J̇XAm}, M b

H = {J̇EAm}/U b
H ,

Mp
H = {J̇EAm}/Up

H , M b
E = −U b

E{J̇XAm}. We then use the information in M b
W , and ob-

tain M b
V = M b

W −M b
E and [MV ] = M b

VL
−3
b (in actual length, if Lb is in actual length),

yV E = v̇[MV ](κ{J̇EAm}g)−1, [J̇EM ] = −k̇M [MV ]/yV E.

If the weight of a freshly laid egg W0 and of a neonate Wb is known, as well as the moles
of carbon in a freshly laid egg M0

E, we can obtain the molecular weights of reserve and
structure: wE = W0/M

0
E, W b

V = Wb − wEM b
E and wV = W b

V /M
b
V . The shape coefficient is

δM = (M b
V /[MV ])1/3/Lb = (d−1

V W b
V )1/3/Lb.

The parameter yV E, and so mEm = κgyV E can also be obtained from the gonado-

somatic index Q =
MER

ME+MV
where the reproduction buffer MER has accumulated over a

period t1 in an individuals that is fully grown at constant scaled functional response f .
For an individual of structural volume V = V∞ = f 3L3

m (or L = fLm) and reserve mass
ME = [E]V/µE = [Em]f 4L3

m/µE, the index relates to κ, g, k̇M , k̇J , Up
H (see {72}) as

Q =
t1k̇Mg/f

3

f + κgyV E
((1− κ)f 2 − v̇−2k̇2

Mg
2k̇JU

p
H) (4.88)
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4.10.1 Composition parameters

If the elemental composition of a freshly laid egg (so of reserve) and that of a neonate is
known, the chemical index of structure, i.e. the frequency of element ∗ in structure, relative
to carbon, is given by

n∗V = n∗Wm
b
W − n∗Emb

E for ∗ = H,O,N, · · · (4.89)

where mb
W = M b

W/M
b
V .

This is just one of a series of related techniques to unravel the composition of reserve and
structure using measurements of biomass. Suppose that we have the elemental frequencies
of two individuals of the same length (so the same amount of structure) at two scaled
functional responses. We have MW = MV + ME, and ME = fmEmMV , where mEm =
(mW − 1)/f is the maximum reserve density. The structural mass MV of an individual of
total mass MW equals MV = MW/(1 +mE). Moreover, if an organism has physical length
L and structural mass MV , the shape coefficient is δM = (MV /[MV ])1/3/L.

We also have

MW n∗W = MV n∗V +ME n∗E (4.90)

so the chemical indices of reserve and structure are

n∗E =
f1

mW1 − 1

mW1 −mW2

f1 − f2

; n∗V = mW1n∗W − f1
mW1 −mW2

f1 − f2

(4.91)

This technique to compute the concentrations in reserve and structure can also be applied
to compounds rather than chemical elements. The contribution of the reproduction buffer
in the weight (and composition) of adults should be taken into account, but for juveniles
we don’t have these complications.

Knowledge about the chemical indices can be used to determine the molecular weights
of reserve and structure, so to link masses and weights. A pertinent question is to include
or exclude water in mass, volume and weight measurements. If water replaces reserve in
starving organisms (likely in aquatic arthropods and other taxa with exoskeletons), strong
homeostasis can only apply when we exclude water. In many other cases the inclusion of
water is more handy.

4.10.2 Thermodynamic parameters

The estimation of the specific enthalpies, entropies, and chemical potentials is discussed
below the balance equations (4.76) and (4.78). These equations make full use of the mass
balances for all (generalised) compounds, which makes these thermodynamic parameters
difficult to access.

The specific chemical potential µ of a compound converts a flux of this compound (in
moles per time) into a flux of Gibbs energy, for instance the assimilation energy flux is
ṗA = µEJ̇EA. The chemical potentials of organic compounds are essential to obtain the
energy parameters {ṗAm}, [EG], {ṗT}, [ṗM ] and [ṗJ ], see Table 3.3.
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Figure 4.25: The reconstruction
of the scaled functional response
since the first of August from mean
length–time data for four length
classes of the mussel Mytilus edulis
as reported by Kautsky [583] (up-
per four curves). The reconstruc-
tion (the curve in the middle with
two peaks) is based on a cubic
spline description of the measured
temperature (lower curve and capri-
cious line) and the parameter val-
ues Lm = 100 mm, g = 0.13, k̇M =
0.03 d−1 at 15 ◦C and TA = 7600 K. time, d
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4.11 Trajectory reconstruction

4.11.1 Reconstruction of food intake from growth data

Many data sets on growth in the literature do not provide adequate information about
food intake. Sometimes it is really difficult to gain access to this type of information
experimentally. The blue mussel Mytilus edulis filters what is called ‘particulate organic
matter’ (POM). Apart from the problem of monitoring the POM concentration relevant
to a particular individual, its characterisation in terms of nutritional value is problematic.
The relative abundances of inert matter, bacteria and algae change continuously [644]. In
the search for useful characterisations, it can be helpful to invert the argument: given an
observed size and temperature pattern, can the assimilation energy be reconstructed in
order to relate it to measurements of POM? The practical gain of such a reconstruction is
in the use of correlation measures to determine the nutrition value of bacteria, alga, etc.
Since the correlation coefficient is a linear measure, a direct correlation between bacteria
numbers and mussel growth, for instance, only has limited value because assimilation and
growth are related in a non-linear way.

Kautsky [583] measured mussels from four size classes kept individually in cages (diam-
eter 10 cm) at a depth of 15 m in the Baltic at a salinity of 7 ◦/◦◦. Suppose that (the mean)
food density changes slowly enough to allow an approximation of the energy reserves with
e = f . The growth equation (2.22) then reduces for a reference temperature Tref to

d

dt
l =

(f(t)− l)+

3(f(t) + g)
gk̇M(T (t) > T0) exp

(
TA

(
1

Tref

− 1

T (t)

))
(4.92)

where T0 is at the lower end of the tolerance range. The next step is to choose cubic
spline functions to describe the observed temperature pattern T (t) and the unobserved
scaled functional response f(t). The reconstruction of f(t) from length–time data then
amounts to the estimation of the knot values of the spline at chosen time points, given
realistic choices for the growth parameters. Figure 4.25 shows that the simultaneous least-
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Figure 4.26: Weight ontogeny of the small adelie penguin Pygoscelis adeliae (left) and the large
emperor penguin Aptenodytes forsteri (right). Data from Taylor [1145] and Stonehouse [1116].
The adelie data follow the fitted von Bertalanffy growth curve, which suggests food abundance
during the nursery period. The cubic spline through the emperor data is used to reconstruct food
intake fV 2/3 = J̇X/{J̇Xm}. dV = 0.3 g cm−3, wE [MEm] = 0.7 g cm−3, g = 0.1, v̇ = 0.6 cm d−1,
lT = 0.01, Vm = 6000 cm3, e0 = 0.6.

squares fit of the numerically integrated growth description (4.92) is acceptable in view of
the scatter in the length data (not shown), which increases in time in the upper size class
in the original data. The scaled functional response (i.e. the hyperbolically transformed
food abundance in terms of its nutritional value) appears to follow the temperature cycle
during the year. Such a reconstructed food abundance can be correlated with POM and
chlorophyll measurements to evaluate their significance for the mussel.

If food intake changes too fast to approximate the reserve density with its equilibrium
value, the reserve density should be reconstructed as well. Figure 4.26 illustrates this for
the penguin. The von Bertalanffy growth is shown to apply to the adelie penguin, which
indicates that body temperature is constant and food is abundant. The deviation at the
end of the growth period probably relates to the refusal of the parents to feed the chicks
in order to motivate them to enter the sea. The small bodied adelie penguin manages to
synchronise its breeding cycle with the local peaks in plankton density in such a way that
it is able to offer the chicks abundant food. Typically there are two such peaks a year in
northern and southern cold and temperate seas. The plankton density drops sharply when
the chicks are just ready to migrate to better places. This means that a larger species, such
as the king penguin, is not able to offer its chicks this continuous wealth of food, because
its chicks require a longer growth period (see Chapter 8 on comparison of species for an
explanation, {287}). So they have to face the meager period between plankton peaks.
(Food for king penguins, squid and fish, follows plankton in abundance.) The parents
do not synchronise their breeding season with the calendar; they follow a 14–17 month
breeding cycle [1065]. The largest living penguin, the emperor penguin, also has to use
both plankton peaks for one brood, which implies a structural deviation from a simple von
Bertalanffy growth curve.

Given weight–time data, food intake can be reconstructed on the basis of the deb
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theory. The relationship between (wet) weights, volumes and energy reserves is given in
(3.2). For juveniles, where ER = 0, we have [Ww] = dV +wE[MEm]e and specific wet weight
is thus not considered to be a constant. Growth according to (2.21) and (2.10) is given by

d

dt
Ww = [Ww]

d

dt
V + wE[MEm]V

d

dt
e (4.93)

= v̇V 2/3

(
[Ww]

e+ g

(
e− lT − (V/Vm)1/3

)
+ [WEw](f − e)

)
(4.94)

Solution of f and substitution of (2.10) gives

f = e+
[Ww]2/3

v̇[WEw]W
2/3
w

d

dt
Ww −

[Ww]/[WEw]

g + e

e− lT −
(

Ww

Vm[Ww]

)1/3
 (4.95)

[MEm]wE
[Ww]

d

dt
e =

d

dt
lnWw −

v̇

g + e

(e− lT )

(
[Ww]

Ww

)1/3

− V −1/3
m

 (4.96)

The steps to reconstruct feeding are as follows: first fit a cubic spline through the weight
data, which gives Ww(t) and so d

dt
Ww(t). Use realistic values for e(0), dV , wE[MEm], g,

Vm, lT and v̇ and recover e(t) through numerical integration of (4.96) and then f(t) by
substitution. Figure 4.26 gives an example. The peaks in the reconstruction will probably
be much sharper if the chick’s stomach contents are taken into account. This reconstruction
can be useful in cases where feeding behaviour that is hard to observe directly is studied
and knowledge concerning energetics from captive specimens is available. The significance
of this example is to show that the deb theory hardly poses constraints for growth curves
in general. The simple von Bertalanffy growth curve only emerges under the conditions of
constant food density and temperature.

4.11.2 Reconstruction of body temperature from growth data

Empirical growth curves of birds frequently deviate from the von Bertalanffy growth curve,
even if food is abundant. The body temperature of endotherms can be well above the
environmental temperature. If insulation or heat transfer from mother to chick changes in
time, deviations from the von Bertalanffy growth curve are to be expected. Altricial birds
provide an excellent case to illustrate the problem of the energy interpretation of growth
measurements in the case of an unknown body temperature.

Birds become endothermic around hatching; precocial species usually make the transi-
tion just before hatching, and altricial ones some days after. The ability to keep the body
temperature at some fixed level is far from perfect at the start, so the body temperature
depends on that of the environment and the behaviour of the parent(s) during that period.
Unless insulation of the nest is perfect, the parents cannot heat the egg to their own body
temperature. There will be a few degrees difference, but this is still a high temperature,
which means that the metabolic rate of the embryo is high. So it produces an increasing
amount of heat as a byproduct of its general metabolism before the start of endothermic
heating.
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Figure 4.27: Embryo weight and respiration ontogeny in the parrot Agapornis personata. Data
from Bucher [172]. The curves are deb model predictions accounting for a temperature increase
of 4 ◦C during development; see text. The temporary respiration increase at day 23 relates to
hatching. This detail is not part of the model.

The process of pre-endothermic heating can be described by: d
dt
Tb = αT ṗT+ − k̇be(Tb −

Te), where Tb is the body temperature of the embryo, Te the temperature of the envi-
ronment, αT the heat generated per unit of utilised energy and k̇be the specific heat flux
from the egg to the environment. The latter is here taken to be independent of the body
size of the embryo, because the contents of the egg are assumed to be homogeneous with
respect to the temperature. (The Brunnich’s guillemot seems to need a 40 ◦C temperature
difference between one side of the egg and the other to develop [955].)

Figure 4.27 illustrates the development of the lovebird Agapornis, with changing body
temperature (TA = 10 kK). The curves hardly differ from those with a constant temper-
ature, but the parameter estimates differ substantially. The magnitude of the predicted
temperature rise depends strongly on the parameter values chosen. The information con-
tained in the data of Figure 4.27 did not allow a reliable estimation of all parameters; the
predicted temperature difference of 4 ◦C is arbitrary, but not unrealistic.

It is interesting that the red-headed lovebird, A. pullaria from Africa, and at least 11
other parrot species in South America, Australia and New Guinea breed in termite nests,
where they profit from the heat generated by the termites. Breeding Golden-shouldered
parrots, Psephotus chrysopterygius , in captivity failed frequently, until it became known
that one has to heat the nest to 33 ◦C for some days before hatching and for two weeks
after.

The significance of this exercise is the following: the least-squares-fitted curves remain
almost exactly the same, whether or not the body temperature changes, but the parameter
estimates for, for example the energy conductance, differ considerably. It follows that these
data are not suitable for estimating energy parameters unless the temperature is known
as a function of time. This holds specially for altricial birds because they hatch too early
to show the reduction in respiration rate that gives valuable information about parameter
values. The few studies on bird development that include temperature measurements
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indicate that the temperature change during incubation is not negligibly small. Drent
[293] found an increase from 37.6 to 39 ◦C in the precocial herring gull Larus argentatus .

The main reason why the (empirical) logistic growth curve sometimes fits bird data
better than the von Bertalanffy curve at food abundance is probably because body tem-
perature changed. The ontogeny of body temperature can be reconstructed as follows.

At abundant food, (2.22) reduces to d
dt
l = ṙB(1− l), where the von Bertalanffy growth

rate ṙB = k̇M
3

g
1+g

is now considered not as a constant but as a function of time, since the

temperature and thus the maintenance rate coefficient k̇M change. Integration gives

l(t) = 1− (1− l(0)) exp
(
−
∫ t

0
ṙB(t1) dt1

)
with (4.97)

ṙB(t) = ṙB∞ exp(TA(T−1
∞ − Tb(t)−1)) (4.98)

where ṙB∞ is the ultimate growth rate when the body temperature is kept constant at
some target temperature in the range 39 – 41 ◦C, or T∞ = 312 (non-passerines) or 314 K
(passerine birds). Body temperature is thus given by

Tb(t) =

(
1

T∞
− 1

TA
ln

d
dt
l

ṙB∞(1− l)

)−1

(4.99)

Given an observed growth and size pattern, this equation tells us how to reconstruct the
temperature. The reconstruction of body temperature, therefore, rests on the assumption
of (time inhomogeneous) von Bertalanffy growth (4.97) and an empirical description of the
observed growth pattern. It is a problem, however, that both the growth rate and the length
difference with its asymptote 1 vanish, which means that their ratio becomes undetermined
if inevitable scatter is present. General purpose functions such as polynomials or splines
to describe size-at-age are not suitable in this case.

A useful choice for an empirical description of growth is

d

dt
l =

ṙB∞
δl

(l−δl − 1)l or l(t) = (1− (1− l(0)δl) exp(−ṙB∞t))1/δl (4.100)

because it covers both von Bertalanffy growth (shape parameter δl = 1), and the frequently
applied logistic growth (δl = −3) and all shapes in between. For the shape parameter
δl = 0, the well-known Gompertz curve arises: l(t) = l(0)exp(−ṙBt). Nelder [830] called this
model the generalised logistic equation. It was originally proposed by Richards [958] to
describe plant growth. The graph of volume as a function of age is skewly sigmoid, with
an inflection point at V/V∞ = (1− δl/3)3/δl for δl ≤ 3. Substitution of (4.100) into (4.99)
gives

Tb(t) =

(
1

T∞
− 1

TA
ln

1

δl

1− l−δl
1− l−1

)−1

(4.101)

Note that if growth is of the von Bertalanffy type, so δl = 1, this reconstruction amounts to
Tb(t) = T∞, which does not come as a surprise. This interpretation of growth data implies
that the growth parameters of the logistic, Gompertz and von Bertalanffy growth curves
are comparable in their interpretation and refer to the target body temperature. The deb
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Great skua, Catharacta skua
ṙB∞ = 0.111 d−1, δl = −1.159

Long-tailed skua, Stercorarius longicaudus
ṙB∞ = 0.267 d−1, δl = −2.538
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Manx shearwater, Puffinus puffinus
ṙB∞ = 0.114 d−1, δl = −2.483

Guillemot, Uria aalge
ṙB∞ = 0.125 d−1, δl = −0.883
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Figure 4.28: The empirical, generalised, logistic growth curves have been fitted to measured
data for some birds. The von Bertalanffy growth rate ṙB∞ at the ultimate body temperature and
shape parameter δl are given. On the basis of these fits the body temperature was reconstructed,
on the assumption that T∞ = 312 K and TA = 10 kK. The shaded areas around the body tem-
perature curves indicate the 95 % confidence interval based on the marginal distribution for k.
The reconstruction method is tested on the guillemot data (lower right figure) where measured
body temperatures were available. The bars indicate the standard deviation. Both tempera-
ture parameters, T∞ = 312.3 K and TA = 8.225 kK, have been estimated from the combined
weight/temperature data. Data from Furness, de Korte in [384], Thompson in [159] and [735]
respectively.
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theory gives the physiological backgrounds. Figure 4.28 gives examples of reconstructions,
which indicate that the body temperature at hatching can be some 10 ◦C below the target
and it increases almost as long as growth lasts. The reconstruction method has been
tested on several data sets where the body temperature has been measured during growth
[1299]. It has been found to be quite accurate given the scatter in the temperature data.
Figure 4.28 gives one example. Although the Arrhenius temperature can be estimated
from combined weight/temperature data, its value proved to be poorly defined.

4.11.3 Reconstruction from reproduction data

Food intake can also be reconstructed from reproduction data of e.g. Daphnia hyalina.
Data provided by Stella Berger include body length, egg length, width & number of eggs
in the brood pouch in weekly hauls from enclosures. The general idea is to reconstruct
food density and then try to link measured quantities in the enclosures, such as chlorophyll
concentration, POM, and DOC to this reconstructed food density to learn more about the
nutritional value of these quantities for daphnids. These links are less than direct (daphnids
cannot digest chlorophyll or cellulose) and involves the (unknown) half saturation constant.

These data also allow the study of maternal effects: is the reserve density at birth
indeed equal to the reserve density of the mother at egg formation as the deb theory
assumes? Eggs initially fully consist of reserve. If reserve density at birth is small, initial
egg size will be small as well, but less than linear: a low amount of initial reserve leads
to low maturation, so long incubation and high cumulated maintenance costs. Hatching
(which coincides with start of feeding in Daphnia) occurs if maturity exceeds a threshold
value. The differences in egg size are small only since only half of the initial reserve is used
during the embryo stage in daphnids [661].

I evaluate two different ideas on the main sources of scatter.
Scenario 1: Individuals are idential, local environments are different Each individual

experienced a different food history and I use the observed number of eggsN to estimate the
scaled functional response f for each individual. To find f , N = tRṘ with reproduction rate
Ṙ given in Eq 2.56 was solved numerically for each individual, starting from the analytical
solution using the scaled reserve U0

E for f = 1. Using these values of f , the sum of squared
deviations between observed egg volumes and expected egg volume v̇0U

0
E was minimised

to find an estimate for the conversion factor v̇0. In this scenario all scatter is in the local
food density of individual daphnids. The environment is supposed to be spatially and
temporary heterogeneous. These individuals have identical parameter values. Since eggs
grow in volume during incubation (see below), we need to correct the measured egg volumes
for growth during development. The “observed” initial egg volume VOi of individual i is
estimated by

∑
j wjV0j/

∑
j wj, where wij = exp(−cf (fi − fj)2 − cV (VOj − VOm)2) and V0m

is the minimum observed egg volume. So the closer the reconstructed functional response
is to the individual at hand and the smaller the egg volume is, the larger is the weight
coefficient for the estimated initial egg volume.

Scenario 2: Individuals are different, local environments are identical individuals in a
single haul experienced the same food history and I use the different individuals in one haul
to estimate a common scaled functional response. To find f , the sum of squared deviations
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was minimised between the observed number of eggs N and the expected number of eggs
tRṘ with Ṙ given in (2.56) for individuals of different lengths, simultaneously with that
between observed and expected egg volumes. In this scenario part of the scatter is in the
translation of food to eggs, and part in difference of parameter values amount individuals.
Since eggs grow in volume during incubation (see below), the smallest egg volume each
haul represents the best estimate for the initial volume for that scaled functional response
if individuals do not synchronise moulting cycles.

Since sampling is weekly only, reserve is supposed to be in pseudo-equilibrium and the
scaled reserve density e in ṗC is replaced by the scaled functional response f in reproduction
rate is given in (2.56).

The volume of an ellipse of radii a, b, c equals 4πabc/3. Expressed in egg length Ll = 2a
and egg width Lw = 2b = 2c, egg volume equals Ve = LlL

2
wπ/6.

We have no reproduction, Ṙ = 0, if (1− κ)SC = k̇JU
p
H , which happens for

f 0
R =

(
(1− κ)(L2 + L3k̇M/v̇)/(k̇JU

p
H)− g−1

)−1
(4.102)

Using only individuals with eggs, we know that the reconstructed f must be in the interval
(f 0
R, 1). Notice that the larger the individual, the lower the reserve density can be to

continue reproduction. We have no growth, d
dt
L3 = 0, if κSC = κL3/Lm, which happens

for
f 0
G = L/Lm (4.103)

Notice that the larger the individual, the higher the reserve density must be to fulfil the
somatic maintenance costs.

Maximum reproduction is given in (2.58). The maximum number of eggs accumulated
over a time interval tR is Nm = tRṘm, so if Nm represents the maximum observed number
we have tR ≥ Nm/Ṙm. If tR does not meet this constraint we can obtain estimates of f
that exceed the value 1.

The range of lengths of individuals with eggs is (1.12, 2.36) mm, which translates in
estimates Lp = 1 mm and Lm = 2.75 mm. The latter value is well above the maximum
observed length because maximum length can only be reached after prolonged exposure to
abundant food, which is not likely in natural situations. The range of egg lengths is (0.137,
0.488) mm, which translates in an estimate Lb = 0.48 mm. The range of egg volumes is
(0.0006, 0.1) mm3, this covers a range of a factor 16. In view of the finding that around
half of the initial reserve is still present at birth in D. magna [661], this factor is much too
large to be explained by differences in initial reserve. I conclude that during the incubation
period, the volume of the egg must grow due to the uptake of water.

The values κ = 0.8, v̇ = 3.24 mm d−1, k̇J = k̇M = 1.7 d−1 are chosen from D. magna
[661] for a reference temperature of 20 ◦C, while g = 0.69 was corrected for differences in
max body length. This leads to U b

H = 0.0046 d mm2 and Up
H = 0.042 d mm2 to arrive at

the mentioned values for Lb and Lp. The implications are age at birth ab = 0.51 d and von
Bertalanffy growth rate ṙB = 0.23 d−1 at f = 1. About half of the initial reserve is used
during the embryonic stage at f = 1 with these parameter settings.

The maximum number of eggs in the brood pouch is 41 in an individual of length 2.24
mm. To accommodate all these eggs with the above-mentioned parameter values, we need
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Figure 4.29: The reconstructed scaled functional response for D. hyalina as function of the
week number (left), and the egg volume as function of the scaled functional response (right), for
scenario 1 (top) and 2 (bottom). Colour coding for the functional responses: Experiment 1 green,
2 red, 3 blue, 4 magenta by Stella Berger. The blue crosses represent measured egg volumes, the
green points the estimated initial egg volumes and the red curve the expected initial egg volume.

an inter-moult period of tRκR = 4.8 d, which seems somewhat long for κR = 0.95. If data
on the real period would be available, this could be used to adjust κ or g, which both have
a large effect on the minimum period that is required. Two large observed number of eggs,
depress the reconstructed scaled food density considerably.

The conversion from initial scaled reserve U0
E to initial volume was obtained by regres-

sion, like the scale functional responses. Notice that all parameters with length in their
units refer to physical length, not volumetric length. The shape coefficient for D. hyalina
is probably close to δM = 0.54.

The estimates can be improved by including ecophysiological info on deb parameters
of D. hyalina.

Both scenario’s produced similar f(t) reconstructions, see Figure 4.29. The 4 experi-
ments showed a very similar profile, but the peak in experiment 1 and 2 is before that of 3
and 4. A major difference is that in the scenario 1, some individuals have such a large num-
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ber of eggs, that the deb parameters are forced to values such the mean scaled functional
response in rather low. If only scenario 2 would have been tried, a wider choice of deb
parameters would have been possible, such that the reconstructed mean scaled functional
response fluctuates on wider range of values. The large number of eggs in few individuals
is then explained by deviating parameter values for those individuals. Scenario 2 involves
relationships between number of eggs in the brood pouch and body length. Given the
scatter, these relationships generally applied well.

The maternal effect is supported weakly only, see Figure 4.29, but reports in the litera-
ture on the contrary, i.e. that large eggs are produced at low food density (e.g. [413]), are
not confirmed; I did not check the empirical basis of their claims. Apart from the problem
of an increase in egg volume during development, another source of scatter in egg volume
is that some individuals are likely to be in the stage of converting the reproduction buffer
to eggs in the brood pouch. The number of eggs in the brood pouch might be small at
the moment of sampling, but much larger a few moments later. Notice that the expected
initial egg size is an U-shaped function of the functional response. The left branch has no
ecological relevance because at the minimum of the function we have f = Lb/Lm = f 0

G, so
no growth at birth. For k̇J = k̇M this also means no maturation, so no birth. This calls
for a revision of the parameter values, so for more info on the energetics of D. hyalina.

By decomposing observed egg volume into contributions from reserve and structure,
they can also be used to study to what extend synchronisation of moulting cycles oc-
cur among individuals. The dry weights can be used to further test ideas on reserve, in
combination with reproduction. Weights have contributions from structure, reserve, repro-
duction buffer, and eggs. By adding assumptions about the relationship between number
of individuals in a haul and that in the enclosure, these data can also be used to study
population dynamics and the effect of sampling on population dynamics.

4.11.4 Reconstruction from otolith data

Collaborative work with Laure Pecquerie [878, 877] allowed to reconstruct the scaled food
density x(t) for t ∈ (tb, t†) from otolith data (from anchovy), where tb is the time at mouth
opening; first feeding often produces a specific mark on the otolith. The reconstruction
supposes that otolith’s opacity O as function otolith length LO is known from data for
a particular individual fish as well as all required parameter values and the temperature
trajectory.

We here make a number of simplifications, but none of them is essential, however, and
all of them can be avoided. We assume that the maturity and somatic maintenance rate
coefficients are equal, k̇J = k̇M and so we have the scaled maturity UH = V (1− κ)g/v̇ and
d
dt
UH = 3(1 − κ) L2

k̇MLm

d
dt
L and SJ = 1−κ

κ
SM , SR = 1−κ

κ
SG. Temperature affects k̇M and v̇

given at reference temperature Tref via a temperature correction factor cT = exp
(
TA
Tref
− TA

T

)
.

Since the temperature effects on these two rates cancel in Lm = v̇
k̇Mg

, we only have to

take those on v̇ into account. We can use elaborate methods to relate metabolic rates
to temperatures that take deviations from the Arrhenius relationship into account at the
high and low boundaries of the environmental temperature range, but here we only use the
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Arrhenius correction. We further assume that shrinking does not occur. Shrinking typically
can happen at extreme starvation when the individual is relatively large, and we assume
that the reproduction buffer of such individuals is large enough to cover maintenance costs.

Data suggested that the contribution of assimilation to otolith growth and opacity
could be neglected. By setting the contribution from growth to opacity equal to zero, and
that from dissipation equal to one, the opacity as function of time is given by O(t) =
yG�EJ̇EG(yD�EJ̇ED + yG�EJ̇EG)−1. It takes values between zero (in absence of growth) and
one.

Scaled food density relates to scaled functional response as x = f
1−f , which translates

the problem of finding x(t) to that of finding f(t). Given the states at the moment of
observation (opacity, otolith length, fish length, scaled reserve density, scaled functional
response, temperature), we might try to find f(t0), cT (t0) and work our way backwards in
time. This scheme, however, turns out to be hopelessly unstable, to the extent that it is
useless. A stable scheme is to start from birth and integrate over otolith length, not time.
This is possible because otolith length increases strictly monotonously in time (contrary
to body length). Feeding starts at birth, so opacity at birth has no information about the
food level. So we have to assume that between the first and the second data point food
density is constant, and changes linearly in time since then at rates that we reconstruct
from opacity data.

A continuation method for this change from one data point to the next one turns out
to be satisfactory, except when growth is resumed after starvation. For these points we
need a more robust method.

Figure 4.30 illustrates the reconstruction using parameters that are appropriate for
anchovy. The first reconstruction uses the ’true’ trajectory of the correction factor for
temperature and reconstructs the otolith and body length trajectories perfectly. The scaled
functional response and the reserve density trajectories are also perfectly reconstructed,
except if the reserve density no longer supports growth. The second reconstruction assumes
a constant temperature correction factor of 1, still leading to a very good reconstruction.

The reconstruction of f(t) from O(LO) data is coded in routine o2f in toolbox “animal”
of software package “debtool”. The inverse routine, to construct O(LO) from f(t) data,
as done in routine f2o can be useful for checking the method. The comparison of the
reconstructed body length at otolith collection with the measured one is other very useful
check for consistency of the reconstruction method.

A weak component of our reconstruction method is the required knowledge about the
temperature trajectory during the lifetime of the fish. It turns out, however, that the (un-
realistic) assumption that the temperature was constant, despite that fact that it changed
in reality, hardly affected the reconstructed food history in our simulations. The second
reconstruction in Figure 4.30 illustrates this.

Modifications of this reconstruction can make use of other types of data and/or infor-
mation, for instance that temperature extremes should match known points on the yearly
cycle. Such calibrations transform an “exact” reconstruction problem into a minimisa-
tion of deviations between predictions and measurements, but doubtlessly will improve the
quality of the reconstruction.

Similar reconstruction methods can be applied to opacity variations in ear plugs of
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Figure 4.30: The construction (green) of the opacity profile from the functional response tra-
jectory and reconstruction of the functional response trajectory from the opacity profile. The
first reconstruction (red) uses the ’true’ trajectory of the correction factor for temperature, the
second reconstruction (blue) assumes a constant temperature correction factor. The match of the
first reconstruction with the construction is almost perfect, so the green curves hide behind the
red ones. Parameters: Lb = 1 cm, Lp = 1.5 cm, v̇ = 0.526 cm d−1, v̇OD = 1.186 × 10−5 cm d−1,
v̇OG = 1.1× 10−4 cm d−1, k̇M = 0.015 d−1, g = 6, κ = 0.65, κR = 0.95, δS = 1/20.

whales, to rings in tree trunks or to ribbles on bivalve shells, for instance.

4.12 Summary

Reactions to variations in food levels depend on the time scale of starvation; allocation rules
are affected first, then follow reserve dynamics, and dormancy. During extreme starvation
shrinking can occur; its dynamics can involve up to four extra parameters, but a first
approximation does not require extra parameters.

Changes of shape are important if they affect the relationship between volumes and
surface areas that are involved in food uptake. These changes can be implemented via the
shape correction function, which quantifies the surface area relative to that of an isomorph.
An important special case results if surface area is proportional to volume to the power
one, V1-morphy, which is a good and simple approximation for dividing microorganisms.
The distinction between the individual and population levels disappears for V1-morphs.
The popular models by Monod, Marr–Pirt and Droop turn out to be special cases of the
univariate deb model for V1-morphs.

The standard deb model, as specified by the assumptions listed in Table 2.4 at {74},
fully determines the fluxes of organic compounds (food, faeces, reserves and structural
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mass); those of mineral compounds (carbon dioxide, dioxygen, water and nitrogenous
waste) follow from the conservation law for chemical elements. The assumptions, there-
fore, specifies all mass fluxes. These mass fluxes can all be written as weighted sums
of three basic energy fluxes (powers): assimilation, dissipation and growth. Dissipating
heat can also be written as weighted sums of the three basic powers, which means that
dissipating heat is a also weighted sum of three mineral fluxes (carbon dioxide, dioxygen
and nitrogenous waste). This is well known in empery, and used in the widely applied
method of indirect calorimetry to obtain dissipating heat from the three mineral fluxes.
Growth-related changes in biomass composition can be used to obtain the composition of
reserves and structure, as is illustrated by examples.

Respiration is one of two mineral fluxes, carbon dioxide or dioxygen, or dissipating heat.
The fluxes are proportional to each other, given certain constraints on the composition of
reserves, relative to structural mass. Respiration that is not associated with assimilation
is then proportional to the mobilisation rate of reserve. The theory also quantifies the
respiration that is associated with assimilation, known as the Specific Dynamic Action; its
nature is still considered to be enigmatic, but now explained in first principles.

Similar to other mineral fluxes, nitrogenous waste not only originates from assimilation
directly, but also from maintenance (dissipation) and growth. Although this might not
seem surprising, it differs from its treatment in Static Energy Budgets, see {416}, and
turns out to be most useful in the analysis of trophic interactions, {324}.

Products can be included in just one single way, without changing the assumptions of
Table 2.4; they, too, must be weighted sums of the three basic energy fluxes, the three
weight coefficients per product are free parameters. In this way, products are included in
the overhead costs of the three powers. Consequently, fermentation gives three constraints,
which fully determine the three weight coefficients of a single product, or partly determine
those of more products.

The drinking of water by terrestrial organisms and plants, to balance the metabolic
turnover of water, can be quantified on the basis of two supplementary assumptions about
water loss

1 water evaporates in proportion to the surface area at a rate that depends on
environmental conditions (temperature, humidity, wind speed)

2 water evaporates in proportion to respiration

These assumptions apply to animals as well as plants. Drinking by plants has complex
interactions with nutrient uptake and is shown to affect the saturation constant. The water
balance has intimate relationships with the thermal balance, and so with the energetics of
endotherms. These routes have been explored briefly.

There is just one way to include isotope dynamics in deb theory, and this follows natu-
rally from the isotope balance and has a mixing and a fractionation aspect. Fractionation
can be from pools (nutrients, including dioxygen), but typically occurs from fluxes, by sep-
arating the anabolic and catabolic aspects in assimilation, dissipation and growth. This
flux-based theory links up with that of Synthesising Units.
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Simple measurements on amounts and composition of biomass can be used to access
the primary deb parameters from some compound deb parameters and to separate re-
serve from structure, both in amounts and in composition. Methods are discussed to find
chemical proxies for reserve (rrna) and structure (dna) to access reserve and structure
more directly.

The entropy and chemical potentials of reserve and structure follow from the strong
homeostasis assumption. They can be accessed indirectly from input-output relationships
of the individual, or of the microbial population, but this method makes full use of mass
balances.

Observations on growth can be used to reconstruct the trajectory of body temperature.
Observations on growth, or reproduction, or opacity in (fish) otoliths, can be used to
reconstruct the trajectory of (scaled) food density. In the latter two cases that can even be
done from a single (dead) individual. In combination with isotope data, also trajectories
of temperature can be reconstructed.



Chapter 5

Multivariate deb models

As long as all required nutrients and energy are available to the organism in fixed relative
amounts, it can buffer temporal variations in abundance using a single reserve. This situ-
ation is approximated in organisms that eat other organisms, as discussed in the previous
chapters. If energy and various nutrients are taken up independently, however, a reserve is
required for each of them to buffer variations in abundance. The surface layers of seas are
poor in nutrients and rich in light, while the reverse holds for the bottom of the photozone.
Algal cells, which commute between these two environments on the wind-induced currents,
can barely grow and survive, unless they use intracellular energy and nutrient reserves.

The purpose of this chapter is to show how the univariate deb models can be extended
to include several substrates, reserves and structural masses, in a way that reduces to
the one-reserve, one-structure case if just one nutrient (or light) is limiting, or if nutrient
abundances covary, and the reserve turnover times are identical. The concept of the Syn-
thesising Unit, cf. {98} will be used to show that a nutrient becomes almost non-limiting
as soon as its availability exceeds that of the limiting nutrient, only by a small amount,
relative to its needs. Simultaneous limitations of growth by nutrients and light only occur
incidentally, and usually during a short period. This is why the simple one-reserve deb
theory can be applied so widely.

Each reserve requires specifications of its assimilation process and of its contribution to
maintenance costs. Together with a single structural mass, and so a single growth process,
2n+1 powers have to be specified to delineate n reserves. Each of these powers contributes
to the dissipation of heat; the fixed weight coefficients directly follow from the conservation
law for energy. Product formation is directly associated with these powers, and generally
requires 2n + 1 coupling parameters per product for quantification; excretion is basic to
multiple reserve systems and follows a deviating dynamics. Fluxes of non-limiting nutrients
are also directly associated with the powers, and the 2n + 1 coupling parameters follow
from the conservation law for mass.

To structure the model appropriately, fast processes are separated from slow ones,
and many transport processes are only included implicitly at the whole-individual level.
Transport of metabolites through phloem in plants, for instance, shares important system
properties with blood in animals: a small capacity is combined with a high turnover, which
means that material in phloem should not play an explicit role at the whole-individual level.
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The transformation from nutrients and light to reserves is taken as a single step, while in
fact many intermediary metabolites are formed.

5.1 Several substrates

Several extensions are possible from one to more types of food (or substrate). Details of
growth and reproduction patterns can only be understood in relation to selection of food
items and choice of diet. The reverse relationship holds as well, especially for ‘demand’
systems. I will, therefore, mention some aspects briefly.

5.1.1 Diet and preference

Many species change their diet during development in relation to their shifting needs
with an emphasis on protein synthesis during the juvenile period and on maintenance
during the adult one. Many juvenile holo-metabolic insects live on different types of food
compared with adults. Most wasps and butterflies, for instance, feed on nectar as adults,
but on animals and leaves, respectively, as juvenile. Stickleback fish change from being
carnivorous to being herbivorous at some stage during development [267]. Plant-eating
ducks live on insects during the first period after hatching. The male emperor penguin
Aptenodytes and mouth-brooding frog Rhinoderma darwinii provide their young initially
with secretions from the stomach. Mammals live on milk during the baby stage, cf. {6}.

The first hatching tadpoles of the alpine salamander Salamandra atra live on their sib-
lings inside the mother, where they are also supported by blood from her reproductive
organs, and the one to four winners leave the mother when fully developed. The same type
of prenatal cannibalism seems to occur in the coelacanth Latimeria [1154], and several
sharks (sand tiger sharks Odontaspidae, mackerel sharks Lamnidae, thresher sharks Alopi-
idae [938]), and the sea star Patiriella [180]. Some species of poison dart frog Dendrobatus
feed their offspring with unfertilised eggs in the water-filled leaf axils of bromeliads, high
up in the trees [299, 300].

Shifts in food selection that relate to shifts in nutritional requirements can be modelled
using at least two reserves, e.g. carbohydrates plus lipids and proteins, which differ in
their contributions to maintenance costs, and in the requirements for growth. Changes in
behavioural aspects, such as food selection, can then be based on efficiency arguments.

Some species select for different food items in different seasons for reasons other than
changes in the relative abundance of the different food sources. This is because of the
tight coupling between feeding and digestion. The bearded tit Panurus biarmicus is a
spectacular example; it lives on the seed of bulrush, Typha, and reed, Phragmites, from
September to March and on insects in summer [1092, 1228]. This change in diet comes
with an adaptation of the stomach which is much more muscular in winter when it contains
stones to grind the seeds. Once converted to summer conditions, the bearded tit is unable
to survive on seeds. The example is remarkable because the bearded tit stays in the same
habitat all year round. Many temperate birds change habitats over the seasons. Divers, for
instance, inhabit fresh water tundra lakes during the breeding season and the open ocean
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during winter. Such species also change prey, of course, but the change is usually not as
drastic as the one from insects to seeds.

The relationship between feeding rates and diet composition gives a clue as to what
actually sets the upper limit to the ingestion rate. An indication that the maximum
ingestion rate is determined by the digestion rate comes from the observation that the
maximum ingestion rate of copepods feeding on diatoms expressed as the amount of carbon
is independent of the size of the diatom cells, provided that the chemical composition of the
cells is similar [373]. The maximum ingestion rate is inversely related to protein, nitrogen
and carbon contents fed to the copepod Acartia tonsa [530]. The observation that the
maximum ingestion rate is independent of cell size on the basis of ingested volume [393]
points to the capacity of gut volume being the limiting factor.

These examples should make clear that the quantitative details of the feeding process
cannot be understood without some understanding of the fate of the food. This involves
the digestion process in the first place, but a whole sequence of other processes follow.

Prokaryotes show a diversity and adaptability of metabolic pathways that is huge in
comparison to that of eukaryotes. Many bacteria, for example, are able to synthesise all the
amino acids they require, but will only do so if these are not available from the environment.
The fungus Aspergillus niger only feeds on cellulose if no compounds are available that are
easier to decompose. The relationship between food quality and physiological performance
is discussed again in the treatment of food intake reconstructions {165}, dissipating heat
{155} and adaptation {283}.

The decomposition of biomass into a structural component and a reserve component
implies that a predator feeds on a mixture of two compounds, rather than just a single
one, even if it specialises on a single species of prey. The significance of the contribu-
tion of prey reserves to predator nutrition is obvious in the example of waterfleas feeding
on algae. Most of the organic carbon of algae consists of cellulose in the cell wall, and
of chlorophyll. However, the waterflea cannot digest both compounds of the structural
biomass, and mainly feeds on starch and lipids. The quantitative aspects of feeding on
prey differs from the general case of sequentially processed substitutable substrates by the
tight coupling of the abundances structural mass and reserves. The reserves of the prey
can be treated as a kind of nutritional quality of prey biomass.

Suppose that the prey’s reserves do not extend the predator’s handling time. If the
prey does not have an energy buffer allocated to its reproduction, the assimilation power
of the predator amounts to ṗA = (µAV +µAEm

◦
E)J̇XA, where µAV stands for the conversion

of prey structural mass into predator assimilative power, µAE for the conversion of prey
reserves into predator assimilative power, m◦E = M◦

E/M
◦
V = e◦m◦Em for the ratio of the

reserve to the structural mass of the prey, and the feeding rate J̇XA for the molar flux of
prey structural biomass. Parameters and variables that relate to the prey are indicated
with ◦ to distinguish them from those of the predator.

Let µAX = µAV + µAEm
◦
Em denote the conversion of well-fed prey biomass into as-

similation power, and κA =
(

1 + 1
m◦Em

µAV
µAE

)−1

=
(

1 + κ◦g◦
µ◦E
µ◦GV

µAV
µAE

)−1

the fraction of

the assimilative power of the predator that originates from the digestion of prey re-
serves, when feeding on well-fed prey. The assimilative power can then be represented as
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ṗA = (1−κA+κAe
◦)µAX J̇XA, so that the maximum assimilative power is ṗAm = µAX J̇XAm,

where J̇XAm denotes the maximum ingestion rate in terms of structural biomass. This can
be summarized as ṗA = (1 − κA + κAe

◦)fṗAm, since J̇XA = fJ̇XAm. The dynamics of the
scaled reserve density of a V1-morph predator becomes

d

dt
e = k̇E(f − κAf + κAe

◦f − e) (5.1)

Energy extracted from reserves through digestion cannot exceed the energy invested
in reserves, µAE < µ◦E, and energy extracted from structural biomass through digestion
cannot exceed energy contained in this mass, which itself cannot exceed energy invested
in the synthesis of this mass, µAV < µ◦V < µ◦GV . Therefore µAX < µ◦GV (1 + 1

κ◦g◦
), and κA

is probably, but not necessarily, larger than (1 + κ◦g◦)−1.
If the prey has a reproduction buffer, it is possible that the assimilative power exceeds

ṗAm, in this scaling, which indicates that the scaled reserve density of the predator can
exceed 1, in principle. The quantitative description of feeding on prey can be further
detailed by accounting for the selection of prey by the predator, based on the structural
biomass and reserves of the prey, and/or by allowing the handling time to depend on
these state variables. In this way, the saturation constant becomes dependent on the state
variables of the prey as well. Although this might be realistic in particular applications,
these mechanisms are not worked out here.

The four basic types of the uptake of substrates is discussed at {101}. The situation
for bacteria that feed on glucose and fructose, for instance, is different because the carriers
for glucose in the outer membrane of the bacterial cell cannot handle fructose, cf {284}.
These substrates, therefore, do not compete for access to the same carriers, and the uptake
processes just add the don’t interact in the transformation to reserve.

Data on the aerobic production of the yeasts Saccharomyces cerevisiae and Kluyvero-
myces fragilis strongly suggest the existence of two different uptake routes for glucose [457],
see Figure 5.1. A low-affinity high-capacity carrier is active under anaerobic and aerobic
conditions, and ethanol and acetaldehyde are produced in association with this assimilation
process. A high-affinity low-capacity carrier is active under aerobic conditions only, and no
products are produced in association with this assimilation process. Some strains, however,
produce glycerol in association with the latter assimilation. When the process of glucose
uptake and product formation is studied for increasing chemostat throughput rates under
aerobic conditions, the quantitative dominance of the two carriers switches at a throughput
rate of 0.2 h−1, but no metabolic switches are required to capture this behaviour.

5.1.2 Pseudo faeces & variations in half saturation coefficients

Apart from faeces, bivalves produce pseudo faeces: material, typically silt, that has been
filtered from the water, but separated from food, that leaves the body before it would
enter the gut. The production of pseudo faces can be quantified by considering silt as a
second substrate with zero conversion efficiency to reserve [644]; it is processed sequentially
with food by the filtering apparatus. Because silt competes with food for access to the
filtering apparatus, the silt density in the water modifies food uptake. Its quantitative
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Figure 5.1: Aerobic growth and production of the yeast Saccharomyces cerevisiae at 30 ◦C in a
chemostat. Data from Postma et al. [918, 919] and Verduyn [1190]. The data fits, modified from
Hanegraaf [457], assume two assimilation processes for glucose, and product formation coupled
to one assimilation process, which reduces the energy gain from glucose for metabolism by a
factor κA = 0.187. The glucose concentration in the feed is 83.3 mM; the maximum throughput
rate is ḣm = 0.5 h−1; a measurement error on acetaldehyde is estimated to be 0.7 [457]. The
composition of structure and reserves have been set at nHV = 1.75, nOV = 0.61, nNV = 0.14,
nHE = 1.7, nOE = 0.62, nNE = 0.23. Parameters: jXAm1 = 2.16 mM/M h, jXAm2 = 81 mM/M h,
XK1 = 0.1 mM, XK2 = 40 mM, k̇E = 0.54 h−1, k̇M = 0.003 h−1, g = 0.050, ζP1A2 = 55, ζP2A2 =
43, ζP3A2 = 2.35, ζP4A2 = 2.47, ζP5A2 = 0.34, yEX = 0.51, yEV = 0.78. The curves follow from
ḣ = ek̇E−gk̇M

e+g ; e = jXAm1f1+κAjXAm2f2
jXAm1+κAjXAm2

; κA = µA2X

µA1X
; W = (wV + ewEyEV /g) ḣ(Xr−X)

jXAm1f1+jXAm2f2
;

fi = X
X+XKi

; XPi = ζPiA2
k̇Ef2(Xr−X)

jXAm1f1+jXAm2f2
; jC = jXAm1f1(1−yEX)+ jXAm2f2(1−κAyEX)+ k̇MyEV +

ḣ(yEV −1)−k̇Ef2nC ; jO = jXAm1f1(yEXn−1)+jXAm2f2(κAyEXn−1)+k̇Ef2(nC+nH/4−nO/2)−
k̇MyEV n+ḣ(1−nNV /2−nOV /2−nyEV ); nC =

∑
i ζPiA2 ; nH =

∑
i nHPiζPiA2 ; nO =

∑
nOPiζPiA2 ;

n = 1 + 1
4nHE −

1
2nOE −

3
4nNE .
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effect is increasing the half saturation coefficient linearly in the density. The apparent half
saturation coefficient amounts to

K ′(Y ) = K(1 + Y/KY ) (5.2)

where Y is the silt density, K the half saturation coefficient for food and Ky that for silt.
For varying silt densities, this means that the half saturation coefficient for food becomes
time-dependent as well. Given the half saturation coefficient for food in absence of silt,
and estimates for the apparent half saturation coefficient, relationship (5.2) can be used to
estimate mean silt densities.

5.1.3 Oxygenic photosynthesis

A detailed discussion of photosynthesis is beyond the scope of this book, see e.g. [333]; I here
focus on the links with deb theory. Photosynthesis concerns the process of carbon fixation,
so the use of photons and Dissolved Inorganic Carbon (DIC) to synthesise carbohydrates
(starch or lipids in some taxa). This is just one of the assimilation processes in deb theory,
which forms a single reserve of a multiple-reserve system. Other reserves also contribute
to the synthesis of structure (growth), so photosynthesis should not be identified with
growth. Since phototrophy hardly depends on temperature, and nutrient uptake does, the
composition of the biomass of phototrophs depends on temperature, with consequences for
the grazers of this biomass. This makes that photosynthesis can best be incorporated using
several reserves. Moreover, most phototrophs have substantial heterotrophic activity, see
{108} and chapter 10, and should be classified as mixotrophs.

Oxygenic photosynthesis can be summarised as

CO2 + H2O + light→ CH2O + O2

{
2 H2O + 4hν → O2 + 4 H+ + 4 e−

CO2 + 4 H+ + 4 e− → CH2O + H2O

Since all oxygen in dioxygen comes from water, not from carbon dioxide, we need and
extra water molecule as substrate as well as product to follow oxygen isotopes, cf {94}.
Carbohydrate CH2O has the role of carbon as well as energy source for the synthesis of
structure.

Figure 5.2: Diagram of the simpli-
fied carbon fixation, where light L
and carbon dioxide C are converted
into carbohydrates by Synthesising
Units (circles, see text). Photores-
piration and photoinhibition modify
the synthesis of carbohydrates.
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Figure 5.2 gives a simplified schedule for the photosynthetic process. The photopigment
system of cyanobacteria, photoautotrophic protoctists and plants consists of two Photo
Systems (PSs). When a photon is captured by the antenna and transferred to an unexcited
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PS II, it switches to the excited state, transfers an electron from water to PS I, and switches
back to the unexcited state. PS I can likewise accept a photon from its antenna, and also
accepts an electron from PS II, which allows it to pass an electron via nadph to the
carbon-fixation cycle (Calvin–Benson cycle). The enzyme Rubisco partakes in this cycle,
and accepts the electron and a carbon dioxide molecule from its carrier, and reduces the
latter to carbohydrate. Part of the carbohydrate is stored as such or excreted, part is
delivered to the synthesis machinery. All units behave as 1,1-SUs {101}.

The ‘binding’ probability of a photon depends on its wavelength and on the photopig-
ment, which differs between the various phototrophic taxa. In the water, the light extinc-
tion rate is constant according to the Beer-Lampert law, which makes that light intensity
decays exponentially with depth at rates that might depend on the chemical composition
of the water (e.g. the presence of humic acids) and particles, such as ‘detritus’ and algal
cells (self shading). The decay rates might depend on the wavelength, which rapidly makes
the model more complex.

Pigment systems

For (negative) photon flux jLF and large values for the flux ratios zL1 and zL2 , assimilated
light quantifies as

jL2A = jL2Am

(
1 +

jL2FK

−jLF

)−1

' −zL2jLF with zL2 =
jL2Am

jL2FK

(5.3)

jLA = jL1Am

1 +
jL1FK

−jLF
+
jL2AK

jL2A

−
(
−jLF
jL1FK

+
jL2A

jL2AK

)−1
−1

(5.4)

' jL1Am

(
1 +

jL1AK

−jLF

)−1

with jL1AK = jL1FK +
jL2AK

zL2

−
(
j−1
L1FK

+
zL2

jL2AK

)−1

(5.5)

jLA ' −zL1jLF with zL1 = jL1Am/jL1AK (5.6)

where jLiFK and jLiAK are specific half saturation fluxes, i.e. parameters that are associated
with the behaviour of SUs, and jLiAm are the maximum specific assimilation rates for
photons for pigment system i = 1, 2. Although the electron input to the carbon-fixation
cycle is (approximately) proportional to the light intensity, this does not mean that there
is no upper limit to the light intensity that can be used, because the electrons experience
increasing resistance to their use in the process of carbon-fixation. Electrons that are not
used in carbon fixation or photorespiration ‘leak’ away via the Mehler reaction [907], also
known as pseudocyclic electron transport, which involves dioxygen uptake, and dioxygen
production of equal size [333]. The interception of light barely depends on temperature,
while other metabolic processes do, which explains the need to handle spoiled electrons.

Green, purple and heliobacteria photosynthesise under anaerobic conditions, using bac-
teriochlorophylls and a single pigment system (PSII in purple and green non-sulfur bacteria,
and PSI in green sulfur bacteria and heliobacteria). They must have an equivalent of the
Mehler reaction to get rid of the excess electrons.
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Figure 5.3: The couple photo-synthesis –
photo-respiration – photoinhibition in the trans-
formations from carbon dioxide C plus photons
(light) L (plus water) to hydrocarbon H (plus
dioxygen), C + L → H, and from dioxygen O
plus photons plus hydrocarbon to carbon diox-
ide (plus water), O + L + H → C. The state
θLL is inactive, and accommodates photoinhibition.

Carbon fixation

The output from the carbon-fixation cycle can be derived according to a similar reasoning
as applied for electron production. For xC = XC/XKC we have with substitution of (5.6)

jCA = jCAm(1 + x−1
C )−1 = jCAmfC (5.7)

jCHA = jCHAm(1 + z−1
C )

1 +
jCAK
jCA

+
jLAK
jLA

−
(
jCA
jCAK

+
jLA
jLAK

)−1
−1

jCHA =
jCHAm(1 + z−1

C )

1 + z−1
C f−1

C + jLFK
−jLF

−
(
zCfC + −jLF

jLFK

)−1 = jCHAmfCH (5.8)

with zC = jCAm/jCAK , jLFK = jLAKz
−1
L1

, jCAK the specific half saturation flux for carbon
dioxide, jCAm the maximum specific carbon dioxide assimilation rate, jCHAm the maximum
specific carbohydrate assimilation rate.

Photorespiration

Rubisco is the most abundant enzyme on Earth, it constitutes 5–50 % of the soluble protein
in algal cells [333], and is involved in the fixation of carbon dioxide. Rubisco can operate
in two modes on the substrate ribulose-1,5-biphosphate (RuP2)

Carboxylase activity: RuP2 + CO2 + H2O → 2[3P-glycerate]

Oxygenase activity: RuP2 + O2 → 1[3P-glycerate] + 1[2P-glycolate]

The second reaction is known as photorespiration. The net effect is that the binding of CO2

or O2 leads to the synthesis or degradation of carbohydrates. The binding is competitive,
with widely varying relative strength among algal classes. The counterproductive effects
of dioxygen might be a historic accident, since Rubisco evolved in a period which was
essentially free of dioxygen [941]. C4 plants, which bind carbon dioxide to an organic
compound with four C-atoms in a micro-environment that is poor in dioxygen, avoid
photorespiration almost completely. They do not use Rubisco, but phosphoenolpyruvate
(PEP) carboxylase for the binding of CO2. Different species in the same genus can have
C3 and C4 metabolism, and orache Atriplex prostrata, for instance, has both C3 and C4
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metabolism. The dioxygen use that is associated with primary carboxylation only occurs
in light, and is called photorespiration. This can be modelled as follows.

Figure 5.3 illustrates the scheme of photo-synthesis and photo-respiration. Ignoring
photo-inhibition, this scheme translates into the dynamics of the variously bounded frac-
tions of SUs as follows. Let θ = θ.., θ.O, θ.C , θL., θLO, θLC denote the fractions of the pho-
tosynthetic system (RuP2 plus PSs) that is in complex with nothing, dioxygen, carbon
dioxide, photon, photon and dioxygen, or photon and carbon dioxide, respectively. The
changes in the fractions are given by

d
dt
θ.. = k̇OθLO + k̇CθLC − (j′L + j′O + j′C)θ..

d
dt
θ.O = j′Oθ.. − j′Lθ.O

d
dt
θ.C = j′Cθ.. − j′Lθ.C

d
dt
θL. = j′Lθ.. − (j′O + j′C)θL.

d
dt
θLO = j′Lθ.O + j′OθL. − k̇OθLO

d
dt
θLC = j′Lθ.C + j′CθL. − k̇CθLC

(5.9)
where j′∗ = ρ∗yCH∗j∗ denotes the arrival flux j∗ times the binding probability ρ∗, and the
coefficient yCH∗ couples ∗ to CH ; k̇O and k̇C stand for the dissociation rates of oxygenase
and carboxylase products. The net flux of carbohydrate is found by equating the changes
in fractions to zero and solving for θ. The result is

jCHA = θLC k̇C − θLOk̇O =
j′C − j′O

1 +
j′C
k̇C

+
j′O
k̇O

+
j′C+j′O
j′L
− j′C+j′O

j′L+j′C+j′O

(5.10)

For j′O = 0 this reduces to jCHA =
(
k̇−1
C + j′L

−1 + j′C
−1 − (j′L + j′C)−1

)−1
, which is identical

to (5.8). At the compensation point j′O = j′C , no net synthesis of carbohydrate occurs.

Photoinhibition & photoadaptation

At high irradiance, photoinhibition can occur, see e.g. [1297]. This can be incorporated
naturally into the carbon fixation model using SUs, see {103}. To this end, we need to
introduce a new state of the SU, where a photon can ‘bind’ to an SU that is already ‘bound’
to a photon, and send it into an inactive state, from which is can recover at a constant
probability rate, see Figure 5.3. Likewise we can delineate two further inactive states θLLC
and θLLO, which can be entered from the states θLC and θLO, respectively. Such further
extensions should only be considered if necessary.

The light spectrum that is of relevance for phototrophy might in principle differ from
that for photoinhibition. Accounting for such difference would obviously complicate the
model considerably.

The amount of chlorophyll per cell turns out to be rather variable, see e.g. [1296].
Generally the relative amount is high at low mean levels of irradiance and the chlorophyll
density act as if it is compensation. Part of the variation of chlorophyll per cell weight
can be explained by the contribution of the various reserves to the cell weight. A more
detailed analysis might involve a workload allocation model, cf {199}, for chlorophyll. This
more detailed link between chlorophyll and primary production is of importance for the
interpretation of remote sensing data.
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5.1.4 Calcification

Bicarbonate is by far the dominant form of inorganic carbon
in seawater. At the typical pH of about 8.3, 98 % of the in-
organic carbon is in this form. Few organisms can use this
source, one problem is to deal with the electrical charge. Coc-
colithophorans, such as Emiliania huxleyi (right), mastered this
art, by using calcium in the transformation Ca2+ + 2 HCO−3 →
Ca CO3 + CO2 + H2O, where the calcium carbonate is exported
by the Golgi apparatus in the form of beautifully shaped extra-
cellular coccoliths, and the carbon dioxide is used as carbon sub-

strate for the synthesis of carbohydrates and lipids (for which they obviously need water
and light as well). The coccoliths accumulate in a polysaccharide layer, and are shedded
at cell death. Emiliania is so abundant that the coccoliths can easily be seen on satel-
lite images in huge areas in the northern Atlantic and Pacific Ocean where they bloom
regularly. A substantial fraction of carbonates in rocks originates from coccoliths, and
coccolithophorans may play a key role in the carbon metabolism of the Earth [1243].

Since carbon dioxide is relatively rare, and the transformation of carbonate and bi-
carbonate to carbon dioxide is slow, and the water that envelopes the cell is stagnant,
see {259}, cells in the sea can become limited by carbon under otherwise optimal growth
conditions [1273]. This points to the gain of using bicarbonate as an additional carbon
source, with an inherent gradient in the CO2/HCO−3 ratio in the diffusive boundary layer
[1274]. The process of calcification can be modelled in the context of the deb theory by
treating carbon dioxide and bicarbonate as substitutable substrates, with light as a sup-
plementary ‘substrate’, for the synthesis of lipids as reserve, while calcium carbonate is
formed as a product in this assimilation process. This implementation ties calcification to
photosynthesis.

As long as calcium is not rate limiting, and the environment is homogeneous, the
carbohydrate production amounts to

jCH =
(
k̇−1
C + (j′C + j′C−)−1 + j′L

−1 −
(
j′C + j′C− + j′L

)−1
)−1

(5.11)

where j′C = ρCjC and j′C− = ρC−jC−/2 are the effective arrival rates of carbon dioxide
and bicarbonate; and the factor 0.5 in j′C− relates to the stoichiometry of the calcification
process. The calcification rate now becomes

jCa =
jCHj

′
C−

j′C + j′C−
(5.12)

Calcification is also reported to occur in the dark, to some extent. This might relate to
heterotrophic activity to acquire the energy for carbon fixation.

5.2 Several reserves

The number of reserves equals the number of nutrients and/or (generalised) substrates
that are taken up independently. The case of two reserves and two nutrients serves as an
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example, see Figure 5.4; the model extends to more reserves and possibly limiting nutrients
without causing additional problems. This will be worked out in some detail for V1-morphs
in this section.

The general idea is to apply the rules for SUs to quantify the transformation of nutrients
to each of the k reserves; each reserve is mobilised independently, first allocated to a
maintenance SU for each reserve, which also receives input from mobilised structure. The
remaining reserve fluxes are allocated to a (single) SU for growth. This takes 2k + 1 SUs.
The rejected nutrient and substrate fluxes do not pose any problem in the case of the
assimilation SUs, because they are fed back into the environment. The rejected reserve
fluxes, however, require special consideration, which is why I start with the specification
of growth, given the reserve densities, and then consider reserve dynamics.

For a k-reserve system, we have 2k maintenance parameters: jEiMi
and jVMi

for i =
1, ., k, where jVMi

≥ yV EijEiMi
. The actual fluxes of reserve and structure allocated to

maintenance are jMi
Ei

and jMi
V , respectively, and might vary in time, where jMi

Ei
≤ jEiMi

and
jVMi

≤ jVMi
. The decision to allocate structure to maintenance is made for each reserve

separately, so jMV =
∑
i j
Mi
V , where jMi

V is specified in (4.17) for each reserve.

5.2.1 Growth

If no structure is used to pay (somatic) maintenance costs the specific gross growth rate
jV G equals the specific net growth rate ṙ, but if (some) maintenance is paid from structure
at rate jMV <

∑
i jVMi

, then the growth rates relate to each other as ṙ = jV G − jMV .

Just like the univariate case, reserve densities mEi , i = 1, 2, · · ·, follow first-order kinet-
ics, which means that for a reserve mass MEi , the specific mobilised from the i-th reserve,
equals

jEiC = mEi(k̇Ei − ṙ) (5.13)

where k̇Ei denotes the turnover rate of the i-th reserve, and the net specific growth rate
ṙ = d

dt
lnMV relates to the dilution by growth.

This means the i-th reserve sends a specific flux jEiG = jEiC− j
Mi
Ei

to the SU for growth
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Figure 5.5: The specific growth rate ṙ of the Haptophyte Pavlova lutheri as a function of the
intracellular reserves of phosphorus (reserve 1) and vitamin B12 (reserve 2) at 20 ◦C (left), and
the relationship between the observed growth rate and the calculated one (right). Data from
Droop [295]. The parameters are given in Figure 5.6.

of structural biomass which leads for jMV =
∑
i j
Mi
V in the bivariate case (i = 1, 2) to

jV G = ṙ + jMV =

∑
i

(
jEiG
yEiV

)−1

−
(∑

i

jEiG
yEiV

)−1
−1

(5.14)

This equation can be solved numerically for the net specific growth rate ṙ and readily
extended to more than 2 reserves.

Figure 5.5 illustrates that this model for simultaneous growth limitation by reserves
is realistic. Note that cell content on phosphorus and vitamin B12 have been measured,
rather than reserves. In view of the very small values, the reserves hardly contribute to
total biomass, which can then be conceived as structural biomass. The overhead costs in
the synthesis of structural mass and the maintenance costs for these nutrients have been
neglected.

5.2.2 Reserve dynamics & excretion

The growth-SU rejects the reserve fluxes at specific rates

jEiR = (k̇Ei − ṙ)mEi − j
Mi
Ei
− yEiV jV G (5.15)

where jMi
Ei
≤ jEiMi

is the specific flux of the i-th reserve spend on somatic maintenance.
Each rejected reserve ‘molecule’ is excreted with probability (1 − κEi) in one form or
another, and fed back to the reserves with probability κEi , so the balance equation for
reserves densities mEi = MEi/MV becomes

d

dt
mEi = jEiA − jEiC + κEijEiR − ṙmEi (5.16)

= jEiA − (1− κEi)(k̇Ei − ṙ)mEi − κEi(j
Mi
Ei

+ yEiV jV G)− ṙmEi (5.17)
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5.2.3 Simultaneous nutrient limitation

Data from an experiment with the chemostat in steady state are used to test the simulta-
neous limitation model for realism. The balance equation for the nutrients in the medium
of a chemostat with throughput rate ḣ are

d

dt
Xj = (Xrj −Xj)ḣ−

∑
i

yjEi J̇EiA (5.18)

d

dt
X∗j =

∑
i

(1− κEi)yjEi J̇EiR +
∑
i

yjEi J̇EiMi
−X∗j ḣ (5.19)

where Xj is the concentration of nutrient j, X∗j the nutrient content of excretions due
to reserves that are mobilised but rejected by the growth SU and not fed back to the
reserves, and (the second term) nutrients involved in maintenance losses. Xrj denotes the
concentration of substrate j in the feed. The summation is over all reserves Ei. I suppose
that the excreted nutrients are metabolically changed such that they cannot be reused
immediately.

At steady state, the substrate concentrations Xj in the chemostat do not change, so
d
dt
Xj = 0, j = 1, 2, and

(Xrj −Xj)ḣ = MV

∑
i

yjEijEiA (5.20)

X∗j ḣ = MV

∑
i

yjEi
(
(1− κEi)

(
k̇EimEi − (mEi + yEiV )ṙ

)
+ κEijEiMi

)
(5.21)

The biomass density in the chemostat follows from the fact that the specific growth rate
ṙ = ḣ is known. The equations (5.14), (5.17) and (5.20) together define the biomass density
MV , the nutrient concentrations Xj and the reserve densities at steady state mEi , given the
throughput rate ḣ and the nutrient concentrations in the feed Xrj. Although the system
consists of five coupled equations, it can be reduced to a single one in X1 for uncoupled
assimilation fluxes (y1E1 = 1, y1E2 = 0, y2E1 = 0, y2E2 = 1), while the range of Xj is given
by (δ−1

j − 1)−1 < Xj/XKj < Xrj/XKj, with δj = κEj(jEjMj
+ yEjV ṙ)/jEjAm. It can be

shown that the resulting equation in X1 has one or three roots, while only one root satisfies
the range restriction for X2. A bisection method can be used to arrive at a high quality
initial estimate for the proper root, followed by a Newton–Raphson method to obtain that
root accurately.

The details of the measurement method determine whether or not the excretions are
included in the medium concentrations. In the data presented and analysed in Figure 5.6,
phosphorus and cobalt (in vitamin B12) were measured using isotopes. As a consequence,
the measured medium concentrations include the excreted labelled phosphorus and cobalt,
and correspond to Xj+X∗j . The cellular contents correspond to

∑
i yjEi(yEiV +mEi). If the

assimilation fluxes for phosphorus and vitamin B12 are not coupled, the cellular content
reduces to yEjV + mEj . This simplification reduces the total number of parameters to be
estimated to 10 for 20 data sets, or 220 data points. The balance equation for nutrient j
in the medium plus that in the cells at steady state reads

Xrj = Xj +X∗j +
∑
i

yjEi(yEiVMV +MEi) = Xj +X∗j +MV

∑
i

yjEi(yEiV +mEi) (5.22)
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Figure 5.6: The phosphorus and vitamin B12 cellular contents and medium concentrations,
and the biomass density, as functions of throughput rate ḣ of the Haptophyte Pavlova lutheri
at four levels of these nutrients in the feed. Data from Droop [295]. The parameters
are the reserve turnover rates k̇E1 = 1.19 d−1, k̇E2 = 1.22 d−1, stoichiometric requirements
yE1V = 0.39 fmol cell−1, yE2V = 2.35 10−21 mol cell−1, maximum specific assimilation rates
jE1Am = 4.91 fmol (cell d)−1, jE2Am = 76.6 10−21 mol (cell d)−1, recovery fractions κE1 = 0.69,
κE2 = 0.96, maintenance rates k̇M1 = 0.0079 d−1, k̇M2 = 0.135 d−1, given the saturation con-
stants XK1 = 0.017µM, XK2 = 0.12 pM by Droop. The simultaneously fitted curves obey mass
balances, and reveal measurement errors in the vitamin concentrations.
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These balance equations have been checked for the model fits in Figure 5.6, but they apply
only approximately to the data, because of measurement errors. Since tiny deviations in
the amount of biomass and cellular content substantially change medium concentrations,
the latter has been given a low weight in the simultaneous regressions of the 20 curves in
Figure 5.6.

5.2.4 Non-limiting reserves can dam up

The significance of the excretion is in avoiding the possible occurrence of ‘explosion’; if a
cell cannot grow because of the absence of an essential nutrient, and it would continue to
take up other nutrients, the accumulation of those nutrients would be unbounded without
excretion. The combination of a first-order dynamics of reserve densities and 0 ≤ κEi < 1
implies the existence of an upper boundary for reserve densities if upper boundaries for the
assimilation rates exist. The steady-state reserve density mE2 is maximal if assimilation is
maximal, jE2A = jE2Am, while expenditure is minimal, which occurs when growth is zero,
J̇V G = 0, i.e. when J̇E1C = J̇E1M1 = J̇E1A or mE1 = jE1M1/k̇E1 . The maximum reserve

density is found from (5.17) to be mE2m =
jE2Am

−κE2
jE2M2

(1−κE2
)k̇E2

. This illustrates the point that

excretion is essential: mEim → ∞ for κEi → 1. I will call the fractions κEi recovery
fractions. The density of the reserve that fully arrests growth is at minimum, and has
the value jEM

k̇E
. Excretion is a common feature; extracellular release of organic carbon in

phytoplankton has been reported to be as high as 75 % of the totally fixed carbon [733].
The density of the limiting reserve increases (hyperbolically) with the growth rate, while

the non-limiting reserves can decrease with the growth rate. This very much depends on
the recovery fraction κE. The reserve density of the non-limiting nutrients can build up
to spectacular levels, which easily lead to the wrong conclusion that (all) reserve densities
decrease with the growth rate.

If (traces of) all essential nutrients are required for the assimilation of each reserve,
rare nutrients reduce the uptake of abundant ones and ‘explosion’ is avoided in almost all
cases of practical interest, even if κEi = 1; ‘explosion’ can still occur theoretically, in the
absence of maintenance costs (jEiMi

= 0). The deb model accommodates, therefore, two
controls on reserve accumulation: via assimilation of nutrients and via recovery.

Biological phosphate removal

The accumulation of reserves that are synthesised from non-limiting nutrients is exploited
technically in the process of phosphate removal in sewage treatment plants, using Acineto-
bacter calcoaceticus . These remarkable bacteria cannot use hexoses as carbon and energy
source [1099]. Sewage water typically contains 10–30 mg/ l phosphorus. Under aerobic con-
ditions, actinobacters decompose carbohydrates, such that they extract energy but little
carbon. The energy is fixed in polyphosphates, by taking up phosphate. Under anaero-
bic conditions, energy is limiting and volatile fatty acids, such as acetates, are taken up
and converted into poly 2-hydroxy butyrate (phb), while stored polyphosphates are used
for energy supply in this transformation [526]. The quantitative details of this coupling
are not quite clear yet; one possibility is that the rejected polyphosphate flux is used for
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the assimilation of phb. The excreted phosphate is technically precipitated with calcium
carbonate. This gives the scope for phosphate removal by alternating between aerobic and
anaerobic conditions; the specific maintenance requirement jEM for phosphate is probably
very small.

5.2.5 Dioxygen flux

The physiological literature frequently presents Photosynthesis-Irradiance (PI) curves, where
photosynthesis is usually measured via dioxygen production. The rate of photosynthesis
is in practice frequently measured by the rate of dioxygen production, but the relation-
ship is, however, rather indirect; dioxygen is produced in association with assimilation,
but consumed in association with maintenance and growth. Almost all phototrophs have
heterotrophic capabilities which makes the presence of a generalised reserve likely; this
requires dioxygen in its assimilation.

The interpretation of experimental data is further hampered by the common practice of
presenting dioxygen fluxes relative to chlorophyll, usually Chlorophyll a; this is practical,
because chlorophyll is rather easy to measure. This compound represents, just like all
other compounds in the body, a weighted sum of the generalised reserves and the structural
mass: MChl = yChlEME + yChl VMV , or mChl = yChlEmE + yChl V . The chlorophyll-specific
dioxygen flux, therefore, amounts to jO/mChl, which can be related to environmental and
growth conditions, but involves many aspects of physiology, not just photosynthesis.

5.2.6 Ammonia–nitrate interactions

Many organisms can use several nitrogen substrates for assimilation, including ammonia,
nitrite, nitrate, urea, amines and amino acids. Plants have access to nitrogen in organic
compounds via mycorrhizae. Ammonia is rather toxic, so it does not accumulate as such;
it is directly assimilated into amino acids, such as glutamate and glutamine. Nitrite is
also rather toxic, and has mutagenic properties, see {241}; nevertheless, it is stored by
some organisms. Nitrate is first reduced to nitrite, and then to ammonia, before further
use [358]. These reductions require substantial energy, which is probably the reason why
ammonia is usually strongly preferred as a substrate. It is even generally believed that
ammonia inhibits nitrate uptake, but this does not seem to hold true [284]. Organisms
vary in their properties with respect to nitrogen uptake. The intensively studied yeast
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Saccharomyces cerevisiae cannot assimilate nitrogen oxides [1216]. Some yeasts and bacte-
ria nitrify ammonia to nitrate. Selective preferences for ammonia and nitrate can explain
main patterns in plant associations [108]. Soil types differ substantially in ammonia and
nitrate availability for plants [332], and their ratio strongly influences the occurrence of
plant species, even at a very small spatial scale, such as the shifting mosaic of gap and
understory conditions in a forest [226, 670]. Probably because of its toxicity, ammonium
assimilation occurs in the roots and not in the shoots of plants.

Figure 5.7 indicates how an alternative nitrogen substrate for ammonia can be imple-
mented in a deb framework. Ammonia is stored before use, just like nitrate, but the
maximum storage capacity is very low, and the turnover rate very high. Homeostasis of
structural mass requires that the product of the synthesis of ammonia and carbohydrate is
identical to the generalised reserve, which means that the synthesis occurs twice: just after
assimilation (prior to storage) from assimilates and after storage, just prior to synthesis of
structural mass from catabolised products. The rules for sequential processing of substi-
tutable substrates can be used to quantify the fluxes, cf. {101}. The extra requirement of
energy in the processing of nitrate can be taken into account by the stoichiometric coupling
with carbohydrates, which can depend on the substrate that is used. Many applications
allow a reduction of this redundancy, and a description without generalised reserves will be
adequate. Ammonia is not only taken up, but is also excreted in association with growth
and maintenance.

The assimilation of ammonia, nitrate and carbohydrates is given by (5.10) and (4.12).
Treating ammonia and nitrogen as substitutable substrates, and complementary to carbo-
hydrates, the specific assimilation of generalised reserves is

jEA =
(
j−1
EAm + (j′NHA + j′NOA)−1 + j′−1

CHA
− (j′NHA + j′NOA + j′CHA)−1

)−1
(5.23)

where j′∗A = ρ∗y∗Ej∗A, and yCHE = θANHy
NH
CHE

+ θANOy
NO
CHE

, where θANH + θANO = 1, and θANH =

j′NHA(j′NHA+j′NOA)−1. The maximum of jEA is not necessarily constant: jEAm = θANHj
NH
EAm+

θANOj
NO
EAm. Since the reduction of nitrate is rather energy consuming, and extracted from

the oxidation of carbohydrates, the relationship yNHCHE < yNOCHE holds. The requirement for
carbohydrates can vary in time, and depends on the nitrogen source.

The specific catabolic rates of the four reserves are j∗C = (k̇∗ − jV G)m∗. The specific
catabolic rate of the reserves E is jEC1 = (k̇E − jV G)mE. The synthesis of a compound
identical to generalised reserves from catabolic products for metabolic use (maintenance
and growth), jEC2 is similar to that from assimilation products (5.23), with j∗C replacing
j∗A. The growth SU is assumed to be fast enough to avoid spoiling of reserves, so jV G =
yV E(jEC1 + jEC2 − jEM).

Ammonia is hardly stored, which means that rejected ammonia is not fed back to
the reserves (κENH = 0), but excreted. The turnover rate k̇ENH is large; this gives an
extremely low ammonia reserve, mENH ' 0, and the catabolic rate equals jENHC = jNHA−
θANHyNE jEA. The rejected ammonia flux is jENHR = jENHC − θCNHyNE jEC2 , with θCNH +
θCNO = 1 and θCNO = j′NOC(j′NHA− θ

A
NH
ρNHjEA + j′NOC)−1. The rejected fluxes of nitrate and

carbohydrate reserves are jENOR = jENOC − θCNOyNE jEC2 and jECR = jECC − jEC2 , from
which fractions κENO and κEC are fed back to the reserves, the rest being excreted. The
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dynamics of the reserve densities mEC and mENO is given by (5.17). The specific rate of
ammonium excretion amounts to jNHE = jENHR + yNE jEM + (nNE yEV − nNV )jV G. The
middle term relates to maintenance, the third one to growth overheads.

When nitrogen is limiting, the assimilation of generalised reserves (5.23) reduces to
jEA = (j−1

EAm + (j′NHA + j′NOA)−1)−1. The carbohydrate reserve no longer limits growth
and jEC2 = (j−1

EAm + (yEN ρNH (jNHA − θANHyNE jEA) + j′NOC)−1)−1 = (j−1
EAm + (j′NHA −

θANHρNHjEA + j′NOC)−1)−1.
The nitrogen in biomass can be decomposed into contributions from structural mass

and the reserves, nNW = nNV + nNEmE + mNO . The specific nitrogen content is not
constant during transient phases, but will become constant during the cell cycle in constant
environments. This is an implication of the weak homeostasis assumption that is basic to
the dynamics of reserves.

5.3 Several structural masses
The bill of the guillemot Uria
aalge is just one example of non-
isomorphic growth. Although of
little energetic significance, the
κ-rule provides the structure to
describe such deviations.

The assumption of isomorphy implies that any tissue is fixed fraction of the somatic
tissue, conceived as a lumped sum. Static and dynamic generalisations of the κ-rule for
allocation, see at {40}, implies a particular type of growth regulation and reveals the
intimate connection between the κ-rule and allometric growth.

5.3.1 Static generalisation of the κ-rule

If structural volume V can be decomposed in that of some organ (e.g. the heart) VH and
of the rest VR, so V = VR + VH , the static multivariate extension of the κ-rule amounts to

κκH ṗC = [EGH ]
d

dt
VH + [ṗMH ]VH (5.24)

κ(1− κH)ṗC = [EG]
d

dt
VR + [ṗM ]VR(1 + LT/LR) (5.25)

where [EGH ] and [ṗMH ] are the specific costs for synthesis and maintenance of organ H.
The mobilisation power ṗC is given in (2.20), so these equations fully specify the growth
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L0
H/L0 0.212 0.297 0.228 0.220 0.240

LT , cm 0.00017 0.00026 0.00028 0.00232 0.00008
v̇, cm d−1 2.17 3.39 2.07 1.585 2.99
[ṗM ]
[EG] , d−1 0.75 0.524 0.588 0.308 0.416

[ṗMH ]
[EGH ] , d−1 7.02 0.1044 3.410 2.877 4.053

κHf
f+g 0.823 0.676 0.745 0.75 0.66

(1−κH)f
f+g 0.05 0.00091 0.037 0.043 0.05

Figure 5.8: Whole body weight and heart weight as function of time since birth in duck species:
mallards, 2 lines of white Pekins (Anas platyrhynchos), muscovys (Cairina moschata), and a
muscovy × white Pekin cross. Data from [408]. The static generalisation of the κ-rule can
capture the decreasing relative size of the heart. This suggests that the relative workload of the
heart remains rather constant.
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Figure 5.9: Examples of allometric growth: log y = a + b log x. Left: The head length (from
the tip of the nose to the blow hole), with respect to total body length minus the head length in
the male blue whale, Balaenoptera musculus. The first four data points are from foetuses, where
growth is isomorphic (b = 1). Thereafter the head extends more rapidly (b = 1.65). Right: The
weight of the large chela with respect to that of the rest of the body in the male fiddler crab
Uca pugnax. Initially the chela grows rapidly (b = 1.63) until a rest of body weight of 850 mg,
thereafter it slows down a little (b = 1.23). Data from Huxley [540].

of VR and VH . This dynamics still has full isomorphy as special case, and can show
near-allometric relationships between organ and whole body weight; see Figure 5.8. The
mechanism behind allometric growth of body parts is intimately connected to the κ-rule.
If k̇MH = k̇M , with k̇MH = [ṗMH ]/[EGH ], and the heating length LT is small, we have
d
dτ
VR+VR ∝ d

dτ
VH +VH for scaled time τ = k̇−1

M . The somatic maintenance rate coefficients
for the heart and the rest of the body for the ducks of Figure 5.8 differ by a factor 10 in
four cases, but by a factor 0.2 in the case of the NF 20 Pekin. This big difference needs
further explanation.

Allometric growth of a body part occurs if the contribution of part i to total body
volume is insignificant, because V+ 6=

∑
i αiV

βi if βi 6= 1 for some i, whatever the values
of positive αi’s. Huxley [540] described how certain parts of the body can change in size
relative to the whole body using allometric functions and highlighted the problem that
if some parts change in an allometric way, other parts cannot. Absolute growth requires
specification of how feeding and digestion (and heating for endotherms) depend on the
volume and shape of the different tissues. It is likely to become complex. Allometric growth
of extremities and skeletal elements frequently occurs, as illustrated in Figure 5.9. Houck
et al. [529] used this growth as a criterion to delineate taxa in fossil bird Archaeopteryx . It
is improbable that whole-organism energetics is seriously affected by these relative changes.

Isomorphs thus require growth regulation over the different body parts. Without con-
trol, allometric growth results. For isomorphs [Vi] ≡ Vi/V+ must remain fixed, so that
d
dt
Vi = [Vi]

d
dt
V+ must hold. For the deb model this implies that the organism must ac-

celerate or retard the growth of organ/tissue/part i by a factor [Vi]
dV+

dVi
' gi

∑
j[Vj]/gj,

with gi ≡ [EGi]
κi[Em]

. (The approximation holds for ṗMi << κiṗC .) The mechanism of control
may be via the density of carriers that transfer resources from the blood to the tissue.
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Figure 5.10: Macoma larvae
develop a large velum (a filtering
organ) and a small gut at low food
levels (left), and the other way
around at high food levels (right).

The carrier density in membranes of large tissues/parts should be less than that in small
tissues/parts for a particular value.

The acceleration/retardation factor demonstrates that the carrier density does not have
to change during growth. Other types of growth regulation are also possible. This discus-
sion is only about the effects of regulation, rather than about its mechanism.

5.3.2 Dynamic generalisation of the κ-rule

The fraction κi of the mobilised reserve that is allocated to a particular organ i can change
when the allocation is linked to the relative workload of that organ; this extension of
the κ-rule is called the workload model and developed in collaboration with Ingeborg van
Leeuwen [691]. Such dynamic extensions are necessary to capture e.g. the differential
growth of velum and gut in bivalve larvae in response to changes in food levels [644],
see Figure 5.10. Although the workload allocation is really general, I will specify it for
the velum and the gut, assuming that the filtering rate is fully controlled by the size of
filtering organ (velum) of volume VF , and the digestion by the food-processing organ (gut)
of volume VX . The total structural volume thus amounts to V = VF + VX + VG, where VG
is the general, i.e. non-assimilatory part of the body.

Isomorphy implies that VF = θFV , for constant fraction θF , while Ḟ = {Ḟ}(VF/θF )2/3,
where {Ḟ} does not depend on the size of structure. The same applies for VX , and J̇XA =
{J̇XA}(VX/θX)2/3. This couples organ size and function.

The arrival rate of food particles in density X at the individual that filters at rate Ḟ
equals ḞX. We assume a parsimonious design, so the filtering rate is such that ḞX = J̇XA
and the amount of rejected particles is negligibly small. This makes that the filtering rate
equals Ḟ = (Ḟ−1

m +XJ̇−1
XAm)−1, and half-saturation constant equals

K =
J̇XAm

Ḟm
=
{J̇XAm}
{Ḟm}

(
VX/θX
VF/θF

)2/3

=
{J̇ ′XAm}
{Ḟ ′m}

(
VX
VF

)2/3

= K ′
(
VX
VF

)2/3

(5.26)

with {J̇ ′XAm} = {J̇XAm}θ−2/3
X and {Ḟ ′m} = {Ḟm}θ−2/3

F and K ′ = {J̇ ′XAm}/{Ḟ ′m}. The

feeding rate amounts to J̇XA = f{J̇ ′XAm}V
2/3
X with scaled functional response f = X

K+X
.

Notice that this expression for the half-saturation constant is identical with that for
nutrient uptake by plant roots, see at {134}, where this uptake depends on the transport
of water in the soil, and so on the evaporation by the shoot, thus on the surface area of the
shoot. This resemblance of saturation constants is more than superficial if we look beyond
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morphology to functions of organs, where shoot and velum or root and gut have functional
properties in common.

The workload of the filtering and digestion organs can be defined as

fF = Ḟ /Ḟm = 1− fX and fX = J̇XA/J̇XAm = f (5.27)

The elasticities of food uptake for the volumes of velum and gut are complementary

VF

J̇XA

dJ̇XA
dVF

=
2

3
(1− f) and

VV

J̇XA

dJ̇XA
dVX

=
2

3
f (5.28)

Assuming that the costs of structure and its somatic maintenance are independent of
the type of structure, the static generalisation of the κ-rule amounts for κF = 1− κX to

κκAκF ṗC = [EG]
d

dt
VF + [ṗM ]VF (5.29)

κκAκX ṗC = [EG]
d

dt
VX + [ṗM ]VX (5.30)

κ(1− κA)ṗC = [EG]
d

dt
VG + [ṗM ]VG (5.31)

where κA is the fraction of the mobilised reserve that is allocated to the assimilation
machinery, i.e. to VA = VF + VX and 1 − κ to maturity maintenance plus maturation
(or reproduction in adults). The workload model now simply states that κF and κX are
not constant but κF = fF and κX = fX = 1 − κF , assuming that the coupling between
organ size and function does not change with the relative size of the organ. Given the the
mobilisation power ṗC by (2.20), these equations fully determine growth of body parts.

A nice property of the workload model is that it is weakly homeostatic: a sudden
change in food density is followed by a rather rapid adaptation of the relative size of the
organ, but after this adaptation the relative size remains constant, while growth continues.
Another nice property is that the functional response after adaptation is found to be
f(X) = (1 + (K ′/X)1/2)−1, which is a special case of the Hill’s functional response f(X) =
(1 + (K/X)n)−1; this model has an origin in biochemistry [508], and its application in
ecology was empirical only; the workload model offers a mechanistic explanation.

This type of adaptation enhances growth, compared to the standard deb model, both
at low and high food densities. This is revealed by the steady state value of the scaled
reserve density, which is somewhat higher.

This line of reasoning can also be applied to kidneys, for instance, which remove ni-
trogenous waste from the body, and the deb theory predicts how the nitrogen excretion
rate should depend on body size. The only extra modelling step that is required to specify
the detailed growth of kidneys is how the function of the kidney relates to their size. From
a more abstract point of view, the interactive growth of the kidney and its host has much
in common with the material discussed in the section on syntrophy, {324}, where the body
acts as a donor of nitrogenous waste, and the kidney as receiver.

Like kidneys, lungs have a workload that can be quantified by deb theory in a straight-
forward way, since it function is in the transport of dioxygen and carbon dioxide, and the
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theory fully specifies these fluxes. The static allocation model for the heart of the previous
subsection can be reformulated dynamically as a workload model after specification of how
the size of the heart relates to its function in transport. The fact that the static model
gives a good description suggests that the relative workload of the heart remains rather
constant, which indirectly specifies how heart size relates to transport function. Some more
steps are required to specify the workload of the brain in deb theory. Most of its mass
is involved in computations on muscle coordination and information processing from the
sensors, while some mass is linked to metabolic regulation and the archiving of knowledge.
Although the ‘details’ still have to be worked out, most of these activities must occur in an
early phase in the development of an individual already, and these activities don’t increase
a lot during further growth. Qualitatively it is easy to understand that a workload model
will result a relatively large brain at young age, which is consistent with observations on
vertebrates.

Another interesting application of the workload model is in the specification of how the
growth of tumours depends on the nutritional status of the host [693]. The ‘work’ by the
tumour can be defined as the consumption of somatic maintenance relative to that of the
tumour plus host. The model specifies the effects of caloric restriction as therapy to reduce
the growth of tumours. The model also helps to understand why tumours grow much faster
in young hosts, relative to older ones. Rather than delineating just host and tumour as
done in [693], the theory can also be extended to the growth of tumours in specific organs
(or tissues), if the workload of the organ can be quantified by deb theory as function of
the size of the organ. This would be helpful for evaluating the effects of changes in diet on
tumour growth, for instance.

