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A unifying perspective of non-linear structural dynamic systems as linear in the open loop
with non-linear feedback in the closed loop has recently been revisited by the authors. The
authors have previously used feedback to derive a new formulation of frequency response
function matrices of non-linear systems, which are described as modulations of nominal
linear systems. The modulation creates a pseudo-separation of the linear and non-linear
dynamics of the system. The present article derives a new method for estimating parameters
of non-linear parametric models that uses internal feedback to account for non-linearities.
The main advantage of the new formulation of non-linear system identi"cation is its
simplicity. Moreover, the method estimates the linear frequency response matrix and
non-linear system parameters at forced and unforced degrees of freedom of general multiple-
degree-of-freedom non-linear systems simultaneously. This article demonstrates the imple-
mentation of this method on simulated data from single- and multiple-degree-of-freedom
lumped parameter models.
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1. INTRODUCTION

The goal of non-linear system identi"cation is to estimate the parameters in a model that
has been chosen to describe the dynamics of a system. There are three steps in the
identi"cation process: characterisation, model selection and parameter estimation. The "rst
step, characterisation, can be the most challenging task in the identi"cation process.
Non-linear systems are said to be characterised after the presence, type and location of all
the non-linearities throughout the system are determined. There are many methods that can
be used to characterise the underlying structure of the non-linear system. A general survey
of these methods is given in [1]. For real-world multiple-degree-of-freedom (mdof ) systems
with multiple non-linearities, the mdof-based techniques in [2, 3] have proven useful.

The second step in the identi"cation process is model selection. Since the most descriptive
model of a system can be selected only after the system has been fully characterised, the
success of the second step depends greatly on the success of the "rst step of the identi"cation
process. This article does not discuss characterisation and model selection. Instead, the
article focuses on the third step in the identi"cation process, non-linear parameter estima-
tion. The reader is referred to the aforementioned articles for research that discusses
characterisation in detail.

The goals of parameter estimation are determined by the type of model that is chosen.
Parametric models are lumped parameter models, which describe the detailed linear and
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non-linear interaction between a speci"c spatial con"guration of discrete mass elements. In
contrast, non-parametric models do not make any assumptions about the mechanisms for
interaction between neighbouring mass elements. Although non-parametric models are
more general than parametric models, the non-parametric models are less physical in
nature; consequently, they are not as useful as parametric models for understanding and
exploiting the behaviour of the system in di!erent situations. This articles deals solely with
parametric system identi"cation. Several of the most popular and general methods of
non-linear structural dynamic system identi"cation are discussed in [4].

There are several types of parametric models in the time and frequency domains. Time-
domain models include the non-linear autoregressive moving average with exogenous inputs
(NARMAX) model [5] and the direct parameter model [6]. These time-domain models are
conceptually simple to understand and o!er signi"cant advantages over frequency-domain
methods for dealing with sources of correlated noise in the model [4]. The most modern
frequency domain model is the &reverse path'model [7}9]. The advantage of using the reverse
path model is that it tracks changes in a parameter with frequency. The disadvantage of this
model is that its implementation requires a thorough knowledge of conditioned spectral
analysis, which adds complexity to an already complex non-linear parameter estimation
problem. The reverse path approach also requires a feedforward solution procedure to obtain
parameter estimates for non-linearities at unforced degrees of freedom (dofs).

The goal of the research in this article is to develop a less complex method for estimating
non-linear parameters in a structural dynamic model that is easier to implement. More
speci"cally, spatial data is used in addition to temporal input and output data to resolve the
individual contributions that the linear and non-linear elements make to the system
dynamics. The importance of spatial information for non-linear systems analysis is a conse-
quence of the feedback nature of non-linear systems [10]. Although the notion of non-
linearities as a feedback is not new, this article uses spatial information in a novel way to
derive a simple parameter estimation method for non-linear structural dynamic models.
The method estimates linear frequency response functions (FRFs) and non-linear para-
meters in a single step at both forced and unforced dofs.

Section 2 begins by establishing the non-linear structural dynamic model from which the
new parameter estimation method is derived in Section 3. Since a spatial perspective is used
to view the non-linear structural dynamics as internal feedback into the underlying linear
system, Section 2 also discusses the notion of non-linear feedback and its relationship to the
spatial characteristics of systems. Section 4 gives detailed sdof and mdof examples on the
implementation of the new frequency-domain parameter estimation technique. Finally,
Section 5 provides a summary of the advantages of this new technique over the reverse path
technique in particular.

