ArticlePDF AvailableLiterature Review

Climatic and meteorological exposure and mental and behavioral health: A systematic review and meta-analysis

Authors:

Abstract and Figures

As climate change exerts wide ranging health impacts, there is a surge of interest in the associations between climatic factors and mental and behavioral disorders (MBDs). Existing quantitative syntheses focus mainly on heat and high temperature exposure, neglecting the effects of other climatic factors and their synergies. The objective of this study is to conduct a systematic review and meta-analysis of the evidence of associations between climatic exposure and combined mental and behavioral health conditions and specific mental disorders (e.g., schizophrenia, dementia). A systematic search was conducted April 11-16, 2022 using Web of Science, Medline, ProQuest, EMBASE, PsycINFO, CINAHL, and Environment Complete. Screening and eligibility screening followed inclusion criteria based on population, exposure, comparator, and outcome guidelines. Risk of bias assessment was performed, a narrative synthesis was first presented for all studies, and random-effect meta-analyses were performed when at least three studies were available for a specific exposure-outcome pair. Certainty of evidence was evaluated following the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool. The search process yielded 7696 initial results, from which we identified 88 studies to include in the review set. Climatic factors reported included air temperature, solar radiation/sunshine, barometric pressure, precipitation, relative humidity, wind direction/speed, and thermal comfort index. Outcomes included MBD incidences (e.g., schizophrenia, mood disorders, neurotic disorders), mental health-related mortality, and self-reported psychological states. Meta-analysis showed that heatwaves (pooled RR = 1.05, 95 % CI = 1.02-1.08) and extreme high temperatures (99th percentile: pooled RR = 1.18, 95 % CI = 1.08-1.29) were associated with higher risk of MBD. Cold extremes, however, were not associated with MBD risk. The findings further identified an association between increases in a thermal index (i.e., apparent temperature) and elevated risk of MBD (pooled RR = 1.06, 95 % CI = 1.03-1.12); specifically, a 99th percentile high temperature was associated with increased schizophrenia risk (pooled RR = 1.07, 95 % CI = 1.01-1.12). Risk of bias assessment showed most studies to have low or moderately low risks, while a few studies were rated probably high in confounding, selection bias, outcome measurement, and reporting bias. GRADE evaluation revealed moderate certainty of evidence on thermal comfort index and MBD, but low certainty related to air temperature or sunshine duration. These findings call attention to the heterogeneity of exposure measures and the utility of thermal indices that consider the synergistic effects of meteorological factors. Methodological concerns such as the linearity assumption and cumulative effects are discussed.
Content may be subject to copyright.
CORRECTED PROOF
Review
Climatic and meteorological exposure and mental and behavioral health: A
systematic review and meta-analysis
DongyingLia, ,YueZhanga,XiaoyuLia,KaiZhangb,YiLuc,RobertD. Browna
a DepartmentofLandscapeArchitectureandUrbanPlanning,TexasA&MUniversity,CollegeStation,TX77843,USA
b DepartmentofEnvironmentalHealthSciences,SchoolofPublicHealth,UniversityatAlbany,StateUniversityofNewYork,Albany,NY12222,USA
c DepartmentofArchitectureandCivilEngineering,CityUniversityofHongKong,HongKong
A R T I C L E I N F O
Editor:SCOTTSHERIDAN
Keywords:
Climate
Mentalhealth
Schizophrenia
Mooddisorders
Neuroticdisorders
meta-analysis
A B S T R A C T
Asclimatechangeexertswideranginghealthimpacts,thereisasurgeofinterestintheassociationsbetweencli-
maticfactorsandmentalandbehavioraldisorders(MBDs).Existingquantitativesynthesesfocusmainlyonheat
andhightemperatureexposure,neglectingtheeffectsofotherclimaticfactorsandtheirsynergies.Theobjective
ofthisstudyistoconductasystematicreviewandmeta-analysisoftheevidenceofassociationsbetweenclimatic
exposureandcombinedmentalandbehavioralhealthconditionsandspecificmentaldisorders(e.g.,schizophre-
nia,dementia).
Asystematic searchwasconductedApril11
16,2022 usingWebofScience,Medline, ProQuest,EMBASE,
PsycINFO,CINAHL,andEnvironmentComplete.Screeningandeligibilityscreeningfollowedinclusioncriteria
basedonpopulation,exposure,comparator,andoutcomeguidelines.Riskofbiasassessmentwasperformed,a
narrativesynthesiswasfirstpresentedforallstudies,andrandom-effectmeta-analyseswereperformedwhenat
leastthreestudieswereavailableforaspecificexposure-outcomepair.Certaintyofevidencewasevaluatedfol-
lowingtheGradingofRecommendationsAssessment,DevelopmentandEvaluation(GRADE)tool.
Thesearchprocessyielded7696initialresults,fromwhichweidentified88studiestoincludeinthereview
set.Climaticfactorsreportedincludedairtemperature,solarradiation/sunshine,barometricpressure,precipita-
tion,relativehumidity,winddirection/speed,andthermalcomfortindex.OutcomesincludedMBDincidences
(e.g.,schizophrenia,mooddisorders,neuroticdisorders),mentalhealth-relatedmortality,andself-reportedpsy-
chologicalstates.Meta-analysisshowedthatheatwaves(pooledRR=1.05,95%CI=1.02
1.08)andextreme
hightemperatures(99thpercentile:pooledRR=1.18,95%CI=1.08
1.29)wereassociatedwithhigherrisk
ofMBD.Coldextremes,however,werenotassociatedwithMBDrisk.Thefindingsfurtheridentifiedanassocia-
tion between increases in a thermal index (i.e., apparent temperature) and elevated risk of MBD (pooled
RR=1.06,95%CI=1.03
1.12);specifically,a99thpercentilehightemperaturewasassociatedwithin-
creasedschizophreniarisk(pooledRR=1.07,95%CI=1.01
1.12).
Riskofbiasassessmentshowedmoststudiestohavelowormoderatelylowrisks,whileafewstudieswere
ratedprobablyhighinconfounding,selectionbias,outcomemeasurement,andreportingbias.GRADEevalua-
tionrevealedmoderatecertaintyofevidenceonthermalcomfortindexandMBD,butlowcertaintyrelatedtoair
temperatureorsunshineduration.Thesefindingscallattentiontotheheterogeneityofexposuremeasuresand
theutilityofthermalindicesthatconsiderthesynergisticeffectsofmeteorologicalfactors.Methodologicalcon-
cernssuchasthelinearityassumptionandcumulativeeffectsarediscussed.
1. Introduction
Climate extremes have adverse effects on health. With climate
change, climate extremes are expected to increase in intensity, fre-
quency,andhealthimpact(Petkovaetal.,2013;Guoetal.,2018).Such
extremeeventsarenotisolatedincidences,butarereflectiveoflarger-
scale, often persistent changes in the thermodynamic environment
acrosscitiesandcountryside(Trenberthetal.,2015).Infact,climate
changeisalreadyaffectingeveryinhabitedregionworldwide,causing
changesinecosystemservices(Shawetal.,2011)andambientfactors
towhichhumansareroutinelyexposedineverydaylife,suchastem-
perature,relativehumidity,andterrestrialradiation.Forexample,ob-
Correspondingauthor.
E-mailaddress:dli@arch.tamu.edu(D.Li).
https://doi.org/10.1016/j.scitotenv.2023.164435
Received21 January 2023;Received in revised form22 May 2023;Accepted22 May 2023
0048-9697/© 20XX
Edit Preview PDF
This is the pre-proof version of the published manuscript generated by the publisher &
recompiled by the authors. Some content may be slightly different from the final published
version.
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
servedglobalsurfacetemperatureincreasedby>1.2°Cfrom1850to
2020, with the steepest increase occurring after 1990 (Masson-
Delmotteetal.,2021).Atthemicroclimatescale,thisincreaseinsur-
facetemperatureisdirectlylinkedtorisingmeanradianttemperature
andhumanbodyheatfluxintheenvironment(GálandKántor,2020).
Strongevidencehas associated climate extremeswithcardiovascular
disease,respiratorydisease,infectiousdisease,andotherphysicaldis-
eases(Bragaetal.,2002;Medina-Ramónetal.,2006;Wuetal.,2016;
Obradovichet al.,2018a).Moreover,climatechangemay exacerbate
health disparities by affecting minority groups and socially-
disadvantagedgroupsdisproportionately(Voelkeletal.,2018;Lietal.,
2022a).Thus,acomprehensiveunderstandingoftherelationshipsbe-
tweenmeteorologicalfactorsandhealthisaresearchprioritytotheur-
gentsocietal goals of climate changeadaptationanddisparityreduc-
tion.
Intherecentdecade,epidemiologicalstudieshaverevealedcritical
links between meteorological conditions, especially temperature ex-
tremes,andmentalillness(Hayesetal.,2018;Berryetal.,2010).Re-
searchhasidentifiedimpactsofthreetypesofclimate-relatedevents
(i.e., acute, subacute, and long-lasting changes) on mental health
(PalinkasandWong,2020).Forexample,high andlowtemperatures
mightbefactorsthatcontributetomentaldisorders(Obradovichetal.,
2018b; Shiloh et al., 2005; Williams et al., 2012; Yoo et al., 2021;
Zhangetal.,2020),andheateventsthatoccurduetoincrementaltem-
peraturechangesinsummercouldposeasalientrisktohumanmental
conditions().Todate,severalsystematicreviewshaveassessedtheas-
sociationsbetweenextremeweathereventsandhumanmentalhealth.
Ratajet al.(Ratajetal.,2016)investigatedthe prevalence ofmental
disordersindevelopingcountries(exceptAfricanregions)duringex-
tremeweatherevents(i.e.,stormsandflooding)with17articlespub-
lishedby2014.Rotheretal.(Rotheretal.,2021)filledtheresearchgap
inAfricatosomeextentandexaminedexistingfindingsontheimpact
offloodingonchildandadolescentmentalhealthbasedonasystematic
reviewthat identified only two articles meeting criteria.Focusingon
Europeancountries,Cruzetal.(Cruzetal.,2020)andWeilnhammeret
al.(Weilnhammeretal.,2021)examinedthefindingsfrom21and35
articlespublishedupto2019
2020,respectively,andsynthesizedthe
mentalhealthimpactsarisingfromextremeweathereventsinvolving
heat/coldwaves,droughts,wildfires,andfloods.Furthermore,system-
aticreviewsfocusingonextremeheathavesummarizedtheepidemio-
logicalevidenceoftheimpactofhightemperatureandheatwaveson
mentalhealth-relatedmorbidityandmortality(Thompsonetal.,2018;
Liuetal.,2021).Thompsonand colleagues summarized thefindings
from34articlespublishedthrough2017andpresentedstronglinksbe-
tweenhightemperaturesandsuiciderisk(Thompsonetal.,2018).No-
tably,Liuetal.(Liuetal.,2021)conductedasystematicreviewof53
articlespublishedbetween1990and2020andameta-analysisof41by
poolingtheeffectsizesofhighambienttemperaturesandreporteda
0.9%increase in mentalhealth-related morbidity for every1 °C in-
creaseintemperature.
Therecent surgeofpublishedresearchin climatedeterminantsof
mentalhealthwarrantsacomprehensivequantitativesynthesis.Specif-
ically,severalmajorresearchgapsremaintobeaddressedwithasys-
tematicreview.Existingreviewsoftenfocusonhotweatherorextreme
heatconditionsasthesoleexposureofinterest.Althoughtheirfindings
providesolidgroundforarelationshipbetweenambienttemperatures
andmentalillness,wehavealimitedunderstandingoftheinfluencesof
multiple,orthecombinedeffects,ofmeteorologicalvariablesonhu-
man-environmentheatfluxandhealthoutcomes.Accordingtobiome-
teorology,humanheatandcoldregulationdependsonabalancedheat
budget(Jietal.,2022;BrownandGillespie,1986).Environmentalfac-
torsthatinfluencehumanheat/coldstressinclude:radiation,tempera-
ture,vaporpressure,anddiffusionconductancetoheatandvapor.As
such, widely accepted thermophysiological comfort and heat/cold
stressmodels consider fourmeteorologicaldeterminantsairtempera-
ture,humidity,windspeed,andsolarradiation(Jietal.,2022),along
withindividualcharacteristicssuchasBMI,physicalactivity,andcloth-
ing insulation (Zhao et al., 2021; Höppe, 1999a). Research has re-
viewedthat,controllingforairtemperature,otherclimatefactorssuch
ashumidity and radiationaffectshumanthermalsensationandcom-
fort.Therelationshipsamongtemperature,humidity,andradiationare
non-linear(Lietal.,2018)andtheirrelativeimportanceintheircontri-
butiontothermalsensationvaryacrossseasons(e.g.,airtemperature
contributesstronglyinsummerwhileradiationcontributesstronglyin
winter)(Liuetal.,2016).Assuch,acomprehensivereviewthatcriti-
callyassesses the fullrangeofmeteorologicalfactorsassociatedwith
mentalhealthiswarranted.
Itisalsoworthnotingthatpreviousempiricalarticlesandreviews
outliningtheimportanceofclimateandweatherconditionsoftendif-
ferentiatemorbidity/hospital admissions and mortality, but consider
mentaldisorderas one outcomecategory without differentiating the
specificdiagnoses/subdiagnoses(Williamsetal.,2012;Charlsonetal.,
2021).Suchanapproachmaynotcapturecomplexitiesrelatingtothe
variouscausesandsymptomologyofeachdifferenttypesofMBD(e.g.,
schizophrenia,depression,andpost-traumaticstressdisorder).Forex-
ample,inarecentreviewandmeta-analysis,Liuetal.presenteddiffer-
enteffectsizesbetweenhightemperaturesandspecificMBDs,suggest-
ingvariationsinthepresence,magnitude,andpossiblyevendirection
andmechanismoftherelationships(Liuetal., 2021). In addition to
temperature, some mental disorders (e.g., bipolar disorders, depres-
sion,andschizophrenia)maybestronglyrelatedtooneoracombina-
tionofmultipleclimaticconditionsbutnotothers,suchassunlightin-
tensity, humidity, and wind conditions (Gu et al., 2019; Kim et al.,
2021;Leeetal.,2007;Molin et al., 1996). As such,estimatedeffect
sizesmaydifferacrossdifferenttypesofmentalhealthconditions,re-
quiringamorenuancedreviewthatconsiderseachexposure-outcome
pair.Inaddition,asthecontemporarydefinitionofhealthemphasizes
notonlytheabsenceofdiseasebutalsopositivemoodstatesandhappi-
ness (World Health Organization, 2002), evidence on mental health
outcomesotherthanmorbidityandmortalityshouldbeincluded.
Furthermore,climatechangeandclimaticfactorsaffecteachregion
differently.MorerecentstudieswereconductedintheGlobalSouth,ex-
panding our understanding of the global mental health impact of
weathervariability;ithasbeensuggestedthattherelativeriskofmen-
talhealth-relatedmortalitymightvaryindifferentclimatezones,e.g.,
higherintropicalzonesthaninsubtropicalorcontinentalzones(Liuet
al.,2021).Givensuchpotentialgeographicalvariability,itiscriticalto
conductareviewthatidentifiesthegeographicalandclimatezonesthat
yetremainunderrepresented.
Toourknowledge,noreviewhasprovidedaquantitativesynthesis
regardingtherelationshipsofthefullsetofclimateandmeteorological
factorswithmentalhealthandMBD.Consideringthegrowingbodyof
evidenceonthistopic,thecurrentstudyaimstodepictacompletepic-
tureoftheserelationships,modelpooledeffectsizes,discussresearch
gapsandrisk of bias, andpropose future directions. Thespecific re-
searchquestionsexaminedinclude:
1. What are the geographical, temporal, and to pical trends in the
literatureonclimatefactorsandmentalhealth?