The workload model links up nicely with the adaptation model [140] that was found to
be adequate to capture diauxic growth of micro-organisms, see {283}. This model for the
regulation of the relative abundance of carriers for the uptake of various substrates also
uses the workload of the carriers as key for the production of the various substrate-specific
carriers.

5.3.3 Roots and shoots: translocation

The delineation of (at least) two types of structural mass is essential if we are to under-
stand the development and growth of plants that use roots for the uptake (and excretion)
of nutrients, and shoots for light uptake, gas exchange (carbon dioxide and dioxygen), the
evaporation of water (necessary for nutrient uptake by the roots) and reproduction. Bi-
jlsma [108] makes a distinction between primary and secondary structures for both roots
and shoots. The argument for such a refinement is to incorporate mechanical arguments
to model stiffness versus transport. A simpler alternative is to use a single state variable
and change stiffness via products (cellulose, lignin) that accumulate in the plant. Envi-
ronmental factors can affect this production. Plants seem to follow the obvious strategy of
investing relatively more in roots when water or nitrogen is limiting, and in shoots if light
is limiting [164].

The interactions between the roots and shoots of plants seem to be a mixture between a
two-structure organism and a symbiosis, which gives them a substantial relative flexibility
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Table 5.1: The chemical compounds of the plant and their transformations and indices. The
+ sign means appearance, the − sign disappearance. The signs of the mineral fluxes depend on
the chemical indices and parameter values. The labels on rows and columns serve as indices to
denote mass fluxes and powers. The table shows the flux matrix J̇T , rather than J̇ , if the signs
are replaced by quantitative expressions presented in Table 5.2.
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assimilation AS − − − + + + + −
growth GS + + − + + + + − − −

sh
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t

dissipation DS + + − + + + − − −
reproduction R + + − + + − − −
translocation T + + − + + − − ± − − ∓
assimilation AR + ± − − − − + + +

ro
ot growth GR + + − + + + + − − −

dissipation DR + + − + + + − − −

in growth. Table 5.1 presents a summary of the fluxes, Figure 5.11 gives a diagram of
fluxes, while Table 5.2 specifies the fluxes, as follows from the deb theory in its simplest
form. Figure 5.12 gives an example of a plant growth curve for a single choice of parameter
values, and illustrates the effect of light restriction. Many extensions of the model are
conceivable, such as limitations by other nutrients.

The proposed model has eight state variables (structure, and three reserves for root
and shoot). We need generalised reserves to accommodate all micro-nutrients that are
required to generate structure, and carbon and nitrogen reserves to allow nitrogen uptake
during darkness. The carbon and nitrogen reserves do not necessarily consist of pure
carbohydrates and nitrates, respectively; they can be thought of as generalised reserves
that are enriched in these compounds. Limitation by micro-nutrients is not discussed here,
so they are assumed to be non-limiting.

All reserves are initially zero except the root’s generalised reserve MER, which repre-
sents the initial mass of the seed. Due to the translocation mechanism, the generalised root
reserve soon partitions itself across those of shoots and roots, at a rate that depends on the
values k̇ES and k̇ER. The initial structural masses of roots and shoots are infinitesimally
small, just like those of animal embryos. Flowering plants first develop one or two cotyle-
dons, leaf-like structures that differ morphologically from normal leaves, and are usually
rather thick, because of the relatively high shoot’s generalised reserves, MES. When the
shoot develops further, these reserves are reorganised over stem and leaves.

The generalised reserves are actively translocated between roots and shoots, as pro-
posed by Bijlsma [108]. The translocation from one reserve to another is discussed in the
section on foetal development {61}. If the reserve turnover rates A∗k̇E∗ are identical, and
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Table 5.2: The fluxes in and between the shoot S and the root R of a plant that experiences the
forcing variables: light J̇LF and concentrations of carbon dioxide XC and dioxygen XO (in the
air), ammonia XNH , nitrate XNO and water XH (in the soil). The dimensionless quantities AS =
(VS/VdS)−1/3MS(VS) = (VS/VdS)−VS/VmS and AR = (VR/VdR)−1/3MR(VR) = (VR/VdR)−VR/VmR
are introduced to simplify the notation, where Vd∗ are reference volumes that occur in the surface
area/volume relationship, and M is the shape correction function, and Vm∗ parameters, see
{134}. The relations 1 = κSS + κRS + κTS and 1 = κSR + κTR hold (the first index refers to
soma, reproduction and translocation as destinations of catabolic fluxes). The fluxes J̇ ′∗1∗2 are
gross fluxes, i.e. help fluxes for specifying the net fluxes J̇∗1∗2 . Flux indices RS and RR refer to
rejection, C1S and C1R to catabolism of reserves E∗, C2S and C2R to catabolism of reserves
EN∗ plus EC∗; the other indices are listed in Table 5.1.
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Figure 5.11: The diagram of a deb model for
the interactions between the root and the shoot
of a plant. A seed has initially only an amount
of generalised root-reserve ER, all other reserves
and the structural masses of the root, V R, and
the shoot, V S, are negligibly small; Transloca-
tion fills the generalised reserves of the shoot,
ES, during the embryonic stage. Assimilation
of ammonia, NH , nitrate, NO, carbon dioxide
C, and light, L, is switched on at birth. Wa-
ter, H, interferes with the uptake of nutrients
from the soil; dioxygen, O, interferes with the
assimilation of carbon dioxide. Besides gener-
alised reserves, carbohydrate reserves, ECR and
ECS, and nitrogen reserves ENR and ENS are
filled (and used) during the juvenile and adult
stages. A fixed fraction of the rejected carbo-
hydrate and nitrogen reserves are translocated,
and enters via the assimilation systems. The
root remains in the juvenile stage; the alloca-
tion to maturity maintenance can be combined
with that to somatic maintenance, and the allo-
cation to maturation can be combined with that
to growth. The shoot generally enters the adult
stage, and requires explicit treatment of these
fluxes. Maturation converts to reproduction at
puberty. Circles indicate SUs. See Figure 10.4
for an evolutionary setting of this diagram.

the translocation fast, the κ-rule emerges, as has been discussed in the previous section.
Generally, however, these turnover rates differ because they involve surface area/volume
relationships, and so the shape correction function, as discussed on {134}. The nitrogen
(nitrate) and carbon (carbohydrate) reserves are used independently by roots and shoots;
only the ‘spoils’ are translocated, in a way similar to symbiontic partners, cf. {327}. The
translocated fluxes partake in the assimilation of the receiver.

The synthesis of generalised reserves, as a chemical compound, occurs twice in the root
and in the shoot, as described on {194}:

• The assimilation process (AS and AR). In the root, ammonia and nitrate are taken
up from the soil, and carbohydrate is received from the shoot. In the shoot, nitrate
is received from the root, and carbohydrate is photosynthesised. The resulting com-
pound is stored in the reserves ER and ES, respectively. The nitrogen and carbon
that cannot be transformed into generalised reserves are stored in the specialised
reserves.

• The catabolic processes (C2S and C2R). Nitrate and carbohydrate are mobilised from
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Figure 5.12: Examples of plant growth curves that result
from the deb model. The lower curves refer to root car-
bon, the upper ones to total plant carbon (root plus shoot).
The grey curves refer to light restriction, and show that this
affects the root more than the shoot. This realistic trait
naturally results from the mechanism of exchange of car-
bohydrates and nitrogen; no optimisation argument is in-
volved. The model has a rich repertoire of growth curves,
of root/shoot mass ratio ontogeny’s, and of responses to
changes in environmental factors, depending on parameter
values.

the reserves; the resulting flux is merged with the mobilised generalised reserves and
used for development and/or reproduction, and growth plus somatic maintenance.
A fixed fraction of the nitrate and carbohydrate that is rejected by the Synthesising
Units that produces generalised reserves is fed back to the reserves, the remaining
fraction is translocated.

The binding probability ρNO regulates the priority of ammonia relative to nitrate in the
assimilation of reserves, as is discussed on {194}. The assimilated nitrate that is not used
in this pathway is stored, but ammonia that is not used is excreted (ρNH = 1 is taken here).
The costs of synthesis of reserves ER from ammonia or nitrate are accommodated in the
conversion coefficients yNOCHE and yNHCHE; nitrate has to be reduced prior to this synthesis,

and the costs are covered by the oxidation of carbohydrates, which gives yNOCHE > yNHCHE.
The balance equations for the catabolic processes are

J̇ ′ECS,CS − κECSJ̇ECS,RS = (1− κECS)J̇ECS,RS + J̇ECS,T + J̇ECS,GS + J̇ECS,DS + J̇ECS,R
J̇ ′ENS,CS − κENSJ̇ENS,RS = J̇ENS,T + J̇ENS,GS + J̇ENS,DS + J̇ENS,R
J̇ES,C1S = J̇ES,T + J̇ES,GS + J̇ES,DS + J̇ES,R; J̇ER,C1R = J̇ER,T + J̇ER,GR + J̇ER,DR
J̇ ′ENR,CR − κENRJ̇ENR,RR = (1− κENR)J̇ENR,RR + J̇ENR,T + J̇ENR,GR + J̇ENR,DR
J̇ ′ECR,CR − κECRJ̇ECR,RR = J̇ECR,T + J̇ECR,GR + J̇ECR,DR

(5.32)
where all fluxes are here taken to be positive. The left-hand sides specify what is leaking
away from the reserves, and the right-hand sides specify the various destinations. The
fluxes RS and RR on the left-hand sides specify the return fluxes of what can not be
used by the SUs. The ‘spoil’ fluxes RS and RR on the right hand sides appear in the
assimilation fluxes of the partner (root and shoot, respectively).

Assimilation in Table 5.2 should be set to zero for embryos. The root remains in
the juvenile stage, the shoot is adult if MV S > MVpS. The fluxes to reproduction (or
maturation in embryos and juveniles) as specified in Table 5.2 represent outgoing fluxes
from the reserves and includes overheads; a fraction κR of this flux is fixed in seeds, and
the flux should be divided by the initial root reserve to arrive at a reproduction rate in
terms of seeds per time.

If a plant lives for many years, and the resolution of the growth process is limited, the
yearly shedding of leaves can be accommodated (approximately) in the constant specific
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maintenance costs jES,MS. For short-living species, this will be less satisfactory and the
maintenance costs should show a cyclical pattern explicitly. Aging in plants does not follow
the pattern of animals, because plants can replace cells that are hit by the aging process.

The formulation in Table 5.2 does not account for water reserves. Water controls the
saturation constant of the nitrogen uptake from the soil, see {149}. Photosynthesis and
photorespiration are discussed on {184}. Wood production can be associated with growth
and maintenance.

The weight of a plant has contributions from the structure, and all reserves, but also
from the accumulation products, which can have supporting functions for the structures.
Their production is associated with somatic maintenance, and continues even when growth
of the structure ceases. In that case, weights do not have an asymptote. Chlorophyll is
part of the structure and the generalised reserves of the shoot. The prime in the conversion
coefficient y′ER,ES from root to shoot reserves indicates that y′ER,AS 6= y′ES,AR; root reserves
have no chlorophyll and other differences in composition exist as well.

5.4 Summary

The deb model can be extended in a straightforward way to deal with several substrates
(nutrients), reserves and structural masses, using the rules for the behaviour of Synthesising
Units (SUs) on the basis of the following supplementary assumptions

1 Each reserve has an assimilation SU, and each structural mass a growth SU
for their synthesis from substrates.

2 A fixed part of any catabolic flux that is rejected by a growth SU adds to the
originating reserve, the rest is excreted.

3 Each structural mass requires a fixed mass-specific maintenance and each re-
serve contributes to this flux with a constant structure-specific rate. The
maintenance requirements, therefore, have a fixed stoichiometry.

4 A single reserve can fuel the synthesis of several structural masses by par-
titioning the catabolic flux; a straightforward generalisation of the κ-rule.
Maintenance competes with growth for each structure (tissue, organ).

The resulting dynamics allows a rich repertoire, because of the flexible behaviour of SUs.
Two routes exist for the convergence to a single-substrate, single-reserve deb model: a
single substrate and reserve is limiting growth, or the abundances of the various substrates
covary and all rejected catabolic fluxes are excreted. The transition of limiting to (almost)
non-limiting behaviour of substrate and/or reserve is rather sharp, as results from the rules
for the behaviour of SUs.

The limiting reserve increases with the growth rate, but the non-limiting reserves can
decrease with the growth rate as a consequence of the damming, which depends on the
fraction of reserves that is excreted.
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Carbon fixation by photosynthesis is modified by photo-respiration and photo-inhibitions
in ways that directly follow from the dynamics of SUs. The production and use of dioxygen
is shown to have a rather indirect relationship with photosynthesis, although it is widely
used as a quantifier.

Calcification is described, where carbon dioxide and bicarbonate are sequentially pro-
cessed, substitutable substrates for photosynthesis, and calcification is stoichiometrically
coupled with bicarbonate uptake.

The interaction between ammonia and nitrogen has been worked out, because of its
ecological importance. The nitrogen compounds are treated as substitutable substrates in
the synthesis of generalised reserves. The latter compound is synthesised from ammonia,
nitrate and carbohydrate reserves prior to storage from assimilates, and prior to growth
from catabolic fluxes. The ammonia reserves have an extremely low capacity.

The growth of body parts can be very close to the widely applied allometric growth
on the basis of the static multivariate extension of the κ-rule. Dynamic extensions of the
κ-rule can capture adaptations linked to the workload of organs; the growth of tumours,
as modified by age of the host and caloric restriction, serves as an example.

A model for plant growth is proposed, which represents a mixture between a bivariate
structured individual and a symbiosis between root and shoot; the generalised reserves are
actively translocated, while each has its own nitrogen and carbohydrate reserve, where the
partner receives the ‘spoils’, as in a symbiontic relationship.
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Chapter 6

Effects of compounds on budgets

The uptake rate of food and/or limiting nutrients depends on their availability and the
processing capacity of the individual. The uptake rate of non-limiting nutrients can follow
the same pattern in multiple reserve systems, or it is linked to the uptake of limiting
compounds in single reserve systems; transitions between these modes will be discussed
later. The uptake of non-essential compounds differs from that of essential ones by the
absence of regulated use.

The first purpose of this chapter is to show how energetics interferes with many aspects
of the uptake of non-essential compounds and how compounds affect metabolism. This
chapter starts with the effects of ros, a process known as ageing, and its links with energet-
ics. After a brief introduction to other toxins and toxicants, the kinetics of non-essential
compounds is discussed in terms of variations on the core model: a one-compartment
model. Then follows a discussion of the inverse relationship, i.e. how compounds affect the
energetics of individuals and the consequences for populations.

Effects of different compounds can be compared on the basis of parameter values. The
co-variation of parameter values is discussed in chapter 8.

6.1 Aging: Effects of ros

The frequently observed correlation between life span and the inverse volume-specific
metabolic rate for different species (see, e.g. [1023]) has guided a lot of research, see [350].
Animals tend to live longer at low food levels than at high ones, which couples aging to
energetics. The experimental evidence, however, is rather conflicting on this point. For
example, Ingle et al. [544] found such a negative relationship, while McCauley et al. [766]
found a positive one for daphnids. This is doubtlessly due to the fundamental problem that
death can occur for many reasons, such as food-related poisoning, that are not directly
related to aging.

Some species such as salmon, octopus, Oikopleura die after (first) reproduction, cf.
{282}. They are said to be semelparous species, while species that reproduce more than
once are called iteroparous. The sessile colonial sea squirt Botryllus schlosseri follows both
genetically determined strategies within one population [437]. The semelparous colonies
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numerically dominate the population through midsummer, while the iteroparous ones do
so in late summer. Death after first reproduction, like many other causes of death, does
not relate to aging.

The residence time of compounds in the reserve, E/ṗC , increases with the size of an
isomorph. Some reserve compounds, such as proteins, can loose their metabolic activity.
This implies that the fraction of inactive reserve compounds increases with size. This can
be an important mechanism behind the gradual changes of metabolism during the life
cycle.

On approaching the end of the life span, the organism usually becomes very vulnerable,
which complicates the interpretation of the life span of a particular individual in terms of
aging. Experiments usually last a long time, which makes it hard to keep food densities at
a fixed level and to prevent disturbances.

In a first näıve attempt to model the process of aging, it might seem attractive to
conceive the senile state, followed by death as the next step in the sequence embryo,
juvenile, adult, and then tie it to energy investment in development just as has been done
for the transitions to the juvenile and adult stages. This is not an option in the context of
deb theory, since at sufficiently low food densities the adult state is never entered, even if
the animal survives for nutritional reasons. This means that it would live for ever, as far
as aging is concerned. Although species exist with very long life spans (excluding external
causes of death [350]), this does not seem acceptable.

Not all species age in the way most animals do; aging seems to be restricted to species
that sport irreversible cell differentiation. This excludes coelenterates like Hydra and plants
for instance, which does not imply that they have infinite life, due to e.g. mechanical wear
and tear.

Free radicals, or related reactive oxygen species (ros) formed as a spin off of respira-
tion, are thought to cause irreparable damage to the (nuclear and mitochondrial) dna in
organisms with irreversible cell differentiation and have a direct relationship with aging
[455, 460, 461, 1101, 1159]; see Figure 7.22. The damage by ros depends on the specific
activity of antioxidants and correlates with life span within the mammals [34, 350, 1252],
but also hold more generally [350]; the structure of the antioxidant enzyme manganese su-
peroxide dismutase has been solved [1005]. Most use of dioxygen occurs in mitochondria,
and damaged mitochondria might produce even more ros [865, 692, 691], which explains
the amplification ageing process, which is mainly observed in demand systems (birds and
mammals), but much less so in supply systems.

The strategy to model the hazard rate for effects aging and toxic compounds on survival
turned out to be effective. The hazard rate relates to the survival probability according
to the differential equation d

dt
Pr{a† > t} = −Pr{a† > t}ḣ(t) or ḣ(t) = − d

dt
ln Pr{a† > t}.

The mean life span equals Ea† =
∫∞

0 Pr{a† > t} dt =
∫∞

0 exp(−
∫ t

0 ḣ(t1) dt1) dt.
The effects of ageing on survival, and its interaction with energetics, can be captured

efficiently on the basis of the idea that damage-inducing compounds Q (changed genes,
affected mitochondria), accumulate at a rate that is proportional to the mobilisation rate
ṗC (so approximately proportional to the use of dioxygen excluding contributions by assim-
ilation, see {145}), each of its molecules is copied at a rate proportional to the mobilisation
rate [692], and damage-inducing compounds produce damage D (‘wrong’ proteins [1293]
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Figure 6.1: The growth curves and survival probabilities of female (+) and male (∗) Daphnia
magna at 18 ◦C. Data from MacArthur and Baillie [724]. The growth curves are of the von
Bertalanffy type with common length at birth. The survival probabilites have a common aging
acceleration ḧs and Gompertz stress sG; the difference in survival is due to the difference in
specific assimilation. The 8 % initial female death is assumed to be accidental. Parameters:
Lb = 0.82 mm, k̇M = 1 d−1, v̇ = 0.862 mm d−1, gfemale = 0.169, gmale = 0.308, ḧa = 1.25 10−3 d−2,
sG = −0.5.

and other metabolic products) at a constant rate. The hazard rate ḣ due to aging is just
proportional to the damage density mD = MD/MV . Because of the uncertainty in the
coupling with molecular processes, I prefer to talk about damage and damage-inducing
compounds. Kowald and Kirkwood [665, 664] followed a very similar line of reasoning, and
incorporated much more detail.

For the mobilisation rate ṗC and specific growth rate ṙ given in (2.12) and (2.21),
respectively, the changes in the densities of damage-inducing compounds Q and damage
compounds D are

d

dt
mQ = ηQC

ṗC
MV

+
sGṗC

[Em]L3
m

mQ − ṙmQ;
d

dt
mD = k̇WyDQmQ − ṙmD (6.1)

where mQ(0) = 0 and mD(0) = 0. These two equations can be rewritten in equations for
the change in acceleration q̈ = ḣak̇WyDQmQ/m

ref
D and in hazard ḣ = ḣamD/m

ref
D as

d

dt
q̈ = (q̈

L3

L3
m

sG + ḧa)e(
v̇

L
− ṙ)− ṙq̈; d

dt
ḣ = q̈ − ṙḣ (6.2)

where q̈(0) = 0 and ḣ(0) = 0. The variablesmQ andmD, or q̈ and ḣ, serve as state variables,
supplementing reserve, structure and maturity. From these equations it can be seen that
the model has two aging parameters: Weibull aging acceleration ḧa = ḣak̇WyDQ

ηQC
mref
D

[Em]
[MV ]

and

Gompertz stress coefficient sG. The model represents an extension of the single-parameter
deb model for ageing [641] into the direction of the three-parameter model by [692].

The strength of the model is in revealing the role of energetics in the survival probability;
energy budgets parameters show up in the survival process, which can also be obtained from
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Figure 6.2: The survival of mice, Mus musculus, at feeding levels ρ = 1, 0.75 and 0.44. Data
from Weindruch et al [1234]. The feeding rate was constant, as in Figure 4.7. The six curves,
and that of Figure 2.15, were fitted simultaneously with aging parameters: ḧa = 3 10−9 d−2 and
sG = 0.1; deb parameters v̇ = 0.28 cm d−1, k̇M = 0.0065 d−1, LT = 0 cm, g = 13.6; auxiliary
parameters: V (0) = 4 cm3, e(0) = 1, ωw = 0.681, see (3.2). For foetal growth I assumed ρ = 0.8
for the mother and a start of development at 8.2 d.

data that do not relate to survival; differences in energetics affect survival propabilities.
Male daphnids remain quite a bit smaller than females and this is the only difference in
the fitted survival propabilities in Figure 6.1.

Figure 6.2 shows that the survival of mice is substantially affected by the feeding level,
which mainly occurs via the amplification process quantified by sG. The values of the
energy conductance v̇ and the somatic maintenance rate coefficient are similar to that of
the rat, see Figure 4.7.

The present formulation allows for a separation of the aging- and energy-based param-
eters. The estimation of the ‘pure’ aging parameter in different situations and for different
species will hopefully reveal patterns that can guide the search for more detailed molecular
mechanisms; however, many factors may be involved, cf. {241}. It has been suggested
in the literature that the neural system may be involved in setting the aging rate. The
fact that brain weight in mammals correlates very well with respiration rate [520] makes
it difficult to identify factors that determine life span in more detail. The mechanism may
be again via the neutralisation of ros.

The energy parameters can be linked to the accumulated damage to account for the
well-known phenomenon that older individuals eat less and reproduce less than younger
ones with the same body volume. Senescence can be modelled this way. It is a special case
of a more general principle, that non-essential compounds can affect parameter values,
{229}. The occurence of tumours is another typical sublethal effect of aging [693]; the
growth of tumours is discussed at {201, 132}.

6.1.1 Weibull & Gompertz models for short growth periods

Humans grow for 18 years, while their life span is some 80 years, as far as aging is concerned.
For short growth periods, relative to life span (ṙ ' 0; L ' eLm−LT ), constant food density
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(e = f), and negligible effects of aging during the embryo stage, (6.2) reduces to

q̈(t) =
6ḣ3

W

ḣG
(exp(ḣGt)− 1); ḣ3

W =
ḧaev̇

6L
; ḣG =

sGev̇L
2

L3
m

(6.3)

ḣ(t) =
6ḣ3

W

ḣ2
G

(exp(ḣGt)− 1− ḣGt) (6.4)

Pr{a† > t} = exp

(
6ḣ3

W

ḣ3
G

(
1− exp(ḣGt) + ḣGt+

ḣ2
Gt

2

2

))
(6.5)

For reasons that become clear in the next subsections, I call ḣW the Weibull aging rate, and
ḣG the Gompertz aging rate, referring to two famous models that typically fit experimental
data very well [967].

Weibull model for small Gompertz aging rates

For small sG, so small ḣG, acceleration, hazard rate and survivor probability, (6.3) – (6.5),
reduce to

q̈(t) = 6ḣ3
W t; ḣ(t) = 3ḣ3

W t
2; Pr{a† > t} = exp(−(ḣW t)

3) (6.6)

The mean age at death equals Γ(4
3
)/ḣW , where Γ stands for the gamma function Γ(x) ≡∫∞

0 tx−1 exp(−t) dt.
This survivor propability is a special case of exp(−(ḣW t)

β) with β = 3, which was first
proposed by Fisher and Tippitt [353] in 1928 as a limiting distribution of extreme values,
and Weibull [1232] has used it to model the failure of a mechanical device composed of
several parts of varying strength, according to Elandt-Johnson and Johnson [316].

In absence of growth, this survivor probability fits well, cf Figure 7.21, and even if
growth occurs during a considerable part of the life span, see Figure 6.3. The slightly
negative value of the Gompertz stress, see also Figure 6.1, suggests some decay of the
damage-inducing compounds, but this needs further confirmation, because sG = 0 also fits
well.

Gompertz model for small Weibull aging rates

If, on the other hand, ḣW → 0 is small, but mQ(0), and so q̈(0), slightly larger than zero,
acceleration, hazard rate and survivor probability, (6.3) – (6.5), reduce for β = q̈(0)/ḣ2

G to

q̈(t) = ḣ2
Gβ exp(ḣGt); ḣ(t) = ḣGβ(exp(ḣGt)− 1) (6.7)

Pr{a† > t} = exp(β(1− exp(ḣGt) + ḣGt))

For small β, the survivor probability further reduces to the Gompertz model exp(β(1 −
exp(ḣGt))), see [420], which is also frequently used as a model for aging. Finch [350]
favours it because of its property of a constant mortality rate doubling time, ḣ−1

G ln 2, which
provides a simple basis for comparison of taxa. It can be mechanistically underpinned
by a constant and independent failure rate for a fixed number of hypothetical critical
elements. Death strikes if all critical elements cease functioning. The curvature of the
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Figure 6.3: The survival probability and the growth curve of the pond snail Lymnaea stagnalis
at 20 ◦C. Data from Slob and Janse [1073] and Bohlken and Joosse [126, 1298]. The fitted growth
curve is the von Bertalanffy one, and the survival curve on the basis of (6.2). The Gompertz stress
sG is close to zero; and the survival curve is indistinguishable from the Weibull one with rate
ḣW = 0.00269 d−1. Parameters: length at birth Lb = 0.5 mm, energy investment ratio g = 1.43,
somatic maintenance rate coefficient k̇M = 0.073 d−1, energy conductave v̇ = 3.68 mm d−1, ageing
acceleration ḧa = 3.56 10−6 d−1, Gompertz stress sG = −0.0652.

survival probability then relates to the number of critical elements, which Witten [1268]
found to be somewhere between 5 and 15. Their nature still remains unknown.

6.1.2 Aging in unicellulars: stringent response

One of the many questions that remain to be answered is how aging proceeds in animals
that propagate by division rather than by eggs. Unlike eggs, they have to face the problem
of initial damage. It might be that such animals have (relatively few) undifferentiated
cells that can divide and replace the damaged (differentiated) ones. A consequence of this
point of view is that the option to propagate by division is only open to organisms whose
differentiation of specialised cells is not pushed to the extreme. If aging affects all cells
at the same rate, it becomes hard to explain the existence of dividing organisms. This
is perhaps the best support for the damage interpretation of the aging process. Theories
that relate aging, for instance, to the accumulation of compounds as an intrinsic property
of cellular metabolism should address this problem. The same applies to unicellulars. If
accumulated damage carries over to the daughter cells, it becomes hard to explain the
existence of this life style. The assumption of the existence of cells with and without
damage seems unavoidable. Organisms that live in anaerobic environments cannot escape
aging, because other radicals will occur that have the same effect as dioxygen. Note that if
one follows the fate of each of the daughter cells, this theory predicts a limited number of
divisions until death occurs, so that this event itself gives no support for aging theories built
on cellular programming. Only the variation in this number can to some extent be used
to choose between both approaches. The present theory can be worked out quantitatively
for unicellulars as follows.
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Since unicellulars cannot dilute changed dna with unchanged dna and cannot com-
pensate for its effect, the hazard rate for unicellulars must equal ḣ(t) = ηQC ṗC/MV , where
ηQC couples the generation of damage-inducing compounds to catabolic power. The hazard
rate for V1-morphs and isomorphs for sG = 0 amounts to

ḣ(e) = ḣae
1 + g

e+ g
; ḣ(e, l) = ḣae

1 + g

e+ g

1 + g/l

1 + g/ld
(6.8)

where ḣa represents the maximum aging rate. At constant substrate densities, the scaled
energy reserve density, e, equals the scaled functional response, f , so the hazard rate is
constant for V1-morphs, and decreases during the cell cycle for isomorphs.

If dna is changed, the cell will cease functioning. This gives a lower boundary for
the (population) growth rate because the population will become extinct if the division
interval becomes too long. To prevent extinction (in the long run) the survival probability
to the next division should be at least 0.5, so the lower boundary for substrate density
can be found from Pr{a† > td} = exp(−

∫ td
0 ḣ(t) dt) = 0.5. The lower boundary for the

substrate density for rods must be found numerically. It is tempting to relate this aging
mechanism, which becomes apparent at low substrate densities only, to the occurrence of
stringent responses in bacteria, as described by, for example, Cashel and Rudd [192]. This
is discussed further when populations are considered, {340}.

6.1.3 Functionality of aging

The observation that the hazard rate typically increases sharply at the onset of repro-
duction suggests that organisms use ros to change their dna. Although most changes
are lethal or adverse, some can be beneficial to the organism. Using a selection process,
the species can exploit ros for adaptation to changing environments. By increasing the
specific activity of antioxidants, a species can prolong the life span of individuals in non-
hostile environments, but it reduces its adaptation potential as a species if the environment
changes. This trait defines an optimal specific activity for antioxidants that depends on the
life history of the organism and the environment. Large body size, which goes with a long
juvenile period, as is discussed on {310}, requires efficient antioxidants to ensure survival
to the adult state. It implies that large bodied species have little adaptation potential,
which is further reduced by the long generation time and low reproduction rate; this makes
them vulnerable from an evolutionary perspective.

6.2 Toxins & toxicants

The appearance of dioxygen as a by-product of photosynthesis in the atmosphere has
probably been fatal for most pre-Cambrian organisms. Botulin, one of the most potent
toxins known, is produced by the bacterium Clostridium botulinum and causes frequent
casualties among fish and birds in fresh waters. The soil bacterium Bacillus thuringiensis
produces a toxin that kills insects effectively [524]. The bacterium Vibrio alginolyticus
excretes tetrodotoxin, which is a potent toxin that several unrelated organisms use for
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various purposes. The dinoflagellate Pfiesteria piscicida excretes toxins that kill significant
numbers of fish in the coastal areas of the West Atlantic.

Some bacteria quickly transform sugar into acetate for later consumption, while ac-
etate suppresses the growth of competitors. Sphagna, a class of mosses that dominate
in peat land, suppress other plant growth by lowering the pH [235]. Natural growth-
suppressing compounds that are produced by fungi, such as penicillin, are intensively
applied in medicine.

The production of cyanides, alkaloids and other secondary metabolic products by plants
obviously functions to deter herbivores. This is not always fully successful, and herbivores
sometimes use these toxins to deter predators. Heliconid caterpillars accumulate toxins
from passion flowers, and advertise this with bright warning colours. The protection from
predation is sometimes so effective that similar species, that cannot handle the toxins
metabolically, mimic the colour pattern to acquire the same protection. This is Bate-
sian mimicry, well known in the case of the monarch butterfly Danaus plexippus (which
accumulates toxins from euphorbids); its colours are adopted by the viceroy Limenitus
archippus [1181]. The male rattlebox moth Utetheisa ornatrix has another striking use of
toxins; he supplies his mate with plant-derived pyrrolizidine alkaloids, together with his
sperm, which will protect her against predation for several hours.

The reason why the Australian brushtail possum Trichosurus vulpecula turned into
a pest in New Zealand, but not in Australia, is probably because it does not feed on
Eucalyptus leaves there, but on trees that lack the cyanides that restrict its reproduction
in Australia. The tannins of acorns effectively block digestion by the European red squirrel
Sciurus vulgaris , for instance, but the American grey squirrel Neosciurus carolinensis found
a way to deal with this defence of the oak and so managed to outcompete the red squirrel
in parts of Europe [726].

Like plants, many species of animal use toxins to protect themselves against predation;
most nudibranchs (snails of the subclass Opistochranchia) accumulate nematocysts from
their cnidarian prey for protection, while their prey use these formic acid harpoons to
collect food; termites [922], arrow frogs (Dendrobatidae), and some birds (the hooded
pitohui, Pitohui dichrous [322]) produce and accumulate chemicals to protect themselves
against predators. The tetraodontid fish Fugu vermicularis and the starfish Astropecten
polyacanthus use tetrodotoxin for this purpose [1158]. Cephalopods excrete a mixture of
ink and toxins to confuse and paralyse an approaching predator; Peripatus emits some glue
when offended.

Examples of chemical offence are easy to find. Snakes, wasps, spiders, centipedes, cone
shells and many other organisms use venoms to kill offensively. Tetrodotoxin is used by
chaetognats and the blue ringed octopus Hapalochlaena maculata to capture prey via
sodium channel blocking. Mosquitos and leeches use chemicals to prevent blood from
coagulating.

The ability of the parasitic bacterium Wolbachia to induce parthenogenesis in normally
sexually reproducing species (doubtlessly via chemical interference) has recently attracted
a lot of attention [805]. The parasitic cirripede Sacculina converts a male crab Carcinus
into a female, with all secondary sex characteristics, but the allocation to reproduction
is converted to the parasite. Many parasites use endocrine disrupters to interfere in the
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host’s allocation of resources.
Biology is full of examples of chemical warfare with sometimes striking responses and

defence systems [6]. This collection of random examples serves to illustrate the wide occur-
rence of chemicals that affect organisms; the function of their production being frequently
rather obscure.

Chemical pollution of the environment that is linked to economic activity represents
a substantial upscaling of the occurrence of chemicals that affect organisms and comes
with the need to study the transport, transformation and fate of chemical pollutants in
combination with their effects. The quantification of effects of compounds as provided by
deb theory is especially useful in the context of environmental risk assessment, and this
application has been the initial motivation to develop deb theory.

6.3 One-compartment kinetics is the standard

Dioxygen uptake is directly linked to energetics; most compounds enter in ways less di-
rectly linked to energetics. The simplest model for toxicokinetics is the one-compartment
uptake/elimination model [1254] in a variable environment: the uptake rate is propor-
tional to the concentration in the environment and the elimination rate is proportional to
the concentration in the compartment (= organism), see [1151] for a lucid introduction.
The concentration in the environment, cd(t), is considered to be a specified function of
time and both the compartment and the environment is supposed to be well-mixed. If
the environment (e.g. a small tank) is also treated as a compartment, and the concentra-
tions in the compartment and the environment change interactively, the model is called a
1,1-compartment model.

The uptake kinetics is the same as in the Lotka–Volterra model for the uptake of food,
{336}, and can be considered as a linear approximation of the hyperbolic functional re-
sponse for low concentrations. The change in the mean concentration in the body, [MQ](t),
i.e. the ratio of the amount of the compound in the body to the body volume V , amounts
to

d

dt
[MQ] = iQcd(t)− k̇e[MQ] = k̇e(PV dcd(t)− [MQ]) for PV d = iQ/k̇e (6.9)

d

dt
cV = k̇e(cd(t)− cV ) for cV = [MQ]/PV d (6.10)

where k̇e is the elimination rate (dimension time−1) and iQ is the uptake rate (dimension
volume of environment
volume of tissue× time). The product k̇e[MQ]V is interpreted as elimination flux (dimension

mass time−1) and the product iQcd(t)V is the uptake flux (dimension mass time−1). In-
dex V refers to the structural body volume, and index d to the dissolved fraction in the
environment; both are preparations for more complex situations that are discussed later.
PV d is the partition coefficient: the ultimate ratio of the concentrations in the tissue to
that in the environment, also known as the bioconcentration coefficient. It is treated as a
constant, which can be less than 1. The interpretation of this partition coefficient refers to
the steady-state situation. A better definition for PV d, which I use here, is the ratio of the
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uptake to the elimination rate. Both definitions are equivalent for simple one-compartment
models, but not for more elaborate ones. Although many texts treat the bioconcentration
coefficient as a dimensionless one, it actually has dimension volume of environment

volume of tissue because
the sum of both types of volume does not have a useful role to play. Most texts in fact use
environmental volume

body dry weight , or for soils environmental dry weight
body dry weight .

The concentration cV ≡ [MQ]PdV , with PdV = P−1
V d is proportional to the tissue con-

centration, but has the dimensions of an environment concentration. It has a very useful
role in practical applications, because the tissue concentration frequently plays the role of
a hidden variable, because it is not measured.

The explicit expression of [MQ](t) in terms of cd(t) is found from (6.9) to be

[MQ](t) = [MQ](0) exp(−tk̇e) + k̇ePV d

∫ t

0
exp(−(t− t1)k̇e)cd(t1) dt1 (6.11)

If cd(t) is actually constant, (6.11) reduces to

[MQ](t) = [MQ](0) exp(−tk̇e) +
(
1− exp(−tk̇e)

)
PV dcd or (6.12)

cV (t) = cV (0) exp(−tk̇e) +
(
1− exp(−tk̇e)

)
cd (6.13)

which is known as the accumulation curve.

6.3.1 Ionisation affects kinetics

The situation is a bit more complex when the compound can be
present in molecular as well as in ionic form. Let N−i denote the
number of ions in matrix i, and k̇i·− and k̇i−· the ionisation and de-

ionisation rates in matrix i, and k̇−01 the transport rate of the ionic
form from matrix 0 to matrix 1. The dynamics now becomes

-�

6

?

-�

6

?
N0 N−0

N1 N−1

k̇01 k̇10 k̇−01 k̇−10

k̇0
·−
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−·
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−·

d
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−· k̇10 0
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−· − k̇−01 0 k̇−10
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·− − k̇10 k̇1

−·
0 k̇−01 k̇1

·− −k̇1
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N0

N−0
N1

N−1

 (6.14)

When a compound can ionise, transport becomes dependent on the pH and deviations
occur from 1,1-compartment kinetics. The definition of the ionisation constant in matrix
i is 10−pKi = 10−pHiN−∗i /N∗i , where pHi stands for the pH in matrix i. Suppose that the
processes of ionisation and de-ionisation are fast with respect to the transport processes, i.e.
N−i (t)/Ni(t) = k̇i·−/k̇

i
−· = 10pHi−pKi = P i

−·. This seems to be acceptable because ionisation
and de-ionisation do not require macro-scale movements of molecules. This implies that
Ni(t) + N−i (t) = (1 + P i

−·)Ni(t) and d
dt

(Ni(t) + N−i (t)) = (1 + P i
−·)

d
dt
Ni(t). Suppose also

that the ratio of the binding forces of the ionic forms to the molecules of both matrices
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equals that of the molecular forms, so k̇−01 = k̇−ρ1/ρ0 and k̇−10 = k̇−ρ0/ρ1. Substitution into
(6.14) gives

d

dt

(
N0 +N−0
N1 +N−1

)
=

(
−k̇′01 k̇′10

k̇′01 −k̇′10

)(
N0 +N−0
N1 +N−1

)
(6.15)

with k̇′01 =
k̇+k̇−P 0

−·
1+P 0

−·

ρ1
ρ0

and k̇′10 =
k̇+k̇−P 1

−·
1+P 1

−·

ρ0
ρ1

denoting the overall specific exchange rates

of molecules plus ions between the matrices. The partition coefficient being defined as

P01 =
N0(∞)+N−0 (∞)

N1(∞)+N−1 (∞)
, P01 =

(
ρ0
ρ1

)2
only holds if k̇− = k̇. This is very unlikely, however.

Generally we have

P01 =
k̇′10

k̇′01

=
1 + P 0

−·

k̇ + k̇−P 0
−·

k̇ + k̇−P 1
−·

1 + P 1
−·

ρ2
0

ρ2
1

(6.16)

Suppose now that we change the pH in matrix 1 (e.g. the environment), while the pH in
matrix 0 (e.g. the organism) is kept fixed. If the pH in matrix 1 is extremely low, say
pH1 = −∞, or P 1

−· = 10pH1−pK1 = 0, and all of the compound is present in molecular

form, (6.16) reduces to P01 =
1+P 0

−·
k̇+k̇−P 0

−·
k̇
ρ20
ρ21

. If, on the other hand, the pH in matrix 1 is

extremely high, say pH1 = ∞, or P 1
−· = ∞, and all of the compound is present in ionic

form, (6.16) reduces to P01 =
1+P 0

−·
k̇+k̇−P 0

−·
k̇−

ρ20
ρ21

. It directly follows that (6.16) can be rewritten
as

P01(pH1) =
P01(−∞) + P01(∞)10pH1−pK1

1 + 10pH1−pK1

(6.17)

which shows how the partition coefficient depends on the pH in matrix 1 (environment),
where P01(−∞) and P01(∞) play the role of parameters, on the assumption that the pH
in matrix 0 (organism) is independent of the pH in matrix 1.

Substitution into the expressions for k̇′10 and k̇′01, with k̇−/k̇ = k̇−10/k̇10 = k̇−01/k̇01, results
in

k̇′10 = k̇

√√√√√1 +
k̇−10
k̇10
P 1
−·

1 + P 1
−·

1 +
k̇−10
k̇10
P 0
−·

1 + P 0
−·

P01 and k̇′01 = k̇

√√√√√1 +
k̇−01
k̇01
P 0
−·

1 + P 0
−·

1 +
k̇−01
k̇01
P 1
−·

1 + P 1
−·

P10 (6.18)

It directly follows that

k̇′01(pH1) =

√√√√ k̇′201(−∞) + k̇′201(∞)10pH1−pK1

1 + 10pH1−pK1

(6.19)

where k̇′01(−∞) = k̇

√√√√1+
k̇−
01
k̇01

P 0
−·

1+P 0
−·

P10 and k̇′01(∞) = k̇

√√√√1+
k̇−
01
k̇01

P 0
−·

1+P 0
−·

k̇−01
k̇01

P10 denote the exchange

rates if all the compound is present in, respectively, the molecular and the ionised form in
matrix 1, and the pH in matrix 0 is fixed.

When applied to toxicokinetics, one matrix corresponds to animal tissue, and one to
fresh or sea water. Ionised and un-ionised (molecular) forms of a compound are taken up
at different rates, while the pH affects their relative abundance and so the toxicokinetics
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[618]. If ions hardly exchange, so k̇−10 = k̇−01 = 0, knowledge about k̇10 or k̇01 is then no
longer required; knowledge about pHi, pKi and Pow = P−1

wo can be used to relate elimina-
tion rates of different compounds to each other, where octanol serves as a chemical model
for animal tissue. Octanol might be a good model compound to study lipophilicity, but a
poor model to study the ionisation tendency. The derivation above shows that compounds
that can ionise must be compared with care; an increase in lipophilicity frequently comes
with a decrease in ionisation tendency. It also shows how the pH affects the elimination
rate and the partition coefficient via P i

−· = 10pHi−pKi . This can be useful for comparing
the toxicokinetics of a single compound under different environmental conditions. Home-
ostasis ensures that the pK and pH in animal tissue hardly depend on the environmental
conditions.

6.3.2 Resistance at interfaces: film models

Film models are variations on the 1,1-compartment model where each well-mixed com-
partment has a non-mixed layer of thickness Li, say, at each side of the interface be-
tween the compartments where the transport is limited by diffusion, see Figure 6.4. They
are frequently used to model transport of compounds through the various environmental
compartments, but might also be applicable to transport to and from organisms. We
will use the notation that the depth of the layer L = 0 at the mixed bulk for both
media, and L = Li at the interface. The volume between lengths La and Lb is given
V (La, Lb) = (Lb − La)S, in both media. The density n of the compound in layer i re-
lates to the number of molecules as Ni(La, Lb, t) =

∫ Lb
La ni(L, t) dL; we have concentration

ci(La, Lb, t) = Ni(La, Lb, t)/V (La, Lb). If the bulk has depth Li, there are Ni = ni(0)Li
molecules in the bulk, which makes that the total amount of molecules in medium i is
N+
i = ni(0)Li + Ni(0, Li). The volume of the well-mixed medium is Vi = LiS, and of

the total medium is V +
i = (Li + Li)S, so the (mean) concentration is c+

i = N+
i /V

+
i . The

concentration in the bulk is ci = ci(0) = ni(0)/S.
Assuming that the initial densities ni(L, 0) are given such that the boundary conditions

in (6.22), the dynamics for the densities is given for i = 1−j by partial differential equations
(pde’s)

0 =
∂

∂t
ni(L, t)− Ḋi

∂2

∂L2
ni(L, t) for L ∈ (0, Li) (6.20)

with boundary conditions at L = 0 for v̇i = Ḋi/Li

0 =
∂

∂t
ni(0, t)− v̇i

∂

∂L
ni(0, t) (6.21)

and boundary conditions at L = Li

0 = v̇jinj(Lj, t)− v̇ijni(Li, t) + Ḋi
∂

∂L
ni(Li, t) (6.22)

For increasing diffusivity’s Ḋi, and/or decreasing thickness of the non-mixed layers Li,
this two-film model reduces to the 1,1-compartment model.
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1,1 2,2 3,3 ∞,∞

Figure 6.4: In the sequence of physical systems, called n,n-compartments, the medium 0 is
confined to the upper compartment in the cylinder, medium 1 to the lower one; they cannot
cross the thin line that separates them, while the compound can but with possibly different
concentration-specific rates. The compound can also cross the very thin lines within the media,
but with the same specific rates. Starting from the simplest situation at the left, n = 1, the
system converges for n = 2, 3, · · · to the two-film system at the right in which we have continuous
concentration gradients in the layers on each side of the interface between the media.

Steady-flux approximation

Suppose now that transport in the films is steady, i.e. the density profiles do not change
in time, so ∂

∂t
ni(L, t) = 0. Suppressing argument t, we then have according to (6.20) that

0 =
d2

dL2
ni(L) for L ∈ (0, Li) (6.23)

The density profiles in the films are thus linear:

d

dL
ni(L) = (ni(Li)− ni(0)) /Li (6.24)

The mass balance across the bi-film gives Li
d
dt
ni(0) = −Lj ddtnj(0), which leads via (6.21)

to (nj(Lj)−nj(0))v̇j = −(ni(Li)−ni(0))v̇i. Substitution of this result in (6.22) gives ni(Li)
as a weighted sum of ni(0) and nj(0). Back-substitution in (6.21) finally leads to the first
order kinetics for the bulk densities d

dt
ni(0) = k̇e(Pijnj(0)− ni(0)) with elimination rate

k̇e = k̇i(1 + Pij v̇i/v̇j − v̇i/v̇ij)−1 (6.25)

for v̇iv̇j < v̇ij v̇j + v̇jiv̇i. The restriction of this approximation is that the change in bulk
densities ni is sufficiently small to allow the transport flux in the bi-film to be steady
and that transport within the film is strictly limiting; this is not necessarily true. If the
transport within the bi-film is very slow, relative to the exchange velocities across the
interface, v̇iv̇j � v̇ij v̇j + v̇jiv̇i, the elimination rate simplifies to k̇e ' k̇i(1 + Pij v̇i/v̇j)

−1,
while ni(Li) ' Pijnj(Lj). Boundary condition (6.22) shows that this can only be a crude



222 6. Effects of compounds on budgets

approximation indeed, because a gradient is required to drive diffusive transport, and the
concentration jump across the interface only equals the partition coefficient in absence of
a gradient in the films.

At {315} we will see that the expected relationship between elimination rates and
partition coefficients for film models deviates substantially from that for 1,1-compartment
models.

6.4 Energetics affects toxicokinetics

The one compartment model does not always give a satisfactory fit with experimental
data. For this reason more-compartment models have been proposed [236, 415, 548, 1009];
because of their larger number of parameters, the fit is better, but an acceptable physical
identification of the compartments is usually not possible. These models, therefore, con-
tribute little to our understanding of kinetics as a process. A more direct link with the
physiological properties of the organism and with the lipophilicity of the compound seems
an attractive alternative, which does not, however, exclude more-compartment models. As
usual, the problem is not so much in the formulation of those complex models but in the
useful application. Too many parameters can easily become a nuisance if few, scattered,
data are available.

Frequent reasons for deviations from one-compartment models are the following. A
chemical compound is usually present in the environment in several, and sometimes many,
chemical species. Molecules of many compounds can dissociate into ions, which easily bind
to ligands that are usually abundantly present, and can transform into other compounds.
These species differ in their availability to the organism, which makes the subject of tox-
icokinetics in natural environments a rather complex one. The compound can enter the
organism via different routes: directly from the environment across the skin, via specialised
surfaces that play a role in gas exchange, via food, etc. In the aquatic environment uptake
directly from water is especially important for hydrophilic organic compounds [167], and
metals [130, 131, 972]. In aquatic animals that are chemically isolated from their envi-
ronment, such as aquatic insects, birds and mammals, the common uptake route is via
food. Walker [1214] gives a discussion of uptake routes. The compound can leave the
organism using the uptake routes in reverse direction, or via reproductive output and/or
products (e.g. moults in arthropods, milk in mammals). Several taxon-specific mechanisms
occur. Collembola, for instance, can accumulate metal in mid-gut epithelium and excrete
this tissue periodically as part of the moult [916, 917]. This epithelium contains granules,
probably filled with calcium phosphate, which may be excreted into the gut lumen. These
granules probably play a role in the excretion of an overload of lead in the food [565, 1123].

Apart form these species- and compound-specific reasons for deviation from one com-
partment models, the individual can grow, change in chemical composition and metabolise
the compound. I will discuss the more general deviations in more detail which demonstrate
the relationships with deb theory.
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Figure 6.5: Uptake and elimination during growth. The scaled tissue concentrations start from
cV (0) = 0 (left), or cV (0) = cd (right), where cd stands for the concentration in the environment.
The different curves represent different choices for the value of the elimination rate k̇e, relative
to the von Bertalanffy growth rate ṙB. The finely dotted curve represents (scaled) body length
and the coarsely dotted curve the (scaled) reproduction rate. The (scaled) lengths at the start of
exposure and reproduction are realistic for the water flea Daphnia magna and the value tṙB = 2
corresponds with 21 d for D. magna at 20 ◦C. All curves in both graphs have an asymptote at
the value 1. If the product of the von Bertalanffy growth rate and the exposure time tṙB > 0.4,
the curves in the left and right panels are almost identical, i.e. independent of the initial tissue
concentration. The deviations from cV = cd can therefore be attributed to ‘dilution by growth’.

6.4.1 Dilution by growth

Body growth affects the toxicokinetics even at very low values, as Figure 6.5 illustrates.
The physics of the transport processes strongly suggests that uptake and elimination are
proportional to the surface area of the organism; it thus links up beautifully with the
structure of the standard deb model. Since the elimination rate is also proportional to the
tissue concentration, thus to the amount per volume, it is proportional to the ratio of the
surface area to the volume, thus inversely proportional to the volumetric length. This is
why the elimination rate must be divided by a scaled length if the body size changes, as
has been experimentally verified [1059, 1062]. The change in scaled tissue concentration
cV is given by

d

dt
cV =

k̇e
l

(cd − cV )− cV
d

dt
ln l3 (6.26)

where the term cV
d
dt

ln l3 accounts for the dilution by growth. If food density is constant,
the deb model reduces to d

dt
l = (f − l)ṙB, where ṙB is the von Bertalanffy growth rate,

so d
dt

ln l3 = 3ṙB
f−l
l

. This model still classifies as a one-compartment kinetics model with
time-varying coefficients.

Newman and Mitz [834] found that the elimination rate of zinc in guppies was about
proportional to weight−0.42 (which is consistent with the expected proportionality with
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length−1, in view of the scatter), but the zinc-uptake rate was about proportional to
weight−0.9. This has the unexpected consequence that the bioconcentration coefficient
is proportional to weight−0.48. The elimination rate of mercury did not seem to depend on
the size of the mosquitofish, while the mercury-uptake rate tended to decrease with size, so
that the bioconcentration coefficient also decreases with size [833]. Boyden [137] also found
negative correlations between body size and concentrations of cadmium, copper, iron, lead
and zinc in some species of mollusc, but no correlations for cadmium, iron, nickel, lead and
zinc in other species of mollusc and a positive correlation for cadmium in Patella vulgata.

The kinetics of these metals seems to interfere with the metabolism in a more complex
way. The substantial scatter in the data hampers firm conclusions from being drawn.
When the experimental protocol involves a shift up and thus a transition from low to high
concentrations of contaminant, negative correlations between body size and concentrations
of contaminant can be expected if elimination and uptake rates decrease with body size: it
takes longer for big bodies to reach equilibrium. This mechanism can at best only explain
part of the observations.

6.4.2 Changes in lipid content

Changes in lipid content, and thus in reserve density, affect toxicokinetics. Since energy
kinetics has a direct link with food uptake, and uptake of a compound from food can
be substantial, the link between toxicokinetics with food uptake and reserves kinetics is
here discussed in the context of the deb model. Changes in lipid content frequently occur
in uptake experiments; it is practically impossible to feed a cohort of blue mussels in a
two-month uptake/elimination experiment adequately in the laboratory; at the end of the
experiment, the lipid content is reduced substantially. This affects the kinetics of lipophilic
compounds.

Accumulation of lipophilic compounds and partitioning between different organs can
be explained by the occurrence of stored lipids. Schneider [1024] found large differences
of poly-chlorinated biphenyl (PCB) concentrations in different organs of the cod, but the
concentrations did not differ when based on the phospholipid-free fraction of extractable
lipids. Models for feeding-condition-dependent kinetics have been proposed [451, 454, 685],
but they have a large number of parameters. The application of the deb model involves
relatively few parameters, because of the one-compartment kinetics and instantaneous par-
titioning of the compound in the organism, as proposed by Barber et al. [59] and Hallam
et al. [451]. The assumption that compounds are partitioned instantaneously is supported
by a study of the elimination rate of 4,4′-dichlorobiphenyl (PCB15) in the pond snail Lym-
naea stagnalis [1257]; Wilbrink et al. found that elimination rates are equal for different
organs, implying that ratios of concentrations in different organs do not change. The fact
that structural biomass consists of organs that have different partition coefficients for the
xenobiotic is covered by the assumptions of isomorphism, homeostasis and instantaneous
partitioning. The combination of these three assumptions implies that the concentration–
time curve in one organ can be obtained from that in another organ by applying a fixed
multiplication factor.

The amount of compound in the body can be partitioned as MQ = MQV +MQE +MQR
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in contributions from structural body volume, MQV , reserves, MQE, and the reproduction
buffer, MQR. The latter contribution can be substantial in species like the blue mussel,
which reproduces once a year and discharges half its body mass at spawning. Again, we as-
sume instantaneous partitioning of the compound over these compartments, and introduce
partition coefficients based on moles of compound per C-mole of body compartment. Since
the reproduction buffer has the same chemical composition as the reserves, the amount of
compound can be written as

MQ = MQV

(
1 +

[MEm]

[MV ]
PEV (e+ eR)

)
= MQV PWV (6.27)

where PEV denotes the partition coefficient between reserves and structural biomass on
the basis of C-moles. The factor PWV , which depends on the (changing) reserve density,
can formally be considered as a partition coefficient between the total body mass and the
structural body mass.

According to the deb model, ingestion of food occurs at rate k̇X = fl2k̇Xm. Suppose
that the compound is present in food at concentration cX (mole per C-mole). Egestion
of faeces occurs at rate k̇P = fl2k̇Pm, with k̇Pm the maximum specific egestion rate.
Suppose that the compound is present at concentration cP in the fresh faeces, and that
cX
cP

= PXP is constant. The partition coefficient PXP can be conceived as a measure of
the extraction efficiency of the compound from food. The uptake flux via food amounts to

cX k̇X − cP k̇P = cX k̇X − cX k̇X k̇Pm
k̇Xm

PPX = cXfl
2(k̇Xm − k̇PmPPX) = cXfl

2k̇ePV X , where k̇e

denotes the elimination rate from the body, and PV X ≡ (k̇Xm− k̇PmPPX)k̇−1
e is introduced

to simplify the notation.
Suppose that the compound is present in the dissolved form at concentration cd (mole

per volume), while the exchange rates between water and body are again taken to be
proportional to surface area. The nature of the uptake can be passive or active, but the
rate is taken to be proportional to the concentration in the environment and/or to food
uptake. Allowing for these two uptake routes, and for dilution by growth, the kinetics
amounts to

d

dt
[MQ] =

k̇e
l
PV dcd +

k̇e
l
PV XfcX − [MQ]

(
k̇e
l
PVW +

d

dt
ln l3

)
(6.28)

d

dt
cV =

k̇e
l

(cd + PdXfcX − PVW cV )− cV
d

dt
ln l3 (6.29)

where the partition coefficient PVW = P−1
WV is given in (6.27), k̇e

l
PV d is the uptake rate

from the water, k̇e
l
PV Xf is the uptake rate from the food, k̇e

l
is the elimination rate from

the body, PdX = PV X/PV d, and cV = [MQ]PdV , as before. The definition of the partition
coefficient PV d is the ratio of the uptake rate from water to the elimination rate; it is no
longer interpreted as the ultimate ratio of the concentration in the body to that in the
water. Likewise, PdX is not interpreted as the ultimate ratio of the concentration in the
food to that in the water. For PVW = 1 and PdX = 0, (6.29) reduces to (6.26), and for
l = f it further reduces to (6.10). The model still classifies as a one-compartment model
with time-varying coefficients.



226 6. Effects of compounds on budgets

Since most measurements are done on the basis of weights, the kinetics of the variable
〈MQ〉w = [MQ]/[Ww] is of practical interest; it represents the number of moles per unit
of wet weight. Like the total amount of compound, wet weight can be decomposed into
the contributions made by the structural body volume, the reserves and the reproduction
buffer, as done in (3.2). The change in concentration on the basis of weights is

d

dt
〈MQ〉w =

1

[Ww]

d

dt
[MQ]− 〈MQ〉wwE

[MEm]

[Ww]

(
d

dt
e+

d

dt
eR

)
(6.30)

where the second term relates to the change in weight, as implied by [Ww] = dV +
wE[MEm](e + eR), cf. (3.2). Apart from the initial conditions, this specifies the dynam-
ics in the period between the moments of spawning or reproduction. At such moments,
(wet) weight as well as the amount of xenobiotic compounds are discontinuous, because
the buffer of energy allocated to reproduction is emptied, possibly together with its load of
xenobiotic compound. The most simple assumption is to let the compound in that buffer
transfer to the egg. If reproduction occurs at time tR, and if t−R denotes a moment just
before tR, and t+R just after, the ratio of the concentrations of compound equals

〈MQ〉w(t+R)

〈MQ〉w(t−R)
=
dV + wE[MEm]PEV (e+ eR)

dV + wE[MEm]PEV e

dV + wE[MEm]e

dV + wE[MEm](e+ eR)
(6.31)

The first factor corresponds to the ratio of xenobiotic masses in moles, the second factor to
the ratio of body weights. This result can be larger or smaller than 1, depending primarily
on the partition coefficient PEV . If the moments of reproduction are frequent enough to
neglect the contribution of eR to wet weight and compound load, d

dt
eR can be replaced by

e0Ṙ, which can be left out if the reproductive output is negligibly small.
The elimination route via reproduction can be very important for rapidly reproducing

species, such as daphnids. Even in guppies it can be noticeable [1061]. It is also possible
that no compound is transduced through the reproduction process, as has been found for
4,4′-DCB in Lymnaea [1257]. This implies a (sudden) increase of the concentration at
reproduction.

The change of concentration at reproduction has, of course, an intimate relationship
with the initial conditions for the offspring, which depend on the feeding conditions and
the loading of the mother. Experience with chronic toxicity tests shows that most effects
occur at hatching, which means that an egg must be considered to be rather isolated,
chemically, from its environment apart from gas exchange. An extreme consequence is that
the amount of compound at egg formation is the same as that at hatching. This means
that the concentration at hatching relates to that of the mother just after reproduction as

〈MQ〉w(ab) = 〈MQ〉w(t+R)
PEV Vm
PWV Vb

e0 (6.32)

where the ratio PWV is given in (6.27) and should now be evaluated at eR = 0.
The parameters that relate to the kinetics of the compound are the elimination rate

k̇e, and the partition coefficients PV d, PV X and PEV . In addition, there are a number of
parameters that relate volumes to weights. The third class of parameters is from the deb
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model via the expressions for d
dt
l, d

dt
e and d

dt
eR. Not all parameters are required to fit

the model to experimental data. If food density and cd/cX do not change, for instance,
and the reproduction buffer plays a minor role, PWV is constant, and the four toxicokinetic
parameters combine in just two compound parameters (PV d+PV XcX/cd)/PVW , and k̇ePVW .
It is obvious that additional physiological knowledge will help us to interpret experimental
results, especially if the physiological condition changes during the experiment. Although
some of the physiological parameters can be estimated from uptake/elimination curves in
principle, an independent and more direct estimation is preferable.

Figures 6.6 and 6.7 illustrate the performance of the model to describe the uptake/elimi-
nation behaviour of the compounds hexachlorobenzene (octanol/water partition coefficient
logPow = 5.45 [1001]) and 2-monochloronaphthalene (logPow = 3.90 [853]). The mussels
and fish were not fed during the experiment, which implies that their energy reserves
decreased during this time. The fish depleted its energy reserves faster, because it was
smaller than the mussel and its temperature was higher. As a result of the decrease
in reserves, the fish started to eliminate the compound during the accumulation phase of
the experiment. The model successfully describes this phenomenon. The experiments were
short enough to assume that the size of the test animals did not change and that the energy
allocation to reproduction was negligibly small during the experiment. The concentration
of xenobiotic compounds in the water changed during accumulation. A cubic spline was,
therefore, fitted to these concentrations and used to obtain the concentrations in the wet
weight.

6.4.3 Metabolic transformations

If compounds are metabolised, the usual effect is that the products are less lipophilic than
the original compound, so PEV is reduced. In this way, the product will be eliminated at
a higher rate. If the metabolic transformation behaves as a first-order process, this only
affects the value of the elimination rate, and not the model structure. It has long been
recognised, however, that elimination frequently involves a metabolic activity that can be
satiated [1211, 1212, 1213]. Many compounds, such as salicylurate [700, 701], are found
to have a capacity-limited elimination route. Wagner [1210] used Michaelis–Menten (MM)
kinetics to describe the elimination of ethanol from human serum, i.e.

d

dt
[MQ] = k̇ePV dc−

k̇e[MQ]

1 + [MQ]/[MQ]M
or (6.33)

d

dt
cV = k̇ec−

k̇ecV
1 + cV /cM

(6.34)

with cV = [MQ]PV d, cM = [MQ]MPV d, PV d being the ratio of the uptake to the elimi-
nation rate, and k̇e and [MQ]M or cM are the parameters of the MM-elimination. The
concentration cM has the interpretation of the maximum sustained concentration in the
environment that can be ‘handled’ by the organism. If the concentration exceeds this value,
the concentration in the organism will build up continuously.
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Figure 6.6: Measured concentration of hexachlorobenzene (HCB) in water and in a starving
6.03 cm3 freshwater mussel Elliptio complanata at 20 ◦C during a 264 h uptake/elimination ex-
periment. Data from Russel and Gobas [1001]. The least-squares-fitted curves are the cubic spline
function for concentrations in the water and the model-based expectation for the concentration
in the wet weight. From [656].
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Figure 6.7: Measured concentration of 2-monochloronaphthalene (2-MCN) in water and in a
starving 0.22 cm3 female guppy Poecilia reticulata at 22 ◦C during a 168 h uptake/elimination
experiment. Data from Opperhuizen [853]. The least-squares-fitted curves are the cubic spline
function for the concentrations in the water and the model-based expectation for the concentration
in the wet weight. From [656].
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The MM-elimination route can supplement a first-order elimination route, which gives

d

dt
cV = k̇ec− k̇lcV −

k̇ecV
1 + cV /cM

(6.35)

The first-order elimination route might relate to respiration, and can be taken proportional
to the respiration rate k̇C of the organism. The MM-elimination route might relate to excre-
tion by the kidney or the liver, and taken proportional to the excretion rate of nitrogenous
waste k̇N of the organism, for instance. A coupling of elimination with exudate excretion
in algae has been suggested [1058]. These couplings with the energy budget reveal how
these parameters change with size during growth, or with the nutritional status, and how
they differ from one species to another. We can again allow for dilution by growth, cf.
(6.26), and different uptake routes and changes in lipid content, cf. (6.29). Needless to say,
we then need a rather elaborate series of measurements, because of the six parameters that
have to be estimated.

Note that (6.35) collapses to first-order kinetics if cV � cM , and if cV � cM , with
elimination rate k̇e+ k̇l or uptake rate k̇ec− k̇ecM = k̇e(c− cM), respectively. If cV varies in
a rather small window around cM , (6.35) approximates first-order kinetics, with elimination
rate k̇l + k̇e/4. In all those cases, cM cannot be estimated; we need a rather big window for
measurements of cV around cM for that purpose. Problems disappear if the elimination flux
via the MM-route can be measured directly, by measuring the compound or its products,
in the urine, for instance.

6.5 Toxicants affect energetics

Toxic effects should be linked to internal concentrations [500, 550], and the one-compartment
model links internal concentrations to external ones in the simplest way; effects disappear
as soon as internal concentrations are below a threshold value and re-appear if they are
above this value [885]. Theory for effects during variations of external concentrations is
given in [884].

Organisms have evolved in a chemically varying environment; consequently they can
cope with varying concentrations of any particular compound, as long as the variations
are within a certain range. In general, three ranges of internal concentrations can be
distinguished for any compound: too little, enough and too much. The definition of the
enough-range is that changes of internal concentrations within this range hardly affect
metabolism. This does not mean that some molecules have effect and others don’t; it
means that the metabolic system can compensate effects at the individual level to a limited
extend. Take one kidney out of a healthy person, and the other kidney will do all what is
necessary as long as the metabolic capabilities are not tested to the extreme.

Only effects on survival and reproduction are of primary, ecotoxicological, interest;
these effects determine population dynamics, and thus production and existence. Due to
the coupling between the various processes of energy uptake and use, many other effects of
compounds have an indirect effect on reproduction. deb models describe the various modes
of action translate into an effect on reproduction; allocation to reproduction depends on
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reserve density, which depends on feeding rate, which depends on body size, which depends
on growth. Maintenance competes with growth for allocation, so effects on maintenance
can be translated into effects on growth, and thus into effects on reproduction. Small
individuals eat less than large ones, so less energy is available for reproduction. Effects
on feeding, growth and maintenance indirectly affect reproduction on the basis of the deb
model. These types of effects relate directly to energetics. Their consequences can be
evaluated by changing one or more parameter values of the deb model. Such a study is
not very different from a more general one on the evolutionary implications of parameter
settings.

The environmental relevance of mutagenic effects is still in debate. A frequently heard
opinion from some industrialists is that mutagenic effects have no environmental impact
at all, stating that the direct effect on survival is negligibly small and the loss of gametes
does not count from an ecological point of view. The way aging is treated within the deb
model closely links up with mutagenic effects, particularly if the ros mechanism is correct.
Mutagenic compounds have about the same effect on organisms as ros. As a consequence,
mutagenic effects can be studied by changing aging acceleration (in the case of metazoans).
The deb model offers the possibility of evaluating the consequences of mutagenic effects
along the same lines as the effects on energy fluxes. I have already mentioned the setting of
aging acceleration as a compromise between the life span of individuals and the evolutionary
flexibility of the genome. The effects of changes in aging acceleration must then be found
over a time scale of many generations and involve interspecies relationships. This makes
such effects extremely hard to study, both experimentally and theoretically. The lack of
reliable models for this time scale makes it difficult to draw firm conclusions. The fact that
mutagenic compounds tend to be rather reactive and, therefore, generally have a short life
in the environment is part of the problem, which perhaps makes them less relevant to the
problem of environmental pollution if emissions are only incidental.

The significance of mutagenic effect on human health is widely recognised, particularly
in relation to the occurrence of tumours and cancer. The Ames test is frequently applied to
test compounds for mutagenic effects. The deb model offers a framework for interpreting
the sometimes unexpected results from these tests, see {240}. The environmental signifi-
cance of teratogenic effects, i.e. effects on the development of organisms, is even less well
recognised than the significance of mutagenic effects. Fortunately, only a few compounds
seem to have a teratogenic effect as their primary one, and these fall outside the scope of
this book.

Basic to the description of small effects of toxicants is the notion that each molecule
that exceeds the tolerance range contributes to the same extent to the effect. Interactions
between the molecules only occur at higher tissue concentrations. Hence, the effect size is,
as a first approximation, a linear function of the tissue concentration. This point of view
relates to the Taylor approximation for non-linear functions that describe how effect size
relates to tissue concentrations: we use only the first term of the Taylor approximation
at the upper boundary of the tolerance range. The theorem by Taylor states that we can
describe any non-linear function in a given interval arbitrarily well with an appropriate
polynomial function if we include enough higher order terms. So when we want to im-
prove the description of effects, if they happen to deviate from a linear relationship with
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tissue concentrations, we simply include the squared term, the cubed term, etc. Such
improvements will rapidly become counterproductive because we increase the number of
parameters that must be estimated and because higher tissue concentrations will affect
more metabolic processes. So we are increasing precision at the wrong points. Practice
teaches that very good descriptions can be obtained by just taking effect size to be linear
in the tissue concentration, even at rather high effect sizes, provided that we focus on the
correct physiological process.

6.5.1 No effects

The upper boundary for the enough-range, i.e. the internal no-effect concentration, might
be zero for particular compounds. Each molecule of such compounds induces effects with
a certain probability, but for most compounds, the upper boundary is positive. The lower
boundary of the enough-range is zero for most compounds, because they are not necessary
for life. Elements such as copper are required, so the lower boundary for copper is positive.
NECs are important for environmental risk assessment, but also for ecology. An example
is the zinc resistant Viola calaminaria, where zinc, in concentrations between its NEC and
that of other plants, reduces competition, and so promotes its abundance.

Effects of a shortage of a compound resemble those of an overdose in their kinetics. The
founder of ecotoxicology, Sprague [1094] studied the effects of toxicants in bioassays, using
dioxygen shortage as an example. Although many interrelationships exist between nutrition
and toxic effects, the upper boundary of the tolerance range attracted most attention in
ecotoxicology, because of its application in risk assessment studies, while ecology focused
on the lower boundary (see White [1247]).

No-Effect Concentration (nec) estimates from routine toxicity data turn out to be
insensitive for a small number of tested concentrations or a small number of test organisms
or even for differences in nec values among individuals [23, 45]. The confidence interval
can best be accessed via the profile likelihood function. The nec concept can be extended
to for applications to mixtures of compounds [44].

6.5.2 Hormesis

Hormesis is the phenomenon that low concentrations of a toxicant seem to have a stimu-
lating rather than an inhibiting effect on some endpoint, especially on reproduction. It can
result from interactions of the compound with a secondary stress, such as resulting from
very high levels of food availability. I found this for the daphnia-reproduction test where
large concentrations of Chlorella cells are used; when I repeated the test after having ob-
served hormesis with lower food levels, reproduction was less (of course), but the hormesis
effect disappeared. This seemed independent of the type of toxicant.

Cadmium has found to elongate the life span of the nematode Acrobeloides nanus [12],
which can be captured by a decrease of the Gompertz stress sG, see {213}, since the
amplification of ROS occurrence is a metabolic process. Cadmium also decreased growth,
so this can hardly be considered as ‘beneficial’.
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Hormesis might have many causes. If a compound decreases the yield of structure on
reserve, yV E, it reduces growth and delays birth (if an embryo is exposed) and puberty (in
the case of juveniles), but also reduces the size at birth. A reduction of growth indirectly
reduces reproduction, because food uptake is linked to size. Since it also reduces size at
birth, the overall effect can be a hormesis effect on reproduction (in terms of number of
offspring per time) [645]. The reduction in the size of offspring can be small and difficult
to observe, and still be of importance to explain hormesis. This explanation for hormesis
shows that reproduction can be stimulated, but the effect is hardly beneficial.

6.5.3 Effects on survival

The standard survival model in ecotoxicity assumes that the hazard rate jumps from zero
to infinity as soon as the internal concentration exceeds some threshold value. The reason
why not all individuals die at the same moment is because the threshold values are sup-
posed to be individual-specific; their values are log-normally or log-logistically distributed.
This model suffers from several shortcomings [639] and cannot capture, for instance, the
generally observed pattern that the slope of the concentration-response curve increases
during exposure. A much better alternative is to take the hazard rate linear in the internal
concentration like

ḣc ∝ ([M0,l
Q ]− [MQ])+ and/or ḣc ∝ ([MQ]− [M0,u

Q ])+ (6.36)

where [M0,l
Q ] and [M0,u

Q ] stand for the lower and the upper boundary of the concentrations
of compound that do not affect survival.

The proportionality constant that describes the effect on the hazard rate probably
differs for shortages and excesses. This relates to differences in mechanisms. If the con-
centration exceeds the tolerance range substantially, it is likely that death will strike via
other mechanisms than for small excesses. This restricts the applicability of the model
to relatively small ranges of concentration. In practice, however, very wide concentration
ranges are frequently used, as in range-finding tests on a routine basis.

In the rest of this subsection, I assume that [M0,l
Q ] = 0 for simplicity’s sake, and

reduce the notation [M0,u
Q ] to [M0

Q]. The idea for hazard modelling can be worked out
quantitatively as follows for a constant concentration in the environment.

Because of the general lack of knowledge about relevant concentrations in tissue, those
in the environment will be used to specify the hazard rate. If the initial concentration in the
tissue is negligibly small and if the concentration of compound in the tissue follows simple
first-order (i.e. one-compartment) kinetics (6.10), the hazard rate at constant concentration
c in the environment is

ḣc = ḃ†ce = ḃ†((1− exp(−tk̇e))c− c0)+ (6.37)

where ce = (cV − c0)+ is the concentration above the nec; the nec c0 ≡ [M0
Q]PdV is the

highest concentration in the environment that will never result in an effect if the con-
centration in the environment is constant (short peaks do not necessarily give effects).
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The proportionality constant ḃ† is the killing rate with dimension (environment concentra-
tion× time)−1; it is a measure of the toxicity of the compound with respect to survival. If
c > c0, but constant, and if the initial concentration in the tissue is 0, effects start to show
at t0 = −k̇−1

e ln{1 − c0/c}, the moment at which the concentration in the tissue exceeds
the nec. In the absence of ‘natural’ mortality, the survival probability q for c > c0 and
t > t0 is

q(c, t) = exp
(
−
∫ t

0
ḣc(t1) dt1

)
(6.38)

= exp
(
ḃ†k̇
−1
e c(exp(−t0k̇e)− exp(−tk̇e))− ḃ†(c− c0)+(t− t0)

)
(6.39)

This equation has three parameters, which are of all of practical interest: the nec
c0, the killing rate ḃ† and the elimination rate k̇e. The more elaborate description of the
deb-based kinetics could be used to describe survival patterns in more detail. Practical
limitations are likely to ruin such an attempt if no measurements for the concentration
in the tissue are available. An appropriate experimental design can usually avoid such
complications.

Figure 6.8 illustrates the application of (6.39) to the results of some standard toxicity
tests. Note that this formulation implies that the concentration–response relationships
become steeper for longer exposure periods.

An interesting special case concerns extremely small elimination rates, so k̇e → 0, and
PV d → ∞, such that the uptake rate k̇ePV d = k̇dV remains fixed. The accumulation
process reduces to d

dt
[MQ] = k̇dV c, so that [MQ](t) = k̇dV ct if the initial concentration in

the tissue is negligibly small. The nec (in the environment) is now 0, because a very small
concentration in the environment will result ultimately in a very high concentration in the
tissue. A nec in the tissue, i.e. the upper boundary of the tolerance range, still exists, of
course, and is exceeded at t0 = [M0

Q](k̇dV c)
−1. The hazard rate amounts to ḣc = b̈†c(t−t0)+.

The relationship between the killing acceleration b̈† and the killing rate ḃ†, in the case that
k̇e 6= 0, is b̈† = ḃ†k̇e. The survival probability is

q(c, t) = exp(−b̈†c(t− t0)2/2) (6.40)

For small necs in the tissue, so t0 → 0, this represents a Weibull distribution with shape
parameter 2. The only difference with the survival probability related to aging, cf. {213}, is
the extra accumulation step of products made by affected dna, which results in a Weibull
distribution with shape parameter 3.

In this special case, the full response surface in the concentration-exposure time-plane
is described by just one parameter, the killing acceleration b̈†. One step towards more
elaborate models is the introduction of the upper boundary of the tolerance range, via
[M0

Q]/k̇da in t0. Next comes the introduction of the elimination rate k̇e, which allows a

new parameter basis: ḃ†, k̇e and c0. Then follow changes in the chemical composition (and
size) of the animal by introduction of the partition coefficients PEV and PPX , and/or a
separation of uptake routes via the dissolved fraction {k̇dV } or via food {k̇xV }. Finally,
we should allow for metabolic transformations. So the level of model’s complexity can be
fully trimmed to the need and/or practical limitations. The more complex the model is,
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Figure 6.8: The expected fraction of
surviving individuals as function of ex-
posure time at constant concentrations
(indicated) when the hazard rate is
linear in the internal concentration that
follows first order kinetics. Unpublished
data, kindly provided by Thea Adema.
Parameters:

nr species N compound unit ḃ†, (unit d)−1 k̇e, d−1 c0, unit
a Poecilia reticulata 20 dieldrin µg/l 0.038 0.712 4.49
b Chaetogammarus marinus 50 3,4-dichloroanil. mg/l 0.40 0.335 1.41
c Daphnia magna 50 K2Cr2O7 mg/l 0.40 0.125 0.26

the more one needs to know (and measure) about the behaviour of the compound in the
environment, changes in the nutritional status of the animals, growth, reproduction, etc.
If experimental research and model-based analysis of results are combined in the proper
way, one will probably feel an increasing need to define precise experimental conditions
and avoid complicating factors, such as uncontrolled changes in exposure.

This description of effects on survival makes the theory on competing risks available for
direct application to toxicity and links up smoothly with standard statistical analyses of
hazard rates; see for instance [65, 225, 247, 572, 767]. The significance of a toxic stress for
a particular individual depends on other risks, such as aging and starvation. If ḣ stands
for the hazard tied to aging as before, and ḣp for other risks, such as predation, an obvious
instantaneous measure for the significance of the toxic stress is ḣc(ḣ+ ḣc + ḣp)

−1
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Ionisation and Pow

Since effect is linear in the number of molecules of toxicant in the organism, it follows
directly from (6.17) that the killing rate and the nec depend on the pH and the pK as

ḃ†(pH) =
ḃ†(−∞) + ḃ†(∞)10pH−pK

1 + 10pH−pK ; c−1
0 (pH) =

c−1
0 (−∞) + c−1

0 (∞)10pH−pK

1 + 10pH−pK (6.41)

where ḃ†(−∞) and ḃ†(∞) stand for the killing rate if all of the compound were present in,
respectively, the molecular and the ionised form and pK is the dissociation coefficient. A
similar relationship has been proposed by Könemann [618] for lc50−1, where the lc50 is
defined as the concentration cL50(t) for which q(cL50(t), t) = 0.5 holds; it is frequently used
as a quantifier for lethal effects.

6.5.4 Effects on growth & reproduction

Toxic effects of chemicals change the allocation via the parameter values. Since the pro-
cesses of assimilation (i.e. the combination of feeding and digestion), growth, maintenance
and reproduction are intimately interlinked, changes in any of these processes will result
in changes in reproduction [651]. Two classes for the mode of action of compounds will be
distinguished: direct and indirect effects on reproduction.

When reproduction is affected directly, assimilation, growth and maintenance are not
affected. There are two closely related routes within the deb framework to affect repro-
duction directly. One is via survival of each ovum, and the other is via the energy costs of
each egg.

Direct effects on reproduction

The survival probability of each ovum is affected as discussed in the previous section on
effects on survival, except that the sensitive period is taken to be relatively short and fixed
rather than the whole life span. (Age zero refers to the moment at which the ovum starts to
develop, rather than the moment of hatching or birth.) The combination of an effect on the
hazard rate of the ovum and a fixed sensitive period results in a survival probability that
depends on the local environment of the ovum. This leads to another important difference
with the previous section: the local environment of the ovum is the tissue of the mother
rather than the environment concentration. The relevant concentration, therefore, changes
in time even if the environment concentration is constant. The toxicity parameters that
appear in the survival probability of an ovum are the nec, as before, and the tolerance
concentration, which is inversely related to the product of the killing rate and the length of
the sensitive period. The elimination rate defines how the effect builds up during exposure.

In terms of number of eggs per time, the reproduction rate equals the ratio of the energy
allocated to reproduction and the energy costs of an egg. If the compound affects the latter,
it can be modelled by making the reproduction overhead 1− κR a (linear) function of the
tissue concentration. The model is mathematically different from the hazard model but
behaves quantitatively rather similarly, as is illustrated in Figure 6.9.
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Figure 6.9: Direct effects of cadmium on Daphnia reproduction. The mean cumulated
number of young per female daphnid as a function of the exposure time to several con-
centrations of cadmium. The fitted curves represent least-squares fits of the hazard (left)
and the cost (right) model for effects on reproduction to the same data. The deb pa-
rameters of Figure 2.10 are used: κ = 0.8, κR = 0.95, g = 0.15, k̇J = 3.6 d−1,
k̇M = 4.1 d−1, v̇ = 1.62 mm d−1 and L(0) = 0.8 mm. The estimated parameters are

c0, µg l−1 c∗, µg l−1 k̇e, d−1 U bH , mm2d U bH , mm2d
hazard 0.0173 0.1184 0.0317 0.0023 0.1215
cost 0.0172 0.0233 0.0138 0.0022 0.1262

Indirect effects on reproduction

Allocation to reproduction starts as soon as the cumulative investment in the increase of
the state of maturity exceeds some threshold value. Since direct effects on reproduction
only affect the translation from energy allocated to reproduction into number of offspring,
these modes of action do not affect the time of onset of reproduction. Indirect effects on
reproduction via assimilation, maintenance and growth do delay the onset of reproduction.
The occurrence of such delays is the best criterion for distinguishing direct from indirect
effects.

Indirect effects on reproduction all follow the same basic rules: the relevant parameter
(surface-specific assimilation rate, volume-specific maintenance costs or volume-specific
costs of structure) is taken to be a linear function of the tissue concentration. Since
the assimilation rate represents a source of income rather than costs, it is assumed to
decrease linearly with the tissue concentration rather than increase, see Figure 6.10. This
is consistent with the effect of dioxygen on the assimilation of autotrophs: photorespiration
subtracts from photosynthesis, see {186}.

The effects on the reproduction rate as a function of environment concentration and
exposure time all work out rather similarly and have the same three toxicity parameters:
nec, tolerance concentration and elimination rate. If growth is measured during exposure,
or if the animals’ size at the end of the exposure period is measured, it is possible to identify
the mode of action. The differences in effects on reproduction are too small to identify the
mode of action on the basis of effects on reproduction alone. Figure 6.11 compares the
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Figure 6.10: The effect of CuCl2 on the assimilation of Lumbricus rubellus. Data kindly provided
by Chris Klok [606] and fits by Jacques Bedaux. The newly hatched worms were exposed in sandy
loam soil and fed ad libitum with Alnus leaves at 15 ◦C and 90 % relative humidity. Parameter
values: Wb = 0 mg, v̇ = 1.18 mg1/3d−1, k̇M = 0.099 d−1, g = 1, c0 = 4.45 mg kg−1, cA =
1946 mg kg−1, k̇e =∞d−1.

three indirect effect models fitted to the same data. It shows that the models differ little
in terms of goodness of fit.

The quantitative aspects of the various modes of action can be captured as follows. The
compound affects a single target parameter ∗ at low concentrations via the dimensionless
stress value

s =
ce
c∗

=
(cV − c0)+

c∗
= (cV /c∗ − s0)+ (6.42)

where cV is the scaled tissue concentration (that has the dimensions of an environment
concentration), c0 the nec and c∗ the tolerance concentration. The tolerance concentration
is a parameter that has the dimension of an environment concentration, and it belongs to a
specific physiological target parameter; its name refers to the fact that the value decreases
for increasing toxicity of the compound. The parameter s0 has the interpretation of the
stress value with which the individual can cope without showing effects.

Typical examples of target parameters are the maximum specific assimilation rate {ṗA},
the specific maintenance rate [ṗM ], the costs of structure [EG], the costs of reproduction
1− κR, and the hazard of the ovum ḣ (during a short period). It is conceivable that other
parameters can be affected as well, such as the maturity thresholds Eb

H or Ep
H , or in the

case of endrocrine disrupters, the partition coefficient κ. These target parameters can be
multiplied by a factor (1 + s) if the compound increases the value of the parameter, e.g. in
the case of [EG] or [ṗM ], or by a factor (1− s) if the compound decreases the value, e.g. in
the case of {ṗA}.

The dynamics of sublethal effects are thus characterised by just two parameters, the
nec c0 and the tolerance concentration c∗, and at least one toxicokinetic parameter, the
elimination rate k̇e. Additional parameters can be included in more elaborate descriptions
of toxicokinetics. Although the stress value can change in time, because of a varying tissue
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maint. 3.84 31.7 0.75 9.50
growth 3.51 3.85 0.90 9.56
assim. 3.37 65.8 0.87 9.53

Figure 6.11: Indirect effects of 3,4-dichloroaniline on Daphnia reproduction. The mean cu-
mulated number of young per female daphnid as a function of the exposure time to several
concentrations of 3,4-dichloroaniline. The fitted curves represent least-squares fits of the model
for effects on reproduction via maintenance, growth and assimilation to the same data. The
estimated values for the nec c0, the tolerance concentration c∗, the elimination rate k̇e and the
maximum reproduction rate Ṙm in the control are given in the table of parameters.
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concentration, none of these three parameters depends on exposure time, but the resulting
effects can already be quite complex in transient environments.

6.5.5 Receptor-mediated effects

Up till now, the effect of a compound has been taken directly proportional to the tissue
concentration. In a number of cases, the effect might be more complex, and does not only
relate to the actual tissue concentration, but also to its (recent) history. A simple model on
the basis of receptors gives an example. By considering several endpoints simultaneously,
we have found empirical support for receptor-mediated effects [551] by studying several
endpoints simultaneously.

Suppose that the total number of receptors N+ in an organism remains constant, and
that the compound transforms functional receptors into non-functional ones at a rate
that is proportional to the ‘meeting frequency’ between the compound and the number
of functional receptors. Non-functional receptors can resume their functioning at a given
probability rate, or the organism can produce new functional receptors at a rate that is
proportional to the number of non-functional receptors. Let Nn(t) denote the number of
non-functional receptors, and Nf (t), the number of functional ones, while Nn(t) +Nf (t) =
N+. The change in the number of non-functional receptors then amounts to

d

dt
Nn = ḃfncVNf − ṙnfNn = ḃfncVN+ − (ṙnf + ḃfncV )Nn (6.43)

with ṙnf the specific recovery rate, ḃfn the knock-out rate, and cV the scaled tissue con-
centration. The stress value can be taken linear in the number of non-functional receptors,
s = N−1

s (Nn −N0)+ = (Nn/Ns − s0)+, where the parameter Ns scales the number of non-
functional receptors to the stress, and N0 is the number of non-functional receptors that
does not result in an effect on the stress. If we start with unexposed individuals, we have
Nn(0) = 0, Nf (0) = N+ and cV (0) = 0. This formulation can be combined with a simple
first-order kinetics for the tissue concentration, if the amount of compound involved in the
binding process is negligibly small.

The model has the interesting property that the amount of memory of the effect is
tunable. For large values of ḃfn and ṙnf , the number of non-functional receptors is in
pseudo steady state, the amount of memory is negligibly small, and the stress is a hyperbolic

function of the tissue concentration, rather than a linear one, since Nn ' N+

(
1 +

ṙnf
ḃfncV

)−1

.

If ṙnf � ḃfn and Ns is small, or the concentration is small, the model converges to the
earlier one, where the effect depends linearly on the actual tissue concentration.

Receptor-mediated effects on survival can be modelled by simply taking the hazard rate
as being proportional to the stress, which amounts to the coupled differential equations for
the scaled number of non-functional receptors nn = Nn/N+ and the survival probability q

d

dt
nn = ḃfncV − (ṙnf + ḃfncV )nn;

d

dt
q = −q(k̇†nn − ḣ0)+

on the assumption that all of the compound in tissues contributes to knocking out receptors,
but that the individual can handle a threshold level of non-functioning receptors.



240 6. Effects of compounds on budgets

6.5.6 Mutagenic effects

Ames test

The Salmonella test, also known as the Ames test, is a popular test for the mutagenic
properties of a compound [21, 746]. It is discussed here because the results of the test can
sometimes only be understood if energy side-effects are taken into account, for which the
deb model gives a useful framework [518].