2. NON-LINEAR FEEDBACK*MODULATION RELATIONSHIPS

Although the choice between time- or frequency-domain models can lead to certain
advantages and disadvantages in the parameter estimation process, each method of para-
meter estimation is carried out in a similar way. More speci"cally, the inputs, outputs and
the con"guration of the dofs that de"ne the model are experimentally determined. These
three pieces of information are then used to estimate the non-linear model parameters in
a linear least-squares or total least-squares system of equations through averaging. The
input and output measurements have always played an important role in the identi"cation
process; however, the dof information, which accounts for the spatial data, has not been
used as e!ectively.



Figure 1. A general lumped parameter non-linear vibrating system with di!erent types of non-linearities at
di!erent degrees of freedom.
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A previous article by the authors has proposed that the spatial properties of non-linear
models are determined by the non-linear feedback within systems [11]. The need to
use spatial information or data for non-linear system identi"cation has been motivated
by the relatively recent impact that spatial data has had in the modal analysis of linear
systems [12]. Spatial data has also proved useful for characterising non-linear vibrating
systems using frequency response reciprocity checks to characterise system non-linearities
[13].

In order to establish a framework for the derivation in Section 3, we begin by considering
the following general frequency domain model for forced linear systems:
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The inputs and outputs in this equation are written as frequency transforms of the input
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If the system is non-linear, then equations (1) and (2) are not accurate or complete models
of the system. Furthermore, if [H

L
(u)] is calculated from the frequency-domain model

using a standard multiple-input, multiple-output (MIMO) FRF least-squares procedure
with spectral averaging, the FRF estimates will contain bias errors. For the most common
types of non-linearities, the non-linear characteristics are an explicit function of the outputs.
Because of this commonality, it is more convenient to begin the derivation with the
impedance equations of motion.

For a general non-linear system like the one shown in Fig. 1, the impedance model is
given by
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Figure 2. Two-degree-of-freedom system with two non-linear sti!nesses to illustrate the selection of the three
de"ning quantities of each non-linearity; k

i
, MB

ni
(u)N, and X

ni
(u).
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The linear impedance matrix, [B
L
(u)], in this equation accounts for the contributions of

the lumped spring-mass-damper elements that make up the nominal or underlying lin-
earised system in equation (2). The summation term accounts for the e!ects of the lumped
non-linearities. Each of the k

i
(u) determines the strength of the associated non-linear

element, while each MB
ni
N determines the location of the non-linear element. In most

structural dynamic systems, the scalar spectrum X
ni
(u) is the Fourier spectrum of the non-

linear function of the output time histories. Each of these spectra determines the type of
non-linearity (e.g. hardening/softening sti!ness, clearance, quadratic damping, stiction, etc.)

As an example of how to calculate the three de"ning non-linear quantities described
above, consider the two dof system in Fig. 2. This system contains two non-linear elements:
a non-linear hardening spring to ground at dof 1 and a non-linear hardening spring to
ground at dof 2. The k

i
(u), MB

ni
N, and X

ni
(u) for this system are given by
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where F[)] denotes the Fourier transform operator. The two k
i
(u) for this system are both

constants.
Notice that the non-linearities create unmeasured, internal feedback forces in the under-

lying linear model of the system. This can be more easily seen by moving the non-linear
terms in equation (3) to the right-hand side as follows:
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Equation (6) simply states that the linear system is acted upon by two sets of forces: one
set contains the external forces, MF(u)N, whereas the second set contains the internal
feedback forces due to the non-linearities, MF

n
(u)N. In other words, equation (6) is a state-

ment of the &principle of superposition' for nominal linear systems.
This is an important point because it suggests that the spatial nature of non-linear

systems is equivalent to the notion that a non-linearity acts as an internal feedback force.
Figure 3 illustrates the concept of internal feedback due to non-linearities. This illustration
can be thought of as a superposition principle for non-linear systems. Equation (6) is used in
the next section to derive a new parameter estimation method for non-linear structural
dynamic systems.



Figure 3. Feedback by non-linearities into a linear vibrating system illustrating the superposition of the external
forces and the internal feedback forces.