2. Whatarethedirectionandmagnitudeoftherelationshipbetween
each climate/meteorological factor and mental and behavioral
disorders?
3. How strong and consistent are the relationships when each
mentalandbehavioraldisorderisassessed?
4. Whataretheknowledgegapsintheexistingliterature,andwhat
arethemethodologicalconcernsrelatingtostudybias?
2
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
2. Methods
2.1. PECOframeworkandliteraturesearch
TheprotocolwasregisteredattheInternationalProspectiveRegis-
ter of Systematic Reviews database (PROSPERO, registered ID:
CRD42022321928).Wedevelopedthesystematicreviewprotocolfol-
lowingthePreferredReportingItemsforSystematicReviewsandMeta-
Analysis(PRISMA)guidelines(Moheretal.,2009),whichsetstandards
forafour-stepprocesstoconductrigoroussystematicreviews:identifi-
cation,screening,eligibility,andinclusion.
ThestudysearchwasconductedinApril11
16,2022,insevenelec-
tronic databases: Web of Science, Medline, ProQuest, EMBASE,
PsycINFO,CINAHL,andEnvironmentComplete.Thesedatabaseswere
selectedsoastobestcovertheliteraturefromabroadarrayoffields
suchasclimatescienceandmeteorology,environmentalscience,psy-
chologyandpsychiatry,public health, and medicine.Wedid not re-
strictthesearchperiod,sothesearchidentifiedarticlesfromtheincep-
tionofeachdatabaseuntilthesearchdate.Weadoptedthepopulation,
exposure,comparator, and outcome (PECO) framework to guidethe
searchandeligibilitycriteria.
2.1.1. Population
Weincluded studies reporting the general human population ex-
posedtovaryinglevelsofclimate/meteorologicalconditions.Animal
studieswereexcluded.Inordertoidentifyacompletesetofstudies,we
didnot restrict the geographicalareasordemographicandsocioeco-
nomiccharacteristics.
2.1.2. Exposure
Climaticandmeteorologicalindicatorsthatarerelevanttohuman
healthandwell-beingwereconsideredasexposure.Toensurecompa-
rability,studiesthatreportedobjectivelymeasuredclimate/meteorol-
ogy/weatherconditions were included,while those onlyconsidering
perceivedambientconditionswereexcluded.Toensurethereviewen-
compassedrelevantexposuretypes,weusedexistingbiometeorological
modelsofhuman-environmentenergyexchangesuchasthePETmodel
(Höppe, 1999b) and the COMFA outdoor thermal comfort model
(BrownandGillespie,1986).Theyestimatehumanheatfluxinanenvi-
ronmentbasedonambientfactorssuchas airtemperature,humidity,
windspeed,andsolarradiation.Inaddition,otherclimateconditions
suchasbarometricpressure, precipitation (e.g.,rain,snow), and fog
werealsoconsidered.Adetailedtablelistingtheexposuredomainsis
presentedinSupplementarymaterialS1.
2.1.3. Comparators
Acomparablepopulationexposedtodifferentlevelsofclimatecon-
ditionsneedstobepresented inordertoestimate therisksofmental
healthdisordersorthevaluesofreportedpsychologicalconditions.As
such,onlystudiesinvolvingacontrolpopulationorreportingvarying
exposureofthesamepopulationwereincluded.
2.1.4. Outcome
Mental health-related outcomes in this study include mortality,
morbidity,andself-reportedmentalhealthandemotionalstates.Mor-
talityandmorbidityrelatedtermswereselectedbasedontheInterna-
tionalClassificationofDiseasesTenthRevision(ICD-10)mental,behav-
ioral, and neurodevelopmental disorders (F00
99) classification, in-
cludingsubcategoryterms.ThesetermsencompasstheentireMBDdo-
main,includingdementiaand organic disorders(F00
09),psychoac-
tivesubstanceuse(F10
19),schizophrenia(F20
29),mooddisorders
(F30
39), neurotic disorders (F40
49), behavioral syndromes
(F50
59), personality disorder (F60
69), intellectual disabilities
(F70
79),developmentaldisorders(F80
89),childhoodbehavioraldis-
orders(F90
98),andothermentaldisorders(F99).Equivalentdefini-
tionsusingICD-9or the Diagnostic andStatisticalManualof Mental
Disorders, Fifth Edition (DSM-5) were included and cross-walked to
ICD-10classes.Inaddition,weincludedgeneraltermssuchas
mental
health
andtermsthatdescribesubjectivepsychologicalstate,suchas
happiness.
and
sadness
.A detailed table listing the outcome do-
mainsispresentedinSupplementarymaterialS1.
Thesearchsyntaxwasdeveloped based on the PECOframework.
Weusedwildcardstoaccountforvaryingformsofthekeywords.Inad-
dition,forwardandbackwardsearchesusingeligiblearticlesandprevi-
ously conducted systematic reviews were also performed. Example
searchsyntaxusedfortheWebofScienceisprovidedinSupplementary
materialS2.
2.2. Studyselection
AfterimportingtheretrievedarticlesintoEndnote20andremoving
duplicates,weperformedthescreeningandeligibilitystepsbyexamin-
ingthetitles,abstracts,andfulltextsforconcurrencewiththeeligibil-
itycriteriadefinedbasedonthePECOframework.Theselectiondeci-
sionforeachrecordwasmadeindependentlybytworesearchers,with
anydisagreementresolvedthroughdiscussionandthenbyconsultinga
thirdresearcherwhennecessary.Studieswereincludedinthereviewif
theymetthefollowingcriteria.
1) Studyreportedoriginalempiricalresearchandwaspublishedina
peer-reviewedjournal
2) StudywaswritteninEnglish
3) Study reported an observational study on a human population
(seeSection2.1.1)
4) Study included objective climate measurements as the exposure
(seeSection2.1.2)
5) Study included mental health or behavior as the outcome (see
Section2.1.3)
6) Studiesinvolvedacomparisonpopulationorvaryingexposureof
thesamepopulation(seeSection2.1.4)
7) Studywasquantitativeandreportedatleastoneeffectestimateof
aclimate-MBDpair
Studieswereexcludedifthey:1)werenotpeer-reviewedjournalar-
ticlesorwerenon-empiricalsuchasarevieworcommentarypiece;2)
were not written in English; 3) reported an experimental or quasi-
experimentalstudy,4)targetednon-humanbeingsasresearchsubjects
(e.g.,animalstudies);5)comprisedacasestudy/casereportofasingle
subject;6)didnothavearelevantexposureoroutcomevariable;7)ex-
aminedclimateimpactsunderaspecificprogram,training,oroccupa-
tionalenvironment(e.g.,militarytraining);7)investigatedartificially
designed/controlledambientconditions(e.g.,hospitalsorclassrooms
withdifferent levelsoflighting);8)took theseasonorself-reportsof
perceivedclimateasexposure without objective measuresofclimate
factors;9)reportedanon-time-seriesstudywithmeteorologicalfactors
compared at a spatial scale that was too coarse (cross-continent or
cross-country);10)reportedall-causemortalityormorbidityduetocli-
mateexposurebutnotmentalhealth-relatedoutcomes;11)werequali-
tativeor did notconductanyestimateoftheexposure-outcomerela-
tionship; and 12) examined reproductive health or linked-life pairs
(e.g.,amother-childdyad).
The search strategy and selection procedure guided by PRISMA
(Moheretal.,2009)ispresentedinFig.1.
2.3. Datacollectionandnarrativesynthesis
Informationextractionwasconductedbythreeresearchersindepen-
dentlyandthencross-checked.Adescriptive informationspreadsheet
andameta-analysissheetweredevelopedinMicrosoftExceltoextract
and tabulate information from the included studies. The following
3
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Fig.1. PRIMAflowchartofthestudyselectionprocess.
study characteristics were extracted in the descriptive information
sheet:authors, citationdetails, country,population, KöppenClimate
Zoneofstudyarea,studytype,samplesize,spatialresolution,temporal
resolution,climate/meteorologicalmeasures,mentalhealthmeasures,
statisticalanalysis,effectsize,lagperiod,andmoderator/mediator.The
climatic/meteorological measures category included check boxes for
thermalcomfortindex,airtemperature,winddirection/speed,solarra-
diation,relativehumidity, barometric pressure,precipitation, among
others.Wealsotooknotesofwhetheraworkingdefinitionofaclimate/
weatherdisasterwasused,detaileddescriptionsoftheexposuremea-
sures,anddatasources.TheMBDmeasuresincludedtypeofdata(e.g.,
mortality/morbidityrecord,medicationdispensation,self/caregiverre-
port),detaileddescriptionsofoutcome measures/scales, check boxes
foreachMBDtype,timepointsofmeasurement,anddatasources.The
check boxes included categories corresponding to ICD-10 F01
F09,
F10
F19,F20
F29,F30
F39,F40
F48,F50
F59,F60
F69,F70
F79,
F80
F89,F90
F98,andF99andequivalentICD-9andDSMcategories.
WerecodedandtabulatedalldatacollectedusingMicrosoftExcel
PivotTableandRpackages.Descriptiveplotswereproducedfordata
synthesis.Amapshowinggeolocationandclimatezonewasproduced
inArcGISPro.Studiesweregroupedbasedonthespatiotemporalreso-
lutions,population characteristics, and exposure andoutcomes mea-
suresandchartssuchascircularbarchartwereproducedusingRpack-
ages.(SeeFig.2.)
4
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
2.4. Riskofbiasassessment
Astheincludedstudiesrangedintypefromecologicaltime-seriesto
individual-level cross-sectional, case-control, and cohort studies, we
developedariskofbiasassessment(RoB)rubricbyintegratingrelevant
itemsfromassessmenttoolscommonlyusedforassessingstudiesonen-
vironmentalexposureandhealthoutcomeatindividualoraggregated
populationlevels.ThesetoolsincludedtheNationalHeart,Lung,and
BloodInstitutesStudyQualityAssessmentTools(NationalHeart,Lung,
andBloodInstitute,2014a;NationalHeart,Lung,andBloodInstitute,
2014b),theJBI'sCriticalAppraisalTools(Moolaetal.,2017),andthe
Riskofabiasassessmentinstrumentforsystematicreviewsinforming
WorldHealthOrganizationglobalairqualityguidelines(WorldHealth
Organization,2020).Specifically,sixdomainswithtwelveitemswere
considered: selection bias, exposure assessment, outcome measure-
ment, confounding, missing data/attrition bias, and reporting bias.
Eachdomainincludedonetothreesub-items,whichwereratedona
four-pointscale:lowrisk,probablylowrisk,probablyhigh risk, and
highrisk. For example, for confounding, we assessed whether time-
invariantfactors(e.g.,age,sex, socioeconomic conditions) andtime-
variant factors (e.g., air pollution, noise, seasonality) potentially re-
lated to the outcomes were considered, measured using valid ap-
proaches,andstatisticallyadjustedforinthemodels.Studiesthatdid
notconsiderrelevantcontrolvariables,didnot adjust for these vari-
ablesinthe statistical modelsestimating the exposure-outcomerela-
tionshipswereratedasprobablyhigh/highinriskofbiasfortherespec-
tiverubricitemsunderconfounding.Forselectionbias,weconsidered
whetherstudy population wasclearlydefinedandrecruitment/inclu-
sioncriteriaconsistentandspecified.Individual-basedstudiesthatused
convenientsamplesoronlinepanels,andecologicalstudiesthatused
datafromasinglehospitaloragencywithoutdescribingthepopulation
servedandcoveragewereratedprobablyhigh/highinoutcomemea-
sure.Fortheoutcomemeasurement,weassessedwhetherthehealth
outcomeassessorswereblindedtotheexposurestatusofparticipants
andwhetherthemeasureswereclearlydefined,valid,reliable,andim-
plementedconsistentlyacrossstudypopulations.Studiesthatusedun-
validatedscales ofoutcomevariableswereconsideredhigh inriskof
bias.Studiesthat only reportedsignificantresults and omittedother
findingsfromplannedanalysiswereevaluatedasprobablyhighinre-
portingbias.Thedetailsoftheassessmentinstrumentarepresentedin
SupplementarymaterialS3.Thegraphicsweregeneratedusingaweb-
basedvisualizationtoolnamedRoB2(Sterneetal.,2019).
Eacharticlewas independently assessedbytwo researchers; con-
flicts were resolved by discussion and then consulting a third re-
searcher.Theitemscoreswerethenaveragedandroundedtogenerate
domainscores.Wedidnotassignoverallriskofbiasscoresduetothe
arbitrarinessofassigningweightstodifferentdomainsofrisk.Instead,
wepresentthe by-item and-domainRoB scores, whichretaintrans-
parency and better reflect the methodological strengths and weak-
nessesofeacharticle.Accordingly,wealsodidnotexcludeanystudies
basedonRoBresultsbutinsteaddiscussedbiasesandprovidedrecom-
mendationsforfuturestudies.
2.5. Meta-analysis
Meta-analysiswasperformedtoestimatethepooledeffectsizesof
theassociationsbetweenclimateexposuresandmentalhealth.Forthe
meta-analysisdataextractionsheet,wecollectedinformationoneach
5
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
exposure-outcomepairincludingexposurevariable,outcomevariable,
statisticalmodel,typeofeffectsizestatistic,effectsizeestimate,stan-
darderror,95%confidence interval lower bound andupperbound,
anddetailedstepsofdataprocessing.Thenaturallogarithmsoftherel-
ativerisk (RR) estimatesandthecorrespondingstandarderrorswere
calculatedandusedinthemeta-analysis.
Whenmultipleestimatesonthesameexposure-outcomepairwere
reportedinonearticle,weextractedonlyoneeffectsizefollowingthe
approaches adopted in previous environmental epidemiology-related
meta-analyses(ChenandHoek,2020;Khreisetal.,2017).Studiesre-
portingoddsratio(OR)wereconvertedintorelativerisk(RR)usingEq.
1whendatawereavailable,andbyassumingequalitywhenrisksinthe
controlgroupwereextremelylow(Harreretal.,2021).Whenanarticle
reportedtwoormoreestimatesforsubgroups(e.g.,byregionorpopu-
lationgroup),wecalculatedthepooledeffectsizeusingafixed-effects
meta-analysis model. When multiple outcomes that belonged to the
sameICD-10subclassweretestedseparately,weusedEq.2tocalculate
thecombinedeffectsize(Harreretal.,2021).Whenmultipleestimates
existedduetomodelspecification,function,estimator,orlagduration,
wefollowedthedecisionruleinsequentialordertoselectthemodelre-
sults:1)selecttheauthors'favoredmodel(mainmodelormodelfollow-
ing main conceptual framework/highlighted in the Abstract, High-
lights,Results,orMainfindingssectionoftheDiscussion),2)selectthe
fullyadjustedmodelratherthanthecrudemodel,andfinally3)select
themodelwith the smallestlagvalue. Pooled effectswerenot com-
putedforself-reportedhealth or psychologicalconditionsbecause of
thesmallnumberofstudiesandthehighheterogeneityofpsychometric
scalesused.
(1)
wherecrepresentstheeventsinthecontrolgroup, isthetotal
numberof participantsinthecontrolgroup, andORistheestimated
oddsratio,RRistherelativeriskcalculated.
(2)
where and arethetwooutcomesand and arethevari-
ance, isthemergedeffectsize.