The test is carried out as follows. Bacteria (mutants of Salmonella typhimurium) that
cannot produce the amino acid histidine are grown on an agar plate with a small amount of
histidine but otherwise large amounts of all sorts of nutrients. When the histidine becomes
depleted, these histidine auxotrophs stop growing at a colony size of typically 8–32 cells.
Histidine auxotrophic bacteria can undergo a mutation enabling them to synthesise the
necessary histidine themselves, as can the wild strain. They become histidine-prototrophic
and continue to grow, even if the histidine on the plate is depleted. (They only synthe-
sise histidine if it is not available in the environment.) Colonies that contain histidine-
prototrophs are called revertant colonies and can eventually be observed with the naked
eye when the colony size is thousands of cells. The number of revertant colonies relates to
the concentration of the compound that has been added to the agar plate and its mutagenic
capacity.

Liver homogenate of metabolically stimulated rats is sometimes added to simulate mu-
tagenicity for vertebrates. The primary interest in mutagenicity is because of human health
problems, as explained. Vertebrates have many metabolic pathways that prokaryotes do
not have. Enzymes in this homogenate sometimes transform non-mutagenic compounds
into mutagenic ones, sometimes they do the opposite or have no effect at all.

Some initial histidine is necessary, because bacteria that do not grow and divide do not
seem to mutate, or, at least, the mutation is not expressed. This ties mutation frequency
to energetics. It is a most remarkable observation, with many consequences. Since mainte-
nance processes also involve some protein synthesis, one would think that mutations should
also be expressed if growth ceases, but observation teaches otherwise. If a compound is
both mutagenic and reduces growth, the moment of histidine depletion is postponed, so
that effective exposure time to the mutagenic compound is increased. Some brands of agar
contain small amounts of compounds that become (slightly) mutagenic after autoclaving.
This gives a small mutagenic response in the blank. If a test compound only affects growth
and is not mutagenic at all, the number of revertant colonies will increase with the con-
centration of test compound. Such responses make it necessary to model the combined
mutation/growth process for the interpretation of the test results.

The rest of this section gives a simple account, appropriate for deb V1-morphs from
a culture that resembles the (initial) growth conditions on the agar plate. For a more
detailed account; see [518].

Suppose that the initial amount of histidine on a plate is just enough for the synthesis
of Nh cells. Figure 9.7 shows that the histidine reserves are small enough to be neglected.
If the inoculum size on the plate is N0, the number of cells develops initially as N(t) =
N0 exp(ṙt). Histidine thus becomes depleted at time th = ṙ−1 ln{1 + Nh/N0}. If the
mutation rate per unit of dna is constant, say at value ḣM , the probability of at least one
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mutation occurring in the descendants of one auxotrophic cell becomes for low mutation
rates

1− exp
(
−ḣM

∫ th

0
(N(t)/N0) dt

)
= 1− exp

(
− ḣMNh

ṙN0

)
' ḣMNh

ṙN0

(6.44)

The probability of back mutation is small enough to be neglected. The expected number
of revertant colonies is N0 times (6.44), so that the number of revertant colonies is hardly
affected by the inoculum size. The effect of an increase in the number of micro-colonies on
the plate is cancelled by the resulting reduction of exposure time.

A consequence of the assumption that the mutation frequency per unit of dna is con-
stant is that the mutations are independent of each other. This means that the number of
revertant colonies on a plate follows a binomial distribution, which is well approximated
by the Poisson distribution for low mutation rates. (There are typically less than 100
revertant colonies with a typical inoculum size of 108 per plate.)

The significance of this expression is that the effect of inoculum size and the amount
of histidine become explicit. Variations in these variables, which are under experimental
control, translate directly into extra variations in the response. If a compound affects the
population growth rate, it also affects the expected number of revertant colonies. I refer
to the subsection on population growth rates, {245}, for a discussion of how individual
performance (substrate uptake, maintenance, growth) relates to population growth rates.
This defines how effects on individual performance translate into effects on population
growth rates. This remark not only applies to effects of the test compound, but also to
the nutritional quality of the agar.

The mutation rate is usually found to be proportional to the concentration of test
compound. This means that each molecule has a certain probability of causing a muta-
tion. Deviations from this relationship can usually be related to changes in the stability
of the compound on the plate. Many mutagenic compounds are rather reactive, so the
concentration usually decreases substantially before th. Others, such as nitrite, diffuse to
the deeper layers of the agar plate and become less available to the bacteria in the upper
layer. It is easy to circumvent this problem by adding the compound to the (thick) nu-
tritive bottom layer when it is still liquid, rather than to the (thin) top layer. However,
this would increase the financial costs of the test. If metabolic activation is applied, the
concentrations of the original compound and the products are likely to become complex
compound-specific functions of time. One strategy for interpreting the test results is to
analyse and model the time stability of compounds in the Ames test. A better strategy
would be to change the experimental procedure in such a way that these complexities do
not occur.

Food-induced aging acceleration

Some data sets, such as that of Robertson and Salt [979] on the rotifer Asplanchna girodi
feeding on the ciliate Paramecium tetraurelia, indicate that the hazard rate increases
sharply with food density, see Figures 6.2 and 6.12, which is explained by the effect of
the metabolic activity (mobilisation rate) on the emplification of damage inducing com-
pounds in (6.2). This particular data set shows that aging acceleration is linear in the
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Figure 6.12: The hazard rates for the rotifer Asplanchna girodi for different food levels: 20 (3)
30 (4) 60 (2) 120 (5) and 240 (1) paramecia rotifer−1 d−1 at 20 ◦C. Data from Robertson and
Salt [979]. The one-parameter hazard curves are based on the scaled food densities as estimated
from the ultimate volumes (3, right), which give f = 0.877, 0.915, 0.955, 0.977, 0.988. The
resulting five aging accelerations are plotted in the right figure (4). They proved to depend
linearly on food density, with an intercept that is consistent with the aging acceleration found
for daphnids.

food density, which suggests that something that is proportional to food density affects
the build-up of damage-inducing compounds or the transformation of these compounds
into damage. One possibility is nitrite derived from the lettuce used to culture the ciliates;
nitrite is known for its mutagenic capacity [518].

6.5.7 Effects of mixtures

The toxicity of mixtures of compounds is of substantial practical interest, which explains
the wide interest in the subject. A compound that can be present in molecular and ionic
forms can be thought of as a mixture. Many economically important compounds, such
as PCB’s and PAC’s, naturally occur as mixtures of many compounds. The toxicity of
these mixtures can be understood in terms of that of the participating compounds [46, 46],
sometimes using ideas on the co-variation of parameter values, cf {315}. Since the stress
value is assumed to depend linearly on the tissue concentration, the evaluation of effects of
mixtures of compounds within the deb context is relatively straightforward. The discussion
below is given for binary mixtures, but generalises to an arbitrary number of compounds.

If two compounds have different physiological target parameters, they always interact
via the energy budget; the deb theory aims to specify how. If two compounds have the
same physiological target parameter, and do not interact via the energy butget, they can
interact directly in complex ways in their toxic effects. Hewlett and Plackett [503] found
that the insecticide thanite intensifies biochemically the toxicity of aprocarb, but that the
inverse was not the case. Excluding this type of complex interaction, we can think of
the stress value as some non-linear function of the two tissue concentrations, where we
are interested in small stress values only. Where a two-term Taylor approximation of a
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Figure 6.13: The effect of mixtures of cadmium and copper on the survival of the spring-
tail Folsomia candida at 18 ◦C after 2, 8, and 20 days of exposure. Data from [44]. Pa-
rameters: ḣ0 = 0.016 d−1, cCd0 = 3.60 mg g−1, cCu0 = 1.13 mg g−1, ḃCd† = 0.294 mg−1 g d−1,
ḃCu† = 0.024 mg−1 g d−1, k̇Cde = 5 d−1, k̇Cue = 1.7 d−1, ḂCd,Cu

† = 0.012 mg−2 g2 d−1. The in-
teraction parameter is not significantly different from zero.

univariate function amounts a linear function, was was used for effects of one compound on
parameter values, a three-term Taylor approximation of a multivariate function involves
an interaction term, as is used in the analysis of variance. For two compounds A and B
that affect target parameter ∗ this amounts to

s =
cAe
cA∗

+
cBe
cB∗

+BAB
∗ cAe c

B
e (6.45)

where cAe and cBe are the scaled tissue concentrations above the nec (see next subsection),
cA∗ and cB∗ are the tolerance concentrations, and the interaction parameter BAB

∗ (dimension:
(environment concentration)−2) can be positive, in the case of synergism, and negative, in
the case of antagonism. Like in the analysis of variance, this idea can readily be extended
to an arbitrary number of compounds.

For effects on the hazard rate, this translates to

ḣc = ḃA† c
A
e + ḃb†c

B
e + ḂAB

† cAe c
B
e (6.46)

where ḂAB
† is the interaction parameter, see [44]. Figure 6.13 gives and example of appli-

cation to mixtures of cadmium and copper for ḣ = ḣ0 + ḣc, where ḣ0 is the constant hazard
rate in the blank.

Compounds A and B do not interact if BAB
∗ = 0 or ḂAB

† = 0. This situation seems to
be called “concentration addition” or “independent action”, which are two words for the
same concept in this context.
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necs of mixtures

From a conceptual point of view, the simplest form of competition of compounds A and B
for capacity to cancel effects is that no effects occur if

1 > [MA]/[M0
A] + [MB]/[M0

B] (6.47)

where [M0
A] and [M0

B] are the internal NECs [44] for the compounds separately. If this
condition is not fulfilled, compounds A an B take fractions

wA =
[MA]

[M0
A]

(
[MA]

[M0
A]

+
[MB]

[M0
B]

)−1

; wB =
[MB]

[MB]0

(
[MA]

[M0
A]

+
[MB]

[M0
B]

)−1

(6.48)

of the effect cancel capacity. The internal concentrations of A and B that cause effect are

[M e
A] = max(0, [MA]− wA[M0

A]); [M e
B] = max(0, [MB]− wB[M0

B]) (6.49)

Internal concentrations are rarely measured, however; we can replace them by scaled
external concentrations by substituting cAV = [MA]/PAd, c

B
V = [MB]/PBd, c

A
0 = [M0

A]/PAd,
cb0 = [M0

B]/PBd. If the concentrations in the environment are constant, we have

cAV (t) = cA(1− exp(−tk̇Ae )); cBV (t) = cB(1− exp(−tk̇Be )) (6.50)

wA(t) =
cAV (t)

cA0

(
cAV (t)

cA0
+
cBV (t)

cB0

)−1

; wB(t) =
cBV (t)

cB0

(
cAV (t)

cA0
+
cBV (t)

cB0

)−1

(6.51)

cAe (t) = max(0, cAV (t)− wA(t)cA0 ); cBe (t) = max(0, cBV (t)− wB(t)cB0 ) (6.52)

ḣc(t) = ḃA† c
A
e (t) + ḃB† c

B
e (t) + ḂAB

† cAe (t)cBe (t) (6.53)

The complete hazard rate is given by ḣ(t) = ḣ0 + ḣc(t), where ḣ0 is the hazard rate in the
blank. Effects on other target parameters can be worked out in a similar way.

Effects occur at finite time t0 if

1 < cA/c
A
0 + cB/c

B
0 (6.54)

A consequence of this competition model for cancel capacity is that cAe > 0 if cBe > 0,
and vice versa. This occurs at time t0, where

1 =
cAV (t0)

cA0
+
cBV (t0)

cB0
= (1− exp(−t0k̇Ae ))

cA
cA0

+ (1− exp(−t0k̇Be ))
cB
cB0

(6.55)

This time point t0 must be obtained numerically, but with octave’s fsolve convergence is
fast from the initial choice t0 = 0.

This formulation allows changes in the use of the cancel capacity after the moment
effects show up. Computationally simpler is when the use of this capacity is frozen at
the moment effects show up. Experience so far indicates that this variant resembles the
dynamic one very much, quantitatively.
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Figure 6.14: Population growth rate in a stressed situation is plotted against that in a blank
situation, when only one energy parameter is affected at the same time for reproducing isomorphs
(left) and dividing filaments (right). The effect of compounds with different modes of action is
standardised such that the maximum population growth rate is 0.9 times that in the blank. Food
density is assumed to be constant. Relative effects in isomorphs on structure costs [EG], reserve
capacity [Em] and reproduction κR are almost independent of the feeding conditions, while those
on assimilation {ṗAm}, maintenance [ṗM ] and survival ḧa are much stronger under poor feeding
conditions. The effect on the partitioning fraction κ is different from the rest and probably does
not correspond to an effect of a toxic compound. The relative effects on filaments are largely
comparable to those on isomorphs for growth and maintenance. Effects on assimilation [ṗAm]
coincide with effects on survival ḣa.

6.5.8 Population consequences of effects

The general theory to evaluate properties of individuals in terms of dynamics of popula-
tions is discussed on {323}ff. Here I only remark that different modes of action translate
differently to consequences for the population, which can be understood intuitively as fol-
lows. (See [653] for an more detailed discussion.) If the population is at its carrying
capacity, ṙ = 0, and reproduction and loss rates are both very low, food availability com-
pletely governs the reproduction rate. All resources are used for maintenance. Effects
on maintenance, therefore, show up directly in this situation, but effects on growth and
reproduction remain hidden, unless the effect is so strong that replacement is impossible.
If the population is growing at a high rate, energy allocation to maintenance is just a small
fraction of available energy. Even considerable changes in this small fraction will, there-
fore, remain hidden, but effects on production rates are now revealed. These principles are
illustrated in Figure 6.14. They imply that at a constant concentration of compound in
the environment, the effect at the population level depends on food availability and thus
is of a dynamic nature. This reasoning does not yet use the more subtle effects of uptake
via food as opposed to those via the environment directly.

The effects at low population growth rates can be studied if the population is at its car-
rying capacity. If food supply to a fed-batch culture is constant, the number of individuals
at carrying capacity is proportional to the food supply rate, cf. Figure 9.13. If the loss rate,
and so the reproduction rate, is small, the ratio of the food supply rate to the number of
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Figure 6.15: Stereo view of the population growth rate of the rotifer Brachionus rubens (z-
axis) as a function of food density (y-axis) and concentration of toxic compound (x-axis): 3,4
dichloroaniline (above) and potassium metavanadate (below). Food density is in 1.36× 109 cells
Chlorella pyrenoidosa per litre, temperature is 20 ◦C. The difference in shape of the response
surfaces is due to differences in the mode of action of the compounds, as predicted by the deb
theory.

individuals is a good measure of the maintenance costs. Figure 6.16 illustrates that some
compounds, such as vanadium and bromide, affect these maintenance costs, while others
do not and ‘only’ cause death in this situation. It also shows that the effect is almost linear
in the concentration, as are the effects on survival, aging and mutagenicity.

6.6 Summary

Aging is thought to result as a byproduct of respiration via ros. The deb theory speci-
fies the quantitative aspects for multicellulars with differentiated cells on the basis of the
following supplementary assumptions
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Figure 6.16: The ratio of the food supply rate for a population of daphnids to the number
of individuals at carrying capacity in fed-batch cultures as a function of the concentration of
compound at 20 ◦C. The crosses, +, refer to the occurrence of mortality. Only compounds that
affect maintenance give a positive response.

1 damage-inducing compounds (modified nuclear and mitochondrial dna) are
generated at a rate that is proportional to the mobilisation rate

2 damage-inducing compounds induce themselves at a rate that is proportional
to the mobilisation rate

3 damaged-inducing compounds generate damage compounds (‘wrong’ proteins)
at constant rate, which cumulate in the body

4 the hazard rate is proportional to the density of damage compounds

This results in a module for aging with two parameters: the (Weibull) aging acceleration
and the Gompertz stress coefficient; the latter is positive for demand systems. Unicellulars
do not age gradually, but instantaneously; the parameter is the aging rate. Interaction
of aging and energetics is via the mobilisation rate as quantifier for metabolic activity.
Mutagenic compounds, such as nitrite, have effects very similar to those of ros, and
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accelerate aging.
Non-essential compounds are taken up in a similar way to essential ones, the difference

is in their use: non-essential ones are not used, but eliminated. The concentrations in
the environment are usually small enough to let the uptake rate be proportional to the
concentration, and densities in the body are usually small enough to let the elimination
rate be proportional to the density in the body. The one compartment model results and
is basic to all toxicokinetic models. Deviations from this standard model are discussed,
which leads to a family of related more realistic and more complex models.

Energetics modifies the kinetics in a number of ways: dilution by growth, changes
in the body’s lipid content, the existence of several uptake and elimination routes, and
metabolic transformation. Since the exchange rate with the environment is proportional
to the surface area of the body, these various modifications link up beautifully with the
structure of the deb model, and are evaluated in this chapter.

Non-essential compounds can modify energetics in a number of ways, by changing one
or more parameters of the deb model. Small changes in the parameter values can taken
to be linear in the density of non-essential compounds in the body, on the basis of the
Taylor approximation. The changes can be effectuated by multiplying the appropriate
parameter(s) with a time-varying stress factor. This quantifies the direct and indirect
effects of compounds on energetics dynamically as a function of the concentration in the
environment and exposure time, and provides the basis of the estimation of necs of non-
essential compounds.

Effects of mixtures of compounds can be understood from that of single compounds. If
the various compounds affect different parameters, interaction always occurs, as quantified
by deb theory. If they affect the same target parameter, interaction can occur in a way
that is well captured by the interaction parameter as used in the Analysis of Variance. The
effects on the necs of mixtures is discussed in some detail. This is of substantial value for
Environmental Risk Assessment for toxicants produced by humans.

The description of the effects of non-essential compounds in terms of changes in the
parameter values allows the effects of compounds on individuals to be translated into those
on populations. Effects at the molecular level have a nec of zero, because each molecule
can react. At the individual level, it is generally larger than zero, because individuals can
handle small physiological handicaps. At the population level, effects can vary with food
levels even if toxicokinetics is in full steady state; this depends on the mode of action of
the compound.



Chapter 7

Extensions of deb models

So far, the uni- and multivariate deb models have been kept as parameter sparse as possi-
ble, with a strong focus on the slow processes that matter for the life cycle. For particular
applications is it essential to include more detail, especially if shorter space and time scales
need to be included. The purpose of this chapter is to discuss some of these extensions.
Each section can be read independently, and deals with a problem that may have taxon-
specific elements. Although the sections cover a range of topics, many important ones are
painfully lacking, which only reflects that the theory is still in a stage of development.
My hope is that it is possible to reduce the dazzling amount of seemingly complex eco-
physiological phenomena to a small set of simple underlying principles that can be based
on lower levels of organisation.

7.1 Handshaking protocols for SUs

If SUs are physically close to each other, they can interact. I discuss two types of interac-
tion: that between an SU and a carrier and between SUs in a chain. This extension of the
behaviour of SUS is applied later for the behaviour of metabolons in mitochondria, which
perform the the tca cycle, see {275}.

C SU-

jXF

�6
jXR

-

jY P

-

jY F

�6
jY R

-

J̇Z,P

Figure 7.1: The Carrier-Synthesising Unit
complex binds substrate X in the environ-
ment reversibly and delivers product Z to
the cellular metabolism. The inherent re-
jected fluxes of substrate X and intermediary
metabolite Y are indicated, and quantified in
the text.
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7.1.1 Handshaking protocols for carriers

Suppose that a substrate X is taken up from the environment by a Carrier (C), which
passes its product Y to a Synthesising Unit (SU), which delivers its product Z to the rest
of the metabolism of the cell, see Figure 7.1. One molecule of substrate converts into yY X
molecules of product Y or yZX molecules of product Z. I will evaluate the dynamics of the
Carrier-Synthesising Unit (CSU) complex, under various assumptions about the exchange
of compounds between the two components, given c Carriers and s SUs per unit of biomass.

Three processes should be delineated: feeding F , rejection R, and production P . Ap-
pearing fluxes are taken positive (R and P ), disappearing ones negative (F ). Fluxes are
denoted by two indices: one represents the compound, the other the process. The feeding
flux is the flux of substrate molecules that arrives in the catching area of the c Carriers or
s SUs.

The mass balances for the Carriers, the SUs, and the CSU complex are

0 = jXF + jXR + yXY jY P (7.1)

0 = jY F + jY R + yY ZjZP (7.2)

0 = jXF + jXR + yXY jY R + yXZjZP (7.3)

for yXZ = yXY yY Z and jY P = −jY F . The problem now is to write all these fluxes as
functions of the feeding flux jXF given a specification of the interaction between the Carriers
and the SUs.

The behaviour of the CSU complex depends on the handshaking protocol between the
Carrier and the SU. Two extremes are evaluated. In the ‘closed’ protocol, the Carrier only
passes its product to the SU if the SU is in the unbounded state. In the ‘open’ protocol,
the Carrier releases its product irrespective of the state of the SU. The derivation of the
behaviour of the CSU complex under both handshaking protocols starts with the changes
in the binding fractions, θc and θs, among the c Carriers and the s SUs, followed by a
pseudo-steady-state assumption.

Closed protocol

The changes in the binding fractions amount to

d

dt
θc = (k̇X + k̇Y θs)(1− θc) + ρXjXF θc/c (7.4)

d

dt
θs = k̇Z(1− θs)− ρY k̇Y θs(1− θc)yY Xc/s (7.5)

where ρX denotes the binding probability of substrate X to the Carrier, ρY the bind-
ing probability of assimilated substrate Y (i.e. Carrier product) to the SU, and k̇∗ the
dissociation rates.

The fluxes can now be quantified as

jXR = k̇X(1− θc)c− jXF (1− ρXθc)
jY P = yY X k̇Y θs(1− θc)c

jY R = (1− ρY )yY X k̇Y (1− θc)θsc
jZP = yZY k̇Z(1− θs)s

(7.6)
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Suppose now that the binding fractions are in steady state, i.e. d
dt
θ∗ = 0. The binding

fractions and all fluxes can then be written as functions of the feeding flux jXF . The result
is

θc =
2c2k̇X k̇

′
Y + 2csk̇Y k̇Z − k̈1 − k̈
−2ck̇′Y j

′
XF

; θs =
k̈1 + k̈

2csk̇Y k̇Z
(7.7)

k̇′Y = ρY k̇Y yY X ; j′XF = ρXjXF − ck̇X (7.8)

k̈ =
√
k̈2

1 − 4cs2k̇Y k̇2
Zj
′
XF ; k̈1 = ρXjXF (sk̇Z + ck̇′Y ) + cs(k̇Y − k̇X)k̇Z (7.9)

For ρY = 1, no products Y are produced and all assimilated X is transformed into Z. For
ρY = 0, all assimilated X is transformed into Y . The binding probability ρY can be tuned
by inhibitors, allowing the CSU complex to branch flux X into fluxes Y and Z.

Open protocol

The changes in the binding fractions amount to

d

dt
θc = (k̇X + k̇Y )(1− θc) + ρXjXF θc/c (7.10)

d

dt
θs = k̇Z(1− θs)− ρY k̇Y θs(1− θc)yY Xc/s (7.11)

where the ρ∗ denote the binding probabilities and k̇∗ the dissociation rates. The only
difference with the closed protocol is the absence of θs in the change of θc.

Assuming a steady state for the binding fractions, the fluxes can be quantified as

jXR = k̇X(1− θc)c− jXF (1− ρXθc)
jY P = yY X k̇Y (1− θc)c

jY R = (1− ρY θs)yY X k̇Y (1− θc)c
jZP = yZY k̇Z(1− θs)s

(7.12)

Assuming a steady state again, the binding fractions can be solved through d
dt
θ∗ = 0, giving

all fluxes as functions of the feeding flux jXF .
The solutions amount to

θc =
c(k̇X + k̇Y )

c(k̇X + k̇Y )− ρXjXF
; θs =

(c(k̇X + k̇Y )− ρXjXF )sk̇Z

(c(k̇X + k̇Y )− ρXjXF )sk̇Z − ρXjXF cρY k̇Y yY X
(7.13)

The production of Y relative to Z can be modified by the binding probability ρY , as in
the closed protocol, but even when ρY = 1 the CSU complex still produces Y .

Comparison

Figure 7.2 compares the performances of the CSU complex using a closed and an open
handshaking protocol between the Carrier and the SU. The closed protocol allows a slightly
greater production rate of product Z, but less of precursor plus product, Y + Z. This
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Figure 7.2: The production of product, Z, and
of precursor plus product, Y + Z, from sub-
strate X of a CSU complex, as functions of the
substrate arrival flux, using the closed (drawn
curves) or the open (dotted curves) handshak-
ing protocol. The open protocol leads to hy-
perbolic production curves. The parameters are
k̇X = 0 s−1, k̇Y = 0.4 s−1, k̇Z = 0.7 s−1, ρX = 1,
ρY = 0.8, yXY = 1, yXZ = 1, c = s = 1.

is because the Carrier waits to dissociate from its substrate until the SU is ready for
acceptance, so no precursor is ‘spoiled’, but the carrier is busy for longer time intervals.

The SU can be thought of as a resistance that leads to deviation of the hyperbolic
production curve as a function of substrate density, making it somewhat steeper. The closed
protocol is optimal for regulation of flux Y versus flux Z, while the open protocol maximises
substrate uptake, with inherent production of Y , and a slightly reduced production of Z.
The closed protocol requires compact spatial organisation to allow information exchange
between the Carriers and the SUs with respect to the binding state of the SUs, which is
not required for the open protocol.

7.1.2 Handshaking protocols for chains

SUs can be organised in a metabolic chain or network, sometimes they are spatially or-
ganised in a metabolon and pass intermediate metabolites to each other by channelling.
This occurs, for instance, in the tca cycle [660], where a single copy of each of the nine
enzymes are organised in a metabolon in the correct sequence, and two if the enzymes are
anchored to the membrane, in most eukaryotes the inner membrane of mitochondria, cf
{275}. The enzymes might use the open-handshaking protocol for dissociation, meaning
that the dissociation process is independent of the binding state of the neighbouring SUs,
the closed-handshaking protocol, meaning that dissociation only occurs if the neighbouring
SUs are in the unbounded state, or a mixture of both protocols. Closed handshaking in-
volves communication, and typically physical contact (so spatial structure). If handshaking
is fully closed, the whole metabolon acts as if it is a single SU.

Consider the transformation Xi−1 → yXiXi−1
Xi for i = 1, · · · , n, see [660]. We take

yXiXi−1
= 1 for simplicity. After an introduction of the behaviour of a single Synthesising

Unit (SU), we discuss closed and open handshaking, followed by mixtures of these two
extremes. Finally we discuss synthesis from two substrates, to model cyclic pathways.

Chain of length n = 1

For a given flux J̇X0,F of substrate to the MS1 SUs, we have
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Change in unbound fraction:
d

dt
θ1 = (1− θ1)k̇1 − θ1ρ1J̇X0,F/MS1 (7.14)

Steady state unbound fraction: θ∗1 =
(
1 + ρ1J̇X0,F (k̇1MS1)

−1
)−1

(7.15)

Production flux: J̇X1,P = k̇1MS1(1− θ∗1) =
ρ1J̇X0,F

1 + ρ1J̇X0,F (k̇1MS1)
−1

(7.16)

Closed handshaking at all nodes

Closed handshaking is defined as an interaction between subsequent SUs in a linear pathway
such that, given perfect binding, the product of SU i is directly piped to the SU i + 1 for
further processing. To find appropriate expressions for the dynamics of SUs that have this
property, we introduce (yet) unknown functions ḃi of the θi’s that specify the appearance of
unbound fractions. The dynamics of the last SU is simple, because the release of product
does not depend on the binding state of any other SU. The release rate of product from
the last SU-product complex is proportional to the bound fraction, so ḃn = (1− θn)k̇n. We
now have

d

dt
θ1 = ḃ1 − θ1ρ1J̇X0,F/MS1 (7.17)

d

dt
θi = ḃi − ḃi−1MSi−1

/MSi for i = 2, · · · , n− 1 (7.18)

d

dt
θn = (1− θn)k̇n − ḃn−1MSn−1/MSn (7.19)

J̇Xn,P = k̇nMSn(1− θ∗n) =
ρ1J̇X0,F

1 + ρ1J̇X0,F
∑
j(k̇jMSj)

−1
(7.20)

The latter follows from the idea that (k̇iMSi)
−1 acts as a resistance, and that the n-chain

should operate as if it is a single SU; compare (7.16) with (7.20). At steady state, we have
ḃ∗iMSi = ḃ∗i−1MSi−1

, so ḃ∗1MS1 = ḃ∗n−1MSn−1 . From (7.20) follows

ḃ∗i =
ρ1J̇X0,F/MSi

1 + ρ1J̇X0,F
∑n
j=1(k̇jMSj)

−1
(7.21)

θ∗1 =
1

1 + ρ1J̇X0,F
∑
i(k̇iMSi)

−1
(7.22)

θ∗n =
1 + ρ1J̇X0,F

∑n−1
j=1 (k̇jMSj)

−1

1 + ρ1J̇X0,F
∑n
j=1(k̇jMSj)

−1
(7.23)

We see that

θ∗i+1 − θ∗i =
ρ1J̇X0,F (k̇iMSi)

−1

1 + ρ1J̇X0,F
∑n
j=1(k̇jMSj)

−1

which suggests
ḃi = (θi+1 − θi)k̇i (7.24)
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Substitution into (7.17) - (7.19) gives

d

dt
θ1 = (θ2 − θ1)k̇1 − θ1ρ1J̇X0,F/MS1 (7.25)

d

dt
θi = (θi+1 − θi)k̇i − (θi − θi−1)k̇i−1MSi−1

/MSi for i = 2, · · · , n− 1 (7.26)

d

dt
θn = (1− θn)k̇n − (θn − θn−1)k̇n−1MSn−1/MSn (7.27)

For the purpose of mixing this dynamics with open handshaking, we substitute the feeding
fluxes J̇Xi−1,F = J̇Xi−1,P = (θi− θi−1)k̇i−1MSi−1

and allow for non-perfect binding (0 ≤ ρi ≤
1). Moreover, we remove θ1 in front of the flux of X0 that arrives to the pathway to avoid
leaks of X0. (This can be done because the open handshaking already has this factor.)
The result is

d

dt
θ1 = (θ2 − θ1)k̇1 − ρ1J̇X0,F/MS1 (7.28)

d

dt
θi = (θi+1 − θi)k̇i − ρiJ̇Xi−1,F/MSi for i = 2, · · · , n− 1 (7.29)

d

dt
θn = (1− θn)k̇n − ρnJ̇Xn−1,F/MSn (7.30)

The steady state unbound fractions are

θ∗i = 1− J̇X0,F

n∑
j=n+1−i

(k̇jMSj)
−1Πj

k=1ρk = 1− jX0F

n∑
j=n+1−i

(k̇jmSj)
−1Πj

k=1ρk

with mSj = MSj/MV and jX0F = J̇X0,F/MV . The production fluxes are

J̇Xi,P = k̇iMSi(θ
∗
i+1 − θ∗i ) = J̇X0,FΠi

k=1ρk

Open handshaking at all nodes

Open handshaking is defined as the lack of any interaction between subsequent SUs in a
linear pathway. We here simply have (compare with (7.14))

d

dt
θi = (1− θi)k̇i − θiρiJ̇Xi−1,F/MSi for i = 1, · · · , n (7.31)

θ∗i =
(
1 + ρiJ̇Xi−1,F (k̇iMSi)

−1
)−1

(7.32)

J̇Xi,P = k̇iMSi(1− θ∗i ) =
ρiJ̇Xi−1,F

1 + ρiJ̇Xi−1,F (k̇iMSi)
−1

(7.33)

General handshaking

We now combine the dynamics of (7.28) - (7.30) and (7.31) linearly with n handshaking
parameters αi and arrive for i = 1, · · · , n− 1 at

d

dt
θi = (1− αi(1− θi+1)− θi) k̇i − (θi + αi−1(1− θi)) ρiJ̇Xi−1,F/MSi (7.34)

d

dt
θn = (1− θn)k̇n − (θn + αn−1(1− θn)) ρnJ̇Xn−1,F/MSn (7.35)
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Figure 7.3: The great grey shrike Lanius excubitor hoards throughout the year, possibly to guard
against bad luck when hunting. Many other shrikes do this as well.

We can check that the system reduces to closed handshaking for αi = 1 and open hand-
shaking for αi = 0 for i = 1, · · · , n−1. The motivation for the linear combination of the two
handshaking protocols is that a fraction αi of the SUs is following the open handshaking
protocol, and a fraction 1 − αi the closed one. Notice that α0 controls the flux from the
cell to the pathway, while the other αi’s only deal with the metabolite traffic between SU
i and i+ 1.

7.2 Feeding

7.2.1 Food deposits & claims

Quite a few animal species stock food and claim resources via defending a territory as a kind
of ‘external reserve’, which differs from internal reserves by not having active metabolic
functions. Many food deposits relate to survival during winter, frequently in combination
with dormancy, cf. {119}. The hamster is famous for the huge piles of maize it stocks in
autumn. In the German, Dutch and Scandinavian languages, the word ‘hamster’ is the
stem of a verb meaning to stock food in preparation for adverse conditions. The English
language has selected the squirrel for this purpose. This type of behaviour is much more
widespread, for example in jays and shrikes, see Figure 7.3. Bees produce honey, and
many other adult hymenopterans catch prey for their juveniles. Dung beetles also sport
comparable parental care.

Many animal species defend territories just prior to and during the reproductive season.
Birds do it most loudly. The size of the territories depends on bird as well as food density.
One of the obvious functions of this behaviour is to claim a sufficient amount of food to
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fulfil the peak demand when the young grow up. The behaviour of stocking and reclaiming
food typically fits ‘demand’ systems and is less likely to be found in ‘supply’ systems.

The importance of food storing and claiming behaviour is at the population level,
where the effect is strongly stabilising for two reasons. The first is that the predator lives
on deposits if prey is rare, which lifts the pressure on the prey population under those
conditions. The second one is that high prey densities in the good season do not directly
result in an increase in predator density. This also reduces the predation pressure during
the meager seasons. Although the quantitative details are not worked out here because of
species specificity, I want to highlight this behaviour as an introduction to other smoothing
phenomena that are covered.

7.2.2 Fast food intake after starvation: hyperphagia

A phenomenon shared by many taxa is that food (substrate) intake after a period of
starvation is substantially higher during a short period. Variations of food availability
can stimulate growth [445]. Morel [806] modelled a fast short-term uptake (at maximum
specific rate jhXAm) in combination with a much lower longer-term uptake (at maximum
specific rate jlXAm) in algae by assuming empirically that nutrient uptake decreases linearly
with the reserve density. A problem with his empirical extension to include fast short-term
uptake is that it modifies the well-tested long-term uptake. A variant of this idea that
leaves the long-term uptake unaltered is

jXA(XmE) = fjhXAm − (jhXAm/j
l
XAm − 1)mE k̇E/yEX with f =

X

K +X
(7.36)

d

dt
mE = yEXfj

h
XAm −mE k̇Ej

h
XAm/j

l
XAm with m∗E = yEXfj

l
XAm/k̇E (7.37)

To avoid negative uptake rates, we must have

1

jlXAm
− 1

jhXAm
>
fyEX

k̇EmE

(7.38)

In animals very short-term food uptake after starvation is typically even higher due
to filling of the digestive system (stomach plus gut). This can be modelled similarly and
linked to a more detailed module for digestion.

7.2.3 Digestion parallel to food handling: satiation

The standard module for food uptake, as presented by the SU scheme in Figure 3.6, clas-
sifies behaviour in food searching and food handling. Food handling can be partitioned
in mechanical and metabolic handling, where metabolic handling follows mechanical han-
dling, see figure 7.4. This itself does not affect food uptake. This can be checked as
follows

1 = θ· + θX + θE (7.39)

d

dt
θ· = k̇EθE −XḃXθ· and

d

dt
θE = k̇XθX − k̇EθE (7.40)
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Figure 7.4: The extension of the sim-
ple two-state scheme (left, cf Figure
3.6) to the three-state scheme (middle)
does not affect food uptake, but the ex-
tension to the four-state (right) does.

and leads to J̇EA = yEX k̇Eθ
∗
E = yEX ḃXX

1+ḃXX(k̇−1
X +k̇−1

E )
, where (k̇−1

X + k̇−1
E ) serves as a single

parameter.
Suppose now that food searching can be parallel to metabolic handling. This extension

leads to

1 = θ·· + θ·X + θE· + θEX ; and
d

dt
θ·· = k̇EθE· −XḃXθ·· and (7.41)

d

dt
θEX = XḃXθ·X − k̇EθEX and

d

dt
θ·EX = XḃXθ·· − (k̇X +Xḃx)θ·X (7.42)

and J̇EA = yEX k̇E(θ∗EX + θ∗E·), where θ∗E· = (1 + k̇E
xḃX

+ k̇S+xḃX
k̇X+xḃX

)−1 and θ∗EX = θ∗E·
xḃX

k̇X+xḃX
.

This model has one parameter extra, and has been fitted successfully to feeding data for
sea bream (Sparus aurata) larvae [707].

This idea can be further extended into many directions. One being that the searching
rate ḃX during metabolic handling differs from that after completion of metabolic handling,
to introduce the notion of satiation. A next step is to partition metabolic handling further
in steps 1, 2 till n, and let the searching rate increase with the metabolic steps. This way
of modelling satiation does not require new state variables. Satiation can also be linked to
gut filling, cf {266}, and/or to concentrations of metabolites in the blood. Such extensions
typically involve quite a few extra parameters.

Likewise more behavioural traits can be introduced, such as sleeping, which can be
(partially) parallel to other traits. Behaviour is most realistically described by stochastic
models. The dynamics of SUs is intrinsically Markovian, cf {101}, which gives access to
powerful statistical techniques [447], while respecting the metabolic functions of behaviour.

7.2.4 Social interaction

Especially among animals at the demand end of the supply-demand spectrum social inter-
action is an important feature. It can be seen as an association between two individuals
that dissociates without transformation; the effect on the feeding rate is via loss of time
that depends in a particular way on the population density; the process is formally equiva-
lent to an inhibition process of a special type. Figure 7.5 shows schemes for the cases that
socialisation can be initiated during food processing (parallel case) or can not (sequential
case), while searching for food cannot be initiated during socialisation. Socialisation can
be intra- and/or inter-specific.

For species Y that interacts intra-specifically only and feeds on food X, the possible
“binding” fractions are 1 = θ·· + θX· + θ·Y + θXY . The changes in the “binding” fractions
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Figure 7.5: The various associations of an individual of species Y with substrate X, which leads
to a conversion X → E, or with other individuals of species Y or Z. The left scheme treats food
processing as a process sequential to socialisation, the right one as parallel. From [662]

for the parallel case are

d

dt
θ·· = k̇XθX· + k̇Y θ·Y − (ḃXX + ḃY Y )θ··, (7.43)

d

dt
θX· = ḃXXθ·· + k̇Y θXY − ḃY Y θX·, (7.44)

d

dt
θ·Y = ḃY Y θ·· + k̇XθXY − ḃXXθ·Y , (7.45)

where ḃ∗ are the affinities and k̇∗ dissociation rates. For the sequential case, we exclude all
double binding.

The scaled functional response equals f = θ∗· x with

θ∗· = (1 + x+ y)−1 sequential case (7.46)

=

(
1 + x+ y +

xy

1 + w′ + w′y

)−1

parallel case (7.47)

where scaled food density x = X/KX and scaled population density y = Y/KY are scaled
with saturation constants KX = k̇X/ḃX and KY = k̇Y /ḃY , i.e. ratios of the dissociation
rates and the affinities. The socialisation parameter w′ = k̇X/k̇Y is the ratio of the disso-
ciation rates for food and social interaction and plays the role of an inhibition parameter.

If food X is supplied to a population of socially interacting consumers Y in a chemostat
run at throughput rate ḣ, the changes in food and population densities are given for V1-
morphs by

d

dt
X = ḣ(Xr −X)− fjXAmY, (7.48)

d

dt
Y = (ṙ − ḣ)Y, (7.49)

with specific growth rate ṙ = k̇Ef−k̇Mg
f+g

, where k̇M is the maintenance rate coefficient, k̇E the

reserve turnover rate and g the energy investment ratio. At steady state we have ḣ = ṙ.
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Figure 7.6: No socialisation (0), and sequential (s) and parallel (p) socialisation in a single-species
population in a chemostat. Parameter values: substrate concentration in the feed Xr = 10
mM, maximum specific substrate uptake rate jXAm = 1 h−1, energy investment ratio g = 1,
maintenance rate coefficient k̇M = 0.002 h−1, reserve turnover rate k̇E = 0.2 h−1, half-saturation
coefficients Kx = 0.1 mM and Ky = 0.1 mM, socialisation w′ = 0.01. The latter parameter only
occurs in the parallel case.

Figure 7.6 illustrates the effects of socialisation in a single-species situation. After fin-
ishing a food-processing session, a sequentially interacting individual starts food searching,
but one interacting in parallel first has to complete any social interaction that started dur-
ing food processing. If social interaction is parallel, it can always be initiated; if sequential,
it can only be initiated during searching. This explains the substantial difference between
both models; sequential socialisation has relatively little impact because low growth rates
accompany low densities (because of maintenance), and so rare social encounters, whereas
high growth rates accompany high food levels, so most time is spend on food processing
and not on social interaction. The models are more similar for higher values of K and/or
w′. While the sequential model is well known [76, 253], the parallel model is not.

The significance of this deviation from the standard Holling type II formulation is that
the feeding rate is no longer a function of food density only, but also of the population
density. This has the effect that outcompetition is now much more rare, and species
diversity is more easy to maintain in the model system.

7.2.5 Diffusion limitation

The purpose of this subsection is to show why small deviations from the hyperbolic func-
tional response can be expected under certain circumstances, and how the functional re-
sponse should be corrected. Diffusion limitation as discussed here is key to the understand-
ing of the flocculated growth of micro-organisms, as typically occurs in sewage treatment
plants, cf {132}.

Any submerged body in free suspension has a stagnant water mantle of a thickness
that depends on the roughness of its surface, its electrical properties and on the turbulence
in the water. The uptake of nutrients by cells that are as small as that of a bacterium
can be limited by the diffusion process through this mantle [612]. Logan [712, 713] related
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this limitation to the flocculation behaviour of bacteria at low food densities. The exis-
tence of a diffusion-limited boundary layer is structural in Gram-negative bacteria such as
Escherichia [610], which have a periplasmic space between an inner and outer membrane.
The rate of photosynthesis of aquatic plants [1079, 1245] and algae [970] can also be limited
by diffusion of CO2 and HCO−3 through the stagnant water mantle that surrounds them.
Coccolithophores, such as Emiliania, have a layer of polysaccharides with coccoliths (i.e.
calcium carbonate platelets), which might limit diffusion. Since diffusion limitation affects
the functional response, it is illustrative to analyse the deviations a bit more in detail.
For this purpose I re-formulate some results that originate from Best [102] and Hill and
Whittingham [509] in 1955.

Homogeneous mantle

Suppose that the substrate density in the environment is constant and that it can be
considered as well mixed beyond a distance l1 from the centre of gravity of a spherical cell
of radius l0. Let X1 denote the substrate density in the well-mixed environment and X0

that at the cell surface. The aim is now to evaluate uptake in terms of substrate density
in the environment, given a model for substrate uptake at the cell surface.

The build-up of the concentration gradient from the cell surface is fast compared with
other processes, such as growth; the gradient is, therefore, assumed to be stationary.

The conservation law for mass implies that the flux Ẋ(l) at distance l from the centre
of gravity of the cell obeys the relationship 4πl21J̇X(l1) = 4πl22J̇X(l2) for any two choices
of distances l1 and l2. From the choice l1 = l and l2 = l + dl follows l2 d

dl
J̇X + 2lJ̇X = 0.

According to Fick’s diffusion law, the mass flux over a sphere with radius l is proportional
to the substrate density difference in the adjacent inner and outer imaginary tunics (i.e. 3D-

annulus), so J̇X ∝ − d
dl
X. This leads to the relationship l2 d

2

dl2
X+2l d

dl
X = 0 or d

dl

(
l2 d
dl
X
)

=

0, which is known as the Laplace equation. The boundary conditions X(l0) = X0 and

X(l1) = X1 determine the solution X(l) = X1 − (X1 −X0) 1−l1/l
1−l1/l0 .

The mass flux at l0 is, according to Fick’s law, 4πl20Ḋ
d
dl
X(l0), where Ḋ is the diffusivity.

It must be equal to the uptake rate J̇X = J̇XmX0/(K + X0). This gives the relationship
between the density at the cell surface and the density in the environment as a function of
the thickness of the mantle

X0 = g(X1|K,K1) =
1

2
Xc +

1

2

√
X2
c + 4X1K (7.50)

with Xc ≡ X1 − K − K1 and K1 = J̇Xm
4πḊl0

(
1− l0

l1

)
. Since the cell can only ‘observe’ the

substrate density in its immediate surroundings, X0 must be taken as the argument for the
hyperbolic functional response and not X1. Measurements of substrate density, however,
refer to X1, which invites one to write the functional response as a function of X1, rather
than X0, so J̇X(X1) = J̇Xm

g(X1|K,K1)
K+g(X1|K,K1)

.
The extent to which a stagnant water mantle changes the uptake rate and the shape

of the functional response depends on the value of the mantle saturation coefficient K1,
and therefore on the thickness of the mantle relative to the size of the individual and
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Figure 7.7: The shape of the functional re-
sponse depends on the value of the man-
tle saturation coefficient; it can vary from a
Holling type II for small values of the man-
tle saturation coefficient, to Holling type I for
large values.

Figure 7.8: Substrate density as a function of
the distance from the cell centre in the case of a
homogeneous water mantle, for different choices
for the substrate densities X1 in the well-mixed
medium.

the diffusivity relative to the maximum uptake rate. If the mantle saturation coefficient
is small, the mantle has hardly any effect, i.e. X0 → X1 for K1 → 0, and the functional
response is of the hyperbolic type. If it is large, however, the functional response approaches
Holling’s type I [523], also known as Blackman’s response [114], where the ingestion rate
is just proportional to food density up to some maximum; see Figure 7.7 and 7.8. This
exercise thus shows that the two types of Holling’s functional response are related and
mixtures are likely to be encountered. This response is at the root of the concept of
limiting factors, which still plays an important role in eco-physiology.

The uptake rate depends on the size of the individual in a rather complex way if
diffusion is rate limiting. Figure 7.9 illustrates that irregular surfaces are smoothed out. For
relatively thick water mantles and at low substrate densities, especially, it is not important
that the cell is spherical. The approximate relationship V ' l30π4/3 will be appropriate
for most rods. The rod then behaves as a V0-morph, since the boundary of the mantle is
limiting the uptake and hardly changes during growth of the cell.

Increasing water turbulence and active motion by flagellas will reduce the thickness
of the water mantle. Its effect on mass transfer is usually expressed by the Sherwood
number, which is defined as the ratio of mass fluxes with to those without turbulence.
If X1 � K, the Sherwood number is independent of substrate density, and amounts
to
(
1 + K1/K

1−l0/l1

)
(1 + K1/K)−1. For larger values of X1, the Sherwood number becomes

dependent on substrate density and increasing turbulence will less easily increase mass
transfer, because uptake will be rate limiting; see Figure 7.10. This probably defines the
conditions for producing sticky polysaccharides which result in the development of films
of bacteria on hard substrates or of flocs. If a cell attaches itself, it loses potentially
useful surface area for uptake, but increases mass transfer via convection. Although the
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Figure 7.9: Irregular surfaces that catch food are
smoothed out by a water mantle if (Eddy) diffu-
sion through this layer limits the uptake rate; the
thicker the mantle, the more efficient the smooth-
ing. This is here illustrated for a heliozoan, which
has thin protoplasm-covered spines that help to
catch small food particles (bacteria, algae, micro-
organisms).

Figure 7.10: Stereo view of the substrate up-
take rate of a cell in suspension relative to that
in completely stagnant water, as a function of the
substrate density in the medium (x-axis) and the
thickness of the water mantle (y-axis). Parameter
choice: J̇Xm = 4πḊKl0

quantitative details for the optimisation of uptake can be rather complex, the qualitative
implication that cells usually occur in free suspension when substrate densities are high,
and in flocs when they are low can be understood from Sherwood numbers.

Since diffusivity is proportional to (absolute) temperature, see e.g. [39], and uptake rates
tend to follow the Arrhenius relationship, {16}, the temperature dependence of diffusion-
limited uptake is likely to depend on temperature in a more complex way.

It is conceivable that slowly moving or sessile animals exhaust their immediate sur-
roundings in a similar way to that described here for bacteria in suspension, if the transport
of food in the environment is sufficiently slow. Trapping devices suffer from this problem
too [553]. Patterson [873] showed by changing the flow rate that the physical state of the
boundary layer surrounding the symbiosis of coral and algae directly affects nutrient trans-
fer. The shape, size and polyp-wall thickness of scleractinian corals could be related to
diffusion limitation of nutrients. Some processes of transport can be described accurately
by diffusion equations, although the physical mechanism may be different [847, 1071].
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Figure 7.11: Substrate density as a function of
the distance from the cell centre for a Gram-
negative bacterium. The inner membrane is
at distance l0, the outer membrane at distance
l2, and beyond distance l1 the medium is com-
pletely mixed. Four different choices for sub-
strate densities X1 in the medium have been
made, to illustrate that the higher X1 the more
the substrate density at the inner membrane X0

is reduced. distance
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For Gram-negative bacteria, which have an inactive outer membrane with a limited per-
meability for substrate transport, the relationship between the substrate density at the
active inner membrane and that in the well-mixed environment is a bit more complicated.
On the assumption that the substrate flux through the outer membrane is proportional to
the difference of substrate densities on either side of the outer membrane, the permeability

affects the mantle saturation coefficient K1, i.e. K1 = J̇Xm
4πḊl0

(
1− l0

l1
+ l0Ḋ

l22Ṗ

)
, where l2 is the

radius at which the outer membrane occurs and Ṗ is the permeability of that membrane
(dimension length.time−1). The periplasmic space is typically some 20–40 % of the cell
volume [829], so that l0/l2 ' 0.9. If l2Ṗ � Ḋ, the resistance of the outer membrane for
substrate transport is negligible. Figure 7.11 illustrates how substrate density decreases
towards the inner membrane.

Non-homogeneous mantle

Suppose now that the cell has, besides a stagnant water mantle, also a layer of polysac-
charides, where the diffusivity has value Ḋ0, while it has value Ḋ2 in the water mantle.
Suppose that the boundary of the layer is at distance l2 from the cell centre, so l0 < l2 < l1.
The substrate density at the boundary of the polysaccharide layer can now be solved by
equating the uptake rate to the flux at the cell membrane. This value can be substituted
when the flux at the layer boundary is set equal to the uptake rate. The relationship
between X0 and X1 is still given by (7.50), but the mantle saturation constant is now

K1 = J̇Xm
4πḊ2l2

(
1− l2

l1

) (
1 + Ḋ2l1

Ḋ0l2

1−l2/l0
1−l1/l2

)
. So, just like the barrier in the preceding section,

inhomogeneities in the mantle only affect the mantle saturation coefficient, not the shape
of the functional response.
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Figure 7.12: The enzyme (red) and metabolite (green) profiles for social (top left) and solitary
(top right) digestion for times 100, 200,., 500 h. The magenta and blue curves are the steady
state profiles for enzyme and metabolite. Parameters: J̇PA = 1 mmol h−1, ḊP = 0.03µm2 h−1,
ḊX = 0.03µm2 h−1, k̇P = 0.01 h−1, k̇X = 0.01 h−1, {J̇XAm}πLR/nXK = 20 h−1, LR = 0.5µm.
See Figure 7.13 for the yield of metabolite on enzyme as function of time.

7.2.6 Excretion of digestive enzymes

Prokaryotes have no phagocytosis and, therefore, they have to excrete enzymes to di-
gest substrate molecules that cannot pass the membrane. These enzymes transform sub-
strate into product (metabolites); the resulting metabolites can be taken up and used for
metabolism. We here compare this digestion mode with endocellular digestion, assuming
that the concentration of (solid) substrate is very large relative to the biomass (so the
decrease of solid substrate is negligibly small) and the enzyme molecules have a limited
active life span.

At lower substrate concentrations, extracellular feeding becomes rapidly even less effi-
cient, because enzymes loose time in their unbound state.

Intracellular digestion

Suppose the digestive enzyme becomes inactive at constant specific rate k̇P , and the mean
production time per product molecule is k̇−1

X . The maximum yield of product per enzyme
molecule thus amounts to ymXP = k̇X/k̇P and serve as a reference for extracellular diges-
tion. Although no metabolites become lost, this mode of digestion comes with costs of
phagocytosis, and processing of inactive enzymes. The latter might represent a cost or a
further benefit.

Social digestion

Suppose now that bacteria are tightly packed in a one-cell thick layer a solid substrate, and
they excrete enzyme molecules at specific rate {J̇PA} (moles per surface area of cell per
time). If the cells are spherical with radius LR, they excrete enzymes at rate {J̇PA}4πL2

R.
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One cell occupies surface πL2
R in the layer, so a unit surface area has (πL2

R)−1 cells. In
surface area S of medium enzymes are excreted at rate J̇PA = 4{J̇PA}S (mol/t). Assuming
that the cells are half embedded in the medium and the maximum specific uptake rate
{J̇XAm} is large enough to ensure that the concentration nX(LR)/S at the cell membrane

is small, the uptake rate of a cell is {J̇XAm}πL2
R
nX(LR)
nXK

, where nXK is the half saturation

density. In surface area S of medium the uptake rate is J̇XA = {J̇XAm}S nX(LR)
nXK

(mol/t).

The yield of metabolite on enzyme equals yXP = {J̇XAm}
{J̇PA}

nX(LR)
4nXK

.

Choosing the origin of length L in the centre of a cell on the solid medium (for reasons
that are obvious in the case of solitary feeding), the change in densities of enzyme and
product concentrations is for diffusivities ḊP and ḊX

0 = J̇PA + ḊP
∂

∂L
nP (LR, t) (7.51)

0 =
∂

∂t
nP (L, t) + k̇PnP (L, t)− ḊP

∂2

∂L2
nP (L, t) (7.52)

0 = J̇XA − ḊX
∂

∂L
nX(LR, t) (7.53)

0 =
∂

∂t
nX(L, t)− k̇XnP (L, t)− ḊX

∂2

∂L2
nX(L, t) (7.54)

The steady state profiles follow from the balance for enzyme molecules
∫∞
LR
nP (L) dL =

J̇PA/k̇P , which have solution

nP (L) =
J̇PALP

ḊP

exp
(
LR − L
LP

)
for LP =

√
ḊP/k̇P (7.55)

nX(L) =
k̇X

k̇P

ḊP

ḊX

(
J̇PALP

ḊP

− nP (L)

)
(7.56)

We have d
dL
nX(LR) = J̇PAk̇X

ḊX k̇P
. The uptake equals J̇XA(t) = ḊX

d
dL
nX(LR, t), while J̇PAk̇X/k̇P

metabolites is produced when the extracellular enzyme buffer is full. The difference is lost
in the environment. The yield coefficient at infinite time is yXP = J̇XA/J̇PA. We define

the relative efficiency to be θ = yXP
ymXP

= J̇XAk̇P
J̇PAk̇X

. Initially, when nP (L, 0) = nX(L, 0) = 0, we

have θ = 0; it takes a long time to build up to θ = 1, when all of the medium (apart from
the direct neighbourhood of the bacteria) has metabolite density nX(∞).

Solitary digestion

Suppose now that a single spherical cell of radius LR lives half embedded on a homogeneous
medium and excretes enzyme molecules at specific rate {J̇PA} (moles per cell’s surface
area per time) or at rate J̇PA = {J̇PA}4πL2

R in total. Cell’s uptake rate of metabolites is

{J̇XAm}2πL2
R
nX(LR)
nXK

, so the yield of metabolites on enzyme is yPX = {J̇XAm}
{J̇PA}

nX(LR)
2nXK

.

The change in densities of enzyme and product concentrations is for diffusivities ḊP

and ḊX

0 = J̇PA + ḊP
∂

∂L
nP (LR, t) (7.57)
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Figure 7.13: The relative to the yield of metabolite on enzyme for intracellular digestion, the
yield for social extracellular digestion builds up slowly in time, while that for solitary digestion
really takes a long time and builds up to a lower level. The red arrows stand for enzyme flux, the
green ones for metabolite flux.

0 =
∂

∂t
nP (L, t) + k̇PnP (L, t)− ḊP

∂2

∂L2
nP (L, t)− 2

ḊP

L

∂

∂L
nP (L, t) (7.58)

0 = J̇XA −DX
∂

∂L
nX(LR, t) (7.59)

0 =
∂

∂t
nX(L, t)− k̇XnP (L, t)− ḊX

∂2

∂L2
nX(L, t)− 2

ḊX

L

∂

∂L
nX(L, t) (7.60)

The steady state profile of the enzyme and metabolite is

nP (L) =
J̇PA

ḊP

LPL
2
R/L

LP + LR
exp

(
LR − L
LP

)
(7.61)

nP (L) =
k̇X

k̇P

ḊP

ḊX

(
J̇PA

ḊP

LPLR
LP + LR

− nP (L)

)
(7.62)

Figure 7.12 compares enzyme and metabolite profiles for the social and solitary digestion
modes. Although the results depend on parameter values, quite a bit of metabolites are
unavailable for the cell, and the problem is much worse for solitary cells. It also takes
a long time to build up some yield, compared with intracellular digestion. The enzyme
profile reaches its steady state much earlier than the metabolite profiles; the metabolites
first must flush the whole medium before a steady state profile can build up.

7.3 Digestion in guts

7.3.1 Smoothing and satiation

The capacity of the stomach/gut volume depends strongly on the type of food a species
specialises on. Fish feeding on plankters, i.e. many small constantly available particles, have
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Figure 7.14: The 2 m paddlefish Polyodon spathula feeds on tiny plankters, while the 18 cm
black swallower Chiasmodon niger can swallow fish bigger than itself. They illustrate extremes
in buffer capacities of the stomach.

a low stomach capacity, while fish such as the swallower, which feed on rare big chunks of
food (see Figure 7.14), have high stomach capacities. It may wait for weeks before a new
chunk of food arrives. The stomach/gut volume, which is still ‘environment’ rather than
animal, is used to smooth out fluctuations in nutritional input to the organism. Organisms
attempt to run their metabolic processes under controlled and constant conditions. Food in
the digestive tract and reserves inside the organism together make it possible for regulation
mechanisms to ensure homeostasis. Growth, reproductive effort and the like do not depend
directly on food availability but on the internal state of the organism. This even holds, to
some extent, for those following the ‘supply’ strategy, where energy reserves are the key
variable. These reserves rapidly follow the feeding conditions.

If the food in the stomach, Ms, follows a simple first-order process, the change of
stomach contents is

d

dt
Ms = {J̇XAm}V 2/3

(
f − Ms

[Msm]V

)
(7.63)

where [Msm]V is the maximum food capacity of the stomach. The derivation is as follows.
A first-order process here means that the change in stomach contents can be written
as d

dt
Ms = J̇XA − t−1

s Ms, where the proportionality constant t−1
s is independent of the

input, given by J̇XA = {J̇XAm}f , see (2.2). Since food density is the only variable in
the input, t−1

s must be independent of food density X, and thus of scaled functional
response f . If food density is high, stomach content converges to its maximum capacity
J̇XAmts = {J̇XAm}V 2/3ts. The assumption of isomorphism implies that the maximum
storage capacity of the stomach is proportional to the volume of the individual. This
means that we can write it as [Msm]V , where [Msm] is some constant, independent of food
density and body volume. This allows one to express t−1

s in terms of [Msm], which results
in (7.63).

The mean residence time in the stomach is thus ts = V 1/3[Msm]/{J̇XAm}, and so it is
proportional to length and independent of the ingestion rate. First-order dynamics implies
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complete mixing of food particles in the stomach, which is unlikely if fermentation occurs.
This is because the residence time of each particle is then exponentially distributed, so a
fraction 1− exp(−1) = 0.63 of the particles spends less time in the stomach than the mean
residence time, and a fraction 1− exp(−1

2
) = 0.39 less than half the mean residence time.

This means incomplete, as well as over complete, and thus wasteful fermentation.
The extreme opposite of complete mixing is plug flow, where the variation in residence

times between the particles is nil in the ideal case. Pure plug flow is not an option for a
stomach, because this excludes smoothing. These conflicting demands probably separated
the tasks of smoothing for the stomach and digestion for the gut to some extent. Most
vertebrates do little more than create an acid environment in the stomach to promote
protein fermentation, while actual uptake is via the gut. For a mass of food in the stomach
of Ms, and in the gut of Mg, plug flow of food in the gut can be described by

d

dt
Mg(t) = t−1

s (Ms(t)−Ms(t− tg)) (7.64)

where tg denotes the gut residence time and ts the mean stomach residence time. This
equation follows directly from the principle of plug flow. The first term, t−1

s Ms(t), stands
for the influx from the stomach and follows from (7.63). The second one stands for the
outflux, which equals the influx with a delay of tg. Substitution of (7.63) and (2.2) gives
d
dt
Mg(t) = J̇XA(t)−J̇XA(t−tg)+ d

dt
Ms(t−tg)− d

dt
Ms(t). Since 0 ≤Ms ≤ [Msm]V , d

dt
Ms → 0

if [Msm]→ 0. So the dynamics of food in the gut reduces to d
dt
Mg(t) = J̇XA(t)− J̇XA(t−tg)

for animals without a stomach.
Some species feed in meals, rather than continuously, even if food is constantly available.

They only feed when ‘hungry’ [285]. Stomach filling can be used to link feeding with
satiation. From (7.63) it follows that the amount of food in the stomach tends to M∗

s =
f [Msm]V , if feeding is continuous and food density is constant. Suppose that feeding starts
at a rate given by (2.2) as soon as food in the stomach is less than δs0M

∗
s , for some value

of the dimensionless factor δs0 between 0 and 1, and feeding ceases as soon as food in the
stomach exceeds δs1M

∗
s , for some value of δs1 > δs0. The mean ingestion rate is still of the

type (2.2), where {J̇XAm} now has the interpretation of the mean maximum surface-area-
specific ingestion rate, not the one during feeding. A consequence of this on/off switching
of the feeding behaviour is that the periods of feeding and fasting are proportional to a
length measure. This matter links up with {111}.

7.3.2 Gut residence time

The volume of the digestive tract is proportional to the whole body volume in strict
isomorphs. The fraction is ' 11 % for ruminant and non-ruminant mammals [261] and
' 2.5 % for daphnids if the whole space in the carapace is included [330]. If the animal
keeps its gut filled to maximum capacity, [Mgm]V say, and if the volume reduction due to
digestion is not substantial, this gives a simple relationship between gut residence time of
food particles tg, ingestion rates J̇XA, and body volume V

tg = [Mgm]V/J̇XA =
L[Mgm]

f{J̇XAm}
(7.65)
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Figure 7.15: Gut volume is proportional to
cubed length (right) and gut residence time is
proportional to length (lower left), while the
latter depends hyperbolically on food density
(lower right), as illustrated for daphnids. The
first two figures relate to D. magna feeding on
the green alga Scenedesmus at 20 ◦C. Data from
Evers and Kooijman [330]. The third one re-
lates to a 2-mm D. pulex feeding on the di-
atom Nitzschia actinastroides at 15 ◦C. Data
from Geller [393]. length, mm
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This has indeed been found for daphnids [330], see Figure 7.15, and mussels [459]. Cope-
pods [208] and carnivorous fish [558] seem to empty their gut at low food densities, which
gives an upper boundary for the gut residence time. The gut residence time has a lower
boundary of L[Mgm]/{J̇XAm}, which is reached when the throughput is at maximum rate.

Since ingestion rate, (2.2), is proportional to squared length, the gut residence time
is proportional to length for isomorphs. For V1-morphs, which have a fixed diameter,
ingestion rate is proportional to cubed length, (4.12), so gut residence time is independent
of body volume.

Daphnids are translucent, which offers the possibility of studying the progress of diges-
tion as a function of body length, see Figure 7.16.

7.3.3 Gut as a plug flow reactor

Microflora is likely to play an important role in the digestion process of all herbivores. It can
provide additional nutrients by fermenting carbohydrates and by synthesising amino acids
and essential vitamins. Daphnids are able to derive structural body components and lipids
from the cellulose of algal cell walls [1025], though it is widely accepted that daphnids, like
almost all other animals, are unable to produce cellulase. Endogenous cellulase production
is only known to occur in some snails, wood-boring beetles, shipworms and thysanurans
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Figure 7.16: The photograph of Daph-
nia magna on the right shows the sharp
transition between the chlorophyll of
the green algae and the brown-black di-
gestion products, which is typical for
high ingestion rates. The relative posi-
tion of this transition point depends on
the ingestion rate, but not on the body
length. Even in this respect daphnids
are isomorphic. At low ingestion rates,
the gut looks brown from mouth to
anus. The paired digestive caecum is
clearly visible just behind the mouth.

[719]. The leaf-cutting ant Atta specifically cultures fungi, probably to obtain cellulase
[748]. Bacteria have been found in the guts of an increasing number of crustaceans [822],
but not yet in daphnids [1025]. In view of the short gut residence times for daphnids, it is
improbable that the growth of the daphnid’s gut flora plays an important role. Digestion
of cellulose is a slow process, and the digestive caecum is situated in the anterior part of
the gut. Daphnids, therefore, probably produce enzymes that can pass through cell walls,
because they do not have the mechanics to rupture them.

Many studies of energy transformations assume that the energy gain from a food item
does not depend on the size of the individual or on the ingestion rate. The usefulness of
this assumption in ecological studies is obvious, and the deb model uses it as well. In view
of the relationship of gut residence time to both size and ingestion rate, this assumption
needs further study.

The nutritional gain from a food particle has been observed to depend on gut residence
time [962, 1020]. These findings are suspect for two reasons, however. The first reason
is that assimilation efficiencies are usually calculated per unit of dry weight of consumer,
while the energy reserves contribute increasingly to dry weight with increasing food density,
but do not affect digestion. The second reason is that, while the nutritional value of faecal
pellets may decrease with increasing gut residence time, it is not obvious whether the
animal or the gut microflora gains from the difference. I discuss here to what extent
digestion is complete and the composition of faeces does not change if the composition of
food does not change.

When animals such as daphnids are fed with artificial resin particles mixed through
their algal food, the appearance of these particles in the faeces supports the plug flow type
of model for the digestion process, as proposed by Penry and Jumars [330, 881, 882].

The shape of the digestive system also suggests plug flow. The basic idea is that
materials enter and leave the system in the same sequence and that they are perfectly
mixed radially. Mixing or diffusion along the flow path is assumed to be negligible. (This
is at best a first approximation, because direct observation shows that particles sometimes
flow in the opposite direction.)

Suppose that a thin slice of gut contents can be followed during its travel along the
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tube-like digestive tract, under conditions of a constant ingestion rate. The small changes
in the size of the slice during the digestion process are ignored. The gut content of a 4-mm
D. magna is about 0.1 mm3, while the capacity is about 6.3×105 cells of Scenedesmus, see
Figure 7.15, of some 58 µm3 per cell, which gives a total cell volume of 0.0367 mm3. The
cells occupy some 37 % of the gut volume, which justifies the neglect of volume changes
for the slice. The volume of the slice of thickness Lλ is Vs = πLλL

2
φ/4, where Lφ is the

diameter of the gut, and πLλLφ is the surface area of contact between slice and gut.

Suppose that the gut wall secretes enzymes into the slice,
which catalyse the transformation of food X into faeces and
a product P , which can be absorbed through the gut wall.
The rate of this transformation, called digestion, is taken
proportional to the concentration of active enzymes which
have been secreted. If the secretion of enzymes is constant
and the deactivation follows a simple first-order process, the amount Mg of active enzyme
in the slice will follow d

dt
Mg = {J̇g}πLλLφ − k̇gMg, where {J̇g} is the (constant) secretion

rate of enzyme per unit of gut wall surface area and k̇g is the decay rate of enzyme activ-
ity. The equilibrium amount of enzyme is thus Mg = {J̇g}πLλLφ/k̇g and I assume that
this equilibrium is reached fast enough to neglect changes in the concentrations of active
enzyme. So the enzyme concentration is larger in smaller individuals because of the more
favourable surface area/volume ratio of the slice.

A simple Michaelis–Menten kinetics for the change in the amount of food gives d
dt
MX =

−k̇XyXgfXMg, where fX = MX/(M
X
K +MX) is the scaled functional response for digestion.

The compound parameter k̇XyXg is a rate constant for digestion.

If the absorption of product through the gut wall again follows Michaelis–Menten ki-
netics, the change of the amount of product in the slice is given by d

dt
MP = −yPX d

dt
MX −

k̇PyPcfPMc with fP ≡ MP/(M
P
K + MP ) the scaled functional response for absorption

and Mc = {Mc}πLλLφ the amount of carriers in the gut wall with which the slice makes
contact, while the surface-area-specific number of carriers {Mc} is taken to be constant.
The parameter k̇PyPc is a rate constant for absorption. This two-step Michaelis–Menten
kinetics for digestion with plug flow has been proposed independently by Dade et al. [240].

The digestion process in the slice ends at the gut residence time tg, given in (7.65), which
decreases for increasing ingestion rate and is minimal for the scaled functional response for
feeding f = 1. The conservation law for mass can be used to deduce that the total amount
of product taken up from the slice equals MPu(tg) = ((MX(0) −MX(tg))yPX −MP (tg)),
where MX(0) denotes the amount of food in the slice at ingestion. An ideal gut will digest
food completely (MX(tg) = 0) and absorb all product (MP (tg) = 0).

To evaluate to what extent food density in the environment and the size of the organism
affect digestion, via gut residence time and gut diameter, it is helpful to define the digestion
and uptake efficiency MPu(tg)(yPXMX(0))−1. For isomorphs, where gut diameter Lφ is
proportional to whole body length L, the energy uptake from food is independent of body
size. A shorter gut residence time in small individuals is exactly compensated by a higher
enzyme concentration. This is because the production of short-living enzymes is taken to
be proportional to the surface area of the gut. An obvious alternative would be a long-
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Figure 7.17: The assimilation rate as
a function of ingestion rate for mus-
sels (Mytilus edulis) ranging from 1.75 to
5.7 cm. Data from [71, 72, 131, 476, 600],
figure from [459]. All rates are corrected
to 15 ◦C. The fitted line is ṗA = µAX J̇XA
with µAX = 11.5 J mg POM−1. ingestion rate, mg pom/h
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living enzyme that is secreted in the anterior part of the digestive system. If this part is a
fixed proportion of the whole gut length the result of size independence is still valid.

Efficiency depends on food density as long as digestion is not complete. The undigested
amount of food MX(tg) can be solved implicitly and a relationship results between the rate
of enzyme secretion and the ingestion rate of food items by imposing the constraint that
the MX(tg) must be small. So it relates ingestion rate to food quality.

If the saturation coefficient MX
K of the digestion process is negligibly small, digestion

becomes a zero-th order process, and the amount of food in the slice decreases linearly with
time (and distance). This has been proposed by Hungate [537], who modelled the 42 hour
digestion of alfalfa in ruminants. Digestion is complete if tg > MX(0)(k̇XyXgMg)

−1, and
so k̇gJ̇XAm < k̇XyXgJ̇g, where J̇g denotes the total enzyme production by the individual;
both J̇XAm and J̇g are proportional to L2 for an isomorph.

The above model can be extended to cover a lot of different enzymes in different sections
of the gut, without becoming much more complicated, as long as the additivity assumptions
of their mode of action and their products hold. Food usually consists of many components
that differ in digestibility. Digestion can only be complete for the animal in question if the
most resistant component is digested.

The existence of a maximum ingestion rate implies a minimum gut residence time. With
a simple model for digestion, it is possible to relate the digestive characteristics of food
to the feeding process, on the assumption that the organism aims at complete digestion.
The energy gain from ingested food is then directly proportional to the ingestion rate,
if prolonged feeding at constant, different, food densities is considered. See Figure 7.17.
Should temperature affect feeding in a different way than digestion, the close harmony
between both processes would be disturbed, which would lead to incomplete digestion
under some conditions.

7.4 Division

If propagation is by division, the situation is comparable to the juvenile stage of species
that propagate via eggs. A cell divides as soon as the energy invested in the increase of the
state of maturity exceeds a threshold value. If the maturity and somatic maintenance rate
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Figure 7.18: A schematic growth curve of a cell, where
the fat part is used in steady state. This is the situation
for i = 2, the number of forks switching between 1 and 3.
If Vd/Vp = 2i, equation (7.66) reduces to tD = it(2iVp) =
it(Vd), with t(2i−1Vp) = 0, which means that the time re-
quired to duplicate dna is exactly i times the division inter-
val. So, during each cell cycle, a fraction i−1 of the genome
is duplicated, which implies that 2i−1 dna duplication forks
must be visible during the cell cycle. At the moment that
the number of forks jumps from 2i − 1 to 2i+1 − 1, the cell
divides and the number of forks resets to 2i − 1. This is
obviously a somewhat simplified account, as cell division is
not really instantaneous. If Vd/Vp 6= 2i, the age of the cell
at the appearance of the new set of duplication forks some-
where during the cell cycle is t(2i−1Vp), which thus has to be
subtracted from it(Vd) to arrive at the genome duplication
time.
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coefficients are equal, k̇J = k̇M , division also occurs at a fixed structural volume, say Vd.
Donachie [281] pointed out that in fast growing bacteria the initiation of dna duplication
occurs at a certain volume Vp, but it requires a fixed and non-negligible amount of time tD
for completion. This makes the volume at division, Vd, dependent on the growth rate, so
indirectly on substrate density, because growth proceeds during this period.

The mechanism (in eukaryotic somatic cells) of division at a certain size is via the
accumulation of two mitotic inducers, cdc25 and cdc13, which are produced coupled to
cell growth. (The name for the genes ‘cdc’ stands for cell division cycle.) If these inducers
exceed a threshold level, protein kinase p34cdc2 is activated and mitosis starts [807, 817].
During mitosis, the protein kinase is deactivated and the concentration of inducers resets
to zero. This mechanism indicates that for shorter interdivision periods, the cell starts a
new dna duplication cycle when its volume exceeds 2Vp, 4Vp, 8Vp etc. The interdivision
time for Escherichia coli can be as short as 20 minutes under optimal conditions, while it
takes an hour to duplicate the dna. The implementation of this trigger is not simple in a
dynamic environment. At constant substrate densities, the scaled cell length at division,
ld ≡ (Vd/Vm)1/3, and the division interval, t(ld) ≡ td, can be obtained directly. When i is
an integer such that 2i−1 < Vd/Vp ≤ 2i, Vd can be solved from

tD = it(Vd)− t(2i−1Vp) (7.66)

Figure 7.18 illustrates the derivation.
The volume at division Vd can be found numerically when (2.23), (4.20) or (4.27) is

substituted for t(V ) in (7.66), for isomorphs, V1-morphs or rods, respectively. If the
maturity and somatic maintenance rate coefficients are not equal, the size at division must
be obtained from equating the cumulative investment in maturation to a threshold level,
the size at division generally increases with substrate density, even apart from delays due
to dna duplication.
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Figure 7.19: The waternet Hydrodictyon reticulatum
forms a cylindrical sac-like net; the largest recorded
size is 114 cm long and 4–6 cm broad [189]. Several
thousand spores in each cell grow into small cylin-
drical cells, which make contact, stick together and
form a minute net. The mother cells disintegrate syn-
chronously, each giving birth to a new net. This green
alga recently arrived in New Zealand, where it causes
water quality problems in eutrophic fresh waters.

Many organisms that propagate vegetatively produce spores, and the mother cell dies
upon release. The number usually varies between species and growth conditions, and
frequently is a power of 2. In the green alga Scenedesmus it is usually 4 or 8, but in the
water net, it can be several thousand, see Figure 7.19.

7.5 Cell wall and membrane synthesis

The cell has to synthesise extra cell wall material at the end of the cell cycle. Since the cell
grows in length only, the growth of surface material is directly tied to that of cytoplasmic
material. Straightforward geometry shows that the change in surface area A of a rod, cf
{127}, with aspect ratio δ and volume at division Vd is given by d

dt
A = (16π 1−δ/3

δVd
)1/3 d

dt
V .

So the energy costs of structure can be partitioned as [EG] = [EGV ] + {EGA}(16π 1−δ/3
δVd

)1/3,

where {EGA} denotes the energy costs of the material in a unit surface area of cell wall
and [EGV ] that for the material in a unit volume of cytoplasm. For reasons of symmetry,

it is more elegant to work with [EGA] ≡ {EGA}V −1/3
d rather than {EGA}. The dimensions

of [EGV ] and [EGA] are then the same: energy per volume. At the end of the cell cycle,
when cell volume is twice the initial volume, the surface material should still increase
from A(Vd) to 2A(Vd/2) = (1 + δ/3)A(Vd). This takes time, of course. If all incoming
energy not spent on maintenance is used for the synthesis of this material, the change in

surface area is given by d
dt
A = k̇E

gA
(fA − Vd/V 1/3

m ), where gA ≡ [EGA]/κ[Em]. So A(t) =

(A(0)−Vd/fV 1/3
m ) exp(tf k̇E/gA)+Vd/fV

1/3
m . The time it takes for the surface area to reach

(1 + δ/3)V
2/3
d , starting from A(0) = V

2/3
d , equals

tA =
gA

fk̇E

(
ln 2 + ln

V∞ − Vd/2
V∞ − Vd

)
(7.67)

For the time interval between subsequent divisions, t(Vd) must be added, giving

td =
gA

fk̇E
ln 2 +

(
gA

fk̇E
+

(f + g)V∞

fk̇EVdδ/3

)
ln
V∞ − Vd/2
V∞ − Vd

(7.68)

The extra time for cell wall synthesis at the caps is not significant for filaments, as their caps
are comparatively small. Neither does it play a significant role in unicellular eukaryotic



7.6. Organelle-cytosol interactions & dual functions of compounds 275

isomorphs, because they do not have cell walls to begin with. The cell’s volume is full of
membranes in these organisms, so the amount of membrane at the end of the cell cycle
does not need to increase as abruptly as in bacteria, where the outer membrane and cell
wall (if present) are the only surfaces. Comparable delays occur in ciliates for instance,
where the cell mouth does not function during and around cell division.

7.6 Organelle-cytosol interactions & dual functions of

compounds

Many cellular compounds have a dual function, as source for energy as well as building
blocks. Because of this duality, the fate of metabolites should generally depend on the
cellular growth rate. This problem is studied in [660] for the interaction between mito-
chondria and cytosol. When the cytosol passes pyruvate and adp to its mitochondria,
how do the enzymes of the tca cycle in the mitochondria ‘know’ the metabolic needs of
the cell in terms of export of the correct mix of intermediary metabolites and atp? Can
these enzymes use the size of the pyruvate flux as the only source of information? The cell
uses these mitochondrial products for maintenance and growth; these two processes differ
in their metabolic needs and they vary in relative intensity. If the export of metabolites
from the mitochondria would not match cellulars needs, a growth rate dependent waste
flux would result, and such a flux is not observed empirically.

The spatial organisation of the enzymes of the tca cycle suggests that the answer to
the question might involve handshaking protocols: The enzymes of the tca cycle occur in
metabolons, where a single copy of each enzyme makes physical contact with its neighbours
in the correct sequence and the metabolons are linked to the (inner) mitochondrial mem-
brane. The answer, detailed in [660], is that using two degrees of freedom, the size of the
pyruvate flux to the mitochondria has indeed all the information that the enzymes require
to match the export of metabolites from the mitochondria to the cytosol to the cellulars
needs in terms of maintenance and growth. This holds even at varying substrate levels in
cell’s environment. The first degree of freedom is that handshaking is a mix between the
open and closed protocols, as discussed at {254}, with fixed weight coefficients. The second
one is that the metabolons comprise fixed fractions of reserve and structure, in accordance
with the strong homeostasis assumption.

The cytosol-mitochondria system can be seen as a complex syntrophic system that
might serve as a more general template for interaction between the various modules of the
central metabolism, see {108}, and more generally between trophic systems, {327}.

7.7 Mother-foetus system

Temporarily elevated food intake can be observed in birds preparing for migration or re-
production, in mammals preparing for hibernation or in pregnant mammals [1183]. Vitel-
logenin in eggs and casein in milk have similar metabolic functions. The three vitellogenin-
encoding genes were progressively lost in the mammalia around 30–70 Ma ago, except in
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the prototherians, while casein-encoding genes already appeared in the mammalian ances-
tor some 200–310 Ma ago [145]. The transition from egg laying to placental development
went probably incremental. The prototherians still lay yolky eggs, the marsupial oocyte
still has some yolk, that of the eutherians has not.

The foetus is ectothermic, so {J̇ET} = 0; in placentalia the mother keeps the foetus
warm. The mother provides the foetus with a reserve flux J̇FEA = {J̇FEA}L2

F through the
placenta, which is proportional to the squared length of the foetus, while {J̇FEA} is assumed
to be constant, but might depend on the general nutritional status of the mother. This
supply bypasses the assimilatory system of the foetus, which only becomes functional in
the juvenile stage.

Foetal development is discussed at {61}, so I here focus on the energetics of the mother
as a result of the interaction with Tânia Sousa and Tiago Domingos. The assimilation
of the mother is up-regulated during pregnancy, where the surface area of the placenta is
added to that of the mother. The idea behind this construct is that for demand systems
like most organisms that produce foetuses, food uptake capacity is proportional to the gut
surface area, where not only the actual transport of metabolites across the gut surface limits
uptake, but also the further processing of the metabolites derived from food to reserve.
The transport across the placenta accelerates this process. The assimilation process of the
mother of length L and a foetus of length LF then amounts to

J̇EA = f{J̇EAm}(L2 + δL2
F ) (7.69)

At constant food levels the extra assimilation will match the foetal needs, so

f{J̇EAm}(L2 + δL2
F ) = f{J̇EAm}L2 + {J̇FEA}L2

F , so {J̇FEA} = f{J̇EAm}δ (7.70)

The export of reserve from the mother to the foetus is from the somatic branch of
the catabolic flux and has priority over the somatic maintenance of the mother unless
starvation conditions are so severe that spontaneous abortus occurs.

The parameters in the following specification of the changes in reserve ME and structure
MV refer to that of the mother:

d

dt
ME = J̇EA − J̇EC with J̇EC = {J̇EAm}L2 ge

g + e

(
1 +

LT + L

gLm

)
(7.71)

d

dt
MV = (κJ̇EC − J̇EM − J̇ET − J̇FEA)yV E (7.72)

with J̇EM = [J̇EM ]L3, J̇ET = {J̇ET}L2, LT = {J̇ET}/[J̇EM ] and Lm = κ{J̇EAm}/[J̇EM ].
The foetus increases the assimilation of the mother, but not the mobilisation rate

directly, only indirectly via the increase of the reserve of the mother that is the consequence
of the actions of the foetus. This is qualitatively consistent with empirical observations.

Since allocation to the foetal system has priority over somatic maintenance, and so over
growth, the foetus might reduce the growth of the mother. If the mother is already fully
grown at pregnancy, somatic maintenance might be reduced, e.g. by reducing activity,
which typically comprises some 5 till 10 % of the somatic maintenance costs. This too
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is qualitatively consistent with observations. It is probably no coincidence that species
that sport foetal reproduction frequently developed advanced social systems to avoid the
translation of a reduction in activity into a reduction in food intake or an increase in hazard
rate via an increased risk of being catched by a predator.

Suppose that food density, and so f , as well as MV , and so L, are constant at the start
of pregnancy, so κJ̇EC = J̇EM + J̇ET + {J̇FEA}L2

F and L = fLm − LT . The mobilisation
flux reduces to J̇EC = {J̇EAm}L2 f+g

e+g
e. We now study the reduction of [J̇EM ] that is

required to cope with foetal development. The value relative to the pre-pregnancy period
and the dynamics of scaled reserve density amounts for yTA = {J̇ET}/{J̇EAm} and yFA =
{J̇FEA}/{J̇EAm} to

[J̇EM ](t)

[J̇EM ](0)
=

κe(t) f+g
e(t)+g

− yTA − yFAL2
F/L

2

κf − yTA
(7.73)

d

dt
e =

(
f + fδL2

F/L
2 − e

)
v̇/L (7.74)

This dynamics implies a maximum reduction of somatic maintenance costs, and might
match the fraction that activity takes in the somatic maintenance costs. In this way foetal
reproduction could evolve without substantial metabolic adaptations.

In many placentalia pregnancy is followed by a period of lactation. This product of the
mother is also paid from the somatic branch of the catabolic flux, and also has the effect
that the assimilation capacity is up-regulated to match this drain of reserve. It is typically
a demand-driven process where the flux of milk taken by the baby is proportional to its
squared length. The consequence is that the reserve of the mother remains elevated above
the normal level during this period. In the marsupials, the foetal development is really
short and the length at birth is very small, but the lactation period is relatively long.

7.8 Extra life stages

7.8.1 Pupa & imago

Insects do not grow in the adult stage, called the imago. They are thus much less flexible
in their allocation of energy. Holometabolic insects (butterflies, wasps, beetles, flies) have
a pupal stage between the juvenile and the adult one, which has a development pattern
that strongly resembles that of the embryo or, more specifically, the foetus, since the
energy reserves at eclosion are usually quite substantial so that there is hardly any growth
retardation due to reserve depletion. This resemblance to a development pattern is not a
coincidence because the adult tissue develops from a few tiny imaginal disks, the structural
biomass of the larva being first converted to reserves for the pupa. So the initial structural
volume of the pupa is very small indeed. Since no energy input from the environment occurs
until development is completed, pupal weight decreases, reflecting the use of energy. This
can be worked out quantitatively as follows.

As discussed under foetal development, see {61}, growth is given by d
dt
V = v̇L2, so that,

if temperature is constant, L(t) = L0 + tv̇/3, where L0 represents the structural length of
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Figure 7.20: The wet weight develop-
ment of the male pupa of the green-veined
white butterfly Pieris napi at 17 ◦C un-
til eclosion, after having spent 4 months
at 4 ◦C. Data from Forsberg and Wik-
lund [360]. The fitted curve is Ww(t) =
130.56− (7.16+t

9.61 )3, with weight in mg and
time in days, as is expected from the deb
theory.
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Figure 7.21: The survival curves of the
female fruit fly Drosophila melanogaster
at 25 ◦C and unlimited food. Data from
Rose [991]. The fitted survival curve is
exp(−(ḣW t)3) with ḣW = 0.0276 d−1.

the imaginal disks. The energy in the reserves decreases because of growth, maintenance
and development, so that

E(t) = E0 −
[EG]

κ
V (t)− [ṗM ]

κ

∫ t

0
V (t1) dt1 (7.75)

= E0 −
[EG]

κ
(V

1/3
0 + t

v̇

3
)3 − [ṗM ]

4κv̇
(V

1/3
0 + t

v̇

3
)4 +

[ṗM ]

4κv̇
V

4/3
0 (7.76)

Together with the contribution of the structural volume, this translates via (3.2) into the
wet weight development

Ww(t) = wE
E0

µE
− (gwE [MEm]−dV )

(
V

1/3
0 + t

v̇

3

)3

− wE [MEm]

4V 1/3
m

((
V

1/3
0 + t

v̇

3

)4

− V 4/3
0

)
(7.77)

Tests against experimental data quickly show that the contribution of the third term,
which relates to maintenance losses, is too small to be noticed. So the weight-at-time
curve reduces to a three-parameter one. It fits the data excellently, see Figure 7.20. Just
as in foetuses, the start of the development of the pupa can be delayed, in a period known
as the diapause. The precise triggers that start development are largely unknown.

Imagos do not grow, so if the reserve dynamics (2.10) still applies, the catabolic rate
reduces to ṗC = {ṗAm}L2e, and the survivor probability due to aging is given by (6.6).
Experimental results of Rose, Figure 7.21, suggest that this is realistic. He showed that
longevity can be prolonged in female fruit flies by selecting offspring from increasingly older



7.8. Extra life stages 279

 0

 5

 10

 15

 20

 25

 0  200  400  600  800  1000
time since eclosion, d

#
of

su
rv

iv
or

s

↑ X, ↑ T
↑ X, ↓ T

↓ X, ↑ T

 0

 1

 2

 3

 4

 5

 0  200  400  600  800  1000
time since eclosion, d

#
of

eg
gs

/
be

et
le

,
d−

1

↑ X, ↑ T

↑ X, ↓ T
↓ X, ↑ T

Figure 7.22: The reproduction rate (right) of the carabid beetle Notiophilus biguttatus feeding
on a high density of springtails at 20/10 ◦C (↑ X, ↑ T ) and at 10 ◦C (↑ X, ↓ T ) and a lower
density at 20/10 ◦C (↓ X, ↑ T ). The survival probability of these cohorts since eclosion is given
left. Data from Ger Ernsting, pers. comm. and [326]. The survival probability functions (left) are
based on the observed reproduction rates with estimated parameter ḧae0(κRgl3)−1 = 0.63 a−2 for
↑ X, ↑ T , 0.374 a−2 for ↑ X, ↓ T , 0.547 a−2 for ↓ X, ↑ T . The contribution of maintenance costs
to aging is determined from respiration data. A small fraction of the individuals at the high food
levels died randomly at the start of the experiments.

females for continued culture [991]. It cannot be ruled out, however, that this effect has
a simple nutrient/energy basis with little support for evolutionary theory. Selection for
digestive deficiency also results in a longer life span. Reproduction, feeding, respiration
and, therefore, aging rates must be coupled because of the conservation law for energy.
This is beautifully illustrated with experimental results by Ernsting and Isaaks [326], who
collected carabid beetles Notiophilus biguttatus from the field shortly after eclosion, kept
them at a high and a low level of food supply (springtail Orchesella cincta) at 16 h 20 ◦C:8
h 10 ◦C, and measured survival and egg production. A third cohort was kept at 10 ◦C at
a high feeding level. They showed that the respiration rate of this 4–7 mg beetle is linear
in the reproduction rate: 0.84 + 0.041Ṙ in J d−1 at 20/10 ◦C and 0.57 + 0.051Ṙ at 10 ◦C.
This linear relationship is to be expected for imagos on the basis of the aforementioned
interpretations. It allows a reconstruction of the respiration rate during the experiment
from reproduction data and a detailed description of the aging process. This is more
complex than the Weibull model, because metabolic activity was not constant, despite
standardised experimental conditions. The quantitative details are as follows.