641FREQUENCY DOMAIN*FEEDBACK
3. PARAMETER ESTIMATION THROUGH FEEDBACK

The goal in this section is to estimate the underlying linear parameters and the (possibly
frequency-dependent) parameters that determine the magnitudes of the internal feedback
forces due to the non-linearities in equation (6). It will be shown that the feedback
formulation a!ords a simple, MIMO least-squares parameter estimation method for
non-linear systems that naturally decouples the linear and non-linear parameters.

Recall that in other frequency-domain parameter estimation methods like the reverse
path method, the linear and non-linear parameters must be estimated in two stages because
the linear and non-linear dynamics are coupled. In the "rst stage, conditioning is used to
remove the e!ects of the non-linearities before estimating the linear FRFs. In the second
stage, the non-linear parameters are estimated by utilising the linear FRFs that will have
already been computed in the "rst stage. This method is well documented in the literature
[4, 8]. Although the reverse path technique is useful, it is not easy to apply and does not lend
itself to more general applications. In contrast, the compact FRF relationship in equation
(6) is simple to understand and easy to use.

The new parameter estimation formulation can be derived from equation (6) because all
of the inputs, outputs and non-linear functions X

ni
(u) are known for each ensemble without

averaging. When this equation is pre-multiplied by the FRF matrix of the underlying linear
system and then rewritten by separating the measured (known) quantities from the un-
measured (unknown) quantities, the following set of linear equations at each frequency is
obtained:
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This formulation allows measured external inputs to act together with internal non-linear
feedback forces on and within the underlying linear system to produce the measured
outputs. Since the inputs and outputs are measured, and since the non-linear functions can
be calculated explicity in terms of the measured inputs and outputs, the set of equations in
equation (7) can be used to solve for the best unbiased least-squares estimates of the linear
FRFs at forced dofs and the non-linear parameters k

i
(u) at forced and unforced dofs in

a single step. In other words, the data associated with the spatial con"guration of the
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non-linearities provide additional information that is needed to simultaneously identify the
linear and non-linear parts of the system.

The parameter estimation method that is based on the compact formulation in equation
(7) will be referred to as non-linear identi"cation through feedback of the outputs (NIFO).
A standard least-squares solution with spectral averaging can be used to estimate the
parameters that govern the linear and non-linear dynamics; however, a more numerically
stable orthogonal least-squares solution is recommended. Because the parameters are
estimated in a single step, parameter estimation using the NIFO formulation is not subject
to progressive (round-o! ) errors, which may a!ect parameter estimates that are obtained
using the reverse path technique.

Note that equation (7) does not require the standard feedforward solution procedure to
obtain parameter estimates for non-linearities that are attached to unforced dofs. In fact,
equation (7) implicitly uses the reciprocity of the FRF matrix of the underlying linear system
to eliminate the need for an often notationally cumbersome feedforward solution technique
[9]. This latter solution technique is required in all existing time- and frequency-domain
parameter estimation methods [4]. The ability to feedforward the parameter estimates at
forced dofs in this manner is due to Newton's law of action and reaction.

It is important to emphasise that characterisation should be a pre-requisite for implemen-
ting (7). In particular, the correct dofs must be used to compute the non-linear functions
(X

ni
(u)), which account for the internal feedback forces. Otherwise, a kind of &spatial

truncation' can signi"cantly a!ect the parameter estimates [14]. In other words, if the
system is not well characterised, the parameter estimation problem is not well-posed
because the NIFO formulation involves a correlated source of noise, which produces biased
parameter estimates. It is best to avoid this possibility by performing in situ experimental
characterisation procedures that detect, locate and classify non-linearities as in [2, 3].

In general, there will be more output dofs than there are non-linear elements and input
dofs combined; consequently, there will usually be two parameter estimators corresponding
to equation (7). One uses the &H

1
' estimator and the other uses the &H

2
' estimator. Quotes

are used to indicate that the input auto- and cross-power spectra in the non-linear
parameter estimation problem involve both the external forces and the internal feedback
forces due to the non-linearities. The &H

2
' estimator should only be used when the number

of outputs N
0

is greater than or equal to the number of non-zero inputs N
i
. This same

requirement holds when estimating FRFs for linear systems.
Although there are many similarities between the formulation in equation (7) and the

standard formulation for estimating FRF matrices for linear systems, there is an important
di!erence associated with the e!ects of noise on the estimates in the two di!erent formula-
tions. When FRFs of linear systems are estimated, H