Heterogeneityofeffectestimatesacrossstudieswasassessedusing
,Cochran'sQ,and statistics. isthevarianceofthedistributionof
thetrueeffectsizeacrossstudiesandiseasytointerpretbasedonthe
originalmeasurementmetric,but andCochran'sQbothheavilyre-
flectstatisticalpowerwhile isnotassensitivetothenumberofstud-
ies;assuch,presentingbothQand helpsindepictingacompletepic-
tureofbetween-studyheterogeneity.Theruleofthumbemployedfor
interpreting wasasfollows:upto25%aslowheterogeneity,50%
for moderate heterogeneity, and 75 % for substantial heterogeneity
(HigginsandThompson,2002).Duetothesmallnumberofstudieson
eachexposure-outcomepairandhighoverallheterogeneity,wedidnot
removeoutliersinthemeta-analysisorperformsensitivityanalysesbut
flaggedontheforestplotthosestudiesreportingeitherextremelysmall
effects(whentheupperboundofthe95%CIislowerthanthelower
boundofthepooledeffect)orextremelylargeeffects(whenthelower
boundoftheCIishigherthantheupperboundofthepooledeffect).
Subgroupanalysisbasedongeographyorpopulationwasnotpossible
duetosmallnumberofexposure-outcomepairs.TheRpackagemetafor
(Viechtbauer, 2010) was used to perform the random-effects meta-
analysismodeling,identifyoutliers,andproduceforestplots.
2.6. Evaluationofcertaintyofevidence
WeutilizedtheGradingofRecommendationsAssessment,Develop-
mentandEvaluation(GRADE)frameworktoassesstheoverallquality
ofevidence (Guyattetal.,2008;Balshemet al., 2011).Abaselineof
moderatecertaintywasinitiallyapplied,andsubsequentlydowngraded
orupgraded based oneach of theGRADE domains. Factorsthat de-
creasedthecertaintyofevidenceincludedD1)Riskofbiasacrossstud-
ies,D2)Indirectness,D3)Inconsistency,D4)Imprecision,andD5)Pub-
licationbias.FactorsthatincreasedcertaintyincludedU1)Largemag-
nitudeofeffects,U2)Consistentdose-responsegradient,andU3)Con-
foundingminimizeseffect.Thedetailedcriteria fordowngradingand
upgradingareasfollows.
Downgrading.D1)The certainty of evidencewas downgraded by
onelevelifatleastonestudythathadanon-negligibleweightinthe
pooledeffectsizeestimateshowedatleastthreehighorprobablyhigh
biasratingsintheRoBevaluations.Inourcase,becausethenumberof
studies in each exposure-outcome pair was small, downgrading was
performedwhenany study exhibitedatleast three highor probably
highbias ratings. D2) The certainty of evidence was downgraded if
studiesdidnot adhere tothe population, exposure,comparator, and
outcomespecifiedfortheresearchquestion,forexamplenotmeasuring
outcomesdirectlybutusingsurrogateoutcomemeasures.Here,thisap-
pliedwhenastudydefinedMBDcasesbasednotonclinicaldiagnosis,
butonoutcomesfromapreliminaryscreeningtoolorevaluationsbyre-
searcher(s)whosecredentialswerenotreported.D3)Thecertaintyof
evidencewasdowngradedwhenverylargeheterogeneityorvariability
in results was detected. Specifically, as observational studies are
demonstratedtohavemoderatetolargeheterogeneityacrossgeogra-
phies and populations (Chen and Hoek, 2020; Schwingshackl et al.,
2021),wedowngradedbyoneortwolevelsifthepredictioninterval
wasmorethantwicetheconfidenceintervalandstudiespresentedthe
associationasbidirectional(bothpositiveandnegative).D4)Thecer-
taintyofevidencewasdowngradedifthenumberofparticipantsand
person/population-time were small (n < 500, determined based on
previousstudiesdiscussingsamplesizeinepidemiology(Vergouweet
al.,2005; Rigby and Vail,1998)).D5)Thecertaintyofevidencewas
downgradedifpublicationbiaswasidentified basedonvisualassess-
mentoffunnelplots.However,funnelplotsandEgger'stesthadlimited
valueduetothefactthatthenumberofstudieswassmallerthanthe
empiricalthresholdof10.
Upgrading. U1) The certainty of evidence was upgraded by one
level if the pooled effect size was large. Defining the threshold for
large
was challenging, especially given that RRs were mostly low
comparedtothethresholdvaluesused in other medical studies.U2)
Thecertainty of evidence was upgraded by one level if studies pre-
sentedabiologicaldose-responsegradient(e.g.,higherRRassociated
withhigherexposure). U3). The certaintyofevidence was upgraded
whenpossibleresidualconfounderswouldreducethedemonstratedef-
fect.
3. Results
3.1. Literaturesearchandselectionresults
Theinitial search yielded7696 articles, to which59 were added
fromforward/backwardsearchesandotherliterature.Afterduplicate
removal,abstract/titlescreening,andfull-textreview,thefinalreview
setcomprised88articlespublished1972
2022(Table1).Apost-2016
surgeinpublicationswasevident.Thevastmajorityofincludedstudies
(n=84,95.5%)examinedallagesoradults(e.g.,18+);onlythree
(3.4%)focusedonolderadults(e.g.,50+),andonlyone(1.1%)on
children.
6
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1
Studycharacteristics(N=88).
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Goldstein,
1972
(Goldstein,
1972)
Collegestudents:
Acohortof
studentsin
anintroductory
psychologycourse
atacommunity
collegeinU.S.
22
persons
11days Cohort City/town
level
Daily Air
temperature,
Humidity,
Barometric
pressure
Self-reported
affect/
mental
health
F30
F39 Correlation No
Persinger,
1975
(Persinger,
1975)
Collegestudents:
Acohortof
university
studentsfroma
classatLaurentian
University,
Canada
10
persons
90days(9
January
8
April1974)
Cohort City/town
level
Daily Air
temperature,
Windspeed,
Sunshine,
Relative
humidity,
Barometric
pressure,
Self-reported
affect/
mental
health
F30
F39 Correlation,
(Generalized)
linearmodel
No
Howarth&
Hoffman,
1984
(Howarth
and
Hoffman,
1984)
Collegestudents:
Acohortof
university
students
participatingin
thestudyfor
course
requirementin
Canada
24
persons
11days Cohort City/town
level
Daily Wind
direction/
speed,
Sunshine,
Humidity,
Barometric
pressure,
Precipitation
Self-reported
affect/
mental
health
F30
F39 Correlation,
(Generalized)
linearmodel
No
Mawsonand
Smith,1981
(Mawson
andSmith,
1981)
General
population:
Mentaldiseases-
relatedhospital
admissionswithin
theareaofthe
GreaterLondon
Councilrecorded
bytheStatistics
andResearch
Departmentofthe
DHSS
2126
records
1975 Timeseries City/town
level
Daily Barometric
pressure,
Relative
humidity
Medical
records/
clinical
diagnosis
F30
F39 Correlation No
Barnston,
1988
(Barnston,
1988)
Collegestudents:
Undergraduate
psychologyclasses
attheUniversity
ofIllinoisat
Urbana,U.S.
62
persons
September
16
October
27,1974
Cohort City/town
level
Daily Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Precipitation,
Relative
humidity,
Wind
direction/
speed
Self-reported
affect/
mental
health
General
psychological
health
Correlation No
Carneyetal.,
1988
(Carneyet
al.,1988)
General
population:
Mentaldisorders-
relatedhospital
admissions
University
Departmentof
Psychiatryatthe
RegionalHospital,
Galway.
104
records
1980
1984 Timeseries Neighborhood/
Hospital
catchment
level
Monthly Air
temperature,
Solar
radiation/
Sunshine
Medical
records/
clinical
diagnosis
F30
F39 Correlation No
Molinetal.,
1996(Molin
etal.,1996)
Acohortof
patientsdiagnosed
withdepression
126
persons
1991
1994 Cohort City/town
level
Weekly Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Precipitation
Symptom
worsening/
Newepisode
(Generalized)
linearmodel
No
(continuedonnextpage)
7
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Salibetal.,
1999(Salib
andSharp,
1999)
General
population:
Admissiontoa
largepsychiatric
hospital(Winwick
Hospital)inNorth
Cheshire
2070
records
1993 Timeseries Countylevel Daily Air
temperature,
Solar
radiation/
Sunshine,
Relative
humidity,
Precipitation
Medical
records/
clinical
diagnosis
F00
F09 Correlation No
Leeetal.,
2002(Leeet
al.,2002)
General
population:
Admissiontothe
psychiatricunitof
thetwohospitals
affiliatedwiththe
KoreaUniversity
MedicalCenter
152
persons
1996
1999 Cohort Neighborhood/
Hospital
catchment
level
Monthly Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Precipitation,
Relative
humidity
Medical
records/
clinical
diagnosis
F30
F39 Correlation No
Saliband
Sharp,2002
(Saliband
Sharp,2002)
General
population:
Admissiontoa
largepsychiatric
hospital(Winwick
Hospital)inNorth
Cheshire
1084
records
1993 Timeseries City/town
level
Daily Air
temperature,
Solar
radiation/
Sunshine,
Relative
humidity,
Precipitation
Medical
records/
clinical
diagnosis
F10
19,F20
F29,F30
F39,F40
F49
Correlation No
Cornalietal.,
2004
(Cornaliet
al.,2004)
Dementia
patients:
Patientsdiagnosed
withdementia
admittedtothe
Alzheimer
Rehabilitation
Unit,Richiedei
MedicalCenter,
Palazzolos/O
Brescia,Italy.
25
persons
June14
21,
2002
Case-control Neighborhood/
Hospital
catchment
level
Daily Air
temperature
Symptom
worsening/
Newepisode
&Drug
dispensation
Dementia (Generalized)
linearmodel
No
Bulbenaetal.,
2005
(Bulbenaet
al.,2005)
General
population:
Psychiatric
emergenciesatdel
MarHospital,
Barcelona
368
records
2002 Other
ecological
City/town
level
Daily Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Precipitation,
Relative
humidity,
Wind
direction/
speed
Medical
records/
clinical
diagnosis
F40
F49 (Generalized)
linearmodel
No
Kelleretal.,
2005(Keller
etal.,2005)
General
population:
Acohortof
populationliving
inAnnArbor,
Michigan,U.S.
605
persons
April5
June
15,2001,
April16
July27,
2003,
January
December
2002
Cross-
sectional
City/town
level
Daily Air
temperature,
Barometric
pressure
Self-reported
affect/
mental
health
F30
F39 (Generalized)
linearmodel
No
(continuedonnextpage)
8
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Shilohetal.,
2005(Shiloh
etal.,2005)
General
populationaged
18+:
Hospital
admissionsand
psychiatric
diagnoses
recordedbythe
IsraeliNational
Psychiatric
Registry(INPR),
Departmentof
Informationand
Evaluation,
MentalHealth
Services(Ministry
ofHealth,
Jerusalem,Israel)
33,614
records
1981
1991 Timeseries City/town
level
Daily Thermal
comfort
index,Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Relative
humidity
Medical
records/
clinical
diagnosis
F20
F29 Correlation No
Hartigetal.,
2007(Hartig
etal.,2007)
General
population:
Dispensationof
selectiveserotonin
reuptake
inhibitors(SSRIs)
recordedbythe
ApoteketABin
Sweden
NR 1991
1998 Timeseries Nationallevel Monthly Air
temperature
Drug
dispensation
Depression Auto
regressive
integrated
moving
average
No
Leeetal.,
2007(Leeet
al.,2007)
General
population:
Hospitalization
recordinthe
TaiwanNational
HealthInsurance
ResearchDatabase
15,060
records
1999
2003 Timeseries Nationallevel Monthly Air
temperature,
Solar
radiation/
Sunshine,
Precipitation
Medical
records/
clinical
diagnosis
F30
F39,F99 Auto
regressive
integrated
moving
average
No
Christensenet
al.,2008
(Christensen
etal.,2008)
Bipolarpatients:
Bipolarpatients
admittedtothe
departmentsof
psychiatryin
threeCopenhagen
University
Hospitals,aged18
and75yearsold
56
persons
1990
1993 Cohort Neighborhood/
Hospital
catchment
level
Multi-
month
Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Precipitation,
Relative
humidity,
Wind
direction/
speed
Medical
records/
clinical
diagnosis
F30
F39 Correlation No
Denissenetal.,
2008
(Denissenet
al.,2008)
General
population:
Acohortof
populationsigning
uptoanonline
diarystudyin
Germany
1233
persons
July2005
February
2007
Cohort Nationallevel Daily Air
temperature,
Windspeed,
Sunlight,
Barometric
pressure,
Precipitation
Self-reported
affect/
mental
health
F30
F39 (Generalized)
linearmodel
No
Hansenetal.,
2008
(Hansenet
al.,2008)
General
population:
Hospitalizations
formentaland
behavioral
disordersordeath
recordsassociated
withmentaland
behavioral
disordersin
Adelaide,South
Australiacollected
bytheSouth
Australian
171,
614
records
1993
2006 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 (Generalized)
linearmodel
Yes
(continuedonnextpage)
9
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Bulbenaetal.,
2009
(Bulbenaet
al.,2009)
General
population:
Psychiatric
emergenciesat
HospitaldelMar
hospitaland
InstitutMunicipal
Psiquiatria
hospital,
Barcelona
872
records
2003
summer
days
Timeseries Neighborhood/
Hospital
catchment
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F10
F19,
F20
F29,
F30
F39,
F40
F49,
F60
F69
(Generalized)
linearmodel
Yes
Huibersetal.,
2010
(Huiberset
al.,2010)
General
population(aged
18
65):
Reportedpresence
ofmental
disordersin
southern
Netherlands
14,478
persons
2005
2007 Timeseries Nationallevel Daily Air
temperature,
Solar
radiation/
Sunshine,
Precipitation
Medical
records/
clinical
diagnosis
F30
F39 (Generalized)
linearmodel
Yes
Khalajetal.,
2010(Khalaj
etal.,2010)
General
population:
Hospital
admissionsinfive
regions(Sydney
East;Sydney
West;Gosford
Yong;Newcastle
andIllawarra)of
NewSouthWales
1,497,
655
records
springand
summer
days
(September
February)of
1998
2006
Timeseries Regionallevel Daily Thermal
comfort
index,Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 (Generalized)
linearmodel
Yes
Raduaetal.,
2010(Radua
etal.,2010)
General
population:
Admissionstothe
AcuteUnitatthe
Departmentof
Psychiatryin
Bellvitge
University
Hospital,
Barcelona,Spain
421
persons
1997
2004 Timeseries City/town
level
Daily Thermal
comfortindex
Medical
records/
clinical
diagnosis
F30
F39 Autoregressive
Integrated
Moving
Average
No
Klimstraetal.,
2011
(Klimstraet
al.,2011)
Adolescentsand
theirmothers:
Acohortof
adolescentsand
theirmothers
enrolledinan
ongoing
longitudinal
projectinThe
Netherlands,
entitledResearch
onAdolescent
Developmentand
Relationships
(RADAR).