The mobilisation rate is subdivided into the maintenance and reproduction costs as

ṗC = ṗM/κ+ ṘE0/κR = (k̇M + Ṙe0(gκRl
3)−1)[EG]V/κ (7.78)

where the scaled egg cost e0 is given in (2.42). This gives the hazard rate and survival
probability

ḣ(t) =
1

2
ḧak̇M t

2 +
ḧae0

κRgl3

∫ t

0

∫ t1

0
Ṙ(t2) dt2 dt1 (7.79)
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Pr{a† > ap + t|a† > ap} = exp

(
−1

6
ḧak̇M t

3 − ḧae0

κRgl3

∫ t

0

∫ t1

0

∫ t2

0
Ṙ(t3) dt3 dt2 dt1

)
(7.80)

Although e0 depends on the reserve energy density of the beetle, and so on feeding be-
haviour, variations will be negligibly small for the present purpose since food-dependent
differences in egg weights have not been found. The low temperature cohort produced
slightly heavier eggs, which is consistent with the higher respiration increment per egg.
The estimation procedure is now to integrate the observed Ṙ(t) three times and to use the
result in the estimation of the two compound parameters 1

6
ḧak̇M and ḧae0(κRgl

3)−1 of the
survivor function from observations.

Figure 7.22 confirms this relationship between reproduction, and thus respiration, and
aging. The contribution of maintenance in respiration is very small and could not be
estimated from the survival data. The mentioned linear regressions of respiration data
against the reproduction rate indicate, however, that κRgk̇M l

3/e0 = 0.84/0.041 = 20.4 d−1

at 20/10 ◦C or 0.57/0.051 = 11 d−1 at 10 ◦C. This leaves just one parameter ḧae0(κRgl
3)−1

to be estimated from each survival curve. The beetles appear to age a bit faster per
produced egg at high than at low food density. This might be caused by eggs being more
costly at high food density, because of the higher reserves at hatching. Another aspect is
that, at high food density, the springtails induced higher activity, and so higher respiration,
by physical contact. Moreover, the substantial variation in reproduction rate at high food
density suggests that the beetles had problems with converting the energy allocated to
reproduction to eggs, which led to an increase in κR and a higher respiration per realized
egg. Note that these variations in reproduction rate are hardly visible in the survival curve,
which is due to triple integration. The transfer from the field to the laboratory seemed to
induce early death for a few individuals at the high food levels. This is not related to the
aging process but, possibly, to the differences with field conditions.

The Weibull model for aging with a fixed shape parameter of 3 should not only apply
to holometabolic insects, but to all ectotherms with a short growth period relative to
the life span. Gatto et la. [389] found, for instance, a perfect fit for the bdelloid rotifer
Philodina roseola where the growth period is about 1/7-th of the life span. Notice that
constant temperature and food density are still necessary conditions for obtaining the
Weibull model.

The presented tests on pupal growth and survival of the imago support the applicability
of the deb theory to holometabolic insects, if some elementary facts concerning their life
history are taken into account. This suggests new interpretations for experimental results.

7.8.2 Metamorphosis in juvenile fish

In collaborative work with Laure Pecquerie [877], we extend the standard deb model for
anchovy, Engraulis encrasicolus , by splitting the juvenile stage, separated by metamor-
phosis, to accommodate the empirical observation that length increases approximately
exponentially with age during the juvenile I stage. Pigmentation occurs at metamorpho-
sis, which marks the metamorphosis event. In the embryo, juvenile II and adult stages,
anchovy is isomorphic, but in the juvenile I state V1-morphic. Stage transitions occur at
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scaled maturity values U b
H , U j

H and Up
H , where the structural volume has values Vb, Vj and

Vp, respectively. The shape correction function isM(V ) = (min(max(V, Vb), Vj)/Vb)
1/3, so

for V < Vb we have M(V ) = 1, for V > Vj we have M(V ) = (Vj.Vb)
(1/3 and between Vb

and Vj, M(V ) increases linearly.

We assume that physical length Lw relates to volumetric length L as Lw = L/δM, for
constant δM. In principle the value for δM in the embryo, juvenile II and adult stage
could be different, and many possibilities for the relationship exists for the juvenile I, since
V1-morphy only concerns the relationship between surface area and structural volume.

So the change in scaled reserve, length and scaled maturity is given by for UH < Up
H :

d

dt
e = (f − e) v̇

∗

L
;

d

dt
L =

v̇∗

3

e− L/L∗m
e+ g

;
d

dt
UH = (1− κ)eL2 g

∗ + L/Lm
g + e

− k̇JUH (7.81)

with v̇∗ = v̇ and f = 0 for the embryo but otherwise v̇∗ = v̇M(V ) and g∗ = gM(V ).
Furthermore L∗m = v̇∗

k̇Mg
and Lm = v̇

k̇Mg
. Notice that v̇∗ changes in a continuous (but

not differentiable) way across stage transitions, as does the reserve turnover rate v̇∗/L.
For UH > Up

H we have d
dt
UH = 0, and allocation to reproduction occurs. Notice that for

U j
H = U b

H we have no juvenile I stage; the individual then remains isomorphic during all
stages, with v̇∗ = v̇ and M(V ) = 1. The threshold U j

H is the only parameter that we
introduced for the change in shape.

We also have L(0) = 0, UH(0) = 0 and e(ab) = f , where age at birth ab is given implic-
itly by UH(ab) = U b

H . All rate parameters depend on temperature, including the parameter
{J̇EAm} or {ṗAm} with which we scaled the cumulated investment into maturity; for the
scaling, however, we use the constant value that applies to some reference temperature and
avoid complex forms of dynamic scaling.

7.9 Changing parameter values

Parameter values are usually constant, by definition, but environmental and internal factors
might make them vary in time; I discussed effects of temperature {16}, toxicants and
parasites {229} and diurnal cycles {115} as external factors, and changes in shapes {120,
277, 280}, diet choices {180} and during pregnancy {275} as internal factors. Quite a
few other causes at the interface between internal and external factors; starvation can
induce changes energy allocation through κ, and prolonged starvation can invoke drastic
qualitative changes {113}.

Although not worked out quantitatively, parameter values can be coupled to the aging
process, where maintenance, reproduction and feeding usually tend to decrease with age.
Some other types of changes are briefly discussed in the next subsections, to reveal possible
interpretations of data in the light of the deb theory. They are arranged on an increasing
time scale.
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Figure 7.23: Length-at-age of man, de
Montbeillard’s son, in the years 1759–
1777. Data from Cameron [186]. The
curve is the von Bertalanffy one with
an instantaneous change of the ultimate
length from 177 cm to 190 cm and of the
von Bertalanffy growth rate from 0.123
a−1 to 0.549 a−1 at 13.3 a since birth.
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7.9.1 Changes at puberty

Growth curves suggest that some species, e.g. humans, change the partition coefficient κ
and the maximum surface-area-specific assimilation rate {ṗAm} at puberty in situations of
food abundance; see Figure 7.23.

The reasoning presented at {65} resulted in k̇M = 0, 5 a−1 and g = 2.79 for humans,
assuming absence of jumps in parameter values at birth. The scaled length 58/177 = 0.33
from Figure 7.23 is in good agreement with that estimated from weights. Assuming that
LT = 0 for western humans (because of clothing) and food unrestrictive (f = 1), the
(juvenile) human energy conductance is v̇ = Lmk̇Mg = 2.57 m a−1 or 6.76 mm d−1 in the
basis of physical length at 37 ◦C.

Figure 7.23 shows that at puberty, both the maximum length Lm = v̇
k̇Mg

and the von

Bertlannfy growth rate ṙB = k̇Mg
3(1+g)

make an upward jump, by a factor 190/177 = 1.1 and

0.549/0.123 = 4.46 respectively, while they are negatively correlated (these data do not
determine the ultimate length very well).

Indicating the values for juveniles and adults with j and a, respectively, this translates

to 1
1.1

v̇a
v̇j

=
k̇aMga

k̇jMgj
= 4.461+ga

1+gj
. Additional information is required to interpret these changes

to that of primary parameters. Some possibilities can be excluded, however; if k̇jM = k̇aM
we would have ga

1+ga
= 4.46 gj

1+gj
, which is inconsistent with the observation that gj = 2.79.

So k̇M must be affected. Deviations from strict isomorphism may affect estimates.

7.9.2 Suicide reproduction

Like Oikopleura, salmon, eel and most cephalopods die soon after reproduction. The distri-
bution of this type of behaviour follows an odd pattern in the animal kingdom. Tarantula
males die after first reproduction, but the females reproduce frequently and can survive
for 20 years. Death after first reproduction does not follow the Weibull-type aging pattern
and probably has a different mechanism. Because the (theoretical) asymptotic size is not
approached in cephalopods, they also seem to follow a different growth pattern. I be-
lieve, however, that early death, not the energetics, makes them different from iteroparous
animals. The arguments are as follows.

Starting not close to zero, the surface area in von Bertalanffy growth is almost linear
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in time across a fairly broad range of surface areas. This has led Berg and Ljunggren [87]
to propose an exactly linear growth of the surface area for yeast until a certain threshold
is reached; see Figure 2.14. Starting from an infinitesimally small size, however, which
is realistic for most cephalopods, length is almost linear in time, so the volume increases
with cubed time: V (t) = ( v̇ft

3(f+g)
)3. Over a small trajectory of time, this closely resembles

exponential growth, as has been fitted by Wells [1238], for instance.

Squids show a slight decrease in growth rate towards the end of their life (2 or perhaps
3 years [1132]), just enough to indicate the asymptotic size, which happens to be very
different for female and male in Loligo pealei. It will be explained in the section of pri-
mary scaling relationships, {292}, that the costs of structure [EG] in the von Bertalanffy

growth rate ṙB = [ṗM ]/3
[EG]+κ[Em]f

hardly contribute in large-bodied species because they are
independent of asymptotic length, while maximum energy density is linear therein. So
ṙB ' [ṗM ]

3κ[Em]f
. The product ṙBV

1/3
∞ ' v̇/3 should then be independent of ultimate size. On

the basis of data provided by Summers [1132], the product of ultimate length and the von
Bertalanffy growth rate was estimated to be 0.76 and 0.77 dm a−1 for females and males
respectively. The equality of these products supports the interpretation in terms of the
deb model. The fact that the squids die well before approaching the asymptotic size only
complicates parameter estimation.

A large (theoretical) ultimate volume goes with a large maximum growth rate. If the
maximum growth rates of different species are compared on the basis of size at death,
the octopus Octopus cyana grows incredibly quickly, as argued by Wells [1238]. Assuming
that the maximum growth rate is normal, however, a (theoretical) ultimate volume can
be inferred by equating ṙBV

1/3
∞ for the octopus to that for the squid, after correction of

temperature differences. Summers did not indicate the temperature appropriate for the
squid data, but on the assumption that it has oscillated between 4 and 17 ◦C and that
TA = 12.5 kK, the growth rate has to be multiplied by 9.3 to arrive at the temperature
that Wells used, i.e. 25.6 ◦C. The data of Wells indicate a maximum growth rate of 4

9
ṙBVm =

25.5 dm3 a−1. The ultimate volume is thus
(

9×25
4×9.3×0.77

)3/2
= 22 dm3 for the octopus. This

is three times the volume at death.

While emergency reproduction, see {120}, is typically a response to an unpredictable
food shortage, suicide reproduction can sometimes be a response to predictable food short-
age, and is integrated in the life history of the species.

7.9.3 Adaptation of uptake capacity

Figure 7.24 illustrates that prolonged exposure to limiting amounts of glucose eventually
results in substantially improved uptake of glucose from the environment by bacteria. The
difference in saturation constants between a ‘wild’ and an adapted population can amount
to a factor of 1000. The outer membrane adapts to the specialised task of taking up a
single type of substrate, which may jeopardise a rapid change to other substrates. This
adaptation process takes many cell division cycles, as is obvious from the measurement of
population growth rates, which itself takes quite a few division cycles.

When substrate is absent for a sufficiently long period of time, the metabolic machinery
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Figure 7.24: The population growth rate of Escherichia coli on glucose limited media. Schulze
and Lipe’s culture [1035], left, had been exposed to glucose-limitation just prior to the experiment,
while that of Senn [1043], right, had been pre-adapted for a period of three months. The coarsely
stippled curve in the right graph does not account for a time lapse between sampling from the
continuous culture and measurement of the concentration of glucose [815]; the finely stippled one
accounts for a time lapse of 0.001 h; the drawn one for a time lapse of 0.01 h.

that deals with handling those substrates can be deleted from dna. This is a route to
speciation, which leads to permanent changes in parameter values.

7.9.4 Diauxic growth: Inhibition and preference.

Diauxic growth is the property of populations of microorganisms to first grow more or
less logistically to a certain level in a batch culture, using one substrate only, and then
resume growth to a second higher level, using another substrate. So the use of the second
substrate is delayed until the first substrate is exhausted. This behaviour is species as well
as substrate-combination specific.

Carriers in the outer membrane typically only transport particular substrates from the
environment into the cell. This comes with the requirement to regulate gene expression for
carriers of substitutable substrates to match the substrate availability in the environment.
Data strongly suggest that allocation to the assimilation machinery is a fixed fraction of
the utilised reserve flux, and that the expression of one gene for a carrier inhibits in some
cases the expression of another gene. Inhibition strength is linked to the workload of the
carriers, cf {199}. This regulation mechanism has similarities to that of differentiation.

Figure 7.25 illustrates this for two data sets on the uptake by E. coli K21 of fumarate
and pyruvate and of fumarate and glucose (from [662]). Unlike pyruvate, glucose sup-
presses the uptake of fumarate. The background expression of carrier synthesis and the
maintenance requirements were set to zero, because the data provide little information on
this. The yield of structure on reserve was fixed (because the data give no information
on biomass composition). The data were fitted simultaneously to ensure that the uptake
parameters for fumarate and the reserve turnover rates are identical in the two data sets
(so removing degrees of freedom). Apart from the initial conditions, 12 parameters were
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Figure 7.25: The uptake of fumarate (F ) and pyruvate (P ) (see Figure A), and of fumarate
(F ) and glucose (G) (see Figure B) by E. coli K12 in a batch culture. Data from Narang et al.
[826]. Parameters: saturation coefficients (g l−1) KF = 0.089, KP = 0.012, KG = 0.013; yield
coefficients (g g−1 dry weight) yEF = 0.577, yEP = 0.015, yEG = 0.446, yEV = 1.2 (fixed); max.
specific uptake rates (g(h g dry weight)−1), jFAm = 1.138, jPAm = 40.15, jGAm = 2.59; reserve
turnover rate (h−1) k̇E = 4.256; maintenance rate coefficient (h−1) k̇M = 0 (fixed); preference
parameter (-) wP = 0.941wF for pyruvate versus fumarate; wG = 12.15wF for glucose versus
fumarate; background expression (h−1) ḣ = 0 (fixed). Initial conditions: (A) F (0) = 2.0 g l−1,
P (0) = 2.1 g l−1, E. coli(0) = 0.037 g l−1, κF (0) = 0.96, mE(0) = 0.288 g g−1 dry weight; (B)
F (0) = 0.81 g l−1, G(0) = 1.11 g l−1, E. coli(0) = 0.013 g l−1, κF (0) = 0.99, mE(0) = 1.3 g g−1

dry weight

estimated for six trajectories. The fit is quite good, despite the constraint for the parameter
values for fumarate to be identical. The data in Figure 9A clearly show continued growth
after depletion of substrates, which requires reserves to capture; this cannot be done with
e.g. a Monod model.

Although their derivation has been set up slightly differently, the supply formulation
for inhibition is used in [140] to model substrate preference and diauxic growth in microor-
ganisms, while [1167] used a demand formulation. See Figure 3.8. The use of genes coding
for substrate-specific carriers is here linked to the use of carriers; the expression of one
gene inhibits the expression of the other. When embedded in a batch culture, the uptake
rate of substrates S1 and S2 by biomass X (of V1-morphs) with reserve density mE in a
batch culture is given by

d

dt
Si = −jSiAX; jSiA = κSijSiAmfSi ; fSi =

Si
Si +KSi

for i = 1, 2 (7.82)

d

dt
X = ṙX; ṙ =

k̇EmE − k̇M
mE + yEV

, (7.83)

d

dt
mE = yES1jS1A + yES2jS2A −mE k̇E, (7.84)

d

dt
κS1 = (ṙ + ḣ)

(
w′S1

κS1fS1

w′S1
κS1fS1 + w′S2

κS2fS2

− κS1

)
; κS2 = 1− κS1 , (7.85)



286 7. Extensions of deb models

where j∗Am is the maximum specific uptake flux of substrate ∗, f∗ is the scaled functional
response and K∗ the half-saturation coefficient for substrate ∗. The coefficient yE∗ is the
yield of reserve E on substrate ∗, k̇E the reserve turnover rate, k̇M the maintenance rate
coefficient and ṙ the specific growth rate. The fraction κS1 between 0 and 1 quantifies
the relative gene expression for the carrier of substrate S1 and w′S1

the inhibition of the
expression of the gene for the carrier of substrate S1 by the expression of the gene for the
carrier of substrate S2; without loss of generality we can assume that 1 = w′S1

+w′S2
. Notice

that a single substrate induces full gene expression (κS1 → 1 if fS2 = 0). The typically
very low background expression rate ḣ serves an antenna function for substrates that have
been absent for a long time. This readily extends to an arbitrary number of substrates.
See Figure 7.25 and [140] for an illustration of the application of this theory.

7.10 Summary

A variety of aspects are discussed to show how the univariate deb models can be applied
and extended to deal with details of energetics.

• Behavioural traits can be incorporated in a systematic way using SUs and affect the
functional response due to conservation of time.

• Transport processes in the environment can also modify functional responses, and
build up spatial structures.

• Constraints on digestion are discussed for an efficiency that is independent of body
size and food density.

• Intra- and extra-cellular digestion are compared. Extracellular digestion is greatly
improved by living together with other individuals.

• The synthesis of material that relates to surface area requires a waiting time that
can be expressed in terms of energetic costs, and affects the population growth rate.

• The link between models for pathways and deb models are discussed. Appropriate
handshaking protocols and links of enzyme abundance to the amounts of reserve and
structure are required to match both models.

• The number of life stages can be extended to include changes in parameter values of
a particular type. Pupae and imagos are discussed as examples of modifications in
life stage patterns, with the implied consequences for reproduction and aging.

• Changes of parameter values are discussed that can occur at the various time scales;
the evolutionary time scale involves changes that lead to speciation, as discussed in
the Chapter 10.

• Adaptation of the uptake of particular substrates is discussed, in relation to diauxic
growth



Chapter 8

Co-variation of parameter values

The range of body sizes is enormous. Prokaryotes span a huge life span volume
10log a 10log m3

life

earth

whale whale
bact.

bact.

atp

H2O

cellular size range; the largest is the colourless sulphur bacterium
Thiomargarita namibiensis with a cell volume of 2 × 10−10 m3

[1034], the smallest is Pelagibacter ubique at 10−20 m3. This small
size has the remarkable implication that it has less than a single
free proton in its cell if its internal pH is 7 as is typical for bac-
teria, cf {413}. This has peculiar consequences for the molecular
dynamics of metabolism. A typical bacterium with full physiolog-
ical machinery has a volume of about 0.25 × 10−18 m3. The blue
whale has a volume of up to 135 m3. A sequoia may even reach
a volume of 2000 m3, but one can argue that it is not all living
matter. Ironically, the organism with the largest linear dimensions is usually classified as a
‘micro-organism’: the fungus Armillaria bulbosa is reported to occupy at least 15 hectares
and exceeds 10 Mg or 10 m3 [1081]. The factor between the volumes of bacterium and
whale is 5.4×1020, that between the volume a water molecule occupies in liquid water and
that of a bacterium is ‘only’ 1010. The interdivision interval of a bacterium can be as short
as 20 min; the life span of whales may exceed a century [350], while some plants live for
several millennia.

The maximum body length, Lm = κ{ṗAm}/[ṗM ], see {49}, the maximum reserve density
[Em] = {ṗAm}/v̇, see {37}, and the bioconcentration coefficient PV d = iQ/k̇e, see {217}, all
share a common property: they are ratios of in- and outgoing fluxes. This property plays
a key role in theory for the covariation of parameter values among different individuals
or chemical compounds. The remarkable property of this theory is that it is fully implied
already by the standard deb model and the one compartment model. No new assumptions
are required. This is remarkable because the assumptions behind these models are about
mechanisms, and these mechanisms turn out to imply rules for the covariation of parameter
values.

This chapter deals with theory of covariation of parameter values, also known as body
size scaling relationships and quantitative structure activity relationships (QSARs). Both
terms don’t catch the essence, however. Body size is not a cause but a consequence of
underlying processes, and QSARs are about effects of chemical compounds, but the key
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is in transport. The covariation is also tested empirically in this chapter, and is found to
be consistent with the predictions. This is perhaps the strongest empirical support for the
assumptions behind deb theory.

The ecological literature is full of references to what is known as r and K strategies,
as introduced by MacArthur and Wilson [725]. The symbol r refers to the population
growth rate and K to the carrying capacity; these two parameters occur in the logistic
growth equation, which plays a central role in ecology. Under the influence of Pianka
[893], organisms are classified relative to each other with respect to a number of coupled
traits, the extremes being an ‘r-strategist’ and a ‘K-strategist’. Many of these traits can
now be recognized as direct results of body size scaling relationships for eco-physiological
characteristics. The search for factors in the environment selecting for r or K strategies
can, as a first approximation, be translated into that for factors selecting for a small or
large body size.

This chapter starts with intra-species variations of parameter values of the standard
deb model, followed by inter-species variations. Then I discus the parameter variation of
the one-compartment model and its variations (e.g. the film models), followed by that for
the effects chemical compounds. Finally I discuss interactions between body size scaling
relationships and QSARs.

8.1 Intra-specific parameter variations

8.1.1 Genetics & parameter variation

The parameter values undoubtedly have a genetically determined component, which can
to some extent be modulated phenotypically. As I hopefully made clear, the processes
of feeding, digestion, maintenance, growth and reproduction are intimately related. They
involve the complete cellular machinery. Although mechanisms for growth which involve
just one gene have been proposed [282], the many contributing processes make it likely
that thousands are involved. This restricts the possibilities of population genetic theories
dealing with auxiliary characters that do not have a direct link with energetics. (This is
not meant to imply that such theories cannot be useful for other purposes.)

The parameter values for different individuals are likely to differ somewhat. Differences
in ultimate volume at constant food density testify to this. To what extent this has a genetic
basis is not clear, but the heredity of size in different races of dogs and transgenic mice
and turkeys reveals the genetic basis of growth and size. Phenotypic factors and maternal
effects exist as well. An statistical implication is that parameter estimates should be based
on measurements on a single individual, rather than on means: the mean of von Bertalanffy
curves with different parameters is not a von Bertalanffy curve. This problem obviously
grows worse with increasing scatter.

8.1.2 Geographical size variations

The energy constraints on distribution, apart from physical barriers to migration, consist
primarily of the availability of food in sufficient quantity and quality. The second deter-
minant is the temperature, which should be in the tolerance range for the species for a
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long enough period. If it drops below the lower limit, the species must adopt adequate
avoidance behaviour (migration, dormancy) to survive. By ‘chosing’ a convient value for
the lower edge of the temperature tolerance range, in combination with a high Arrhenius
temperature at this edge, see {21}, a species can send itself into turpor during the cold
season, which typically coincides with lack of food.

The minimum food density for survival relates to metabolic costs. If an individual is able
to get rid of all other expenses, mean energy intake should not drop below [ṗM ]V +{ṗT}V 2/3

for an individual of volume V , so the minimum ingestion rate, known as the maintenance

ration, should be {J̇Xm}{ṗAm}
([ṗM ]V + {ṗT}V 2/3). For a 3-mm daphnid at 20 ◦C this minimum

ingestion rate is about six cells of Chlorella (diameter 4 µm) per second [632]. The minimum
scaled food density X/K is xs = lT+l

1/κ−lT−l
.

This minimum applies to mere survival for an individual. For prolonged existence,
reproduction is essential to compensate at least for losses due to aging. The ultimate
volumetric length, fV 1/3

m − V 1/3
T , should exceed that at puberty, V 1/3

p , which leads to the

minimum scaled food density xR = lT+lp
1/κ−lT−lp

.

Several factors determine food density. It is one of the key issues of population dy-
namics. The fact that von Bertalanffy growth curves frequently fit data from animals
in the field indicates that they live at relatively constant (mean) food densities. In the
tropics, where climatic oscillations are at a minimum, many populations are close to their
‘carrying capacity’, i.e. the individuals produce a small number of offspring, just enough
to compensate for losses. It also means that the amount of food per individual is small,
which reduces them in ultimate size. Towards the poles, seasonal oscillations divide the
year into good and bad seasons. In bad seasons, populations are thinned, so in the good
seasons a lot of food is available per surviving individual. Breeding periods are synchro-
nized with the good seasons, such that the growth period coincides with food abundance.
So food availability in the growth season generally increases with latitude [678]. The effect
is stronger towards the poles, which means that body size tends to increase towards the
poles for individuals of one species. Figure 8.1 gives two examples. Other examples are
known from, for instance, New Zealand including extinct species such as the moa Dinornis
[175]. Note that size increase towards the poles also comes with a better ability to survive
starvation and a higher reproduction rate, traits that will doubtlessly be of help in coping
with harsh conditions.

Geographical trends in body sizes can easily be distorted by regional differences in soils,
rainfall or other environmental qualities affecting (primary) production. Many species or
races differ sufficiently in diets to hamper a geographically based body size comparison.
For example, the smallest stoats are found in the north and east of Eurasia, but in the
south and west of North America [597]. The closely related weasels are largest in the
south, both in Eurasia and in North America. Patterns like these can only be understood
after a careful analysis of the food relationships. Simpson and Boutin [1066] observed that
muskrats Ondatra zibethicus of the northern population in Yukon Territory are smaller and
have a lower reproduction rate than the southern population in Ontario. They could relate
these differences to feeding conditions, which were better for the southern population, in
this case.
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Figure 8.1: The brown kiwi Apteryx australis in subtropical north of New Zealand is lighter
than in the temperate south. The numbers give ranges of weights of male and female in grams,
calculated from the length of the tarsus using a shape coefficient of δM = 1.817 g1/3 cm−1.
Data from Fuller [381]. A similar gradient applies to the platypus Ornithorhynchus anatinus in
Australia. The numbers give the mean weights of male and female in grams as given by Strahan
[1125]. The deb theory relates adult weights to food availability and so to the effect of seasons.
This interpretation is supported by the observation that platypus weight increases with seasonal
differences at the same latitude in New South Wales. The seasons at the three indicated sites are
affected by the Great Dividing Range in combination with the easterly winds.

Bergmann [88] observed the increase in body size towards the poles in 1847, but he ex-
plained it as an effect of temperature. Large body size goes with small surface area/volume
ratios, which makes endotherms more efficient per unit body volume. This explanation
has been criticised [775, 1026, 1038]. It is indeed hard to see how this argument applies in
detail. Animals do not live on a unit-of-body-volume basis, but as a whole individual [775].
It is also hard to see why the argument applies within a species only, and why animals
with body sizes as different as mice, foxes and bears can live together in the Arctic. The
tendency to increase body size towards the poles also seems to occur in ectotherms, see e.g.
[1187] for flatfish, which requires a different explanation. The deb theory offers an alterna-
tive explanation for the phenomenon because of the relationship between food availability
and ultimate body volume. Temperature alone works in the opposite direction within this
context. If body temperature has to be maintained at some fixed level, individuals in the
Arctic are expected to be smaller while living at the same food density, because they have
to spend more energy on heating, which reduces their growth potential. The effect will,
however, be small since insulation tends to be better towards the poles.

It is interesting to note that species with distribution areas large enough to cover
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climatic gradients generally tend to split up in isolated races or even subspecies. This
can be seen as a form of adaptation, cf. {283}. The differences in ultimate size have
usually become genetically fixed. This is typical for ‘demand’ systems where regulation
mechanisms set fluxes at predefined values which are obtained through adaptation. Within
the deb theory this means that the parameter values are under genetic control and that
the minimum food level at which survival is possible is well above the level required for
maintenance. The matter is taken up again on {314}.

Organisms that cannot shrink ultimately reach a size that corresponds with the highest
scaled reserve density in a periodically varying food environment [307] and this highest
reserve density not only depends on the highest food density, but also on the frequency
of food density oscillations relative to the energy conductance rate. As a result, a small
organism in the tropics may experience its relatively constant environment as more volatile
than a large organism living closer to one of the poles. The size increase towards the poles
as a result of changes in parameter values also comes with a better ability to survive
starvation and a higher reproduction rate; traits that will doubtlessly be of help in coping
with harsh conditions. If the abundant period is short relative to L/v̇, smaller individuals
can reach a substantially higher scaled reserve density than larger conspecifics, which may
help the smaller ones to endure starvation better than the larger ones, [307, Figs 3, 8].

Chapell and Peck [200] explain the Bergmann rule by dioxygen availability; they re-
ported a linear relationship of the upper 5-percentile of the length distribution for am-
phipods and the dioxygen concentration in the water. They compare interspecifically,
however, and did not consider food availability, which might well also covary with the
dioxygen concentration.

8.2 Inter-specific parameter variations

The tendencies of co-variation discussed in the next few sections can be inferred on the
basis of general principles of physical and chemical design. On top of these tendencies,
species-specific adaptations occur that cause deviations from the expected tendencies. The
application of body size scaling relationships to marine fish and molluscs is discussed in
[1188, 1187, 191]. A general problem in body size scaling relationships is that large bodied
species frequently differ from small bodied species in a variety of ways, such as behaviour,
diet, etc. These life styles require specific adaptations, which hamper simple inter-species
comparison. McMahon [773] applied elasticity arguments to deduce allometric scaling
relationships for the shape of skeletal elements. Godfrey et al. [416] demonstrated, for
mammals, that deviations from a simple geometrical upscaling of skeletal elements is due
to size-related differences in life styles.

Primary scaling relationships are about co-variations of primary parameter values of
the standard deb model, secondary scaling relationships concern (simple) functions of
primary parameters, i.e. compound parameters, and tertiary scaling relationships deal with
phenomena at larger scales in space and time, where environmental factors and population
dynamics modify and distort the patterns.
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Table 8.1: The twelve primary parameters of the standard deb model in a time-length-energy
and a time-length-(dry)mass frame and typical values among species at 20 ◦C with maximum
length Lm = zLref

m for a dimensionless zoom factor z and Lref
m = 1 cm. The two frames relate to

each other via µE = 550 kJ mol−1 and [MV ] = 4 mmol cm−3. The typical value for the Arrhenius
temperature TA = 8 kK. See the text for a discussion of the values.

specific searching rate {Ḟm} 6.5 l cm−2 d−1

assimilation efficiency κX 0.8 yEX 0.8 mol mol−1

max spec. assimilation rate {ṗAm} 22.5 z J cm−2d−1 {J̇EAm} 0.041 zmmol cm−2d−1

energy conductance v̇ 0.02 cm d−1

allocation fraction to soma κ 0.8
reproduction efficiency κR 0.95
volume-spec. som. maint. cost [ṗM ] 18 J cm−3d−1 [J̇EM ] 0.033 mmol cm−3d−1

surface-spec. som. maint. cost {ṗT } 0 J cm−2d−1 {J̇ET } 0 mol cm−2d−1

maturity maint. rate coeff. k̇J 0.002 d−1

specific cost for structure [EG] 2800 J cm−3 yV E 0.8 mol mol−1

maturity at birth EbH 275 z3 mJ M b
H 500 z3 nmol

maturity at puberty EpH 166 z3 J Mp
H 0.3 z3 mmol

8.2.1 Primary scaling relationships

The core of the argument for the co-variation of primary parameter values is that parame-
ters that relate to the physical design of the organism depend on the maximum size of the
organism, while parameters that depend on the local (bio)chemical environment are size
independent, both during ontogeny as well as between species. The latter parameters relate
to molecular processes, which are thus essentially density based. The difference between
physical design and density-based parameters relates to the difference between intensive
and extensive quantities.

How physical design parameters relate to maximum size is fully prescribed by the
standard deb model. For this purpose I introduce a dimensionless zoom factor z, and
consider two species, so two sets of parameters. Only three primary parameters are physical
design parameters: {ṗ2

Am} = z{ṗAm}1, Eb
H2 = z3Eb

H1 and Ep
H2 = z3Ep

H1. All other primary
parameters don’t depend on maximum size, so κ2

X = κ1
X , κ2 = κ1, κ2

R = κ1
R, v̇2 = v̇1,

[E1
G] = [E1

G], [ṗ2
M ] = [ṗ1

M ], {ṗ2
T} = {ṗ1

T}, k̇2
J = k̇1

J , {Ḟ 2
m} = {Ḟ 1

m}, see Table 8.1.

The reason why the maximum surface area-specific assimilation rate {ṗAm} is a design
parameter directly follows from the observation that Lm = κ{ṗAm}/[ṗM ] and κ and [ṗM
are intensive parameters. This makes {ṗAm} proportional to Lm and also provides a simple
interpretation of the zoom factor z: it is the ratio of the maximum (structural) lengths of
the compared species. The argument is so simple that it can easily be overlooked; yet it is
very powerful.

The reason why Eb
H and Ep

H are design parameters is that the maturity densities Eb
H/Vm

and Ep
H/Vm are intensive parameters, with Vm = L3

m as before.

The case for the scaling of the maximum specific searching rate {Ḟm} is weak because
organisms of very different body size are likely to feed on very different types of prey, using
very different searching methods. If comparisons are made at abundant food, the scaling
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of {Ḟm} becomes irrelevant, however.
The empirical support for these scaling relationships is given by the secondary scaling

relationships.

8.2.2 Secondary scaling relationships

This section gives examples of the derivation of body size scaling relationships of a variety of
eco-physiological quantities that can be written as compound parameters of the deb model.
The derivation follows the same path time and again and has the following structure. The
quantity of interest is written as a function of scaled state variables (e and l) and primary
parameters. Food density is taken to be high (f = 1) and the scaled reserve density is
set at equilibrium (e = 1). I choose a (theoretical) reference species and apply the zoom
factor z = Lm/L

ref
m to arrive at the maximum structural volume of the species of interest.

In many cases I compare the result with allometric functions because this is how they are
typically presented, see e.g. [886].

Heating length

The heating length LT = {ṗT}/[ṗM ] = Lref
T does not depend on ultimate size, which means

that the scaled heating length lT = LT/Lm decreases with z. This parameter is likely to
be rather variable, even for a single individual, because it depends on the temperature (for
endotherms) or the chemical composition of the water in which they are (osmotic costs).
Since the maximum ultimate length equals Lm−LT , the significance of the heating length
for energetics vanishes for large bodied species.

Somatic maintenance rate coefficient

The somatic maintenance rate coefficient, see {43}, k̇M = [ṗM ]
[EG]

= k̇ref
M , is independent of the

zoom factor. Yet this parameter turns out to vary substantially among taxa.
The highest value so far is from Daphnia, k̇M = 4 d−1 at 20 ◦C, see Figure 2.10 and

is probably typical for Ecdysozoa and possibly relates to the costs for moulting. This is
consistent with the high value 1.64 d−1 at 20 ◦C for Oikopleura, which possibly related to
the costs of house production. Many prokaryotes vary from 1 d−1 at 37 ◦C (Aerobacter
{159}; Streptococcus, Figure 4.10), 0.5 d−1 at 35 ◦C, (Klebsiella, Figure 4.16) or 0.67 d−1 at
30◦C (E. coli [747]). Yeast gave a value of 0.07 d−1 at 30 ◦C in Figures 4.24, 5.1. Table 2.2
gives a range from 0.03–2.3 d−1 for a variety of vertebrate eggs at 30 ◦C. Several species of
bivalve gave a 0.013 d−1 at 20 ◦C [191, 190].

The conclusion is that the somatic maintenance rate coefficient varies considerably
among taxa, demonstrating substantial evolutionary adaptation.

Reserve capacity & turnover: energy investment ratio

The reserve capacity [Em] = {ṗAm}
v̇

= z[Eref
m ] is proportional to the zoom factor z. The

energy investment ratio, see {48}, g = [EG]
κ[Em]

= [EG]
κz[Eref

m ]
gref/z, decreases with the zoom factor

as a direct consequence of the scaling of the reserve capacity.
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According to (2.20) for e = 1 and L = Lm−LT , see (2.25), the minimum turnover time
of reserve is given by

tE =
[Em]

[ṗC ]
=

1− lT
k̇Mg

1 + g

2 + g
=
z − lrefT
k̇Mgref

z + gref

2z + gref

(8.1)

so the minimum turnover time increases with the maximum body size.
The fraction of the body mass of an individual without a reproduction buffer at abun-

dant food that consists of structure is, see Table 3.3

θV =
MV m

MV m +MEm

=
κg

κg + yEV
=

κgref

κgref + zyEV
=

1

1 + z[Eref
m ]yEV /[EG]

(8.2)

so a large-bodied species not only has more reserve, but also as a fraction of its body mass.
Working with grams rather than moles, (3.2) implies ωw = wE

wV

yEV
κg

and θV = 1
1+ωw

= 1
1+zωref

w
.

Body weight

Since the independent variable in body size scaling relationships is typically wet weight,
it is of special interest. For [E] = [Em] and L = Lm − LT , see (2.25), and without a
reproduction buffer, ER = 0, the maximum wet weight according to (3.2) equals

Ww = Vm(dV + [Em]wE/µE)(1− lT )3 = z3V ref

m (dV + z[Eref

m ]wE/µE)(1− z−3lrefT )3 (8.3)

It increases faster than z3 because of the increasing contribution of reserve to (wet) weight,
cf (8.2); the maximum weights of rat and mouse differ by a factor 17, but their maximum
structural volumes by a factor 13, see Figures 6.2 and 4.7. For large-bodied species the
surface area-linked maintenance costs (in the scaled heating length lT ) almost vanish, which
further contributes to the increase of Ww/Vm with Vm.

Wet weights are sensitive to body composition. The structural body mass and in
particular water content and type of reserve materials are different in unrelated species.
This hampers comparisons that include species as different as jelly fish and elephants. If
comparisons are restricted to related species, for example among mammals, the structural
volume–weight conversion dV will be independent of body volume, while the maximum
reserve increases.

Respiration

The scaling of respiration rate with body size has captured the imagination since the
formulation of Kleiber’s law, see {294}. The scaling exponent has been found to be 0.66
for unicellulars, 0.88 for ectotherms and 0.69 for endotherms [892]. The exact value differs
among authors taking their data from the literature. The variations are due, in part,
to differences in the species included and in the experimental conditions under which
respiration rates were measured. For crustaceans Vidal and Whitledge [1197] present
values of 0.72 and 0.85, and Conover [219] gives 0.74. If species ranging from bacteria to
elephants are included, the value 0.75 emerges. It has become an almost magic number in
body size scaling relationships.
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Table 8.2: Body weight has contributions from
reserve and structure; the parameters dE and
dV stand for the specific density of reserve (E)
and structure (V ). The structure volume is
proportional to cubed volumetric length, L3.
The heating length LT is a constant for en-
dotherms, and zero for most ectotherms. The
length-parameters Lg and Ls are constant (un-
der certain conditions). The inter-species com-
parison is based on fully grown (adult) individ-
uals. From [650].

intra-species inter-species
maintenance ∝ LTL2 + L3 ∝ LTL2 + L3

growth ∝ LgL2 − L3 0
reserve

structure ∝ L0 ∝ L
respiration

weight ∝ LsL2+L3

dV L3+dEL3 ∝ LTL
2+L3

dV L3+d′EL
4

The predictions of intra- and inter-specific scaling of the respiration by deb theory is
presented in Table 8.2 for juveniles and adults at constant food. Although assimilation
contributions are excluded, assimilation controls reserve density; this is why respiration
increases, while weight decreases, during the embryo stage, cf Figures 2.12 and 2.13. The
fact that intra- and inter-specific scaling are numerical very similar, cf Figures 2.10 and
4.21, while the explanation is very different, has caused a lot of confusion in the literature.
Many alternative explanations have been proposed, but all basically failed [777]; none of
them distinguishes between intra- and inter-specific comparisons. For increasing weight,
the intra-specific scaling results from the reducing contribution of growth to respiration,
and the inter-specific scaling from the increasing contribution of reserve to weight.

The carbon dioxide production of well-fed animals that is not associated with assim-
ilation is given by (4.48). If we compare individuals with the same parameter set, this
expression shows that the mineral fluxes, and so the dioxygen consumption rate and the
carbon dioxide production rate, depend on structural body length via the powers ṗD and
ṗG, which are both weighted sums of surface area and volume, i.e. of l2 and l3. This is noth-
ing new. If we compare species of different (maximum) body size, however, we keep the
state variables constant, and vary the parameters that depend on the maximum structural
body volume. In the respiration rate (4.48), Lm, l−1

T and g−1 are proportional to structural
body length; none of the other parameters depend on maximum structural body length
(or volume). Generally, this again results in a scaling of respiration somewhere between a
surface area and a volume, but it is rather critical which individuals are included. If we in-
clude only fully grown individuals of ectothermic species, the dissipating and growth powers
no longer depend on the investment ratio g, and respiration is proportional to structural
body volume. Even in this case, however, the weight-specific respiration decreases with
body weight, because of the increasing contribution of reserves to body weight. Growth
is asymptotic, however, and if individuals are selected with a structural length of some
fixed fraction of the maximum possible one, the contribution of surface area will be more
important.

In conclusion, the respiration rate will appear almost as a straight line in a double-log
plot against body weight, the slope being somewhere between 0.66 and 1, depending on
the species and the relative size of the individuals that have been included, see Figure
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Figure 8.2: The metabolic rate of unicellu-
lars (◦, at 20 ◦C), ectotherms (•, at 20 ◦C)
and endotherms (∗, at 39 ◦C) as a function
of body weight. Modified from Hemmingsen
[310, 491]. The difference between this figure
and the many others of the frequently repro-
duced data set is that the curves relate to deb-
based expectations, and are not allometric re-
gressions. Nonetheless they appear almost as
straight lines. The lower line has slope of 2/3,
the upper one a slope of 1.

8.2. The scaling relationship for unicellulars is less informative, because assimilation is
included and respiration depends sensitively on substrate composition. Surface-bound
heating costs dominate in endotherms, so a plot that includes them will be close to a line
with slope 0.66. The slope for the Bathyergidae, a family of rodents that are practically
ectothermic, see Figure 1.5, is found to be close to 1 [721], as expected. Another conclusion
is that respiration has a complex interpretation and should play a less central role in
ecophysiological research.

Length at birth and initial amount of reserve

Huge fishes can lay very small eggs and thus have small values for Vb. For example, the
ocean sunfish Mola mola can reach a length of 4 m and can weigh more than 1500 kg, it
can produce clutches of 3 × 1010 tiny eggs. The other extreme within the bony fishes is
the ovoviviparous coelacanth Latimeria chalumnae, which can reach a length of 2 m and
a weight of 100 kg. It produces eggs with a diameter of 9 cm in clutches of some 26. (If
we include the cartilaginous fish, the whale shark Rhincodon typus wins with a 12–18 m
length, more than 8165 kg weight and eggs of some 30 cm.) The egg size did hardly depend
systematically on ultimate size in flatfish [1187] and bivalves [190], which probably relates
to adaptation to the deviating larval life history. This lack of systematic pattern includes
the size at metamorphosis in flatfish [1187].

The the scaled maturity at birth U b
H scales with z2. This is because the (unscaled)

maturity at birth M b
H = U b

H{J̇EAm} scales with z3, and the surface area specific reserve
assimilation rate {J̇EAm} scales with z.

If k̇J = k̇M , the structural volume at birth is proportional to the maturity at birth, so
length at birth scales with maximum length. If αb >> Bxb(

4
3
, 0), the initial reserve scales

approximately with maximum length to the power 4 and age at birth with maximum
length. These scalings are confirmed in the analysis presented in Figure 8.3. If scaled
initial reserve u0

E scales with z, U0
E scales with z2 and initial reserve M0

E with z4, which is
consistent with the scaling of the incubation time (see below). If scaled length at birth lb
scales with z0, length at birth Lb = lbLm scales with z.

Figure 8.3 shows that if k̇J 6= k̇M , the scaling is more complex, especially for the length
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Figure 8.3: The scaled initial reserve u0
E (left), length at birth lb (middle), and age at birth

τb (right) as function of the zoom factor, log-log plotted (base 10). Each plot has three curves,
corresponding to maintenance ratio k = 0.1 (lower), 0.5 (middle), 1 (upper). Parameters: g =
80/z, ubH = 0.005, eb = 1. The curves are approximately allometric with slopes for large zoom
factors

maintenance ratio k 0.1 0.5 1.0
scaled initial reserve u0

E 0.55 0.83 1.00
scaled length at birth lb -0.14 -0.04 0.00

scaled age at birth τb 0.85 0.89 0.93

at birth and the initial reserve; I presented the approximate scaling exponents to comply
with the traditional way to present these types of relationships. It is remarkable that taxa
show a wide scatter in scaling relationships for specially these quantities, while age at birth
shows much less scatter. This suggests that taxa might differ in the maintenance ratio.
The increase in the maintenance ratio k = k̇J/k̇M goes with an increase in the relative
size at birth for any given value of the zoom factor z, but the effect is bigger for the large
bodied species. Since protein turnover is an important component of somatic maintenance
costs, and activity typically a minor component, it is not likely that species differ a lot in
the somatic maintenance costs. I expect that costs for defence (e.g. the immune system)
varies more among species. It is tempting to speculate about the relatively small egg size
of dinosaurs (indicating small maturity maintenance costs) versus the relatively large size
at birth of mammals (indicating hight maturity maintenance costs).

The European birds have egg weights approximately proportional to adult weights.
Calder [184] and Rahn et al. [935] obtained egg weights proportional to adult weights0.77;
Birkhead [109] found that the egg weight of auks is proportional to adult weight0.72.

The energy content, i.e. the chemical composition, may also show scaling relationships,
which can cause deviations from simple predictions. The larger species also have to ob-
serve mechanical constraints, and small species can have problems with heating themselves
during development.

In conclusion: the tendency of length at birth to be proportional to ultimate length
only holds for related species at best, as within the squamate reptiles [1051].
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Water loss from eggs

The use of energy (stored in lipids, etc.) relates to the water that will evaporate from
bird eggs. Part of this water is formed by the oxidation of energy-rich compounds, and
part of it consists of the watery matrix in which the compounds are embedded for the
purpose of giving enzymes the correct environment and for transport of the products. The
total loss of water during the incubation period, therefore, reflects the total use of energy
E0−Eb. Since, like the energy investment in a single egg E0, the amount of energy at birth
Eb = [Em]Vb = z4[Eref

m ]V ref
b , the loss of water must be a fixed proportion of egg volume.

Rahn, Ar and Paganelli [32, 933] found that it is some 15 % of the initial egg weight. If
the use of energy relates to water loss directly, one would expect the initial loss rate to
be small and build up gradually. The egg usually decreases linearly in weight, as Gaston
[387] found for the ancient murrelet Synthliboramphus antiqua. This is to be expected on
physical grounds, of course. The specific density of an egg can be used to determine the
length of time it has been incubated. This process of water loss implies that the water
content of the reserves changes during incubation, but its range is rather restricted. The
functional and physical aspects of water loss from eggs thus coincide beautifully.

Minimum size for separation of embryonic cells

Suppose that the cells in the two-cell stage of an embryo are identical in terms of amounts
of maturity, reserve and structure. If the cells are separated, the three amounts are halved.
This is less obvious for maturity, but since its level is very small, compared to that at birth,
this detail is numerically unimportant.

If one would try to separate cells in a species with the parameter values as found for
Daphnia in Figure 2.10, the theory predicts that the initial reserve is not enough the cover
embryonic development. This result is remarkable because these parameters imply that a
fraction of 0.8 of the initial amount of reserve is still left at birth at abundant food, see
{60}. The explanation is that the mobilisation of reserve decreases with the reserve density
and it still should cover the maintenance needs. It might be, of course, that maturity at
birth is affected by cell separation, which can still allow this to occur successfully in small
bodied species. However, I am unaware of any empirical evidence for this.

Since the reserve density capacity [Em] scales with structural length, species with a
larger ultimate body size tend to have a relatively larger reserve capacity. It turned out
that for the combination of parameter values as found for D. magna we have to apply a
zoom factor of at least z = 1.87 to arrive at a minimum maximum body size for which
cell separation might be successful. The resulting parameter values are used in the figure;
the scaling relations only affect the energy investment ratio gz−1, while κ, k and ubH are
independent of the zoom factor z.

Minimum embryonic period

Because the deb model is maturity structured rather than age structured, the length of
the various life stages is closely tied to growth. The gestation time is proportional to
volume1/3, excluding any delay in implantation. Weasels and probably armadillos are
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Figure 8.4: The gestation time of eutherian
mammals tends to be proportional to volumet-
ric length (line). Data from Millar [796]. The
times have been corrected for differences in rel-
ative birth weight, i.e. birth weight as a fraction
of adult weight, by multiplying by the ratio of
the mean relative birth weight1/3, 0.396, to the
actual relative birth weight1/3. The symbols re-
fer to ∗ Insectivora, + Primates, � Edentata, ◦
Lagomorpha, • Rodentia, × Carnivora, 2 Pro-
boscidea, 1 Hyracoidea, 4 Perissodactyla, 5 Ar-
tiodactyla.
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Figure 8.5: The incubation time for European breeding birds as a function of egg weight (left
figure). Data from Harrison [464]. The lines have a slope of 0.25. The tube noses (◦) sport long
incubation times. If corrected for a common relative volume at birth (right figure), this difference
largely disappears.

examples of species that usually observe long delays, possibly to synchronise the juvenile
period with favourable environmental conditions. Figure 8.4 illustrates that the expected
scaling relationship is appropriate for 250 species of eutherian mammals. The mean energy
conductance was found to be 2 mm d−1 at some 37 ◦C. This is less than half the mean-
temperature-corrected value found from the von Bertalanffy growth rates of juveniles and
adults, a difference that must be left unexplained at this moment.

Incubation time (2.39) depends on volume in a more complex way, but it is also scales
approximately with z, so with egg volume1/4; the scaled egg costs e0 do not depend on
the zoom factor, so that egg costs themselves E0 = e0Em = z4e0E

ref
m scales with z4, and

ab ' zaref
b ∝ E

1/4
0 . Figure 8.5 gives the log–log plot for the species that breed in Europe.

These data are very similar to those of Rahn and Ar [932], who included species from
all over the world. Although the scatter is considerable, the data are consistent with the
expectation. Note that, within a species, large eggs hatch earlier than small ones, though
one needs to look for species with egg dimorphism to find a large enough difference between
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egg weights.

The tube noses Procellariiformes incubate longer, while they also have relatively heavy
eggs, and so relatively large chicks. If corrected for this large volume at birth, their
incubation time falls within the range of other species. This correction has been done by
calculating the egg weight first, from ([Ww]π/6)(egg length)(egg breadth)2. (Data from
Harrison [464].) The weight at birth is about 0.57 times the initial egg weight [1202]. The
scaled length at birth is about (Wb/W∞)1/3. (This is not ‘exact’ because of the weight-
volume conversion and the volume reduction due to heating.) Bergmann and Helb [89]
give adults weights. The incubation time is then corrected for differences in scaled length
at birth on the basis of (2.39) for small values of the investment ratio g and a common
value for the scaled length at birth, 0.38.

The application of the deb model has been useful in identifying the proper question,
which is not why the incubation time of tube noses is that long, but why they lay so
large an egg. The bird champion in this respect is the kiwi Apteryx , which produces
eggs of 350–400 g, while the adult weight is only 2200 g. It has an incubation period
of a respectable 78 days. The relatively low incubation temperature of 35.4 ◦C extends
incubation in comparison to other birds, which usually incubate at 37.7 ◦C [183, 184]. This
accounts for some 17–20 days extension with an Arrhenius temperature of 10–12.5 kK,
however, most of this long incubation relates to the very large relative size of the egg. The
relative size of the egg itself is a result of the energy uptake and use pattern.

If one or more primary parameters are known, the value of a certain compound param-
eter such as the (minimum) incubation time can be predicted with much more accuracy.
On the basis of growth data for the cassin’s auklet during the juvenile phase, I predicted
an incubation period of 40 days [635], not knowing that it has been measured and actually
found to be 37–42 days [742].

The reptilian champion in incubation time is the tuatara Sphenodon punctatus where
the 4-g hatchling leaves the egg after 15 months. The low temperature, 20–25 ◦C, con-
tributes to this record.

The European cuckoo is a breeding parasite which parks each of its many eggs in the
nest of a ‘host’, which has an adult body weight of only 10 % of that of the cuckoo. The
eggs of the host are one-half to three-quarters the size of that of the cuckoo. On the basis
of egg size alone, therefore, the cuckoo egg should hatch later than the eggs of the host,
while in fact it usually hatches earlier despite the later date of laying. If the relative size of
the egg with respect to the adult is taken into account, the deb theory correctly predicts
the observed order of hatching. The essence of the reasoning is that, since the cuckoo is
much larger than the host, the cuckoo uses the reserves at a higher rate (i.e. {ṗAm} is
larger), and, therefore, it grows faster in the absolute sense. Growth is so much faster that
the difference in birth weight with the chicks of the host is more than compensated. In
non-parasitic species of the cuckoo family, the eggs are much larger [1285], which indicates
that the small egg size is an adaptation to the parasitic way of life. The extra bonus for
the European cuckoo is that it can produce many small eggs (about 20–25), which helps
it to overcome the high failure rate of this breeding strategy.
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Maximum ingestion rate

The maximum specific ingestion rate for an individual is {J̇XAm} = {J̇EAm}/yEX =
z{J̇ ref

EAm}/yEX , in mass, or {ṗXm} = {ṗAm}/κX = z{ṗref
Am}/κX in energy, so the ingestion

is proportional to surface area intra-specifically, and to volume inter-specifically. Farlow
[335] gives an empirical scaling exponent of 0.88, but value 1 also fits the data well. For
endotherms especially, a scaling exponent of somewhat less than 1 is expected for weight as
the independent variable, because of the increase in volume-specific weight, as explained.
In a thorough study of scaling relationships, Calder [184] coupled the inter-specific inges-
tion rate directly to the respiration rate, without using an explicit model for energy uptake
and use. The present deb-based considerations force one to deviate from intuition.

Half saturation coefficient

The (half) saturation coefficient K = {J̇XAm}/{Ḟm} = z{J̇ ref
XAm}/{Ḟm} = zKref is pro-

portional to the zoom factor. The logic is less easy to see, because species differ so much
in their feeding behaviour. At low food densities this constant can be interpreted as the
ratio of the maximum ingestion to the filtering rates in a filter feeder such as Daphnia.
If maximum beating rate is size independent, as has been observed, the filtering rate is
proportional to surface area. Since the maximum specific ingestion rate {J̇XAm} scales
with a length measure, the saturation coefficient K should scale with a length measure as
well. More detailed modelling of the beating rate would involve ‘molecular’ density-based
formulations for the filtering process, which turns the saturation coefficient into a derived
compound parameter. This is not attempted here, because the formulations would only
apply to filtering, while many species do not filter.

Maximum filtering rate

The filtering rate is maximal at low food densities. If particle retention is complete, it is
given by Ḟm = J̇Xm/K = L2

m{J̇Xm}/K. So, Ḟm = z2Lref
m{J̇ ref

Xm}/Kref = z2Ḟ ref
m . This was

found by Brendelberger and Geller [149].

Gut capacity

Within a species, isomorphy implies a gut capacity that is a constant fraction of body
volume. This must also hold for inter-species comparisons, as long as body design and
diet are comparable and this has been found for birds and mammals [184]. The mean
gut residence time of food particles is thus independent of body size as a consequence,
because ingestion rate is proportional to body size, while it was found to be proportional
to a length measure for intra-species comparisons. This is of major ecological significance
for herbivores, because it determines which type of food can be digested. The poorly
digestible substrates can only be used successfully by animals with a large body size. The
giant sauropods of the Jurassic fed mainly on cycads and conifers, which require long
gut residence times for digestion. Giant carnivores probably evolved in response to giant
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herbivores; the explanation of their body size probably relates to the survival of meager
periods.

Speed

Since biomechanics is not part of the deb theory, this is not the right place for a detailed
discussion on Reynolds and Froude numbers, although interesting links are possible. Speed
of movement has only a rather indirect relationship with feeding or other aspects that bear
on energy budgets. A few remarks are, therefore, made here.

McMahon and Bonner [774] found that the speed of sustained swimming for species
ranging from larval anchovy, via salmon, to blue whales scales with the square root of
volumetric length; they underpinned this finding with mechanical arguments. Since the
energy costs of swimming are proportional to squared speed and to surface area, cf. {31},
the total costs of movement would scale with cubed length, or V , for a common travelling
time. This is consistent with the deb theory, where the costs of travelling are taken to be
a fixed fraction of the maintenance costs.

A similar result appears to hold for the speed of flying, but by a somewhat different
argument. The cruising speed, where the power to fly is minimal, is proportional to the
square root of the wing loading [1147]. If a rough type of isomorphy applies, comparing
insects, bats and birds, wing loading, i.e. the ratio of body mass to wing area, scales with
length, so that cruising speed scales with the square root of length [774].

Arguments for why the standard cruising rate for walking tends to be proportional to
length, are given on {28,31}. If energy invested in movement is proportional to volume and
taken to be part of the maintenance costs, the intra- and inter-species scaling relationships
work out in the same way.

Maximum diving depth

Birkhead [109] found that the maximum diving depth for auks and penguins tends to be
proportional to volumetric length. This can be understood if diving depth is proportional
to the duration of the dive; the latter is proportional to length, cf. {29} by the argument
that the respiration rate of these endotherms is about proportional to surface area and
dioxygen reserves to volume.

Minimum food density

The minimum food density at which an isomorph of structural length L can live for a long
time is found from the condition that energy derived from ingested food just equals the
maintenance costs, so ṗA = κX ṗX = ṗM , or f† =

X†
K+X†

= [ṗM ]
{ṗAm}

L, or X† = K L[ṗM ]/{ṗAm}
1−L[ṗM ]/{ṗAm}

.

At this food density, the individual can only survive, not reproduce. For different species,
we obtain the condition X† = zX ref

† . Minimum food density, also called the threshold food
density, is thus proportional to volumetric length. An important ecological consequence is
that, at a given low food density, small individuals can survive, while the large ones can
not. This explains, for instance, why bacteria in oligotrophic seas are so small.
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This result only applies to situations of constant food density. If it is fluctuating, stor-
age capacity becomes important, which tends to increase with body size; see {113}. The
possibility of surviving in dynamic environments then works out to be rather complex.
Stemberger and Gilbert [1109] found that the threshold food density tends to increase
with body size for rotifers, as expected, but Gliwicz [412] found the opposite for clado-
cerans. This result can be explained, however, by details of the experimental protocol.
The threshold food density was obtained by plotting the growth rate against food density
and selecting the value where growth is nil. Growth at the different food densities was
measured from two-day-old individuals exposed to a constant food density for four days.
The reserves at the start of the growth experiment, which depend on culture conditions,
will contribute substantially to the result.

Maximum growth

From (2.21) is can be seen that d
dt
V is at maximum for e = 1 and L = 2

3
(Lm−LT ) and the

maximum growth in cubed scaled length is d
dt
l3 = 4

27
gk̇M
1+g

(1 − lT )3. The maximum growth
rate for different species equals

4

27

k̇ref
Mgref

(z + gref

(zLref

m − Lref

T )3 (8.4)

and thus scales approximately with z2. This fits Calow and Townsend’s data very well
[185].

von Bertalanffy growth rate

The von Bertalanffy growth rate at high food density is

ṙB =
k̇ref
M/3

1 + z/gref

(8.5)

for different species, see (2.24). It scales with z−1 for z � gref. This is consistent with
empirical findings; see Figure 8.6. The parameters and data sources are listed in Table 8.3.
This table is extensive because the fit with the von Bertalanffy growth curve supports the
argument that it is possible to formulate a theory that is not species-specific. If one collects
growth data from the literature, an amazingly large fraction fits the von Bertalanffy curve
despite the fact that most data sets are from specimens collected in the field. Since it is
hard to believe that food density has been constant during the growth period, this suggests
that food has been abundant; this is relevant for population dynamics.

If the von Bertalanffy growth rate is plotted against maximum volumetric length, the
scatter is so large that it obscures their relationship. This is largely due to differences
in body temperature. A fish in the North Sea with a yearly temperature cycle between
3 and 14 ◦C grows much more slowly than a passerine bird with a body temperature of
41 ◦C. This is not due to fundamental energy differences in their physiology. If corrected
to a common body temperature according to the Arrhenius relationship with an Arrhe-
nius temperature of 8 kK, the expected relationship is revealed and the differences between
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fishes and birds disappear. Since temperature had not been measured in most cases, I had
to estimate it in a rather crude way. For most molluscs and fish data I used general infor-
mation on local climate and guessed water temperatures (which depend on the, frequently
unknown, depth). The body temperatures of birds and mammals have also been guessed.
Uncertainties about temperature doubtlessly contributed the most to the remaining scat-
ter. The corrected rates are not meant as predictions of actual growth rates at this body
temperature because most North Sea fish and birds would die almost instantaneously if
the temperature was realized. The large bodied species dominate the estimate for v̇, and
the small bodied species that for k̇M . Most small bodied species are Ecdysozoa, which
might have a large k̇M due to moulting. Ricklefs [966] also found that the von Bertalannfy
growth rate is iversely proportional to length for birds.

Table 8.3: The von Bertalanffy parameters and their standard deviations as calculated by
non-linear regression. The shape coefficient converts the size measure used to volumetric length.
For shape coefficient 1, the data refer to wet weight, except for Saccharomyces, Actinophrys
and Asplanchna, where volumes were measured directly. The data for Mnemiopsis and Calanus
refer to dry weight. The other data are length measures, mostly total body length. Where
the standard deviation is not given, the parameters from the authors are given. Temperatures
in parentheses were inferred from the location on Earth. Where two temperatures are given,
a sinusoidal fluctuation between these extremes is assumed. In the column ‘sex’: f=female,
m=male, l=larva.

species sex length sd shape rate sd location temp source
mm mm coeff a−1 a−1 NS EW ◦C
L∞ δM ṙB

Ascomyceta
Saccharomyces carlsbergensis 4.59e-32.16e-5 0.806 11830 318 lab lab 30 [87]

Heliozoa
Actinophrys spec. 0.0043 2.2e-5 1 2891 368 lab lab [1136]

Rhizopoda
Amoeba proteus 2.79 0.016 0.01 832.2 56.9 lab lab 23 [921]

Ciliata
Paramecium caudatum 2.969 0.062 1638 210 lab lab 17 [1021]

Ctenophora
Pleurobrachia pileus fm 15.04 0.436 0.702 33.27 2.49 lab lab 20 [432]
Mnemiopsis mccradyi fm 8.851 0.927 3.90 11.61 1.88 lab lab 26 [950]

Rotifera
Asplanchna girodi f 0.2400 7.32e-4 1 193.7 4.92 lab lab 20 [979]

Annelida
Dendrobeana veneta fm 14.5 0.24 1 12.04 0.73 lab lab 20 H. Bos, pc

Mollusca
Aplysia californica fm 112.2 6.05 1 4.840 0.871 lab lab 18–20 [883]
Urosalpinx cinerea fm 30.94 1.31 0.397 0.8116 0.11 31S 152E -1–25 [368]
Achatina achatina fm 106.5 2.45 0.543 1.121 0.0770 5N 0E (25) [515]
Helix aspera fm 25.06 0.498 0.68 1.098 0.0960 lab lab (18–20) [245]
Patella vulgata fm 46.93 0.306 0.310 0.4296 7.91e-3 54N 4.40W (4–17) [1284]
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Monodonta lineata fm 21.92 0.130 0.716 0.6213 0.0171 52.25N 4.05W (4–17) [1261]
Biomphalaria pfeifferi fm 7.538 0.0497 1 4.879 0.201 lab lab 25 [789]
Lymnaea stagnalis fm 15.37 0.0584 1 10.81 0.204 lab lab 20 [1075]
Helicella virgata fm 9.888 0.215 1 3.316 0.163 35S 139E 11–16 [908]
Macoma baltica 21.57 0.154 0.423 3.00 0.0869 41.31N 70.39W 10.56 [407]
Cerastoderma glaucum 29.24 1.86 0.558 2.221 0.380 40.50N 14.10E 13–30 [546]
Venus striatula 37.76 25.1 0.471 0.1961 0.210 55.50N 4.40W 6–13 [30]
Ensis directus 142.2 0.187 0.5830 54.35N 8.45E 4–17 [1135]
Mytilus edulis 95.92 2.02 0.394 0.1045 5.109e-3 53.36N 9.50W 7–17 [980]
Placopecten magellanicus 162.3 1.01 0.388 0.1671 2.842e-3 47.10N 53.36W 0–18 [727]
Perna canaliculus 191.2 10.6 0.394 0.3555 0.0342 36.55S 174.47E 17 [506]
Hyridella menziesi 74.62 2.05 0.400 0.1331 8.38e-3 36.55S 147.47E [552]
Mya arenaria 91.31 0.407 0.1866 41.39N 70.42W (4–17) [162]
Loligo pealei f 455.3 39.5 0.398 0.4201 0.0551 41.31N 70.39W (4–17) [1132]
Loligo pealei m 918.2 111 0.398 0.2122 0.0315 41.31N 70.39W (4–17) [1132]

Brachiopoda
Terebratalia transversa 48.39 1.09 0.640 0.3140 0.0163 47.30N 122.5W (4–17) [862]

Crustacea
Daphnia pulex f 2.366 0.0192 0.526 44.25 2.10 lab lab 20 [962]
Daphnia longispina f 2.951 0.0260 0.520 61.32 2.92 lab lab 25 [544]
Daphnia magna f 5.136 0.0970 0.526 35.04 1.83 lab lab 20 [634]
Daphnia magna m 2.813 0.0440 0.526 66.80 5.11 lab lab 20 [634]
Daphnia cucullata f 1.049 0.0214 0.480 58.25 9.71 lab lab 20 [1198]
Daphnia hyalina f 1.717 0.0399 0.520 47.52 5.93 lab lab 20 [1198]
Ceriodaphnia pulchella f 0.7503 0.0122 0.520 39.89 5.04 lab lab 20 [1198]
Ceriodaphnia reticulata f 1.038 0.0210 0.520 49.28 3.30 lab lab 20 [634]
Chydorus sphaericus f 0.4115 1.10e-3 0.560 52.63 0.969 lab lab 20 [1198]
Diaphanosoma brachyurum f 1.380 0.0198 0.520 46.50 3.72 lab lab 20 [1198]
Leptodora kindtii f 8.632 0.204 0.300 26.96 2.64 lab lab 20 [1198]
Bosmina longirostris f 0.5289 0.0215 0.520 38.73 6.50 lab lab 20 [1198]
Bosmina coregoni f 0.4938 0.0104 0.520 66.90 9.59 lab lab 20 [1198]
Calanus pacificus 6.295 1.02 0.215 8.863 1.89 lab lab 12 [857]
Dissodactylus primitivus f 11.02 0.410 0.635 1.025 0.0732 lab lab (18) [905]
Dissodactylus primitivus m 9.013 0.212 0.635 1.362 0.0742 lab lab (18) [905]
Euphasia pacifica 12.91 2.35 0.197 1.008 0.369 lab lab 10 [758]
Homarus vulgaris 186.6 6.99 0.939 0.05543 3.36e-3 lab lab 10 [502]
Cancer pagurus f 9.707 0.385 1 0.2711 0.0122 50.30N 2.45W (5–18) [83]
Cancer pagurus m 115.6 0.513 1 0.3513 0.0174 50.30N 2.45W (5–18) [83]
Dichelopandalus bonnieri 25.73 1.97 0.882 0.4795 0.0824 54N 4.40W (4–17) [9]
Gammarus pulex m 4.355 0.0570 1 3.300 0.177 lab lab 15 [1133]
Gammarus pulex f 4.089 0.0554 1 2.218 0.123 lab lab 15 [1133]
Calliopius laeviusculus 15.27 0.699 0.262 13.52 1.96 lab lab 15 [241]

Uniramia
Tomocerus minor 3.903 0.0848 0.351 6.600 0.379 lab lab 20 [566]
Orchesella cincta 3.652 0.0858 0.351 4.948 0.351 lab lab 20 [566]
Isotomata viridis 3.034 0.0751 0.351 6.52 0.469 lab lab 20 [566]
Entomobrya nivalis 1.981 0.0830 0.351 3.416 0.418 lab lab 20 [566]
Lepidocyrtus cyaneus 1.181 0.0666 0.351 9.840 2.17 lab lab 20 [566]
Orchesella cincta 1.281 0.0151 1 6.817 0.354 lab lab 20 [554]
Phaenopsectra coracina 1.745 0.147 1 2.388 0.779 63.14N 10.24E 4 [1]
Diura nanseni 2.782 0.0460 6.328 0.536 60.15N 6.15E 0–20 [47]
Capnia pygmaea 1.024 0.0967 2.493 0.663 60.15N 6.15E 1–20 [47]
Locusta migratoria 10.82 0.237 1 44.82 7.36 lab lab 23–36 [718]
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Chironomus plumosus f 4.053 0.272 1 21.88 5.50 lab lab 15 [543]
Chironomus plumosus m 3.211 0.0415 1 52.74 4.77 lab lab 15 [543]

Cheatognata
Sagitta hispida fm 9.431 0.150 0.15 44.80 5.25 lab lab 21 [949]

Echinodermata
Lytechenus variegatus 46.10 0.147 0.70 3.913 0.199 18.26N 77.12W 26–29 [588]
Echinocardium cordatum 34.50 0.425 0.696 0.4590 0.0232 53.10N 4.15E 5–12 [301]
Echinocardium cordatum 36.70 0.375 0.696 0.5320 0.0259 53.40N 4.30E 5–14 [301]
Echinocardium cordatum 44.90 0.405 0.696 0.4960 0.0212 54.15N 4.30E 5–16 [301]

Tunicata
Oikopleura longicauda fm 0.829 0.049 0.520 56.56 6.62 lab lab 20 [341]
Oikopleura dioica 0.952 0.327 0.560 63.97 37.3 lab lab 20 [341]

Chondrichthyes
Raja montaqui fm 695.9 11.0 0.184 0.1874 0.0140 52–54N 3–7E (4–17) [521]
Raja brachyura 1589 213 0.184 0.1018 0.0261 52–54N 3–7E (4–17) [521]
Raja clavata f 1303 107 0.184 0.09297 0.0163 52–54N 3–7E (4–17) [521]
Raja clavata m 952.7 29.8 0.184 0.1557 0.0145 52–54N 3–7E (4–17) [521]
Raja erincea 542.9 32.6 0.184 0.2787 0.0542 41.05N 73.10W 1–19.1 [959]
Prionace glauca 4230 0.165 0.1100 48N 7W (5–18) [1112]

Osteichthyes
Accipenser stellatus 2120 30.5 0.198 0.05396 1.46e-3 (45.10N)(28.30E)(4–23) [97]
Clupea sprattus 157.0 0.557 0.200 0.5847 4.60e-3 52.30N 2E (4–17) [542]
Coregonus lavaretus 397.3 8.39 0.203 0.3295 0.0221 54.35N 2.50W (5–15) [49]
Salvelinus willughbii f 385.4 72.9 0.225 0.2495 0.0973 54.20N 2.57W (5–15) [375]
Salvelinus willughbii m 328.9 12.7 0.224 0.3545 0.0366 54.20N 2.57W (5–15) [375]
Salmo trutta 585.8 18.0 0.216 0.4769 0.0411 53.15N 4.30W (4–17) [538]
Salmo trutta 576.2 20.6 0.240 0.2921 0.0253 57.40N 5.10W 5–12.8 [187]
Salmo trutta 420.2 3.13 0.240 0.4157 0.0107 54.20N 2.57W (5–15) [228]
Oncorhynchus tschawytscha 155.2 11.9 1 0.9546 0.217 36S 147E (11–16) [181]
Thymallus thymallus 459.6 8.44 0.240 0.4656 0.0224 52.09N 2.41W (5–15) [489]
Esox lucius f 948.7 88.3 0.209 0.2101 0.0718 50.17N 3.39W (5–15) [146]
Esox lusius m 703.6 13.0 0.209 0.4016 0.0455 50.17N 3.39W (5–15) [146]
Esox masquinongy 2091 848 0.199 0.04503 0.0263 44N 79W (5–15) [813]
Rutilus rutilus 441.6 15.8 0.258 0.1661 0.0116 52.30N 0.30E (5–15) [227]
Leuciscus leuciscus 252.6 2.32 0.258 0.3329 0.0131 52.30N 0.30E (5–15) [227]
Barbus grypus 1036 25.2 0.206 0.1265 6.59e-3 35.75N 44.7E (17–30) [11]
Abramis brama 546.0 0.225 0.1142 53.15N 2.30W (5–15) [419]
Gambusia holbrookii f 61.72 2.34 0.250 0.9366 0.216 38.40N 9.40W (5–25) [367]
Poecilia reticulata f 50.58 1.14 0.252 1.667 0.0690 lab lab 21 [1182]
Merluccius merluccius 1265 78.4 0.222 0.2075 0.0184 55.45N 5W (8–12) [48]
Lota lota 1009 60.3 0.193 0.09768 0.0103 53N 98W (5–15) [504]
Gadus merlangus f 898.6 12.2 0.222 0.08626 2.07e-4 54N 4.40W (8–12) [135]
Gadus merlangus m 772.8 9.03 0.222 0.08626 2.07e-4 54N 4.40W (8–12) [135]
Gadus morhua 1089 43.2 0.222 0.1308 9.26e-3 40N 60W 10 [615]
Gadus aeglefinus 106.5 1 0.2000 53–57N 0–7E (4–17) [104]
Atherina presbyter 124.0 3.20 0.238 1.091 0.109 51.55N 1.20W (5–18) [1176]
Gasterosteus aculeatus 52.41 2.62 0.250 1.019 0.249 52.20N 3W (4–17) [563]
Pungitius pungitius 41.28 1.03 0.200 1.777 0.468 52.20N 3W (4–17) [563]
Nemipterus marginatus 232.8 35.8 0.243 0.5047 0.227 6N 116E (26–30) [874]
Labrus bergylta 509.2 8.64 0.258 0.07170 3.30e-3 54N 4.40W (4–17) [272]
Ellerkeldia huntii 152.1 10.8 0.319 0.3350 0.0791 35.30S 174.40E (12–22) [561]
Lepomis gibbosus 61.86 9.04 1 0.1415 0.0342 45.40N 89.30W (5–15) [802]
Lepomis macrochirus 71.62 16.8 1 0.1292 0.0467 45.40N 89.30W (5–15) [802]
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Perca fluviatilis 317.9 22.5 0.25 0.1615 0.0242 56.10N 4.45W 8–14 [1044]
Tilapia species 129.6 20.7 1 3.542 1.10 31.30N 35.30E (37) [722]
Liza vaigiensis 746.3 31.8 0.258 0.1758 0.0147 17S 145E (18–27) [427]
Mugil cephalus 595.0 27.2 0.258 0.3350 0.0370 17S 145E (18–27) [428]
Valamugil seheli 635.3 35.0 0.258 0.2725 0.0291 17S 145E (18–27) [428]
Seriola dorsalis 1373 30.7 0.231 0.1155 5.72e-3 33N 118W (15–20) [70]
Ammodytes tobianus 140.9 1.98 0.147 0.7305 0.0595 50.47N 1.02W 5–18 [946]
Thunnus albacares 2745 636 0.266 0.1481 0.0509 0–10N 165E (26–30) [845]
Thunnus thynnus 3689 448 0.266 0.06623 0.0144 53–57N 0–7E (4–17) [1165]
Coryphoblennius galerita 69.55 2.72 0.250 0.4011 0.0598 50.20N 4.10W (5–18) [798]
Pomatoschistus norvegicus 48.80 0.770 0.252 2.466 0.305 56.20N 5.45W (8–14) [405]
Gobio gobio 154.9 15.9 0.250 0.7519 0.495 51N 2.15W [740]
Gobio gobio 174.8 3.84 0.250 0.4165 0.0321 51.50N 8.30W (4–17) [591]
Gobius cobitis 213.9 14.9 0.295 0.2082 0.0385 48.45N 4W (5–18) [402]
Gobius paganellus 79.89 1.94 0.200 0.4790 0.0463 54N 4.40W (4–17) [797]
Lesueurigobius friesii 65.82 0.623 0.252 0.5628 0.0349 55.45N 5W 8–12 [827]
Lesueurigobius friesii 63.72 0.409 0.252 0.6826 0.0322 56.20N 5.45W (8–14) [403]
Blennius pholis 150.5 3.36 0.250 0.2464 0.0176 50.20N 4.10W (5–18) [798]
Arnoglossus laterna 93.55 3.06 0.200 0.4544 0.0895 56.15N 5.40W (8–14) [404]
Hypoglossus hypoglossus 632.7 54.7 1 0.04797 6.04e-3 59N 152W (3–14) [1090]
Scophthalmus maximus f 669.4 14.2 0.266 0.2165 0.0298 53–57N 0–7E (3–14) [560]
Scophthalmus maximus m 495.3 6.93 0.272 0.3247 0.0222 53–57N 0–7E (3–14) [560]
Pleuronectes platessa 142.1 1 0.09500 53–57N 0–7E (4–17) [104]
Solea vulgaris 78.41 1 0.4200 53–57N 0–7E (4–17) [104]

Amphibia
Rana tigrina l 12.79 0.670 1 15.75 1.88 lab lab 30–33 [246]
Rana sylvatica l 8.201 0.154 1 30.97 6.64 36.05N 81.50W 21–26 [1258]
Triturus vulgaris l 26.40 0.353 3.960 59.30N 10.30E -5–14 [279]
Triturus cristatus l 40.40 0.353 4.080 59.30N 10.30W -5–14 [279]

Reptilia
Emys orbicularis f 182.1 1.98 0.500 0.2707 0.0124 (22) [216]
Emys orbicularis m 161.8 1.56 0.500 0.3453 0.0172 (22) [216]
Vipera berus 539.0 33.0 0.075 0.3734 0.0657 (20) [372]
Eunectes notaeus f 3283 50.9 0.075 0.2552 0.0165 lab lab (20) [891]
Eunectes notaeus m 2946 94.5 0.075 0.2030 0.0251 lab lab (20) [891]

Aves
Eudyptula minor nov. 114.7 5.67 1 15.60 2.69 39.5 [599]
Pygoscelis papua 191.8 3.35 1 15.31 0.965 39.5 [1204]
Pygoscelis antarctica 163.6 5.29 1 16.88 2.12 39.5 [1204]
Pygoscelis adeliae 159.9 7.77 1 15.47 2.81 39.5 [1204]
Pygoscelis adeliae 188.7 3.47 1 14.32 0.698 39.5 [1145]
Aptenodytes patagonicus 250.0 1 8.508 0.164 39.5 [1118]
Pterodroma cahow 63.16 0.465 1 62.96 1.55 39.5 [1262]
Pterodroma phaeopygia 79.2 0.93 1 20.08 3.43 39.5 [463]
Puffinus puffinus 83.90 0.069 1 41.55 2.87 39 [159]
Diomedea exulans 229.1 1.02 1 5.541 0.176 39.5 [1160]
Oceanodroma leucorhoa 41.53 0.282 1 26.37 1.58 39.5 [969]
Oceanodroma furcata 44.73 0.339 1 23.28 1.16 39.5 [125]
Phalacrocorax auritus 149.5 6.31 1 18.18 1.81 39.5 [302]
Phaethon rubricaudata 101.1 1.45 1 13.03 0.923 39.5 [266]
Phaethon lepturus 72.79 1.12 1 18.77 2.03 39.5 [266]
Sula sula 80.01 1.18 1 11.82 1.53 39.5 [266]
Sula bassana 172.7 2.50 1 12.41 0.639 39.5 [831]
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Cionia cionia 158.0 6.10 1 18.36 2.35 39.5 [229]
Phoeniconaias minor 116.8 3.01 1 11.31 1.30 39.5 [96]
Florida caerulea 68.19 1.16 1 42.63 3.61 39.5 [1241]
Anas platyrhynchos 117.3 0.330 1 17.75 0.410 39.5 [499]
Anas platyrhynchos 151.3 0.353 1 17.04 0.307 39.5 [499]
Anas platyrhynchos 145.5 1.94 1 10.26 0.680 39.5 [795]
Anas platyrhynchos 154.8 1.65 1 13.14 4.56 39.5 [997]
Anser anser 181.5 2.99 1 7.895 0.626 39.5 [795]
Buteo buteo f 103.7 1.17 1 27.57 1.34 39.5 [911]
Buteo buteo m 95.99 1.11 1 27.90 1.45 39.5 [911]
Falco subbuteo 66.16 0.689 1 46.77 3.57 39.5 [107]
Meleagris gallopavo 256.1 9.89 1 4.340 0.782 39.5 [213]
Meleagris gallopavo 296.2 26.2 1 3.657 1.18 39.5 [213]
Phasianus colchicus f 100.3 1.86 1 6.610 0.738 39.5 [795]
Phasianus colchicus m 118.8 4.25 1 5.004 0.746 39.5 [795]
Gallus domesticus f 136.5 1.24 1 4.625 0.209 39.5 [867]
Gallus domesticus m 153.5 2.22 1 4.522 0.305 39.5 [867]
Bonasia bonasia 85.17 2.68 1 7.807 0.740 39.5 [90]
Colinus virginianus 56.90 0.328 1 10.81 0.427 39.5 [992]
Coturnix coturnix 55.41 0.761 1 14.94 0.784 39.5 [152]
Rallus aquaticus 51.66 0.730 1 14.45 0.0882 39.5 [1056]
Gallinula chloropus 67.05 1.20 1 20.00 1.72 39.5 [324]
Philomachus pugnax f 47.41 1.04 1 39.46 2.75 39.5 [1019]
Philomachus pugnax m 59.94 2.18 1 29.09 2.97 39.5 [1019]
Haematopus moquini 103.4 5.69 1 10.63 1.40 39.5 [514]
Chlidonias leucopterus 42.76 0.502 1 66.39 4.08 39.5 [574]
Sterna fuscata 57.94 0.364 1 22.21 1.07 39.5 [166]
Sterna dougalli 50.15 1.12 1 33.97 3.77 39.5 [689]
Sterna hirundo 46.74 1.10 1 35.29 4.76 39.5 [689]
Rissa tridactyla 76.07 0.715 1 32.98 1.79 39.5 [759]
Larus argentatus 115.1 1.70 1 16.53 0.791 39.5 [1091]
Catharacta skua 131.3 4.64 1 17.42 2.37 39.5 [1117]
Catharacta skua 100.5 0.610 1 40.69 3.12 39 [384]
Catharacta maccormicki 104.8 0.310 1 60.29 3.18 39 [384]
Stercorarius longicaudus 83.90 0.069 1 41.55 2.87 30 [384]
Ptychoramphus aleuticus 59.66 0.373 1 23.73 0.913 39.5 [1192]
Cuculus canoris 45.49 0.884 1 49.29 4.00 39.5 [1285]
Cuculus canoris 50.26 1.45 1 38.56 3.68 39.5 [1285]
Cuculus canoris 52.02 7.20 1 42.11 2.12 39.5 [1285]
Cuculus canoris 52.44 1.40 1 39.91 3.60 39.5 [1285]
Glaucidium passerinum f 42.36 0.309 1 46.98 2.02 39.5 [1029]
Glaucidium passerinum m 41.86 0.484 1 41.57 2.51 39.5 [1029]
Asio otus 64.94 0.596 1 36.54 1.77 39.5 [1256]
Tyto alba 68.25 1.18 1 21.68 2.70 39.5 [436]
Strix nebulosa 98.26 0.960 1 16.43 0.730 39.5 [794]
Steatornis capensis 94.59 5.24 1 12.96 2.39 39.5 [1087]
Apus apus 37.44 0.274 1 45.55 2.88 39.5 [1237]
Selasphorus rufus 16.33 0.475 1 58.44 9.88 ≤ 41 [220]
Amazilia fimbriata 16.12 0.110 1 69.86 3.54 ≤ 41 [473]
Ramphastos dicolorus 70.11 1.89 1 28.52 4.01 39.5 [147]
Sturnus vulgaris 40.83 0.332 1 82.71 5.04 41 [1244]
Bombycilla cedrorum 34.16 0.392 1 73.37 4.31 41 [964]
Petrochelidon pyrrhonota 31.19 0.520 1 69.64 6.40 41 [964]
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Toxostoma curvirostre 36.62 0.695 1 49.82 3.62 41 [964]
Tyrannus tyrannus 35.53 0.673 1 59.43 4.60 41 [816]
Sylvia atricapilla 25.59 0.142 1 108.2 11.7 41 [100]
Garrulus glandarius 52.34 2.85 1 39.82 8.52 41 [595]
Campylorhynchus brunneicap. 32.79 0.200 1 65.85 6.70 41 [965]
Emberiza schoeniclus 25.88 0.238 1 138.7 12.1 41 [120]
Troglodytes aedon 22.29 1 105.9 41 [35]
Phylloscopus trochilus 22.41 0.576 1 76.78 8.86 41 [1027]
Parus major 27.47 0.207 1 59.90 2.33 41 [54]
Parus ater 23.40 0.232 1 75.74 3.88 41 [714]
Motacilla flava 9.910 0.298 2.913 55.19 4.42 41 [274]
Agelaius phoeniceus f 35.94 0.951 1 75.16 7.58 41 [232]
Agelaius phoeniceus m 40.66 0.529 1 65.28 2.74 41 [232]
Gymnorhinus cyanocephalus 44.84 0.596 1 49.68 2.97 41 [66]
Eremophila alpestris 30.81 1.24 1 75.98 10.9 41 [75]

Mammalia
Macropus parma 148.6 0.615 1 2.736 0.0942 35.5 [763]
Macropus fuliginosus 261.6 34.8 1 2.397 0.910 35.5 [910]
Trichosurus caninus 137.8 1.06 1 1.754 0.561 35.5 [532]
Trichosurus vulpecula 139.3 1.34 1 3.715 0.184 35.5 [723]
Perameles nasuta 100.5 0.967 0.961 4.743 0.175 35.5 [723]
Setonix brachyurus 116.6 1 1.728 0.117 35.5 [1178]
Suncus murinus f 26.58 0.160 1 30.92 1.37 37 [297]
Suncus murinus m 29.88 0.267 1 20.64 1.27 37 [297]
Sorex minutus 65.00 0.294 32.97 0.674 36 [539]
Desmodus rotundus 30.68 0.175 1 8.775 0.277 (35.5) [1022]
Homo sapiens m 1648 58.5 0.244 0.1490 0.0158 37 [186]
Lepus europaeus 148.3 1.60 1 5.034 0.530 37 [154]
Oryctolagus cuniculus 116.6 1.11 1 6.507 0.272 37 [1178]
Notomys mitchellii 27.09 0.412 1 21.54 1.64 38 [230]
Notomys cervinus 23.85 0.456 1 23.94 3.00 38 [230]
Notomys alexis 27.43 0.382 1 20.03 1.24 38 [230]
Pseudomys novaehollandiae 24.88 0.101 1 13.00 0.386 38 [589]
Castor canadensis 234.4 1.64 1 5.117 0.365 38 [13]
Mus musculus 34.24 0.474 1 15.09 0.924 38 [867]
Mus musculus f 31.87 0.129 1 22.33 1.31 38 [867]
Mus musculus m 33.98 0.118 1 26.66 1.28 38 [867]
Rattus fuscipes 171.5 4.08 0.280 9.333 0.843 38 [1142]
Rattus norvegicus 75.23 0.301 1 9.286 0.279 38 [867]
Tachyoryctes splendens 64.87 0.992 1 8.231 0.680 38 [931]
Balaenoptera musculus 37810 5420 0.188 0.05884 0.0208 37 [1076]
Balaenoptera musculus f 26200 0.188 0.2240 37 [711]
Balaenoptera musculus m 25000 0.188 0.2160 37 [711]
Balaenoptera physalus f 22250 0.180 0.2220 37 [711]
Balaenoptera physalus m 21000 0.180 0.2221 37 [711]
Balaenoptera borealis f 15300 0.197 0.1337 37 [711]
Balaenoptera borealis m 14800 0.197 0.1454 37 [711]
Delphinapterus leucas f 3056 54.4 0.254 0.2700 0.0399 37 [400]
Delphinapterus leucas m 3589 86.5 0.254 0.1876 0.0227 37 [400]
Canis domesticus 387.2 1.46 1 4.168 0.120 37 [867]
Lutra lutra f 178.1 1.32 1 2.870 0.156 37 [1110]
Lutra lutra m 197.7 1.38 1 2.692 0.143 37 [1110]
Pagaphilus groenlandicus 486.4 7.44 1 0.4787 0.0673 37 [686]
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as a function of maximum volumetric length cor-
rected to a common body temperature of 20 ◦C
using TA = 8 kK. The markers refer to 5 (open)
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Figure 8.7: The length at first reproduction is
proportional to the ultimate length in clupoid
fishes, Clupeoidei . Data from Blaxter and
Hunter [118].