1
always produces better estimates

when there is measurement noise on the outputs and H
2
produces better estimates when the

noise is on the input measurements.
In contrast, because internal feedback forces are derived from non-linear functions of the

outputs, non-linearities always convert uncorrelated (0white1) random noise into correlated
(0coloured1) noise. This means that output measurement noise produces bias errors in
parameter estimates that result from the formulation in equation (7); consequently; the &H

1
'

estimators do not necessarily give the best estimates of the linear FRFs and the non-linear
parameters when there is noise on the outputs. This di!erence between the linear and
non-linear parameters when there is noise on the outputs. This di!erence between the linear
and non-linear H

1
and H

2
estimators in the presence of measurement noise is important for

practical applications. In spite of these issues,the authors have demonstrated that the NIFO
parameter estimation technique works well for real-world systems when a reasonable e!ort
has been made to reduce noise on the data [15].
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Another practical issue concerning the use of equation (7) is the possible correlation of the
external forces, MF(u)N, and internal non-linear forces, X

ni
(u). Although user-de"ned

external forces can always be constructed to be uncorrelated, the internal non-linear forces
will always be partially correlated because they are computed as non-linear functions of the
measured or simulated responses. Because these internal forces are only partially correlated,
the pseudo-inverse needed to estimate the parameters will be well de"ned throughout most
of the frequency range of interest with the possible exception of regions near the system
resonances. Furthermore, in the authors' experience, the input signatures and con"gura-
tions can be selected to obtain internal non-linear forces that produce a well-conditioned
pseudo-inverse calculation.

One "nal point to consider in equation (7) is the notion of &underlying linearity'. In many
complicated non-linear systems, the underlying linear system is not known beforehand and
may not be uniquely determined in the course of the experimental system identi"cation
process. By working instead towards the notion of a &nominal linear system', the goal of
"nding an unique underlying linear system is abandoned in favour of accurately describing
the input}output linear and non-linear dynamics. This point will be addressed elsewhere by
the authors [16].

4. PARAMETER ESTIMATION EXAMPLES

A sdof system and a two-dof system will be used in Sections 4.1 and 4.2 to illustrate the
NIFO parameter estimation procedure and performance. The simulation parameters that
were used to numerically integrate the equations of motion of these two systems are given in
Table 1. Note that the time step must be small enough to accommodate the highest
frequency of interest in the simulation. Since 15 Hz was the end of the frequency band of
interest, the sampling rate was chosen to be greater than six times this frequency. If the
simulation time step is increased, the integrator will lose accuracy and the non-linear
parameters will increase in magnitude with increasing frequency. This frequency-dependent
behaviour should not be misinterpreted as a true change in the non-linear parameters.

Also note that since the Hanning window attenuates data at the ends of each time record,
a 51% overlap in contiguous windowed blocks of time data was used to decrease the
random error in the estimates by utilising the data that is attenuated in previous averages.
Lastly, the amplitudes of the band-limited Gaussian inputs are chosen throughout the
simulations to make internal feedback forces due to the non-linearities 15% of the total
root-mean-square value of the corresponding linear internal forces, i.e. the inputs are chosen
so that non-linearities in these examples are weak to moderate in strength.

4.1. SINGLE DEGREE OF FREEDOM

A sdof system with a non-linear hardening sti!ness to ground is shown in Fig. 4. Recall
from equation (3) that the location and type of a single non-linear element are determined
TABLE 1

Simulation parameters

Dt Blocksize Averages Nyquist frequency Percent overlap

0.01 s 2500 40 50 Hz 0.51



Figure 4. One-degree-of-freedom system with a non-linear hardening sti!ness to ground, kk
1
x3(t), at degree of

freedom 1.

Figure 5. Magnitude and phase of the frequency response functions of the one-degree-of freedom system with
a non-linear hardening sti!ness to ground, kk

1
x3(t): (2), true FRF of linear system; (} } }), FRF of non-linear

system; (*), estimated FRF of linear system.
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by MB
n1

N and X
n1

(u), respectively. The strength of the non-linear sti!ness in Fig. 4 relative
to the linear sti!ness, k, is determined by k

1
. The two quantities that determine the location

and type of the non-linear sti!ness are given below:

MB
n1

N"1 (8)

X
n1

(u)"F[x3(t)] (9)



Figure 6. Non-linear parameter estimate, kL
1
(u), for the one-degree-of-freedom system with a non-linear

hardening sti!ness to ground, kk
1
x3(t).