823
persons
6weeks Cohort Nationallevel Daily Air
temperature,
Sunlight,
Precipitation
Self-reported
affect/
mental
health
F30
F39 Correlation No
Sungetal.,
2011(Sung
etal.,2011)
General
population:
Medicalrecordsof
psychiatric
hospital
admissionsin
Psychiatric
InpatientMedical
Claim(PIMC)
datasetofthe
NationalHealth
Insurance
ResearchDatabase
inTaiwan
41,023
records
1996
2007 Timeseries Nationallevel Daily Air
temperature
Medical
records/
clinical
diagnosis
F20
F29 (Generalized)
linearmodel
Yes
(continuedonnextpage)
10
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Yackersonet
al.,2011
(Yackerson
etal.,2011)
General
population:
Mentaldiseases-
relatedemergency
visitsand
hospitalizationin
theregional
MentalHealth
Center(MHC)of
Ben-Gurion
University,Israel
4325
persons
2001
2003 Timeseries Neighborhood/
Hospital
catchment
level
Weekly Air
temperature,
Windspeed/
direction,
Relative
humidity
Medical
records/
clinical
diagnosis
F20
F29 Correlation No
Gasparriniet
al.,2012
(Gasparrini
etal.,2012)
General
population:
Deathrecords
associatedwith
heatrecordedby
theOfficefor
NationalStatistics
inEnglandand
Wales
92,439
records
summers
(June
September)
of1993
2006
Timeseries Regionallevel Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09,
F10
F19,
F20
F29
(Generalized)
linearmodel
Yes
Vidaetal.,
2012(Vida
etal.,2012)
General
population:
Emergency
departmentvisits
formental
disordersinthree
geographicareas
ofQuébec,aged
15yearsandover
347,
552
records
1995
2007 Other
ecological
Climatezone Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09,
F10
F19,
F20
F29,
F30
F39
(Generalized)
linearmodel
Yes
Williamsetal.,
2012
(Williamset
al.,2012)
General
population:
Mortality,hospital
admissions,and
emergency
departmentvisits
collectedbythe
SouthAustralian
Departmentof
Health
NR 1993
2009 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 GEE Yes
Alexander,
2013
(Alexander,
2013)
General
population:
Psychiatric
disease-related
callstothepublic
emergencyservice
ofthecityof
BuenosAires,
Argentina
80,724
records
1999
2004 Timeseries City/town
level
Monthly Thermal
comfort
index,Air
temperature,
Precipitation,
Relative
humidity
Medical
records/
clinical
diagnosis
General
mentalhealth
Correlation No
McWillimaset
al.,2013
(McWilliams
etal.,2013)
General
population:
Admissionsto
psychiatric
hospitalsinthe
Republicof
Ireland
48,347
records
1971
2002 Timeseries Regionallevel Daily Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Precipitation,
Wind
direction/
speed
Medical
records/
clinical
diagnosis
F20
F29 Autoregressive
Integrated
Moving
Average;
(Generalized)
linearmodel
No
(continuedonnextpage)
11
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Sungetal.,
2013(Sung
etal.,2013)
General
population:
Medicalrecordsof
psychiatric
hospital
admissionsin
Psychiatric
InpatientMedical
Claim(PIMC)
datasetofthe
NationalHealth
Insurance
ResearchDatabase
inTaiwan
9071
records
1996
2007 Timeseries Nationallevel Daily Air
temperature,
Precipitation
Medical
records/
clinical
diagnosis
F30
F39 (Generalized)
linearmodel
Yes
Tsutsui,2013
(Tsutsui,
2013)
Collegestudents:
Acohortof
university
studentsrecruited
oncampus
groundsaswellas
throughawebsite
atOsaka
University,Japan
75
persons
516days(1
November
2006
31
March2008)
Cohort City/town
level
Daily Air
temperature,
Windspeed,
Sunshine,
Humidity,
Precipitation
Self-reported
affect/
mental
health
General
psychological
health,F30
F39,F40
F49,F50
F59
Correlation,
(Generalized)
linearmodel
No
Vaneckovaet
al.,2013
(Vaneckova
and
Bambrick,
2013)
General
population:
Admissionstoall
privateandpublic
hospitalslocated
intheSydney
930,
322
records
1991
2009 Case-
crossover
City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F20
F29,
F40
F49,
F70
F79
(Generalized)
linearmodel
Yes
Wilsonetal.,
2013
(Wilsonet
al.,2013)
General
population:
Medicalrecordsof
hospital
admissionsor
deathrecordsin
theNewSouth
WalesDepartment
ofHealth
NR 1997
2007
and1997
2010
Case-
crossover
City/town
level
Daily Thermal
comfort
index,Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 DLNM Yes
Henriquez-
Sanchezet
al.,2014
(Henriquez-
Sanchezet
al.,2014)
CollegeStudents:
Acohortof
Spanishuniversity
graduates
participatingin
theSUNproject
fromSeguimiento
Universityof
Navarra
13,938
persons
1999
2009 Cohort Regionallevel Multi-
year
Air
temperature,
Solar
radiation/
Sunshine,
Precipitation
Medical
records/
clinical
diagnosis
F30
F39 Cox
(Generalized)
linearmodel
Yes
McWillimaset
al.,2014
(McWilliams
etal.,2014)
General
population:
Admissionsto
psychiatric
hospitalsinthe
Republicof
Ireland
34,465
records
1971
2002 Timeseries Regionallevel Daily Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Precipitation,
Wind
direction/
speed
Medical
records/
clinical
diagnosis
F30
F39 Autoregressive
Integrated
Moving
Average;
(Generalized)
linearmodel
No
Obrienetal.,
2014
(Obrienet
al.,2014)
Populationaged
15+:
Acohortof
populationfrom
theHousehold,
Incomeand
LabourDynamics
inAustralia
(HILDA)Survey
5012
persons
2007
2008 Cross-
sectional
(onewave
ofa
longitudinal
dataset)
Nationallevel Monthly Precipitation Self-reported
affect/
mental
health
General
psychological
health
(Generalized)
linearmodel
No
(continuedonnextpage)
12
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Simonsetal.,
2014
(Simonset
al.,2014)
General
population:
Acohortof
population
admittedto3
medicalcenters
(Radboud
University
NijmegenMedical
Centrein
Nijmegen,
University
MedicalCentrein
Utrecht,and
JeroenBosch
Hospital,'s-
Hertogenbosch)in
TheNetherlands
3198
persons
2008
2012 Cohort Neighborhood/
Hospital
catchment
level
Monthly Solar
radiation/
Sunshine
Medical
records/
clinical
diagnosis
F00
F09 (Generalized)
linearmodel
Yes
Wangetal.,
2014(Wang
etal.,2014)
General
population:
Emergencyroom
visitsformental
illnessinNational
AmbulatoryCare
ReportingSystem
inTorontothat
capturedover
97%oftheER
visitsinthe
provinceof
Ontarioandhad
goodreabstraction
accuracy
271,
746
records
2002
2010 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 DLNM Yes
Kimetal.,
2015(Kim
etal.,2015)
General
population:
Deathrecord
providedby
StatisticsKorea
50,055
records
1992
2009 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99,
F10
F19,
F20
F29
(Generalized)
linearmodel
Yes
Beecheretal.,
2016
(Beecheret
al.,2016)
Mentalhealth
distresspatients:
Acohortof
university
students
participatingin
mentalhealth
treatmentat
BrighamYoung
University,U.S.
16,452
persons
2008
2014 Other City/town
level
Daily Sunshine Self-reported
affect/
mental
health
General
mentalhealth
(Generalized)
linearmodel
No
Dingetal.,
2016(Ding
etal.,2016)
Populationaged
45+
Acohortof
residentsaged45
andoverof
thesoutheast
Australianstateof
NewSouthWales,
Australia.
53,144
persons
2006
2008 Cohort State/Province
level
Daily Air
temperature,
Relative
humidity
Self-reported
affect/
mental
health
General
psychological
health
(Generalized)
linearmodel
No
Noelkeetal.,
2016
(Noelkeet
al.,2016)
General
populationaged
18+:participants
reportingpresence
ofmental
disordersinthe
GallupG1K
dataset
1,854,
746
persons
2008
2013 Other Nationallevel Daily Air
temperature
Self-reported
affect/
mental
health
General
psychological
health
(Generalized)
linearmodel
No
(continuedonnextpage)
13
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
O'Hareetal.,
2016
(O'Hareet
al.,2016)
Populationaged
50+:
Acohortof
populationfrom
thefirstwaveof
TheIrish
Longitudinal
StudyonAgeing
(TILDA)
8027
persons
late2009to
early2011
Cross-
sectional
(onewave
ofa
longitudinal
dataset)
Nationallevel Monthly Air
temperature,
Solar
radiation/
Sunshine,
Precipitation
Medical
records/
clinical
diagnosis
F30
F39 (Generalized)
linearmodel
No
Trang,
Rocklöv,
Giang,
Kullgren,et
al.,2016
(Trangetal.,
2016a)
General
population:
Mentaldisorders-
relatedhospital
admissionsina
databasefrom
HanoiMental
Hospital(oneof
mentalhospitals
inHanoiCity)in
northernVietnam
21,443
records
2008
2012 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09,
F70
F79
(Generalized)
linearmodel
Yes
Shiue,Perkins,
&Bearman,
2016(Shiue
etal.,2016)
General
population:
Mentalbehavioral
disorders-related
hospital
admissionsin
Germanhospitals
NR 2009
2011 Timeseries Regionallevel Daily Thermal
comfortindex
Medical
records/
clinical
diagnosis
F01
F09,
D10
F19,
F20
F29,
F30
F39,
F40
F49,
F50
F51,F98
Polynomial
regression
model
No
Trang,
Rocklöv,
Giang,&
Nilsson,
2016(Trang
etal.,
2016b)
Populationwith
medicalrecordsof
mentaldisorders-
relatedhospital
admissionsina
databasefrom
HanoiMental
Hospital(oneof
themental
hospitalsinHanoi
City)innorthern
Vietnam
23,525
records
2008
2012 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09,
F10
19,F20
F29,F30
F39,F40
F49,F50
F59,F70
F79,F99
(Generalized)
linearmodel
Yes
Yi-Fanetal.,
2016(Yi-
Fanetal.,
2016)
General
population:
Participantsofthe
International
SocialSurvey
Program(ISSP)
reporting
psychological
conditionsfrom
29counties
5420
records
NR Cross-
sectional
Nationallevel Daily Air
temperature,
Relative
humidity,
Wind
direction/
speed
Self-reported
affect/
mental
health
General
psychological
health
(Generalized)
linearmodel
No
Bullocketal.,
2017
(Bullocket
al.,2017)
Bipolarpatients:
Patientsdiagnosed
withbipolar
disorderfroma
publichealth
serviceinregional
Victoria,Australia
11
persons
Anaverage
of130
consecutive
days(range:
14
231days)
Case-
crossover
Regionallevel Daily Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Relative
humidity
Symptom
worsening/
Newepisode
Mood (Generalized)
linearmodel
No
Linaresetal.,
2017
(Linareset
al.,2017)
General
population:
Mentaldisorders-
relatedemergency
admissionsto
municipal
hospitalsin
Madrid
1175
records
2001
2009 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09 (Generalized)
linearmodel
Yes
(continuedonnextpage)
14
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Pengetal.,
2017(Peng
etal.,2017)
General
population:
Participatedin
HealthInsurance
Systemof
Shanghaiwith
medicalrecordsof
hospital
admissionsfor
mentaldisorders
inShanghai,
China
93,971
records
2008
2015 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 DLNM Yes
Sarranetal.,
2017
(Sarranet
al.,2017)
Patientswith
seasonalaffective
disorder
Acohortof
patientsdiagnosed
withseasonal
affectivedisorder
attheUniversity
Centerof
Psychiatryatthe
University
MedicalCenter
Groningen,
Netherlands
291
persons
2003
2009 Cohort Neighborhood/
Hospital
catchment
level
Weekly Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Relative
humidity
Symptom
worsening/
Newepisode
Depression (Generalized)
linearmodel
No
Basuetal.,
2018(Basu
etal.,2018)
General
population:
Medicalrecordsof
mentaldisorders-
relatedemergency
roomvisitsby
CaliforniaOffice
ofStatewide
HealthPlanning
andDevelopment
219,
942
records
2005
2013 Timeseries State/Province
level
Daily Thermal
comfortindex
Medical
records/
clinical
diagnosis
F20
F29,
F40
F49
(Generalized)
linearmodel
Yes
Chanetal.,
2018(Chan
etal.,2018)
General
population:
Mentaldisorders-
relatedhospital
admissions
collectedbythe
HospitalAuthority
ofHongKong
contained>99%
ofcasesduesto
mentaldisorders
inHongKong
44,600
records
2002
2011 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09,
F10
F19,
F20
F29,
F30
F39,
F40
F49,F99
DLNM Yes
M. Leeetal.,
2018(Leeet
al.,2018a)
General
population:
Acorhortof
population
participatingthe
JapaneseHealth
DiaryStudyin
Japan
4548
persons
Octoberof
2013
Cohort Nationallevel Daily Air
temperature,
Relative
humidity
Medical
records/
clinical
diagnosis
F40
F49 (Generalized)
linearmodel
No
S. Leeetal.,
2018(Leeet
al.,2018b)
General
population:
Emergency
admissions
collectedbythe
KoreanNational
HealthInsurance
Corporation
containing
medical
informationfor
almost100%of
theKorean
population
166,
578
records
2003
2013 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09,
F20
F29,
F30
F39,
F40
F49
DLNM Yes
(continuedonnextpage)
15
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Obradovichet
al.,2018
(Obradovich
etal.,
2018b)
General
populationaged
18+:
Participants
completingthe
BehavioralRisk
Factor
Surveillance
System(BRFSS)
undertheCenters
forDisease
Controland
Prevention(CDC)
1,961,
743
persons
2002
2012 Other Nationallevel Monthly Air
temperature,
Precipitation
Self-reported
affect/
mental
health
General
mentalhealth
(Generalized)
linearmodel
No
Sherbakovet
al.,2018
(Sherbakov
etal.,2018)
General
population:
Hospitalizationsin
Californiainthe
Officeof
StatewideHealth
Planningand
Development
(OSHPD)Patient
DischargeData
(PDD)
130,
065
records
May
Octoberof
1999
2009
Timeseries Climatezone Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 DLNM Yes
Tapaketal.,
2018(Tapak
etal.,2018)
General
population:
hospitalizationin
Farshchian
hospital(theonly
psychiatric
hospitalacross
Hamadan
Province)in
westernIran
20,406
persons
2005
2017 Timeseries Neighborhood/
Hospital
catchment
level
Daily Solar
radiation/
Sunshine,
Barometric
pressure,
Precipitation
Medical
records/
clinical
diagnosis
F20
F29,
F30
F39
(Generalized)
linearmodel
Yes
Wangetal.,
2018(Wang
etal.,2018)
General
population:
Admissionstothe
AnhuiMental
HealthCenterin
China
17,744
records
warmseason
(May
October)in
2005
2014
Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F20
F29 DLNM Yes
Xuetal.,2019
(Xuetal.,
2019)
General
population:
Emergency
departmentvisits
recordedbythe
Queensland
Health
NR 2013
2015 Timeseries Neighborhood/
Hospital
catchment
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 DLNM Yes
Almendraet
al.,2019
(Almendra
etal.,2019)
General
population:
Mentaldisorders-
relatedhospital
admissionsinthe
DiagnosisRelated
Groupsgeneral
databaseprovided
bythePortuguese
HealthSystem
Central
Administration
30,139
records
2008
2014 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09,
F10
F19,
F20
F29,
F30
F39,
F40
F49,
F50
F59,
F60
F69
DLNM Yes
Guetal.,2019
(Guetal.,
2019)
General
population:
Mentaldisorders-
relatedhospital
admissionatthe
biggestpsychiatric
hospitalin
Ningbo,China
10,132
records
2012
2016 Timeseries City/town
level
Daily Solar
radiation/
Sunshine
Medical
records/
clinical
diagnosis
F20