4 Clupea ∇ Sardinella
• Brevoortia + Engraulis
◦ Sprattus ? Centengraulis
2 Sardinops × Stolephorus

1 Sardina

Mirounga leonina m 5580 356 0.254 0.1492 0.0265 37 [687]
Mirounga leonina f 2933 42.7 0.254 0.3094 0.0480 37 [687]
Mirounga leonina m 1799 149 1 0.1185 0.0278 37 [171]
Mirounga leonina f 704.0 20.4 1 0.3661 0.0982 37 [171]
Leptonychotes weddelli 685.4 1 0.3001 0.0184 37 [171]
Loxodonta a.africana f 1392 14.5 1 0.1016 8.16e-3 37 [688]
Loxodonta a.africana m 1723 45.4 1 0.07173 7.81e-3 37 [688]
Rangifer tarandus f 470.2 1.84 1 1.263 0.0589 37 [768]
Rangifer tarandus m 534.4 4.39 1 1.000 0.0617 37 [768]
Bos domesticus f 815.4 3.66 1 0.9957 1.73e-3 38.5 [867]
Alces alces 712.6 12.7 1 0.5930 0.159 37 [495]

Length at puberty

If k̇J = k̇M , length at first at puberty is proportional to maximum length and has been
found for clupoid fishes, see Figure 8.7, and for flatfish (Pleuronectiformes) [1187].

Minimum juvenile period

The juvenile period at high food density for different species, as given by (2.53) scales
approximately with z for z >> gref. This relationship fits Bonner’s data, as given in
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Figure 8.8: The striped tenrec Hemi-
centetes semispinosus is a curious ‘in-
sectivore’ of 110 g from the rain forests
of Madagascar that feeds on arthro-
pods and earthworms and finds its way
about using sonar. Walking in the for-
est, you can spot it easily by its head
shaking, not unlike that of an angry
lizard. Its juvenile period of 35 days
is the shortest among mammals. The
gestation period is 58 days [315].

Pianka [128, 894] very well; however, this data set uses actual lengths, rather than the
more appropriate volumetric ones.

The Guinness book of World Records mentions the striped tenrec Hemicentetes semi-
spinosus , see Figure 8.8, as the mammal with the shortest juvenile period [683]. The
cuis Galea musteloides , a 300- to 600-g South American hystricomorph rodent, usually
ovulates at some 50 days, but sometimes does so within 11 days of birth [1053, 1215].
Many smaller mammals have a longer juvenile period, which points to the fact that body
scaling relationships only give tendencies and not reliable predictions.

Maximum reproductive rate

The maximum reproductive rate, as given in (2.58), scales approximately with z−1, since
lT = z−3lrefT hardly contributes for large zoom factors, vpH is independent of z and v0

E

scales with z. This is a beautiful example showing that the size relationships within a
species work out differently from those between species. Intra-species comparisons show
that large individuals reproduce at a higher rate than small ones, while the reverse holds
for inter-species comparisons. Like most of the other scaling relationships mentioned in
this chapter, this only reflects tendencies that allow substantial deviations. The trade-off
between a small number of large young and a large number of small young is obvious.

The partition coefficient κ does not depend on body size; thus, a small species spends
the same fraction of energy that it utilises from its reserves on reproduction as a large
species. (That is, if the energy required to maintain maturity is negligibly small.) If we
express the energy spent on reproduction as a fraction of the energy taken up from the
environment (at constant food density), as typically done in Static Energy Budgets, cf
{416}, this fraction decreases with increasing body volume. This is because ingestion rate
increases with volume across species, see {301}, and utilised energy (respiration rate) with
a weighted sum of surface area and volume. This illustrates once again the importance of
explicit theories for the interpretation of data.
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Time till death by starvation

The time till death by starvation for an individual with an initial scaled energy density of
e(0) = l was found to be t† = v̇−1L lnκ−1, see {113}, or t† = v̇−1Lκ−1 depending on its
storage dynamics during starvation. In the first expression the individual does not change
its storage dynamics, and in the second one it spends energy on maintenance only. In both
cases, this time scales with z. Threlkeld [1157] found a scaling exponent of 3/4, but 1 also
fits the data well.

Constant food densities thus select for small body volume, because small volume aids
survival at lower food densities; fluctuating food densities select for large body volume,
because a large body volume gives better survival over prolonged starvation [631]. Brooks
and Dodson [160] observed that, in the absence of predators, the larger species of zoo-
plankton dominate. The deb theory suggests that the explanation does not lie in the size
dependence of threshold food density (because this would operate the other way round),
but in the length of periods for which no animal can find sufficient food. This has been
confirmed experimentally by Goulden and Hornig [425].

Life span

Growth never stops in the most elementary formulation of the deb model, but it is practical
to consider the moment at which body volume exceeds (1− ε)3V∞ as the end of the growth
period, for some chosen small fraction ε = 0.05, say. The length of the growth period at
constant food density is given in (2.23) and amounts to ṙ−1

B ln ε(1− lb/f). It thus increases
with volumetric length for different species, just as the juvenile period. Inspection of
the aging parameters as discussed at {209} learns that ḧa = zḧref

a and sG = sref
G , so that

ḣW = ḣref
W and ḣG = ḣref

G /z. If the Weibull aging pattern is followed (as most ectotherms
do), the mean life span as far as aging is concerned amounts to Γ(4

3
)/ḣW and is thus

independent of maximum size. Finch [350] concluded that the scanty data on life spans of
ectotherms do not reveal clear-cut relationships with body volume. Large variations in life
spans exist, both within and between taxa. The ratio of the growth period to the mean life
span is 5.55ḧ1/3

a k̇
−2/3
M (1 + f/g) ln ε(1 − lb/f) and increases with volumetric length. If this

ratio approaches 1, life span tends to increase with maximum body volume in a sigmoid
manner.

If the Gompertz aging pattern is followed (as most endotherms do), the median age
at death is log(1 + ḣ2

G log 2/q̈(0))/ḣG. The incrementally small value of q̈(0) relates to
the small source of ros, especially during early ages, and ‘early’ might depend on body
size. The scaling of the median age is dominated by ḣG, however, so median age at death
increases with volumetric length for endotherms. This is consistent with the conclusion of
Finch [350] that the life span of mammals scales with weight0.2, given that weight increases
faster than structural body volume.

If aging allows long life spans, individuals are likely to have effective means for dealing
with a threatening environment, such as avoidance behaviour for dangerous situations
(learning), physiological regulation to accommodate changes in diet, temperature and so
on. This is likely to involve large brain size and thus an indirect coupling between brain
size and life span. The brain may also be involved in the production of antioxidants or



8.2. Inter-specific parameter variations 313

the regulation thereof, which makes the link between brain size and life span more direct.
Birds have larger brain-to-body-weight ratios than mammals and live twice as long. The life
spans both of mammals and birds tend to scale empirically with weight0.2 [184, 350], which
is close to volume1/3. Although I have not worked out aging for endotherms quantitatively,
this is consistent with the deb-based expectation, because surface-bound heating costs
dominate respiration, and thus aging. Brain size is found, empirically, to be approximately
proportional to surface area in birds and mammals [184]. Mammals tend to have higher
volume-specific respiration rates than birds [1235], which contributes to the difference in
mean life span and jeopardises easy explanations.

It must be stressed that these life span considerations relate to aging, though it is
doubtful that aging is a major cause of death under field conditions. Suppose that size and
age independent of death dominate under those conditions and that food web interactions
work out such that the population remains at the same level while food is abundantly
available. To simplify the argument, let us focus on species that have a size at first matu-
ration close to the ultimate size. The death rate can then be found from the characteristic
equation (9.21) for ṙ = 0 and Pr{a† > a} ' exp(−ḣa) and Ṙ(a) ' (a > ap)Ṙm. Substi-

tution gives exp(−ḣap) = ḣ/Ṙm. I have shown already that the age at first maturation
ap increases almost linearly with length, {310}, and the maximum reproduction rate Ṙm

decreases with length, {311}. The death rate ḣ must, therefore, decrease with length, so
that the life span ḣ−1 increases with length.

These considerations help to explain the results of Shine and Charnov [1051], who
showed that the product of the von Bertalanffy growth rate and the life span is independent
of body size for snakes and lizards. Charnov and Berrigan [204] argued that the ratio
of the juvenile period to the life span is also independent of body size. They tried to
understand this empirical result from evolutionary arguments. Since the juvenile period is
approximately proportional to length as well, {310}, the ratio of this period to the life span
is roughly independent of body size. The present derivation also specifies the conditions
under which the result is likely to be found, without using evolutionary arguments.

8.2.3 Tertiary scaling relationships

Primary and secondary scaling relationships follow directly from the the separation of
parameters in intensive and design parameters. The class of tertiary scaling relationships
invokes indirect effects via the population level. The assumptions that lead to the deb
model, Table 2.4, must for tertiary scaling relationships be supplemented with assumptions
about individual interactions. This makes tertiary scaling relationships a weaker type.
Body size scaling relationships are usually much less obvious at the community level [238],
because of a multitude of complicating factors. Nonetheless, they can be of interest for
certain applications.

Abundance

Geographical distribution areas are frequently determined by temperature tolerance limits;
see {16}. Temperature and food abundance also determine species abundance in more
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subtle ways.
Since both the maximum ingestion rate and maintenance costs are proportional to body

volume across species, abundance is likely to scale with z−3, so N ∝ z−3Nref. This has
been found by Peters [886], but Damuth [243] gives a scaling of −0.76 with body volume.
This relationship can only be an extremely crude one. Abundances depend on primary
production levels, positions in the food web, etc. Nee et al. [828] point to the relationships
between phylogenetic position, position in food webs and abundances in birds.

Distribution

High food densities go with large ultimate body sizes within a species. If different geo-
graphical regions which differ systematically in food availability are compared, geographical
races can develop in which these size differences are genetically fixed. Since high food den-
sities occur more frequently towards the poles and low food densities in the tropics, body
sizes between these races follow a geographical pattern known as the Bergmann rule; see
{288}.

It is tempting to extend this argument to different species feeding on comparable re-
sources. This is possible to some extent, but another phenomenon complicates the result.
Because of the yearly cycle of seasons, which are more pronounced towards the poles, food
tends to be more abundant towards the poles in the good season, but at the same time the
length of the good season tends to shorten. The time required to reach a certain size (for
instance the one at which migration is possible) is proportional to volumetric length. This
implies that maximum size should be expected at the polar side of the temperate regions,
depending on parameter values, migratory behaviour, endothermism, etc. This probably
holds for species such as geese, which migrate to avoid bad seasons. Geist [392] reported
a maximum body weight at some 60 ◦ latitude and smaller weights both at higher and
lower latitudes for New World deer and races of wolves. He found a maximum body size
for sheep at some 50 ◦ latitude. Ectotherms that stay in the region can ‘choose’ the lower
boundary of the temperature tolerance range such that they switch to the torpor state as
soon as the temperature drops to a level at which food becomes sparse. This reduces the
growth rate, of course, but not the ultimate body size. Whether the mean body size in a
population is affected then depends on harvesting mechanisms.

Population growth rate

Since the (maximum) reproduction rate decreases with a length measure and the juvenile
period increases with a length measure, the maximum population growth rate decreases
somewhat faster than a length measure, especially for the small species. A crude approxi-
mation is the implicit equation obtained from (9.22)

exp(−ṙzaref

p ) = zṙ/Ṙref

m (8.6)

For dividing isomorphs, the population growth rate is inversely proportional to the divi-
sion interval, which corresponds to a juvenile period from an energetics point of view. This
gives ṙ = z−1ṙref. Fenchel [342] obtained an empirical scaling of weight−1/4 for protozoa,



8.3. Quantitative Structure-Activity Relationships 315

and Niklas [837] obtained a value of (gram C)−0.213 for cyanobacteria and (gram C)−0.22

for unicellular algae. Correction for the contribution of reserves in the size measures gives
results very close to the expected scaling relationship.

8.3 Quantitative Structure-Activity Relationships

The concept of one-compartment kinetics has many hidden implications. This section
discusses how the parameter covary and determine partition coefficients.

The most obvious property of chemicals for the understanding of toxicokinetics is the
n-octanol/water partition coefficient, Pow, which can be estimated from the chemical struc-
ture of the compound. Octanol serves as a model for typical lipids of animals, although
the model in not always perfect [1060]. It has a density of 827 g dm−3, and a molecular
weight of 130 Dalton, so that 1 dm3 of octanol contains 6.36 mol. Most comparisons are
restricted to the interval (102, 106) for the Pow. The size of the molecule tends to increase
with Pow and, if the Pow is larger than 106, the molecules are generally too big to enter
cells easily [218].

8.3.1 Kinetics as a function of partition

The molecular details of the transport of a compound between two matrices, such octanol
and water, directly lead to the relationship between the elimination rate and Pow; the Pow
has information about the steady state, the elimination rate about the waiting time to
reach that steady state. Let us focus on a closed system that evolves to a steady state.

Suppose that N molecules of a compound are distributed over two matrices, and that
they can freely travel from one matrix to the other. Both matrices occupy a unit of volume.
N0(t) molecules are present in matrix 0 and N1(t) = N − N0(t) molecules in matrix 1 at
time t. If first-order kinetics applies, and the total number of molecules N = N0(t) +N1(t)
is constant, the change of N0 is given by

d

dt

(
N0

N1

)
=

(
−k̇01 k̇10

k̇01 −k̇10

)(
N0

N1

)
or (8.7)

d

dt
N0 = k̇+(N∗0 −N0) (8.8)

with k̇+ = k̇01 + k̇10 and the equilibrium value for N0 is N∗0 = Nk̇10/k̇+. An implicit
assumption is that the compound is homogeneously distributed within each matrix.

Suppose now that the exchange rates are proportional to the ratio of the binding forces
to the two matrices, i.e. k̇01 = k̇ρ1/ρ0 and k̇10 = k̇ρ0/ρ1, where ρi is the binding force of
the compound to molecules of matrix i, i ∈ {0, 1}, and k̇ is a proportionality constant that
depends on the properties of the compound, but not on those of the matrix. Although
phrased differently, the setting is identical to the concept of fugacity, the escaping tendency
of a compound from a phase, that has been successfully used to describe the behaviour of
compounds in the environment [730]; it has a simple thermodynamic interpretation [666].
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Figure 8.9: The elimination rate in Poe-
cilia reticulata is approximately proportional to
1/
√
Pow for polycyclic hydrocarbons at 23 ◦C.

Data from Voogt et al. [1205]. -3
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The definition of the partition coefficient is P01 = N∗0/N
∗
1 . Since N∗0/N

∗
1 = N∗0/(N −

N∗0 ) = k̇10/k̇01 = ρ2
0/ρ

2
1, we have that ρ0/ρ1 =

√
P01. The result directly follows that

k̇01 = k̇
√
P10 and k̇10 = k̇

√
P01 = k̇/

√
P10, see Figure 8.9.

The bioconcentration coefficient PV d for fish relates to the octanol/water partition
coefficient as PV d = 0.048Pow, [729]. Hawker and Connell [475] found the allometric
relationships PV d = 0.0484P 0.898

ow for daphnids and PV d = 0.0582P 0.844
ow for molluscs in

the range 102 ≤ Pow ≤ 106. The scatter in the data is big enough for the relationship
PV d = 0.02Pow to apply to both daphnids and molluscs. The proportionality factor directly
relates to the fat content. In general we can say that PV d = moPow, where mo stands for
the mass-specific octanol equivalent of the organism, which seems to be taxon-specific.
High correlations between PV d and mo have been found for fenitrothion in a variety of
algae [592], for instance.

Hawker and Connell [474, 475] related the elimination rate k̇e to Pow and found k̇e =
8.851P−0.663

ow d−1 for fish, k̇e = 113P−0.507
ow d−1 for Daphnia pulex and k̇e = 9.616P−0.540

ow

d−1 for molluscs. The proportionality factor is inversely proportional to the volumetric
length of the animal (see below), which explains the wide range of values. The results
for daphnids are most reliable, because they all have the same body size in this case,
and confirm the expectation k̇e ∝ P−1/2

ow , which is based on first-order kinetics. Some
workers proposed diffusion layer models where the uptake rate depends hyperbolically
on the membrane–water partition coefficient [357], but the derivation neglects the link
between diffusion rates and partition coefficients. Others take elimination rates inversely
proportional to the animal–water partition coefficient [414, 1151], with the odd implication
that the uptake rate is independent of the partition coefficient. This is not consistent with
first-order kinetics, where the two media play roles that are exchangeable, which implies
a skew-symmetrical relationship between the uptake and elimination rates as functions of
the partition coefficient; the square root relationship is the only one that satisfies the skew
symmetry.

deb theory predicts that the density of octanol equivalents increases with the body
size of the different species of animal because the specific maximum reserve capacity [Em]
increases with a volumetric length, cf. {292}, and the reserve of some taxa is relatively rich
in lipids. These are only general trends and many exceptions occur. Data from Hendriks
[492] confirm the general trend; see Figure 8.10.
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Figure 8.10: The elimination rate depends on the
n-octanol–water partition coefficient Pow and the
weight W of an organism. It is roughly proportional
to P

−1/2
ow W−1/3 with proportionality constant

√
10

d−1kg−1/3 for 181 halogenated organic compounds in
fish. Data compiled by Hendriks [492]. The marker
codes are: Pow ≤ 102 (×), 102 ≤ Pow < 106 (•),
106 ≤ Pow ≤ 108 (+). The range of fish weights is
0.1–900 g. No corrections for differences in tempera-
ture have been made, nor for differences in fat content
of the fish. 10 logP−1/2

ow W−1/3, kg−1/3
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Figure 8.11: A log-log plot of the time to reach
an x-level saturation in the tissues of an or-
ganism exposed in an environment with a con-
stant concentration of a compound in a two-
film model, using the steady-flux approximation.
The curves correspond with different values of
the velocity v̇1; the upper curve has the lowest
velocity. Parameters: v̇0 = 1, v1 = .001, .01,
.1, 1, 3.6 mm h−1. v̇01 ∝ P

−1/2
ow , v̇10 ∝ P

1/2
ow ,

k̇0 = 10 h−1, x = 0.1. Notice that the v̇1 =
3.6 mm h−1 is close its maximum value in this
parameter combination to ensure positive elim-
ination rates; the steady-flux approximation is
probably very poor in this situation.

8.3.2 Film models

The time we have to wait to saturate the tissue of a blanc organism to a fraction x of the
ultimate level is tx = −k̇−1

e ln(1−x). Figure 8.11 illustrates how this time relates to the Pow
and is consistent with [1037] for air-water exchange, with [357] for artificial membranes, and
with [414] for fish. For low Pow values, the elimination rate hardly depends on the Pow and
for large values it is inversely proportional to Pow. As a consequence, the opposite holds for
the uptake rate. The result of Thomann [1150] is largely consistent with this relationship,
if applied to the proper range of Pow values. Notice that this reasoning does not make
use of the considerations for how the exchange rates kij depend on Pij as presented in the
previous section; this is because they do not occur independently in this steady-state flux
model, but only in combination as a ratio in the form of Pij.

The steady-flux approximation of two-film model has a one-film model as special case,
where e.g. Lj → 0 or v̇j →∞. The elimination rates then reduces to k̇e = k̇i(1− v̇i/v̇ij)−1,

and we must have that v̇i < v̇ij. Since v̇ij ∝ 1/
√
Pij, this approximation is only valid in a

limited range of Pij values, depending on the value of v̇i.
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This illustrates a serious problem with this steady-flux approximation: contrary to
the full pde formulation, we cannot reduce this approximation in a smooth way to the
well-mixed special case of a one-compartment model. If we would increase the diffusivi-
ties Ḋi and/or reduce the thickness of the non-mixed layers Li, we are forced to increase
the exchange rates k̇ij as well to ensure that the transport in the layers is still in pseudo
steady-state. In other words: the dynamics of the system disappear, and the whole system
equilibrates instantaneously. We will see k̇01 and k̇10 will occur independently in other
approximations of the two-film pde model that do not suffer from this problem. This
approximation is popular in situations where the bulk volumes are infinitely large and
represent the ocean and the atmosphere, for instance. It than becomes a reasonable as-
sumption to take a constant flux from one medium into the other, without changes in the
bulk concentrations. This application is quite different from that in toxico-kinetics, where
one medium represents a initially blanc fish, and the other an aquarium with a compound,
and we study the toxico-kinetics and effects in transient states.

8.3.3 Bioconcentration coefficient

The bioconcentration coefficient, BC, is an important concept in the kinetics of xenobiotics.
It is used among other things as a crude measure to compare xenobiotic compounds and
species and to predict effects. For aquatic species and hydrophilic compounds, it is usually
defined as the ratio of the concentration in the organism to that in the water, which are
both taken to be constant. For terrestrial species and/or lipophilic compounds, it is usually
defined as the ratio of the concentration in the organism to that in the food. Applying
the BC concept is a bit complicated in the present context, because the concentration in
the organism does not become stationary, because of growth and reproduction, even if
the concentration in the environment is constant, i.e. in water, food and at constant food
density. If the growth rate is low in comparison to the exchange rates, the compound
can be in pseudo-equilibrium, but its concentration still depends, generally, on the size
of the organism. In addition, reproduction causes a cyclic change in concentration. The
oscillations become larger if the organism accumulates its reproductive output over a longer
time period. If food density is constant for a long enough period, we have e = f and d

dt
e = 0.

The ultimate concentration on the basis of wet weight then reduces for low growth and
reproduction rates to

〈MQ〉w →
PV dcd + PV XfcX

[Ww]

(
1 +

[MEm]

[MV ]
PEV f

)
(8.9)

This expression can be used to predict how BC depends on body size if species are com-
pared on the basis of the theory presented on {291}. Since PV X is proportional to J̇Xm,
BC is expected to be linear in the volumetric length. The trend in [Em] almost cancels out.
Figure 8.12 illustrates that the BC for the highly lipophilic compound 2,4,5,2′,4′,5′ hex-
achlorobiphenyl (PCB153) for aquatic animals is indeed linear in the volumetric length.

This expectation is thus based solely on differences in the uptake of the amount of
food. Accumulation in the food chain occurs particularly in terrestrial habitats, and more
debatably in aquatic ones. Since top predators tend to have the largest body size, it can be
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Figure 8.12: Bioconcentration coefficients
(BCs) for PCB153 in aquatic organisms in the
field, as given in [656]. Data from Oliver and
Niimi [836, 848] and from the Dutch Ministry of
Public Works and Transport. The curve repre-
sents the least-squares fit of the linear relation-
ship between the BC and the volumetric length.
PV XLm = 46 mm. 10 log body wet weight, g
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difficult to distinguish food chain effects from body size effects. Food chain effects operate
through the partition coefficient for food/water, and body size effects act via the uptake
of food.

8.3.4 Effects as a function of partition coefficients

Since the equilibrium tissue concentration is proportional to Pow, we should expect to find
that the killing rate ḃ† ∝ Pow, the tolerance concentration c∗ ∝ P−1

ow and the nec c0 ∝ P−1
ow ,

while the elimination rate k̇e ∝ P−0.5
ow . Figure 8.13 and the empirical study by de Wolf

[1272] supports these expectations.

Most of the scatter is due to the fact that octanol is not an ideal chemical model for
biomass, and disappears when the log nec is plotted against the log killing rate, see Figure
8.14.

Könemann [619] observed that the 14 days log lc50 of the guppy Poecilia reticulata for
50 ‘industrial chemicals’ is lc50 = 0.0794P−0.87

ow mol dm−3. To understand this relationship,
we have to realize that for a large elimination rate, so a small Pow, the 14 days lc50 is
close to the ultimate value, but for a large Pow, the ultimate lc50 is much lower than the
lc50.14d. Taking these complexities into account, Figure 8.15 confirms that ḃ† ∝ Pow and
k̇e ∝ P−0.5

ow are indeed consistent with the finding by Könemann. Unfortunately, the data
of Figure 8.15 did not allow us to check the relationship for the nec. Although the necs
had been set to zero, adopting the function nec = 10P−1

ow mmol dm−3 hardly changes the
result. The conclusion is that the quantitative structure–effects relationships for lc50s
follow from first principles.

8.4 Interactions between qsars & body size scaling

relationships

Body size affects chemical kinetics in rather complex ways, so do changes in body size.
Since deb theory is about the dynamics of body size, this directly links to toxico-kinetics
[649]. It is useful to start with an inventory of the possible uptake and elimination routes
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Figure 8.13: The 10log nec (left), killing rate (middle) and elimination rate (right) of alkyl
benzenes (top) and benzenes, aliphatic compounds and phenols (bottom) as a function of the 10log
octanol/water partition coefficient. The slopes of the lines, i.e. −1, 1 and −0.5, respectively, follow
from simple theoretical considerations. The data in the top panels are from the 4d bio-assays on
survival of the fathead minnow, as presented in [391]. The partition coefficients were obtained
from [961] or calculated according to [954]. The data in the bottom panels are from [731] (necs,
killing rates), [474] (elimination rates). The toxicity data originate from [157, 390, 158, 155, 156],
as reported in [398]. From [650].

of the compounds under consideration, and then consider other chemical and metabolic
aspects.

Uptake can be directly from the environment, which is proportional to the surface
area of individuals. The implication is that elimination rates are inversely proportional
to length. So the time it takes to saturate an organism with a chemical compound is
proportional to its (volumetric) length. Uptake can also be via food, and food uptake
scales with surface area intra-specifically, but with volume inter-specifically.

Dilution by growth matters, even at low growth rates. The growth rate depends on
the size of the individual, relative to the maximum size, so intra- as well as inter-specific
scaling relationships contribute.

Elimination can be directly to the environment (involving surface area), and/or to the
gut contents (involving the feeding rate), and/or via reproduction or some other species-
specific routes. The possible significance of the latter route is obvious from the observation
that a female adult daphnid can produce offspring at the rate of 25 % of her own weight per
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Figure 8.14: The log nec as a function of the
log killing rate for aldehydes, aliphatics and bio-
cides in the fathead minnow Pimephales prome-
las. Data from [398]. The slope is -1, as result-
ing from theoretical predictions. From [650].

Figure 8.15: The 14 days lc50 val-
ues as a function of octanol-water parti-
tion coefficient for guppies (Poecilia retic-
ulata) exposed to 21 chlorinated aro-
matic and other some chlorinated hydro-
carbons whose Pow ranged from 10−0.22

(pentachlorobenzene) to 105.21 (acetone).
(Data from Könemann [618]). The
calculations are based on the assump-
tions that the elimination rates equal
50/
√
Pow d−1, the killing rates equal

10−6.6Pow d−1µmol−1dm3 and the necs
are zero (see text). logPow
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day. Eggs can represent an important elimination route for compounds. The reproduction
rate (in number of offspring per time) is proportional to a weighted sum of surface area and
volume intra-specifically, and inversely proportional to a length inter-specifically. Since the
mass per offspring is proportional to volume, allocation to reproduction is proportional to
surface area inter-specifically. As discussed before, however, the relative size of offspring
is a lot more species-specific (so subjected to evolutionary adaptation) than the allocation
to reproduction [641, 1187, 191].

The chemical composition of biomass also depends on size, since the reserve density
(so the ratio of the amounts of reserve and structure) is constant intra-specifically, but
proportional to a length inter-specifically. Reserve might be more rich in lipids than struc-
ture (depending on the taxa that are studied). This observation obviously matters for the
comparison of compounds that differ in Pow.

Chemical transformation in an organism is linked to the metabolic activity of the or-
ganism. Lipophilic compounds are frequently transformed into less lipophilic ones, which
enhances excretion (elimination). These metabolites are, frequently, more toxic. Moreover,
uptake, elimination and transformation frequently involve metabolic activity, which might
be linked to the mobilisation rate of reserve.



322 8. Co-variation of parameter values

If effects are receptor-mediated, metabolic transformation is even more important [551];
turnover of receptors is possibly linked to matabolic activitiy or to somatic maintenance,
in which case the specific turnover rate is independent of body size. The observation
that effects are linked to the product of concentration and exposure time motivated many
toxicologists to think about the involvement of receptors, although their biochemical iden-
tification remained uncertain. This motivation is incorrect, however, if the hazard rate is
linear in the (internal) concentration. This is because even without receptors the effect on
the survival probability is already via the product of concentration and exposure time. The
significance of receptors is in the contribution of the exposure history in the effect, rather
than of the actual exposure. This requires an in-depth analysis of how effects build up in
time and imposes strong constraints on the quality of data. It is only by analysing multiple
endpoints simultaneously that we found indications that the effects of organophosphorus
esters on fish involve receptors.

These considerations invite for a second thought about effects of chemicals. As long
as lipophilic compounds are accumulated in metabolically rather inactive lipids, they are
less likely to have metabolic effects. Many animals, and especially mammals, have tissues
(the adipose tissue) that are specialised in the storage of such lipids. As soon as these
lipids are used, however, effects might show up. This calls for a much more dynamic view
on the effects of chemicals, and links up with traditions in pharmaco-kinetics and medical
research on the effects of chemicals.

8.5 Summary

Intraspecific parameter variations have phenotypic and genotypic components; the latter
is key to evolutionary change. The Bergman rule is explained as an adaptation to intra-
specific variation patterns in food availability.

The interspecific co-variation of the primary parameters is derived on the basis of the
classifation of primary parameters into intensive and design parameters, and then that of
functions of these parameters, and finally that of quantities that relate more indirectly to
primary parameter values and involve interactions between organisms and properties of
the environment. They all capture observed scaling relationships very well. The functions
of parameters relate to many aspects of life history, and physiological quantities, such as
respiration. Many fruitless attempts have been made to explain why respiration scales
with body weight to the power 0.75 (approximately). The explanation offered by the deb
theory is that the inter-specific scaling results from an increasing contribution made by the
reserves to body weight; the intra-specific scaling results in the decreasing contribution of
growth to the energy budget for increasing body weight.

The fugacity argument provides the rules for how kinetic parameters of the 1,1-compart-
ment model co-vary among compounds with the octanol–water partition coefficient. Film
models are variations of the 1,1-compartment model, which allows the evaluation of the
co-variation of its parameters as well. The co-variation of the transport parameters are
behind the scaling of effect parameters, so behind the QSARs. Finally the interactions
between body size scaling relationships and QSARs are discussed.



Chapter 9

Living together

The primary purpose of this chapter is to evaluate the consequences of deb models for
individuals at the population and higher levels if extremely simple rules are defined for
the interaction between individuals and the energy balance of the whole system. The first
section deals with trophic interactions between species, and the constraints on parameter
values that ensure a stable coexistence. Then follows a discussion of population dynamics,
food chains and (simple) ecosystems.

9.1 Trophic interactions

deb theory can be used to analyse the dynamics of systems with complex types of mass
exchange between the participants in trophic relationships, a rich spectrum ranging from
competition to predation. The present aim is to discuss some constraints in these patterns
that ensure weak homeostasis of structural masses: the relative abundance of the struc-
tural masses of the participating species is independent of the substrate densities in the
environment at steady state. This matter is taken up again in the discussion on merging
{391}.

Trophic relationships are hard to classify; all relationships seem to be unique at close
inspection. They are usually based on the judgement of being beneficial for one or both
partners, and many different definitions exist for particular inter-species relationships. The
oxpecker Buphagus feeds on insects that are attracted to wounds of giraffes, antelopes and
other bovids; it is not difficult to see why the thin-skinned small antelopes make evident
that they do not really appreciate this ‘help’ from the birds: oxpeckers try to keep wounds
attractive for insects. I observed what solution oxpeckers have when wounds are in short
supply. I will refrain from a judgement of benefits, and discuss the various relationships
purely on the use of substrates. This is not meant to imply, however, that non-trophic
relationships are of little importance to population dynamics.

9.1.1 Competition & species diversity

When two species feed on the same substrate in a well mixed environment, they are said to
compete for that substrate. The ratio of the structural masses of two competing V1-morphs
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is constant, despite variations in the substrate concentration, if the specific population

growth rates are identical, so ṙ1 = ṙ2, for ṙi = fik̇Ei−gik̇Mi

fi+gi
, for i = 1, 2, and fi is the scaled

functional response. The growth rates are only equal if K1 = K2, [ṗ1
Am] = [ṗ2

Am], k̇1
M = k̇2

M ,
k̇1
E = k̇2

E and g1 = g2. In other words, the ratio is only constant if the species are virtually
identical in all their energetic properties. The significance of this remark is that syntrophic
relationships allow more differences between the species to maintain weak homeostasis. The
strict constraints for weak homeostasis explain why pure forms of inter-species competition
are rare; most competing species have partially overlapping diets, and differ in preferences.
Competition is perhaps most frequent among primary producers, but even they differ in
preferences for the various chemical species of nutrients (ammonia versus nitrate, organic
nitrogen, etc.).

The literature on population dynamics stresses the competitive exclusion principle: the
number of competing species cannot exceed the number of substrates at steady state.
The theoretical value of the result is limited, however. Lack of sustainable diversity in
community models is only problematic in models with simplistic views on chemical aspects.
Mechanisms that maintain diversity (also in community models) are in decreasing order of
significance: (1) mutual syntrophy, where the fate of one species is directly linked to that
of another; (2) nutritional ‘details’: The number of substrates is actually large, even if the
number of species is small; (3) social interaction, which makes that feeding rate is not longer
a function of food availability only; (4) spatial structure: Extinction is typically local only
and followed by immigration from neighbouring patches: (5) temporal structure: Complex
systems easily have cyclic or chaotic behaviour, even in homogeneous environments and
steady states hardly occur in nature. Changes in feeding conditions come with changes in
biomass composition, and so in nutritional value, which feeds back to cause (2). The least
important cause, cause (5), has received most attention in the literature.

9.1.2 Syntrophy

Two species have a syntrophic relationship if a recipient species lives off the products of
a donor species. The term commensalism is frequently used when the donor does not
experience adverse effects. Syntrophy is very common, but the coupling varies from very
direct to indirect.

The processing of food requires symbiosis; many animals feed on cellulose-containing
phototrophs, but no animal can itself digest cellulose. Most animals have associations with
prokaryotes, amoebas and flagellates to digest plant-derived compounds [1077]. These
micro-organisms transform cellulose to lipids in the anaerobic intestines of their host an-
imal; the lipids are transported to the aerobic environment of the tissues of the animal
for further processing. Attine ants even culture fungi to extract cellulases [748]. Many
symbioses are still poorly understood, such as the Trichomycetes, which live in the guts
of a wide variety of arthropods in all habitats [800]; the role of smut fungi (Ustilaginales)
in their symbioses with plants also seems more complex than just a parasitic relationship
[1185].

When tree leaves fall on the forest floor, fungi release nutrients locked in them by
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decomposition; the soil fauna accelerates this degradation considerably [1239]. Without
this activity by fungi and the soil fauna, trees soon deplete the soil from nutrients, as most
leaves last for only one year, even in evergreen species. As mentioned, trees, and plants in
general, also need mycorrhizas to release nutrients from their organic matrix.

Faeces, especially that of herbivores, represent nutritious food for other organisms. Or-
ganisms specialised on the use of faeces as a resource are known as coprophages. Examples
are the bryophyte Splachnum, which lives off faeces of herbivores (S. luteum actually lives
off that of the moose Alces alces); the fungus Coprinus which lives off mammalian faeces,
similar to beetles of the dung beetle family Scarabaeidae and the fly Sarcophaga.

The nitrifying bacteria Nitrosomonas and Nitrobacter oxidise ammonia to nitrite, and
nitrite to nitrate, respectively, while other groups (Pseudomonas , Micrococcus , Thiobacil-
lus) convert nitrate to dinitrogen. An even more indirect coupling exists between plants
and oceanic diatoms, where plants mobilise silica from rocks [115], which diatoms require
to make frustules; terrestrial plants allow diatoms to play a leading role in the plankton of
the oceans.

The house dust mite Glycyphagus demesticus lives, with help of the fungus Aspergillus
repens , off human skin flakes (their production is coupled to maintenance); these mites
frequently cause allergic reactions in humans, which might stimulate flake production. The
moth Hypochrosis drinks tears of big mammals, such as Asian elephants and, incidently,
humans, but stimulates tear production at the same time. The sucking of mammalian blood
by mosquitos or of plant saps by mistletoes or aphids is only a small step further towards
a biotrophic relationship. The honey guider Indicator guides mammals (e.g. badgers and
humans) to bees’ nests, itself feeding on the wax that is left over after the nest has been
opened by the guided animal. The birds’ activity might increase its average feeding rate
as well as that of the guided animal.

A transition to competition is found in sharksuckers Echeneis , which feed on fish frag-
ments derived from the shark’s meals. Antbirds of the family Formicariidae feed on well-
camouflaged locusts that jump to escape from an advancing front of army ants (subfamily
Dorylinae); syntrophy here completes the transition to direct food competition.

Methanogens were originally believed to be able to grow on propionate, butyrate and
alcohols longer than methanol [1295]. For example Methanobacillus omelianskii seemed to
oxidise ethanol (C2H6O) to acetate (C2H3O−2 ) and use the electrons to reduce CO2 to CH4.
This ‘species’ turned out to consist of two, which use substrates and produce products as
follows
Donor 2 C2H6O + 2 H2O + O2 → 2 C2H3O−3 + 2 H+ + 4 H2

Recipient 4 H2 + CHO−3 + H+ → CH4 + 3 H2O
Sum 2 C2H6O + CHO−3 + O2 → 2 C2H3O−3 + H+ + CH4 + H2O

The donor needs the activities of the recipient to keep the concentration of its product,
dihydrogen, down to extremely low levels. This is required to extract energy from the
degradation of ethanol. This pair serves as an example of a syntrophic relationship, which
will be analysed quantitatively for V1-morphs. What are the constraints on the production
of dihydrogen such that the biomass ratio between the species does not change, and the
two species behave as a single one, at least in steady state? The interest in the question is
to derive evolutionary constraints on the origin of syntrophy.
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Direct transfer

The donor obtains its substrate from the environment and the recipient receives product
from the donor, which serves as substrate. They grow at specific rates

ṙ1 =
fk̇1
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and ṙ2 =
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where f stands for the scaled functional response of the donor, and jP = ζPM k̇
1
Mg1 +
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The ratio of the structural masses to the reserves can be expressed as simple functions
of parameters at steady state
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The ratio of the reserves is only independent of substrate availability for the donor if
the maintenance rate coefficients are equal (k̇2

M = k̇1
M), that is when ζPM = 0. The

conclusion is that the conditions for weak homeostasis are much less stringent, compared
to a competition relationship.

Indirect transfer

Suppose that the donor and the recipient live in a chemostat of throughput rate ḣ which
is fed with medium containing ethanol in concentration XSr, and other substrates that
might be necessary, except for hydrogen. The donor delivers its product into the well-
mixed chemostat. Changes in biomass ratios of donor and recipient are still possible given
the constraints of homeostasis if the saturation constant of the recipient for the product is
not very small.

The changes in the concentrations of ethanol (substrate S), dihydrogen (product P ),
and structural biomass of species 1 and 2 are for f1 = (1 + KS/XS)−1 and f2 = (1 +
KP/XP )−1

d

dt
XS = (XSr −XS)ḣ− ζSAf1k̇

1
EX

1
V ;

d

dt
ei = (fi − ei)k̇iE, i ∈ {1, 2} (9.3)
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d

dt
X2
V = (ṙ2 − ḣ)X2
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k̇2
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e2 + g2

(9.6)

The expressions for the specific growth rate follow from the deb theory, as does the pro-
duction of product (here dihydrogen), which is, generally, a weighted sum of the three
basic powers. At steady state we have ḣ = ṙ1 = ṙ2, and the problem is to find the weight
coefficients ζP∗ for the production of hydrogen such that X2

V /X
1
V does not depend on ḣ.

The steady-state scaled functional responses are f 1
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The ratio varies within a limited range only, for varying throughput rate ḣ and substrate
concentration XSr, if the saturation constant KP is small, and the constraints apply for
weak homeostasis at direct transfer.

9.1.3 Symbiosis

Two species have a symbiontic relationship if the syntrophic one is reciprocal. It is ex-
tremely common; think for instance of the micro flora in digestive tracts of animals, or a
mycorrhiza in and around plant roots. A discussion of its frequently amazing forms can
easily fill a book, and most relationships are probably still unknown.

Products for a favour

The term mutualism is frequently used to indicate a relationship that is reciprocally ‘ben-
eficial’, without a direct trophic basis that is reciprocal.

The Latin-American tree Cecropia stores glycogen in specialised plastids in tissue,
which is eaten by ants that furiously attack anything that touches the tree. In other
ant–plant relationships, plants provide protein granules, and ants take care of plant-eating
insects. Another example is the plant–pollinator relationship, where plants provide nectar
and pollen, and the pollinator (insects, bats, birds) takes care of directed pollen dispersal.
Moreover, most of them also need insects, birds or bats and other animals to be pollinated
(e.g. [925, 63], and yet other animals for seed dispersal. Thus, berries, for example of
Caprifoliaceae, Solanaceae and Rosaceae, are ‘meant’ to be eaten [1086]; some seeds have
edible appendices (e.g. Viola) to promote dispersal, but others have no edible parts in
addition to the seed, such as Adoxa and Veronica, and germinate better after being eaten by
snails or birds and ants, respectively. Still other seeds stick to animals (e.g. Boraginaceae,
Arctium) for dispersal. Fungi, such as the stinkhorn Phallus and the truffle Tuber , also
interact with animals for their dispersal.

These cases represent syntrophic relationships as far as the use of substrates is con-
cerned.
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Phototroph-heterotroph associations

Algae frequently go for symbiontic relationships
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with plants, animals, and other protoctists [952].
Many (tropical) coelenterate species host endosym-
biontic dinoflagellates named zooxanthellae [1140],
which can still live independently from the host [280].
Scleractinian corals hosting Symbiodinium species
are the dominant reef builders. Chloroplasts, includ-
ing that of Symbiodinium, are considered to be en-
dosymbionts themselves. Membrane compositions
reveal that chloroplasts of the endosymbiontic di-
noflagellate Amphidinium wigrense are similar to
the cryptomonad endosymbionts of Gymnodinium
acidotum, which have lost their nucleus [1259]; the
chloroplasts of these cryptomonads are possibly de-
rived from a rhodophyte, which encapsulated a prokary-
ote. Such multiple nestings are frequent [1070]. The
view of the eukaryotic cell as an integrated symbion-
tic community is taking ground [744]. An analysis
of trophic interactions in a symbiosis has relevance

for cellular biology in general, cf {275}. This motivates a more detailed discussion here.

The algal symbionts receive ammonia and carbon dioxide from the host and return
lipids and glycerol [67, 1107], which supplement the prey taken by the host. The host
can increase the inorganic carbon supply for the symbionts, using the enzyme carbonic
anhydrase, which catalyses the interconversion of CO2 to HCO−3 [820]. This reduces the
carbon dioxide concentration in the host and increases its uptake from the environment.
The transfer of bicarbonate to the symbiont is coupled to the calcification process, Ca2+

+ 2 HCO−3 → CaCO3 + CO2, where the carbonate is precipitated by the host and the
carbon dioxide is used by the symbiont, cf. {188}. Symbionts are also found to have het-
erotrophic abilities [1107] for compounds that are likely to be formed during fermentation
processes. In oligotrophic environments, hosts can increase production by one to two orders
of magnitude, with the help of symbionts [456].

The stabilising mechanism in the host–symbiont relationship is that the symbiont re-
quires ammonia from the host for growth, and the host requires carbohydrates from the
symbiont for extra growth that is allowed by food supply. The symbiont cannot grow if
it supplies enough carbohydrates to the host to allow the host to use all the ammonia
itself; the host generates ammonia, and the symbiont only receives the ‘spoils’ [456]. This
priority in use is reciprocal, and also applies to carbohydrates.

A number of simplifying assumptions are made:

• Bicarbonate is included in CO2, which in fact stands for inorganic carbon. The
complex biochemistry of calcification is simplified to a proportionality with the CO2

that is taken up from the environment. The reported coupling of coral calcification
to nitrogen metabolism [233] is taken into account by the full assimilation process,
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Table 9.1: The chemical compounds of the symbiosis and their transformations and indices.
The + signs mean appearance, the − signs disappearance. The signs of the mineral fluxes
depend on the chemical indices and parameter values. The labels on rows and columns serve as
indices to denote mass fluxes and powers. The table shows the flux matrix J̇T , rather than J̇ , if
the signs are replaced by quantitative expressions presented in Table 9.2.
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L C H O N P X CH V H EH V S ES

assim 1 A1H + + − + + − +
assim 2 A2H + + − − − +

ho
st

growth GH + + − + + −
dissip DH + + − + −
assim AS − − − + − + +

sy
m

b.

growth GS + + − + + −
dissip DS + + − + −
carbon C 1 1 1 1 1 1 1 1
hydrogen H 2 3 nHP nHX 2 nHVH nHEH nHV S nHES
oxygen O 2 1 2 nOP nOX 1 nOVH nOEH nOV S nOES
nitrogen N 1 nNP nNX nNVH nNEH nNV S nNES

which requires light, inorganic carbon as well as nitrogen.

• Nitrate is assumed not to be present in the environment; it can be included in the
nitrogen flux to the symbiosis, if the (variable) nitrate/ammonium ratio is taken into
account in the assimilation costs yCH ,ES and yCH ,EH .

• Water and dioxygen are non-limiting; the performance of the symbiosis is only af-
fected by light, CO2, ammonia and food. The composition of food is constant. Self
shading is neglected; light is used proportional to the mass of symbiont, and inde-
pendent of the surface area of the host.

• Each partner has only one reserve, so the state variables are MV H , MEH , MV S, MES.
The symbiont does not store nitrogen separately; this seems realistic due to lack
vacuoles [942]. It, therefore, makes little sense to store carbohydrates as a separate
reserve.

• Both assimilation processes of the host are parallel; that from carbohydrates and
ammonia is fast (these substrate fluxes already have upper boundaries).

• The binding probabilities of all substrates to the Synthesising Units are taken to be
close to one, except that of carbohydrate by the symbiont, which is possibly tunable
by the host [286].
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Table 9.2: The fluxes in a symbiosis between a heterotrophic isomorphic host H and an au-
totrophic V1-morphic symbiont S, which experiences the light flux J̇L,F , and the densities of
inorganic carbon XC , nitrogen XN and food X. The reserves enter the fluxes via mH

E = MH
E /M

H
V

and mS
E = MS

E/M
S
V . The parameter MV d just serves as reference for MH

V to scale jHEA1m
, jHNA2m

,
jHCA2m

and k̇HE .

J̇C,A1H = −J̇X,A1H − J̇P,A1H − J̇EH,A1H ; J̇N,A1H = −nN,X J̇X,A1H − nN,P J̇P,A1H − nN,EH J̇EH,A1H ;
J̇P,A1H = yP,EH J̇EH,A1H ; J̇X,A1H = −yX,EH J̇EH,A1H ; J̇EH,A1H = jEH,A1Hm

1+XK/X
(MV H/MV d)2/3;

J̇N,F = − jN,A2Hm

1+XKN/XN
(MV H/MVd

)2/3; J̇C,F = − jC,A2Hm

1+XKC/XC
(MV H/MVd

)2/3;
J̇C,A2H = J̇CH ,AS − J̇EH,A2H ; J̇N,A2H = −yN,EH J̇EH,A2H ; J̇CH ,A2H = −yCH ,EH J̇EH,A2H ;

J̇EH,A2H =
(

(yEH,N J̇N,A+H)−1 + (yEH,CH
J̇CH ,AS)−1 − (yEH,N J̇N,H + yEH,CH

J̇CH ,AS)−1
)−1

;

J̇N,A+H = J̇N,A1H + J̇N,GH + J̇N,DH + (JN,+S)+ − J̇N,F ; J̇N,+S = J̇N,AS + J̇N,GS + J̇N,DS ;

J̇C,GH = (yEH,V H − 1)J̇V H,GH ; J̇N,GH = (nN,EH yEH,V H − nN,V H)J̇V H,GH ;

J̇EH,GH = −yEH,V H J̇V H,GH ; J̇V H,GH = MV H
(MV d/MV H)1/3k̇EHmEH−jEH,DH/κH

mEH+yEH,V H/κH
;

J̇C,DH = −J̇EH,DH ; J̇N,DH = −nN,EH J̇EH,DH ; J̇EH,DH = −jEH,DHMV H ;

J̇C,AS = −J̇CH ,A+S ; J̇C,A+S = J̇C,+H + J̇C,GS + J̇C,DS ;
J̇C,+H = −j̇C,F + J̇C,A1H + J̇C,A2H + J̇C,GH + J̇C,DH ;
J̇N,AS = −nN,ES J̇ES,AS ; J̇N,A+S = (J̇N,+H)+ + J̇N,GS + J̇N,DS
J̇N,+H = J̇N,A+H + J̇N,A2H ; J̇CH ,AS = J̇CH ,A+S − yCH ,ES J̇ES,AS ;

J̇CH ,A+S =
(
J̇−1
C,A+S

+ (yCH ,LJ̇L,F )−1 − (J̇C,A+S + yCH ,LJ̇L,F )−1
)−1

;

J̇ES,AS =
(

(yES,N J̇N,A+S)−1 + (yES,CH
ρCH

J̇CH ,A+S)−1 − (yES,N J̇N,A+S + yES,CH
ρCH

J̇CH ,A+S)−1
)−1

;

J̇C,GS = (yES,V S − 1)J̇V S,GS ; J̇N,GS = (nN,ES yES,V S − nN,V S)J̇V S,GS ;
J̇ES,GS = −yES,V S J̇V S,GS ; J̇V S,GS = MV S

k̇ESmES−jES,DS

mES+yES,V S
;

J̇C,DS = −J̇ES,DS ; J̇N,DS = −nN,ES J̇ES,DS ; J̇ES,DS = −jES,DSMV S

• The environment is treated as homogeneous. Flow regimes and diffusive boundary
layers usually modify feeding and nutrient uptake [872].

Table 9.2 specifies the fluxes of 11 compounds as indicated in Table 9.1. The fluxes are
determined by 19 parameters, and chemical indices, as functions of four environmental vari-
ables: light, inorganic carbon, nitrogen and food. The symbiosis can live fully heterotrophic
as well as fully autotrophic; as a consequence, it can take up significant amounts of inor-
ganic nitrogen [872]. Figure 9.1 shows that calcification can enhance growth; its measured
yearly maximum is 4 kg CaCO3 m−2a−1, or 3–5 mm a−1 [1085]; its daily maximum is three
times as high [1084]. The chosen parameter values are just provisional; the figure only
serves to illustrate the model structure.

Although the reproduction of the host has been taken into account by the parameter κH ,
the reproduction flux is not listed explicitly. The fluxes associated with assimilation A2H
and AS are given implicitly, and must be obtained numerically. This is hardly a handicap in
practice, because a simple Newton Raphson procedure turns out to be converging rapidly
starting from J̇C,A2H = J̇N,A2H = 0. The change in state is given by d

dt
M = J̇1. The
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masses and reserve densities of a het-
erotrophic isomorphic host and an au-
totrophic V1-morphic symbiont, and their
ratio. Light and food are non-limiting and
free nitrogen is absent; inorganic carbon
is non-limiting (drawn) or absent (finely
stippled). Coarsely stippled: host with-
out symbiont.

specification allows the following assertions

• The symbiont does not grow if

J̇N,+S = 0, in which case J̇N,+H = 0 as well; all ammonia released in maintenance
is used for assimilation; J̇N,+H = 0 if J̇N,A+H + J̇N,A2H = 0.

mES = jES,DS/k̇ES; the reserves just cover the maintenance costs. Reserves do
not change if k̇ESMES = J̇ES,AS; assimilation equals the catabolic rate.

• The host does not grow if mEH =
jEH,DH
κH k̇EH

(
MVH

MV d

)1/3
; reserves do not change if

k̇EH(MV d/MV H)1/3MEH = J̇EH,A1H + J̇EH,A2H .

• The ratio of the structural masses of symbiont and host does not change if their
specific growth rates are equal, so if jV S,GS = jV H,GH .

• The flux ratio J̇EH,A2H(J̇EH,A1H + J̇EH,A2H)−1 quantifies the photo- versus hetero-
trophic activity of the host. It is fully phototrophic if J̇X,F = 0. The host gains
nothing from the symbiont if J̇CH ,AS = 0, or if J̇CH ,A+S = J̇ES,AS. Muscatine et al.
[819] proposed a related measure: the fractional contribution of translocated zoox-
anthellae C to animal daily respiratory C requirements CZAR = J̇CH ,ASJ̇

−1
C,+H100 %.

• The effect of calcification can be evaluated under the various feeding conditions (J̇L,F ,

J̇N,F and J̇X,F ) with the fraction
J̇EH,A1H

+J̇EH,A2H
given J̇C,F=0

J̇EH,A1H
+J̇EH,A2H

given J̇C,F=−∞ .

• The host is of no use for the symbiont if it captures no prey, and competes with the
symbiont for nitrogen.
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Figure 9.1 reveals an important implication of the specification of fluxes in Table 9.2:
the symbiont/host ratio of structural masses hardly varies. No other regulation seems to be
required, other than trophic interactions. The host can tune the population of symbionts
via the binding parameter ρCH of carbohydrates to the assimilation SU of the symbiont.

Calcifying corals typically consist of a complex carbonate structure covered with a thin
layer of living tissue of about constant thickness. Apart from extending the reef, coral
colonies in a reef can only grow by increasing the surface area of the supporting structure.
The differential growth of biomass and supporting structure controls the shape of the
colony. By producing thin axes, the colony can combine a large growth of biomass with
little carbonate production, and vice versa by producing solid cerebral structures.

The symbiosis can be simplified smoothly to a mixotroph with a single structure and
reserve, by sacrificing the limited degree of freedom in composition. The explicit role of
carbohydrates then disappears. A satisfactory description of the diurnal cycle requires
separate carbohydrate and nitrogen reserves. The evolutionary perspectives of symbioses
are discussed at {391}.

9.1.4 Biotrophy & parasitism

In a biotrophic relationship, the receiver lives off the host’s body parts, without neces-
sarily killing the host; it is a transition between a syntrophic and a predatory one. This
definition includes most parasites, cows and excludes adult tapeworms (which are competi-
tors). The pearlfish Carapus lives inside living sea cucumbers for shelter, where it feeds
on the reproductive tissues. Many parasites, such as the avian schistosome Trichobilharzia
which lives on the reproductive tissues of the pond snail Lymnaea, induce their host to
increase its investment in growth, by increasing κ, cf. {40}; this, paradoxically, decreases
short-term investment in reproduction, but increases the long-term investment via an in-
crease in body size and so in feeding rate. When the eggs are consumed a little further
in their development, and are outside the body of the mother, as in the case of the snake
Dasypeltis feeding on bird eggs, the relationship is usually called predatory, rather than
parasitic. Parasites frequently have intimate metabolic and life history relationships with
their host [212, 985, 1250]. dna sequencing reveals that the feared typhus bacterium Rick-
ettsia prowazekii is the closest free-living relative of mitochondria [27], which are completely
integrated into almost all eukaryotic cells [744], cf {275, 391, 385}.

An intriguing parasitic relationship is the α proteobacterial symbiont Wolbachia of
Ecdysozoa (including arthropods and nematodes), which affects sex determination [202,
557, 808, 1240].

9.1.5 Predation & saprotrophy

Although many heterotrophic species eat living prey individuals, most prey–predator mod-
els in ecology fail to recognise that the relationship is more complex than just the disappear-
ance of prey individuals and the coupled production of predators. Predators usually have a
strong preference for the less healthy prey individuals (possibly in their post-reproductive
period where they compete for food with the productive subpopulation), and which are
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also target for pathogens; once infecting a population, pathogens can attack healthy in-
dividuals more easily. Almost all predators are scavengers as well, i.e. they feed on dead
biomass, which classifies them as saprotrophs. When a predator dies, a rich supply of
substrates and nutrients becomes available in the form of its corpse, which directly or in-
directly comes back to the prey. Accidental death or death from aging by the predator can
be considered as maintenance-coupled substrate production processes at the population
level. All organisms, therefore, have syntrophic relationships with others at the population
level. Predators also provide food for the prey via the release of nutrients (nitrogenous
waste, faeces); if the prey happens to be algae or plants, the nutrients can be used directly,
or these intermediate organisms will be directly or indirectly food for the prey. These
indirect trophic relationships need to be included for a proper understanding of population
dynamics.

Most predators also feed on dead prey, other species specialise on sapotrophy, such
as burrowing beetles of the family Silphidae. The frequent occurrence of sapotrophy and
predation is because the chemical make up of organisms does not differ that much; because
of their great capacity of moving around, animals are often the first to arrive at the feast.
Many examples illustrate that it is just a small step from feeding off dead corpses to that
of living off live ones.

Many carnivores have cannibalistic tendencies in periods of low prey abundance. This
obviously reduces intra-species competition in the predator population, with more food
available to the surviving individuals, while relieving the pressure on the prey. Cannibal-
ism has a strong stabilising effect on population dynamics. deb models can be used to
understand why dwarfs and giants can develop in cannibalistic populations [209].

Prey can develop intricate behavioural and physiological adaptations to avoid predation
[1057, 1218], and prey species that share a common predator can develop interrelationships
[2]. The predation of insects on plants evolved into intricate relationships [1032].

A low predation pressure on symbiotic partners enhances their stable co-existence [630],
whereas co-existence becomes unstable at a high pressure and easily leads to the extinction
of both prey and predator. This points to a co-evolution of parameter values quantifying
the dynamics in prey-predator systems. The time scale of the effects on fitness is essential;
short-term positive effects can go together with long-term negative effects of behavioural
traits on fitness. Time scales and indirect side-effects that operate through changes in
food availability are important aspects that are usually not included in the literature on
evolutionary aspects of life history strategies.

9.2 Population dynamics

The significance of the population level for biological insight at all organisation levels is
manifold. It not only sets food availability and predation pressure for each individual, but
it also defines the effect of all changes in life history, which is pertinent to evolutionary
theory. All other individuals belong to the environment of the particular individual whose
fitness is being judged. Fitness, whatever its detailed meaning, relates to the production
of offspring, thus it changes the environment of the individual. This is one of the reasons
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why fitness arguments, which are central to evolutionary theories, should always involve
the population level. Feeding on the same resource and being eaten are the major topics in
population dynamics, but a real understanding requires analysis of all trophic interactions,
as specified in the section on ‘Canonical Communities’, {362}.

Most models of population dynamics treat individuals as identical objects, so that a
population is fully specified by its total number or total biomass. Such populations are
called non-structured populations. This obviously leads to attractive simplicity; see e.g.
Hastings [471] for an easy introduction. I discuss some doubts about their realism on
{335, 343}, doubts that can be removed by turning to structured populations. Structured
populations are populations where the individuals differ from each other by one or more
characteristics, such as age, which affect feeding, survival and/or reproduction. deb theory
provides an attractive, albeit somewhat complicated, structure. I will show the connection
between non-structured and deb-structured populations step by step.

The differences between individual and population levels fades for V1-morphs, which
makes them an ideal paradigm for the connection between non-structured populations and
structured ones. The introduction of a structure does not necessarily lead to realistic
population models because of the effects of many environmental factors that typically
operate at population level: spatial heterogeneity, seasonality, erratic weather, climatic
changes, processes of adaptation and selection, subtle species interactions and so on. The
occurrence of infectious diseases is perhaps one of the most common causes of decline and
extinction of species, which typically operates in a density-dependent way. This means
that population dynamics, as discussed in this chapter, still has to be embedded in a wider
framework to arrive at realistic descriptions of population dynamics.

Spatial structure can profoundly mod-
ify population dynamics, as illustrated
here for a compact school of fish, where
only the individuals at the front actu-
ally feed, while the others starve and
frequently interchange position with
the individuals in the front. If the
school increases its number of indi-
viduals, without changing shape, the
feeding rate by the school is propor-
tional to the number of individuals to

the power 2/3 (based on the same argument as deb theory uses for individuals), which
implies that the feeding rate by the individual decreases for increasing numbers of individ-
uals in the school. This is, however, not a proper population perspective, since this should
include rules for the birth and death of schools; the school is here a ‘super’ individual.

The interaction between individuals of the same species is here restricted to feeding on
the same resource. This point of view might seem a caricature in the eyes of a behavioural
ecologist. The general idea, however, is not to produce population models that are as
realistic as possible, but to study the consequences of feeding on the same resource. A
comparison is then made with non-structured population dynamics and with real-world
populations to determine the pay-off between realism and model complexity. If deb-
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structured population dynamics predictions are not realistic, while the deb model is at
the individual level, this will give a key to factors that are important in this situation.
The basic energetics and trophic interactions must be right before the significance of the
more subtle factors can be understood. My fear is that most of the factors shown to be
relevant will be specific for a particular species, a particular site and a particular period
in time. This casts doubts on the extent to which general theory is applicable and on
the feasibility of systems ecology. The main application of population dynamics theory
here concerns a mental exercise pertaining to evolutionary theory, with less emphasis on
direct testing in real-world populations. The theory should, however, be able to predict
population behaviour in simplified environments, such as those found in laboratory setups,
in bio-reactors and the like, so that it has potential practical applications.

9.2.1 Non-structured populations

The chemostat, a popular device in microbiological research, will be used to make the
transition from the intensively studied non-structured populations to deb-structured pop-
ulations. In a chemostat, food (substrate) is supplied at a constant rate to a population,
which is called a continuous culture. Food density in the inflowing medium is denoted by
Xr and the medium is flowing through the chemostat at throughput rate ḣ times the vol-
ume of the chemostat Vc. Together with the initial conditions (food and biomass density)
these controls determine the behaviour of the system, in particular the food (substrate)
density X0 and the biomass density X1 as functions of time. The index 0 in the notation
for food density is added for reasons of symmetry with X1: the biomass density of preda-
tors, i.e. the ratio of the sum of the individual masses and the volume of the chemostat,
Vc. So X1 =

∑N
i=1MV i/Vc, if there are N individuals in the population. The reactor is

assumed to be spatially homogenous, and is called a ‘continuous flow stirred tank reactor’
by engineers.

The chemostat as a model can also be realistic for particular situations outdoors [352,
374]. An important difference between chemostat models and many population dynamic
models is that food (substrate) does not propagate in the formulation here, while exponen-
tial or logistic growth is the standard assumption in most literature [470, 603, 677, 765].
I do not follow this standard, however, because I want to stick to mass and energy bal-
ance equations in a strict way. The growth rate of food should, therefore, depend on its
resource levels, which should be modelled as well. In the section on food chains, {357},
higher trophic levels, X2, X3 · · · will be introduced, not lower ones.

Batch cultures, which do not have a supply of food other than that initially present,
are a special case of chemostat cultures, where ḣ = 0. I start with the Lotka–Volterra
model, which was and probably still is the standard prey–predator model in ecology. In a
sequence of related models, the effect of the stepwise introduction of biological detail that
leads to deb-structured populations will be studied.
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Lotka–Volterra

The Lotka–Volterra model assumes that the predation frequency is proportional to the
encounter rate with prey (here substrate), on the basis of what is known as the law of mass
action, i.e. the product of the densities of prey and predator. It can be thought of as a
linear Taylor approximation of MM-kinetics around food density 0: f = (1 + K/X0)−1 '
X0/K for X0 � K. The ingestion rate is taken to be proportional to body volume,
as is appropriate for V1-morphs, so that the sum of all ingestion rates by individuals in
the population is found by adding the volumes of all individuals and applying the same
proportionality constant.

The Lotka–Volterra model for chemostats with throughput rate ḣ is

d

dt
X0 = ḣXr − jXAm

X0

K
X1 − ḣX0;

d

dt
X1 = Y jXAm

X0

K
X1 − ḣX1 (9.8)

where Y stands for the yield factor, i.e. the conversion efficiency from prey to predator
biomass; this is taken to be constant here. This model does not account for maintenance
or energy reserves, so that in the context of deb theory we have Y = κµAX

µGV
, with [ṗM ] = 0

and [Em] = 0. At the individual level, this model implicitly assumes that the feeding rate
is proportional to the volume of the individual. This aspect corresponds with V1-morphs.
The analysis of the population dynamics can best be done with the dimensionless quantities
τ ≡ tḣ, XAm ≡ jXAm/ḣ, xr ≡ Xr/XK , x0 ≡ X0/K, x1 ≡ X1/K. These substitutions turn
(9.8) into

d

dτ
x0 = xr − XAmx0x1 − x0;

d

dτ
x1 = Y XAmx0x1 − x1 (9.9)

The equilibrium is found by solving x0 and x1 from d
dτ
x0 = d

dτ
x1 = 0. The positive

solutions are x∗0 = (Y XAm)−1 and x∗1 = Y xr − −1
XAm. The yield factor in this model has

a double interpretation. It stands for the efficiency of converting food into biomass at
both the individual and the population levels. To see this, one has to realize that food

influx is at rate ḣKxr and food output is at rate ḣKx∗0 = ḣK
Y Xm

at equilibrium. So total

food consumption is ḣK(xr − 1
Y Xm

). Biomass output is ḣKx∗1 = ḣK(Y xr − −1
XAm). The

conversion efficiency at the population level thus amounts to
ḣK(Y xr−−1

XAm)

ḣK(xr−(Y XAm)−1)
= Y . This is

so simple that it seems trivial. That this impression is false soon becomes obvious when we
introduce more elements of the deb machinery; the conversion efficiency at the population
level then behaves differently from that at the individual level for non-V1-morphs.

The linear Taylor approximation around the equilibrium of the coupled system (9.9)
equals for xT ≡ (x0, x1) and x∗T ≡ (x∗0, x

∗
1)

d

dτ
x '

(
−Xmx1 − 1 −Xmx0

Y Xmx1 Y Xmx0 − 1

)
x=x∗

(x− x∗) (9.10)

'
(
−Y Xmxr −Y −1

Y 2Xmxr − Y 0

)(
x0 − 1

Y Xm

x1 − Y (xr − 1
Y Xm

)

)
(9.11)

The eigenvalues of the matrix with coefficients, the Jacobian, are −1 and −Y Xmxr +
1, so that this system does not oscillate. See Edelstein-Keshet [311], and Yodzis [1288]
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for valuable introductions to this subject, and Hirsch and Smale [511], Ruelle [998], and
Arrowsmith and Place [37, 38] for more advanced texts. Mathematical texts on non-linear
dynamics systems are now appearing at an overwhelming rate [79, 292, 440, 547, 1153],
especially with a focus on ‘chaos’. Simple biological problems still seem too complex
to analyse analytically, however, and one has to rely on numerical analyses. Figure 9.2
compares the dynamics of the Lotka–Volterra model with other simplifications of the deb
model.

Although this model cannot produce oscillations, with a minor change it can, by feeding
the outflowing food (substrate) back into the bio-reactor. This is technically a simple
operation. Most microbiologists even neglect the small outflow in open systems in their
mass balances. The situation is covered by deleting the third term in (9.9), i.e. −x0. The

eigenvalues of the Jacobian then become −1
2
Y XAmxr ± 1

2

√
(Y XAmxr)2 − 4Y XAmxr. For

Y XAmxr < 4, the eigenvalues are complex, thus the system is oscillatory.

Lotka-Volterra, Monod, Marr–Pirt, Droop & deb

The Marr–Pirt, Droop and Monod models are special cases of the univariate deb model
for V1-morphs. It reads

d

dτ
x0 = xr − Xmfx1 − x0;

d

dτ
x1 = Y Xmfx1 − x1 (9.12)

with f = (1 + x−1
0 )−1. The yield factor Y is only constant in the Monod model.

The biologically interesting equilibrium values x∗0 and x∗1 can easily be obtained from
(9.12), but the result is line filling. The linear Taylor approximation in the equilibrium for
the Monod case is:

d

dτ
x '

 −xr+x∗20

x∗0+x∗20
− 1
Yg

xr−x∗0
XAmx

∗2
0

0

 (x− x∗) (9.13)

The eigenvalues of the Jacobian are −1 and − 1
YgXAm

(xr − 1
YgXAm−1

)(YgXAm − 1)2, so the

system does not oscillate. The linear Taylor approximation of the functional response is
accurate for small equilibrium values of food density, and thus a high value for YgXAm,
which means that the Monod and the Lotka–Volterra models for the chemostat are very
similar. The Monod model has less tendency to oscillate than the Lotka–Volterra model.
This becomes visible if the substrate is fed back to the bio-reactor. (Thus we omit the
term −x0 in (9.12).) Contrary to the Lotka–Volterra model, the eigenvalues of the Jacobian
cannot become complex, so the system cannot oscillate.

Figure 9.2 gives the direction fields of the various simplifications of the deb model.
The functional response in the equilibrium of the Monod model is only 0.4, for the chosen
parameter values, which results in a close similarity with the Lotka–Volterra model. The
direction fields of the Marr–Pirt and Droop models are rather similar, so the effects of
introducing maintenance and reserves are more or less the same. When introduced simul-
taneously, as in the deb model, the effect is enhanced. Note that the isocline d

dτ
x0 = 0

hits the axis x1 = 0 at x0 = xr, which is just outside the frame of the picture for the deb
model, but far outside for the Lotka–Volterra model. For very small initial values for x0
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Lotka–Volterra Monod

0 x∗0 x0

0

x∗1

x1

0 x∗0 x0

0

x∗1

x1

Marr–Pirt Droop

0 x∗0 x0

0

x∗1

x1

0 x∗0 x0

0

x∗1

x1

deb

0 x∗0 x0

0

x∗1

x1 Equilibrium values for x0 and x1

and parameters

model x∗0 x∗1 xr Yg Xm g ld

Lotka 0.39 8.17 10 0.85 3 - -
Monod 0.65 7.95 10 0.85 3 - -
Marr 0.97 6.12 10 0.85 3 - 0.1
Droop 1.82 4.23 10 0.85 3 1 -
deb 4.25 2.37 10 0.85 3 1 0.1

Figure 9.2: The direction fields and isoclines for the deb model for V1-morphs in a chemostat
with reserves at equilibrium, and the various simplifications of this model. The lengths and
directions of the line segments indicate the change in scaled food density x0 and scaled biovolume
x1. The isoclines represent x0, x1-values where d

dτ x0 = 0 or d
dτ x1 = 0. All parameters and

variables are made dimensionless, as indicated in the text.
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Figure 9.3: In all models, Monod, Marr–Pirt,
Droop and deb, uptake as a fraction of its max-
imum depends on scaled substrate density x
as f = x

1+x , as indicated by the thick curve.
The Monod model, ṙ

ṙm
= f , coincides with this

curve. The Marr–Pirt model, ṙ
ṙm

= f/ld−1
1/ld−1 in-

cludes maintenance and has a translation to the
right. The Droop model, ṙ

ṙm
= f 1+g

f+g includes
reserve and has a smaller saturation coefficient
(for the ṙ-curve), whereas the univariate deb

model for V1-morphs ṙ
ṙm

= 1+g
f+g

f/ld−1
1/ld−1 has both.

All four curves have a horizontal asymptote of
1.

ld
1−ld

g
1+g

Droop
deb
Monod
Marr

x

ṙ/
ṙ m

Figure 9.4: The fraction of dead cells depends
hyperbolically on the population growth rate,
and increases sharply for decreasing population
growth rates. The three curves correspond with
k̇M/ṙm = 0.05, ḣa/ṙm = 0.01 (lower), k̇M/ṙm =
0.1, ḣa/ṙm = 0.01 (middle) and k̇M/ṙm = 0.05,
ḣa/ṙm = 0.1 (upper curve). For high growth
rates, the dead fraction is close to ḣa/ṙm, which
will be very small in practice. The curves make
it clear that experimental conditions are ex-
tremely hard to standardise at low growth rates.
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scaled throughput rate ḣ/ḣm

and x1, the direction fields show that x0 will first increase very rapidly to xr, without a
significant increase of x1, then the d

dt
x0 = 0-isocline is crossed and the equilibrium value

x∗0, x
∗
1 is approached with strongly decreasing speed. This means that x0 falls back to a

very small value for Lotka’s model, but much less so for the deb model. The most obvious
difference between the models is in the equilibrium values, where x∗1 � x∗0 in Lotka’s model,
but the (much more realistic) reverse holds in the deb model. The other models take an
intermediate position. The approach of x0, x1 to the equilibrium value closely follows the
d
dt
x0 = 0-isocline if x1 > x∗1 in all models. The speed in the neighbourhood of the isocline

is much less than further away from the isocline, and the differences in speed are larger for
Lotka’s model than for the deb model. These extreme differences in speed mean that the
numerical integration of this type of differential equations needs special attention.

Figure 9.3 gives the relative specific growth rates of the Monod, the Marr-Pirt, the
Droop and the univariate deb model for V1-morphs as functions of the scaled substrate
density. It further illustrates the effect of maintenance and reserve.
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Death

The usefulness of the chemostat in microbiological research lies mainly in the continuous
production of cells that are in a particular physiological state. This state depends on the
dilution rate. In equilibrium situations, this rate is usually equated to the population
growth rate. The implicit assumption being made is that cell death plays a minor role. As
long as the dilution rate is high, this assumption is probably realistic, but if the dilution
rate is low, its realism is doubtful. Low dilution rates go with low substrate densities and
long inter-division intervals. In the section on aging {209}, the hazard rate for V1-morphs
is tied to the respiration rate and so, indirectly, to substrate densities in (6.8). The law
of large numbers states that the hazard rate can be interpreted as a mean (deterministic)
death rate for large populations. The dynamics for the dead biovolume, x† reads

d

dt
x† = ḣax1 − ḣx† (9.14)

with ḣa denoting the hazard rate. It can easily be seen that, in the equilibrium, we

must have that ḣx∗† = ḣax
∗
1, so the fraction of dead biovolume equals

x∗†
x∗1+x∗†

= ḣa
ḣ+ḣa

. The

dynamics of the biomass should account for this loss, thus

d

dt
x1 = Y jXAmfx1 − (ḣ+ ḣa)x1 (9.15)

Substitution of the expression for the hazard rate and the yield and the condition d
dt
x1 = 0

leads to the equilibrium value for f : g(k̇M+ḣ)

k̇E−ḣ−ḣa(1+g)
. Back-substitution into the hazard rate

and the yield finally results in

x∗†
x∗1 + x∗†

=
k̇M + ḣ

k̇M + (k̇M + ṙ◦m)ḣ/ḣa
(9.16)

where ṙ◦m = k̇E−k̇Mg
1+g

is the gross maximum population growth rate. (The net maximum

population growth rate is ṙm = ṙ◦m−ḣa and ḣ ≤ ḣm ≤ ṙm ≤ ṙ◦m. The maximum throughput

rate is ḣm = k̇E−ḣa(1+g)−gk̇M (1+K/Xr)
1+g(1+K/Xr)

. Since most microbiological literature does not account
for death, and saturation coefficients are usually small, these different maximum rates are
usually not distinguished. Figure 9.4 illustrates how the dead fraction depends on the
population growth rate.

The significance of the fraction of dead cells is not only of academic interest. Since it
is practically impossible to distinguish the living from the dead, it can be used to ‘correct’
the measured biomass for the dead fraction to obtain the living biomass.

In the section on aging, {209}, I speculate that prokaryotes might not die instanta-
neously, but first switch to a physiological state called ‘stringent response’. The fraction
(9.16) can then be interpreted as the fraction of individuals that is in the stringent re-
sponse. A typical difference between both types of cells is the intracellular concentration
of Guanosine 4-phosphate (ppGpp), which is usually expressed per gram of total biomass.
This quantification implicitly assumes that all cells in the population behave in the same
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Figure 9.5: The potassium-limited
growth of E. coli at 30 ◦C. Data
from Mulder [814]. The expo-
logistic growth is fully from re-
serves when potassium is depleted
from the environment. Parameters
for biomass in dimensionless extinc-
tion units: initial potassium con-
centration X0(0) = 0.825 mM, ini-
tial biomass x1(0) = 0.657, maxi-
mum specific uptake rate jXAm =
0.125 mM h−1, investment ratio
g = 0.426, reserve turnover k̇E =
0.925 h−1.

way physiologically, and not that the population can be partitioned into cells that are in the
stringent response and those that are not. It remains to be determined which presentation
is the more realistic.

Reserves and expo-logistic growth

The univariate deb model for V1-morphs in chemostats amounts to the following three
coupled equations

d

dτ
x0 = xr − XAmfx1 − x0;

d

dτ
e = YgXAmg(f − e) (9.17)

d

dτ
x1 = YgXAmg

e− ld
e+ g

x1 − x1 − ha
1 + g

e+ g
ex1 (9.18)

A special case of conceptual interest can be solved analytically. This case relates to
batch cultures, where no input or output (of substrate or biomass) exists, and the biomass
just develops on the substrate that is present at the start of the experiment. If the sat-
uration coefficient, the maintenance costs and aging rate are small, V1-morphs will grow
in a pattern that might be called expo-logistic. Initially they will grow exponentially and
after a certain time (which corresponds to the depletion of the substrate) they switch to
logistic growth, depleting their reserves. The biomass–time curve is smooth, even at the
transition from one mode of growth to the other.

Worked out quantitatively, we get the following results. The functional response f is
initially 1, since K � X0. If the inoculum is from a culture that has not suffered from
substrate depletion, we have e = 1 and X1(t) = X1(0) exp(ṙmt), so the population growth
rate is maximal, i.e. ṙm = (k̇E − k̇Mg)(1 + g)−1. The substrate concentration develops
as X0(t) = X0(0) −

∫ t
0 jXAmX1(t1) dt1. It becomes depleted at t0, say, where X0(t0) = 0.

Substitution gives

X0(t) = X0(0)(exp(ṙmt0)− exp(ṙmt))(exp(ṙmt0)− 1)−1 (9.19)
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where depletion occurs at time t0 = 1
ṙm

ln
{

1 + X0(0)
X1(0)

ṙm
jXAm

}
. The reserves then decrease

exponentially, i.e. e(t0 + t) = exp(−k̇Et). The biovolume thus behaves as X1(t0 + t) =

X1(t0) exp
(∫ t

0
k̇Ee(t0+t1)−k̇Mg

e(t0+t1)+g
dt1

)
. For small maintenance costs, k̇M → 0, this reduces to

X1(t0 + t) = X1(t0) 1+g

exp(−k̇Et)+g
. This is the solution of the well-known logistic growth

equation d
dt
X1 = k̇E

(
1− X1(t)

X1(0)
g

1+g

)
X1, see Figure 9.5. The equation originates from Pearl

[876] in 1927. If the maintenance costs are not negligibly small, the integral for X1(t) has to
be evaluated numerically. Biomass will first rise to a maximum and then collapse at a rate
that depends on the maintenance costs. This behaviour offers the possibility to determine
these costs experimentally. The quantitative evaluation can easily be extended to include
fed-batch cultures for instance, which have food (substrate) input and no output of food
or biomass, but this does involve numerical work.

Similar biovolume–time curves can also arise if the reserve capacity rather than the
saturation coefficient is small. If maintenance and aging are negligible as before, the batch
culture can be described by d

dt
X0 = −jXAmfX1 and d

dt
X1 = YgjXAmfX1. We must also

have X1(t) = X1(0) + Yg(X0(0)−X0(t)). Substitution and separation of variables gives

jXAmYgt =
KYg
X1(∞)

ln
X1(t)(X1(∞)−X1(0))

X1(0)(X1(∞)−X1(t))
+

1

2
ln
X1(t)

X1(0)
(9.20)

Although this expression looks very different from (9.19), the numerical values are
practically indistinguishable, as shown in Figure 9.6, where both population growth curves
have been fitted to data on Salmonella. The only way to distinguish a difference is in the
simultaneous fit for both biomass and substrate. This illustrates the rather fundamental
problem of model identification for populations, even in such a simple case as this with
only four free parameters. (To reduce the number of free parameters, maintenance and
aging were taken to be negligible for both special cases.)

If other information is available to allow a choice between various possibilities, such as
in the case of very efficient histidine uptake by deficient Salmonella strains, cf. {240}, the
growth of batch cultures can be used to estimate the reserve capacity. This has been done
in Figure 9.7 to illustrate that under particular circumstances, the deb model implies mass
fluxes, as discussed in more detail on {134}.

9.2.2 Structured populations

It is not my intention to review the rapidly growing literature on structured population dy-
namics, but, for those who are unfamiliar with the topic, some basic notions are introduced
below to help develop intuition. See Heijmans [483], Metz and Diekmann [786],  Lomnicki
[716], Ebenman and Persson [308], DeAngelis and Gross [254], Tuljapurkar and Caswell
[1175], Gurney and Nisbet [444], and Cushing [237] for reviews of recent developments.

In unstructured models, all individuals are treated as identical, so their state (the
i-state) is degenerated, and the population state (the p-state) is simply the number of
individuals. This is different in structured models, where a population exists of individuals
that differ in their i-state, and the p-state is defined as the frequency distribution of
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Figure 9.6: A batch culture of Salmonella ty-
phimurium strain TA98 at 37 ◦C in Vogel and Bon-
ner medium with glucose, (excess) histidine and bi-
otin added. Two models have been fitted and plot-
ted: one assumes that the saturation coefficient is
negligibly small, but the reserves capacity is sub-
stantial, while the other does the opposite. Only
the substrate density will tell the difference (stip-
pled curves), but this is not measured. Parameters:
k̇E = 18.6 d−1, g = 0.355, x0(0)/jXAm = 0.020 d or
x1(∞) = 1.28, Y K = 1.31, Y jXAm = 23.6 d−1. time, d
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Figure 9.7: Batch cultures of a histidine-deficient
strain of S. typhimurium, with initially only 0,
0.5, 1 or 5 µg histidine ml−1 in the medium, stop
growing because of histidine depletion. The fit
is based on the assumption of negligible main-
tenance requirements for histidine, which implies
that the extinction plateau is a linear function
of the added amount of histidine. The parame-
ters are jXAm = 8µg His ml−1 h−1, k̇E = 5.3 h−1

and g = 7.958. One extinction unit corresponds
with 7.56 × 108 cells ml−1, so that the yield is
Yg = k̇E

jXAmg
= 0.0834 mlµg His−1. This corre-

sponds with 1.1 × 10−10g His cell−1 = 3.15 × 105

molecules His cell−1 with a maximum of 4 × 104

molecules histidine in the reserve pool. time, d

ex
ti

nc
ti

on
at

66
0

nm

the individuals over the i-state. Individuals with almost identical i-states are thus taken
together in a cohort, and counted.

Reproducing neonates

There is no way to prevent neonates from giving rise to new neonates in unstructured
populations. This artifact of the formulation can dominate population dynamics at lower
growth rates. Comparison with a simple age-structured population, in which individuals
reproduce at a constant rate after a certain age ap, can illustrate this.

In a constant environment, any population grows exponentially given time, structured
as well as non-structured. (Real populations will not do so because the environment will
soon change because of food depletion.) Let N(t) denote the number of individuals at time
t. The numbers follow N(t) = N(0) exp(ṙt), where the population growth rate ṙ is found
from the characteristic equation

1 =
∫ ∞

0
Pr{a† > a}Ṙ(a) exp(−ṙa) da (9.21)

Suppose that death plays a minor role, so Pr{a† > a} ' 1, and that reproduction is
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Figure 9.8: For a constant reproduction rate
Ṙ in the adult state, the population growth rate
depends sensitively on the length of the juve-
nile period, as shown in the upper curve. The
unit of time is Ṙ−1 and mortality is assumed
to be negligible. The lower curve also accounts
for the fact that individuals are discrete units
of biomass. The required accumulation of re-
productive effort to produce such discrete units
reduces the population growth rate even further,
especially for short juvenile periods. Note that
the effect of food availability is not shown in this
figure, because it only affects the chosen unit of
time. scaled juvenile period apṘ
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ṙ/
Ṙ

constant after age ap, so Ṙ(a) = (a > ap)Ṙ, where, with some abuse of notation, Ṙ in the
right argument is taken to be a constant. Substitution into (9.21) gives

exp(−ṙap) = ṙ/Ṙ (9.22)

This equation ties the population growth rate ṙ to the length of the juvenile period and
the reproduction rate. It has to be evaluated numerically. For unstructured populations,
where ap = 0 must hold, the population growth rate equals the reproduction rate, ṙ = Ṙ.
For increasing ap, ṙ falls sharply; see Figure 9.8. This means that neonates giving birth to
new neonates contribute significantly to unstructured populations.

Discrete individuals

The formulation of the reproduction rate such as Ṙ(a) = (a > ap)Ṙ treats the number
of individuals as a continuous variable. Obviously, this is unrealistic, because individuals
are discrete units. It would be more appropriate to gradually fill a buffer with energy
allocated to reproduction and convert it to a new individual as soon as enough energy has
been accumulated. In that case, the reproduction rate becomes Ṙ(a) = (a = ap + i/Ṙ)/da,
for i = 1, 2, · · ·. It is zero almost everywhere, but at regular time intervals it switches to
∞ over an infinitesimally small time interval da, such that the mean reproduction rate as
an adult over a long period is Ṙ as before. Giving death a minor role, the characteristic
equation becomes

exp(−ṙap) = exp(ṙ/Ṙ)− 1 (9.23)

to reveal the effect of individuals being discrete units rather than continuous flows of
biomass, cf (9.22); see Figure 9.8. The effect is most extreme for ap = 0, where ṙ =
Ṙ ln 2, which is a fraction of some 0.7 of the continuous biomass case. If young are not
produced one by one, but in a litter, which requires longer accumulation times of energy, the
discreteness effect is much larger. For a litter size n and a reproduction rate of Ṙ(a) = (a =
ap + in/Ṙ)n/da, the population growth rate is n−1 ln{1 + n} times the one for continuous
biomass with the same mean reproduction rate and negligibly short juvenile period.
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Figure 9.9: The population growth rate as a function of the concentration of substrate or
food. The left figure concerns the rod Klebsiella aerogenes feeding on glucose at 35 ◦C. Data
from Rutgers et al. [1007]. The right figure concerns the isomorphic ciliate Colpidium campylum
feeding on suspensions of Enterobacter aerogenes at 20 ◦C. Data from Taylor [1146].

The effect of the discrete character of individuals is felt most strongly at low reproduc-
tion rates. Since populations tend to grow rapidly in situations where reproduction reduces
sharply because of food limitation, this problem is rather fundamental. Reproduction, i.e.
the conversion of the energy buffer into offspring, is usually triggered by independent fac-
tors (a two-day moulting cycle in daphnids, seasonal cycles in many other animals). If
reproduction is low, details of buffer handling become dominant for population dynamics.
Energy that is not sufficient for conversion into the last young dominates population dy-
namics. Whether it gets lost or remains available for the next litter makes quite a difference
and, unfortunately, we know little about what exactly does happen.

Population growth rates & division intervals

The relationship between population growth rate and the division interval can be obtained
from a formulation that allows for the production of neonates by letting the mother cell
disappear at the moment of division, when two baby cells appear: Pr{a† > a} = (a ≤
ad) and Ṙ(a) da = 2(a = ad). Substitution into the characteristic equation (9.21) gives
1 = 2 exp(−ṙad). The division interval ad is given in (2.23), (4.20) or (4.27) for isomorphs,
V1-morphs and rods, respectively.

The population growth rate is plotted against the substrate concentration for the rods
Escherichia coli and Klebsiella aerogenes in Figures 7.24 and 9.9, and for the isomorph
Colpidium also in Figure 9.9. The curves closely resemble simple MM-kinetics, which
indicates that they contain little information about some of the parameter values of the
individual-based deb model, particularly the energy investment ratio g. Since the goodness
of fit is quite acceptable, the modest conclusion can only be that these population responses
give little reason to change assumptions about the energy behaviour of individuals. Figure
9.9 also illustrates that the scatter in population responses tends to increase dramatically
with body size.
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Population structure

For many purposes non-equilibrium situations should be considered, which requires com-
puter simulation studies. Two strategies can be used to follow population dynamics: the
family-tree method and the frequency method.