TABLE 2

Single-degree-of-freedom non-linear system parameters

m (kg) c (N m/s) k (N/m) k
1

(1/m2)

1 4 1000 100
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When these quantities are inserted into equation (7), the following expression is obtained for
each average at each frequency:

X(u)"[H
L
(u) kk

1
H

L
(u)] A

F (u)

!X
n1

(u)B (10)

The linear parameter in this equation is H
L
(u) and the scaled non-linear parameter is kk

1
units of [force/(length)3]. In this example k

1
is constant; however, non-linear parameters

that vary with frequency can also be estimated. Both of these parameters are estimated
simultaneously by writing this equation N

!7'
times, where N

!7'
is the number of spectral

averages, and then solving the resulting set of equations using orthogonal least squares.
The results of this procedure are shown in Figs 5 and 6. The upper and lower plots in

Fig. 5 show the magnitude and phase, respectively, of three FRFs. The true FRF of the
linear system, H

L
(u), is drawn with a dotted line; the FRF of the non-linear system is drawn

with a dashed line; and the estimate of the linear FRF, HK
L
(u), is drawn with a solid line.

Note that the estimated FRF matches the true linear system FRF to within 0.5% of the
total squared error in both magnitude and phase. The estimate of the non-linear sti!ness
parameter, k

1
(u), is shown scaled by the linear sti!ness parameter in Fig. 6. This scaling is

applied in keeping with the notion of the non-linearity as an internal feedback force,



Figure 7. Three two-degree-of-freedom non-linear systems: (top) one non-linear hardening sti!ness to ground at
dof 1, k

0
k
1
x3
1
(t), and a single input; (middle) a nonlinear hardening sti!ness to ground at dof 1 and a hardening

sti!ness between dofs 1 and 2, k
1
k
2
(x

1
(t)!x

2
(t))3, and a single input; (bottom) system with two non-linearities and

two inputs.
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kk
1
x3 (t). The spectral mean of this estimate is within 0.5% of the total root-mean-squared

error of the true parameter, which is given in Table 2. Note that even if the non-linear
parameters are real constants, their estimates will always be found as functions of frequency.

4.2. MULTIPLE DEGREE OF FREEDOM

Practically, any method of parameter estimation can be used to estimate the non-linear
parameters of a sdof structural dynamic system; however, the power of NIFO is its ability to
estimate the parameters of mdof systems with multiple inputs and outputs e$ciently and
easily. Three two-dof systems with slightly di!erent con"gurations of non-linearities and
external inputs will now be used to demonstrate the use of NIFO for mdof non-linear
parameter estimation.

The "rst two-dof system is shown at the top of Fig. 7. There is a single non-linear sti!ness
to ground at dof 1, k

0
k
1
x3
1
(t), and a single force applied at dof 1. The results of this

estimation procedure are shown in Figs 8}10. Since the force is only applied at dof 1, only



Figure 8. Magnitude and phase of the driving point frequency response function of the two-degree-of-freedom
system with a non-linear hardening sti!ness to ground, k

0
k
1
x3
1
(t), at dof 1 and a single input: (2), true FRF of

linear system; (} } }), FRF of non-linear system; (*), estimated FRF of linear system.
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the "rst column of the linear FRF matrix is estimated. Figures 8 and 9 show that the
magnitude and phase of the estimated FRFs of the linear system are practically identical to
the true FRFs of the linear system. Similarly, a comparison of Fig. 10 and the true
parameter value in Table 3 indicates that the non-linear parameter estimate is within 0.5%
of the total root-mean-squared error of the true value.

The two-dof system with two non-linear sti!nesses and a single input at dof 1 is shown in
the middle illustration in Fig. 7. The results of the parameter estimation procedure for this
system are shown in Figs 11}13. The estimates of the FRFs of the linear system are once
again in excellent agreement with the true FRFs (refer to Figs. 11 and 12). Likewise, the
spectral means of the parameter estimates in Fig. 13 are within 1% total root-mean-squared
error of the true parameters from Table 3. The solid line in this "gure denotes the estimate
kL
1
(u) and the dashed line denotes the estimate kL

2
(u). The error in kL

2
(u) near the "rst mode

of vibration is seen in other frequency-domain parameter estimation methods as well [9].
This error is due to a high sensitivity to leakage errors near the peaks in the FRFs and to
correlation of the internal non-linear forces. The leakage errors can be reduced by increas-
ing the frequency resolution.