F29 DLNM Yes
(continuedonnextpage)
16
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Hoetal.,2019
(Hoand
Wong,2019)
General
population:
Deathrecordsina
mortalitydataset
providing
informationofall
decedentsinHong
Kong
133,
359
records
2007
2014 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 (Generalized)
linearmodel
Yes
Liuetal.,
2019(Liuet
al.,2019)
General
population:
Mentaldiseases-
relatedhospital
admissionsatthe
MentalHealth
Centerof
Shandong
provinceinChina
19,569
persons
14days(14
June14
17,
June28
30,
July4
7,
andJuly29
31) in2010
Case-
crossover
City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 (Generalized)
linearmodel
No
Minetal.,
2019(Min
etal.,2019)
General
population:
Mentaldisorders-
relatedhospital
admissionsinthe
hospitalmedical
recordsystemsof
Yanchengcity,
China
8438
records
2014
2017 Timeseries City/town
level
Daily Thermal
comfortindex
Medical
records/
clinical
diagnosis
F00
F99 DLNM Yes
Mullins&
White,2019
(Mullinsand
White,
2019)
General
population:
Mentaldisorders-
relatedemergency
departmentvisits
and
hospitalizations
collectedbythe
California'sOffice
ofStatewide
HealthPlanning
andDevelopment
&participants
reportingmental
healthby
interviewsfrom
theBehavioral
RiskFactor
Surveillance
System(BRFSS)
undertheCenters
forDisease
Controland
Prevention(CDC),
aged18yearsand
older
5,996,
037
records
2005
2016 Timeseries Countylevel Daily Air
temperature
Medical
records/
clinical
diagnosis&
Self-reported
affect/
mental
health
F00
F99 (Generalized)
linearmodel
No
Panetal.,
2019(Panet
al.,2019)
General
population:
Mentaldiseases-
relatedhospital
admissions
collectedbythe
AnhuiMental
HealthCenterin
Hefei,China
30,022
records
2005
2014 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F20
F29 DLNM No
(continuedonnextpage)
17
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Xuetal.,2019
(Xuetal.,
2018)
Childrenaged6
11:
Acohortof
childrenaged6to
11yearsold,
participatingin
theLongitudinal
Studyof
Australian
Children
6875
records
2008
2014 Cohort Nationallevel Yearly Air
temperature,
Precipitation
Self-reported
affect/
mental
health
F00
F99 (Generalized)
linearmodel
No
Yietal.,2019
(Yietal.,
2019)
General
population:
Emergency
admissionsinthe
AnhuiMental
HealthCenterin
China
36,607
records
2005
2014 Timeseries City/town
level
Daily Thermal
comfortindex
Medical
records/
clinical
diagnosis
F20
F29 DLNM Yes
daSilvaetal.,
2020(da
Silvaetal.,
2020)
General
population:
Hospitalizations
formentaland
behavioral
disordersinthe
publicSingle
SystemofHealth
(SUS)inCuritiba,
Brazil
5397
records
2010
2016 Timeseries City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 DLNM Yes
Lietal.,2020
(Lietal.,
2020)
General
populationaged
18+:
Participantsofthe
BehavioralRisk
Factor
Surveillance
System(BRFSS)
undertheCenters
forDisease
Controland
Prevention(CDC)
3,060,
158
persons
1993
2010 Other
ecological
Countylevel Daily Air
temperature
Self-reported
affect/
mental
health
General
mentalhealth
(Generalized)
linearmodel
No
Liuetal.,
2020(Liuet
al.,2020)
General
population:
Deathrecords
collectedbythe
HongKongCensus
andStatistics
Department
19,534
records
2006
2016 Timeseries Nationallevel Daily Air
temperature,
Relative
humidity
Medical
records/
clinical
diagnosis
F00
F99 DLNM Yes
Niuetal.,
2020(Niuet
al.,2020)
General
population:
Mentaldisorders-
relatedemergency
admissionsin30
hospitalsin
Beijingrecorded
byBeijing
MunicipalHealth
Commission
Information
Centerthat
coveredall
admissions
16,606
records
2016
2018 Timeseries City/town
level
Daily Thermal
comfortindex
Medical
records/
clinical
diagnosis
F10
F19,
F20
F29,
F30
F39,
F40
F49
DLNM Yes
(continuedonnextpage)
18
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Ohetal.,2020
(Ohetal.,
2020)
General
population:
Emergency
departmentvisits
forpanicattacks
intheNational
Emergency
Department
Information
System(NEDIS)in
Seoul,South
Korea
1926
persons
2008
2014 case-
crossover
City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F40
F49 (Generalized)
linearmodel
Yes
Zhangetal.,
2020(Zhang
etal.,2020)
General
population:
Admissionstothe
publiclyfunded
andauthoritative
psychiatric
specialisthospitals
formental
disordersinthree
Chinesecities
(Shenzhen,
Zhaoqing,and
Huizhou)
1,133,
220
records
2013
2018 Case-
crossover
City/town
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09,
F20
F29,
F30
F39,
F40
F49
DLNM Yes
Bundoetal.,
2021(Bundo
etal.,2021)
General
population:
Mentaldisorders-
relatedhospital
admissionsinthe
University
Psychiatric
HospitalinBern,
Switzerland
88,996
records
1973
2017 Case-
crossover
Neighborhood/
Hospital
catchment
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09,
F10
F19,
F20
F29,
F30
F39,
F40
F49,
F60
F69,
F70
F79,
F80
F89
Distributedlag
linearmodel
Yes
Burdett,
Davillas,&
Etheridge,
2021
(Burdettet
al.,2021)
General
population:
Acohortof
populationfrom
theUKHousehold
Longitudinal
Study(UKHLS)on
mentalhealth
NR April
Julyin
2020
Cohort Nationallevel Daily Air
temperature,
Sunshine,
Precipitation
Self-reported
affect/
mental
health
General
mentalhealth
(Generalized)
linearmodel
No
Eun-hyeetal.,
2021(Eun-
hyeetal.,
2021)
General
population:
Mentaldisorders-
relatedemergency
roomvisitsinthe
Statewide
Planningand
Research
Cooperative
Systemoperated
bytheNewYork
StateDepartment
ofHealth.
92,627
records
2009
2015 Timeseries State/Province
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 DLNM Yes
Jahan&
Wraith,
2021(Jahan
andWraith,
2021)
General
population:
Mentaldisorders-
relatedhospital
admissionsinthe
Queensland
HospitalAdmitted
PatientData
Collectionthat
collects
informationfrom
allpublicand
privatehospitals
inQueensland,
Australia
132,
088
records
1996
2015 Timeseries Regionallevel Daily Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Precipitation,
Relative
humidity
Medical
records/
clinical
diagnosis
F20
F29 DLNM No
(continuedonnextpage)
19
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Kimetal.,
2021(Kim
etal.,2021)
General
population:
Acohortthat
underwenthealth
examinations
fromtheKorean
NationalHealth
InsuranceService
25,589
persons
2002
2013 Case-control Nationallevel Multi-
day
Air
temperature,
Solar
radiation/
Sunshine,
Barometric
pressure,
Precipitation,
Relative
humidity
Medical
records/
clinical
diagnosis
F30
F39 (Generalized)
linearmodel
Yes
Middletonet
al.,2021
(Middleton
etal.,2021)
General
population:
Mentalhealth-
relatedclinic
visitsatfive
communityclinics
inNunatsiavut
228,
104
records
2012
2018 Timeseries Neighborhood/
Hospital
catchment
level
Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 (Generalized)
linearmodel
No
Sonetal.,
2021(Son
andShin,
2021)
General
population:
Mentaldisorders
fromHealth
InsuranceReview
andAssessment
Service-National
PatientSample
providedbythe
NationalHealth
Insuranceof
Korea
531,
342
records
2016 Timeseries Nationallevel Daily Solar
radiation/
Sunshine
Medical
records/
clinical
diagnosis
F30
F39 (Generalized)
linearmodel
Yes
Tangetal.,
2021(Tang
etal.,2021)
General
population:
Medicalrecordsof
hospitalizationin
thelargest
psychiatric
hospital(Anhui
MentalHealth
Center)inAnhui
Province,China
53,288
records
2005
2019 Timeseries Neighborhood/
Hospital
catchment
level
Daily Thermal
comfortindex
Medical
records/
clinical
diagnosis
F20
F29 (Generalized)
linearmodel
No
Yooetal.,
2021(Yooet
al.,2021)
General
population:
International
SocialSurvey
Progental
disorders-related
emergencyroom
visitsinthe
Statewide
Planningand
Research
Cooperative
Systemoperated
byNewYorkState
Departmentof
Health
2,893,
794
records
2009
2016 Timeseries Regionallevel Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F99 DLNM Yes
Zapataetal.,
2021
(Zapata,
2021)
General
population:
Participantsofthe
employment
surveyofEcuador
conductedbythe
NationalInstitute
ofStatisticsand
Census(INEC)
54,541
persons
NR Cross-
sectional
Nationallevel Monthly Thermal
comfort
index,Air
temperature,
Precipitation,
Relative
humidity
Self-reported
affect/
mental
health
General
psychological
health
(Generalized)
linearmodel
No
(continuedonnextpage)
20
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table1(continued)
Citation Population Sample
size
Study
periods
Typeof
study
Spatialunitof
analysis
Temporal
unitof
analysis
Microclimate
exposure
Typeof
mental
health
outcome
Mentalhealth
outcome
Statistical
analysis
Included
inmeta-
analysis
Gongetal.,
2022(Gong
etal.,2022)
General
population:
Mentaldisorders-
relatedemergency
roomvisitsinthe
NationalHealth
Service(NHS)
DigitalinEngland
NR 1998
2009 Timeseries Regionallevel Daily Air
temperature
Medical
records/
clinical
diagnosis
F00
F09 Distributedlag
linearmodel
Yes
Note.NR:notreported;record:thenumberofmedicalrecords(e.g.,mentaldisorder-relatedadmissions,hospitalization,oremergencyvisit);person:thenumberof
individuals.GEE:generalizedestimatingequation;DLNM:distributedlagnon-linearmodel.
3.2. Narrativesynthesisofstudycharacteristics
3.2.1. Geographicalandclimatezonedistribution
The included studies represented 23 countries/regions, predomi-
nantly in Asia (n = 29, 33.0 %) and Europe (n = 27, 30.7 %), followed
by North America (n = 17, 19.3 %). Outside of a few Asian countries
and Australia, the rest of the Global South (e.g., Latin America, Africa)
was underrepresented (n = 3, 3.4 %). In terms of climate zone, most
studies focused on temperate and dry climates (n = 74, 84.1 %); only a
few from Ecuador (Zapata, 2021), Brazil (da Silva et al., 2020), Taiwan
(Sung et al., 2011; Sung et al., 2013), northern Australia (Xu et al.,
2019; Jahan and Wraith, 2021) and Vietnam (Trang et al., 2016a) fea-
tured tropical climates, and none polar climates (Fig. 2).
3.2.2. Typesofclimaticandmeteorologicalexposuresreported
Frequently-investigated climatic and meteorological factors in-
cluded air/ambient temperature, relative humidity, precipitation, sun-
light/solar radiation, and barometric pressure (Fig. 3, left). At least two
factors were evaluated in 74 studies (84.1 %), and just one in the re-
mainder (15.9 %). Most studies (n = 74, 84.1 %) included air tempera-
ture and temperature-based metrics (e.g., heatwave occurrence),
chiefly mean daily temperature, mean of daily maximum or minimum
temperature, and daily temperature range. Heat and cold were also
commonly considered, typically defined with either a) an absolute
threshold based on local climate norms (Hansen et al., 2008; Bulbena et
al.,2009;Trangetal.,2016a;Liuetal.,2019)orb)aparticularrelative
percentile(e.g.,95%,99%)ofthetemperaturedistribution(Liuetal.,
2020;Sherbakovetal.,2018;Khalajetal.,2010).Likewise,heatwaves
orextremeheateventsweredefinedasmaximumtemperaturesexceed-
inganabsoluteorrelativethresholdforconsecutivedays.
Inadditiontotemperature,30studies(34.1%)examinedtheeffect
ofsolarradiationintermsofsunlightradiation(MJ/m2),sunshinedu-
ration (h), day length (h), cloud cover (Okta) (National Weather
Service,n.d.),andglobalradiation(MJ/m2);25studies(28.4%)evalu-
atedprecipitation-relatedfactors,includingrainfall,snowfall,andthe
numberofrainydays;23studies(26.1%)examinedhumidity,mea-
suredasrelativehumidityordewpointtemperature;19(21.6%)in-
vestigatedbarometricpressure;andnine(10.2%)studiedtheimpactof
windspeed/velocityanddirection.Several studiesalsoaccountedfor
horizontalvisibility(Yi-Fanetal.,2016;Sarranetal.,2017;Tapaket
al.,2018),mist(Sarranetal.,2017;Tapaketal.,2018),andthenum-
berofdustyandfoggydays(Carneyetal.,1988;Noelkeetal.,2016).
Inmoststudies,differentclimaticfactorswereconsideredassepa-
rateexplanatoryvariables;however, some applied biometeorological
modelstosynthesizehumanthermalcomfortorstressscores(n=13,
14.8%).Ninearticles(10.2%)usedapparenttemperatureastheheat
indicator(Khalajetal.,2010;Wilsonetal.,2013;Basuetal.,2018;Min
et al., 2019; Yi et al., 2019; Niu et al., 2020; Zapata, 2021; Oudin
Åström et al., 2015); this thermal comfort index integrates ambient
temperature,relativehumidity, and wind velocity (Steadman,1984).
21
Fig.2. Geographicandclimatezonedistributionofstudiesincludedinthereview(n=88).
Fig.3. Typesofmeteorologicalexposuresandmentalhealthoutcomes(n=88).
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Othersusedthebodydiscomfortindex(Shilohetal.,2005)orphysio-
logicallyequivalenttemperature(PET)(Shiueetal.,2016).Finally,one
studydevelopedaspecificheatindexbygeneratingacumulativetem-
peraturemeasurereflectiveofhourlyextreme-heatexposurewithina
day(Tangetal.,2021
3.2.3. Typesofmentalhealthoutcomesexamined
Themajorityofstudiesconducted before 1990 usedself-reported
psychologicalconditions,whilemostrecentstudiesutilizedhospitalad-
mission/utilizationrecordsorclinicaldiagnosisasoutcomevariables
[e.g.17,23,65,76](n=65,73.9%).Inaddition,afewstudiesused
drugdispensation (Cornali et al.,2004; Hartig etal., 2007) (n= 2,
2.3%),symptomworseningordevelopmentofanewepisode(Molinet
al.,1996;Cornalietal.,2004;Bullocketal.,2017;Sarranetal.,2017)
(n=4,4.5%).Ofthosedrawinguponhospitalrecords(Fig.3,right),
83(94.3%)examinedmentalandbehavioralmorbidity(Obradovichet
al.,2018b;Shilohetal.,2005;Carneyetal.,1988;Obrienetal.,2014)
andsix(6.8%)usedmentalhealthrelatedcause-specificmortality(Liu
etal., 2020; Gasparrini etal.,2012;Kimetal.,2015;HoandWong,
2019;OudinÅströmetal.,2015;Rocklövetal.,2014).Mostextracted
MBD status from hospital records based on the ICD-9 or ICD-10
[e.g.,23,38](n=55,62.5%),althoughsomeusedclinicaldiagnosis
byatrainedpsychiatristbasedontheDiagnosticandStatisticalManual
ofMentalDisorders(DSM-IV)(Leeetal.,2002;Huibersetal.,2010).
AmongstudiesutilizingICDstandards,thetopfivemostexamined
outcomecategorieswereschizophrenia(n=25,45.5%),mooddisor-
ders (n = 20, 36.4 %), organic mental disorders such as dementia
(n=15,27.3%),neuroticdisorderssuchasanxietyanddepression
(n=13,23.6%),andpsychoactivesubstanceuse(n=10,18.2%).A
fewstudiesinvestigatedintellectualdisabilities(n=5,9.1%),behav-
ioralsyndromes(n= 3,5.5%),personalitydisorder(n=2,3.6%),
developmentaldisorders(n=2,3.6%),andchildhoodbehavioraldis-
orders(n=2,3.6%).Finally,31studies(56.4%)examinedMBDout-
comesthatincludedmultiplecategories.