The family-tree method evaluates the changes of the state variables for each individual
in the population at each time increment. For this purpose, the individuals are collected
in a matrix, where each row represents an individual and each column the value of a
state variable. At each time increment rows can be added and/or deleted and at regular
time intervals population statistics, such as the total volume of individuals, are evaluated.
The amount of required computer time is thus roughly proportional to the number of
individuals in the population which must, therefore, be rather limited. This restricts the
applicability of this method for analytical purposes, because at low numbers of individuals
stochastic phenomena, such as those involved in survival, tend to dominate. The method is
very flexible, however, which makes it easy to incorporate differences between individuals
with respect to their parameter values. Such differences are realistic and appear to affect
population dynamics substantially; see {348}. Kaiser [570, 571] used the programming
environment simula successfully to study the population dynamics of individual dragon
flies, mites and rotifers. Kreft et al. [667] simulated the spatial aspects of the individual-
based population dynamics of bacteria. Tineke Troost studied the effect of diffusion of
parameter values across generations in deb structured populations of mixotrophs [1172,
1174, 1173] to study speciation, as done in Adaptive Dynamics, see {350}.

The frequency method is based on bookkeeping in terms of (hyperbolic) partial dif-
ferential equations, see e.g. (9.25). Several strategies exist to integrate these equations
numerically. The method of the escalator boxcar train, perfected by de Roos [989, 990],
follows cohorts of individuals through the state space. The border of the state space where
individuals appear at birth is partitioned into cells, which are allowed to collect a cohort
of neonates for a specified time increment. The reduction of the number of individuals
in the cohorts is followed for each time increment, as the cohort moves through the state
space. The amount of computer time required is proportional to the number of cohorts,
which relates to the volume of the state space as measured by the size of the cells. The
number of cells must be chosen by trial and error. The escalator boxcar train is just one
method of integrating the partial differential equation, but it appears to be an efficient
one compared with methods that use a fixed partitioning of the state space into cells that
transfer numbers of individuals among them.

A nasty problem of the (partial) differential equation approach to describe population
dynamics is the continuity of the number of neonates if the reproduction rate is very small.
This situation occurs in equilibrium situations, if the loss rate is small. The top predators
especially are likely to experience very small loss rates. Details of the handling of energy
reserves to produce or not produce a single young prove to have a substantial effect on
population dynamics.
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Figure 9.10: Computer simulation of a deb-
structured population of Daphnia magna, compared
to a real laboratory population at 20 ◦C with a sup-
ply of 5 × 107 cells Chlorella saccarophila d−1, start-
ing from 5 individuals. Data from Fitsch [354]. The
parameter values were obtained independently of the
observations of individuals. Parameters:

{J̇Xm} 5× 104 cells mm−2 h−1 gk̇M 0.33 h−1 g 0.033
XK 3× 105 cells ml−1 lb 0.133 lp 0.417
ḧa 1.1× 10−6 h−2 cv 0.5 κR 0.9
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Synchronisation

Computer simulations of fed-batch cultures of reproducing isomorphs reveal a rather unex-
pected property of the deb model. In these simulations the food supply to the population
is taken to be constant and the population is harvested by the process of aging and in a
random way. To reduce complicating factors as much as possible, only parthenogenetically
reproducing females are considered, using realistic parameter values for Daphnia magna
feeding on the green alga Chlorella pyrenoidosa at 20 ◦C. Reproduction in daphnids is cou-
pled to moulting, which occurs every 2 to 3 days at 20 ◦C, irrespective of food availability.
Just after moulting, the brood pouch is filled with eggs which hatch just before the next
moult. So the intermoult period is beautifully adapted to the incubation time and the
buffer for energy allocated to reproduction stays open during the intermoult period. These
details are followed in the simulation study because many species produce clutches rather
than single eggs.

Figure 9.11 shows a typical result of the population trajectory: the numbers oscillate
substantially at low random harvesting rates. Closer inspection reveals that the shape of
the number cycles closely follows the survival function of the aging process. The individuals
appear to synchronise their life cycles, i.e. their ages, lengths and energy reserve densities,
despite the fact that the founder population consists of widely different individuals. This
synchronisation is reinforced by the accumulation of reproductive effort in clutches, but it
also occurs with single-egg reproduction. The path individuals take in their state space
closely follows the no-growth condition. Growth in these populations can only occur via
thinning by aging and the resultant amelioration of the food shortage. After reaching adult
volumes, the individuals start to reproduce and mothers are soon outcompeted by their
offspring, because they can survive at lower food densities. This has indeed been observed
in experimental populations [424, 1148].

Having observed the synchronisation of the individuals, it is not difficult to quantify
population dynamics from an individual perspective when we now know that the scaled

functional response cycles from f = lb to lp. Starting from a maximum N(0) =
ḣpXrg2k̇2

M

{J̇Xm}l3b v̇2
at

time 0, the numbers drop according to N(t) = N(0) exp(−
∫ t

0 ḣ(t1) dt1), down to N(tn) =
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Figure 9.11: The number of individuals (black) and the total biovolume (grey) in a simulated
batch culture of daphnids subjected to aging as the only method of harvesting. The individuals
accumulate reproductive effort during the incubation time in the left figure, while they reproduce
egg by egg in the right one. The parameters are ḣXr = 7 units d−1, lb = 0.133, lp = 0.417,
J̇Xm = 4.99 units d−1, κ = 0.3, k̇M = 10 d−1, g = 0.033, ḧa = 2.5× 10−5 d−2.

N(0)(lb/lp)
3. The total biovolume is about constant at X1 = ḣpXrV

1/3
m

κ{J̇Xm}
; see Table 9.3. At

the brief period of take-over by the next generation, the population deviates a little from
this regime. It is interesting to note that growth and reproduction are fully determined by
the aging process in this situation. Length-at-age curves do not resemble the saturation
curve that is characteristic of the von Bertalanffy growth curve; they are more or less
exponential. Biovolume density and the yield are increased by the oscillatory dynamics,
compared to expectation on the basis of the stable age distribution.

If the harvesting effort is increased, the population experiences higher food densities and
the model details for growth and reproduction become important. The shape of the length-
at-age curves switches from ‘exponential’ to von Bertalanffy, the cycle period shortens, the
generations overlap for a longer period because competition between generations becomes
less important, and the tendency to synchronise is reduced. All these changes result from
the tendency of populations to grow and create situations of food shortage if the harvesting
rates drop.

Similar synchronisation phenomena are known for the bakers’ yeast Saccharomyces
cerevisiae [198, 870]. It produces buds as soon the cell exceeds a certain size. This gives a
synchronisation mechanism that is closely related to that for Daphnia.

Variation between individuals

Although it is not unrealistic to have fluctuating populations at constant food input [1074],
the strong tendency of individuals to synchronise their life cycles seems to be unrealistic.
Yet the model describes the input-output relationships of individuals rather accurately. A
possible explanation is that at the population level some new phenomena play a role, such
as slightly different parameter values for different individuals. This gives a stochasticity
of a different type than that of the aging process, which is effectively smoothed out by
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Table 9.3: Oscillations can affect crude population statistics. This table compares statistics for
computer simulations, assuming that reproduction is by clutches, or by eggs laid one at a time,
with statistics that assume the stable age distribution.

statistic clutch single-egg stable age

mean scaled functional response, f 0.355 0.340 0.452
mean scaled biomass density, x 1.095 0.99 0.943
mean number of individuals, N 87.0 55.3 18.3
scaled yield coefficient, y 0.214 0.186 0.120

the law of large numbers. This way of introducing stochasticity seems attractive because
the replicability of physiological measurements within one individual generally tends to be
better than that between individuals. The exact source of variation in energy parameters,
however, is far from obvious. This applies especially to parthenogenetically reproducing
daphnids, where recombination is usually assumed not to occur. Hebert [479] however, has
reported that (natural) populations of daphnids, which probably originate from a limited
number of winter eggs, can have substantial genetic variation. Branta [143] was able to
obtain a rapid response to selection in clones of daphnids, which could not be explained
by the occurrence of spontaneous mutations. Cytoplasmic factors possibly play a much
more important role in gene expression than is recognised at the moment. Koch [611] has
discussed individual variability among bacteria.

In principle, it is possible to allow all parameters to scatter independently, but this
seems neither feasible nor realistic. High ingestion rates, for instance, usually go with high
assimilation rates and storage capacities. The parameter values of the deb model for dif-
ferent species appear to be linked in a simple way, as discussed in the section on parameter
variation {288}. We assume here that the parameters for the different individuals within
a species are also linked in this way but vary within a narrow range. The parameters for a
particular individual remain constant during its lifetime. In this way, we require only one
simple individual-specific multiplier operating on (some of) the original parameters of the
deb model to produce the scatter. The way the scatter appears in the scaled parameters
is even simpler [658].

Parameter variation between individuals has interesting effects on population dynam-
ics: a log-normally distributed scatter with even a small coefficient of variation is enough
to prevent death by starvation at the take-over of the new generation. Moreover, each gen-
eration becomes extinct only halfway through the period of the next generation and the
amplitude of the population oscillations is significantly reduced; see Figure 9.11. This may
be quantified by its effect on the coefficient of variation for population measures, defined
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Figure 9.12: The coefficient of variation of the
total number, length, surface area and volume of
individuals in the population as functions of the
coefficient of variation of the scatter parameter
that operates on the parameters of individuals.
The sharp initial reduction points to the limited
realism of strictly deterministic models. cv of par’s of individuals
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for j = 0, 1, 2, 3. Integration is taken over one typical cycle of length tn and the summation
over all individuals in the population. For values larger than 0.2, the coefficient of vari-
ation of the scatter parameter barely depresses the variation coefficient of the population
measures further; see Figure 9.12.

Figure 9.10 demonstrates that computer simulations of deb-structured daphnids closely
match the dynamics of laboratory populations. The strength of the argument is in the fact
that the parameter values for individual performance have been obtained independently.

The oscillations are also likely to be less if one accounts for spatial heterogeneities. This
is realistic even for daphnids, because some of the algae adhere to the walls of the vessels and
some (but not all) daphnids feed on them [378, 528]. The general features of the dynamics
of experimental populations are well captured by the deb model. Emphasis is given to the
competition for food, which Slobodkin [1074] considered to be the only type of interaction
operative in his experimental food-limited populations. He suggested that the competition
between different age-size categories was responsible for the observed intrinsic oscillations,
which is confirmed by this model analysis. Mrs N. van der Hoeven [517] has concluded,
on the basis of a critical survey of the literature on experimental daphnid populations
with constant food input, that some fluctuations are caused by external factors. Even
populations that tend to stabilise do so, however, by way of a series of damped oscillations,
while others seem to fluctuate permanently.

Adaptive dynamics

When parameter values for energy budgets vary among individuals, and rules about how the
values carry over to new generations are formulated, selective forces are specified through
competition for the same resources. Such selective forces need not be external, the deb
assumptions already imply these forces, namely how differences in feeding translate into
differences in reproduction. These rules can obviously be modified as a result of interac-
tions with other populations, such as predators, whose actions directly or indirectly relate



9.2. Population dynamics 351

to the parameter value of the individuals. Predators can select for particular body sizes,
for instance, and body size is determined by deb parameters. Given a specification of
the environment in which the individuals live, the mean parameter values can evolve, and
the (multivariate) frequency distribution can become multi-modal, reflecting the process
of speciation. Many qualitative properties of this process can be evaluated, even without
detailed specification of the models for individuals. This type of problem is called adap-
tive dynamics [268, 397, 788]. Tineke Troost applied it to the affinity of deb-structured
mixotrophs for the autotrophic versus heterotrophic modes, see {389}.

9.2.3 Mass transformation in populations

Mass fluxes in populations are the sum of the individual mass fluxes, but interactions
between substrate and biomass densities through the processes of feeding and competition
substantially complicate the conversion of substrate to biomass. The results for reproducers
and dividers are discussed briefly in the following sections.

Propagation through reproduction

Let us consider a population of parthenogenetically reproducing individuals that develop
through embryonic, juvenile and adult stages. Sexually reproducing animals can be in-
cluded in a simple way, as long as the sex ratio is fixed. The population structure, derived
from the collection of individuals that make up that population, is based on individual
characteristics. Suppose that there is a maximum for the amount of structural body mass
and reserves for individuals, and that we use the scaled length l, the scaled reserve density
e and the age a to specify the state of the individual (the techniques to model the dynamics
are readily available for an arbitrary number of state variables [452, 453]).

Suppose that a population of individuals lives in a ‘black box’ and that the individuals
only interact through competition for the same food resource. Food is supplied to the black
box at a constant rate ḣXMX , where ḣX has dimension time−1 and MX is the amount of
food (in C-moles per black box volume). Eggs are removed from the black box at a rate
ḣe; juveniles and adults are harvested at a rate ḣ randomly, i.e. the harvesting process
is independent of the state of the individuals (age a, reserves e, size l). Furthermore,
the aging process harvests juveniles and adults at a state-dependent rate ḣa, which is
beyond experimental control. Individuals harvested by the aging process leave the black
box instantaneously.

The present purpose is to study how food supplied to the black box converts to body
mass and reserves that leave the box in the form of harvested individuals, when the amounts
of dioxygen, carbon dioxide, nitrogenous waste and faeces in the black box are kept con-
stant. This implies that these mass fluxes to and from the box equal the use or production
by all individuals in the box. Food is not removed, which implies that the amount of food
in the box depends on both the food supply and the harvesting rates of individuals.

Before analysing the conversion process in more detail, it is helpful to point out the
fundamental difference between the population and the individual level. If no harvesting
occurs at all, and food is supplied to the bio-reactor, the population will eventually grow
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Figure 9.13: Populations of daphnids Daphnia
magna fed a constant supply of food, the green alga
Chlorella pyrenoidosa at 20 ◦C, grow to a maximum
number of individuals that is directly proportional
to food input [633]. From this experiment, it can
be concluded that each individual requires six algal
cells per second just for maintenance. No deaths oc-
curred before day 24. A reduction of food input to
30 × 106 cells day−1 after day 24 resulted in almost
instant death if the populations were at carrying ca-
pacity. The 240 × 106 cells day−1 population was still
growing when the food supply was suddenly reduced,
so the energy reserves were high, and it produced
many winter eggs. The daily food supply related to
the cumulated number of winter eggs as
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to a size where food input just matches the maintenance needs of the individuals. In
this situation no individual is able to grow or reproduce (otherwise we would not have a
steady state). The conversion efficiency is then zero. Figure 9.13 illustrates this situation
for experimental Daphnia populations. By increasing the harvesting rate, the conversion
efficiency increases also, at least initially. This illustrates that the conversion process is
controlled by the way the population is sandwiched between food input and harvesting.
Individual energetics only set the constraints.

In many field situations, the harvesting rate will not be set intentionally. The process
of aging can be considered, for instance, as one of the ways of harvesting through intrinsic
causes, but this does not affect the principle. The present aim is to study the behaviour of
the yield factor in steady-state situations, so ṙ = 0, and compare the different life styles:
V1-morphs, rods and isomorphs, propagating via division and eggs. For this purpose, let
us strip the population of as many details as possible and think of it in terms of inputs
and outputs of mass.

The conversion process has three control parameters, ḣX , ḣe and ḣ, and the aim is now
to evaluate all mass fluxes in terms of these three control parameters, given the properties
of the individuals. This result is of direct interest to particular biotechnological applica-
tions, and to the analysis of ecosystem behaviour, provided that the control parameters
are appropriate functions of other populations and the degradation of faeces and dead
individuals is specified to recycle the nutrients that are locked in these compounds.

The index + refers to the population, to distinguish fluxes at the population level from
those at the individual level. Embryos are treated separately from juveniles and adults,
not only because this allows different harvesting rates for both groups, but also because
they do not eat, and therefore do not interact with the environment through food.



9.2. Population dynamics 353

Given the initial conditions φe(0, a, e, l) and φ(0, a, e, l), the change in density of embryos
and of juveniles plus adults over the state space is given by the McKendrick-von Foerster
hyperbolic partial differential equation [359, 1069]

∂

∂t
φe(t, a, e, l) = − ∂

∂l

(
φe(t, a, e, l)

d

dt
l

)
− ∂
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φe(t, a, e, l)− ḣeφe(t, a, e, l) (9.25)
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φ(t, a, e, l)− (ḣ+ ḣa(a, e, l))φ(t, a, e, l) (9.26)

where
∫ a2
a1

∫ l2
l1

∫ e2
e1
φ(t, a, e, l) de dl da is the number of individuals (juveniles plus adults) aged

somewhere between a1 and a2, with a scaled energy density somewhere between e1 and
e2 and a scaled length somewhere between l1 and l2. The total number of juveniles plus
adults equals N(t) =

∫∞
0

∫ 1
lb

∫ 1
0 φ(t, a, e, l) de dl da. The total number of embryos likewise

equals Ne(t) =
∫∞

0

∫ lb
0

∫∞
0 φe(t, a, e, l) de dl da. The boundary condition at a = 0 reads

φe(t, 0, e0, l)
d

dt
a = δ(l = l0)

∫ ∞
0

∫ 1

lp
Ṙ(e, l)φ(t, a, e, l) dl da for all e (9.27)

where l0 denotes the scaled length at a = 0, which is taken to be infinitesimally small, lb
the scaled length at birth (i.e. the transition from embryo to juvenile), lp the scaled length
at puberty (i.e. the transition from juvenile to adult), and e0 the scaled reserve at a = 0,
which can be a function of e of the mother. The function δ(l = l0) is the Dirac delta
function in l (dimension: l−1). The boundary condition at l = lb reads

φ(t, a, e, lb)
d

dt
a = φe(t, a, e, lb)

d

dt
a for all a, e (9.28)

The individuals can differ at a = 0, because e0 can depend on e, and individuals can make
state transitions at different ages and different scaled reserves. The dynamics for food
amounts to

d

dt
MX+ = ḣXMX + J̇X+ (9.29)

J̇X+ ≡
∫ ∞

0

∫ 1

lb

∫ 1

0
φ(t, a, e, l)J̇X(e, l) de dl da (9.30)

where MX+ denotes the food density in C-moles per black box volume, and J̇X(e, l) the
(negative) ingestion rate of an individual of scaled energy reserves e and scaled length l,
as discussed in the previous section. The faecal flux J̇P+ is simply proportional to the
ingestion flux, i.e. J̇P+/J̇X+ = J̇P/J̇X .

The molar fluxes of body mass and reserves (∗ = V,E), are given by

J̇∗+ = ḣe

∫ ∞
0

∫ lb

0

∫ ∞
0

φe(t, a, e, l)M∗(e, l) de dl da+ (9.31)

+
∫ ∞

0

∫ 1

lb

∫ 1

0
(ḣ+ ḣa(a))φ(t, a, e, l)M∗(e, l) de dl da (9.32)
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The mineral fluxes J̇M+ and the dissipating heat ṗT+ follow from (4.35) and (4.81)

J̇M+ = −n−1
MnOJ̇O+ (9.33)

0 = ṗT+ + µTMJ̇M+ + µTOk̇O+. (9.34)

Due to the linear relationships between mass and energy fluxes, the mass fluxes are simple
metrics on the densities φe and φ, which are solutions of the partial differential equations
(9.25) and (9.26); the determination of the solution generally requires numerical integra-
tion.

Steady-state situations

At steady state, the easiest approach is to relate the states of the individuals to age, and
replace the density φ(t, a, e, l), by the relative density φ◦(t, a) = φ(t, a)/N(t). This relative
density no longer depends on time at steady state, so we omit the reference to time. J̇∗(a)
denotes the flux of compound ∗ with respect to an individual of age a, where ab is the age
at birth and ap the age at puberty. These ages might be parameters, but the deb model
obtains them from MV (ab) = MV b and MV (ap) = MV p.

The characteristic equation applies at steady state

ME0 = exp(−ḣeab)
∫ ∞
ap

exp
(
−ḣa−

∫ a

0
ḣa(a1) da1

)
J̇ER(a) da (9.35)

The characteristic equation can be used to solve for the food density MX+, and so the
scaled functional response f . Given this food density, the trajectories of the state variables
are fixed.

The age distributions of embryos and juveniles plus adults are given by

φ◦e(a) =
ḣe exp(−ḣea)

1− exp(−ḣeab)
for a ∈ [0, ab] (9.36)

φ◦(a) =
(ḣ+ ḣa(a)) exp(−ḣa−

∫ a
0 ḣa(a1) da1)∫∞

ab
exp(−ḣ−

∫ a
0 ḣa(a1) da1) da

for a ∈ [ab,∞) (9.37)

We introduce the expectation operators Ee and E , i.e. EeZ ≡
∫ ab

0 Z(a)φ◦e(a) da and EZ ≡∫∞
ab
Z(a)φ◦(a) da, for any function Z(a) of age.
The harvesting rates of organic compounds equal their mass fluxes, i.e.

J̇O+ ≡


J̇X+

J̇V+

J̇E+

J̇P+

 = ηNEṗ =


−ḣXMX

NeEeḣeMV +NE(ḣ+ ḣa)MV

NeEeḣeME +NE(ḣ+ ḣa)ME

ḣXMXµAX/µAP

 (9.38)

The numbers of juveniles plus adults in the population, N , and of embryos, Ne, are given
by

N =
J̇X+

E J̇X
and Ne = (1− exp(−ḣeab))

NE J̇ER
ḣeME0

(9.39)
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Propagation through division

The aging rate of dividing organisms is taken to be independent of age and this hazard
rate is included in the harvesting rate ḣ; the state variable age is not used, so the scaled
length l and the scaled reserve density e specify the state of the individual. The conversion
process of substrate into biomass has two control parameters: ḣX and ḣ.

Given the initial condition φ(0, e, l), the dynamics of density φ(t, e, l) is then given by

∂

∂t
φ(t, e, l) = − ∂

∂l

(
φ(t, e, l)

d

dt
l

)
− ∂

∂e

(
φ(t, e, l)

d

dt
e

)
− ḣφ(t, e, l) (9.40)

with boundary condition

φ(t, e, lb)
d

dt
l

∣∣∣∣∣
l=lb

= 2φ(t, e, ld)
d

dt
l

∣∣∣∣∣
l=ld

for all e (9.41)

where the scaled length at ‘birth’ relates to the scaled length at division as lb = ld2
−1/3.

This dynamics implies that both daughters are identical.
Suppose now that the dynamics of the scaled reserves is independent of the scaled

length, and that the dynamics of the scaled length is proportional to the scaled length.
The scaled reserve density then has the property that all individuals will eventually have
the same scaled reserve density, which may still vary with time. (The deb model for V1-
morphs is an example of such a model.) For simplicity’s sake, we will assume that this also
applies at t = 0, which removes the need for an individual structure. The consequence is
that a population that consists of one giant individual behaves the same as a population
of many small ones.

The partial differential equation (9.40) collapses to two ordinary differential equations,
one of which is at the population level for the structural body mass

d

dt
lnMV+ =

d

dt
ln l3 − ḣ (9.42)

where the scaled volume kinetics d
dt
l3 = 3l2 d

dt
l is given by the model for individuals. The

other differential equation is at the individual level for the scaled reserve density kinetics
d
dt
e, which should also be specified by the model for individuals, see e.g. Table 4.1. The

scaled reserve density kinetics specifies the (nutritional) state of a random individual.
The expressions for the dissipating heat (9.34), and mineral fluxes (9.33) still apply

here, while J̇O+ = ηṗ+, with ṗ+ =
∫ ld
lb

∫ 1
0 ṗ(e, l3)φ(t, e, l) de dl, and ṗ(e, l3) denotes ṗ,

evaluated at scaled energy reserve e and cubed scaled length l3. (For V1-morphs it is
more convenient to use l3 as an argument, rather than l.) This result is direct because∫ ld
lb

∫ 1
0 l

3φ(t, e, l) de dl = MV+/MV m, so that

ṗ+ = ṗ(e,
∫ ld

lb

∫ 1

0
l3φ(t, e, l) de dl) = ṗ(e,MV+/MV m) = ṗ(e, 1)MV+/MV m

The latter equality only holds for models such as the deb model for 1S–V1-morphs, where
all powers are proportional to structural body mass. The dynamics for food amounts to

d

dt
MX+ = ḣXMX + J̇X+ = ḣXMX −

ṗA(e, 1)

µAX

MV+

MV m

(9.43)
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where ṗA(e, 1) does not depend on the scaled reserves e, in the deb model.

The environment for the population reduces to the chemostat conditions for the special
choice of the harvesting rate ḣ relative to the supply rate: ḣXMX = ḣ(MX −MX+).

Steady-state situations

The population growth rate must be zero at steady state. We use this to solve the value of

the scaled functional response, i.e. f = k̇M+ḣ

k̇M/ld−ḣ/g
in the case of the deb model. This model

has the nice property that e = f at steady state; it then follows that MX+ = MKf/(1−f),
where MK is the saturation constant of the Holling type II functional response.

The stable age distribution amounts to

φ◦(a) = 2ḣ exp(−ḣa) for a ∈ [0, ḣ−1 ln 2] (9.44)

The number of individuals in the population, the total structural body mass and the
organic fluxes are given by

N =
J̇X+

E J̇X
=

MV+

l3dMV m ln 2
(9.45)

MV+ ≡ NEMV =
ḣXMX [MV ]

f [MX ][J̇Xm]
(9.46)

J̇O+ = ηṗ+ = ηṗ(f, 1)MV+/MV m (9.47)

The mean mass per individual is thus EMV = MV+/N .

The relationship (9.33) for the mineral fluxes still holds. Since the row of n−1
M that

corresponds to oxygen, i.e. the third row, can be interpreted as the ratio of the reduc-
tion degrees of the elements to that of oxygen if the N substrate is ammonia (cf. {136}),
the third row of n−1

MnO can be interpreted as the ratio of the reduction degrees of the
organic components to that of oxygen. It follows that −δOJ̇O+ = δTOJ̇O+, when δO de-
notes the reduction degrees of the organic compounds. If the structural biomass has the
same composition as the reserves, and if no products are formed, this further reduces to
−δOJ̇O+ = δX J̇X+ +δW J̇W+, or −δOYOW = δXYXW +δW , where index W refers to the total
biomass, i.e. the sum of the structural biomass and the reserves, and Y to yield coefficients.
This result is well known from the microbiological literature [486, 982] and follows directly
from the general assumptions in Table 2.4.

Figure 9.14 compares the measured dioxygen yield with the yield that has to be expected
on the basis of this relationship and measured values of biomass yields for a wide variety
of organisms and 15 substrates that differ in nHX and nOX , but all have nNX = 0. The
substantial scatter shows that the error of measurement is large and/or that the biomass
composition is not equal for all organisms and is not independent of the growth rate.
Generally n∗V 6= n∗E, and n∗W depends on the population growth rate ṙ.
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Figure 9.14: The expected molar yield of dioxy-
gen as a function of the measured value based
on the assumption of a constant and common
biomass composition of nHW1 = 1.8, nOW1 = 0.5
and nNW1 = 0.2 for a wide variety of bacte-
ria (•), yeasts (�), fungi (2) and the green alga
Chlorella (4). The expectation is based on mea-
sured yields of biomass. Data gathered by Heij-
nen and Roels [486] from the literature on aero-
bic growth on a wide variety of substrates with-
out product formation and NH+

4 as nitrogen sub-
strate. measured yield, mol O2/ C-mol
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9.3 Food chains & webs

Many ecosystems have consumers that are linked in a food web; the food chain being its
simplest form. Bi- and tri-trophic chains are intensively studied [470, 472, 603, 677, 764,
765]. Most models, however, have growing zero-trophic levels, and are based on implicit
assumptions about their food dynamics. This will be avoided here, to allow the application
of mass and energy balances. Some popular models are even at odds with conservation
principles [623, 625].

A basic problem in the analysis of food web dynamics is the large number of parameters
that show up, which reduces the value of the exhausting undertaking of a systematic
approach to the analysis of the system’s potential behaviour. Several strategies are required
to minimise that problem. One of them is to use body size scaling relationships to tie
parameter values across species. This reduces the problem of community dynamics in
principle to that of particle size distributions in taxon-free communities, as reviewed by
Damuth et al. [244].

9.3.1 Behaviour of bi-trophic chains

The non-equilibrium dynamics of food chains can be rather complex and sensitively de-
pends on the initial conditions. Figure 9.15 illustrates results for a substrate–bacteria–
myxamoebae chain in a chemostat. Bob Kooi has been able to fit the experimental data to
the deb model for V1-morphs with remarkable success. All parameters were estimated on
the basis of a weighted least-squares criterion. The fitted system does not account for the
digestion of reserves; its incorporation resulted in very similar fits, while the extra param-
eters were poorly fixed by the data. The main dynamic features are well described by the
model. The myxamoebae decrease more rapidly in time than the throughput rate allows
by shrinking during starvation. The type of equilibrium of this chain is known as a spiral
sink, so that this chain ultimately stabilises, and the period reduces with the amplitude.
The numerical integration of the set of differential equations that describe the system was
achieved using a fourth-order Runge–Kutta method.

This particular data set was used to illustrate the application of catastrophe theory by
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Figure 9.15: Trajectories of a bi-trophic chain
of glucose X0, graph 1, the bacterium Es-
cherichia coli X1, graph 2, and the cellu-
lar slime mould Dictyostelium discoideum X2,
graph 3, in a chemostat at 25 ◦C with through-
put rate ḣ = 0.064 h−1 and a glucose concentra-
tion of Xr = 1 mg ml−1 in the feed. Graphs
4 and 5 give the mean cell volumes of Es-
cherichia and Dictyostelium, respectively. Data
from Dent et al. [264].

The parameter values and equations are

X0(0) 0.433 mg ml−1

X1(0) 0.361 X2(0) 0.084 mm3 ml−1

e1(0) 1 e2(0) 1 -
K1 0.40 K2 0.18 µg

ml ,
mm3

ml
g1 0.86 g2 4.43 -
k̇1
M 0.008 k̇2

M 0.16 h−1

k̇1
E 0.67 k̇2

E 2.05 h−1

j1XAm 0.65 j2XAm 0.26 mg
mm3 h, h−1

d
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Saunders [1015], who concluded that simple generalisations of the Lotka–Volterra model
cannot fit this particular data set, because growth is fast when substrate is low. He
suggested that the feeding rate for each individual myxamoeba is proportional to the
product of the bacteria and the myxamoebae densities. This implies an interaction between
the myxamoebae; Bazin and Saunders [74] suggested that the myxamoebae measure their
own density via folic acid. Although interactions cannot be excluded, the goodness of
fit of the deb model makes it clear that it is not necessary to include such interactions.
The significance of realistic descriptions without interaction is in the extrapolation to
other systems; if species-specific interactions do dominate systems behaviour, there can be
hardly any hope for the feasibility of community ecology. Reserves cause a time delay in
the reaction of the predator to fluctuations in prey and explain why a high growth rate
can combine with low substrate densities in these oscillatory systems.

Asymptotic behaviour

Work on the asymptotic behaviour of deb-structured bi- and tri-trophic chains by Bob
Kooi and Martin Boer [121, 122, 123, 458, 624, 628] showed that tri-trophic chain can have
quite complex asymptotic behaviour, even in the Marr-Pirt-case. It was has been extended
to include omnivory and symbiontic relationships [124, 621, 629, 676, 630], reserve [626, 647,
675], and stochasticity [655]. Nice overviews of bifurcation analysis for population dynamics
can be found in [627, 620]. Chaos in a bi-variate prey-predator systems is described in [622].

Closed nutrient-producer-consumer system

When one organism eats another one with a chemical composition that can vary, there is
a need to deal with conversion efficiencies of prey into predator in a bit more detail than
is usual [647]. Suppose that the prey has a single reserve and structure. The assimilation
process of the predator than should specify how the two components of its prey, together
with nutrients from the environment, transform into predator reserves. Think for instance
of daphnids feeding on algae. Alga’s main carbon component, cellulose, is of no nutritional
value for the daphnid. It is the starch and lipids in alga’s reserves that are daphnids’
main energy sources, while it also needs ammonia and phosphate, for instance, as building
blocks. Daphnids can obtain part of these nutrients from the intra-cellular reserves of
the alga, sometimes they can also obtain them directly from the environment. So the
nutritional value of the alga for the daphnids is not a constant, but varies, and depends on
environmental conditions.

The implications of a variable nutritional value of the producer (alga) for the consumer
(daphnid) can be illustrated with the simple dynamical system

mN = N/P − nNC C/P − nNP (9.48)

d

dt
P = ṙPP − jPAC with ṙP =

k̇NmN

yNP +mN

and jPA =
jPAmP

K + P
(9.49)

d

dt
C = (ṙC − ḣ)C with ṙC =

(
1/ṙPC + 1/ṙNC − 1/(ṙPC + ṙNC )

)−1
(9.50)

ṙPC = yCP jPA − k̇PM and ṙNC = yCN mN jPA − k̇NM
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Table 9.4: The possible stochastic events F , S, Ds and Dh, the intensities λ̇F , λ̇S , λ̇Ds and λ̇Dh
and the steps sizes (dP , dCs, dCh), given the state (P , Cs, Ch) of the system at time t. The growth
process G is deterministic and continuous. Mass balance restrictions make that the steps in the
three variables are coordinated. The coefficient δt varies in time, due to stoichiometric constraints
on the growth of the consumers from structure as well as varying reserve of the producers. The
system is closed for nutrient, so for producers and consumers as well, while nutrient uptake by
the producers is large enough to cause negligibly small concentrations of free nutrient.

event type i F feeding S searching Ds dying of Cs Dh dying of Ch G growing
intensity λ̇i k̇

P Cs
K Cε

k̇
Ch
Cε

ḣC
Cs
Cε

ḣC
Ch
Cε

ṙP
P
Pε

dP −Pε 0 0 0 Pε

ch
an

ge

dCs −Cε Cε −Cε 0 0

dCh δtCε −Cε 0 −Cε 0

where consumers’ reserve density mN follows from mass conservation, for a total amount
of nutrient N ; all nutrient that is not in producers’ or consumers’ structure is in producers’
reserve. The chemical indices nNP and nNC stand for producers’ and consumers’ nutrient
content per carbon. The amount of nutrient in the environment is taken to be negligibly
small. The consumer has a constant hazard rate ḣ, and dead producers decompose in-
stantaneously. The producers’ reserve turnover rate is k̇N , and producers’ maintenance is
neglected. Consumers’ reserves are not taken into account. These simplifications of the
deb theory amount to Droop’s kinetics for the consumer (with a very small half saturation
constant, and a very large specific maximum uptake rate), and Marr-Pirt’s kinetics for the
consumer. The Marr-Pirt’s kinetics results from the deb model as a limit for increasing
reserve turnover rates. The expression for the growth rate follows from the SU kinet-
ics and the assumption that assimilates from producers’ reserve and that from structure
are complementary and parallelly processed with a large capacity. There is little need to
set a maximum to the capacity here, because that is already set by the maximum spe-
cific assimilation rate jPAm. Notice the SU formalism here deals with rates, rather then
concentrations, as is basic to its derivation.

Stochastic formulation

The implementation of stochastic events requires the notion of individuals (notably their
number), and gives the density of a single producer Pε and consumer Cε an explicit and
independent role [655].

Table 9.4 gives the possible events F feeding, S searching, Ds dying of Cs and Dh dying
of Ch, the intensities λ̇i and the steps sizes at time t. The last process G, the growth of
the producers, is supposed to be a deterministic continuous process, not a stochastic point
process; the producers continue growing between the Poissonian events, i.e. d

dt
P = ṙPP

where the specific growth rate ṙP is given in (9.49), producers’ reserve density mN changes
as (9.48) and the (variable) yield YCP is given by YCP = ṙC/jP . Between the stochastic
jump events mN , ṙP and YCP change smoothly and deterministically, while the consumer
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densities Cs and Ch remain constant. At a time-incremental basis, mN , ṙP and Y CP are
stochastic, because they are functions of P and C = Cs + Ch. Together with the initial
conditions P (0), Cs(0) and Ch(0), this fully specifies the stochastic dynamics, which we
will call the S-model (stochastic model). Again we have the constraint mN(0) > 0 on the
initial conditions.

The most important difference with the deterministic formulation is that the Hopf
bifurcation point is hardly important for the stochastic model, but the focus point is. Be-
tween the focus and the Hopf bifurcation point the deterministic model ports an overshoot
behaviour, which lasts longer and has a larger amplitude if closer to the Hopf bifurcation
point. Asymptotically, however, the deterministic system settles at the point attractor.
The stochastic model, on the contrary, sports irregular semi-oscillatory behaviour in this
interval of values for the total amount of nutrient. The oscillations become more regular
and the amplitude increases if closer tot the Hopf bifurcation points. Around the focus
point the model behaviour changes smoothly, but around the Hopf bifurcation point the
asymptotic behaviour of the deterministic model change abruptly. while its transient be-
haviour and the behaviour of the stochastic model changes smoothly. In summary, the
stochastic model responds more smoothly to changes in the total amount of nutrient.

9.3.2 Stability & invasion

Nisbet et al. [840] noted that the experimental system appears to be much more stable
than is predicted by the bi-trophic Monod model. They concluded that the introduction of
maintenance, as proposed by Marr–Pirt, increases the range of operation parameters that
give stable chains; however, real-world chains still appear to be more stable. Consistent
with the single trophic systems, compared in Figure 9.2, the deb model for bi- and tri-
trophic chains is much more stable than the Monod and the Marr–Pirt model.

A species can invade a trophic system in a chemostat if its per capita growth rate
exceeds the throughput rate at an infinitesimally small population size. For most food web
models, this occurs when the Lyapunov exponent, which is associated with the dynamics
of the invader, is positive at the boundary of the attractor. The transcritical bifurcation
point, when the Lyapunov exponent is zero, marks the region where invasion is possible.
Using this criterion, numerical studies by Bob Kooi showed that another level-two species
can invade in a bi-trophic deb chain. This means that the level-two species allows escape
from the competitive exclusion principle, see [1080], and the two competing species can
coexist on a single substrate in the presence of a predator.

Before the 1970s the general insight was that an increase in diversity comes with an
increase in stability. May [760] showed that the opposite holds for randomly connected
Lotka–Volterra systems. Later, it became evident that the spatial scale is essential, and
meta-population theory showed that instability at a small spatial scale can go with stability
at a large spatial scale. We are now witnessing a new insight: diversity can go with stability
in non-linear systems with more realistic dynamics, even in spatially homogeneous systems.
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Figure 9.16: The Canonical Community consists of
three ‘species’: producers that gain energy from light
and take up nutrients to produce biomass, consumers
that feed on producers and decomposers that recycle
nutrients from producers and consumers. The com-
munity is rather closed for nutrients, but requires a
constant supply of energy. Influx and efflux of nutri-
ents largely determine the long-term behaviour of the
community.
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9.4 Canonical community

Figure 9.16 illustrates the structure of an idealised, simple, three-species ecosystem. Pro-
ducers (algae) use light and nutrients to produce organic matter, which is transformed
by consumers (grazers), while decomposers (bacteria) release nutrients from the organic
matrix [1105]. The system is ‘open’ to energy flow, but closed to inputs or removal of
elemental matter. It might live in a closed bottle, for instance. Exchanges of mass with
the rest of the world can be included at a later stage. It is found in many ecosystems,
for example, and is very similar to the one used for material turnover in microbial flocs in
sea-water plankton systems [417, 739].

Microcosms are fairly realistic experimental models for ecosystems [105, 422]. Kawabata
and co-workers [383, 584, 825] studied a closed community consisting of the bacterium
Escherichia coli, the ciliate Tetrahymena thermophila and the euglenoid Euglena gracilis,
for direct and indirect effects of γ-rays. The ciliate grazes on the bacterium, and lives off
organic products that are excreted by the euglenoid, which has mixotrophic capabilities.
A stable coexistence developed for a period exceeding 130 days. The bacterium did not
survive an irradiation of 500 Gy, but the two remaining species continued to exist at lower
levels.

The results presented here are from [659]. The Canonical Community differs from a
prey–predator system by the inclusion of the zero-th trophic level in the dynamics of the
system. Prey–predator systems that allow mass balances always require external supply of
inert substrate. Many prey–predator systems in the literature, however, assume intrinsic
growth of the prey, independent of its food, and, therefore, imply complex dynamics of vari-
ables that are excluded from the system. Another difference with a prey–predator system
is that all components affect nutrients, which implies more complex trophic interactions
between components, as discussed by e.g. Andersen [25].

9.4.1 Mass transformations in communities

The chemical compounds and their transformations in the Canonical Community are pre-
sented in Table 9.5. When we replace the signs by model-dependent quantitative expres-
sions, such as in Table 9.6, this turns Table 9.5 into a matrix of fluxes that is known as a
scheme matrix [947], which will be indicated by matrix J̇ ; element i, j of matrix J̇ , called
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Table 9.5: The chemical compounds of the Canonical Community and their transformations
and indices. The + signs mean appearance, the − signs disappearance. The signs of the mineral
fluxes depend on the chemical indices and parameter values. The labels on rows and columns
serve as indices to denote mass fluxes and powers. The table shows flux matrix J̇T rather than
J̇ if the signs are replaced by quantitative expressions presented in Table 9.6.
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death HC + + − −
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dissip DD + + − + −
carbon C 1 1 1 1 1 1 1 1 1 1 1 1

hydrogen H 2 3 1.6 1.6 1.8 1.8 1.8 1.8 1.6 2 1.6 1.6 1.6
oxygen O 2 1 2 0.4 0.4 0.5 0.5 0.5 0.5 0.4 1 0.4 0.4 0.4
nitrogen N 1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.4
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J̇i, j, gives the flux of compound i involved in transformation j. We quantify the com-
pounds in terms of moles (for minerals) or C-moles (for organic compounds and biomass),
and indicate the vector of moles of all compounds by M .

The symbol J̇C denotes the vector of C-fluxes, while J̇C,GD denotes the C-flux associ-
ated with the growth of decomposers. The flux J̇+

C adds all positive contributions in J̇C ,
and J̇−C all negative ones, so J̇+

C + J̇−C = 0; the quantity J̇+
∗ /M∗ quantifies the turnover rate

of compound ∗ in the system. Index M collects the 4 minerals, O the 11 organic com-
pounds; J̇M, GD denotes the 4 mineral fluxes that are associated with decomposer growth,
J̇O, GB does the same for the 11 organic fluxes; nM collects the 4× 4 chemical indices for
minerals, nO is the 4× 11 matrix of chemical indices for the organic compounds. Indices
C, P and D refer to consumers, producers and decomposers.

When the transformations can be written as functions of the total amount of moles
of the various compounds, M , the dynamics of M can be written as d

dt
M = J̇1, which

just states that the change in masses equals the sum of the columns of the scheme matrix.
The Jacobian d

dMT J̇1 at steady state contains interesting information about the possible
behaviour of the system close to the steady state.

Table 9.5 illustrates a case where decomposers and consumers have one type of reserve,
and the producers have two, one with and one without nitrogen, to account for their larger
metabolic flexibility. Consumers mainly feed on reserves, because they cannot digest cell
wall material, which makes up a substantial part of structural mass, and faeces is only
derived from structural mass (which implies that its composition does not depend on the
nutritional status of the prey). Only ammonia is included, not because it is the most im-
portant nutrient, but because organisms excrete it. It makes little sense to include nitrate,
for example, without including ammonia; the exclusion of nitrate is just for simplicity’s
sake.

The system is closed for mass, which means that nJ̇ = 0. At steady state, we have
d
dt
M = J̇1 = 0.

Figure 9.17 illustrates that an increase of total nitrogen, starting from a situation where
nitrogen is limiting, shifts carbon proportionally from detritus and producers to carbon
dioxide, consumers and decomposers, till it ceases to be limiting. A similar increase in
carbon also results in a proportional increase in the biomass of all three living components,

Table 9.6: (see next page) Fluxes in the Canonical Community of the consumers V C, producers
V P , and decomposers V D that live in a confined environment, in which all are conceived as
V1-morphs. The compounds and transformations are introduced in Table 9.5. Consumers and
decomposers have one type of reserves (EC and ED, respectively), the producers have two types
(E1P and E2P ). Detritus includes producer-faeces PP , decomposer-faeces PD (both produced
by consumers), and dead consumers (structural mass PV and reserves PE). Carbon dioxide
(C) and ammonia (N) are obtained from the balance equation for carbon and nitrogen. The
variables x refer to the scaled mass densities: xPP = MPP /KPP , xPD = MPD/KPD, xPV =
MPV /KPV , xPE = MPE/KPE , xP = MV P /KV P , xD = MV D/KV D, xLi = J̇L/J̇K,Li (i = 1, 2),
xN = MN/KN2, xCi = MC/KCi (i = 1, 2), where J̇L is the light flux that is supplied to the
system to keep it going.
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J̇V P,A1C = −MV C jV P,AC,m
xP

1 + xP + xD
; J̇PP,A1C = −yPP, V P J̇V P,A1C

J̇V D,A2C = −MV C jV D,AC,m
xD

1 + xP + xC
; J̇PD,A2C = −yPD, V DJ̇V D,A2C

J̇EC,AiC = −
∑
∗
yEC, ∗J̇∗, AiC for (i, ∗) ∈ {(1, V P ), (1, E1P ), (1, E2P ), (2, V D), (2, ED)}

J̇EiP,A1C = mEiP J̇V P,A1C for i ∈ {1, 2}; J̇ED,A2C = mEDJ̇V D,A2C

J̇V C,GC = MV C
mEC k̇EC − jEC,MC

mEC + yEC, V C
; J̇EC,DC = −jEC,MCMV C ; J̇PE,HC = mEC J̇PV,HC

J̇PV,HC = ḣaMV C
yV C,EC mEC

1 + yV C,EC mEC
; J̇V C,HC = −J̇PV,HC ; J̇EC,HC = −J̇PE,HC

J̇E1P,A1P = MV P jE1P,AP,m fP1 with fP1 =

1 +
∑
∗
x−1
∗ −

(∑
∗
x∗

)−1
−1

for ∗ ∈ {L,C}

J̇E2P,A2P = MV P jE2P,AP,m fP2 for ∗ ∈ {L,N,C}

fP2 =

1 +
∑
∗
x−1
∗ −

(∑
∗/∈L

x∗

)−1

−

(∑
∗/∈N

x∗

)−1

−

(∑
∗/∈C

x∗

)−1

+

(∑
∗
x∗

)−1
−1

J̇V P,GP = ṙV P,GPMV P with ṙV P,GP =

∑
i

ṙ−1
Ei
−

(∑
i

ṙEi

)−1
−1

and

ṙEi
=

mEiP (k̇EiP − ṙV P,GP )− jEiP,MP

yEiP, V P
; J̇EiP,GP = −yEiP, V P J̇V P,GP for i ∈ {1, 2}

J̇EiP,DiP = −jEiP,MPMV P − (1− κEi)((k̇EiP − jV P,GP )MEiP − (jEiP,MP + jV P,GP yEiP, V P )MV P )

J̇∗, AiD = −MV D j∗, AD,m
x∗

1 + xPP + xPD + xPV + xPE

J̇ED,AiD = −J̇∗, AiDyED, ∗ for (i, ∗) ∈ {(1, PP ), (2, PD), (3, PV ), (4, PE)}

J̇V D,GD = MV D
mED k̇ED − jED,MD

mED + yED, V D
; J̇ED,DD = −jED,MDMV D

d

dt
MPP = J̇PP = J̇PP,A1C + J̇PP,A1D;

d

dt
MPD = J̇PD = J̇PD,A2C + J̇PD,A2D

d

dt
MPV = J̇PV = J̇PV,HC + J̇PV,A3D;

d

dt
MPE = J̇PE = J̇PE,HC + J̇PE,A4D

d

dt
MV C = J̇V C = J̇V C,GC + J̇V C,HC ;

d

dt
MV P = J̇V P = J̇V P,GP + J̇V P,A1C

d

dt
MEC = J̇EC = J̇EC,GC + J̇EC,HC + J̇EC,DC + J̇EC,A1C + J̇EC,A2C

d

dt
MV P = J̇V P = J̇V P,GP + J̇V P,A1C ;

d

dt
MV D = J̇V D = J̇V D,A2C + J̇V D,GD

d

dt
MEiP = J̇EiP = J̇EiP,A1C + J̇EiP,AiP + J̇EiP,GP + J̇EiP,DiP for i ∈ {1, 2}

d

dt
MED = J̇ED = J̇ED,A2D + J̇ED,A1D + J̇ED,A2D + J̇ED,A3D + J̇ED,A4D + J̇ED,GD + JED,DD

d

dt
MC = J̇C = −J̇PP − J̇PD − J̇PV − J̇PE − J̇V C − J̇EC − J̇V P − J̇E1P − J̇E2P − J̇V D − J̇ED

d

dt
MN = J̇N = −0.1J̇PP − 0.1J̇PD − 0.2J̇PV − 0.2J̇PE − 0.2J̇V C − 0.2J̇EC +

−0.2J̇V P − 0.4J̇E2P − 0.2J̇V P − 0.4J̇EP
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Figure 9.17: The steady-state distribution of carbon and nitrogen in the Canonical Community
while increasing the total amount of carbon (upper left), nitrogen (upper right) or light (middle
panels), using the deb model for V1-morphs. The lower panels present the amounts of assimilated
light (by the producers), which is proportional to the amount of dissipating heat. The non-
changed amounts are 1000 units for carbon, 500 units for nitrogen, and 1000 for light. The
amounts of carbon and nitrogen are plotted cumulatively, from bottom to top, for the minerals
(carbon dioxide, C (very small, not labelled), or ammonia, N), detritus (very small, not labelled),
consumers C, (structure and reserve), producers P (structure, C- and N,C-reserves, grey shaded),
decomposers D (structure and reserve). The producers have three carbon components, and two
for nitrogen, because one reserve lacks nitrogen. An increase of light above 4 units has no effect
(so all lines are horizontal).
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but ammonia decreases linearly, until it hits a threshold at which the community becomes
extinct. An increase of the light level has a more complex effect on biomass. It results in a
peak for the consumers and the decomposers, and a dip for the producers, while an increase
beyond the level at which light ceases to be limiting has no effect at all. Assimilated light,
in the lower panels of Figure 9.17, quantifies ‘the rate of living’. It is curious to note that
‘the rate of living’ is decreasing for increasing nitrogen, as long as nitrogen is limiting.
Ammonia is practically absent if nitrogen is strongly limiting, all nitrogen is then fixed
into the biota. This corresponds well with widely known qualitative observations: nitrogen
minerals are extremely low in oligotrophic systems (lakes, oceans as well as rain forests).

The Canonical Community can be simplified to a two-species, or even a single-species,
community of mixotrophs. Since grazing no longer limits life span, aging has to be taken
into account for proper behaviour. The Canonical Community can also be extended in
many ways: inclusion of exchange with the outside world and of spatial structure, and
replacement of consumers by a food web of consumers, or of producers and decomposers by
sets of competing producers and decomposers. Some of these extensions can be developed
systematically.

9.5 Summary

This chapter deals with the metabolic interactions between individuals, and shows that
individuals depend on each other in many ways; the notion of ecosystem metabolism is
developed in steps.

Trophic interactions span a spectrum from competition, via syntrophy, symbiosis and
biotrophy, to predation. The strength of the deb theory is illustrated in the setup of
a full quantitative specification of partners in a symbiontic relationship. The effects of
calcification can be evaluated in corals, for instance, and environmental conditions specified
where the host does not gain from the symbiont.

Populations can be considered as a set of individuals; their dynamics follows from
the eco-physiological behaviour of individuals, when the environment in which they live
is specified. Spatial structure is very important, but not considered in this text. The
distinction between individuals and populations disappears for V1-morphs in the deb
theory. The univariate deb model for V1-morphs behaves more stable than that of Lotka-
Volterra, Monod, Marr-Pirt and Droop, and has a more realistic prey/predator ratio as
equilibrium. Logistic growth in a batch culture can be obtained with the deb model in
two different ways: a small half-saturation coefficient in combination with a large reserve
capacity, or vice versa.

The yield of biomass on substrate at population level is controlled by the yield process;
the energetics of individuals only sets the upper boundary by a constraint.

Synchronisation of life cycles among individuals can occur spontaneously. Variations
in parameter values, in combination with a set of rules that specify how the values carry
over to new generations, imply selective forces that lead to speciation.

Population dynamics in food chains experience a delay in response to fluctuations in
food availability, and high growth rates can combine (temporarily) with low food levels as
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as a result. Food chains can show very complex dynamics if the chain length exceeds two.
Multiple attractors occur easily, sometimes of the chaotic type. Examples illustrate the
application of bifurcation analysis. Contrary to general insight, an increase in diversity can
go with an increase in stability in homogeneous environments for more realistic dynamics.

Nutritional ‘details’, such as the nutritional value of prey’s reserve, in prey-predator
interactions can affect population dynamics profoundly. In the asymptotic behaviour of
stochastic prey-predator systems, the importance of Hopf bifurcation points is taken over
by focus points, but the transition is smooth, rather than abrupt.

Canonical Communities serve to illustrate the metabolic interactions between produc-
ers, consumers and decomposers as quantified by the deb theory. If fully closed for mass,
the community seems to increase metabolic activity for decreasing nitrogen levels, up to
a threshold value, while the activity is proportional to the carbon levels, and satiating in
the light levels. The analysis of Canonical Communities unifies the traditionally separated
characterisations of ecosystems in terms of structure and function; this separation makes
no sense in the context of the deb theory.



Chapter 10

Evolution

A proper understanding of metabolic organisation cannot be achieved without exploring
its historic roots. The metabolism of individuals has adapted over time to overcome the
consequences of changing environmental conditions. Mutation and selection is the well-
known evolutionary route since Darwin, but this is a very slow process. It is essential for
building up a basic diversity in metabolic performance among the earliest prokaryotes. This
explains the slow start of evolution. Much faster is the exchange of plasmids that evolved
among prokaryotes [283], which is further accelerated by the process of symbiogenesis,
typical for eukaryotes. The latter also duplicate dna and reshuffle parts of their genome,
giving adaptive change even more acceleration. Mutation still continues, of course, but
the reshuffling of metabolic modules occurs at rates several orders of magnitude higher.
Syntrophy and symbiosis are key to these reshuffling processes and supplement Darwin’s
notion of survival of the fittest, which is based on competitive exclusion [1010]. The
response to changes in the environment is further accelerated by the development of food
webs, and therefore of predation, which enhances selection. Owing to their advanced
locomotory and sensory systems, animals play an important role in food webs, and so in
the acceleration of evolutionary change.

The evolutionary route for individuals as dynamic systems that is discussed below starts
from the speculative abiotic origins of life, then deals with the metabolic diversification that
evolved in the prokaryotes, and finally leads the to metabolic simplification, coupled to the
organisational diversification of the eukaryotes. I will argue that life became increasingly
dependent on itself and that life and climate became increasingly coupled. Then I will
discuss the formation of symbioses that are based on mutual syntrophy, evolutionary lines
in multicellulars, and finalising with interactions between life and climate. Although some
of this material is general textbook knowledge, while other material is rather speculative,
my aim is to present it in a way that reveals the role of metabolic organisation on large
scales in space and time and the role of deb theory in this.
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Figure 10.1:
A possible early atp-generating transformation,
based on pyrite formation FeS + S → FeS2 [1144,
1207], that requires a membrane and only three types
of enzyme: proto-hydrogenase, proto-atp-ase and
S0-reductase; modified from [732]. Sulphur is im-
ported in exchange for H2S.

10.1 Before the first cells

A possible exergonic process generating energy in the initial stages of life involves the for-
mation of makinawite crusts at the interface of mildly oxidising, iron-rich acidulous ocean
water above basaltic floors from which alkaline seepages arose, e.g. [1004]. These crusts
consist of FeS layers allowing free electron flow from the reducing environment beneath,
generated by the activation of hydrothermal hydrogen. Thus, energy was constantly sup-
plied, which, moreover, could easily be tapped at the steep gradient formed by the crust.
FeS can spontaneously form cell-like structures on a solid surface [1002, 1003, 136, 182],
and has a high affinity for the atp ingredients organophosphates and formaldehyde [963],
which can form ribulose [82, p81]. The released energy could stimulate the formation of
larger molecules at each inner surface, such as phosphorus or nitrogen compounds. The
chemically labile energy-rich inorganic pyrophosphate compounds could have served as
energy-transferring molecules [56, 57], whereas the nitrogen-containing molecules on the
inner surface of the crust could have developed into nucleic acids or, later, into larger
peptides. Of these, the peptides, in turn, could have combined with iron and sulphur com-
plexes in the crust, thus initiating the formation of ferredoxins, or they could have nested
themselves within the crust, thus forming the second step in the formation of membranes
[1003].

atp generation via a proton pump across the outer membrane is probably one of the
first steps in the evolution of metabolism. The energy for this atp generation probably
came from some extracellular chemoautotrophic process [1206, 1002, 1003].

A possible scenario for the earliest metabolism is presented in Figure 10.1, which may be
found in the archaean Pyrodictium occulatum [1207]. A few enzymes are required and the
substrates are readily available in the deep ocean [289]. Keefe et al. [586], however, argue
that the oxidation of FeS gives insufficient energy to fix carbon dioxide through the inverse
tca cycle. Yet, this fixation may have occurred along other pathways using accumulated
atp. Schoonen et al. [1031] demonstrated that the energy of this reaction diminishes
sharply at higher temperatures. Contrary to pyrite, greigite (Fe5Ni6S8) has structural
moieties that are similar to the active centres of certain metallo-enzymes, as well as to
electron transfer agents (see, for example, [1003], and catalyses the transformation 2 CO2

+ CH3SH + 8 [H] → CH3COSCH3 + 3 H2O.

Irrespective of the biochemical ‘details’, which are still controversial [855], it rightly
places membrane activity central to metabolism, which means that cell size matters. The
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membranes of membrane-bound vesicles are at the basis of transformations typical for
life [1040]. Membranes need membranes (plus genes) for propagation; genes only are not
enough [195]. Strong arguments in favour of the hypothesis “cells before metabolism”
include the abiotic abundance of amphiphilic compounds (even on arriving meteorites),
the self-organisation of these compounds into membranes and vesicles, and their catalytic
properties [251]. This argument only works if amphiphilic compounds tend to accumulate
in very specific micro-environments; otherwise they will be too dilute. The modifica-
tions of substrates that are taken up from the environment to compounds that function
in metabolism were initially probably small, and gradually became substantial. Com-
partmentalisation is essential for the accumulation of metabolites and for any significant
metabolism. Norris and Raine [844] suggest that the rna world succeeded the lipid world,
which is unlikely because the archaean lipids consist of isoprenoid ethers, while eubacterial
lipids consist of fatty acids (acyl esters) with completely different enzymes involved in their
turnover [580, 573, 1206]. Lipids were probably synthesised first from pyruvate, the end
product of the acetyl-CoA pathway and the reverse tca cycle, before the extensive use of
carbohydrates.

Koga et al. [614] hypothesised that the eubacterial taxa made the transition from non-
cellular ancestors to cellular forms independently from the archaea, see also [752]. This
seems unlikely, however, because they are similar in the organisation of their genes (e.g.
in operons) and genomes, and in their transcription and translation machinery [849, 194].
Eubacteria do have a unique dna replicase and replication initiator proteins, however.
These properties apply especially to cells, rather than to pre-cellularly existing forms, and
are complex enough to make it very unlikely that they evolved twice. Woese [1271] hy-
pothesised that lateral gene transfer could have been intense in proto-cells with a simple
organisation; diversification through Darwinian mutation and selection could only occur
after a given stage in complexity had been reached, that is when lateral gene transfer could
have been much less intense. The eubacteria, archaea and eukaryotes would have crossed
this stage independently. Since all eukaryotes once seem to have possessed mitochondria,
this origin is unlikely for them. Cavalier-Smith [197] argued that archaea and eukaryotes
evolved in parallel from eubacteria since about 850 Ma ago, and that eukaryotes have many
properties in common with actinomycetes. However, the differences in, for example, lipid
metabolism and many other properties between eubacteria and archaea are difficult to
explain in this way. Moreover, carbon isotope differences between carbonates and organic
matter of 2.8-2.2 Ga ago are attributed to archaean methanotrophs [608]. Although so far
the topic remains speculative, a separate existence of eubacteria and archaea before the
initiation of the lipid metabolism and before the origin of eukaryotes through symbiogen-
esis with mitochondria seems to be the least-problematic sequence explaining metabolic
properties among these three taxa.

The ionic strength of cytoplasm of all modern organisms equals that of seawater, which
suggests that life arose in the sea.
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10.2 Early substrates & taxa

Since genome size might quantify metabolic complexity, it helps to note that some chemoau-
totrophs have the smallest genome size of all organisms [657]; the togobacterium Aquifex
is even more interesting since its metabolism might still resemble that of an early cell.
Although it is also aerobic, it tolerates only very low dioxygen concentrations, which may
have been present when life emerged [522, 579, 22]. Growing optimally at 85 ◦C in marine
thermal vents, it utilises H2, S0 or S22O−3 as electron donors and O2 or NO−3 as electron ac-
ceptors. With a genome size of only 1.55 Mbp, its genome amounts to only one third of that
of E. coli , which is really small for a non-parasitic prokaryote. One of the smallest known
genomes for a non-parasitic bacterium is that of Nanoarchaeum equitans with 0.5 Mbp
[533], but it lives symbiotically with the H2-producing and sulphur-reducing archaean Ignic-
occus , which complicates the comparison. The free-living α-proteobacterium Pelagibacter
ubique, with a genome size of 1.3 Mbp is probably phototrophic (using proteorhopsin) and
uses organic compounds as carbon and electron source [409, 939]. Its metabolic needs are
uncertain, since it is difficult to culture. The phototrophic cyanobacterium Prochlorococcus
has 1.7 Mbp [380]. These small genome sizes illustrate that autotrophy is metabolically
not more complex than heterotrophy.

The early atmosphere was probably rich in carbon dioxide and poor in methane [579],
which changed when methanogens started to convert carbon dioxide into methane so 3.7
Ga ago, using dihydrogen as energy substrate. This probably saved the early earth from
becoming deep frozen. Apart from being a product, methane is likely to have been an im-
portant substrate (and/or product) during life’s origin [477]. Methanogenesis and (anaero-
bic) methylotrophy are perhaps reversible in some archaea [450]; their metabolic pathways
share 16 genes, and are present in some archaeal and eubacterial taxa. The most probable
scenario for its evolutionary origin is that it first evolved in the planctobacteria, which
transferred it to the proteobacteria and the archaea [207]. This remarkable eubacterial
taxon is unique in sporting anaerobic ammonium oxidation (anammox). The anammox
clade has ether lipids in their membranes and a proteinaceous cell wall like the archaea
[1129]. They have advanced compartmentation and a nuclear membrane like the eukaryotes
[709, 379], and are abundant in (living) stromatolites [866]. Fossil stromatolites resemble
the living ones closely [270] and date back some 3.5 Ga ago [1217]. Although, this points
to a key role in early evolution, planctobacteria seem too complex as a contemporary
model for an early cell. Moreover, anaerobic methane oxidation (amo) involves sulphate
reduction. Isotope data indicate that sulphate reduction originated 3.47 Ga ago [1048].
Sulphate was rare by then [188] and might have been formed photochemically by oxidation
of volcanic SO2 in the upper atmosphere, or phototrophically by green and purple sulphur
bacteria (Chlorobiacea, Chromatiacea), [899].

10.2.1 Evolution of central metabolism

A closer look at the modern central metabolism in an evolutionary perspective might help
to get the broad picture, see Figure 10.2. I here suggest that the four main modules of
the central metabolism evolved one by one within the prokaryotes, and were recombined,
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Figure 10.2: Evolution of central metabolism among prokaryotes that formed the basis of eu-
karyotic organisation of central metabolism. ACS = acetyl-coenzyme A synthase pathway, iPP =
inverse pentose phosphate cycle (= Calvin cycle), PP = pentose phosphate cycle, iTCA = inverse
tricarboxylic acid cycle, TCA = tricarboxylic acid cycle (= Krebs cycle), iGly = inverse glycolysis,
Gly = glycolysis, iRC = inverse respiratory chain, RC = respiratory chain. The arrows indicate
the directions of synthesis to show where they reversed; all four main components of eukaryote’s
heterotrophic central metabolism originally ran in the reverse direction to store energy and to
synthesise metabolites. The approximate time scale is indicated above the scheme (i.e. the origin
of life, and that of cyanobacteria and eukaryotes). Contemporary models: A1 Methanococcus;
A2 Thermoproteus; A3 Sulfolobus; E2 Nitrosomonas; E3 Chloroflexus; E4 Prochlorococcus; E5
Escherichia. Modified from [657]

reverted and reapplied. This scenario implies considerable conjugational exchange between
the archaea and eubacteria, but given the long evolutionary history, such exchanges might
have been very rare. The exchange must have been predated by a symbiontic coexistence
of archaea and eubacteria to tune their very different metabolic systems. The examples
of contemporary models [708, 986] illustrate that the metabolic systems themselves are
not hypothetical, but the evolutionary links between these systems obviously are. This
is not meant to imply, however, that the taxa also would have these evolutionary links.
Some species of Methanococcus have most genes of the glycolysis; Thermoproteus possesses
a variant of the reversible Embden-Meyerhof-Parnas and the Entner-Douderoff pathways;
Sulfolobus has oxidative phosphorylation. These contemporary models are not just evolu-
tionary relicts; the picture is rather complex.

Dioxygen was rare, if not absent, during the time life emerged on earth which classifies
the respiratory chain as an advanced feature. Glucose hardly could have been that central
during the remote evolutionary origins of life, since its synthesis and degradation typically
involves dioxygen. Like all phototrophic eukaryotes, most chemolitho-autotrophic bacteria
fix inorganic carbon in the form of carbon dioxide through the Calvin cycle. At present,
this cycle is part of the phototrophic machinery, a rather advanced feature in metabolic
evolution and which is not found in any archaea [1028]. It has glucose as its main prod-
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uct, which suggests that the central position of glucose and, therefore, of carbohydrates,
evolved only after oxygenic phototrophy evolved. Like the Calvin cycle, eukaryotic and eu-
bacterial glycolysis (the Embden-Meyerhof pathway) is not found in archaea either; hyper-
thermophilic archaea possess the Embden-Meyerhof pathway in modified form [1028, 1041]
and generally do not use the same enzymes [752]. This places the pyruvate processing tca
cycle at the origin of the central metabolism. However, if we leave out the glycolysis as a
pyruvate-generating device, what process was generating pyruvate?

Interestingly, the eubacteria Hydrogenobacter thermophilus and Aquifex use the tca
cycle in reverse, binding and transforming CO2 into building blocks (lipids, cf [697]), in-
cluding pyruvate. Both species are Knallgas bacteria, extracting energy from the oxidation
of dihydrogen. The green sulphur bacterium Chlorobium, as well as the archaea Sulfolobus
and Thermoproteus [732] also run the tca cycle in reverse for generating building blocks.
Hartman [467], Wächtershäuser [1208] and Morowitz et al. [810] hypothesised the reverse
tca cycle to be one of the first biochemical pathways. The interest in hydrogen bacte-
ria relates to the most likely energy source for the first cells on earth. Hydrogenobacter
optimally thrives at 70–75 ◦C in Japanese hot springs. It is an aerobic bacterium, using
ammonia and nitrate, but not nitrite, and possesses organelles (mesosomes). Several en-
zymes of the PP cycle and the glycolytic pathway are present although their activities are
low [1097].

The tca cycle seems to be remarkably efficient, which explains its evolutionary stability.
Moreover, it is reversible, which directly relates to its efficiency and the inherent small steps
in chemical potential between subsequent metabolites. Yet, with its nine transformations,
the tca cycle is already rather complex, and must have been preceded by simpler CO2-
binding pathways [854], such as the (linear) acetyl-CoA pathway of homoacetogens: 2 CO2

+ 4 H2 + CoASH→ CH3COSCoA + 3 H2O [535, 710]. Apart from H2, electron donors
for acetogenesis include a variety of organic and C1-compounds. Coenzyme A, which
plays an important role in the tca cycle, is a ribonucleotide and the main substrate for
the synthesis of lipids, a remembrance of the early rna world [1130]. Several eubacteria
and archaea employ the acetyl-CoA pathway; they include autotrophic homoacetogenic
and sulphate-reducing bacteria, methanogens, Closterium, Acetobacterium, and others.
The rna-world is generally thought to predate the protein/dna-world. rna originally
catalysed all cellular transformations; protein evolved later to support rna in this role.
Many protein enzymes still have rna-based cofactors (e.g. ribosomes and spliceozomes),
while rna still has catalytic functions. dna evolved as a chemically more stable archive
for rna, probably in direct connection with the evolution of proteins, and possibly with
the intervention of viruses [361, 362]. The step from the rna to the protein/dna world
came with a need for the regulation of transcription.

The hyperthermophilic methanogens, such as Methanococcus , Methanobacterium or
Methanopyrus , have also been proposed as contemporary models for early cells [708];
they have the acetyl-CoA pathway, which they run in both the oxidative and the re-
ductive direction [1067]. Like Aquifex , they are thermophilic and taxonomically close to
archaea/eubacteria fork (eukaryotes have some properties of both roots), have a small
genome (Methanococcus jannaschii has 1.66 Mbp, coding for only 1700 genes), and they
utilise H2 as electron donor.
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A natural implication of the reversal of the tca cycle is that the direction of glycolysis
was initially reversed as well, and served to synthesise building blocks for e.g. carbohy-
drates. Comparing the carbohydrate metabolism among various bacterial taxa, Romano
and Conway [986] concluded that originally glycolysis must indeed have been reversed.
Thus, the reversed glycolytic pathway probably developed as an extension of the reversed
tca cycle, and they both reversed to their present standard direction upon linking to the
Calvin cycle, which produces glucose in a phototrophic process. So, what could have been
the evolutionary history of phototrophy?

10.2.2 Phototrophy

Phototrophy probably was invented more than 3.2 Ga ago [1286]; it seems unlikely that
it appeared at the start of evolution, as some authors suggest [1269, 193, 468, 116, 117].
Recent evidence suggests that phototrophy is also possible near hydrothermal vents at
the ocean floor [289], where the problem encountered by surface dwellers, namely that of
damage by ultraviolet (UV) radiation, is absent. In an anoxic atmosphere, and therefore
without ozone, UV damage must have been an important problem for the early phototrophs
though and protection and repair mechanisms against UV damage must have evolved in
parallel with phototrophy [271]; possibly phototrophy evolved from UV-protection systems
[899].

The green non-sulphur bacterium Chloroflexus probably resembles the earliest pho-
totrophs and is unique in lacking the Calvin cycle, as well as the reverse tca cycle. In the
hydroxypropionate pathway, it reduces two CO2 to glyoxylate, using many enzymes also
found in the thermophilic non-phototrophic archaean Acidianus . Its photoreaction centre
is similar to that of purple bacteria. The reductive dicarboxylic acid cycle of Chloroflexus
is thought to have evolved into the reductive tca cycle as found in Chlorobium, and fur-
ther into the reductive pentose phosphate cycle, which is, in fact, the Calvin cycle [468].
Like sulphur and iron-oxidising chemolithotrophs, aerobic nitrifying bacteria use the Calvin
cycle for fixing CO2. The substrate of the first transformation of the monophosphate path-
way for oxidising C1-compounds, such as methane, is very similar to the C1-acceptor of
the Calvin cycle, which suggests a common evolutionary root of these pathways [732]. The
first enzyme in the Calvin cycle, RubisCO is present in most chemolithotrophs and pho-
totrophs and even in some hyperthermophilic archaea. It is the only enzyme of the Calvin
cycle of which (some of) the code is found on the genome of chloroplasts. The enzymes
that are involved in the Calvin cycle show a substantial diversity among organisms and
each has its own rather complex evolutionary history [753]. This complicates the finding
of its evolutionary roots; see Figure 10.2.

The thermophilic green sulphur bacterium Chlorobium tepidum runs the tca cycle
(and glycolysis) in the opposite direction compared to typical (modern aerobic) organ-
isms [732], indicating an early type of organisation [467, 1208, 810]. In combination with
the observations mentioned above, this suggests that the present central glucose-based
metabolism evolved when the Calvin cycle became functional in CO2 binding, and the
glycolysis and the tca cycle reversed to their present standard direction, operating as a
glucose and pyruvate processing devices, respectively (see Figure 10.2). Most phototrophs
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use the Calvin cycle for fixing CO2 in their cytosol in combination with a pigment system in
their membrane for capturing photons. Archaea use a low-efficient retinal-protein and are
unable to sustain true autotrophic growth; 5 of the 11 eubacterial phyla have phototrophy.
Bacterio-chlorophyll in green sulphur bacteria is located in chlorosomes, organelles bound
by a non-unit membrane, attached to the cytoplasmic membrane. Green non-sulphur
and purple bacteria utilise photosystem (PS) II; green sulphur and Gram-positive bacteria
utilise PS I, whereas cyanobacteria (including the prochlorophytes) utilise both PS I and II
[1301]. The cyanobacterium Oscillatoria limnetica can utilise their PS I and II in conjunc-
tion, thus being able to split water and to produce dioxygen. In the presence of H2S as an
electron donor, it uses only PS I, an ability pointing to the anoxic origin of photosynthesis.
Oxygenic photosynthesis is a complex process that requires the coordinated translocation
of 4 electrons. It evolved more than 2.7 Ga ago [112]. Based on the observation that bicar-
bonate serves as an efficient alternative for water as electron donor, Dismukes et al. [273]
suggested an evolutionary sequence of electron donation: oxalate (by green non-sulphur
bacteria), Mn-bicarbonate, bicarbonate and water (by cyanobacteria).

The phototrophic system eventually allowed the evolution of the respiratory chain (the
oxidative phosphorylation chain), which uses dioxygen that is formed as a waste product
of photosynthesis, as well as the same enzymes in reversed order. If the respiratory chain
initially used sulphate, for example, rather than dioxygen as electron acceptor, it could
well have evolved simultaneously with the phototrophic system.

The production of dioxygen during phototrophy, which predates the oxidative phos-
phorylation, changed the earth, e.g. [273, 681]. It started to accumulate in the atmosphere
around 2.3 Ga ago, which shortened the life time of atmospheric methane molecules from
10000 to 10 years with the consequence that the earth became a “snowball” [579]. The
availability of a large amount of energy and reducing power effectively removed energy
limitations; primary production in terrestrial environments is mainly water-limited, that
in aquatic environments nutrient-limited. This does not imply, however, that the energetic
aspects of metabolism could not be quantified usefully; energy conservation also applies
in situations where the energy supply is not rate-limiting. Nutrients may have run short
of supplies because of oxidation by dioxygen; this would have slowed down the rate of
evolution [22]. First, sulphur precipitated out, followed by iron and toward the end of
the Precambrian by phosphate and, since the Cambrium revolution, by calcium as well.
Also, under aerobic conditions, nitrogen fixation became difficult, which makes biologically
required nitrogen unavailable, despite its continued great abundance as dinitrogen in the
environment; see [82, p41]. Since the Calvin cycle produces fructose 6-phosphate, those
autotrophic prokaryotes possessing this cycle are likely to have a glucose-based metabolism.
Indeed, the presence of glucose usually suppresses all autotrophic activity. Several obli-
gate chemolithotrophic prokaryotes, such as sulphur-oxidisers, nitrifiers, cyanobacteria and
prochlorophytes contain this cycle in specialised organelles, the carboxysomes, which are
tightly packed with RubisCO. Facultative autotrophs, like purple anoxyphototrophs, use
the Calvin cycle for fixing CO2, although they lack the carboxysomes.
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for biomass. Modified from [1016].

10.2.3 Diversification & interactions

The prokaryotes as a group evolved a wide variety of abilities for the processing of sub-
strates, whilst remaining rather specialised as species, e.g. [20]. The nitrogen cycle in
Figure 10.3 illustrates this variety, as well as the fact that the products of one group are
the substrate of another.

Some of the conversions of inorganic nitrogen species can only be done by a few taxa.
The recently discovered anaerobic oxidation of ammonia is only known from the plancto-
bacterium Brocadia anammoxidans [1016]. None-the-less, it might be responsible for the
removal of one-half to one-third of the global nitrogen in the deep oceans [242]. The aer-
obic oxidation of ammonia to nitrite is only known from Nitrosomonas , the oxidation of
nitrite into nitrate is only known from Nitrobacter ; and the fixation of dinitrogen can only
be done by a few taxa, such as some cyanobacteria, Azotobacter , Azospirillum, Azorhizo-
bium, Klebsiella, Rhizobium, and some other ones [1095].

Several eukaryotes can respire nitrate non-symbiotically. The ciliate Loxodes (Kary-
orelicta) reduces nitrate to nitrite; the fungi Fusarium oxysporum and Cylindrocarpon
tonkinense reduce nitrate to nitrous oxide; the foraminifera Globobulimina and Nonionella
live in anoxic marine sediments and are able to denitrify nitrate completely to N2 [976].

The excretion of polysaccharides (carbohydrates) and other organic products by nutrient-
limited photosynthesisers (such as cyanobacteria), stimulated heterotrophs to decompose
these compounds through the anaerobically operating glycolytic pathway. Thus, other or-
ganisms came to use these excreted species-specific compounds as resources, and a huge
biodiversity resulted. Apart from the use of each other’s products, prokaryotes, such as
the proteobacteria Bdellovibrio and Daptobacter , invented predation on other prokaryotes.
When the eukaryotes emerged, many more prokaryote species turned to predation, with
transitions to parasitism causing diseases in their eukaryotic hosts. Predators typically
have a fully functional metabolism, while parasites use building blocks from the host, re-
ducing their genome with the codes for synthesising these building blocks. The smallest
genomes occur in viruses, which probably evolved from their hosts and are not reduced
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JĴ

E1





�

S0

?

S1

?

⇒

V

E0

J
JĴ
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Figure 10.4: Steps in the evolution of the organisation of metabolism of organisms. Symbols:
S substrate, E reserve, V structure, J maturity, R reproduction, MV somatic maintenance, MJ

maturity maintenance. Only two of several possible types are shown. Font size reflects relative
importance. Stacked dots mean sloppy coupling. The top row shows the development of a
prokaryotic system, which bifurcated in a plant, cf Figure 5.11, and an animal, cf Figure 2.1, line
of development. Modified from [662].

organisms [493, 1131]. Prokaryotic mats on intertidal mud flats and at methane seeps
illustrate that the exchange of metabolites between species in a community can be intense
[792, 839]. The occurrence of multi-species microbial flocks, such as in sewage treatment
plants [141, 139] further illustrates an exchange of metabolites among species. The part-
ners in such syntrophic relationships sometimes live epibiotically, possibly to facilitate
exchange. Internalisation further enhances such exchange [647]. The gradual transition
of substitutable substrate to become complementary is basic to the formation of obligate
syntrophic relationships.

10.3 Evolution of individual as dynamic system

The evolution of the organism as a dynamic metabolic system can be described in several
steps [662], some of them are illustrated in Figure 10.4.
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10.3.1 Homeostasis induces storage

Variable biomass composition

We start with a living (prokaryotic) cell, surrounded by a membrane. Although it remains
hard to define what life is exactly, it represents an activity and, therefore, requires energy.
The acquisition of energy and (probably several types of) building blocks to synthesise
new structure were separated and the first cells suffered from multiple limitations; they
could only flourish if all necessary compounds were present at the same time. Initially
there were no reserves and hardly any maintenance costs. A cell’s chemical composition
varied with the availability of the various substrates. As soon as the membranes were
rich in lipids (eubacteria) or isoprenoid ethers (archaea), the accumulation of lipophilic
compounds could have been rather passive. The excretion of waste products was not well
organised.

Strong homeostasis induces stoichiometric constraints

In a stepwise process, the cells gained control over their chemical composition, which be-
came less dependent on chemical variations in the environment. One mechanism is coupling
of the uptake and use of different substrates. How uncoupled uptake of supplementary
compounds can gradually change into coupled uptake of complementary compounds is
discussed at {391}. With increasing homeostasis, stoichiometric restrictions on growth
become more stringent; the cells could only grow if all essential compounds were present
at the same time in the direct environment of the cell. The activity of the cells varied with
the environment at a micro-scale, which will typically fluctuate wildly. The reduction in
variability of the chemical composition of the cell came with an increased ability to remove
waste products, i.e. with a process of production of compounds that are released into the
environment.

The mechanism that is described for the reserve dynamics of deb theory, see {39}
and is based on the control of the number of SUs fro growth, might well be and important
mechanism for homeostasis in general. Whatever happened, homeostasis gradually became
more perfect and biomass can be considered as being composed of a single generalised
compound called structure.

Reserves relaxes stoichiometric constraints

The increased stoichiometric constraints on growth result in a reduction of possible habitats
in which the cell can exist. By internalising and storing the essential compounds before
use, the cells became less dependent on the requirement for all essential compounds to be
present at the same time. In this way, they could smooth out fluctuations in availability at
the micro-scale (Figure 10.11). Most substrates are first transported from the environment
into the cell across the membrane by carriers before further processing. By reducing the
rate of this further processing, storage develops automatically, as will be detailed below.
Initially the storage capacity must have been small to avoid osmotic problems, which
means that the capacity to process internalised resources is large relative to the capacity
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to acquire them from the environment. By transforming stored compounds to polymers,
these problems could be avoided, and storage capacity could be increased further to smooth
out fluctuations more effectively. This can be achieved by increasing the acquisition rate
or decreasing the processing rate.

The reason for evolutionary selection toward partitionability might well be in the incre-
mental change in the number of different types of reserves, so in the organisational aspects
of metabolism. Partitionability and mergeability are mathematically almost the same and
to some extend probably reversible in evolution. These changes not only occur within
individuals, but also during the internalisation of symbionts.

Excretion: imbalance between availability & requirements

The deb reserve dynamics implies that the amount of the most limiting reserve co-varies
with growth, and the amounts of non-limiting reserves can or cannot accumulate under con-
ditions of retarded growth, depending on the excretion of mobilised reserve that is not used;
excretion is an essential feature of multiple reserve systems to avoid accumulation without
boundary, cf Figure 5.4. This is because assimilation does not depend on the amount
of reserve, so also not on the use of reserve; it only depends on the amount of structure
and substrate availability. The excretion process can be seen as an enhanced production
process of chemical compounds, but its organisation (in terms of the amounts that are
excreted under the various conditions) differs from waste production. Waste production is
proportional to the source process (assimilation, maintenance, growth). Excretion, on the
contrary, reflects an unbalanced availability of resources. The flux is proportional to a fixed
fraction of what is rejected by the SU for growth. The theory of SUs quantifies the rejection
flux. When the diatom Pseudonitzschia becomes silica depleted in an environment that is
rich in nitrate, it starts to excrete domoic acids, which drains its nitrogen reserve. Some
bacteria produce acetate in environments that are rich in organic compounds, but poor in
nutrients, which lowers the pH, which, in turn, has a negative effect on competing species.
When only acetates are left, they use these as a substrate.

Empirical evidence has so far [641, Figure 5.5] revealed that the various reserves have
the same turnover rate. The reason might be that mobilisation of different reserves involves
the same biochemical machinery. This possibly explains why the use of e.g. stored nitrate
follows the same dynamics as that of polymers such as carbohydrates and lipids, although
the use of nitrate obviously does not involve monomerisation.

Together with waste, excretion products serve an important ecological role as substrate
for other organisms [1078]. Most notably polysaccharides that are excreted by phototrophs
in response to nutrient limitation provide energy and/or carbon substrate for heterotrophs,
so they fuel a production process that is known as the microbial loop. Adaptive dynamics
analysis has indicated the importance of syntrophy in evolutionary speciation [277].

Other excretion products are toxic for potential competitors, such as domoic acid pro-
duced by the diatom Pseudonitzschia spp. in response to nitrogen surplus, which can be
highly toxic to a broad spectrum of organisms, including fish. Nitrogen enrichment of the
environment by human activity enhances the formation of nitrogen reserves, and so the
production of toxicants that contain nitrogen by some algae.
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10.3.2 Maintenance enhances storage

Maintenance: increased & internalised

The storing of ions, such as nitrate, creates concentration gradients of compounds across the
membrane that have to be maintained. These maintenance costs might originally have been
covered by extra-cellular chemoautotrophic transformations, but this requires the presence
of particular compounds (e.g. to deliver energy). Maintenance can only be met in this
way if the organism can survive periods without having to meet such costs, i.e. facultative
rather than obligatory maintenance. Most maintenance costs are obligatory, however. The
next step is to pay the maintenance costs from reserves that are used for energy generation
to fuel anabolic work and thus to become less dependent on the local presence of chemo-
autotrophic substrates. Although extreme starvation, causing exhaustion of reserves, can
still affect the ability to meet maintenance costs (see Appendix A.3), such problems will
occur much less frequently.

Maintenance requirements were increased further and became less facultative in a num-
ber of steps, which we will discuss briefly.

Enhanced uptake & adaptation

Originally carriers (which transport substrate from the environment into the cell across the
membrane) were less substrate-specific and less efficient, meaning that the cell required
relatively high concentrations of substrate. The cell increased the range of habitats in
which it could exist by using carriers that are not fully structurally stable, meaning that
a high-efficiency machinery changes to low efficiency autonomously. The maintenance of a
high efficiency involves a turnover of carriers.

High-performance carriers are also more substrate-specific, which introduces a require-
ment for regulation of their synthesis and for adaptation to substrate availability in the
local environment. The expression of genes coding for the carriers of various substitutable
substrates becomes linked to the workload of the carriers, see {283}. The principle that
allocation occurs according to relative workload seems to be general and conserved; we will
discuss it again in allocation to organs in relation to multicellular eukaryotes.

Turnover of structure enhances maintenance

Not only carriers, but many chemical compounds (especially proteins with enzymatic func-
tions) suffer from spontaneous changes that hamper cellular functions. The turnover of
these compounds, i.e. breakdown and re-synthesis from simple metabolites, restores their
functionality [699], but increases maintenance requirements. This mixture of conversion
machineries with high and low efficiencies is present in structure and so, due to turnover, to
maintenance, it is converted into structure with high-efficiency machinery. The biochemical
aspects of the process are reviewed in [605].

These increased requirements made it even more important to use reserves, rather than
unpredictable external resources to cover them. When such reserves do not suffice, mainte-
nance costs are met from structure, and cells shrink, see {118}. Paying maintenance from
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structure is less efficient than from reserve directly, because it involves an extra transfor-
mation (namely from reserve to structure). The preference for reserve as the substrate
rather than structure, would have been weak originally, later becoming stronger. Since the
turnover rate of compounds in structure depends on the type of compound (some rates are
possibly very low), the metabolites derived from these compounds do not necessarily cover
all metabolic needs.

The waste (linked to maintenance and the overhead of growth) and the excreted reserves
(linked to stoichiometric restrictions on growth due to homeostasis) serve as substrates for
other organisms, so life becomes increasingly dependent on other forms of life even at an
early stage. Some of these products were transformed into toxins that suppress competition
for nutrients by other species.

Defence systems increases maintenance costs

The invasion of (micro)habitats where toxic compounds are present, and the production of
toxic waste and excretion products by other organisms, required the installation of defence
systems, which increase maintenance costs, cf {47}. Prokaryotes developed a diverse family
of defence proteins, called bacteriocins [975]. Phototrophy requires protection against UV
radiation. The pathways for anaerobic methane oxidation and methanogenesis possibly
evolved from a detoxicifation system for formaldehyde; this is another illustration of a
change in function of a protection system. A general-purpose protection system against
toxic compounds consists of proteins that encapsulate toxic molecules. Another general
system is to transform lipophilic compounds into more hydrophilic (and so more toxic) ones
to enhance excretion, cf {227}. The development of a complex double cell membrane in
the didermata (Gram-negative eubacteria) was possibly a response to the excretion of toxic
products by other bacteria [443], although the outer membrane is not a typical diffusion
barrier [697]. When dioxygen first occurred in the environment as a waste product of
oxygenic photosynthesis, it must have been toxic to most organisms [273, 681]; the present
core position of carbohydrates in the central metabolism of eukaryotes and its use in energy
storage is directly linked to this waste product. The reactive oxygen species (ROS) play an
important role in ageing [692], cf {209}, and induced the development of defence systems
using peroxidase dismutases to fight their effects. While eukaryotes learned not only to
protect themselves against dioxygen, but even make good use of it, they became vulnerable
for hydrogen sulphide that is excreted by anearobically photosynthesysing green and purple
sulphur bacteria. Biomarkers (isorenieratene) from these bacteria suggest that the great
mass extinctions of the Permian, Devonian and Triassic are linked to the toxic effects of
hydrogen sulphide and the lack of dioxygen [1220, 434]. Viruses probably arose early in
the evolution of life, and necessitated specialised defence systems that dealt with them.
These defence systems further increased maintenance costs.

Increase of reserve capacity in response to increase of maintenance

Substrate concentration in the environment is not constant, which poses a problem if
there is a continuous need to cover maintenance costs. An increase in maintenance costs
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therefore requires increased storage capacity in order to avoid situations in which main-
tenance costs cannot be met. The solution is to further delay the conversion of substrate
metabolites to structure, creating a pool of intermediary metabolites. The optimal capac-
ity depends on the variability of substrate availability in the environment and (somatic)
maintenance needs. Transformation to polymers (proteins, carbohydrates) and lipids will
reduce concentration gradients and osmotic problems, and thus maintenance costs, but
involves machinery to perform polymerisation and monomerisation. The development of
vacuoles allows spatial separation of ions and cytoplasm to counter osmotic problems. One
example is the storage of nitrate in vacuoles of the colourless sulphur bacteria Thioploca
spp. [567], which use it to oxidise sulphides first to sulphur, for intracellular storage, and
then to sulphate for excretion together with ammonium [858]. Organelles like acidocalci-
somes also play a role in the storage of cations [276]; vacuoles are discussed at {389}.