When 8% of the root-mean-square Gaussian zero-mean noise is added to each simulated
response channel, the parameter estimation results for the system in the middle of Fig. 7 are
as shown in Fig. 14. The top two plots show the magnitude and phase estimates for the



Figure 9. Magnitude and phase of the frequency response function between input dof 1 and output dof 2 of the
two-degree-of-freedom system with a non-linear hardening sti!ness to ground, k

0
k
1
x3
1
(t), at dof 1 and a single

input: (2), true FRF of linear system; (} } }), FRF of non-linear system; (*), estimated FRF of linear system.

Figure 10. Non-linear parameter estimate, kL
1
(u), for the two-degree-of-freedom system with a non-linear

hardening sti!ness to ground at dof 1, k
0
k
1
x3
1
(t), and a single input.
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Figure 11. Magnitude and phase of the driving point frequency response function of the two-degree-of-freedom
system with a non-linear hardening sti!ness to ground, k

0
k
1
x3
1
(t), at dof 1, a non-linear hardening sti!ness between

dofs 1 and 2, k
1
k
2
(x

1
(t)!x

2
(t))3, and a single input: (2), true FRF of linear system; (} } }), FRF of non-linear

system; (*), estimated FRF of linear system.
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driving point dof and the bottom two plots show the estimates of the non-linear parameters.
Note that the magnitude estimate is in error throughout the frequency range of interest
(0}10 Hz); however, the phase estimate is accurate except in the frequency range between
the two modes of vibration (6}9 Hz). This example illustrates the serious e!ects that noise
on the output measurements can have on non-linear parameter estimates. The authors are
currently developing a best least-squares unbiased frequency-domain parameter estimation
method that reduces the noise-induced errors in the parameter estimates. The basis for this
method is that the parameter estimation residuals are correlated with frequency when there
are bias errors due to measurement noise.

The two dof system with the same two non-linear sti!ness as in the previous example but
with two inputs instead of one is shown in the bottom illustration of Fig. 7. The results of
the NIFO parameter estimation procedure for this system are shown in Figs 15}19. Since
there are two inputs, both columns of the FRF matrix of the linear system can be estimated
with NIFO. All of the FRF estimates are in excellent agreement with the true FRFs of the
linear system. Likewise, the parameter estimates in Fig. 19 closely match the true parameter
values from Table 3. Note in particular that the overall results for the multiple-input case
are better than for the single-input case. This is true in general because the input energy is
more evenly distributed to the non-linear elements and the system as a whole when there is
more than one input.



Figure 12. Magnitude and phase of the frequency response function between input dof 1 and output dof 2 of the
two-degree-of-freedom system with a non-linear hardening sti!ness to ground, k
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(} } }), FRF of non-linear system; (*), estimated FRF of linear system.

Figure 13. Non-linear parameter estimates, kL
1
(u) and kL

2
(u), for the two-degree-of-freedom system with

a non-linear hardening sti!ness to ground at dof 1, k
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Figure 14. Magnitude and phase of the driving point frequency response function of the two-degree-of-freedom
system with a non-linear hardening sti!ness to ground, k
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FRF of linear system.

Figure 15. Magnitude and phase of the driving point dof 1 frequency response function of the two-degree-of-
freedom system with a non-linear hardening sti!ness to ground, k
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(t))3, and two inputs: (2), true FRF of linear system; (} } }), FRF of

non-linear system; (*), estimated FRF of linear system.
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Figure 16. Magnitude and phase of the frequency response function between input dof 1 and output dof 2 of the
two-degree-of-freedom system with a non-linear hardening sti!ness to ground, k
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(} } }), FRF of non-linear system; (*), estimated FRF of linear system.