3.2.4. Studytype,spatiotemporalscale,andstatisticalanalysis
The reviewed studies most commonly used a time series design
(n = 51, 57.9.2 %), followed by cohort (n = 17, 19.3 %), case-
crossover/case-control(n=9,10.2%),cross-sectionaldataorasingle
wavefromlongitudinaldata(n=5,5.6%),andotherdesigns(n=6,
6.8%).Time-seriesstudiesmostlyreportedalargenumberofrecords
(median=34,000),whilecohortstudiesshowedsmallersamplesizes
(median=480).Fig.4illustratesthespatialandtemporalresolutions
ofthestudies. Concerning spatial resolution, most studieswere con-
ductedatmacro-ormeso-scaleduetotheresolutionofthedatasource;
forexample,dataonhospitalizationandemergencyroomvisitswere
oftenreportedataggregatedlevels(Bulbenaetal.,2005;Bulbenaetal.,
2009;daSilvaetal.,2020)rangingfromahospitalcatchmentorneigh-
borhood(n=13,14.8 %)toanentire nation(n=19,21.6%).Re-
gardingtemporalresolution,moststudies(n=71,80.7%)examined
daily climatic factors, with a few considering monthly patterns
(10.2%).
Whenestimatingexposure-response associations, the mostwidely
usedstatisticaltechnique,especiallyinearlierstudies,waslinearmod-
eling (including generalized linear and linear mixed modeling)
(n=49,55.7%).Poissonornegativebinomiallinkfunctionswerefre-
Fig.4. Spatiotemporalresolutionofthestudies(n=88).
22
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
quentlyemployed to account for MBDincidencecountorprevalence
data;linearmixedmodelswereappliedforthenesteddatastructureof
repeated measurements from individual participants (Bullock et al.,
2017;Sarranetal.,2017). Recentstudiesfavoredthetechniquenon-
lineardistributedlagmodeling(DLNM,n=22,25.0%),whichcansi-
multaneouslyfitnon-linearexposure-responserelationships and non-
lineardelayed effects using a bi-dimensional matrix(i.e.,cross-basis)
(GasparriniandArmstrong,2010;Gasparrini,2011).Includedstudies
oftencomparedmultiplelagvaluesoftheeffects,includingcumulative
lageffects,inthemainanalysesorsensitivityanalyses.Themaximum
lagvalueswereoftendeterminedbasedontheliterature,modelfitsta-
tistics,orRR-lagplots.Asidefromlag0,themostfrequentlyusedlag
valuewas0
7(n=15,68.2%),followedby0
3(n=11,50%),0
2
(n=8,36.4%),and0
21(n=6,27.3%).Manystudiesconsidered
sevendaysasthedelayperiodforshort-termexposuretoambientcon-
ditions(Almendraetal.,2019),and21daysformedium-longexposure
(Eun-hyeetal.,2021).However,findingsrelatedtoappropriatelagval-
uesvaried.Table2providesdetailsaboutthecurvefunctions,lagval-
ues, and single-day versus cumulative effect estimates. In addition,
othermethods included Pearsonand Spearman rankcorrelation, au-
toregressiveintegratedmovingaverage(ARIMA),Coxregression,and
generalizedestimationequation(GEE)methods.
3.3. Meta-analysisoftherelationshipbetweenclimatecharacteristicsand
mentalhealth
3.3.1. ClimaticfactorsandMBD
Ofthe76studiesinthesystematicreviewset,42wereincludedin
themeta-analysis, whichprovidedestimatedreportedcomparable ef-
fectsizesthatcouldbeconvertedtorelativerisk.Asdifferentstudies
examineddifferenttypesofMBD,andsomeonlyreportedcasesofMBD
withoutdifferentiatingsubclasses(e.g.,schizophrenia,mooddisorder),
wefirstestimatedrandom-effectmodelsbycombiningallsubclassesof
MBDandconsideringMBDriskasasingleoutcomevariable(Fig.5).
Whenmultipleoutcomesormodelswerereported,weadheredtothe
rulesdetailedinSection2.5toselectonlyoneeffectsize.Asthemajor-
ityofthereviewedstudiesreportedmorbidityandonlyafewinvesti-
gatedmortalityrisk,wereportthefindingsrelatedtomorbidityfirst,
followedbymortality.Pooledeffectswerecreatedforeachexposure,
suchasthermalindex, hot/cold air temperature,andsunshine dura-
tion.Whenlessthanthreestudieswereavailableforacertainexposure-
outcomepair,wepresentedtheeffectsizesfromtheindividualstudies
forthesakeoftransparencyandcompletenessbutdidnotincludethem
in meta-analysis models. The exposure variables omitted from the
meta-analysiswerewinddirection/speed,barometricpressure,humid-
ity,andprecipitation.
3.3.1.1. Thermal comfort index and MBD. Apparent temperature is a
summaryindexthatconsiderspositivecontributionstothehumanen-
ergy budget from air temperature, relative humidity, and radiation,
alongwiththenegativecontributionofwindspeed.Drawingonthree
studiesthatexaminedapparenttemperature,ourmeta-analysisresults
suggested a heightened risk of MBD during energy budget overload
butnot energy loss conditions. Namely, when apparent temperature
was at the 90th percentile (heat overload), MBD risk was elevated
(pooledRR= 1.08, 95%CI = 1.03,1.12) compared tomedianor
minimum risk temperatures. Heterogeneity across the studies was
small (I2 = 5.3 %). Meanwhile, apparent temperature in the 10th
percentile (heat loss) was not associated with MBD (pooled
RR = 1.02, 95 % CI = 0.99, 1.05) and heterogeneity was high
(I2= 80.4%).
3.3.1.2. AirtemperatureandMBD. Themeta-analysisresultssuggested
thatheatconditionsexceedingcertainlocalthresholds(e.g.,consecu-
tivedailytemperaturesof35°Corexceedingthe97.5thor99thlocal
Table2
Studiesusingdistributedlagmodelsandselectionoflagandcumulativeef-
fects(N=22).
Author,
year
Linearity Statistical
analysis
Immediate
or
cumulative
effect
Lagtime/
exposurepriorto
outcome
Temporal
unit
Wilsonet
al.,2013
Non-
linear
Distributed
lagnon-
linear
model
Immediate
&
cumulative
0,1,2,3,0
2 Daily
Wanget
al.,2014
Non-
linear
Distributed
lagnon-
linear
model
Immediate
&
cumulative
0,1,2,3,4,5,6,
7,8,9,10,11,
12,13,14,15,
16,17,18,19,
20,21,22,23,
24,25,26,27,
28,29,30,0
7
Daily
Penget
al.,2017
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0,0
1,0
2,0
3,
0
4,0
5,0
6,0
7,0
14,0
21
Daily
Chanet
al.,2018
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0
2,0
8 Daily
Leeetal.,
2018
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0
7 Daily
Sherbakov
etal.,
2018
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0
3 Daily
Wanget
al.,2018
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0,0
1,0
2,0
3,
0
4,0
5,0
6
Daily
Almendra
etal.,
2019
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0,0
1,0
2,0
3,
0
4,0
5,0
6,0
7
Daily
Guetal.,
2019
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0
7,0
14,0
21 Daily
Minetal.,
2019
Non-
linear
Distributed
lagnon-
linear
model
Immediate
&
cumulative
0,1,2,3,4,5,6,
7,8,9,10,11,
12,13,14,15,
16,17,18,19,
20,21,0
1,0
2,
0
3,0
4,0
5,0
6,0
7,0
8,0
9,
0
10,0
11,0
12,0
13,0
14,
0
15,0
16,0
17,0
18,0
19,
0
20,0
21
Daily
Panetal.,
2019
Non-
linear
Distributed
lagnon-
linear
model
Immediate 0,1,2,3,4,5,6,
7,8,9,10,11,
12,13,14,15,
16,17,18,19,
20,21
Daily
Xuetal.,
2019
Non-
linear
Distributed
lagnon-
linear
model
Immediate 0,1,2 Daily
Yietal.,
2019
Non-
linear
Distributed
lagnon-
linear
model
Immediate
&
cumulative
0,1,2,3,4,5,6,
7,8,9,10,11,
12,13,14,0
1,
0
2,0
3,0
4,0
5,0
6,0
7,0
8,
0
9,0
10,0
11,
0
12,0
1,0
14
Daily,0
14
cumulative
days
(continuedonnextpage)
23
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table2(continued)
Author,
year
Linearity Statistical
analysis
Immediate
or
cumulative
effect
Lagtime/
exposurepriorto
outcome
Temporal
unit
daSilvaet
al.,2020
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0,0
6,0
7 Daily
Liuetal.,
2020
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0,1
5,6
21,0
21
Daily
Niuetal.,
2020
Non-
linear
Distributed
lagnon-
linear
model
Immediate
&
cumulative
0,1,2,3,4,5,6,
7,0
1,0
2,0
3,
0
4,0
5,0
6,0
7
Daily,0
7
cumulative
days
Zhanget
al.,2020
Non-
linear
Distributed
lagnon-
linear
model
Immediate
&
cumulative
0,1,2,3,4,5,6,
7,8,9,10,0
1,
0
3,0
5,0
7,0
9
Daily
Bundoet
al.,2021
Linear Distributed
laglinear
model
Cumulative 0
3,0
7 Daily
Eun-hyeet
al.,2021
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0,0
3,0
7,0
14,0
21
Daily
Jahan&
Wraith,
2021
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0
3,0
7,0
10,
0
15,0
21,
0-
28,0
30
Daily
Yooetal.,
2021
Non-
linear
Distributed
lagnon-
linear
model
Cumulative 0
7 Daily
percentile)were consistently associated with increased risk of MBD:
heatwave,pooledRR=1.05,95%CI=1.02,1.08;97.5thpercentile
airtemperature,pooledRR=1.18,95%CI=1.07,1.30;99th per-
centileairtemperature,pooledRR=1.18,95%CI=1.08,1.29.In
contrast,therelationshipofcoldweatherandMBDwaslessconsistent
acrossmeasures;temperaturesinthe1stpercentile(pooledRR=0.97,
95%CI=0.86,1.09)and2.5thpercentile(pooledRR=1.14,95%
CI=0.94,1.35)were not associated with MBD.Poolingoffindings
fromstudiesthatassumedalog-linearmonotonalrelationshipbetween
1°CincreaseintemperatureandMBDriskalsoyieldedinsignificantre-
sults(pooledRR=1.01,95%CI=0.99,1.03),althoughresultswith
a linearity assumption needed to be interpreted with caution (see
Section 4.3). Furthermore, Four studies among them considered the
year-roundtemperaturerange(Kimetal.,2021;Huibersetal.,2010;
Trangetal.,2016b;Oh et al., 2020), (e.g., May to September in the
Northern Hemisphere or October to March in the Southern Hemi-
sphere)(Williamsetal.,2012;Vidaetal.,2012;Bundoet al.,2021),
whiletheotherfiveuseddatayear-round.Finally,whileheterogeneity
waslowforheatwave
MBD(I2=17.2%),itwashigh(I2>80%)
forallothermodels,likelyduetothevastdifferencesinpopulations,
climateconditions,andhightemperatureexposurevariables.
Studiesoncause-specificmortalityrelated toMBDmostlyfocused
onairtemperaturemetrics.Poolingtheeffectsofthethreestudiesthat
assumedlog-linearity,wefounda1°Cincreaseintemperaturetobeas-
sociated with 3 % increased risk of MBD-related mortality (pooled
RR = 1.03, 95 % CI = 1.02, 1.04), and low heterogeneity
(I2=0.0%).
3.3.1.3 Solar radiation/sunshine, barometric pressure, precipita-
tion,andhumidity,andMBD.
Amongthevariousexposuremeasuresrelatedtosunshineandsolar
radiation,onlysunshinedurationbyhourwasusedbythreestudiesand
therefore amenable to risk estimation using a random effects meta-
analysismodel.This estimation didnot show anassociation (pooled
RR= 0.98, 95% CI = 0.93, 1.03). Regardingbarometric pressure,
onlytwostudieswereavailable.Likewise,forprecipitationandrelative
humidity,avarietyofvariableswereexamined,eachinasinglestudy;
theseincludedrainvolume(mmorpercentilethreshold),rain/snow/
foggyday,andrelativehumidity(%).Thus,meta-analysescouldnotbe
performedfortheseexposures.
3.3.2. Outcome-specificanalysis
Tounderstandthedirectionandmagnitudeoftheassociationsbe-
tweenclimatefactorsandspecificsubcategoriesofMBD,wetalliedef-
fect sizes according to the specific MBD subclass reported and per-
formedameta-analysisoneachsubclass.Aftersortingtheclimatefac-
tor-mentaldisorderpairs, only threeoutcomecategories were repre-
sented in at least three studies with the same exposure-outcome
pairs
schizophrenia (F20
F29, n = 4), mood disorders (F30
F39,
n=7),andneuroticdisorders(F40
F49,n=6)
andthusabletobe
pooledusingrandom-effectmodels.Otheroutcomessuchasdementia
andbehavioralsyndromeswerenotincludedinthemeta-analysisdue
tofeaturinginlessthanthreestudies.Wepresentforestplotsshowing
thepooledeffects of the threeanalyzableexposure-outcome pairs in
Fig.6,whilethecompletesetofindividualeffectsizesarepresentedin
SupplementarymaterialFigs.S4-1toS4-6.
3.3.2.1. Schizophrenia. Four studies fitted models to compare 99th
percentile and median/minimum air temperatures for relation to
schizophrenia.Basedonthesedata,wefound a 99th percentile high
temperature to be associated with higher risk of schizophrenia
(pooled RR = 1.07, 95 % CI = 1.01, 1.12), with low to moderate
heterogeneity (I2 = 40.4 %).
3.3.2.2. Mood disorders. Pooled results from four studies estimating
theeffect of a 1 °C increase in temperature yielded insignificant re-
sults(pooled RR = 1.00, 95 % CI = 0.97, 1.03), while the pooled
associationof 99thpercentiletemperatureandelevatedrisk ofmood
disorderapproachedstatisticalsignificance(pooledRR=1.23,95%
CI = 1.00, 1.51). These models featured high heterogeneity scores
(I2 > 80 %) due to geographical and population differences, along
with variation in outcome classification: three studies defined their
outcomevariableusingICD-9or10,wherethefourthusedtheDSM-
IV.Moreover, Kim et al. (2015) only considered ICD codes F31
33,
whilethe other twoconsidered F31
40.
3.3.2.3. Neuroticdisorders. Pooledresultsrelatedtoneuroticdisorders
(e.g., depression) were generally not significant. The association of
1°Cincreaseintemperaturewithneuroticdisordersdidapproachsig-
nificance (pooled RR = 1.02, 95 % CI = 1.00, 1.04), but that of
99th percentile temperature did not (pooled RR = 1.11, 95 %
CI = 0.92, 1.33). Heterogeneity scores were high for these models
(I2> 75 %) for reasons similar to those described above.