A further step to guarantee that obligatory maintenance costs can be met is to catabolise
structure. This is inefficient and involves further waste production (so requiring advanced
excretion mechanisms), but at least it allows the organism to survive lean periods.

Reserves can contribute considerably to the variability of biomass composition; phy-
toplankton composition greatly affects the rate at which phytoplankton bind atmospheric
carbon dioxide and transport carbon to deep waters [851], known as the biological carbon
pump. The activity of the biological carbon pump affects the carbon cycle, and so climate.

10.3.3 Morphological control on metabolism

Morphology influences metabolism for several reasons: assimilation rate is proportional to
surface area, maintenance rate to volume and catabolic rate to the ratio of surface area and
volume. This means that surface-area-volume relationships are central to metabolic rates,
see {120}. The shape of the growth curve (and so the timing of developmental events) is
directly related to the changes in morphology of the cell, see Figure 4.11. Morphology also
determines migration capacity, see {119}, which greatly changes the spatial scale that is
of metabolic relevance.

κ-rule & emergence of cell cycles

Control on morphology and cell size increased stepwise. Initially the size at division would
be highly variable among cells. This variance will be decreased by the installation of a
maturation process, where division is initiated as soon as the investment in maturation
exceeds a threshold level. This state of maturity creates maturity maintenance costs.
Allocation to this maturation program is a fixed fraction 1 − κ of the catabolic flux,
gradually increasing from zero, see {40}. Such an allocation is only simple to achieve if
the catabolic flux does not depend on the details of allocation. If the SUs for maturation
operate similar to those for somatic maintenance and growth, the fraction κ is constant
and depends on the relative abundance and affinity of the maturation SUs.

The metabolic relevance of cell size is in membrane-cytoplasm interactions, cf {275};
many catalysing enzymes are only active when bound to membranes [57], and cellular com-
partmentalisation affects morphology and metabolism. The turnover of reserve decreases
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with a length measure for an isomorph, see {293}, which comes with the need to reset cell
size for uncellulars. Apart from the increase of residence time of compounds in the reserve
with a length measure, the cell’s surface area to volume ratio decreases with increasing
cell size, as does the growth potential. The increase in metabolic performance requires an
increase in the amount of dna and in the time spent on dna duplication. The trigger
for dna duplication is given when investment into maturation exceeds a given threshold,
meaning that a large amount of dna leads to large cell sizes at division. Prokaryotes partly
solved this problem by telescoping generations, i.e. dna duplication is initiated before the
previous duplication cycle is completed, see {272}, and by deleting unused dna [1122].

10.3.4 Simplification & integration

Reduction of number of reserves

Many eukaryotes started feeding on dead or living biomass with a chemical composition
similar to themselves. This co-variation in time of all required metabolites for growth re-
moved the necessity to deal with each of those reserves independently. By linking the up-
take of various metabolites, the various reserves co-vary fully in time because their turnover
times are equal, as was discussed above. This improved homeostasis, and decreased the
need to excrete reserve(s), and allowed further optimisation of enzyme performance; re-
serve dynamics is mergeable, see {38}. A decrease in the number of reserves also simplifies
cells’ organisation, which makes it easier to serve as module in a metabolic structure at a
higher level of organisation.

Syntrophy and lateral gene exchange

The evolution of central metabolism as summarised in Figure 10.2 testifies from its syn-
trophic origins [657, 662]. Some important features are that heterotrophy evolved from pho-
totrophy, which itself evolved from lithotrophy, and that all cycles in the central metabolism
of typical modern heterotrophs ran in the opposite direction in the evolutionary past.

This reconstruction suggests that lateral gene exchange between eubacteria and archaea
occurred during the evolution of central metabolism. Initially cells could exchange rna
and early strands of dna relatively easily [1271]; restrictions on exchange became more
stringent with increasing metabolic complexity. Many authors suggest that considerable
lateral gene exchange occurs in extant prokaryotes [761, 443, 663, 750] by conjugation,
plasmids and viruses [1131].

While prokaryotes passed metabolic properties from one taxon to another by lateral
exchange of genes, eukaryotes specialised in symbiotic relationships and even internalisation
of whole organisms to acquire new metabolic properties. These exchange steps require
metabolic preparation, however, both in terms of substrate supply to a new metabolic
pathway and of product processing from that pathway for maintenance and/or growth. It
seems very likely that these preparation steps includes a syntrophic exchange between the
donor and the receiver.
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Figure 10.5: Scheme of symbiogenesis events; the first two primary inclusions of prokaryotes
(to become mitochondria and chloroplasts respectively), were followed by secondary and tertiary
inclusions of eukaryotes. Each inclusion comes with a transfer of metabolic functions to the host.
The loss of endosymbionts is not illustrated. See Figure 10.2 for definitions of the modules of
central metabolism and for the ancestors of mitochondria and chloroplasts. The outer membrane
of the mitochondria is derived from the endosymbiont, and that of the chloroplasts from the host;
mitochondria were internalised via membrane rupture, chloroplasts via phagocytosis. Modified
from [657]. The scheme explains why all eukaryotes have heterotrophic capabilities.

First steps in modular recombination: mitochondria

The problem of the origins of mitochondria is not fully resolved. Part of the problem is
that mitochondria and hosts exchanged quite a few genes, and the genome of mitochondria
reduced considerably, down to 1 % of its original bacterial genome [344]. The mitochondrial
dna in kinetoplasts, however, is amplified and can form a network of catenated circular
molecules [690]. Mitochondria probably evolved from an α-group purple bacterium [27] in
an archaean [749, 752, 53]. However, arguments exist for the existence of mitobionts in the
remote past [793], from which mitochondria and prokaryotes developed; the mitobionts dif-
ferentiated before they associated with various groups of eukaryotes. The amitochondriate
pelobiont Pelomyxa palustris has intracellular methanogenic bacteria that may have com-
parable functions. Other members of the α-group of purple bacteria, such as Agrobacterium
and Rhizobium can also live inside cells and function sport dinitrogen fixation. Rickettias
became parasites, using their host building blocks and reducing their own genome to viral
proportions.
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It is now widely accepted that all eukaryotes have or once had mitochondria [984, 443,
587, 319, 1063, 1103]. Their internalisation marks the origin of the eukaryotes, which is
possibly some 1.5 Ga [608] or 2.0 Ga [945] or 2.7 Ga [153] ago. In fact the eukaryotes may
have emerged from the internalisation of a fermenting, facultative anaerobic H2- and CO2-
producing eubacterium into an autotrophic, obligatory anaerobic H2- and CO2-consuming
methanogenic archaean [749], the host possibly returning organic metabolites. Once the
H2-production and consumption had been cut out of the metabolism, aerobic environments
became available, where the respiratory chain of the symbiont kept the dioxygen concen-
tration in the hosts cytoplasm at very low levels. The internalisation of (pro)mitochondria
might be a response to counter the toxic effects of dioxygen. This hypothesis for the origin
of eukaryotes explains why the dna replication and repair proteins of eukaryotes resemble
that of archaea, and not that of eubacteria. Notice that the eukaryotisation, as schematised
in Figure 10.5, just represents a recombination and compartmentation of existing modules
of the central metabolism (cf Figure 10.2). Syntrophic associations between methanogens
and hydrogenosomes are still abundant; ciliates can have methanogens as endosymbionts
and interact in the exchange [345].

The penetration of mitochondria into its host required membrane rupture and healing,
without causing cell death. The predatory bacterium Daptobacter can penetrate the cy-
toplasm of its bacterial prey Chromatium. This may be analogous to early events in the
symbiotic acquisition of cell organelles [441]. The outer membrane of the double membrane
around mitochondria might be of negibacterial origin [193], which supports the rupture in-
terpretation. At least one example exists of prokaryotic endosymbiosis (β-proteobacteria
that harbour γ-proteobacteria [278]) in absence of phagocytosis. More examples exist of
penetration through the membrane without killing the victim instantaneously (e.g. [441].
His present view, shared by others, is that it happened only once and the logical implication
is just in a single individual. If phagocytosis would have been well established prior to the
entry of a mitochondrion, it is hard to understand why it did not occur more frequently.

This origin of eukaryotes explains their metabolic similarity, compared to the diversity
among prokaryotes and illustrates the narrow borderline between parasitic and symbiotic
relationships, cf {332}. Since opisthokonts were the first to branch, and animals probably
originated in the sea, this internalisation event presumably occurred in a marine environ-
ment. The fungi, notably the chytrids, diverged from the animals (unicellular relatives
of the choanoflagellates) some 0.9 - 1.6 Ga ago [1143]. In view of the biology of modern
nucleariids and chytrids, this might have occurred in a freshwater environment.

The shape of the cristae of mitochondria is nowadays an important criterion in tracing
the evolutionary relationships among protists [871], which points to a slow intracellular evo-
lution. Hydrogenosomes are generally thought to have evolved from mitochondria in anaer-
obic or micro-aerobic environments. As testified by the presence of mitochondrion-derived
genes, some parasitic or commensal groups (entamoebidae, microsporidia, diplomonads,
parabasalia, some rumen chytrids, several groups of ciliates) lost their mitochondria [984].
Such genes have not been found (yet) in the amitochondriate oxymonads, retortamonads,
Postgaardi and Psalteriomonas . The absence of mitochondria is perhaps primitive in the
pelobionts and the free-living Trimastrix [871]. Other organelles, such as peroxysomes and
glyoxisomes, probably also have endosymbiotic origins [193, 581]; they follow a growth and
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fission pattern that is only loosely coupled to the cell cycle. Organelles such as centrioles,
undulipodia, and the nuclear membrane, possibly have an endosymbiotic origin [744], but
others oppose this point of view.

A cornerstone of deb theory is the ability to merge metabolic systems that follow deb
rules such that the merged system again follows deb rules; the integration of mitochondria
into the host system is the first in a long series of similar events; this is further discussed
at {391}.

Membrane plasticity

No prokaryote seems to be able to wrap their membranes into vesicles, while membrane
transport (including phagocytosis and pinocytosis, vesicle mediated transport) is basic in
eukaryotes [303, 438], and essential for endosymbiotic relationships. Eukaryotes also have
atp-fuelled cytoplasmatic mobility driven by myosin and dynein.

The absence of phagocytosis or pinocytosis in prokaryotes has been used as argument
in favour of an independent origin of prokaryotes and eukaryotes [193, 1270]. The protein
clathrin plays a key role in membrane invagination, and is not known in prokaryotes. Simi-
larities in the dna and rna code and in the whole biochemical and metabolic organisation
of prokaryotes and eukaryotes suggest an evolutionary link. Cavalier-Smith [193, 197] ar-
gued that eukaryotes descend from some actinobacterium that engulfed a phototrophic
posibacterium (an (-proteobacterium) as mitochondrion, which later lost phototrophy, and
used it as a slave to produce atp. The ability to phagotise is central to his reasoning.
Actomyosin mediates phagocytosis and actinobacteria have proteins somewhat related to
myosin, although they do not phagotise. If he is right that the outer membrane of mito-
chondria is derived from the original posibacterium, and not from the host, there is little
need for the existence of phagocytosis prior to the entry of a posibacterium to become a
mitochondrion.

Bell [80, 81] proposed that a lysogenic pox-like dna virus introduced clatrine-like pro-
teins in an archaean that promoted membrane plasticity. This option also helps to un-
derstand the origins of the nuclear membrane, of linear chromosomes with short telometic
repeats, of capped mrna and to extrude it across the viral membrane into the cytoplasm.
Viruses might have evolved early [362, 363], but the question remains how viruses got the
ability; the fact that membrane-trafficking genes have prokaryotic similarities and many
resulted from gene duplications [239] questions a viral origin.

We are beginning to understand the evolutionary roots of cell motility [106], including
changes in shape in response to environmental stimuli, and extension of protrusions like
lamellipodia and filopodia to allow particles to be enclosed in a phagocytotic cup, which
is based on the spatially controlled polymerisation of actin. The eubacterial pathogens
Listeria monocytogenes and Shigella flexneri exhibit actin-based movement in the host
cytoplasm [864]. Actin and tubulin have also been isolated from the togobacterium Ther-
matoga maritimum [325]; apart from their role in motility, these proteins also play a key
role in the cytoskeleton of eukaryotes, which is used by transporters for the allocation of
metabolites to particular destinations. All eukaryotic cytoskeleton elements are presently
known from prokaryotes [429].
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The evolution of membrane plasticity must have taken place in a time window of some
700 Ma, since biomarker data suggest that the first eukaryotic cells appeared around 2.7
Ga [153] ago (around the time cyanobacteria evolved).

The development of membrane plasticity has been a major evolutionary step, allowing
phagocytosis; cells no longer needed to excrete enzymes to split large molecules of substrate
into smaller metabolites for uptake with low efficiency, but digestion could be carried out
intracellularly, avoiding waste and the necessity for cooperative feeding, see {264}. Fungi
possibly never developed this ability and animals evolved from fungi [750] suggesting that
the animal lineage developed phagocytosis independently. Recent phylogenetic studies
[1108] place the phagocytotic nucleariids at the base of the fungi, however, suggesting that
the fungi lost phagocytosis, and that it only developed once. Most animals also excrete en-
zymes (like their fungal sisters), but since this is in the gut environment, most metabolites
arrive at the gut epithelium for uptake. Plantae (glaucophytes, rhodophytes and chloro-
phytes) gave up phagocytosis, but chromophytes, which received their plastids in the form
of rhodophytes, still sport active phagocytosis [24] despite their acquired phototrophic
abilities. Phagocytosis allowed the more efficient use of living and dead organisms as a
resource. Scavenging, predation and new forms of endosymbioses became widespread.

Membrane plasticity had a huge impact on cellular organisation. The presence of vac-
uoles increased the capacity to store nutrients [694], and vesicle-mediated intracellular
transport reorganised metabolism [303]. By further improving intracellular transport us-
ing the endoplasmatic reticulum and further increasing storage capacity, cells could grow
bigger and be more motile. Bigger size favours increased metabolic memory, and increased
motility allows the organism to search for favourable sites. The eukaryotic endoplasmatic
reticulum, build of actin and tubulin networks has a precursor in prokaryotes in the form
of MreB proteins [325], so also here, we see gradual improvement.

Plastids

Long after the origin of mitochondria some cyanobacteria evolved into plastids[743, 1141],
which made phototrophy available for eukaryotes. Like that of mitochondria, this internali-
sation event possibly occurred only once in eukaryotic history [259, 769, 197, 1289, 260, 981],
see Figure 10.5, but this is controversial [1114].

Sequence data suggest that glaucophytes received the first plastids, and that rhodophytes
evolved from them some 2.0 Ga [1014, 1137] ago (or 1.2 Ga according to [608]), while chloro-
phytes (including plants) diverged from rhodophytes 1.5 Ga ago. The glaucophytes have
a poor fossil record, and now consist of a few freshwater species. Where the plastids of
glaucophytes retained most of their genome and properties, whereas that of rhodophytes
and chlorophytes became progressively reduced by transfer of thousands of genes to the
nucleus [751] and by gene loss.

The present occurrence of glaucophytes weakly suggests that the internalisation of a
plastid occurred in a freshwater environment. The rhodophytes have their greatest diversity
in the sea, and most of their hosts (that possess rhodophyte-derived chloroplasts) are most
diverse in the sea, while chlorophytes and their hosts are most diverse in fresh waters. So
the habitat in which the internalisation occurred is uncertain.



10.3. Evolution of individual as dynamic system 389

The secondary endosymbiosis event that seeded the chromophytes was some 1.3 Ga
ago [1290] (see Figure 10.5). Rhodophytes became integrated into heterokonts, hapto-
phytes and cryptophytes, while chlorophytes became integrated into euglenophytes and
chlorarachniophytes; heterokonts and haptophytes became integrated into dinoflagellates,
which themselves (especially Gymnodinium adriaticum) engaged into endosymbiotic re-
lationships with animals (corals, other cnidarians and molluscs). Alveolates, to which
dinoflagellates, ciliates and sporozoans belong, generally specialised in kleptoplastides (i.e.
functional plastids that are acquired by feeding). The presence of plastids in the parasitic
kinetoplastids and of cyanobacterial genes in the heterotrophic percolozoans (= Heterolo-
bosea) suggests that secondary endosymbiosis did not take place in the euglenoids, but
much earlier in the common ancestor of all excavates, where chloroplasts became lost in
the percolozoans [28]. Apart from dinozoa, cryptophytes (especially Chrysidiella) and di-
atoms engaged in endosymbiotic relationships with radiolarians and foraminiferans, and
chlorophytes did so with animals (sponges, Hydra, rotifers and Platyhelminthes). Intra-
cellular chloroplast populations seem to behave more dynamically in kleptomanic and
endosymbiotic relationships [1115], compared to fully integrated systems. The coupling of
the dynamics of the subsystems can be tight as well as less tight.

Before the arrival of plastids, eukaryotes were heterotrophic. Cyanobacteria are mixo-
trophic, which makes it likely that their plastids before internalisation were mixotrophs
as well. Very few, if any, eukaryotes with plastids became fully specialised on phototro-
phy, remaining mixotrophic to some extent. Theoretical studies by Tineke Troost on
deb-structured populations of mixotrophs show that the spontaneous evolutionary spe-
cialisation into organo- and phototrophs is difficult in spatially homogeneous environments
[1174]. In spatially heterogeneous environments, however, such as in the water column
where light extinction favours phototrophy at the surface and heterotrophy at the bottom,
such specialisation is relatively easy [1173].

Vacuoles and cell structures

Cyanobacteria only develop vacuoles at low pH [1294]; Archaea and posibacteria do have
gas vacuoles, but their function is totally different from that of eukaryotic vacuoles. Eu-
karyotes make intensive use of these organelles [694] for storing nutrients in ionic form and
carbohydrates; sucrose, a precursor of many other soluble carbohydrates, typically occurs
in vacuoles. This organelle probably evolved to solve osmotic problems that came with
storing substrates. The storage of water in vacuoles allowed plants to invade the terrestrial
environment; almost all other organisms depend on plants in this environment. deb the-
ory predicts that the storage capacity of energy and building-blocks scales with volumetric
length to the power of four; since eukaryotic cells are generally larger than prokaryotic
ones, storage becomes more important to them. Diatoms typically have extremely large
vacuoles, which occupy more than 95 % of the cell volume, allowing for a very large surface
area (the outer membrane, where the carriers for nutrient uptake are located), relative to
their structural mass that requires maintenance. In some species, the large chloroplast
wraps around the vacuole like a blanket. Since, according to deb theory, reserve does not
require maintenance, the large ratio of surface area to structural volume explains why di-
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atoms are ecologically so successful, and also why they are the first group of phytoplankton
to appear each spring.

The Golgi apparatus, a special set of flat, staked vesicles, called dictyosomes, develops
after cell division from the endoplasmatic reticulum. They appear and disappear repeatedly
in the amitochondriate metamonad Giardia. The endoplasmatic reticulum is used by
transport proteins to reach their target and deliver their cargo, so it plays a key role in
allocation, see {40}, and motivates a flux-based approach to catch transformation, see
{97}.

The nuclear envelope can disappear in part of the cell cycle in some eukaryotic taxa
and it is also formed by the endoplasmatic reticulum. The amitochondriate parabasalid
Trichomonas does not have a nuclear envelope, while the planctobacterium Gemmata
oscuriglobus and the Poribacteria have one [349]. The possession of a nucleus itself is
therefore not a basic requisite distinguishing between prokaryotes and eukaryotes. The sit-
uation is quite a bit more complex than molecular biology textbooks suggest; the macronu-
clei (sometimes more than one) in ciliates are involved in metabolism, for instance, while
the micronuclei deal with sexual recombination. Although some prokaryotic cells, such as
the planctobacteria, are packed with membranes, eukaryotic cells are generally more com-
partmentalised, both morphologically and functionally. Compounds can be essential in
one compartment, and toxic in another [753]. Eukaryotic cilia differ in structure from the
prokaryotic flagella, and are therefore called undulipodia to underline the difference [743].
The microtubular cytoskeleton of eukaryotes is possibly derived from protein constricting
the prokaryotic cell membrane during fission, as both use the protein tubulin [325].

Genome reorganisation

E. coli needs 1 hour to duplicates its dna, while the interdivision interval can be as short
as 20 minutes under optimal conditions. It does this using several division forks, see {272},
but this affects it size at division and so its surface area-volume relationship. Cutting out
disused dna is just one way to reduce the dna duplication time [1122]. Another possibility
is to maintain two chromosomes that are duplicated simultaneously, as in Rhodobacter
sphaeroides [1134], or, more frequently, to maintain megaplasmids [371, 559, 1120].

The organisation of the eukaryotic genome in chromosomes, with a spindle machinery
for genome allocation to daughter cells, enhanced the efficiency of cell propagation by
reducing the time needed to duplicate dna [206], and harnessed plastids, whose duplication
is only loosely coupled to the cell cycle in prokaryotes. Since animals such as the ant
Myrmecia croslandi and the nematode Parascaris univalens have only a single chromosome
[617], acceleration of dna duplication is not always vital. It allows more efficient methods
of silencing viruses, by changing their genome and incorporating it into that of the host
(half of eukaryotic “junk dna” consists of these silenced viral genomes). Eukaryotes had
to solve the problem of how to couple the duplication cycles of their nuclear genome and
that of their mitochondria and chloroplasts. Dynamin-related guanosine triphosphatases
(gtpases) seem to play a role in this synchronisation [856]. The nuclear membrane of
eukaryotes, poribacteria and planctobacteria possibly allows a better separation of the
regulation tasks of gene activity and cellular metabolism by compartmentalisation, which
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might have been essential to the development of advanced gene regulation mechanisms.

Chromosomes are linked to the evolution of reproduction, which includes cell-to-cell
recognition, sexuality and mating systems. Reproduction evolved many times indepen-
dently, which explains the large diversity. Many eukaryotes have haploid as well as diploid
life stages, and two or more (fungi, rhodophytes) sexes [601]. Although reproduction may
seem to have little relevance to metabolism at the level of the individual, metabolic rates
at the population level depend on the amount of biomass and, hence, on rates of propaga-
tion. Eukaryotes also have a unique dna topoisomerase I, which is not related to type II
topoisomerase of the archaea [364], which questions their origins.

Despite all their properties, the eukaryotic genome size can be small; the genome size
of the acidophilic rhodophyte Cyanidoschyzon is 8 Mbp, only double the genome size of
E. coli [206]; the chlorophyte Ostreococcus tauri has a genome of only 10 Mbp, and the
yeast Saccaromyces cerivisiae of 12 Mbp [265]. Typical eukaryotic genome sizes are much
larger than that of prokaryotes, however. Apart from silencing of viruses, most of this
extension relates to gene regulation functions that are inherent to cell differentiation and
the evolution of life stages.

10.4 Merging of individuals in steps

Collaboration in the form of symbioses based on reciprocal syntrophy is basic to biodi-
versity, and probably to the existence of life [7, 259, 287, 288, 953, 1077]; the frequently
complex forms of trophic interaction 1s discussed at {323} ff.

The merging of two independent populations of heterotrophs and autotrophs into a
single population of mixotrophs occurred frequently in evolutionary history [952, 1149].
This process is known as symbiogenesis [744] and is here discussed following [648].

Endosymbiotic relationships are not always stable on an evolutionary time scale. All
of the algal groups have colourless representatives, which imply that they are fully het-
erotrophic. Half of the species of dinoflagellates, for instance, do not have chloroplasts,
probably due to evolutionary loss [194]. The integration is a step-wise process, where
plastids’ genome size is reduced by gene loss, substitution and transfer to the hosts’
genome, possibly to economise metabolism [193]. Chloroplasts of Chlorophytes have a
typical genome size of 100 genes, but the genome sizes of chloroplasts of rhodophytes
and glaucocystophytes are substantially larger. the chloroplasts of cryptophytes and chlo-
rarachnida still contain a nucleomorph with some chromosomes [736], believed to be derived
from their earlier rhodophyte and chlorophyte hosts. the endosymbionts of radiolarians,
foraminiferans and animals maintained their full genome. The tightness of the integration
is, therefore, reflected at the genome level.

Generally little is known about the population dynamics of intracellular organelles [856].
Mitochondria constitute some 20 % of the volume of mammalian cells, but this varies per
tissue and individuals’ condition. Their number per cell varies between 1000 and 1600 in
human liver cells, 500 and 750 in rat myoblasts, some 80 in rabbit peritoneal macrophages,
and 1 in mammalian sperm cells [86]. In the case of a single mitochondrion, the growth and
division of the mitochondrion must be tightly linked to that of the cell, but generally the
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dynamics of mitochondria is complex and best described by stochastic models [110]. Mito-
chondria crawl around in eukaryotic cells [86] and can fuse, resulting in a smaller number
of larger mitochondria, and can even form a network, as observed in gametes of the green
alga Chlamydomonas , for instance. In yeast and many unicellular chlorophytes, a single
giant mitochondrion alternates cyclically with numerous small mitochondria. Moreover,
the host cell can kill mitochondria and lysosomes can decompose the remains. Likewise,
chloroplasts can move through the cell, sometimes in a coordinated way. chloroplasts can
transform reversibly into non-green plastids (proplastids, etioplastids and storage plastids)
with other cellular functions.

Apart from changes in numbers, plastids can change in function as well. they can
reversibly lose their chlorophyll and fulfill non-photosynthetic tasks, which are perma-
nent in the kinetoplasts (e.g. the endoparasite Tripanosoma) and in heterotrophic plants
(Petrosaviacea, Triurdaceae, some Orchidaceae, Burmanniaceae, the prothallium-stage of
lycopods and ophioglossids, the thalloid liverwort Cryptothallus mirabilis [912, p377]), the
podocarp Parasitaxus usta [334], in parasitic plants (Lennoaceae, Mitrastemonaceae, Cyti-
naceae, Hydnoraceae, Apodanthaceae, Cynomoriaceae, Orobanchaceae, Rafflesiaceae, Bal-
anophoraceae, some Convolvulaceae), and in predatory plants (some Lentibulariaceae), for
instance. This list of exclusively heterotrophic plants suggests that heterotrophy might be
more important among plants than is generally recognised. In other taxa, the chloroplasts
went lost, such as in the oömycetes like Phytophthora [1177], and the would-be phototroph
adapted a parasitic life style.

The evolution of organelles strongly suggests an increasingly strong coupling between
species that were once more independent. This places eukaryotic cellular physiology firmly
in an ecological perspective, and motivates the application of ecological methods to sub-
cellular regulation problems. This mutually dependent dynamics is the focus of the present
review, and includes that of intracellular parasites.

The physiological basis of endosymbiosis is probably always reciprocal syntrophy, where
each species uses the products of the other species; ammonia-carbohydrate exchange forms
the basis of the phototroph-heterotroph interactions, see {328}. Mitochondria receive
pyruvate, fad, gdp, p, and nad from the cytoplasm, and return fadh, gtp, nadh and
intermediary metabolites from the tca cycle, see {275}. One-way syntrophy, where one
species uses the product of the other, but not vice versa, is here treated as a special case
of reciprocal syntrophy.

Starting from two free-living populations in the same environment that follow the deb
rules, eight steps of reductions of degrees of freedom can be delineated to arrive at a fully
integrated endosymbiotic system that can be treated as a single population for all practical
purposes and again follow the deb rules. All those steps in the asymptotic behaviour of
the populations can be made on an incremental basis, i.e. by a continuous and incremental
change in (some) parameter values. The general idea is that the parameter values are
under evolutionary control. Figure 10.6 illustrates some of the steps.
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A B C

D E

Figure 10.6: Future host (a single individual is indicated) and future symbionts originally live
independently (A). When they start exchanging products, an accumulation of symbionts in the
hosts’ mantle space occurs (B), followed by an internalisation (B). A merging of structures then
can occur (D), followed by a merging of reserves (E). A new entity then exists. The light ar-
eas in the hosts and symbionts indicate reserves, the dark regions indicate structure; reserves
integrate after structures. The mantle space around the hosts’ body is indicated where hosts’
product accumulates that stimulates symbionts’ growth. The text describes these and other steps
quantitatively.

10.4.1 Reciprocal syntrophy

Originally two species coexist by living on a different substrate each, so they initially
might have little interaction and just happen to live in the same environment. Each species
excretes products in a well-mixed environment. A weak form of interaction starts when the
products are used by the other species as a substitutable compound for their own substrate,
a situation which we can call reciprocal syntrophy. Gradually the nutritional nature of
the product changes with respect to the substrate from substitutable to supplementary,
and the two species become involved in an obligatory symbiotic relationship; they can no
longer live independently of each other; see Figure 10.7. The mechanism can be that the
partners’ product is a metabolite of an organism’s own substrate; eventually the metabolic
pathway for that metabolite becomes suppressed and later deleted [1122]. A well-known
example is the human inability to synthesise vitamin C, unlike chimpansees, which is
generally interpreted as an adaptation to fruit eating; the genes for coding vitamin C
synthesis are still present in the human genome, but they are not expressed. The theory
behind the uptake of compounds that make a gradual transition from being substitutable
to supplementary is discussed in [139], together with tests against experimental data on
co-metabolism.

Figure 10.8 gives the steady-state amounts of structures of hosts and symbionts as func-
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Figure 10.7: The evolution of the transformation from substrate S, and later also from product P ,
into reserve E. The interaction of substrate and product in the transformation to reserve evolved
from sequential-substitutable (B), via parallel-substitutable (C), to parallel-supplementary (D).
The symbol θ represents a synthesising unit (SU) that is unbounded θ··, bound to the substrate
θS·, to the product θ·P , or to both θSP .

tions of the throughput rate of the chemostat for the various steps in symbiogenesis. The
throughput rate equals the specific growth rate at steady-state. The maximum through-
put rate is less than the potential maximum growth rate; equality only holds for infinitely
high concentrations of substrate in the inflowing medium. The amounts of structures are
zero at a throughput rate of zero because of maintenance. At step 0, where substrates are
substitutable to products, the introduction of the partner enhances growth. This is clearly
visible in the curve for the host around the maximum throughput rate for the symbiont.
Growth stimulation also occurs for the symbiont, of course, but this is less visible in the
figure since the host is always present when the symbiont is present with this parameter
setting; without the host, the biomass and the maximum throughput rate of the symbiont
would be less. The maximum throughput rates for hosts and symbionts can differ as long
as substrate and products are substitutable, but not if they are supplementary (steps 1 to
6). The amounts of structures then can’t decrease gradually to zero for increasingly high
growth rates (steps 1 to 5), because product formation, and thus product concentration,
will then also decrease gradually to zero, while the equally rapid growing partner needs a lot
of product. Figure 10.8 also shows that the transition from substitutable to supplementary
products (from step 1 to 2) comes with a substantial reduction in the maximum growth
rate if no other mechanism ensures an easy access to the products; the concentration of
products in a well-mixed environment is very low. It is therefore likely that this transition
is simultaneous with rather than prior to subsequent steps in symbiogenesis (i.e. spatial
clustering, so spatial structure). I will return to this point later.

Examples of product exchange with little spatial clustering can be found among micro-
organisms in animal guts, see the discussion on Methanobacillus at {325}. Ruminococcus
albus ferments glucose to acetate, ethanol and dihydrogen, but in the presence of fumarate-
fermenting Vibrio succinogenes , R. albus produces acetate, and not the energetically ex-
pensive ethanol; this is only possible when V. succinogenes removes dihydrogen [345]. This
exchange pattern is typical for methanogen-partner interactions.

The concentration of products in the environment and the biomass ratios of the species
can vary substantially in time. In the unlikely case that substrates, products or biota all
remain in a given local homogeneous environment, it initially takes an amount of substrate
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Figure 10.8: Steady-state values of the amounts of structure of hosts (dashed curves) and sym-
bionts (drawn curves) as functions of the throughput rate of the chemostat for the different steps
in symbiogenesis. If substrates and products are substitutable (0) symbiosis is facultative and the
host can live independently of the symbiont. With this parameter setting the hosts’ maximum
growth rate is higher. If substrates and products make their transition to become supplementary
(1), and especially if they are supplementary (2), symbiosis is obligatory. The environment is
homogeneous in steps 0-2 and 5-8, but in step 3 symbionts can live in the free space, in the
hosts’ mantle space, as well as within the host. The parameter settings are such that the internal
population of symbionts out-competes the mantle and free-living populations; the curve for the
symbionts in step 3 corresponds to the internal population; other values for the transport param-
eters allow the coexistence of all three populations, or any selection from these three. Step 4 has
internal symbionts only, but the mantle space can differ from the free space in concentrations of
substrates and products. These differences disappear in step 5 (by increasing the transport rates
between both spaces). Product transfer is on flux basis in step 6, rather than on concentration
basis (steps 0-5); the symbioses can grow much faster and the amounts of structure are again
zero at the maximum throughput rate. The transition from step 5 to 6 can be smooth if the host
can reduce the leaking of product. The merging of both structures (7) and reserves (8) don’t
have substantial effects at steady-state. The single structure in steps 7 and 8 can handle two
substrates; each structure in steps 0-6 handles only one.
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to build up product concentrations, but once these concentrations and the populations
settle to a constant value, the environment no longer acts as a sink and the situation is very
similar to a direct transfer of product from one species to the other during steady-state. The
inefficiency of product transfer in well-mixed environments becomes clear during transient
states and if the product decays away (chemically, by physical transport or biologically
mediated). A lot of product will not reach the partner, and population levels will be low.

10.4.2 Spatial clustering

Exchange of compounds between the species is enhanced by spatial clustering; most in-
dividuals of the small-bodied species live in a narrow mantle around an individual of the
large-bodied species. Although the real mantle will not have a sharp boundary with the
outer environment, we treat it as a distinct and homogeneous environment that can ex-
change substrate and products with the outer environment and with the volume inside
the host. The individuals of the large-bodied species secrete all product into their mantle;
both products and substrates can leave or enter the mantle with certain specific rates ac-
cording to a generalised diffusion process. We take the mantle’s volume (at the population
level) just proportional to the structural mass of the large-bodied species (which seems
reasonable at the population level). Diffusion and related transport processes mean that
the mantle is actually not homogeneous; concentration gradients will build up, see {259}.
This level of detail is not required, however, for our present aim.

The emigration rate of the small-bodied species to and from the mantle space will
be relatively small. Since the growth rate will be much higher in the mantle, the small-
bodied species accumulates in the mantle space of the large-bodied one, depending on the
transport rates for substrates and products to the other environment, and on intra-specific
competition. Under rather general conditions for the maximum specific assimilation rate,
the specific maintenance and growth costs, and the hazard rate (i.e. the instantaneous
death rate), the population inside the mantle space even out-competes that outside. This
spatial clustering does not involve optimisation arguments.

Many species create a special environment to grow their symbionts. Examples are ani-
mals intestines, which harbour the gut flora, or pits in the leaves of the floating fern Azolla
and Gunnera, which harbour cyanobacteria (Anabaena) that fix dinitrogen; some flower-
ing plants, such as Alnus , leguminosae, Hippophaë, have special structures in the roots for
harvesting the bacteria Rhizobium for the same purpose. Cockroaches lose their gut flora
at moulting, and inoculate from mother’s faecal supplies. Repeated media refreshment for
the water flea Daphnia magna reduces daphnids’ condition, which is probably caused by
a wash-out of the gut flora; daphnids natural schooling behaviour thus may be related to
re-inoculation of the gut flora.

10.4.3 Physical contact: epibionts

If partners physically make contact, the exchanging products hardly accumulate in the en-
vironment, and compound exchange is directly on the basis of fluxes. Such situations fre-
quently occur; e.g. the surface of the euglenoid Postgaardi is completely covered with bac-
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Figure 10.9: The cell surface of the
colourless amitochondriate euglenoid Postgaardi
mariagerensis is fully covered with elongated
rod-shaped heterotrophic bacteria. Based on an
electronmicrograph in [1064]; the length of the
cell is 60µm.

teria (Figure 10.9). Product exchange is probably the reason that many micro-organisms
live in flocks, rather than in free suspension [141]. Ascomycetes make physical contact
with green algae in lichens. Basidiomycetes do so with vascular plants in ectomycorrhizas.
Cyanobacteria, Prochloron, live on the outer surface of sea squirts.

If the products decay away, the two species can still improve product exchange by in-
ternalisation, where the small-bodied species (endosymbionts) lives inside the large-bodied
one (host); this requires phagocytosis. During this internalisation process, the host ac-
quires the product of its symbiont both from the mantle space, as well as from inside its
own body. The natural description of the uptake process of product in the mantle space
is on the basis of the concentration of product, in combination with a generalised diffusion
process that transports the product to the hosts’ product-carriers in the outer membrane.
While the symbionts’ access to the hosts’ product is enhanced by internalisation, its ac-
cess to the substrate can be reduced because that substrate now has to pass through the
hosts’ outer membrane. From outside the host the endosymbiont is no longer visible and
it appears as if the host is now feeding on two substrates, rather than one. The argu-
ment becomes subtle if the host transforms the symbionts’ substrate before it reaches the
symbiont.

The internal population eventually out-competes the population in the mantle space,
and the endosymbiont can lose its capacity to live freely due to adaption to its cytoplasmic
environment, which is under the hosts’ homeostatic control. It is curious to note that the
chloroplasts of chromista (which include diatoms, brown algae and many other “algal”
groups), live inside the hosts’ endoplasmatic reticulum, while they live outside it in other
groups [194]. The passage of the extra membrane during the internalisation process is
obviously conserved during evolution, which suggests that the internalisation process is
rare and reveals the evolutionary relationships between these protist taxa.

The numerical studies behind Figure 10.8 did not account for transport mechanisms
that enhance the intracellular accumulation of products. A much higher maximum growth
rate can be obtained by decreasing the parameters that control the leaking of products and
substrates from the cell, for example. The low maximum growth rate shown in steps 2-5
suggests that the control of transport may be a rather essential feature of symbiogenesis.
These transport parameters also determine the fate of the three populations of symbionts
(free-living, epibiotic, and internal). They can all co-exist or each of them can out-compete
the others, depending on these parameter values. The competitive exclusion principle,
which states that the number of species of competitors cannot exceed the number of types
of resources at steady-state, only holds for homogeneous environments. The values that
are used in Figure 10.8 step 3 lead to extinction of the epibiotic and free-living populations.
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Figure 10.10: The feeding process of host (top) and symbiont (bottom) on substrate (S1 and S2)
from the environment and product (P1 and P2) that is produced by the partner. The first column
delineates three populations of symbionts: free, epi- and endosymbionts. The second column
only delineates endosymbionts, but still uses intracellular concentrations of products to quantify
feeding. With the degradation of intracellular product from an ecological to a physiological
variable, feeding is specified in terms of fluxes (third column).

The mantle space still can differ in concentrations of substrates and products in step 4,
while in step 5 the transport rates of these compounds from the mantle to the free space
and vice versa are so large that the environment is homogeneous again. It is clear that
these differences hardly effect the dynamics with this choice of parameter values, the curves
in steps 3, 4 and 5 are very similar; the differences clear for smaller transport rates.

The uptake of product evolves from concentration-based to flux-based (see Figure 10.10);
this comes with an increase of the maximum throughput rate and a qualitative change in
behaviour of the steady-state amounts of structure around this growth rate: the symbiosis
becomes independent of the extracellular product concentration. The role of the products
partly degrades from an ecological to a physiological one. Figure 10.8 illustrates this in
step 6, where the steady-state amounts of structure at the maximum throughput rate is
(again) zero, while the maximum throughput rate is substantially increased compared with
that for step 5.

Many examples are known for endosymbioses. The nitrogen-fixing cyanobacterial sym-
bionts of the diatoms Rhizosolenia and Hemiaulus live between the cell wall and the
cell membrane [1199, 1200]. Pogonophorans (annelids) and Xyloplax (echinoderms [51])
do not possess a guts, but harbour chemoautotrophic bacteria inside their tissues. The
parabasalian flagellate Caduceia theobromae bears two species of ectosymbiotic and one
species of endosymbiotic bacteria, which assist wood digestion in termite guts. Cyanobacte-
ria live inside the fungus Geosiphon and the diatoms Richelia, Hemiaulus and Rhopalodia.
Several species of heterotrophic bacteria live endosymbiotically in Amoeba proteus .

Associations between the dinitrogen-fixation cyanobacterium Nostoc and the fern Azolla
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have been known for some time, but the association with the bryophyte Pleurozium schre-
beri has only recently been discovered [258]; this extremely abundant moss covers most soil
in boreal forests and in the taiga. The cyanobacteria are localised in extra-cellular pockets
in these examples, but in some diatoms they live intracellularly.

A close relationship between chlorophytes (or cyanobacteria) and fungi (mainly as-
comycetes) evolved relatively recently, i.e. only ca. 450 million years ago, in the form
of lichens and Geosiphon [1036]. The fungal partner specialised in decomposing organic
matter, which releases nutrients for the algae in exchange for carbohydrates, not unlike
the situation in corals. Similarly, mycorrhizas exchange nutrients against carbohydrates
with plants, which arose in the same geological period. The endomycorrhizas (presently
recognised as a new fungal phylum, the glomeromycetes) evolved right from the beginning
of the land plants; the ectomycorrhizas (ascomycetes and basidiomycetes) evolved only
during the Cretaceous. These symbioses seemed to have been essential for the invasion of
the terrestrial environment [1042].

10.4.4 Weak homeostasis for structure

The ratio of the amounts of structure of the partners varies within a range that becomes
increasingly narrow, converging to weak homeostasis, cf {199}. The ratio might still depend
on the substrate levels at steady-state. The importance of products taken up from the
environment becomes small; almost all products are exchanged within the body of the
host. If the products are fully supplementary to the substrates, some excess product might
still leak from host’s body, due to stoichiometric restrictions in its use. If part of the
product is still substitutable for the substrate, such a leak is unlikely.

Many photosymbionts seem to have a rather constant density in hosts’ tissues, although
knowledge about digestion of symbionts by hosts as part of a density regulation system is
frequently lacking. Product exchange is such a strong regulation mechanism, that other
regulation mechanisms are not necessary to explain a relatively constant population den-
sity of endosymbionts, but this does not exclude the existence of regulation mechanisms,
of course. Regulation mechanisms might affect the coupling of parameters that control
product formation.

Heterotrophs not only have syntrophic relationships with photoautotrophs, but also
with chemolithotrophs. A nice example concerns the gutless tubificid oligochaete Olav-
ius algarvensis , with its sulphate-reducing and sulphide-oxidising endosymbiontic bacteria
[298]. These symbionts exchange reduced and oxidised sulphur; the fermentation prod-
ucts of the anaerobic metabolism of the host provide the energy for the sulphate reducers,
whereas the organic compounds produced by the sulphide oxidisers fuel the (heterotrophic)
metabolism of the host. Taxonomic relationships among hosts can match that among sym-
bionts [289], which suggest considerable co-evolution in syntrophic relationships.

10.4.5 Strong homeostasis for structure

The ratio of the amounts of structure of the partners becomes fixed and independent of the
substrate concentrations at steady-state; weak homeostasis evolves into strong homeostasis.
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This might occur by tuning the weight coefficients for how product formation depends on
assimilation, maintenance and growth, as discussed quantitatively at {324} ff. The numer-
ical effect of the merging of the structures is small with our parameter choice (Figure 10.8
from step 6 to step 7). The strong homeostasis condition is in usually accompanied by a
transfer of (part of) the endosymbionts’ dna to that of host [754]; endosymbionts are now
called organelles.

The conditions for strong homeostasis are independent of the details of hosts’ assimila-
tion process. The host might be product as well as substrate limited. The product and the
substrate might also be substitutable compounds, such as in the case of algal symbionts
of heterotrophs, where the algal carbohydrates serve as an alternative energy source for
the host. The significance of these carbohydrates in the hosts’ diet might be complex,
while the strong homeostasis condition still holds true. If prey is abundant, and the host’s
maximum assimilation capacity is reached, the extra carbohydrates contribute little to the
hosts’ assimilation. This dynamics is consistent with the rules for sequential processing
of substitutable substrates by synthesising units, {101}, and explains why symbiotic and
aposymbiotic hosts grow equally fast at high substrate levels, as has been observed in cili-
ates and hydras [575, 818]. At low prey abundance (the typical situation in the oligotrophic
waters around coral reefs), the extra carbohydrates do contribute to the hosts’ diet and
propagation.

The fact that the conditions for strong homeostasis are independent of the hosts’ as-
similation process also implies the independence of details of the endosymbionts’ product
formation. This simplifies matters considerably, because the excretion of carbohydrates
by algal symbionts is not a process covered by fixed associations with assimilation, main-
tenance and/or growth. It is an active excretion due to stoichiometric constraints of car-
bohydrates and ammonia (from the host) to form new algal biomass, see next step of
integration.

If the host is limited in its growth by endosymbionts’ products, similar constraints apply
to ensure a constant ratio of structures that is independent of endosymbionts’ substrate;
the role of host and endosymbionts are just interchanged in this situation. In the case
of limitation by substrate of both partners, more stringent constraints apply on energy
parameters.

The constraint of small actual assimilation rates might help to explain why symbioses
are most frequently found in oligotrophic environments; regulation of relative abundances
is more difficult under non-limiting environmental conditions.

Examples of endosymbioses that approach strong homeostasis are mitochondria, hy-
drogenosomes, chloroplasts and other plastids and peroxysomes. The number of these
organelles per host cell depends very much on the species. Diatoms frequently have just a
single chloroplast, which implies that the growth and division cycle of the chloroplast must
be tightly linked to that of the cell.

The location of mitochondria inside cells further testifies to the optimisation of trans-
port by spatial clustering. Mitochondria cluster close to blood capillaries in mammalian
muscle cells and form interdigitating rows with myofibrils to enable peak performance dur-
ing contraction [86]. The association of mitochondria with the nuclear envelope is thought
to relate to the demand of atp for synthesis in the nucleus, and to the reduction of dam-
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age to dna by reactive oxygen species. The association of mitochondria with the rough
endoplasmatic reticulum is less well understood but might be related to the movement of
mitochondria within cells.

Being able to move independently and over considerable distances, jellyfish, for exam-
ple, are able to commute between anaerobic conditions at lower water strata for nitrogen
intake and higher ones for photosynthesis by their dinozoan endosymbionts supplying them
with energy stored in carbohydrates. Dinozoans are engaged in similar relationships with
hydropolyps (corals) and molluscs; extensive reefs testify of the evolutionary success of this
association.

Some plants can fix dinitrogen with the help of bacteria, encapsulated in specialised
tissues. A single receptor seems to be involved in endosymbiontic associations between
plants on the one hand and bacteria and fungi on the other [1124], but the recognition
process is probably quite complex [868] and not yet fully understood. See Rai et al. [936]
for a review of symbioses between cyanobacteria and plants.

10.4.6 Coupling of assimilation pathways

The assimilation routes for the organic substrate(s) become coupled, especially in situa-
tions where substrate levels covary in time. The reason for the covariation can be purely
physical when the substrates originate from a common source (for example another organ-
ism with a rather constant chemical composition, or some erosion process of rocks which
extracts minerals in fixed ratios). An alternative possibility is that specialisation on a
single substrate occurs. Details of product exchange are no longer visible in the dynamics
of the integrated system; products now have a strict physiological role, where they still
determine the relative importance of the different sub-structures, and so the substrate up-
take capacity. We no longer need to know of their existence to predict how the population
responds to environmental factors. If substrates co-vary in fixed ratios in the environment,
the range of the ratio of amounts of reserves becomes increasingly narrow.

In situations where substrate abundances do not co-vary in time, coupling of the as-
similation processes will not occur, and the host will maintain two reserves (see below).
Another pattern of development is then likely: part of the unused reserve that is allocated
to growth is returned to that reserve, with the result that each reserve can accumulate and
reach very high levels when the other reserve limits growth, cf {193}.

The functionality of this storing mechanism can be illustrated with algal growth in
the sea, where carbohydrate reserves are boosted at the nutrient-poor surface layers where
light is plentiful, and the nutrient reserves are filled in the dark bottom layers of the photic
zone, which are usually rich in nutrients [654]. Thanks to the uncoupled reserves the alga is
able to grow in an environment that would otherwise hardly allows growth. It is the wind,
rather than light or nutrients, that is in proximate control of algal growth (Figure 10.11).

10.4.7 Weak homeostasis for reserves

Possibly due to their coupling in growth, the turnover rates of reserves seem to be equal,
see Figure 5.6, with the consequence that at constant substrate levels, the reserve ratio of
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Figure 10.11: (A) A cyclic pattern of two nutrient concentrations, as experienced for example
by algae. (B) The expected biomass concentrations in the case of a single structure, and two
reserves. The curves correspond to increasing reserve turnover times from top to bottom. The
two curves with extreme turnover values are shown with solid lines; the larger this turnover time,
the lower the intracellular storage capacity for nutrients. The graphs show that the mean growth
rate increases with the storage capacity under these conditions, but that the nutrients must be
stored independently.

the growing populations settles at a constant value and converge to the weak homeostasis
condition for reserves. The chemical composition of biomass can still depend on the growth
conditions in rather complex ways.

The numerical effect of the merging of the reserves is small using the present parameter
values (Figure 10.8 from step 7 to step 8). The merging only requires that the reserve
turnover rates are equal, and the ratio of concentrations of substrate remains constant.

Examples of fully coupled single reserve systems can be found in carnivores, where the
rather constant chemical composition of the prey provides the mechanism for the coupling
of assimilation of the various nutrients that are required by the carnivore. Parasites also
experience a rather constant chemical environment inside their host. Other examples can be
found in heterotrophs in eutrophic environments, where a single resource is often limiting,
all other resources being available in excess.

10.4.8 Strong homeostasis for reserves

The ratio of intra-host reserves becomes fixed and independent of the substrate levels at
steady-state by the coupling of the assimilation processes. This causes that the ratio of
reserve densities remains fixed during transient states and we arrive at a strong homeostasis
for reserves. We can now replace the two reserves by a single combined one. The chemical
composition of biomass still depends on growth conditions, but in a less complex way.

The increasingly tight coupling of the dynamics of several types of reserves relates to
the situation where maintenance and growth drain reserves in fixed and equal ratios. It
is the reason why the metabolic performance of cats can be understood using a single
reserve, while that of algae cannot. When a carnivore changes its diet over an evolutionary
time scale to become a herbivore, using food with a less constant chemical composition,
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it frequently continues to be less flexible in its metabolism. This is why the metabolic
performance of cows can still be understood using a single reserve.

10.4.9 Cyclic endosymbiosis by specialisation

Symbiogenesis, as described here, allows the host to use substrates, which it could not
use without the symbionts. The opposite process is specialisation on a single substrate,
where the endosymbiont is no longer functional. This has occurred for instance in aerobic
mitochondriate species that invaded anaerobic environments. In some species the mito-
chondria evolved into hydrogenosomes, but in others the mitochondria were lost. The loss
of plastids has occurred in at least some species of all major groups of organisms, e.g. the
oömycetes [1177], while in some parasitic groups, such as the kinetoplastids, they assume
other functions. Specialisation on metabolic substrates seems to be linked directly to the
loss of genes and completes the endosymbiotic cycle.

Some properties of the symbiont might be retained, however, as testified by mitochon-
drion-derived genes in species that have lost their mitochondria. As mentioned, non-
photosynthesising plastids are still functional in plants; such plants can still have arbuscular
mycorrhizas, as are found in the orchid Arachnitis uniflora [505]. Although the plant cannot
transport photosynthetically produced carbohydrate to their fungal partner Glomus , it is
obviously quite well possible that other metabolites are involved in the exchange. The
complex role of plastids shows that the plant is not necessarily parasitising the fungus.

Generally, (endo)symbiosis might be considered to be a process by which metabolic
properties are acquired several orders of magnitude faster than by the Darwinian route
of mutation and selection [745]. Darwin’s mutation/selection route can be particularly
cumbersome, because all intermediary stages have to be vital enough to continue the
acquisition with incremental steps; almost all metabolic pathways involve several, or even
many, enzymes. This provides constraints on the type of properties any particular organism
can acquire along the Darwinian route. Such constraints do not apply to acquisition of
metabolic traits by endosymbiosis.

10.5 Multicellularity & body size

Although some individual cells can become quite large, with inherent consequences for
physiological design and metabolic performance [525, 943], multicellularity can lead to re-
ally large body sizes. Multicellularity evolved many times in evolutionary history, even
among the prokaryotes. It allows a specialisation of cells to particular functions, and the
exchange of products is inherently linked to specialisation. Think, for instance, of fila-
mental chains of cells in cyanobacteria where heterocysts specialise in N2 fixation. To
this end, specialisation requires adaptations for the exclusion of dioxygen and the produc-
tion of nitrogenase. The existence of dinitrogen-fixation unicellular cyanobacteria shows
that all metabolic functions can be combined within a single cell, which is remarkable as
its photosynthesis produces dioxygen, inhibiting dinitrogen fixation. A temporal separa-
tion of the processes solves the problem, but restricts dinitrogen fixation during darkness;
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specialisation can be more efficient under certain conditions. The mixobacterium Chon-
dromyces and the proteobacteria Stigmatella and Mixococcus have life cycles that remind
us of those of cellular slime moulds, involving a multicellular stage, whereas acetinobacte-
ria, such as Streptomyces resemble fungal mycelia (e.g. [304]. Pathogens, such as viruses,
can kill individual cells without killing the whole organism, which is an important feature
of multicellularity, and is basic to the evolution of defence systems.

Cell differentiation is minor in poriferans, reversible in coelenterates and plants, and
irreversible in vertebrates. The number of cells of one organism very much depends on the
species, and can be up to 1017 in whales [977].

Because the maximum reserve density also increases with length, the time to death
by starvation will increase which enhances their ability to copy with temporal heterogene-
ity. At the extreme, the largest whales leave their Antarctic feeding grounds, swim to
oligotrophic tropical waters to calve, feed the calf some 600 l of milk per day for several
months, and then swim back with their calf to their feeding grounds where they resume
feeding. Such factors partly compensate for the disadvantages of a large body size and the
associated high minimum food densities.

10.5.1 Differentiation & cellular communication

Multicellularity has many implications. Cells can be organised into tissues and organs,
which gives metabolic differentiation once more an extra dimension. The dynamics of
organ sizes can be quantified effectively by further partitioning the flux of mobilised reserve
(the κ-rule), see {196, 199}. Multicellularity comes with a need for transport processes,
see {259}, and regulation of the processes of growth and apoptosis of cells in tissues [996],
in which communication between cells plays an important role.

Animals (from cnidarians to chordates) continued the use of (prokaryotic) gap junctions
between cells of the same tissue, where a family of proteins called connexins form tissue-
specific communication channels. They appear early in embryonic development (in the
eight-cell-stage in mammals) and are used for nutrient exchange, cell regulation, conduction
of electrical impulses, development and differentiation.

Communication by gap junctions allow for limited transport of particular metabolites
only, and animals developed both a transport system (blood and lymph) and a (relatively)
fast signalling system (the neuronal system). The latter allowed for the development of
signal processing from advanced sensors (light, sound, smell, electrical field, pain) in combi-
nation with advanced locomotory machinery for food acquisition (mostly other organisms
or their products). Advanced methods for food acquisition also came with a requirement
for learning and the development of parental care.

Plants use plasmodesmata to interconnect cells, which are tubular extensions of the
plasma membrane of 40-50 nm in diameter, that traverse the cell wall and interconnect the
cytoplasm of adjacent cells into a symplast. Higher fungi form threads of multi-nucleated
syncytia, known as mycelia; sometimes septa are present in the hyphae, but they have large
pores. Otherwise, the cells of fungi only communicate via the extracellular matrix (Moore,
1998). Rhodophytes have elaborate pit connections between the cells [275] which have a
diameter in the range 0.2-40 µm filled with a plug that projects in the cytoplasm on either
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side. Their nuclei can move from one cell to the other. Ascomycetes and Basidiomycetes
have similar pit connections, but lack the plug structure and the cytoplasm is directly
connected unlike the situation in rhodophytes.

Plants differentiated their structure into a root for nutrient uptake linked to water
uptake and a shoot for gas exchange, photon acquisition and evaporation of water, see
{201}. Roots evolved 410–395 Ma ago, some 50 Ma after the origin of tracheophytes, and
probably separately in bryophytes and embryophytes [944]. Leaves typically last one year,
and fall after recovering (some of) the reserve. This means that plants live syntrophically
with the soil biota (especially bacteria and fungi), that feed on this organic rain and release
the locked nutrients as waste for renewed uptake by the plants. Moreover, almost all plant
species have an endomycorrhiza, i.e. specialised fungi of the phylum Glomeromycetes that
are probably involved in drought resistance and nutrient uptake. The Brassicacaea, which
are specialists on nutrient-rich soils, do not have endomycorrhizae. Some 30 % of plants
also have an ectomycorrhiza and many use animals for pollination and dispersal.

10.5.2 Emergence of life stages: adult & embryo

Multicellularity came with the invention of reproduction by eggs in the form of packages
of reserve with an very small amount of structure: the juvenile state thus gave rise to both
the adult and the embryo state. Embryos differ from juveniles by not taking up substrates
from the environment. That is to say they do not (yet) use the assimilation process for
energy and building-block acquisition, although most do take up dioxygen. The spores of
endobacteria can be seen as an embryonic stage for prokaryotes. Adults differ from juveniles
by allocation to reproduction, rather than further increasing the state of maturity. Unlike
dividing juveniles, adults do not reset their state (i.e. the amount of structure, reserve
and the state of maturity). Animals, notably vertebrates, and embryophytes, notably the
flowering plants, provide the embryo fully with reserve material. Egg size, relative to adult
size, has proved highly adaptable in evolutionary history, cf {296}.

10.5.3 Further increase in maintenance costs

Multicellular organisation and an active life-style, especially in eukaryotes, results in a
series of extra maintenance costs. Concentration gradients across the more abundant
and dynamic membranes become more important, as well as intracellular transport and
movements of the individual. The invasion of the fresh-water habitat required a solution to
the osmotic condition; many eukaryotes use pulsating vacuoles for this purpose. Invasion of
the terrestrial habitat required an answer to the problem of desiccation and of getting rid
of their nitrogen waste; ammonia is toxic at low concentrations already. Some animals and
plants elevate the temperature of parts of their body metabolically to enhance particular
physiological functions; birds and mammals have taken this to extremes, cf {13}. All these
processes increased maintenance requirements further, but also improved the metabolic
performance. Such organisms became less dependent on the local chemical and physical
conditions.
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10.5.4 Ageing & sleeping

When the cyanobacteria eventually enriched the atmosphere with dioxygen, many species
adapted to this new situation and energy acquisition from carbohydrates was greatly im-
proved by using dioxygen for oxidation in the respiratory chain. Although means to cope
with ros, or reactive nitrogen species (rns), were already present, the handling of reactive
oxygen species (ros) became important to reduce damage to the metabolic machinery and
especially to dna. This especially holds true for tissues of cells with non-reversible differen-
tiation. Specialised proteins (peroxidase dismutases) were developed and their effectiveness
was tuned to compromise between survival of the juvenile period and the use of ros to
generate genetic variability among gametes. The latter is important to allow adaptation to
long-term environmental changes that are too large for adaptation within a given genome.
Big-bodied species are vulnerable; the length of the juvenile period scales with body length
among species {310} whereas the reproductive rate decreases with length {311}. There-
fore large-bodied species must have efficient peroxidase dismutases and, therefore, reduce
the genetic variability among their gametes, while having few offspring. This makes them
vulnerable at the evolutionary time scale.

The neuronal system of animals is sensitive to ros, and requires sleep for repair [1054,
1055]. Since the required sleeping time tends to be proportional to the specific respiration
rate, large-bodied species have more time to search for food. Their speed and the diameter
of their home range increases with length, which enhances their ability to cope with spatial
heterogeneity.

10.5.5 From supply to demand systems

Plants evolved extreme forms of morphological and biochemical adaptations to the chemical
and physical conditions in their direct environment and remained supply systems. Ani-
mals, by contrast, especially birds and mammals, excel in behavioural traits designed to
meet their metabolic needs. They evolved into demand systems, see {15}. This co-evolved
with an increase in the difference between standard and peak metabolic rates, closed circu-
lation systems, advanced forms of endothermy, immune systems and hormonal regulation
systems. Since specific food uptake is no longer a function of food density only but also
of population density, stable biodiversity is enhanced, cf {257}, even in spatially homoge-
neous and constant environments. Together with the syntrophic basis of coexistence, this
can be an important mechanism in the evolution of biodiversity.

10.6 Control over local conditions

By shading and evaporation and littering leaves and branches, trees substantially affect
their microclimate and soil properties, and thereby allow other organisms to live there as
well. This too can be seen as an aspect of metabolism. Sphagnum dominated peats develop
in a particular way, where a series of Sphagnum species lower the pH by exchanging ions
and hold water, which provides a strong selection force on other species.
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Phytoplankters bind nutrients in the photic zone of the oceans, sink below it, die and
are degraded by bacteria. Subsequently, a temporary increase in wind speed brings some
of the released nutrients back to the photic zone by mixing and enables photosynthesis to
continue. The sinking of organic matter is accelerated by grazing zooplankters. The result
of this process is that, over time, phytoplankters build up a nutrient gradient in the water
column, that CO2 from the atmosphere becomes buried below the photic zone, and that
organic resources are generated for the biota living in the dark waters below this zone and
on the ocean floor. Mixing by wind makes phytoplankters commute between the surface,
where they can build up and store carbohydrates by photosynthesis, and the bottom of the
mixing zone, where they store nutrients. Reserves are essential here for growth, because no
single stratum in the water column is favourable for growth; their reserve capacity must be
large enough to cover a commuting cycle, which depends on wind speed. Although nutrient
availability controls primary production ultimately, wind is doing so proximately. The rain
of dead or dying phytoplankters fuels the dark ocean communities, not unlike the rain of
plant leaves fuelling soil communities, but then on a vastly larger spatial scale. Little is
known about the deep ocean food web; recent studies indicate that cnidarians (jelly fish)
form a major component [263].

When part of this organic rain reaches the anoxic ocean floor, the organic matter
is decomposed by fermenting bacteria (many species can do this); the produced hydro-
gen serves as substrate for methanogens (i.e. archaea), which convert carbon dioxide into
methane. This methane can accumulate in huge deposits of methane hydrates, which serve
as substrate for symbioses between bacteria and a variety of animals, such as the ice worm
Hesiocoeca, a polychaete. The total amount of carbon in methane hydrates in ocean sedi-
ments is more than twice the amount to be found in all known fossil fuels on Earth. If the
temperature rises in the deep oceans, the hydrates become unstable and result in a sudden
massive methane injection into the atmosphere. This happened e.g. 55 Ma years ago (e.g.
[1292], the Paleocene-Eocene Thermal Maximum (PETM) event, which induced massive
extinction. We are just beginning to understand the significance of these communities on
ocean floors and deep underground.

The colonisation of the terrestrial environment by plants may in fact have allowed reefs
of brachiopods, bryozoans and molluscs (all filter feeders) to flourish in the Silurian and the
Devonian (360–438 Ma ago); the reefs in these periods were exceptionally rich [1275]. With
the help of their bacterial symbionts, the plants stimulated the conversion from rock to soil,
which released nutrients that found their way to the coastal waters, stimulated algal growth,
and, hence, the growth of zooplankton, which the reef animals, in turn, filtered out of the
water column. Although plant megafossils only appeared in the Silurian, cryptospores,
which probably originate from bryophytes were very abundant in the Ordovician (438–505
Ma ago) [1106]. So the timing of the terrestrial invasion and the reef development supports
this link. The reefs degraded gradually during the time Pangaea was formed toward the
end of the Permian, which reduced the length of the coastline considerably, and thereby
the nutrient flux from the continents to the ocean. Moreover, large continents come with
long rivers, and more opportunities for water to evaporate rather than to drain down to the
sea; large continents typically have salt deposits. When Pangaea broke up, new coastlines
appeared. Moreover, this coincided with a warming of the globe, which brought more
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rain, more erosion, and high sea levels, which caused covering of large parts of continents
by shallow seas. This combination of factors caused planktontic communities to flourish
again in the Cretaceous, and completely new taxa evolved, such as the coccolithophorans
and the diatoms. This hypothesis directly links the activities of terrestrial plants to the
coastal reef formation through nutrient availability. Although plants reduce erosion on a
time scale of thousands of years, they promote erosion on a multi-million years time scale
in combination with extreme but very rare physical forces that remove both vegetation and
soil. The geological record of the Walvis Ridge suggests that the mechanism of physical-
chemical forces that remove the vegetation, followed by erosion and nutrient enrichment of
coastal waters in association with recolonisation of the rocky environment by plants might
also have been operative in e.g. the 0.1 Ma recovery period following the PETM event
(Kroon, personal communication).

10.7 Control over global conditions

Climate modelling mainly deals with energy (temperature) and water balances. Heat and
water transport and redistribution, including radiation and convection in atmospheres and
oceans, depends on many chemical aspects which means that climate modelling cannot be
uncoupled from modelling biogeochemical cycling. I here focus on radiation, as affected
via albedo and absorption by greenhouse gases [643].

10.7.1 Water

Because of its abundance, water is by far the most important greenhouse gas. Most cli-
mate models keep the mean global relative humidity constant at 50 %, e.g. [234], but this
assumption can be questioned. The origin of water is still unclear; some think it originates
from degassing of the hot young planet [666], others think from meteoric contributions in
the form of carbonaceous chondrites [94], which possibly continues today.

Plants modify water transport in several ways. Although plants can extract foggy water
from the atmosphere particularly in arid environments (by condensation at their surface as
well as via the emission of condensation kernels), they generally pump water from the soil
into the atmosphere, and increase the water capacity of terrestrial environments by pro-
moting soil formation in bare environments (chemically, with help of bacteria [99]) thereby
reducing water runoff to the oceans. This became painfully clear during the flooding dis-
asters in Bangladesh, that followed the removal of Himalayan forests in India. On a short
time scale, plants greatly reduce erosion; their roots prevent or reduce soil transport by
common mild physical forces. In combination with rare strong and usually very temporal
physical forces that remove vegetation (fires in combination with hurricanes or floods, for
instance), however, plants increase erosion on a longer time scale, because plants enhance
soil-formation in rocky environments. Because such ‘catastrophes’ are rare, they have lit-
tle impact on short time scales. The effects of plants on climate and geochemistry were
perhaps most dramatic during their conquest of dry environments in the middle Devonian.
It came with a massive discharge of nutrients and organic matter into the seas, that lead
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to anoxia and massive extinctions in the oceans [16].
Plants, therefore, affect the nutrient (nitrate, phosphate, silica, carbonates) supply

to the oceans in complex ways, and thus the role of life in the oceans in the carbon
cycle. Plants pump water from the soil into the atmosphere much faster in the tropics
than in the temperate regions because of temperature (high temperature comes with large
evaporation), seasonal torpor (seasons become more pronounced toward the poles, so plants
are active during a shorter period in the year toward the poles) and nutrients in the soil
(plants pump to get nutrients, which are rare in tropical soils). Plant-produced cellulose
accumulates in soils and increases its water retention capacity profoundly.

10.7.2 Carbon dioxide

Carbon dioxide is the second most important greenhouse gas. Its dynamics involves the
global carbon cycle, which is still poorly known quantitatively. This is partly due to the
coupling with other cycles.

Carbon dioxide is removed from the atmosphere by chemical weathering of silicate rocks,
which couples the carbon and silica cycles. This weathering occurs via wet deposition, and
gives a coupling between the carbon and the water cycle. When ocean down-washed
calcium carbonate and silica oxide precipitate and become deeply buried by continental
drift in earth’s mantle, segregation occurs into calcium silicate and carbon dioxide; volcanic
activity puts carbon dioxide back into the atmosphere. Geochemists generally hold this
rock cycle to be the main long-term control of the climate system.

Westbroek [1243] argued that the role of life in the precipitation processes of carbonates
and silica oxide became gradually more important during evolution. Mucus formers (by
preventing spontaneous precipitation of super-saturated carbonates) and calcifiers have
controlled carbonates since the Cretaceous. Diatoms (and radiolarians) have controlled
silicates since the Jurassic [671]. Corals and calcifying plankton (coccolithophores and
foraminiferans) have an almost equal share in calcification. In freshwater, charophytes are
in this guild. For every pair of bicarbonate ions, one is transformed into carbon dioxide for
metabolism, and one into carbonate. Planktonic derived carbonate partly dissolves, and
contributes to the build up of a concentration gradient of inorganic carbon in the ocean.
This promotes the absorption of carbon dioxide from the atmosphere by seawater.

The dry deposition of carbon dioxide in the ocean is further enhanced by the organic
carbon pump, where inorganic carbon is fixed into organic carbon, which travels down to
deep layers by gravity. This process is accelerated by predation where unicellular algae
are compacted into faecal pellets, and partial microbial decomposition recycles nutrients
to the euphotic zone, boosting primary production. The secondary production also finds
its way to the deep layers. Chitine plays an important role in the organic carbon pump.
This is because it is difficult to degrade and occurs in relatively large (and heavy) particles
and is produced by zooplankton in the upper ocean layer (zooplankton). When dying (or
moulting), chitine sinks which causes a drain of (organic) carbon and nitrogen to the deep
in a C:N ratio of 8:1. This ratio controls the ability of phytoplankton to fix atmospheric
CO2 [850]. This process is of importance on a time scale in the order of millennia (the
cycle time for ocean’s deep water), and so is relevant for assessing effects of an increase of
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atmospheric carbon by humans. It is less important on much longer time scales.
In nutrient-rich shallow water, organic matter can accumulate fast enough to form

anaerobic sediments, where decomposition is slow and incomplete and fossilisation into
mineral oil occurs. Although textbooks on marine biogeochemistry do not always fully
recognise the role of plants in the global carbon cycle, cf [702, p 139], coal deposits in
freshwater marshes are substantial enough to affect global climate. Oil formed by plankton
and coal by plants mainly occurs on continental edges, and affects climate on the multi-
million time scale.

10.7.3 Methane

Methane is the third most important greenhouse gas; 85 % of all emitted methane is
(presently) produced by methanogens (in syntrophic relationships with other organisms,
sometimes endosymbiotic) in anaerobic environments (sediments, guts) [734, 348]. The
flux is presently enhanced by large scale deforestation by humans via termites. Apart
from accumulation in the atmosphere, and in fossilised gas, big pools (2 103–5 106 Pg) of
methane hydrates rest on near shore ocean sediments. Since methane can capture infrared
radiation 25 times better than carbon dioxide, on a molar basis, a release of the methane
hydrates can potentially destabilise the climate system [684]. Oxidation of methane is a
chief source of water in the stratosphere [178], where it interferes with radiation.

Like carbon dioxide, the methane balance is part of the global carbon cycle. Since
most of life’s activity is limited by nutrients, the carbon cycle cannot be studied without
involving other cycles. Nitrogen (nitrate, ammonia) is the primary limiting nutrient, but
iron might be limiting as well in parts of the oceans [43, 199]. After assuming that dinitro-
gen fixing cyanobacteria could eventually relieve nitrogen limitation, Tyrell [1179] came to
the conclusion that nitrogen was proximately limiting primary production, and phosphate
was ultimately doing so. The question remains, however, are cyanobacteria active enough?
Many important questions about the nitrogen cycle are still open, even if oceans represent
a sink or a source of ammonia, nitrates and nitrous oxide [549]. The latter is after methane,
the next most important greenhouse gas, which can intercept infrared radiation 200 times
better than carbon dioxide.

Most nutrients enter the oceans via rivers from terrestrial habitats, which couples both
systems and makes coastal zones very productive. The surface area of this habitat has
obviously been under control by continental drift and seawater level changes, and therefore
with ice formation and temperature. These remarks serve to show the link between climate
and biochemical cycles.

10.7.4 Dioxygen

Complex relationships exist between the carbon and oxygen cycles. Dioxygen results from
photosynthesis, so there is a direct relationship between dioxygen in the atmosphere and
buried fossil carbon. The latter probably exceeds dioxygen on a molar basis, because
of e.g. the oxidation of iron and other reduced pools in the early history of the earth.
Photorespiration links dioxygen to carbon dioxide levels {pagerefphotorespi}. This effect
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of dioxygen is possibly an evolutionary accident that resulted from the anoxic origins
of rubisco. Spontaneous fires require at least 75 % of present day dioxygen levels, and
dioxygen probably now sets an upper boundary to the accumulation of organic matter in
terrestrial environments, and so partly controls the burial of fossilised carbon [1278]. The
extensive coal fires in China at 1 km depth, that occur since human memory, illustrate
the importance of this process. Model calculations by Berner [93] suggest, however, that
dioxygen was twice the present value during the Carboniferous. If true, this points to
the control of fossil carbon accumulation by dioxygen being weak. The big question is,
of course, to what extent humans are perturbing the climate system by enhancing the
burning of biomass and fossil carbon. The massive burning of the worlds’ rain forests after
the latest el Niño event makes it clear that their rate of disappearance is accelerating,
despite the world-wide concern.

10.7.5 Albedo

Apart from greenhouse gases, the radiation balance is affected by albedo. Ice and clouds
are the main controlling components. Cloud formation is induced by micro-aerosols, which
result from combustion processes, volcanoes and ocean spray derived salt particles. Phyto-
plankton (diatoms, coccolithophorans) affects albedo via the production of dimethyl sulfide
(dms), which becomes transformed to sulphuric acid in the atmosphere, acting as conden-
sation nuclei. The production is associated with cell death, because the precursor of dms
is mainly used in cell’s osmo-regulation. Plants, and especially conifers, which dominate
in taiga and on mountain slopes, produce isoprenes and terpenes [144], which, after some
oxidation transformations, also result in condensation nuclei. Since plants cover a main
part of the continents, plants change the colour, and so the albedo of the earth, in a di-
rect way. Condensation nuclei derived from human-mediated sulfate emissions now seem
to dominate natural sources, and possibly counterbalance the enhanced carbon dioxide
emissions [203].

Ice affects the climate system via the albedo and ocean level. If temperature drops, ice
grows and increases the albedo, which makes it even colder. It also lowers the ocean level,
however, which enhances weathering of fossil carbon and increases atmospheric carbon
dioxide. This affects temperature in the opposite direction, and illustrates a coupling
between albedo, and the carbon and water cycles.

10.8 Effects of climate on life

Climate affects life mainly through temperature, and in terrestrial environments, by pre-
cipitation and humidity. Nutrient supply and drain is usually directly coupled to water
transport. The transport of organisms themselves in water and in air can also be cou-
pled to climate. The effects are in determining both geographical distribution patterns,
abundance and activity rates.

The effects of body temperature of metabolic rates, cf {16}. Many species of organism
that do not switch to the torpor state, escape bad seasons by migration, cf {119}, some
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of them travelling on a global scale. Endotherms (birds and mammals) are well known
examples of spectacular migrations; their energy budgets are tightly linked to the water
balance {149}. The capacity to survive periods of starvation has close links with body size
{312}.

Plant production increases in an approximately linear way with annual precipitation,
which illustrates the importance of water availability in terrestrial environments. Plants
use water for several purposes, one of them being the transport of nutrients from the soil
to their roots. This is why the ratio of the surface areas of shoots and roots enters in
the saturation constants for nutrient uptake by plants {149}. Precipitation also affects
nutrient availability via leakage.

Because multiple reserve systems have to deal with excretion {190}, assimilation is much
more loosely coupled to maintenance and growth compared to single reserve systems. The
way temperature affects photosynthesis differs from how it affects growth (synthesis of
structure) {21}, with the consequence that the excretion of carbohydrates (mobilised from
its reserve, but rejected by the SUs for growth) depends on temperature. This means that
the importance of the microbial loop is temperature dependent. Single reserve systems, by
contrast, do not excrete in this way and so do not have this degree of freedom {17}.

Extensive pampa and savannah ecosystems, as well as the recently formed fijnbos vege-
tation in Southern Africa require regular fires of a particular intensity for existence. Many
plant species require fire to trigger germination.

Local differences between seasons in temperate and polar areas are large with respect to
global climate changes during the evolution of the earth, which complicates the construction
of simple models that aim to be realistic.

10.9 Summary

Evolution accelerated considerably, starting with a long period where mutation and se-
lection created an initial diversity, followed by a period during which recombination of
metabolic modules enhanced diversity. The evolution of the central metabolism testifies
from the significance of the exchange of metabolic modules, that of symbiogenesis even
more. deb theory is unique in its ability to capture why and how systems that follow deb
rules can merge such that the resulting merged structure again follows deb rules.

Life started with the increase of the ability to maintain homeostasis, which induced
stoichiometric constraints on production, and necessitated the use of reserves. The animal
evolutionary line reduced the number of reserves, while increasing their acquisition ability
and enhancing mobility. The plant evolutionary line increased metabolic versatility and
morphological flexibility.

I summarise observations that lead to the conclusion that life did become increasingly
dependent on life, which is in harmony with the stepwise improvement of various forms of
homeostasis, which is key to deb theory {8}. The increased ability to control the internal
physical-chemical conditions is matched by the ability to do that externally.

The interactions between life and climate are discussed, which are of substantial quan-
titative importance. deb theory can be used to quantify these interactions.



Chapter 11

Evaluation

The aim of this short chapter is to place the deb model in the context of research in eco-
energetics. I first summarise the collection of empirical models that turn out to be special
cases of deb theory. Then I discuss some problems that are inherent to biochemical models
for metabolism of individuals. Finally I discuss static energy budgets and their time-depend
relatives, the net production models, in comparison with the deb approach.

11.1 Empirical models that are special cases of DEB

theory

The emphasis of deb theory is on mechanisms. This implies a radical rejection of the
standard application of allometric equations, which I consider to be a blind alley that
hampers understanding. Although it has never been my objective to glue existing ideas
and models together into one consistent framework, many aspects and special cases of the
deb theory turned out to be identical or very similar to classic models, see Table 11.1.
deb theory not only shows how and why these models are related, it also specifies the
conditions under which these models might be realistic, and it extends the scope from the
thermodynamics of subcellular processes to population dynamics.

11.2 A weird world at small scales

Many attempts exists to build models for cellular metabolism following the fate of some
important compounds. Apart from the limited usefulness of models with many parameters
and variables, these models typically suffer from lack of spatial structure, and the trans-
formations are typically based on classic chemical kinetics. The following considerations
question the validity of this approach.

Basic to chemical kinetics is the law of mass action: transformation rates are propor-
tional to meeting frequencies, which are taken proportional to the product of concentrations
of substrate. This rests on transport by diffusion or convection. A few observations might
help to reveal that the application of classic chemical kinetics in cellular metabolism is
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Table 11.1: Empirical models that turn out to be special cases of deb models, or very good
numerical approximations to them.

author year page model

Lavoisier 1780 {157} multiple regression of heat against mineral fluxes
Gompertz 1825 {213} survival probability for ageing
Arrhenius 1889 {16} temperature dependence of physiological rates
Huxley 1891 {196} allometric growth of body parts
Henri 1902 {100} Michaelis–Menten kinetics
Blackman 1905 {261} bilinear functional response
Hill 1910 {200} Hill’s functional response
Thornton 1917 {154} heat dissipation
Pütter 1920 {51} von Bertalanffy growth of individuals
Pearl 1927 {341} logistic population growth
Fisher & Tippitt 1928 {213} Weibull aging
Kleiber 1932 {294} respiration scales with body weight3/4

Mayneord 1932 {132} cube root growth of tumours
Monod 1942 {127} growth of bacterial populations
Emerson 1950 {132} cube root growth of bacterial colonies
Huggett & Widdas 1951 {61} foetal growth
Weibull 1951 {213} survival probability for aging
Best 1955 {259} diffusion limitation of uptake
Smith 1957 {144} embryonic respiration
Leudeking & Piret 1959 {160} microbial product formation
Holling 1959 {32} hyperbolic functional response
Marr & Pirt 1962 {127} maintenance in yields of biomass
Droop 1973 {127} reserve (cell quota) dynamics
Rahn & Ar 1974 {298} water loss in bird eggs
Hungate 1975 {272} digestion
Beer & Anderson 1997 {53} development of salmonid embryos

problematic.

This even holds for the concept ‘concentration’ of a compound inside cells. The concept
‘concentration’ is rather problematic in spatially highly structured environments, such as
in growing cells, where many transformations are mediated by membrane-bound enzymes.
Use of concentrations should be restricted to well-mixed local environments, such as the
idealised environment outside organisms. Ratios of amounts, called densities, can play a
role in transformations. Densities resemble concentrations, but the compounds are not
necessarily well mixed at a molecular level.

Consider a typical bacterial cell of volume 0.25µm3 and an internal pH of 7 at 25 ◦C
[642]; the intra-cellular compartments of eukaryotic cells are about the same size. If the cell
would consist of pure water, it must have N = 8 109 water molecules. For a dissociation
rate of water k̇1 = 2.4 10−5 s−1 and an association rate of the ions k̇2 = 103 ion−1s−1 (in ice,

k̇2 is faster), the equilibrium number of ’free’ protons is m =
√
Nk̇1/k̇2 = 13.9. Random



11.2. A weird world at small scales 415

pH

cell volume, �m�

Figure 11.1: If the process H2O ⇀↽ H+ + OH− oc-
curs randomly and the mean number of free protons
is m, the probability of n free protons equals Pn =
(mn/n!)2/I0(2m), where I0(x) =

∑∞
i=0(x/2)2i(i!)−2 is

the modified Bessel function. The 95, 90, 80 and 60 %
confidence intervals of pH in cells of pure water with
pH 7 as a function of the cell size. They increase
dramatically for decreasing cell sizes for cells (or cell
compartments) less than 0.5µm3. The thick curve rep-
resents the mean pH, which goes up sharply for very
small cell sizes.

dissociation of water, and association of protons and hydroxyl ions make this number
fluctuates wildly [776]. Figure 11.1 shows that the (asymptotic) frequency distribution
of the number of protons, and so of pH, dramatically increases in variance for decreasing
cell sizes for volumes smaller that 0.5µm3. We have to think in terms of pH distributions
rather than pH values. Many chemical properties of compounds depend on the pH, which
makes matters really complex.

The relaxation time is given by τ = 1/
√

4Nk̇1k̇2 and amounts to 36µs. A water molecule
is created, by association of a proton and a hydroxyl ion, and is annihilated by dissociation
about twice a day at 25 ◦C. Brownian motion transports a water molecule about 3 cm
between creation and annihilation, while protons and hydroxyl ions are transported some
3µm, on average. However, these distances do not fit into a cell (or cell compartment),
which must lead to the conclusion that undisturbed diffusion does not occur in cells. These
expectations are based on pure water, but a more realistic cytoplasm composition does not
eliminate the problem.

Water in very small volumes behaves as a liquid crystal [165, 55], rather than as a liquid,
which has substantial consequences for kinetics. Electrical potentials reveal the crystalline
properties. They decay exponentially as a function of distance L, so they are proportional
to exp(−L/LD). The parameter LD, called the Debye distance, is about 0.1µm for water
at 25 ◦C [1236], which means the electrical potential of a proton would be felt through
most of the cell, even if it did not move.

Macromolecular crowding can affect transformation rates substantially [10]. Organelles
crawl around in cells, divide, merge and may be destroyed. Substrates are delivered to
enzymes by transporter proteins, that follow paths along the endoplasmatic reticulum;
products are removed from their site of origin in a similar way. Active allocation of sub-
strates to particular transformations is common. The small number of molecules of any
type requires stochastic rather than deterministic specification of their dynamics. Many
enzymes are only active if bounded to membranes. Many substrates play a role in a
metabolic network, which given complex connections. The cell follows a cell cycle, and
many sub-cellular structures and activities have complex links to this cycle. All these as-
pects make that transformations that are based on the law of mass action are problematic
for living cells.
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gross energy consumption, µX J̇X
faecal energy, µP J̇P-

apparent assimilated energy, µX J̇X − µP J̇P?

urinary energy, µN J̇N-

metabolisable energy, µX J̇X − µP J̇P − µN J̇N?

heat increment of feeding, κfdµX J̇X-

heat increment of fermentation, κfmµX J̇X-

net energy, (1− κfd − κfm)µX J̇X − µP J̇P − µN J̇N?

maintenance metabolism, ṗT + (κbm + κac)ṗM-

basic metabolism, κbmṗM-

thermoregulatory, ṗT-

activity, κacṗM-

production, κprṗM + (µV + µEmE)J̇V + µE J̇ER
-

energy storage (growth), (µV + µEmE)J̇V-

hair, feathers, cuticle, κprṗM-

reproduction (eggs, semen, milk), κRṗR-

work, (κAµX − yPXµP )J̇X − µN J̇N − ṗT − κM ṗM − (µV + µEmE)J̇V − µE J̇ER
-

Figure 11.2: A typical static
energy budget [1266, page 87]. The
symbols refer to the powers in the
dynamic energy budget, and reveal
the links; see text for explanation.

11.3 Static Energy Budgets

Most of the literature on animal energetics concerns Static Energy Budgets (sebs). The
term budget refers to the conservation of energy, i.e. the various allocated powers add to
the power input. sebs can only be compared to debs at steady state, by averaging over
a sufficient number of meals, but not so many that size changes. Figure 11.2 gives the
relationship between both approaches. The following differences exist

• seb deals with energies that are fixed in the different products, while deb deals with
energies allocated to assimilation, maintenance and growth; the difference is in the
overhead costs. The reconstruction assumes that the seb balance is complete, so no
products are formed coupled to growth, and also that we are dealing with an adult,
and are using a combustion frame of reference (the energy content of oxygen, carbon
dioxide, water and ammonia is set to zero). Some of the mapping depends on details
of how the quantities are actually measured. The total balance sheet amounts to
µX J̇X = µP J̇P + (µV + µEmE)J̇V + κRṗR + µN J̇N + ṗT+, or ṗA = ṗM + ṗJ + ṗT +
(1 +mEyV E)ṗG + ṗR.

• ‘faecal energy’ represents a fixed fraction of ‘gross energy consumption’ in deb, so
µP J̇P = µPyPX J̇X .

• ‘urinary energy’ is decomposed in deb into contributions from assimilation, mainte-
nance and growth: J̇N = J̇NA + J̇NM + J̇NG. Subtraction from the ‘apparent assimi-
lation energy’ complicates the mapping of the remaining energy to maintenance and
(re)production.

• ‘heat increment of feeding’ and of ‘fermentation’ are included in the overhead costs of
assimilation and, therefore, fractions of the ‘gross energy consumption’. The fractions
κfd and κfm are constants.
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• ‘net energy’ equals ṗA−µN(J̇NM+J̇NG), assuming that both heat increments cover all
assimilation overheads, except for the assimilation part of urinary energy. It follows
that κfd + κfm = 1−yPXµP /µX

1+µNηNA
.

• ‘basic metabolism’, ‘activity’, and ‘hair, feather, cuticle’ are all fractions of somatic
maintenance costs in deb, so κbm + κac + µN J̇NM/ṗM = 1. This mapping includes
the overhead costs of maintenance in ‘basic metabolism’, the correctness depending
on the way it is measured.

• ‘energy storage’ includes the energy fixed in new reserves and new structural mass.
Notice that µV J̇V < ṗG; the overhead costs of growth in deb go into ‘work’ in seb.

• ‘milk production’ (of female mammals) comes with a temporal change in the param-
eters {J̇Xm} and {ṗAm} in deb.

• ‘work’ includes part of the overhead costs of growth and maintenance in sebs’ balance
sheet. The abbreviations κA = 1 − κfd − κfm and κM = κbm + κac + κpr have been
made. Alternative expressions are: ṗA−ṗM−ṗT−κRṗR−µN J̇NG−(µV +µEmE)J̇V =
ṗG(1 +mEyV E) + ṗR(1− κR) + ṗJ − µX J̇X + µpJ̇P + κRṗR + ṗT+ = ṗT+ + ṗJ + ṗR +

ṗG(1 + yV EmE) + µP J̇P − µX J̇X .

The significance of including certain energy allocations in the overhead of others is in
the comparison of energy budgets, both between different organisms and with respect to
changes in time. Such inclusions greatly simplify the structure of energy budgets, and
reduce the flexibility, i.e. reveal patterns of covariation of allocations. It boils down to the
sharp distinction that debs make between the power allocated to, for example, growth, and
the power that is actually fixed in new biomass; sebs can only handle the energy that is
fixed in new biomass, because the energy allocated to growth can only be assessed indirectly
via changes of the budget in time. The reconstruction beautifully shows that ‘work’ has
many contributions in seb, and cannot be interpreted easily. The term is misleading, by
suggesting that the individual can spend it freely.

Practical applications of sebs to individuals of different sizes and different environ-
mental conditions reveal that the resulting coefficients vary in ways that are difficult to
understand; the scaling exponent of allometric functions to account for size differences turn
out to depend on size [1186].

Von Bertalanffy [98] related the respiration rate to the rate of anabolism. I cannot
follow this reasoning. At first sight, synthesis processes are reducing by nature, which
makes catabolism a better candidate for seeking a relationship with respiration. In the
standard static budget studies, respiration rates are usually identified with maintenance
metabolism. These routine metabolic costs are a lump sum, including the maintenance of
concentration gradients across membranes, protein turnover, regulation, transport (blood
circulation, muscle tonus), and an average level of movement. The Scope For Growth (sfg)
concept rests on this identification. The idea behind this concept is that energy contained
in faeces and the energy equivalent of respiration are subtracted from energy derived from
food, the remainder being available for growth [73]. The sfg concept is built on sebs,
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{416}. In the deb model, where energy derived from food is added to the reserves, the
most natural candidate for a relationship with respiration is the rate at which the reserves
are used. This is underpinned on {142}.