Figure 17. Magnitude and phase of the frequency response function between input dof 2 and output dof 1 of the
two-degree-of-freedom system with a non-linear hardening sti!ness to ground, k
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(t))3, and two inputs: (2), true FRF of linear system;

(} } }), FRF of non-linear system; (*); estimated FRF of linear system.
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Figure 18. Magnitude and phase of the driving point dof 2 frequency response function of the two-degree-of-
freedom system with a non-linear hardening sti!ness to ground, k
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(t))3, and two inputs: (2); true FRF of linear system (} } }); FRF of

non-linear system (*); estimated FRF of linear system.

TABLE 3

¹wo-degree-of-freedom non-linear system parameters

Mass (kg) Linear Linear Non-linear
damping (N m/s) sti!ness (N/m) parameters (1/m2)

m
1
"m

2
"1 c

1
"c

2
"c

3
"2 k

0
"800 k

1
"1500

k
1
"k

2
"1000 k

2
"1800
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The "nal issue that was addressed in this research is how well NIFO discriminates
between many possible non-linear terms that are included in equation (7). For instance,
suppose two cubic sti!nesses are included in the parameter estimation process when only
one of the two sti!nesses is truly a!ecting the dynamics of the system. In this case, NIFO
correctly determines that the non-contributing element is extraneous and can be discarded.
This capability is important because it allows NIFO to work from a general parametric
model with with many arbitrary non-linearities to a speci"c model of the system, which
contains only the important non-linear terms. Future research on experimental applications
of NIFO will address these issues.



Figure 19. Non-linear parameter estimates, kL
1
(u) and kL

2
(u), for the two-degree-of-freedom system with

a non-linear hardening sti!ness to ground at dof 1, k
0
k
1
x3
1
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5. CONCLUSIONS

The perspective of non-linearities as internal feedback forces has been used to derive
a new frequency-domain parameter estimation method for non-linear structural dynamic
models. The authors have proposed that non-linear feedback is directly linked to the spatial
nature of non-linear systems. A new frequency-domain formulation for modelling and
estimating parameters of non-linear structural dynamic systems was derived. The non-
linear identi"cation through feedback of the outputs (NIFO) formulation is useful because
it estimates the linear FRF matrix and the non-linear parameters throughout the system
simultaneously. It o!ers several advantages over the reverse path method including an
ability to simultaneously estimate linear and non-linear parameters; a simple interpretation
and compact implementation; better conditioning and computational e$ciency; an ability
to estimate non-linear parameters at unforced as well as forced dofs; and o!ers a clearer
view of the e!ects of measurement noise on the linear and non-linear parameter estimates.

In addition, the feedback concept helps to unify the general theory of non-linear
structural dynamic system characterisation and identi"cation. NIFO has been shown to
produce excellent results for both sdof and mdof structural dynamic models. Research has
also shown that NIFO can detect extraneous non-linear terms in the parameter estimation
process. Further research is being pursued to compensate for the e!ects of measurement
noise on the outputs. Also, a time-domain equivalent to the frequency-domain NIFO
technique is currently being developed by the authors.
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APPENDIX A. NOMENCLATURE

dof(s) degrees(s) of freedom
sdof single-degree of freedom
mdof multiple-degrees of freedom
MIMO multiple-input, multiple-output testing con"guration
N

0
number of output (response) degrees of freedom

N
i

number of input (forced) degrees of freedom at which the input is non-zero;
there are N

0
total input degrees of freedom

NARMAX non-linear autoregressive moving average with exogenous inputs
FRF(s) frequency response function(s)
Mx(t)N

N0
]1

measured output time history vector of length N
0Mf(t)N

N0
]1

measured input time history vector of length N
0MX(u)N

N0
]1

linear Fourier spectrum of the output vector
MF(u)N

N0
]1

linear Fourier spectrum of the input vector with N
i
non-zero components

MF
n
(u)N linear Fourier spectrum of the non-linear internal force vector

[H
L
(u)]

N0
]N0

frequency response function matrix of a linear or linearised system
H

pq
(u) frequency response function between input degree of freedom q and output

dof p
[B

L
(u)]

N0
]N0

impedance matrix of a linear or linearised system
k
i
(u) scalar non-linear parameter for non-linear element i
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X
ni
(u) Fourier transform of scalar non-linear function of the outputs for non-linear

element i
MB

ni
N
N0

]1
vector of impedance with non-linear coe$cient factored out to yield entries of
1 and !1 only; associated with non-linear element i

( ( ) hat denotes an estimate of a frequency response function of the linear system or
an estimate of a non-linear parameter
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