3.4. Riskofbiasandcertaintyofevidence
Fig.7showstheresultsoftheriskofbiasassessmentbystudyand
assessmentcategory.Theindividualscoresforeachitemevaluatedare
givenin Supplementary material S5Fig.S5
1.Across all studies,the
majorbiasconcernssamplingselection, outcome measurements,and
confounding factors (Supplementary material S5 Fig. S5
2). Studies
thatutilizedrecordsfromafewhospitalswithoutexplainingthesam-
plingmethod or theirrepresentativenessofthepopulationwerecon-
sideredtohaveelevatedbias.Afewearlyindividual-levelstudiesuti-
lized convenient samples from students, hospitals, or online panels
(Barnston,1988),whichmightbesubjecttovolunteerbiasandhence
wereconsideredprobablyhighbias.Regardingoutcomemeasurement,
studiesthatextractedoutcomesfromhospitalrecordsusingstandard
classificationsystems,suchasICD-9or10orDSM-IV,wereconsidered
24
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Fig.5. Forestplotofclimate/meteorologicalfactorsandriskofmentalandbehavioraldisorders(*denotesoutliers;REModel).
tohavelowriskofbias,aswerethoseinvolvingclinicaldiagnosisbya
trained psychiatrist or self-report based on validated diagnostic/
screeninginstruments.Studiesthatusedmeasuresnotvalidatedforthe
specificconstructtobeexaminedweregradedashavingprobablyhigh
bias.Inaddition,iftheoutcomewasclinicallydiagnosed,weconsid-
eredwhether the assessors wereblindedtoexposureconditions;out-
comesmeasuredby self-reported scale wereuniformlyconsidered to
haveelevated bias. Forconfounding factors, themajority of popula-
tion-andindividual-levelstudiesincludedtime-invariantfactorssuch
asage,sex,socioeconomicconditions,andpre-existing health condi-
tions,time-variantfactors such asseason, day ofweek, time of day,
andother exposurefactorssuchasair pollutionandnoiselevel.Sev-
25
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Fig.5.(continued)
eral studies that referenced morbidity records used auxiliary place-
baseddatasetsthatprovidedpopulation-leveldemographicconditions.
Studiesthatonlyadjustedfor temporalfactors(season,day of week,
diurnal)but didnotincludestudypopulation/individual- orenviron-
ment-relatedconfoundingfactorsweregradedashavinghigherriskof
bias,while thosethatdidnotconsideror adjustforanyconfounding
factorsintheirexposure-response estimates were consideredtohave
probablyhigh risk of bias.Finally, selective reportingof results was
observedinsomestudieswhenmultipleexposure,outcome,orstatisti-
cal models were mentioned in the planned analyses, but only those
withsignificantresultswerepresentedanddiscussed.
UsingtheGRADEcriteria,weassessedthecertaintyofevidencefor
eachcategorywherepooledeffectswereproduced.Weassignedabase-
lineofmoderatecertaintybasedonthestudydesign,followedbydeci-
sionstodowngradeorupgradeforeachoftheGRADEdomains.Effect
estimatesforwhichmorethanhalfofthecontributingstudiesexhibited
26
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Fig.6. Forestplotofclimate/meteorologicalfactorsandschizophrenia,mooddisorders,andneuroticdisorders.(*denotesoutliers;REModel).
greaterthanlowriskofbiasinatleastonedomainweredowngraded
byonelevel,suchastheassociationsbetweenMBDandheatwaveand
sunshineduration.Allstudiesmetthespecifieddesiredpopulation,ex-
posure,comparator,and outcome criteriaand were notdowngraded
basedonthosecategories.Forexample,nostudyusedasoutcomeasur-
rogateofaclinicalendpoint.Whenweidentifiedinconsistencies,such
asapredictioninterval more than twicetheconfidenceinterval and
studiesdisagreeinginthedirectionoftheassociation(i.e.,positiveand
negativeassociationforthesame exposure-outcome pair), wedown-
gradedtheevidence;acaseinpointistheassociationofhighairtem-
peratureandMBD.Forthenumberofparticipantsandspecificallyper-
son-time,allbutonestudyusedatime-seriesdesignorfeaturedalarge
cohort.Theonlystudythatdidnotreportthenumberofparticipants
usedhospitaladmissionsrecordsduringa16-yearspanandwas thus
consideredtohaveadequatesamplesize.Therelativerisksyieldedby
therandomeffectsmeta-analysismodelsweresmall,andthereforeno
evidence was upgraded for large magnitude of effect. As meta-
regressionwasnotpossibleduetothesmallnumberofstudies, there
was insufficient evidence for a dose-response gradient. Confounders
mayeitherhavepositiveornegativeimpactsontheassociations,and
thereforeno upgradingwasperformedforthe criteriaregardingcon-
founding.
Ultimately,basedontheoutcomesofthestructuredGRADEprocess,
thereisamoderatelevelofevidencesupportingthatMBDiselevated
whenthe thermal index(apparent temperature) increases.Similarly,
theassociationbetweenriskofschizophreniaandhighairtemperature
hasmoderatecertainty.Otheridentifiedassociationssuchasbetween
heatwaveor high temperature and MBDstill require more attention
duetohavingonlylowcertaintyofevidence.Table3presentsthede-
tailsoftheevaluationoutcome.
4. Discussion
4.1. Mainfindings
Inthisstudy,weperformedasystematicreviewandmeta-analysis
toexaminetheassociationsbetweenclimaticandmeteorologicalfac-
torsandmentalhealth.Theresultsrevealedunevengeographicaland
climatezonedistributions and uncoveredunderrepresentedclimates.
Temporally, earlier studies focused on psychological states using
smallersamples,recentstudiesemphasizedpsychiatricmorbiditywith
longitudinal/time-seriessurveillancedata.Extremeheatbasedonheat
thresholdsandhighthermalindexintegratingtemperature,humidity,
andwindvelocity were identifiedas risk factorsforMBD, while ex-
treme cold was not. Evidence was limited to generate medium-high
confidencepooledeffectssizesforhumidity,wind,andsolarradiation.
Regarding different subclasses of MBD, schizophrenia risk increased
whentemperatureroseabovethe99thpercentile,andmoodandneu-
27
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Fig.7. Riskofbiasassessmentresults.
roticdisorderriskswereapproachingsignificancewithtemperaturein-
crease.
Ourmeta-analysisrevealedthat,ingeneral,heatextremesandtem-
peraturesexceedinglocalthresholdswererelatedtomentalandbehav-
ioraldisorders;specifically,theseassociationswereidentifiedamong
studiescomparingheatwavewithnon-heatwavedaysandalsoamong
studiesestimatingMBDriskin99thor97.5thpercentiletemperatures
relativetomedianorminimumtemperatures.Theseresultsareconsis-
tent with findings from prior systematic reviews and meta-analyses,
whichindicatedhightemperaturesandheatwavestoberiskfactorsfor
mentaldisorders(Thompsonetal., 2018;Liuetal.,2021).Neverthe-
less,thecertaintyofevidenceisconsideredloworverylowformostex-
posure-outcomepairsduetoriskofbiasissuesandhighheterogeneity.
Thompsonetal.(Thompsonetal.,2018)reportedasimilarfindingbe-
tweenheatandmentalhealthoutcomes,althoughameta-analysiswas
notconducted due toheterogeneity. Liu et al. (Liuet al., 2021)ob-
tainedpooledeffectsizes(RR)forvariousdefinitionsofheatwave,and
reported pooled RRs between 1.048 and 1.753. Our effect estimate
28
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Table3
Evaluationofcertaintyofevidence.
Ratingfactors D1 D2 D3 D4 D5 U1 U2 U3 Finalrating
Apparenttemperature(heat)
MBD
0 0 0 0 0 0 0 0 Moderate
(+++)
Apparenttemperature(cold)
MBD
0 0
1 0 0 0 0 0 Low(++)
Heatwave
MBD
1 0 0 0 0 0 0 0 Low(++)
Airtemperature(high
temperature)
MBD
0 0
1 0 0 0 0 0 Low(++)
Airtemperature(low
temperature)
MBD
0 0
1 0 0 0 0 0 Low(++)
Airtemperature(linear
increase)
MBD
1 0
1 0 0 0 0 0 Verylow
(+)
Sunshineduration
MBD
1 0
1 0 0 0 0 0 Verylow
(+)
Airtemperature(high
temperature)
Schizophrenia
0 0 0 0 0 0 0 0 Moderate
(+++)
Airtemperature(high
temperature)
mood
disorders
0 0
1 0 0 0 0 0 Low(++)
Airtemperature(linear
increase)
mooddisorders
1 0
1 0 0 0 0 0 Verylow
(+)
Airtemperature(high
temperature)
neurotic
disorders
0 0
1 0 0 0 0 0 Low(++)
Airtemperature(linear
increase)
neurotic
disorders
1 0
1 0 0 0 0 0 Verylow
(+)
overlapwith the lower endof the RRrange, for estimatesincluding
heatwave(RR=1.05,95%CI=1.02
1.08),97.5thpercentiletem-
perature(RR=1.18,95%CI=1.07
1.30),and99thpercentiletem-
perature(RR=1.18,95%CI=1.08
1.29).Thedifferenceontheup-
perendoftheRRswaslargelyattributabletothefactthatthepresent
studydid notconsideroutcomessuchas suicideideationorattempts
whileLiuetal.did.Coldextremes,ontheotherhand,werenotsignifi-
cantlyassociatedwithMBDrisk.Nopreviousstudiesareavailableon
thisrelationshiptocomparetheeffectestimate.
Beyondtemperaturemetricsalone,wealsoidentifiedathermalin-
dex,which combines temperature,humidity, wind speed, andradia-
tion,tobefactorforelevatedrisksofMBD.Temperatureisthetopcli-
maticfactorcontributingtothermalstress,butnottheonlyone;humid-
ityandradiation variations canhave as largeeffectsas temperature
change.Whilepopularmetricsusing99thor97.5thpercentiletempera-
turesweresignificantbutlow-certaintycorrelatesofMBD,thermalin-
dexatthe90thpercentileyieldedresultswithmoderatecertainty.This
indicatestheimportanceofconsideringmultiplesourcesofheatstrain
inthe course of human-environment heatexchange.Studiesonsport
andoccupationalmedicineusingestablishedthermalmodels such as
physiological equivalent temperature (PET), the Comfort Formula
(COMFA),andwet-bulbglobetemperature(WBGT)havedemonstrated
thesemodelstohavestrongexplanatorypowerassummariesofther-
malstress(Budd,2008).Meanwhile,wefoundnosignificantrelation-
shipswhenconsideringsunshinedurationalone,likelyduetothesmall
numberofstudiesthatusedthismetric.Otherclimateexposures,such
ashumidity,windspeed,barometricpressure,andsolarradiation,were
measuredheterogeneously and couldnot be pooled,thus the results
wereinconclusive.
Whenitcomestospecificmentaldisorders,ingeneral,studiesusing
homogeneousclimate/meteorological metrics were lacking. Previous
systematic reviews that provided narrative summaries of patterns
mostlynotedthathightemperaturesmightbeatriggerofschizophre-
nia,bipolardisorder,anddementia(Thompsonetal.,2018;Monteset
al., 2021; Bongioanni et al., 2021). To our knowledge, our study is
amongthefirstto conduct a meta-analysisonvariousmental health
outcomes,especiallyforeachtypeofMBDbasedonICDclassifications
and other self-reported psychological states. The only significant
pooledeffectidentifiedwasanassociationof99thpercentiletempera-
turewithschizophrenia,whichalsoshowedmoderatecertaintyofevi-
dence.Therelationshipsoftemperaturewithmoodandneuroticdisor-
dersapproached but did not achievestatistical significance, and the
confidenceinthebodyofevidencewasassessedaslowatbest.
Theheterogeneityof effect estimates was high on most exposure-
outcomepairs,likelyduetodifferencesinclimateconditions,popula-
tioncharacteristics,andheatadaptationandmitigationcapacities.It
haspreviouslybeennoted that general populationstudiesmay yield
heterogeneityvaluesintherangeof75%andabove,higherthanthose
reportedinrandomizedcontrolledtrialsorothersmallerstudies(Chen
andHoek,2020).
4.2. Mechanismsoftheobservedassociationsbetweenclimateconditions
andmentalhealth
Themechanismsunderlyingtheobservedassociationsbetweencli-
mate/meteorological factors and mental health may be multifaceted
andcomplex.First,the associations between heatandmentalhealth
may be explained by dysregulation of the serotonin system (5-
hydroxytryptamine,5-HT),whichis involved in moodandcognition
modulation.Studieshaveshownthatheatandhumiditymaycausewa-
terdeprivationanddehydration,whichleadtoadecreaseinserotonin;
suchdeficiencyisrelatedtoincreasedmooddisorders,depression,anx-
ietydisorders,schizophrenia,andotherMBDs(Linetal.,2014).Ithas
alsobeensuggestedthat,asserotoninplaysanessentialroleinthermal
regulation,acuteambienttemperaturechangesmaycausesystemdys-
regulation,therebyaggravatingmentalhealthsymptoms(Craneetal.,
2015).Ontheotherhand,manyantipsychoticandpsychotropicmed-
icationshavethermoregulatorysideeffects,andintakeofsuchmedica-
tionsmay berelatedtocompromisedthermoregulationandperspira-
tion(Zammitetal.,2021).Second,recentresearchhasindicatedthat
heatstresscaninduceneurodegeneration;inparticular,heatstrokecan
cause excitotoxicity, necrosis, and apoptotic death of neuronal cells
(Gongetal.,2022;Zammitetal.,2021;Kourtisetal.,2012).Clinical
studiessuggestthatneuronalcellandneuralnetworkalterationscon-
tributeto the pathologyofmentaldisorders(Quachetal., 2016). Fi-
nally,inadditiontobiologicalmechanisms,theremaybeasocioeco-
logicalexplanationofthelink:extendedperiodsofheatmayinfluence
individualand family daily routines andsocial networks,presenting
challengesfor commute and childcare routines, and alsoincur emo-
tionalstrainrelatedtofamilymemberswithpre-existinghealthcondi-
tions;alloftheseareexternalstressorstomentalhealth.Adversemicro-
climateconditionsalsolimitopportunitiestoengageinoutdooractivi-
tiesthatofferrestorativeeffects(e.g.,visitingaparkorabeach)(Hartig
etal.,2007;Lietal.,2019).Finally,disastersituationssuchasheatand
coldstormsoftenalsocomewithdisruptionoftransportationanden-
ergy/water infrastructures (Li et al., 2022b), exacerbating the psy-
chosocialstressexperiencedbyindividuals.
Onepotential pathway that was notsubstantiated in the current
studyishumansunlightexposureandthecircadianclock.Specifically,
researchon seasonalaffectivedisorderanddepressionhas outlineda
circadiantimingmechanismviathehypothalamicsuprachiasmaticnu-
cleusthatisdependentonambientconditions,withthelight-darkcycle
beingconsidered themostrelevantsynchronizerforthebody's circa-
diantiming(e.g.,sleep-wakecycle,locomotoractivity,hormones);dis-
turbanceofthattimingisrelatedtodepressionanddistress(Mendoza,
2019).
4.3. Futuredirectionsandlimitations
Whiletherehasbeenarecentsurgeofresearchinterest,giventhe
broadarrayofclimaticfactors,thevarioustypesofmentalhealthcon-
ditions,andtheinsufficientevidenceofassociationdeterminedinthis
studyformostexposure-responsepairs,moreresearchiswarrantedre-
29
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
gardingeachexposure-response pair and alsothejoint effects of cli-
maticexposures.Here,wediscusspotentialfuturedirectionsforfilling
critical knowledge gaps and addressing the risk of bias and other
methodologicalconcerns.
4.3.1. Standardizingmeteorologicalmetricsandthresholds
Thewidevarietyofmeteorologicalmetricsusedinincludedstudies
reducestheabilitytoperformmeta-analysisandpromoteshighhetero-
geneity.Forexample,measuresusedtorepresentsunshineandsolarra-
diationincludeddailysunshineavailability,duration,solarradiation,
daylength,cloudcover,anddirectandglobalradiation.Likewise,for
airtemperature,studiesestimatedtheeffectsof1°Cincreaseindaily
mean or maximum temperature, 1 °C increase in daily temperature
range,variouspercentilethresholds(e.g.,99,97.5,95,90,75),andvar-
iousdefinitionsofaheatwave.Werecommendthatfuturestudiesse-
lectmetricsthatprovideadequategranularityandreflectbiometeoro-
logicalmechanisms. Regarding temperature, for instance,dailymean
ormaximum temperature mayfail to capturethe critical impactsof
nighttimetemperatureonmental health, especially duringmulti-day
heatevents.Theliteraturealsoindicatesthathighnighttimetempera-
ture,especiallyifpersistent,isrelatedtosleepingdisturbances(Haskell
etal.,1981;LibertandBach,2005),whichcouldtriggerepisodesof
mentaldisorders(LiewandAung,2021).Italsoremainsnecessaryto
considerthejointeffectofmultiplemeteorologicalconditions.Asther-
malstressisrelatedtomost recognizedbiologicalneurodegeneration
pathwaysinvolvedinmentalhealth,futurestudiesmayconsiderusing
establishedthermalindicesthatconsidermetabolic,conductive,con-
vective,andradiativeheatflux,eitherasthemainexposurevariableor
inthesensitivityanalysis.