Although respiration rates are measured over short periods (typically a couple of min-
utes) and the actual growth of the body is absolutely negligible, the energy investment in
growth can still be substantial. Parry [869] estimates the cost of growth between 17 and
29 % of the metabolism of an ‘average’ ectotherm population. The respiration rate includes
routine metabolic costs as well as costs of growth [999]. This interpretation is, therefore,
incompatible with the sfg concept. Since the deb model does not use respiration rates
as a primary variable, the interpretation problems concerning respiration rates only play
a role in testing the model.

11.4 Net production models

The deb model assumes that assimilates are added to reserves, and reserves are used to fuel
other metabolic processes (maintenance, growth, maturation, reproduction). Roger Nisbet
proposed the term assimilation models for models based on this assumption, to distinguish
them from net production models. The latter models first subtract maintenance costs
from assimilates, before allocation to other metabolic processes occurs; they represent a
kind of time-dependent seb models. Several net production models have been worked out
[25, 451, 706, 841, 993]. It will not always be easy to use experimental data to choose
between assimilation and net production models.

The choice of an assimilation structure rather than a net production structure is pri-
marily motivated by simplicity in several respects, including mechanistic arguments with
respect to metabolic control. The first argument is that embryos do not feed, but never-
theless have to pay maintenance costs. Net production models then suffer from the choice
of letting embryos differ from juveniles by allowing embryos to pay maintenance from re-
serves, or treating yolk as a new state variable that is typical for embryos [706]. The
second argument is that if feeding is not sufficient to pay maintenance costs, they have to
be paid from reserves; it does not seem realistic to assume that an animal dies from star-
vation while it has lots of reserves. Most animals feed on meals anyway, while the storage
in the gut cannot explain the survival between the meals. Net production models must,
therefore, contain elements of assimilation models, and switches have to be installed to
pay maintenance from assimilates and/or from reserves. The analysis of the mathematical
properties of models with switches rapidly becomes more problematic with the number of
switches. The feeding and reproduction switch seems to be unavoidable for all energetic
models. This set of arguments relates to the organisation of metabolism, which is much
more independent of the environment in assimilation models than in net production mod-
els. This allows a simpler regulation system for metabolism, which is mainly driven by
signals from the nutritional state of the organism itself, rather than from signals directly
taken from the environment.

The net production models that are presently available have many more parameters
than the assimilation model in this book; the simplest and best comparable production
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model is that formulated by Dina Lika and Roger Nisbet [706]. Besides structural mass,
its state variables include yolk (in the embryonic stage), reserves and the maximum expe-
rienced reserve density in the juvenile and adult stages. Although it is possible to simplify
net production models and reduce the number of parameters, I am convinced that they
need more parameters and state variables than assimilation models with a comparable
amount of detail. This is because they have to handle switches, and specify growth in-
vestment in a more complex way. The parameter κ of the assimilation model in this book
specifies the investment in growth (plus somatic maintenance) versus reproduction (plus
maturity maintenance); growth ceases automatically when the energy allocated to growth
plus somatic maintenance is required for somatic maintenance. Reproduction can continue,
while growth ceases. Net production models need at least one extra parameter to obtain
this type of behaviour. Maintenance in net production models is paid for by food if possi-
ble, but from reserves if necessary, which requires an extra parameter for the maintenance
costs. Maintenance is always paid from reserves in assimilation models (except in extreme
starvation during shrinking). The number of parameters and state variables is a measure
of the complexity of a model.

The mechanism for reserve dynamics and weak homeostasis that is proposed here,
structural homeostasis {10}, does not apply to net production models. I expect that it
is difficult to implement weak homeostasis mechanistically in net production models. If
true, this means that biomass composition is changing, even at steady state, and structure
always has to be disentangled from reserves in tests against experimental data. I also
expect that it is difficult to derive realistic body size scaling relationships and to explain
the method of indirect calorimetry on the basis of net production models.

Since reserves are wired prior to allocation to reproduction in production models, and
not used for growth, they are hard to apply to dividing organisms, such as micro-organisms.
The growth of plant biomass from tubers, and growth during starvation (cf. Figure 4.3),
for instance, are also hard to implement; it needs an extra state variable similar to yolk in
the embryo.

Toxic compounds, parasites or the light regime can change the value of κ, which has
complex consequences (growth is reduced and development lasts for a shorter time and/or
reproduction is greater because of the higher investment, which is partially cancelled by
the reduction of assimilation due to reduced growth). These complex changes can be
described realistically with effects on a single parameter in the present assimilation model,
while net production models need a more complex description that involves effects on more
parameters. This type of perturbation of metabolism is perhaps the strongest argument
in favour of assimilation models.

11.5 Summary

Many empirical models turn out to be special cases of deb theory. We now know the
mechanisms behind these models, and can better understand under what conditions they
can be applied. deb theory also reveals the coherence behind these models, which seem
to be completely unrelated at first sight. Using the empirical support of these empirical
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models, which accumulated over the ages, deb theory is presently the best tested theory
in biology.

I briefly discuss alternative approaches to the subject of energetics, starting with that
by molecular biology. The detailed molecular dynamics in cells is complex because of their
spatial structure and the role of membranes; the small size of cell compartments gives them
properties of liquid cristals and classic chemical dynamics hardly applies. Static energy
budget models are (still) most popular in eco-physiology, and time-dependent static en-
ergy budget models, net-production models, are typically used to capture the energetics
of individuals during their life cycle. This approach has led, in the past, to a particular
interpretation of respiration rates that makes it difficult to understand why respiration
approximately scales with weight to the power 3/4. All scaling relationships are diffi-
cult to understand with this method. I discuss some consistency issues that need further
clarification in the context of static energy budgets.
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Bücherei. A. Ziemsen-Verlag, Wittenberg Luther-
stadt, 1969.

[373] B. W. Frost. Effects of size and concentration of food
particles on the feeding behaviour of the marine cope-
pod Calanus pacificus. Limnol. Oceanogr., 17:805–
815, 1972.

[374] B. W. Frost and N. C. Franzen. Grazing and iron
limitation in the control of phytoplankton stock and
nutrient concentration: a chemostat analogue of the
pacific equatorial upwelling zone. Mar. Ecol. Prog.
Ser., 83:291–303, 1992.

[375] W. E. Frost and C. Kipling. The growth of charr,
Salvinus willughbii Gunther, in Windermere. J. Fish
Biol., 16:279–289, 1980.

[376] B. Fry. Stable isotope ecology. Springer, New York,
2006.

[377] F. E. J. Fry. The effect of environmental factors on
the physiology of fish. In W. S. Hoar and D. J. Ran-
dall, editors, Fish physiology, volume 6, pages 1–87.
Academic Press, London, 1971.

[378] G. Fryer. Evolution and adaptive radiation in
Macrothricidae (Crustacea: Cladocera): a study
in comparative functional morphology and ecology.
Proc. R. Soc. Lond. B Biol. Sci., 269:142–385, 1974.

[379] J. A. Fuerst. Intracellular compartmentation in planc-
tomycetes. Rev. Microbiol., 59:299–328, 2005.

[380] J. Fuhrman. Genome sequences from the sea. Nature,
424:1001–1002, 2003.

[381] E. Fuller, editor. Kiwis. Swan-Hill Press, Shrewsbury,
1991.

[382] T. W. Fulton. The Sovereignty of the seas. Edinburgh,
1911.

[383] S. Fuma, H. Takeda, K. Miyamoto, K. Yanagisawa,
Y. Inoue, N. Sato, M. Hirano, and Z. Kawabata. Ef-
fects of γ-rays on the populations of the steady state
ecological microcosm. Int. J. Radiat. Biol., 74:145–
150, 1998.

[384] R. W. Furness. The skuas. T. & A. D. Poyser, Calton,
1987.

[385] V. F. Gallucci and T. J. Quinn. Reparameterizing,
fitting, and testing a simple growth model. Trans.
Am. Fish. Soc., 108:14–25, 1979.

[386] L. Garby and P. Larsen. Bioenergetics; its thermo-
dynamic foundations. Cambridge University Press,
1995.

[387] A. J. Gaston. The ancient murrelet. T. & A. D.
Poyser, London, 1992.

[388] R. E. Gatten, K. Miller, and R. J. Full. Energetics
at rest and during locomotion. In M. E. Feder and
W. W. Burggren, editors, Environmental physiology
of the amphibians, chapter 12, pages 314–377. The
University of Chicago Press, 1992.

[389] M. Gatto, C. Ricci, and M. Loga. Assessing the re-
sponse of demographic parameters to density in a ro-
tifer population. Ecol. Modell., 62:209–232, 1992.

[390] D. L. Geiger, C. E. Northcott, D. J. Call, and L. T.
Brooke. Acute toxicities of organic chemicals to fat-
head minnow ( Pimephalus promelas), volume II of
Center for lake superior environmental studies. Uni-
versity of Wisconsin USA, 1985.

[391] D.L. Geiger, L. T. Brooke, and D. J. Call. Acute
toxicities of organic chemicals to fathead minnow
( Pimephales promelas), volume 2-5 of Center for
Lake Superior Environmental Studies. Univerity of
Wisconsin-Superior, USA, 1985–1990.

[392] V. Geist. Bergmann’s rule is invalid. Can. J. Zool.,
65:1035–1038, 1987.

[393] W. Geller. Die Nahrungsaufname von Daphnia pulex
in Aghängigkeit von der Futterkonzentration, der
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Neue Brehm-Bücherei. A. Ziemsen-Verlag, Witten-
berg Lutherstadt, 1990.

[443] R. S. Gupta. What are archaebacteria: life’s third
domain or monoderm prokaryotes related to gram-
positive bacteria? A new proposal for the classi-
fication of prokaryotic prganisms. Mol. Microbiol.,
29:695–707, 1998.

[444] W. S. C Gurney and R. M. Nisbet. Ecological dynam-
ics. Oxford University Press, 1998.

[445] W.C. Gurney and R. M. Nisbet. Resource allocation,
hyperphagia and compensatory growth. Bull. Math.
Biol., 66:1731–1753, 2004.

[446] R. Haase. Thermodynamics of irreversible processes.
Dover Publications, New York, 1990.

[447] P. Haccou and E. Meelis. Statistical analysis of be-
havioural data; an approach based on time-structured
models. Oxford University Press, Oxford, 1992.

[448] U. Halbach. Einfluss der Temperatur auf die
Populationsdynamik der planktischer Radertieres
Brachionus calyciflorus Pallas. Oecologia (Berlin),
4:176–207, 1970.

[449] D. O. Hall and K. K. Rao. Photosynthesis. Cambridge
University Press, 1999.

[450] S. J. Hallam, N. Putnam, C. M. Preston, J. C. Detter,
D. Rokhsar, P. M. Richardson, and E. F. DeLong. Re-
vers methanogenesis: Testing the hypothesis with en-
vironmentl genomics. Science, 305:1457–1462, 2004.

[451] T. G. Hallam, R. R. Lassiter, and S. A. L. M. Kooij-
man. Effects of toxicants on aquatic populations. In
S. A. Levin, T. G. Hallam, and L. F. Gross, editors,
Mathematical ecology., pages 352–382. Springer, Lon-
don, 1989.

[452] T. G. Hallam, R. R. Lassiter, J. Li, and W. McKinney.
An approach for modelling populations with continu-
ous structured models. In D. L. DeAngelis and L. J.
Gross, editors, Individual based approaches and mod-
els in ecology, pages 312–337. Springer-Verlag, 1992.

[453] T. G. Hallam, R. R. Lassiter, J. Li, and L. A. Suarez.
Modelling individuals employing an integrated energy
response: application to Daphnia. Ecology, 71:938–
954, 1990.

[454] T. G. Hallam and J. L. de Luna. Effects of toxicants
on population: a qualitative approach. III. Environ-
mental and food chain pathways. J. Theor. Biol.,
109:411–429, 1984.

[455] B. Halliwell and J. M. C. Gutteridge. Free radicals in
biology and medicine. Oxford University Press, 1999.

[456] P. Hallock. Algal symbiosis: a mathematical analysis.
Mar. Biol., 62:249–255, 1981.

[457] P. P. F. Hanegraaf. Mass and energy fluxes in micro-
organisms according to the Dynamic Energy Budget
theory for filaments. PhD thesis, Vrije Universiteit,
Amsterdam, 1997.

[458] P. P. F. Hanegraaf, B. W. Kooi, and S. A. L. M. Kooi-
jman. The role of intracellular components in food
chain dynamics. C. R. Acad. Sci. Ser. III, 323:99–
111, 2000.

[459] R. J. F. van Haren and S. A. L. M. Kooijman. Appli-
cation of the dynamic energy budget model to Mytilus
edulis (L). Neth. J. Sea Res., 31:119–133, 1993.

[460] D. Harman. Role of free radicals in mutation, cancer,
aging and maintenance of life. Radiat. Res., 16:752–
763, 1962.

[461] D. Harman. The aging process. Proc. Natl. Acad. Sci.
U. S. A., 78:7124–7128, 1981.



436 Bibliography

[462] J. L. Harper. Population biology of plants. Academic
Press, London, 1977.

[463] M. P. Harris. The biology of an endangered species,
the dark-rumped petrel (Pterodroma phaeopygia), in
the Galapagos Islands. Condor, 72:76–84, 1970.

[464] C. Harrison. A field guide to the nests, eggs and
nestlings of European birds. Collins, London, 1975.

[465] R. Harrison and G. G. Lunt. Biological membranes.
Their structure and function. Blackie, Glasgow, 1980.

[466] M. W. Hart. What are the costs of small egg size for
a marine invertebrate with feeding planktonic larvae?
Am. Nat., 146:415–426, 1995.

[467] H. Hartman. Speculations on the origin and evolution
of metabolism. J. Mol. Evol., 4:359–370, 1975.

[468] H. Hartman. Photosynthesis and the origin of life.
Orig. life evol. biosphere, 28:515–521, 1998.
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[1208] G Wächtershäuser. Evolution of the 1st metabolic
cycles. Proc. Natl. Acad. Sci. U. S. A., 87:200–204,
1990.

[1209] T. G. Waddell, P. Repovic, E. Meléndez-Hevia,
R. Heinrich, and F. Montero. Optimization of glycol-
ysis: A new look at the efficiency of energy coupling.
Biochemical Education, 25:204–205, 1997.

[1210] J. G. Wagner. The kinetics of alcohol elimination in
man. Acta Pharmacol. Toxicol., 14:265–289, 1958.

[1211] J. G. Wagner. A modern view in pharmacokinetics.
J. Pharmacokinet. Biopharm., 1:363–401, 1973.

[1212] J. G. Wagner. Do you need a pharmacokinetic model,
and, if so, which one? J. Pharmacokinet. Biopharm.,
3:457–478, 1975.

[1213] J. G. Wagner. Time to reach steady state and predic-
tion of steady-state concentrations for drugs obeying
Michaelis-Menten elimination kinetics. J. Pharma-
cokinet. Biopharm., 6:209–225, 1978.

[1214] C. H. Walker. Kinetic model to predict bioaccumula-
tion of pollutant. Funct. Ecol., 4:295–301, 1990.

[1215] E. P. Walker. Mammals of the world. Johns Hopkins
University Press, Baltimore, 1975.

[1216] G. M. Walker. Yeast; physiology and biotechnology.
J. Wiley & Sons Inc., Chichester, 1998.

[1217] M. R. Walker. Stromatolites: The main geologi-
cal source of information on the evolution of the
early benthos. In S. Bengtson, editor, Early life on
earth., volume 84 of Nobel Symposium, pages 270–286.
Columbria University Press, New York, 1994.

[1218] M. Walls, H. Caswell, and M. Ketola. Demo-
graphic costs of Chaoborus-induced defences in Daph-
nia pulex. Oecologia, 87:43–50, 1991.

[1219] A. E. Walsby. A square bacterium. Nature, 283:69–
73, 1980.

[1220] P. Ward. Precambrian strikes back. NewScientist, (9
Feb):40–43, 2008.

[1221] J. Warham. The crested penguins. In B. Stone-
house, editor, The biology of penguins, pages 189–269.
MacMillan Publishing Co., London, 1975.

[1222] B. L. Warwick. Prenatal growth of swine. J. Morphol.,
46:59–84, 1928.

[1223] I. Watanabe and S. Okada. Effects of temperature on
growth rate of cultured mammalian cells (l5178y). J.
Cell Biol., 32:309–323, 1967.

[1224] L. Watson. Whales of the world. Hutchinson & Co.
Ltd., London, 1981.

[1225] E. Watts and S. Young. Components of Daphnia feed-
ing behaviour. J. Plankton Res., 2:203–212, 1980.

[1226] J. van Waversveld, A. D. F. Addink, and G. van den
Thillart. The anaerobic energy metabolism of gold-
fish determined by simultaneous direct and indirect
calorimetry during anoxia and hypoxia. J. Comp.
Physiol., 159:263–268, 1989.

[1227] J. van Waversveld, A. D. F. Addink, G. van den
Thillart, and H. Smit. Heat production of fish: a lit-
erature review. Comp. Biochem. Physiol., 92A:159–
162, 1989.

[1228] H. Wawrzyniak and G. Sohns. Die Bartmeise., volume
553 of Die Neue Brehm-Bücherei. A. Ziemsen-Verlag,
Wittenberg Lutherstadt, 1986.

[1229] G. J. W. Webb, D. Choqeunot, and P. J. White-
head. Nests, eggs, and embryonic development of
Carettochelys insculpta (Chelonia: Carettochelidae)
from Northern Australia. J. Zool. Lond., B1:521–550,
1986.

[1230] G. J. W. Webb, S. C. Manolis, K. E. Dempsey, and
P. J. Whitehead. Crocodilian eggs: a functional
overview. In G. J. W. Webb, S. C. Manolis, and P. J.
Whitehead, editors, Wildlife management: crocodiles
and alligators, pages 417–422. Beatty, Sydney, 1987.

[1231] T. P. Weber and T. Piersma. Basal metabolic
rate and the mass of tissues differing in metabolic
scope: migration-related covariation between individ-
ual knots Calidris canutus. J. Avian Biol., 27:215–
224, 1996.

[1232] W. Weibull. A statistical distribution of wide appli-
cability. J. Appl. Mech., 18:293–297, 1951.

[1233] A. P. Weinbach. The human growth curve. I: Prenatal.
Growth, 5:217–233, 1941.

[1234] R. Weindruch, R. L. Walford, S. Fligiel, and
D. Guthrie. The retardation of aging in mice by di-
etary restriction: Longevity, cancer, immunity and
lifetime energy intake. J. Nutrition, 116:641–654,
1986.

[1235] J. Weiner. Physiological limits to sustainable energy
budgets in birds and mammals: ecological implica-
tions. Trends Ecol. Evol., 7:384–388, 1992.

[1236] T. F. Weis. Cellular biophysics., volume I Transport.
MIT Press, Cambridge, Massachusetts, 1996.

[1237] E. Weitnauer-Rudin. Mein Vogel. aus dem Leben der
Mauerseglers Apus apus. Basellandschaftlicher Natur-
und Vogelschutzverband, Liestal., 1983.

[1238] M. J. Wells. Cephalopods do it differently. New Sci.,
3:333–337, 1983.

[1239] J. van Wensum. Isopods and pollutants in decompos-
ing leaf litter. PhD thesis, Vrije Universeit, Amster-
dam, 1992.



Bibliography 461

[1240] J. H. Werren. Evolution and consequences of
Wolbachia symbioses in invertebrates. Am. Zool.,
40:1255–1255, 2000.

[1241] D. F. Werschkul. Nestling mortality and the adap-
tive significance of early locomotion in the little blue
heron. Auk, 96:116–130, 1979.

[1242] I. C. West. The biochemistry of membrane transport.
Chapman & Hall, London, 1983.

[1243] P. Westbroek. Life as a geological force; dynamics of
the Earth. W. W. Norton & Co, New York, 1991.

[1244] K. Westerterp. The energy budget of the nestling star-
ling Sturnus vulgaris, a field study. Ardea, 61:137–
158, 1973.

[1245] D. F. Westlake. Some effects of low-velocity currents
on the metabolism of aquatic macrophytes. J. Exp.
Bot., 18:187–205, 1967.

[1246] R. Wette, I. N. Katz, and E. Y. Rodin. Stochastic
processes for solid tumor kinetics: surface-regulated
growth. Math. Biosci., 19:231–225, 1974.

[1247] T. C. R. White. The inadequate environment; nitro-
gen and the abundance of animals. Springer-Verlag,
Berlin, 1993.

[1248] P. J. Whitehead. Respiration of Crocodylus johnstoni
embryos. In G. J. W. Webb, S. C. Manolis, and P. J.
Whitehead, editors, Wildlife management: crocodiles
and alligators, pages 473–497. Beatty, Sydney, 1987.

[1249] P. J. Whitehead, G. J. W. Webb, and R. S. Sey-
mour. Effect of incubation temperature on develop-
ment of Crocodylus johnstoni embryos. Physiol. Zool.,
63:949–964, 1990.

[1250] P. J. Whitfield. The biology of parasitism: an in-
troduction to the study of associating organisms. E.
Arnold, London, 1979.

[1251] J. N. C. Whyte, J. R. Englar, and B. L. Car-
swell. Biochemical-composition and energy reserves
in Crassostrea-gigas exposed to different levels of nu-
trition. Aquaculture, 90:157–172, 1990.

[1252] A. P. Wickens. The causes of aging. Harwood Aca-
demic Publishers, Australia, 1998.

[1253] J. Widdows, P. Fieth, and C. M. Worral. Relation-
ship between seston, available food and feeding activ-
ity in the common mussel Mytilus edulis. Mar. Biol.,
50:195–207, 1979.

[1254] E. Widmark and J. Tandberg. Über die bedingun-
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Glossary

acidity The negative logarithm, with base 10, of the proton concentration expressed in mole dm−3. It is
known as the pH

alga An autotrophic (or mixotrophic) protoctist

allometry The group of analyses based on a linear relationship between the logarithm of some physio-
logical or ecological variable and the logarithm of the body weight of individuals

allometric function A function of the type y(x) = axb, where a and b are parameters and x > 0

altricial A mode of development where the neonate is still in an early stage of development and requires
attention from the parents. Typical altricial birds and mammals are naked and blind at birth. The
opposite of altricial is precocial

anabolism The collection of biochemical processes involved in the synthesis of structural body mass

animal Metazoan, ranging from sponges to chordates

Arrhenius temperature The value of the slope of the linear graph one gets if the logarithm of a phys-
iological rate is plotted against the inverse absolute temperature. It has dimension temperature,
but it does not relate to a temperature that exists at a site

aspect ratio The dimensionless ratio between the length and the diameter of an object with the shape
of a cylinder (filaments, rods). The length of rods includes both hemispheres

assimilation Generation of reserves from substrates (food)

ATP Adenosine triphosphate is a chemical compound that is used by all cells to store or retrieve energy
via hydrolysis of one or two phosphate bonds

Avogadro constant The number of C-atoms in 12 g of 12C, which is 6.02205 1023 mol−1

Bernoulli equation A differential equation of the type d
dxy + f(x)y = g(x)ya, where a is any real

number and f and g are arbitrary functions of x. Bernoulli found a solution technique for this type
of equation

C-mole Ratio of the number of carbon atoms of a compound to the Avogadro’s constant, where the
frequencies of non-carbon elements are expressed relative to carbon

canonical Relating to the simplest form to which various equations and schemata can be reduced without
loss of generality

catabolism The collection of biochemical processes involved in the decomposition of compounds for the
generation of energy and/or source material for anabolic processes; here used for the use of reserves
for metabolism (maintenance and growth)

chemical potential The change in the total free energy of a mixture of compounds per mole of substance
when an infinitesimal amount of a substance is added, while temperature, pressure and all other
compounds are constant
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coefficient of variation The dimensionless ratio of the (sample) standard deviation and the mean. It is
a useful measure for the scatter of realizations of a random variable that has a natural origin. The
measure is useless for temperatures measured in degrees Celsius, for example

combustion reference In this frame of reference, the chemical potentials of H2O, HCO−3 , NH+
4 , H+ and

O2 are taken to be 0. The chemical potentials of organic compounds in the standard thermodynamic
frame of reference (pH=7, 298 K, unit molarity) are corrected for this setting by equating the
dissipation free energy in both frames of reference, when the compound is fully oxidised. The
chemical potential of compound CHxOyNz in the combustion frame of reference is expressed in the
standard frame of reference as µchxoynz = µ◦chxoynz + 1

2 (2−x+3z)µ◦h2o−µ
◦
hco−3

−(1−z)µ◦
h+−

zµ◦
nh+

4

+ 1
4 (4 + x− 2y − 3z)µ◦o2

compound parameter A function of original parameters. It is usually a simple product and/or ratio

cubic spline function A function consisting of a number of third-degree polynomials glued together in a
smooth way for adjacent intervals of the argument. This is done by requiring that polynomials which
meet at a particular argument value xi have the same value yi, and the same first two derivatives at
that point. The points xi, yi, for i = 1, 2, · · · , n with n ≥ 4 are considered as the parameters of the
cubic spline. For descriptive purposes, splines have the advantage over higher order polynomials
because their global behaviour is much less influenced by local behaviour

DEB Initials of the Dynamic Energy Budget model or theory, which is discussed in this book. The term
‘dynamic’ refers to the contrast with the frequently used Static Energy Budget models, where the
specifications of the individual do not change explicitly in time

density The ratio of two masses; but these masses are not necessarily homogeneously mixed, contrary to
the concept ‘concentration’

dissociation constant The negative logarithm, with base 10, of the ratio of the product of the proton
and the ion concentration, to the molecule concentration. It is known as the pK

DNA Deoxyribonucleic acid, the carrier of genetic information in all living cells

eclosion Hatching of imago from pupa (of a holo-metabolic insect)

ectotherm An organism that is not an endotherm

eigenvalue If a special vector, an eigenvector, is multiplied by a square matrix, the result is the same
as multiplying that vector by a scalar value, known as the eigenvalue. Each square matrix has a
number of different independent eigenvectors. This number is less than or equal to the number of
rows (or columns). Each eigenvector has its own eigenvalue, but some of the eigenvalues may be
equal

Ecdysozoa A rather recently delineated taxon of moulting evertebrates to which arthropods and nema-
tods belong

endotherm An animal that usually keeps its body temperature within a narrow range by producing heat.
Birds and mammals do this for most of time that they are active. Some other species (insects, tuna
fish) have endothermic tendencies

enthalpy Heat content with dimension energy mole−1. The enthalpy of a system increases by an amount
equal to the energy supplied as heat if the temperature and pressure do not change

entropy The cumulative ratio of heat capacity to temperature of a body when its temperature is gradually
increased from zero (absolute) temperature to the temperature of observation. Its dimension is
energy×(temperature mole)−1. The equivalent definition of the ratio of enthalpy minus free energy
to temperature is more useful in biological applications

estimation The use of measurements to assign values to one or more parameters of a model. This is
usually done in some formalised manner that allows evaluation of the uncertainty of the result
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eukaryote An organism that has a nucleus; it contrasts with prokaryote, and includes protoctists, plants
and animals

expectation The theoretical mean of a function of a random variable. For a function g of a random
variable x with probability density φx, its formal definition is Eg(x) ≡

∫ g
x

(x)φx(x) dx. For g(x) = x,
the expectation of x is the theoretical mean

exponential distribution The random variable t is exponentially distributed with parameter ṙ if the
probability density is φt(t) = ṙ exp{−ṙt}. The mean of t equals ṙ−1

filament An organism with the shape of a cylinder that grows in length only. The aspect ratio is so small
that the caps can be neglected in its energetics

first-order process A process that can be described by a differential equation where the change of a
quantity is linear in the quantity itself

flux An amount of mass or energy per unit of time. An energy flux is physically known as a power

free energy The maximum amount of energy of a system that is potentially available for ‘work’. In
biological systems, this ‘work’ usually consists of driving chemical reactions against the direction of
their thermodynamic decay

functional response The ingestion rate of an organism as a function of food density

generalised compound Mixture of chemical compounds that does not change in composition: fixed
stoichiometries for synthesis (organic substrate, reserves and structural mass are generalised com-
pounds)

growth Increase in structural body mass, measured as an increase in volume in most organisms. I do not
include anabolic processes that are part of maintenance

hazard rate The probability per time increment that death strikes at a certain age, given survival up to
that age

heat capacity The mole-specific amount of heat absorbed by a substance to increase one Kelvin in
temperature. Heat capacity typically depends on temperature and has dimension energy mole−1

heterotroph An organism that uses organic compounds as a source of energy

homeostasis The ability of most organisms to keep the chemical composition of their body constant,
despite changes in the chemical composition of the environment

iteroparous Able to reproduce several times, rather than just once

isomorph An organism that does not change its shape during growth

large number law The strong law of large numbers states that the difference between the mean of a set
of random variables and its theoretical mean is small, with an overwhelming probability, given that
the set is large enough

maintenance A rather vague term denoting the collection of energy-demanding processes that life seems
to require to keep going, excluding all production processes.

mass action law The law that states that the meeting frequency of two types of particles is proportional
to the product of their densities, i.e. number of particles per unit of volume

mitochondrion The cell organelle of cells of most eukaryote that houses the tricarboxylic acid (TCA)
cycle and the respiratory chain and has a double membrane and some dna. The population dynamics
of mitochondria in cells can be complex; they can divide and fuse and crawl through the cells.

morph Organism in which surface area that is involved in uptake grows proportional to volume0 (V0-
morph) or to volume1 (V1-morph)
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NADPH Nicotinamide adenine dinucleotide phosphate is a chemical compound that is used by all cells
to accept pairs of electrons

nutrients Inorganic substrates used for the synthesis of reserves; carbon dioxide and ammonia are exam-
ples, and light is also included for convenience

ODE Ordinary differential equation, which is an equation of the type d
dty = f(t, y), for some function f

of t and y

Opisthokonts A rather recently delineated taxon to which animals and fungi belong

ovoviviparous Having embryos that develop energetically independent from, but inside the mother

parameter A quantity in a model that describes the behaviour of state variables. It is usually assumed
to be a constant

parthenogenesis The mode of reproduction where females produce eggs that hatch into new females
without the interference of males

partition coefficient The ratio of the equilibrium concentrations of a compound dissolved in two immis-
cible solvents, which is taken to be independent of the actual concentrations. The concentrations
are here expressed per unit of weight of solvent (not per unit of volume or per mole of solvent)

phylum A taxon that collects organisms with the same body plan

plant Embryophyte, which includes mosses, ferns and relatives, gymnosperms and flowering plants

Poisson distribution A random integer-valued variable X is Poisson distributed with parameter (mean)
λ if Pr{X = x} = λx

x! exp{−λ}. If intervals between independent events are exponentially dis-
tributed, the number of events in a fixed time period will be Poisson distributed

polynomial A polynomial of degree n of argument x is a function of the type
∑n
i=0 cix

i, where c0, c0, · · · , cn
with cn 6= 0 are fixed coefficients

precocial A mode of development where the neonate is in an advanced state of development and usually
does not require attention from the parents. Typical precocial birds and mammals have feathers or
hair and gather food by themselves. The opposite of precocial is altricial

probability density function A non-negative function, here called φ, belonging to a continuous random
variable, x for instance, with the property that

∫ x2

x1
φx(x) dx = Pr{x1 < x < x2}

prokaryote An organism that does not have a nucleus, i.e. a eubacterium or archaebacterium; it contrasts
with an eukaryote

protoctist An eukaryote that is not a plant or animal

reduction degree A property of a molecule. Its value equals the sum of the valences of the atoms minus
the electrical charge

relaxation time A characteristic time that indicates how long a dynamic system requires to return to
its equilibrium after perturbation. It is a compound parameter with the dimension time, standing
for the first term of the Taylor expansion of the differential equation that describes the dynamics
of the system, evaluated in its equilibrium

respiration quotient The ratio between carbon dioxide production and oxygen consumption, expressed
on a molar basis

rod A bacterium with the shape of a croquette or sausage, that grows in length only, at a certain substrate
density. It is here idealised by a cylinder with hemispheres at both ends

ROS Reactive oxygen species, which include free radicals
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state variable A variable which determines, together with other state variables, the behaviour of a
system. The crux of the concept is that the collection of state variables, together with the input,
determines the behaviour of the system completely

survivor function A rather misleading term standing for the probability that a given random variable
exceeds a specified value. All random variables have a survivor function, even those without any
connection to life span. It equals one minus the distribution function. The term is sometimes
synonymous with upper tail probability

taxon A systematic unit, which is used in the classification of organisms. It can be species, genus, family,
order, class, phylum, kingdom

Taylor expansion The approximation of a function by a polynomial of a certain degree that is thought
to be accurate for argument values around a specified value. The coefficients of the polynomial are
obtained by equating the function value and its first n derivatives at the specified value to that of
the n degree polynomial

volumetric length The cubic root of the volume of an object. It has dimension length

weighted sum The sum of terms that are multiplied with weight coefficients before addition. If the
terms do not have the same dimension, the dimensions of the different weight coefficients convert
the dimensions of weighted terms to the same dimension

zero-th order process A process that can be described by a differential equation where the change of
a quantity is constant

zooplankter An individual belonging to the zooplankton, i.e. a group of usually small aquatic animals
that live in free suspension and do not actively move far in the horizontal direction
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Notation & symbols

Notation differences between edition 2 & 3

The heating length is now called LT rather than Lh to make a better link to ṗT . The (half)
saturation coefficient is now called K, rather than XK to simplify the notation.

L now means volumetric structural length, and Lw some physical length, in analogy
with Vw.

Since the theory substantially extended, and new variables need to be considered, quite
a few new symbols appeared.

Notation rules

Some readers will be annoyed by the notation, which sometimes differs from the one usual
in a particular specialisation. One problem is that conventions in e.g. microbiology differ
from those in ecology, so not all conventions can be observed at the same time. The
symbol D, for example, is used by microbiologists for the dilution rate in chemostats, but
by chemists for diffusivity. A voluminous literature on population dynamics exists, where
it is standard to use the symbol l for survival probability. This works well as long as one
does not want to use lengths in the same text! Another problem is that most literature
does not distinguish structural biomass from energy reserves, which both contribute to e.g.
dry weight. So the conventional symbols actually differ in meaning from the ones used
here.

Few texts deal with such a broad spectrum of phenomena as this book. A consequence
is that any symbol table is soon exhausted if one carelessly assigns new symbols to all
kinds of variables that show up.

The following conventions are used to reduce this problem and to aid memory.

Symbols

• Variables denoted by symbols that differ only in indices, have the same dimensions.
For example ME and MV are both moles.

• The interpretation of the leading character does not relate to that of the index char-
acter. For example, the M in ME stands for mass in moles, but in k̇M it stands for
maintenance.
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• Some lowercase symbols relate to uppercase ones via scaling; {e, E}, {m,M}, {j, J},
{l, L}, {w,W} and {x,X}.

• Structure V has a special role in DEB notation. The structural volume VV is abbre-
viated as V . Many quantities are expressed per structural mass, volume, or surface
area. Likewise the energy of reserve EE is abbreviated as E.

• Analogous to the tradition in chemistry, quantities which are expressed per unit of
structural volume have square brackets, [ ], so [M∗] = M∗/V = M∗L

−3. Quantities
per unit of structural surface area have braces, { }, so ṗ∗ = {ṗ∗}L2 = [ṗ∗]L

3 = [ṗ∗]V .
Quantities per unit of weight have angles, 〈 〉, (with indices w and d for wet and dry
weight). Likewise m∗ = M∗/MV is used for the amount of compound ∗ relative to the
amount of structure, all expressed in C-moles. It also applies to fluxes, but specific
fluxes are always taken to be non-negative j∗1∗2 = |J̇∗1∗2|/MV , where ∗1 refers to the
type of compound and ∗2 to the process. This notation is chosen to stress that these
symbols refer to relative quantities, rather than absolute ones. They do not indicate
concentrations in the chemical sense, because most of the compounds concerned are
not soluble.

• Parentheses, square brackets and braces around numbers refer to equations, refer-
ences and pages respectively.

• Rates have dots, which merely indicate the dimension ‘per time’. Dots (and primes)
do not stand for the derivative as in some mathematical and physical texts (see the
subsection ‘Expressions’). Dots, brackets and braces allow an easy test for some
dimensions, and reduce the number of different symbols for related variables. If
time has been scaled, i.e. the time unit is some particular value making scaled time
dimensionless, the dot has been removed from the rate that is expressed in scaled
time.

• Molar values have an overbar.

• Random variables are underscored. The notation x|x > x means: the random vari-
able x given that it is larger than the value x. It can occur in expressions for the
probability, Pr{}, or for the probability density function, φ(), of distribution function,
Φ().

• Vectors and matrices are printed in bold face. A bold number represents a vector
or matrix of elements with that value; so J̇1 is the summation of matrix J̇ across
columns and 1T J̇ across rows; x = 0 means that all elements of x are 0.

• Organic compounds are quantified in C-mol, which stand for the number of C-atoms
as a multiple of the number of Avogadro. So 6 C-mol of glucose equals 1 mol of
glucose. Notice that for simple compounds, such as glucose we have both the option
to express it in mole or C-mole, but for generalised compounds we can only express
them in C-mole. So we always use C-mole.
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• Mass-mass couplers y, also called yield coefficients, are constant , but yield coefficients
Y can vary in time. E.g. YWX stands for the C-moles of biomass W that is formed
per consumed C-mole of substrate X; it is not constant and depends on the specific
growth rate. Moreover, y is taken to be non-negative, while Y can be negative, if
one compound is appearing, and the other disappearing. They represent ratios of
molar fluxes, so YV E = J̇EG/J̇V G is the ratio of the flux of reserve E (here meant to
be a type) that is allocated to growth G (here meant to be a process) and the flux
of structure V that is synthesised in the growth process. As a consequence we have
yEV = y−1

V E.

• Energy-mass couplers µ∗1∗2 = ṗ∗1/J̇∗2∗1 for process ∗1 and mass of type ∗2 are in-
verse to the mass-energy couplers η∗2∗1 = µ−1

∗1∗2 . Notice that the sequence of indices

changed. The mass-mass couplers ζ∗1∗2 = µEmEm
µ∗2∗1

are scaled energy-mass couplers,

but now relative to the maximum reserve energy density µEmEm.

Indices

Indices are catenated, the first subscript frequently specifying the variable to which the
symbol relates. For example MV stands for a mole of structural biomass, where V is struc-
tural biovolume. Some indices have a specific meaning
∗ indicates that several other symbols can be substituted.

It is known as ‘wildcard’ in computer science.
As superscript it denotes the equilibrium value of the variable.

′ indicates a scaling as superscript.
i, j are counters that refer to types or species; They can take the values 1, 2, · · ·
m stands for ‘maximum’. For example ṗAm is the maximum value that ṗA can attain.
+ can refer to the sum of elements, such as V+ =

∑
i Vi, or to addition, such as Xi+1.

Indices for compounds refer to
C carbon dioxide C− bicarbonate E reserve ER reprod. reserve
H water, maturity M minerals NH ammonia NO nitrate
O dioxygen O org. compounds P product (faeces) Q toxic compound
V structural mass X food

Indices for processes refer to
X feeding A assimilation C mobilisation D dissipation
F feeding G growth J mat. maint. M vol. linked som. maint.
R reproduction S som. maint. T+ dissipating heat T surf. linked som. maint.

Expressions

• An expression between parentheses with an index ‘+’ means: take the maximum of
0 and that expression, so (x − y)+ ≡ max{0, x − y}. The symbol ‘≡’ means ‘is per
definition’. It is just another way of writing, you are not supposed to understand
that the equality is true.
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• Although the mathematical standard for notation should generally be preferred over
that of any computer language, I make one exception: the logic boolean, e.g. (x < xs).
It always comes with parentheses and has value 1 if true or value 0 if false. It appears
as part of an expression. Simple rules apply, such as

(x ≤ xs)(x ≥ xs) = (x = xs)

(x ≤ xs) = (x = xs) + (x < xs) = 1− (x > xs)∫ x
x1=−∞(x1 = xs) dx1/dx = (x ≥ xs)∫ x
x1=−∞(x1 ≥ xs) dx1 = (x− xs)+

• The following operators occur:
d
dtX|t1 derivative of X with respect to t evaluated at t = t1
∂
∂tX|t1 partial derivative of X with respect to t evaluated at t = t1

Eg(x) expectation of a function g of the random variable x
var x variance of the random variable x: E(x− Ex)2

cv x coefficient of variation of the random variable x:
√

var x/Ex
cov (x, y) covariance between the random variables x and y: E(x− Ex)(y − Ey)
cor (x, y) correlation between x and y: cov (x, y)/√var x vary
xT transpose of vector or matrix x (interchange rows and columns)
... or , catenation of matrices across columns: n = (nM

...nO)

; catenation across rows: (J̇T1 , J̇
T
2 )T = (J̇1; J̇2)

Signs

Fluxes of appearing compounds at the level of the individual plus its environment are
typically taken to be positive, and of disappearing compounds negative. Such fluxs are
indicated with a single index for the compound. If the process is also indicated, so two
indices are used, such as the mobilisation flux J̇EC the flux typically taken positive. The
sign-problem is complex, however, and depends on the level of observation and the choice
of state variables (i.e. pools). Where the sign is not obvious, I mention it explicitly.
Parameters are always positive, and yield coefficients written with a lower case y are taken
as parameters, but yield coefficients written with an upper case Y are ratios of fluxes (so
they are variables, which might vary in time) and can be negative. The yield of structure
on reserve in the growth process is Y G

V E = −yV E, with primary parameter yV E > 0.
The mass-specific fluxes, j, hazard rates, ḣ, and energy fluxes, ṗ, are always taken to

be positive.

Units, dimensions & types

The SI system is used to present units of measurements; the symbol ‘a’ stands for year.
In the description of the dimensions in the list of symbols, the following symbols are

used:
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− no dimension L length (of individual) e energy (≡ ml2t−2)
t time l length (of environment) T temperature
# number (mole) m mass (weight)

These dimension symbols just stand for an abbreviation of the dimension, and differ in
meaning from symbols in the symbol column. A difference between the dimensions l and L
is that the latter involves an arbitrary choice of the length to be measured (e.g. including
or excluding a tail). The morph interferes with the choice. The dimensions differ because
the sum of lengths of objects for which l and L apply, does not have any useful meaning.
The list below does not include symbols that are used in a brief description only. The page
number refers to the page where the symbol is introduced.

The choice of symbols relates to dimensions, and not to types. Three types are specified
in the description in the list: constant, c, variable, v, and function, f . This classification
cannot be rigorous, however. The temperature T , or example, is indicated to be a constant,
but it can also be considered as a function of time, in which case all rate constants are
functions of time as well. On the other hand, variables such as food density X, can be held
constant in particular situations. Variables such as structural biovolume V are constant
during a short period, such as is relevant for the study of the process of digestion, but not
during a longer period, such as is relevant for the study of life cycles. The choice of type
can be considered as a default, deviations being mentioned in the text.

List of frequently used symbols

symbol dim type page interpretation

a t v {52} age, i.e. time since gametogenesis of fertilization
ab t v {52} age at birth (hatching), i.e. end of embryonic stage
ap t v {64} age at puberty, i.e. end of juvenile stage
a† t v {210} age at death (life span)
ḃ† l3#−1t−1 c {233} killing rate by toxicant
Ḃ∗1∗2† l6#−2t−1 c {243} interaction parameter for compounds ∗1 and ∗2 in the hazard rate
B∗1∗2∗ l6 #−2 v {243} interaction parameter for compounds ∗1 and ∗2 on target parameter ∗
Bx(a, b) - f {58} incomplete beta function
c0 # l−3 c {232} no-effect concentration (nec) of toxicant in the environment
cd # l−3 v {217} concentration of toxicant in the water (dissolved)
ce # l−3 v {232} scaled internal conc. of toxicant above the nec: (cV − c0)+

cX # l−3 v {225} concentration of toxicant in food
cV # l−3 v {218} scaled internal concentration of toxicant: [MQ]PdV
c∗ # l−3 v {237} scaled tolerance conc. of toxicant for target parameter ∗
d∗ mL−3 c {11} density of compound ∗
Ḋ l2t−1 c {260} diffusivity
e - v {37} scaled energy density: [E]/[Em] = mE/mEm

eb - v {52} scaled energy density at birth
eH - v {52} scaled maturity density: guH/l3
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ebH - v {52} scaled maturity density at birth: gubH/l
3
b

eR - v {68} scaled energy allocated to reproduction: ERE−1
m

E e v {35} non-allocated energy in reserve
E0 e v {52} energy costs of one egg/foetus
EH e v {47} accumulated energy investment into maturation
EbH e c {52} maturation threshold for feeding (birth)
EpH e c {47} maturation threshold for reproduction (puberty)
ER e v {79} energy in reserve that is allocated to reproduction
[E] eL−3 v {35} energy density: E/V
[Eb] eL−3 v {51} energy density at birth
[EG] eL−3 c {36} volume-specific costs of structure
[Em] eL−3 c {37} maximum energy density: {ṗAm}/v̇
f - v {32} scaled functional response: f = X

XK+X = x
1+x

Ḟ l3t−1 v {32} filtering rate
Ḟm l3t−1 c {33} maximum filtering rate
{Ḟm} l3L−2t−1 c {33} specific searching rate
g - c {48} energy investment ratio: [EG]

κ[Em]

ḣ t−1 v {210} number-specific predation probability rate (hazard rate)
ḣa t−1 c {215} aging rate for unicellulars: [EG]

κµQC
k̇E+k̇M
g+1

ḣG t−1 c {213} Gompertz aging rate
ḣW t−1 c {213} Weibull aging rate
ḧa t−2 c {211} Weibull aging acceleration
ḣm t−1 c {340} max. throughput rate in a chemostat without complete washout
h∗ e#−1 v {155} molar enthalpy of compound ∗
iQ l3L−3t−1 c {217} uptake rate of toxicant
j∗ # #−1t−1 v {90} structure-specific flux of compound ∗: J̇∗/MV

J̇∗ # t−1 v {135} flux of compound ∗
J̇∗1,∗2 # t−1 v {90} flux of compound ∗1 associated with process ∗2
J̇ # t−1 v {135} matrix of fluxes of compounds J̇∗1,∗2
{J̇XAm}#L−2t−1 c {33} surface-area-specific max ingestion rate
[J̇Xm] #L−3t−1 c {123} volume-specific maximum ingestion rate: {J̇Xm}V −1/3

d

k − c {47} maintenance ratio: k̇J/k̇M
k̇e t−1 c {217} elimination rate of toxicant
k̇E t−1 c {123} specific-energy conductance: {ṗAm}V −1/3

d [Em]−1 = [ṗAm]/[Em]
k̇J t−1 c {47} maturity maintenance rate coefficient
k̇M t−1 c {43} somatic maintenance rate coefficient: [ṗM ]/[EG]
K∗ # l−3 or−2 c {25} (half) saturation coefficient of compound ∗; default: food
l - v {49} scaled body length: (V/Vm)1/3 = L/Lm
lb - c {52} scaled body length at birth: (Vb/Vm)1/3 = Lb/Lm
ld - c {273} scaled cell length at division: (Vd/Vm)1/3 = k̇Mg/k̇E
lT - c {44} scaled heating length: LT /Lm
lp - c {69} scaled body length at puberty: (Vp/Vm)1/3 = Lp/Lm
L L v {11} volumetric structural length: V 1/3

Lb L v {49} volumetric length at birth: V 1/3
b
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Ld L v {128} volumetric length at cell division
Lm L c {49} maximum volumetric length: V 1/3

m = v̇/gk̇M

Lp L v {64} volumetric length at puberty: V 1/3
p

LT L c {44} volumetric heating length: V 1/3
T = {ṗT }/[ṗM ]

Lw L v {10} physical length: L/δM
m∗ # #−1 v {81} mass of compound ∗ in moles relative to MV : M∗/MV

mEm # #−1 v {90} max molar reserve density: MEm/MV = [MEm]/[MV ]
M∗ # v {81} mass of compound ∗ in moles
M(V ) - f {121} shape (morph) correction function: real surface area

isomorphic surface area
[MEm] #L−3 c {81} maximum reserve density in non-embryos in C-moles [Em]/µE
[Msm] #L−3 c {267} maximum volume-specific capacity of the stomach for food
[MV ] #L−3 c {82} number of C-atoms per unit of structural body volume V
[M0

Q] #L−3 c {232} (internal) no effect concentration of compound Q; cf c0

n∗1∗2 ##−1 c {134} number of atoms of element ∗1 present in compound ∗2
n0
∗1∗2 ##−1 c {153} number of isotopes 0 of element ∗1 present in a pool of comp. ∗2
n0k
∗1∗2 ##−1 c {93} number of isotopes 0 of element ∗1 present in comp. ∗2 in process k
n # #−1 c {134} matrix of chemical indices n∗1∗2
N # v {354} (total) number of individuals:

∫
a φN (a) da

ṗ∗ e t−1 v {25} energy flux (power) of process ∗
ṗT+ e t−1 v {155} total dissipating heat
ṗTT e t−1 v {156} radiation and convection heat
ṗ e t−1 v {135} vector of basic powers: (ṗA ṗD ṗG)
{ṗAm} eL−2t−1 c {35} surface-area-specific maximum assimilation rate
[ṗAm] eL−3t−1 c {123} volume-specific maximum assimilation rate: {ṗAm}V −1/3

d

[ṗM ] eL−3t−1 c {42} specific volume-linked somatic maintenance rate: ṗM/V
[ṗS ] eL−3t−1 v {36} volume-specific somatic maintenance rate: ṗS/V = [ṗM ] + {ṗT }/L
{ṗT } eL−2t−1 c {42} specific surface area-linked somatic maintenance rate: ṗT V −2/3

P∗1∗2 - c {225} partition coeff. of a compound in matrix ∗1 and ∗2 (moles per volume)
Pow - c {315} octanol/water partition coefficient of a compound
PPX - c {225} faeces/food partition coefficient of a compound
PV d l3L−3 c {217} biomass/water (dissolved fraction) partition coefficient of a compound
PVW - c {225} structural/total body mass partition coefficient of a compound
q(c, t) - v {233} survival probability to a toxic compound
ṙ t−1 c {36} number-specific population growth rate
ṙB t−1 c {49} von Bertalanffy growth rate: (3/k̇M + 3fV 1/3

m /v̇)−1 = k̇Mg/3(f + g)
ṙm t−1 c {340} (net) maximum number-specific population growth rate
ṙ◦m t−1 c {340} gross maximum number-specific population growth rate
Ṙ # t−1 v {67} reproduction rate, i.e. number of eggs or young per time
Ṙm # t−1 c {68} max reproduction rate
s - v {237} stress value
s0 - c {237} stress value without effect
sG - c {211} Gompertz stress coefficient
s∗ e T−1 #−1 v {155} molar entropy of compound ∗
t t v {35} time
td t v {274} inter division period
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tD t c {273} DNA duplication time
tg t v {268} gut residence time
tR t v {70} time at spawning
ts t v {267} mean stomach residence time
T T c {16} temperature
TA T c {16} Arrhenius temperature
Tb T c {14} body temperature
Te T c {14} environmental temperature

uE - v {52} scaled reserve: UE
g2k̇3

M
v̇2

= E
g[Em]Vm

= el3

g

u0
E - v {52} initial scaled reserve: U0

E
g2k̇3

M
v̇2

= E0
g[Em]Vm

uH - v {52} scaled maturity: UHg2 k̇
3
M
v̇2

= EH
g[Em]Vm

ubH - v {52} scaled maturity at birth: U bHg
2 k̇

3
M
v̇2

= EbH
g[Em]Vm

upH - v {64} scaled maturity at puberty: UpHg
2 k̇

3
M
v̇2

= EpH
g[Em]Vm

UE tL2 v {35} scaled reserve: ME/{J̇EAm}
UH tL2 v {72} scaled maturity: MH/{J̇EAm}
U bH tL2 v {72} scaled maturity at birth: M b

H/{J̇EAm}
UpH tL2 v {64} scaled maturity at puberty: Mp

H/{J̇EAm}
v̇ L t−1 c {37} energy conductance (velocity): {ṗAm}/[Em]

vbH - c {52} scaled maturity volume at birth: Mb
Hg

2k̇3
M

v̇2{J̇EAm}(1−κ)
= ubH

1−κ
V L3 v {79} structural body volume
Vb L3 c {52} structural body volume at birth (transition embryo/juvenile)
Vd L3 c {128} structural cell volume at division
VT L3 c {44} structural volume reduction due to heating: {ṗT }3[ṗM ]−3 = L3

T

Vm L3 c {49} maximum structural body volume: (κ{ṗAm})3[ṗM ]−3 = (v̇/k̇Mg)3

Vp L3 c {64} structural body volume at puberty (transition juvenile/adult)
Vw L3 c {78} physical volume
V∞ L3 c {128} ultimate structural body volume
w∗ m#−1 c {82} molar weight of compound ∗
Wd m v {79} dry weight of (total) biomass
Ww m v {11} wet weight of (total) biomass
x - v {336} scaled biomass density in environment: X/K
X∗ # l−3 or−2 v {24} biomass density of compound ∗ in environment; default: food
Xr # l−3 c {335} substrate density in feed of chemostat
y∗1∗2 # #−1 c {39} coefficient that couples mass flux ∗1 to mass flux ∗2
Y k
∗1∗2 # #−1 v {92} yield that couples flux ∗1 to flux ∗2 in process k: J̇∗1k/J̇∗2k
z - v {292} zoom factor to compare body sizes
α∗3∗1∗2 - c {93} reshuffle coefficient for element ∗1 of compound ∗2 in process ∗3
β0∗3
∗1∗2 - c {95} odds ratio of isotope 0 of element ∗1 of compound ∗2 in process ∗3
γ0
∗1∗2 - c {93} number of isotopes 0 of element ∗1 in comp. ∗2

number of atoms of element ∗1
Γ(x) - f {213} gamma function
δ - c {128} aspect ratio
δl - c {169} shape parameter of generalized logistic growth
δM - c {11} shape (morph) coefficient: V 1/3/L
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η∗1∗2 # e−1 c {135} coefficient that couples mass flux ∗1 to energy flux ∗2: µ−1
∗2∗1

η # e−1 c {135} matrix of coefficients that couple mass to energy fluxes
θ - v {99} fraction of a number of items: 0 ≤ θ ≤ 1
κ - c {24} fraction of catabolic power energy spent on maintenance plus growth
κA - c {181} fraction of assimilation that originates from well-fed-prey reserves
κE - c {190} fraction of rejected flux of reserves that returns to reserves
κR - c {48} fraction of reproduction energy fixed in eggs
κX - c {35} fraction of food energy fixed in reserve
µ∗ e#−1 c {163} specific chemical potential of compound ∗
µ∗1∗2 e#−1 c {135} coefficient that couples energy flux ∗1 to mass flux ∗2: η−1

∗2∗1
µM e#−1 c {156} vector of specific chemical potentials of ‘minerals’
µO e#−1 c {156} vector of specific chemical potentials of organic compounds
µ∗ e#−1 c {164} molar gibbs energy of compound ∗
ρ - c {102} binding probability of substrate
σ̇ e T−1t−1 v {157} rate of entropy production
τ - v {112} scaled time or age: typically tk̇M or ak̇M
τb - v {52} scaled age at birth: abk̇M
ω∗ - c {79} contribution of reserve to body weight or physical volume
ζ∗1∗2 # #−1 c {160} coefficient that couples mass flux ∗1 to energy flux ∗2: µEmEmµ

−1
∗2∗1
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Abramis, 308
Acartia, 181
Accipenser, 308
Acetobacterium, 376
Achatina, 306
Acidianus, 377
Acinetobacter, 87, 89, 193
Acrobeloides, 231
Actinomyceta, 123
Actinophrys, 306
Actinopoda, 391
Actinosphaerium, 2
Adoxa, 329
Aepyceros, 62, 63
Aerobacter, 159
Agapornis, 53, 56, 168
Agelaius, 311
Agrobacterium, 387
albatross, see Diomedea
Alces, 312
Alligator, 56
Alnus, 398
Alopiidae, 180
Alteromonas, 127
Alveolata, 391
Amazilia, 310
Ammodytes, 309
Amoeba, 50, 306, 400
Amphibolurus, 56
Amphidinium, 330
amphipod, see Calliopius, Gam-

marus, Cheatogammarus
Amphipoda, 293
Anabaena, 398
Anas, 56, 197, 310
anchovy, see Engraulis
angler, see Haplophryne
Anguilla, 3
Anous, 56
Anser, 56, 57, 310
Anthochaera, 88
Apiotrichum, 87, 88
Apis, 257
Aplysia, 306
Apodanthaceae, 394
Aptenodytes, 3, 166, 180, 309
Apteryx, 292, 302
Apus, 119, 310
Aquifex, 374, 376
Arachnitis, 405
Archaea, 391, 393, 409

Archaeopteryx, 198
Arctium, 329
armadillo, see Dasypus
Armillaria, 2, 289
Arnoglossus, 309
arrow worm, see Sagitta
Arthrobacter, 30
Arum, 14
Ascomyceta, 7
Ascomycetes, 407
Asio, 310
Aspergillus, 19, 86, 181, 327
Aspicilia, 131
Asplanchna, 242, 306
Astropecten, 216
Atherina, 308
Atriplex, 186
Atta, 272
auklet, see Ptychoramphus
Azolla, 398, 400
Azorhizobium, 379
Azospirillum, 379
Azotobacter, 87, 379

Bacillariophyceae, 391, 401
Bacillariophyta, 411
Bacillus, 129, 216
bacteria
α-proteo, 374
actino, 406
cyano, 86, 123, 374, 391, 400,

401, 405
Gram-negative, 265
green, 185
helio, 185
homoacetogenic, 376
knallgas, 376
myxo, 120
non-sulphur, 185
plancto, 374, 392
pori, 392
posi, 391
purple sulphur, 374
sulphate-reducing, 376
sulphur, 123, 185

Balaenoptera, 198, 311, 406
Balanophoraceae, 394
bandicoot, see Perameles
Barbus, 308
Basidiomycetes, 407
Bathyergidae, 298

Bdellovibrio, 379
bever, see Castor
Biomphalaria, 307
Biomyxa, 2
Blennius, 309
Bombus, 14
Bombycilla, 310
Bonasia, 310
Boraginaceae, 329
Bos, 63, 312
Bosmina, 307
Botryllus, 209
Brachionus, 19, 32, 246
Bradypus, 14
Brassicacaea, 407
bream, see Abramis
Brevoortia, 312
Brocadia, 379
Bryopsidophyceae, 2
Buphagus, 325
burbot, see Lota
Burmanniaceae, 394
Buteo, 310

Caduceia, 400
Cairina, 197
Calanus, 307
Calliopius, 19, 307
Caloplaca, 131
Campylorhynchus, 311
Cancer, 307
Canis, 311
Canthocampus, 19
Capnia, 307
Capra, 63
Caprifoliaceae, 329
Carapus, 334
Carcinus, 217
Cardium, 19
Caretta, 56
Carettochelys, 55, 56
Castor, 311
cat, see Felix
Catharacta, 170, 310
Caulobacter, 30
Cavia, 6, 63
Cecropia, 329
Centengraulis, 312
Cerastoderma, 307
Ceratium, 124
Ceriodaphnia, 19, 20, 307
Cervus, 63
Chaetogammarus, 234
Charophyceae, 2
Chelonia, 56
Chelydra, 56
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Chiasmodon, 269
chicken, see Gallus
Chironomus, 308
Chlamydomonas, 394
Chlidonias, 310
Chlorarachnida, 393
Chlorobiacea, 374
Chlorobium, 376, 377
Chloroflexus, 375, 377
Chlorophyceae, 2
Chlorophyta, 2, 391, 393
Chondromyces, 406
Chromatiacea, 374
Chromatium, 388
Chromista, 399
Chrysemus, 60
Chrysidiella, 391
Chrysomonadida, 87
Chydorus, 17, 19, 307
Ciliata, 2, 392
Cionia, 310
Cladophoryceae, 2
Clethrionomys, 63
Closterium, 376
Clostridium, 216
Clupea, 308, 312
Clupeoidei, 312
Cnidaria, 409
cod, see Gadus
coelacanth, see Latimeria
Colinus, 310
Collembola, 222
Colpidium, 347
Coluber, 54, 56
Columba, 56
comb jelly, see Mnemiopsis,

Pleurobrachia
Conus, 216
Convolvulaceae, 394
copepod, see Acartia, Calanus
Coprinus, 327
coral, 330
Coregonus, 308
Coryphoblennius, 309
Coturnix, 56, 310
cow, see Bos
Crassostrea, 143
Cricetus, 63
Crocodylus, 54, 56
Cryptophyceae, 87, 391, 393
Cryptothallus, 394
cuckoo, see Cuculus
Cuculus, 302, 310
cuis, see Galea
Cyanidoschyzon, 393
Cylindrocarpon, 106, 379
Cynomoriaceae, 394
Cytinaceae, 394

dace, see Leuciscus
Dama, 63
Danaus, 216

Daphnia, 18–20, 43–46, 53, 58,
60, 61, 64, 66, 69, 113, 115,
120, 144, 211, 234, 238,
247, 271–273, 291, 303,
307, 349, 350, 352, 354, 398

Daptobacter, 379, 388
Dasycladophyceae, 2
Dasypeltis, 334
Dasypus, 65
Delphinapterus, 311
Dendrobatus, 180, 216
Dendrobeana, 306
Dermochelys, 14
Desmodus, 311
Deuterostomia, 86
Diaphanosoma, 307
diatom, see Bacillariophyceae
Dichelopandalus, 307
Dictyostelium, 86, 360
Didemnidae, 399
Dinornis, 291
Dinozoa, 87, 391
Diomedea, 49, 55, 56, 309
Diplomonada, 2
Dissodactylus, 307
Diura, 307
dog, see Canis
Dorylinae, 327
dove, see Columba
Dromaius, 66
Drosophila, 280
duck, see Anas

earthworm, see Dendrobeana
Ecdysozoa, 47, 49, 334
Echeneis, 327
Echinocardium, 308
Echiurida, 6, 7
eel, see Anguilla
Elasmobranchii, 327
elephant, see Loxodonta
elk, see Alces
Ellerkeldia, 308
Elliptio, 228
Emberiza, 311
Emiliania, 188
emu, see Dromaius
Emydoidea, 60
Emydura, 56
Emys, 309
Engraulis, 51, 71, 282, 312
Ensis, 307
Entodiniomorphida, 87
Entomobrya, 307
Equus, 63
Eremitalpa, 14
Eremophila, 311
Escherichia, 19, 22, 127, 129,

140, 262, 286, 343, 347,
360, 374, 375, 392, 393

Esox, 308
Eucalyptus, 216
Eucoccidiida, 87

Eudyptes, 65
Eudyptula, 309
Euglenida, 87
Eunectes, 309
Eunice, 71
Euphasia, 307
Euphausia, 48

Fabales, 398
Falco, 71, 310
Felix, 63
Florida, 310
Florideophyceae, 7
Folsomia, 244
foraminifera, see Granuloreticu-

lata
Formicariidae, 327
frog, see Dendrobatus, Rana,

Rhinoderma
Fugu, 216
Fulica, 7
Fungi, 329, 393, 406
Furcifer, 59
Fusarium, 106, 126, 129, 379

Gadus, 308
Galea, 313
Gallinula, 310
Gallionella, 106
Gallus, 56, 57, 310
Gambusia, 308
Gammarus, 307
gannet, see Sula
Garrulus, 311
Gasterosteus, 180, 308
Gemmata, 392
Geosiphon, 400, 401
Giardia, 392
Glaucidium, 310
Glaucophyta, 393
Glis, 88
Globobulimina, 106, 379
Glomeromycetes, 407
Glomus, 405
Glycyphagus, 327
Gobio, 309
Gobius, 68, 309
goose, see Anser
Granuloreticulata, 391
grayling, see Thymallus
guillemot, see Uria
gull, see Larus, Rissa
Gunnera, 398
guppy, see Poecilia
Gygis, 56
Gymnodinium, 330, 391
Gymnorhinus, 311
Gymnosphaerida, 2

Haematopus, 310
hake, see Merluccius
halibut, see Hypoglossus
Halichoerus, 62, 63
Hapalochlaena, 216
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Haplophryne, 8
Haplosporida, 2
hare, see Lepus
Helianthus, 14
Helicella, 307
Heliconidae, 216
Heliocidaris, 5
Heliozoa, 264
Helix, 306
Helminthes, 160
Hemiaulus, 400
Hemicentetes, 313
herring, see Clupea
Heterocephalus, 14, 15
Heterolobosea, 391
Hippophaë, 398
Holothuria, 6
Homarus, 307
Homo, 63, 65, 284, 311
hopping-mouse, see Notomys
horse, see Equus
human, see Homo
hummingbird, 119, see Amazilia,

Selasphorus
hummingbird, 14
Hydnoraceae, 394
Hydra, 48, 391
hydra, 210
Hydrodictyon, 276
Hydrogenobacter, 376
Hymenoptera, 257
Hypochrosis, 327
Hypoglossus, 309
Hyridella, 307

Ignicoccus, 374
Indicator, 327
Isotoma, 307

jay, see Garrulus
jelly fish, see Scyphomedusae

Karyorelicta, 106, 379
kiwi, see Apteryx
Klebsiella, 19, 111, 139, 157, 347,

379
Kluyveromyces, 130, 182
krill, see Euphasia

Labrus, 308
Lactobacillus, 160
Lama, 63
Lamnidae, 14, 180
Lanius, 257
Larus, 56, 169, 310
Latimeria, 180, 298
Leipoa, 56
Lennoaceae, 394
Lentibulariaceae, 394
Lepidocyrtus, 307
Lepidosiren, 119
Lepomis, 308, 309
Leptodora, 307
Leptonychotes, 312

Lepus, 63, 311
Lesueurigobius, 309
Leuciscus, 308
lichen, see Aspicilia, Rhizocar-

pon
Limenitus, 216
Listeria, 389
Liza, 309
lizard, see Sauria
Locusta, 308
Loligo, 285, 307
Lota, 308
Loukozoa, 2
love bird, see Agapornis
Loxodes, 106, 379
Loxodonta, 312
Luidia, 6
Lumbricus, 237
lungfish, see Lepidosires, Pro-

topterus
Lutra, 311
Lycophyta, 394
Lymnaea, 28, 48, 54, 56, 115,

116, 213, 224, 226, 307, 334
Lytechenus, 308

Macoma, 199, 307
Macropus, 311
Maculinea, 20
mallard, see Anas
Marsupialia, 278
Mastigamoeba, 2
Materpiscus, 5
Meleagris, 310
Merismopedia, 123, 124
Merluccius, 308
Methanobacillus, 327
Methanobacterium, 376
Methanococcus, 375, 376
Methanoplanus, 122
Methanopyrus, 376
Micrococcus, 327
Microsporidia, 2
Mirounga, 8, 312
Mitrastemonaceae, 394
Mixococcus, 406
Mnemiopsis, 306
moa, see Dinornis
Mola, 298
mole rat, see Heterocephalus
Monodonta, 307
Monotremata, 14
moose, see Alces
Moraria, 19
Motacilla, 311
mouse, see Mus
Mucor, 124
Mugil, 309
Mus, 49, 62, 63, 214, 311
muscovy, see Cairina
musk rat, see Ondatra
mussel, see Mytilus
Mustela, 6, 291
Mya, 19, 307

Myrica, 7
Myrmecia, 392
Myrmecocystus, 89
Mytilus, 19, 28, 113, 115, 165,

307
Myxozoa, 2

Nais, 19, 120
Nanoarchaeum, 374
Nemipterus, 308
Neosciurus, 216
Nephridiophagida, 2
Neurospora, 126, 132
newt, see Triturus
Nitrobacter, 327, 379
Nitrosomonas, 327, 375, 379
Nonionella, 106, 379
Nostoc, 400
Notiophilus, 281
Notodendrodes, 30
Notomys, 311
Nucleariidae, 2

Oceanodroma, 309
Octopus, 285
Odocoileus, 63
Odontaspidae, 180
Oikopleura, 5, 43, 68–70, 308
oilbird, see Steatornis
Olavius, 401
Oncorhynchus, 53, 308
Ondatra, 130, 291
Ophioglossales, 394
Opisthocomus, 85
orache, see Atriplex
Orchesella, 307
Orchidaceae, 394
Oreochromis, 43
Ornithorhynchus, 292
Orobanchaceae, 394
Oryctolagus, 63, 311
Oscillatoria, 378
Ostreococcus, 393
otter, see Lutra
Ovis, 63
owl, see Asio, Glaucidium, Strix,

Tyto

paddlefish, see Polyodon
Pagaphilus, 312
Panurus, 180
Paracoccus, 158
Paramecium, 306
Paramyxea, 2
Parascaris, 392
Parasitaxus, 394
Parus, 29, 311
Patella, 307
Patiriella, 7, 180
Pavlova, 190, 192
Pecten, 71
Pediastrum, 123
Pelagibacter, 374
Pelicanus, 56, 57
Pelomyxa, 387
penguin, see Aptenodytes, Eu-

dyptes, Pygoscelis
Penicillium, 126
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Perameles, 80, 311
Perca, 309
perch, see Ellerkeldia, Perca
Percolozoa, 391
Peripatus, 5, 216
Perna, 19, 307
Petrochelidon, 311
Petrosaviacea, 394
Pfiesteria, 216
Phaenopsectra, 307
Phaethon, 309
Phalacrocorax, 309
Phallus, 329
Phasianus, 310
Philodina, 282
Philomachus, 310
Phoeniconaias, 310
Phylloscopus, 311
Physeter, 29
Phytophthora, 394
Pieris, 280
pig, see Sus
pike, see Esox
Pimephales, 323
Pipistrellus, 63
Pitohui, 216
Placentalia, 5, 279
Placopecten, 307
plaice, see Pleuronectes
plant, 134, 149, 169, 201
Plasmodiophorida, 2
Platyhelminthes, 391
platypus, see Ornithorhynchus
Pleurobrachia, 19, 50, 306
Pleuronectes, 34, 309
Pleuronectiformes, 312
Pleurozium, 401
Poecilia, 51, 228, 234, 308, 318
Pogonophora, 400
Polyodon, 269
Pomatoschistus, 309
pond snail, see Lymnaea
Porifera, 391
Postgaardi, 388, 398, 399
Prionace, 308
Procellariiformes, 302
Prochlorococcus, 375
Prochlorocossus, 374
Prochloron, 399
Protopterus, 119
Prototheria, 278
Prymnesiida, 87
Psalteriomonas, 388
Psephotus, 168
Pseudomonas, 19, 158, 327
Pseudomys, 311
Pseudonitzschia, 382
Pseudospora, 2
Pterodroma, 49, 56, 309
Ptychoramphus, 302, 310
Puffinus, 56, 170, 309
Pungitius, 308
Pygoscelis, 166, 309
Pyrodictium, 372

quail, see Coturnix

rabbit, see Oryctolagus
racer, see Coluber
radiolaria, see Actinopoda
Rafflesiaceae, 394
Raja, 308
Rallus, 310
Ramphastos, 310
Rana, 56, 68, 309
Ranatra, 144
Rangifer, 312
Rattus, 63, 122, 311
reindeer, see Rangifer
Rheobatrachus, 5
Rhincodon, 298
Rhinoderma, 180
Rhizobium, 379, 387, 398
Rhizocarpon, 131
Rhodobacter, 392
Rhodophyta, 393, 406
Rhodospirallacea, 106
Rhopalodia, 400
Richelia, 400
Rickettias, 387
Rickettsia, 334
Rissa, 310
roach, see Rutilus
Rosaceae, 329
rotifer, see Asplanchna, Bra-

chionus, Philomachus
Rotifera, 391
ruff, see Philomachus
Ruminococcus, 396
Rutilus, 308

Saccaromyces, 393
Saccharomyces, 30, 50, 87, 162,

182, 183, 195, 306, 350
Sacculina, 217
Sagitta, 40, 80, 308
Salamandra, 7, 180
Salmo, 54, 56, 66, 308
Salmonella, 240, 344, 345
Salvelinus, 43, 308
Sancassania, 51
sandeel, see Ammodytes
Sarcophaga, 327
Sardina, 312
Sardinella, 312
Sardinops, 312
Sauria, 14
scaldfish, see Arnoglossus
Scarabaeidae, 327
Scenedesmus, 276
Schistosoma, 40
Sciurus, 216
Scophthalmus, 19, 309
Scyphomedusae, 7
sea squirt, see Didemnidae
seal, see Halichoerus, Leptony-

chotes, Mirounga
Selasphorus, 310
Seriola, 309

Setonix, 311
shark, see Elasmobranchii
shearwater, see Puffinus
sheep, see Ovis
Shigella, 389
shrew, see Sorex
shrike, see Lanius
Silphidae, 335
Sipunculida, 6
skate, see Raja
skua, see Catharacta, Stercorar-

ius
smelt, see Atherina
soft-shelled turtle, see Caret-

tochelys
Solanaceae, 329
Solea, 309
Sorex, 118, 311
Spargus, 259
sperm whale, see Physeter
Sphagnum, 216, 408
Sphenodon, 56, 302
Splachnum, 327
Sprattus, 312
squid, see Loligo
starling, see Sturnus
Steatornis, 310
Stercorarius, 170, 310
Sterna, 310
stick insect, see Ranatra
stickle back, see Gasterosteus,

Pygosteus
stickleback, see Gasterosteus
Stigmatella, 406
Stizostedion, 18
stoat, see Mustela
Stolephorus, 312
Streptococcus, 126, 129
Streptomyces, 406
Strix, 310
Strongylocentrotus, 65
Sturnus, 310
Sula, 309, 310
Sulfolobus, 375, 376
Suncus, 311
Sus, 63
swallower, see Chiasmodon
swift, see Apus
Sylvia, 311
Symbiodinium, 330
Synthliboramphus, 300

Tachyoryctes, 311
tenrec, see Hemicentetes
Terebratalia, 307
Tetrapoda, 86
Thermatoga, 389
Thermoproteus, 375, 376
Thiobacillus, 327
Thiomargarita, 89
Thiopedia, 123
Thioploca, 385
thrasher, see Toxostoma
Thunnus, 14, 309
Thymallus, 308
Tilapia, 309
tit, see Panurus,Parus
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Tomocerus, 307
Toxostoma, 50, 311
Trichobilharzia, 334
Trichomonas, 392
Trichosurus, 216, 311
Trichotomatida, 87
Tricladida, 6
Trimastrix, 388
Tripanosoma, 394
Triturus, 309
Triurdaceae, 394
Troglodytes, 56, 57, 311
trout, see Salmo, Salvelinus
tuatara, see Sphenodon
tube nose, see Procellariiformes
Tuber, 329
turbot, see Scophthalmus
Tyrannus, 311
Tyto, 310

Uca, 198
Ulvophyceae, 2
Uria, 168, 170, 196
Urochordata, 86
Urosalpinx, 306
Ustilaginales, 326
Utetheisa, 216

Valamugil, 309
vampire, see Desmodes
Vaucheria, 2
velvet worm, see Peripatus
Venus, 307
Veronica, 329
Vibrio, 216, 396
Viola, 231, 329
Vipera, 309
Volvocida, 87

walleye, see Stizostedion
waternymph, see Nais
Welwitschia, 42
whale, see Balaenoptera, Phy-

seter
Wolbachia, 216, 334
wrasse, see Labrus
wren, see Campylorhynchus,

Troglodytus

Xanthophyta, 2
Xenophyophorea, 2
Xyloplax, 400

yeast
bakers, see Saccharomyces
oleaginous, see Apiotrichum

yellowtail, see Seriola
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accumulation curve, 222
action

independent, 247
modes of, 239

adaptation, 18, 89, 221, 289, 290, 299
age, 123, 215

acceleration, 246
ageing, 40
allocation

static, 200
workload, 203

allometric
elasticity, 299
function, 30, 148
growth, see growth

ammonia, 152, 198, 338
antagonism, 247
aphid, 5
aspect ratio, see fraction
assumptions, 76, 210, 251

bacteria
bluegreen, 89
iron, 109

BC, see Bioconc. coeff
biofilm, 125
blood, 43, 46
buoyancy, 89

C-mole, 83
caecum, 276
calcification, 192
calorimetry

indirect, 161
canonical

community, 372
carbohydrate, 88, 188, 338
carrier, 256
carrying capacity, 297
cellulose, 88
cell cycle, 6, 279
chain, 258
chitine, 88, 421
chloroplast, 403

cilia, 402
coefficient

allometric, 27, 33, 302
bioconcentration, 222, 324, 326
condition, 81
diffusion, 137
partition, 228, 230, 239, 323
ponderal, 81
Redfield, 83
saturation, 27, 35, 53, 154, 186, 266
shape, 11, 12
Sherwood, 267
somatic maintenance rate, 49
somatic maintenance rate, 45
specific-density, 11
Stefan–Boltzmann, 160
van’t Hoff, 21
variation, 359, 360

compensation point, 23, 191
competition, 333
composition, 83, 142, 165
compound

generalised, 84
computer simulation, 356
concentration

addition, 247
no effect, 235
ranges, 233
tolerance, 241

conductance
energy, see energy
thermal, 45, 160

constant, see coefficient
constraint

stoichiometric, 9
convection, 160, 267
conversion

energy-young, 354
food-biomass, 346, 361
reserve-mole, 83
substrate-energy, 163
volume-mole, 84
volume-surface area, 10, 124
volume-weight, 11, 81
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corrosion, 109
coupling

aging-energetics, 217
energy-life history, 124
feeding-digestion, 184
moulting-incubation, 357
mutagenicity-energetics, 245
parameters, 359

crust, 134
culture

batch, 351, 353
chemostat, 345
fed-batch, 352, 357, 362

cycle
tca, 386
Calvin, 386
diurnal, 119
rock, 421

Dehnel phenomenon, 122
density, 428
dephosphatation, 197
detritus, 189
development, 46

altricial, 55, 59, 64, 171
precocial, 59, 64
prokaryotic, 127

diet, 5, 184
diffusion, 31, 265
digestion, 272
dimension, 148, 346
dimorphy

egg, 67
sex, 7, 216

dioxygen, 198
direction field, 348
dissipation, 43
distribution

binomial, 245
exponential, 274
Gompertz, 218
normal, 11
Poisson, 245
Weibull, 218, 219, 237

division, 278
dormancy, 123
dynamics

adaptive, 360

ectotherm, 14
effect

growth, 239
mixtures, 247

mutagenic, 234, 244
nil level, 235
population, 249
receptor-mediated, 243
reproduction, 239
survival, 236, 237
teratogenic, 234
toxic, 233

efficiency
assimilation, 37
digestion, 277

egg
shell, 60
winter, 124, 362

elasticity, 204
El Niño, 21
endoplasmatic reticulum, 402, 409, 413
endotherm, 14
energy, 79, 158

activation, 17
assimilation, 37
conductance, 39
flow, 26
Gibbs free, see potential
investment ratio, 50

enthalpy, 80
entropy, 80, 161
enzyme, 9, 13, 15, 17, 32, 99
equation

balance, 1, 38, 138, 277
characteristic, 355
energy balance, 158
Laplace, 266
mass balance, 266
van’t Hoff, 17
von Foerster, 363

evaporation, 46, 160
evolution

weak homeostasis, 40

factor, see coefficient, fraction
faeces

pseudo, 186
fat, 89
feeding

filter, 27
method, 27
rate, see rate
vacuole, 32

fermentation, 164
filament, 126
fire, 424
fitness, 343
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floc, 136, 267
food

chain, 367
density, 26
deposit, 261

fraction
aqueous, 83
aspect, 132
Boltzmann, 17
death, 350

fugacity, 324
funnel concept, 163

gap junctions, 416
gene transfer, 88
genetics, 296, 299
geography, 135, 296
gigantism, 42
glycolysis, 111
growth, 50

allometric, 202
at starvation, 117
cube root, 136
curve, 133, 288
determinate, 49
embryonic, 56, 172
expo-logistic, 351, 353
exponential, 130, 358
foetal, 63, 64
foetus, 281
generalised logistic, 173
Gompertz, 173
indeteminate, 49
isomorphic, 10
logistic, 172, 351
rods, 133
scope for, 432
shifted, 117, 118
tumour, 205
von Bertalanffy, 31, 47, 48, 82, 170, 217, 219
von Bertalanffy, 51

gut
capacity, 171, 272, 274
flora, 79
residence time, see time
volume, 275

heat, 159
hibernation, 123
homeostasis, 8

acquisition, 15
strong, 9, 411, 414
structural, 10

thermal, 14
weak, 10, 333, 411
weak structural, 204

homeothermy, 14, 45, 160

index, see coefficient
gonado-somatic, 167

individual, 1
insulation, 15
invasion, 371
ionisation, 222, 239

Jacobian, 346, 374

kinetics, see process

lactation, 283
law

Beer-Lampert, 189
conservation, see balance eq.
Fick, 266
large numbers, 350, 359
mass action, 17, 102, 346

LC50, 328
length

at birth, 51
heating, 46
maximum, 51
volumetric, 11

light, 100
light cycle, 119
limiting factor, 99, 195, 267

maintenance, 44, 123
ration, 297

maturation, 47
maturity, 4
membrane, 13, 43, 44, 280

embryonic, 55, 63, 82
metabolism, 108

central, 111
metabolon, 281
microbial loop, 392
migration, 45, 89
milk, 184, 281
mimicry, 214
mitochondrion, 403, 412
mixtures

binary, 247
model

complexity, 344
consistency, 37
continuity, 355, 356
verification, 148, 355
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morph
iso, 10
V0, 125
V1, 126

moult, 45, 51
multiplier

Lagrange, 166
mycorrhizae, 417

NEC, 235
Newton, I., 45
nitrate, 198
nitrite, 246
nitrogen, 151
nucleomorph, 403
nucleus

envelope, 402
macro, 402
micro, 402

number, see coefficient

osmosis, 45, 55
overhead, 79

Pütter, A., 53
parameter

changes, 287
estimation, 172, 352
variation, 296, 358

parasite, 42, 342
partitionability, 38
pathway, 258
pentose phosphate cycle, 111
period, see time
pH, 239
phagocytosis, 32, 34
photopigment, 189
plant, 91
plug flow, 274, 276
population

deb V1-morphs, 351
equilibrium, 346
interaction, 344
level, 343
Lotka–Volterra, 345
stability, 346
statistics, 359
structured, 352
unstructured, 344

potential
chemical, 80, 161

power, 128
ppGpp, 350

predation, 342
probability

survival, 216, 237, 284
process

alternating Poisson, 116
first-order, 273
Michaelis–Menten, 102, 277
Michaelis-Menten, 40, 231
more-compartment, 226
one-compartment, 221
random telegraph, 116
variable coefficient, 228
zero-th order, 278

product formation, 131
product formation, 165
product formation, 163
protein, 88

synthesis, see rRNA
protocol

handshaking, 255

QSARs, 323

radiation, 46, 160
radical, 216
rate

aging, 18, 220
anabolic, 431
assimilation, 278
beating, 30
calcification, 192
carbon fixation, 190
elimination, 221, 325
elongation, 144
encounter, 36
filtering, 30, 35
gross growth, 129
growth, 193
gut filling, 36
harvesting, 358, 361
hazard, 217, 236, 246, 350
heating, 14, 171
ingestion, 18, 26, 27, 30, 31, 34, 48
metabolic, 431
moving, 31, 45
photoinhibition, 191
photorespiration, 190
photosynthesis, 188
pop. growth, 290, 355
pop. growth, 355
rejection, 35
reproduction, 18, 48, 69
respiration, 55, 56, 146, 148, 172, 198, 233
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swimming, 33, 310
throughput, 345
translation, 144
turnover, 129
uptake, 221
von Bert. growth, 18, 20, 313, 319
von Bert. growth, 51, 289

receptor, 243
reconstruction

food intake, 169, 170
food intake, 168
temperature, 171, 174

regulation, 16
reproduction, 68

buffer, 72, 354
cumulated, 70–72
iteroparous, 215
semelparous, 215
suicide, 288

reserve
density, 90
dynamics, 37
material, 9, 89

respiratory chain, 112
response

functional, 34, 169, 267, 275
Hill’s functional, 204
Holling’s functional, 34
stringent, 220, 350

retardation, 46
ribosome, 144
RNA, 88, 144
rod, 132
rRNA, 143
rule

κ, 42
Bergmann, 20, 296, 298, 322
Kleiber, 148, 302
surface, 148
Thornton, 158

satiation, 262, 272
scaling

exponent, 27
scheme

matrix, 374
self shading, 189
sex, 403
shape

changing, 124, 134
correction function, 125, 138, 208

sheet, 126
shrink, 121, 122

size
range, 295
scaling, 299

abundance, 322
allocation, 320
bioconcentration, 327
body weight, 302
brain, 321
distribution, 322
diving depth, 310
filtering, 309
filtering rate, 309
gestation, 306, 307
gut capacity, 309
incubation, 307
incubation time, 306
initial reserve, 304
length at birth, 304
length at puberty, 319
life span, 321
max growth, 311
max ingestion, 309
max reproduction, 319
min juvenile period, 319
min food density, 310
pop. growth, 323
primary, 300
reserve capacity, 301
respiration, 302
saturation coefficient, 309
secondary, 301
speed, 310
starvation, 320
tertiary, 322
Von Bert. growth, 311
water loss, 306
weight, 302

soma, 42
spatial heterogeneity, 360
speciation, 361
stage, 4

adult, 7
baby, 6
embryo, 4
foetus, 5
imago, 283
juvenile, 5
larva, 7
mitotic, 6
post-reproductive, 73
pupal, 6, 283
senile, 8, 215

starvation, 115, 120
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stereo image, 238, 250, 268
storage, see reserve
strategy

r–K, 296
demand, 53

stress, 241
symbiosis, 337
synchronisation, 357
synergism, 247
synthesising unit, 103
system

demand, 16
immune, 50
supply, 15

TCA cycle, 404
temperature, 16

Arrhenius, 17, 19, 64
body, 14, 171
tolerance range, 15, 21

thermo-neutral zone, 15, 160
time

development, see incubation
duplication, 279
gestation, 63
gut residence, 275
gut residence, 273, 274, 277
incubation, 17
inter division, 134, 279, 355
life, 123, 216
starvation, 120, 121
wall synthesis, 280

tissue
adipose, 90
ovary, 42
somatic, 42

transformation, 206, 231, 244, 339, 361, 373, 374
tricarboxylic acid cycle, 112
triglycerides, see fat
trophy

auto, 108
bio, 342
hetero, 108
lecitho, 5
matro, 5
mixo, 108, 337
photo, 387
sapro, 342
syn, 334

tumour, 136
turpor, 297

uptake

luxurious, 90

vacuole, 401
gas, 401

variable
extensive, 300
intensive, 300

volume
heating, 46
maximum, 51
ultimate, 51, 133, 246, 289

water, 153, 160
wax, 89
weaning, 6
weight, see conversion

ash-free dry, 82
dry, 81
molar, 83
wet, 11

wood, 81, 88, 210

yield
true, 130

yolk, 56
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Dynamic Energy Budget (DEB) theory is a formal theory for the uptake
and use of substrates (food, nutrients, light) by organisms and their use for maintenance, growth,
maturation and propagation; it applies to all organisms (microorganisms, animals, plants). The
primary focus is at individual level, from a life cycle perspective, with many implications for
sub- and supra-individual levels. The theory is based on sound chemical and physical principles,
and axiomatic in setup to facilitate testing against data. It includes effects of temperature and
chemical compounds; aging is discussed as an effect of reactive oxygen species, with tight links to
energetics. The theory also includes rules for the co-variation of parameter values, better known
as body size scaling and quantitative structure activity relationships. Many well-known empirical
models turn out to be special cases of deb theory and provide empirical support. Many additional
applications are illustrated using a wide variety of data and species.

After 30 years of research on deb theory, this third edition presents a fresh update; since the
second edition in 2000 some 140 papers appeared in journals with a strong focus on deb theory.
The biannual DEB tele-courses provided input to improve the presentation.

A lot of supporting material for this book is meanwhile developed and freely available, such
as software package DEBtool; one of its toolboxes contains code that generates the figures of this
book: setting of data, model specification, parameter estimation, plotting. By replacing data by
that of your own, you have a convenient tool to apply the theory.

This edition includes a new chapter on evolutionary aspects, discusses methods to quantfy
entropy for living individuals, isotope dynamics, a mechanism behind reserve dynamics, toxicity of
complex mixtures of compounds, an updated aging module now also applies to demand systems,
new methods for parameter estimation, adaptation of substrate uptake, the use of otoliths for
reconstruction of food level trajectories, the differentiated growth of body parts (such as tumours
and organs) linked to their function, and many more topics are new to this edition.

Bas Kooijman is Professor of Applied Theoretical Biology at the Vrije Univeriteit in Ams-
terdam since 1985 and head of the department.

Cambridge university press
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