4.3.2. Addressingscalemismatchesandattentiontomicroclimateexposure
Although the majority of studies included in this review utilized
ground-measuredmeteorologicalconditions,spatialmismatchesoften
existbetweenthemeasurementstakenatweatherstationsandthemi-
cro-environmentsexperiencedbyindividualparticipants.Studiesthat
considerclimateratherthanmicroclimatemaybesubjecttotheuncer-
taingeographiccontextproblem(UGCoP):namelythatarealmeasures
donotmatchtheenvironmentalexposurethatexertsimpactsonhealth
andbehavior,aproblemthathasbeendiscussedingeographyandspa-
tialepidemiology(Kwan,2012;Jiaetal.,2020).Nevertheless,studies
onhuman exposure to heat, wind,andsolarradiationreviewedhere
stillmostly usedareal-basedclimatemeasuresderivedfrom sparsely-
locatedweatherstationswhichmaybetoocoarsetoestablishexposure-
responserelationships.Infact,microclimateconditionscanbemodi-
fiedbyurbanheatislandeffects,site-levelstructuralelementsandveg-
etation,waterbodies,andthealbedoofmaterials.Allofthesefactors
directlyimpacthumanphysiology,thermalsensation,andbehavioral
adaptationatagivenlocation.Futurestudiesarewarrantedthatpre-
ciselymeasurethemicroclimatestowhichindividualsareexposedin
residentialneighborhoodsandthirdplaces,suchasthroughtechnolo-
gieslikedownscalingand/ormicroclimateloggernetworks(Georgeet
al.,2015).
4.3.3. Studyingdisease-specificexposuresandpathways
Morestudiesareneededonspecificmentaldisorders(e.g.,schizo-
phrenia,depression,anxiety,dementia).Inthesetofstudiesreviewed
here,manyutilizedcombineddiseaseprevalencefrommultipleMBDs
thatmayreflectdifferentriskpathways,leadingtoresultsthatarelev-
eledoutandchallengingtointerpret.Forstudiesthatconsideredspe-
cificmentaloutcomes,ICDandDSMcodesweretypicallyused;how-
ever,ICDclassificationsdependongoodclinicaljudgmentandcanbe
lessaccurate,whiletheDSMislesscommonlyusedoutsidetheU.S.In
addition,admission/dischargerecordswereoftenaggregated without
distinctionofclinicalstages.Astheimpactsofriskfactorsandinterven-
tionsmaydifferoverthediseasecourse,itiscriticaltoconsiderdisease
trajectoryand climateat differentstages suchas in prodromal, first
episode,persistent,andremittedcases.Additionally,morestudiesthat
addressneurotransmittersandothermechanismswouldhelpadvance
knowledgeandpolicy.
4.3.4. Expandingoutcomesfrommorbiditytowell-being
Publichealthpoliciesacrosstheworld,suchastheHealthyPeople
2030frameworkoftheU.S.,havebeenadvocatingfornotonlydisease
prevention/treatmentbut also forpromoting people to achievetheir
fullpotential.Althoughthisreviewsetouttoframementalhealthina
broaddefinitionthatencompasseshappinessandwell-being,thenum-
berofstudies employing such constructswas limited. Therefore,the
quantitativesynthesismostlyaddressedMBD;obtainingpooledeffects
foraffectandotherpositiveemotionswasnotpossibleduetothesmall
numberofstudiesandhighheterogeneity.Futurestudiesarewarranted
thatusevalidinstrumentstoexaminewhetherclimate-relatedrisksim-
pactsubjective well-being. In addition toidentifying modifiablerisk
factors,thereisvaluein adoptingasalutogenicview thatdetermines
theambientconditionsthatprovideforaqualityexperienceandsup-
portsubjectivewell-being.
4.3.5. Modelingtechniquethataccountsfornon-linearanddelayed
dependencies
Thetwomainfactorsthatpertainedtostatisticalmodelselectionfor
estimatingclimateandmentalhealthrelationshipswerenon-linearity
andlagged andcumulativeeffects.Recentevidencesuggeststhat the
relationshipsbetweencontinuousclimaticand meteorological factors
andmentalhealthoutcomesarenotlinearormonotonicallyincreas-
ing/decreasing(Almendraetal.,2019).Infact,humanphysiologysug-
geststhatforclimaticconditionswithinareasonablerange,theenergy
budgetismaintained,meaningthatextremevaluesatbothendsmay
havenegativeimpacts(Eun-hyeetal.,2021).Toaccountforthenonlin-
earity,studies can use heatandcoldthresholdsoronlyrecordsfrom
warmseasons.Additionally,recent studies that considerednonlinear
exposure-responserelationships haveoften fittedmodels with spline
functions(Yooetal.,2021;Leeetal.,2018b;Bundoetal.,2021).Ofall
studiesthatconsiderednon-linearexposure-responsecurvesusingdis-
tributedlagmodels,onlyonefoundalinearrelationship;theremainder
presentedcurvilinear functions for both the predictor and lags. This
raisesaquestionastothevalidityofthefindingsofstudiesthatassume
linearity/log-linearitywithout appropriate theoreticalgroundsorsta-
tistical tests. In the absence of specified geographic/seasonal condi-
tions,interpretationsofMBDriskasincreasingwithevery1°Cincrease
in air temperature can be misleading. Future meta-analysis articles
shouldalsousecautionwhenassuminglinear/log-linearormonotonic
relationships.Standardizationandmethodologicalcomparisonsacross
modelspecificationsandsingle-dayandcumulativelagvaluesmaybe
informative.Asmorestudiesaccumulatethatemployatwo-stagetime-
seriesdesign to estimate location-specific exposure-response relation-
ships,advancedmultivariatemeta-analysismethodsshouldbeconsid-
eredforfuturereviews(GasparriniandArmstrong,2013).
Limitationsofthisreviewalsoneedtobenoted.First, one major
limitationis the small numberof studies foreach exposure-outcome
pair.Oftenonlythreestudieswereavailable,renderingitimpossibleto
performsensitivityanalysis,excludeoutliersandstudiesbasedonspe-
cificconsiderations,andexaminetheimpactsofsuchexclusionsonthe
meta-analysisresults.Second,ourreviewdidnotincludeexperimental
andquasi-experimentalstudies,andhencethefindings,dependingon
theconfidenceofevidence,contributetobutcannotdirectlyestablish
causality. Third, we did not include outcomes related to suicide
ideationand attempts. Althoughpreviously suicide has been consid-
eredasymptomassociatedwithotherpsychiatricdisorders,theDSM-5
positionedsuicidalbehavioraldisorderasanindependentconditionfor
furtherstudy(DSM-IV-TR,2000).Fourth,weexcludedstudiesconsid-
eringmaternalexposureand child mental health conditions, because
30
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
theremaybeadditionalbiophysiologicalmechanismsinvolved.Never-
theless,we recognize theimportanceofstudyingreproductivehealth
andlinked lives in climate exposure. Fifth, althoughtheGRADEtool
providesa greatframework for evaluating the certainty of evidence
(Balshemetal.,2011;Schünemannetal.,2019a),ithaslimitationsin
assessing evidence from nonrandomized/observational research
(Schünemannetal.,2019b).Finally,inlightofourresearchquestions,
weconducted outcome-specific analysis, but could not perform sub-
groupanalysisbasedonage,gender,orgeographyduetothehighhet-
erogeneityandsmall number ofstudies available for eachexposure-
outcomepair.Narrativereviewevidence,suchasSharpeandDavison
(Sharpe and Davison, 2021), highlighted the links between climate-
relateddisastersandmentaldisordersspecificallyforlow-andmiddle-
incomecountries.Astheevidencebasecontinuestogrow,futurestud-
iesshould focus onhealthdisparitiesacrosspopulationgroups,espe-
ciallyvulnerablegroupssuchasolderadults,low-incomegroups,and
sociallyisolatedpopulations,whichmayofferscientificinsightsandin-
formtargetedpolicyinterventions.
5. Conclusion
Astheimpactofclimatechangeonmentalhealthgainsincreasing
recognition,acomprehensiveinvestigationoftherelationshipbetween
variousclimaticandmeteorologicalfactorsandmentalhealthcanre-
vealgapsinknowledgeandinformpolicyrelatedtopublichealthand
climateadaptation.Accordingly,utilizingthePRISMAframework,this
meta-analysisaimedtoidentifyfactorsassociatedwithincreasedriskof
mental and behavioral disorders. Our random-effects meta-analysis
modelsrevealedthathigherthermalindexvalues,heatwaves,andex-
tremetemperaturessurpassing certain thresholdswerelinked to ele-
vatedrisksofMBD.Furthermore,whenconsideringspecificsubtypesof
MBD,hightemperatureswerefoundtobeassociatedwithanincreased
riskofschizophrenia.Notably,theresultsunderscoredtheheterogene-
ityof exposuremeasuresandascarcityof evidenceregardingtheef-
fectsof climatefactorsotherthanairtemperature, suchashumidity,
wind,solarradiation,andbarometricpressure.Thefindingsalsounder-
scoredtheimportanceofinvestigatingthesynergisticeffectsofmulti-
pleclimatefactorsusingthermophysiologicalmodels,non-linearexpo-
sure-outcomerelationships,andcumulativeandlagged effects of cli-
mateexposure.
Funding
ThisworkwassupportedbytheNationalAcademiesofSciencesEn-
gineering and Medicine Gulf Research Program [grant numbers
#2000012329and2000013443]; and theNationalInstitute of Envi-
ronmentalHealthSciences[grantnumber#P42ES027704-01],andthe
HoustonMethodistResearchInstitute.
CRediTauthorshipcontributionstatement
DongyingLi1:Conceptualization,methodology,studyscreeningand
eligibility,biasassessment,synthesis&analysis,visualization,writing
originaldraft,writing
review&editing,andprojectadministration.
YueZhang:Conceptualization, methodology, studyscreening and
eligibility,biasassessment,synthesis&analysis,visualization,writing
originaldraft,andwriting
review&editing.
XiaoyuLi:Conceptualization,methodology,studyscreeningandeli-
gibility,biasassessment,synthesis&analysis,visualization,writing
originaldraft,andwriting
review&editing.
KaiZhang:Conceptualization,methodology,studyscreeningandel-
igibility,biasassessment,synthesis&analysis,visualization,writing
originaldraft,andwriting
review&editing.
1Guarantorofthereviewprotocol.
YiLu: Conceptualization, methodology, study screening andeligi-
bility, bias assessment, synthesis & analysis, visualization, writing
originaldraft,andwriting
review&editing.
Robert Brown: Conceptualization, methodology, study screening
and eligibility, bias assessment, synthesis & analysis, visualization,
writing
originaldraft,andwriting
review&editing.
Uncitedreference
Declarationofcompetinginterest
Theauthorsdeclarethefollowingfinancialinterests/personalrela-
tionshipswhichmaybeconsideredaspotentialcompetinginterests:
DongyingLireportsfinancialsupportthatwasprovidedbytheNa-
tionalAcademiesofSciencesEngineeringandMedicineGulfResearch
Program.Dongying Lireportsthatfinancialsupportwas providedby
theNational Institute ofEnvironmentalHealthSciences.DongyingLi
reportsthatfinancialsupportwasprovidedbytheHoustonMethodist
Hospital.
Dataavailability
Dataaresharedinthesupplementarydocuments
AppendixA. Supplementarydata
Supplementarydata tothisarticlecanbefoundonlineathttps://
doi.org/10.1016/j.scitotenv.2023.164435.
References
Alexander, P .,2013.Associationofmonthlyfrequenciesofdiversediseasesinthecallsto
thepublicemergencyserviceofthecityofBuenosAiresduring1999
2004with
meteorologicalvariablesandseasons.Int.J.Biometeorol.57(1),83
90.
Almendra, R .,etal.,2019.Short-termimpactsofairtemperatureonhospitalizationsfor
mentaldisordersinLisbon.Sci.TotalEnviron.647,127
133.
Balshem, H .,etal.,2011.GRADEguidelines:3.Ratingthequalityofevidence.J.Clin.
Epidemiol.64(4),401
406.
Barnston, A . G .,1988.Theeffectofweatheronmood,productivity,andfrequencyof
emotionalcrisisinatemperatecontinentalclimate.Int.J.Biometeorol.32(2),
134
143.
Basu, R .,etal.,2018.Examiningtheassociationbetweenapparenttemperatureand
mentalhealth-relatedemergencyroomvisitsinCalifornia.Am.J.Epidemiol.187(4),
726
735.
Beecher, M . E .,etal.,2016.Sunshineonmyshoulders:Weather,pollution,andemotional
distress.J.Affect.Disord.205,234
238.
Berry, H . L .,Bowen, K .,Kjellstrom, T .,2010.Climatechangeandmentalhealth:acausal
pathwaysframework.Int.J.PublicHealth55(2),123
132.
Bongioanni, P .,etal.,2021.Climatechangeandneurodegenerativediseases.Environ.
Res.201,111511.
Braga, A . L .,Zanobetti, A .,Schwartz, J .,2002.Theeffectofweatheronrespiratoryand
cardiovasculardeathsin12UScities.Environ.HealthPerspect.110(9),859
863.
Brown, R . D .,Gillespie, T . J .,1986.Estimatingoutdoorthermalcomfortusingacylindrical
radiationthermometerandanenergybudgetmodel.Int.J.Biometeorol.30(1),
43
52.
Budd, G . M .,2008.Wet-bulbglobetemperature(WBGT)
itshistoryanditslimitations.J.
Sci.Med.Sport11(1),20
32.
Bulbena, A .,etal.,2005.Panicanxiety,undertheweather?Int.J.Biometeorol.49(4),
238
243.
Bulbena, A .,etal.,2009.Impactofthesummer2003heatwaveontheactivityoftwo
psychiatricemergencydepartments.ActasEspanolasDePsiquiatria37(3),158
165.
Bullock, B .,Murray, G .,Meyer, D .,2017.Highsandlows,upsanddowns:meteorology
andmoodinbipolardisorder.PLoSOne12(3),e0173431.
Bundo, M .,etal.,2021.AmbienttemperatureandmentalhealthhospitalizationsinBern,
Switzerland:A45-yeartime-seriesstudy.PLoSOne16(10),e0258302.
Burdett, A .,Davillas, A .,Etheridge, B .,2021.Weather,mentalhealth,andmobilityduring
thefirstwaveoftheCOVID-19pandemic.HealthEcon.30(9),2296
2306.
Carney, P .,Fitzgerald, C .,Monaghan, C .,1988.Influenceofclimateontheprevalenceof
mania.Br.J.Psychiatry152(6),820
823.
Chan, E . Y .,etal.,2018.Associationbetweenambienttemperaturesandmentaldisorder
hospitalizationsinasubtropicalcity:atime-seriesstudyofHongKongspecial
administrativeregion.Int.J.Environ.Res.PublicHealth15(4),754.
Charlson, F .,etal.,2021.Climatechangeandmentalhealth:ascopingreview.Int.J.
Environ.Res.PublicHealth18(9),4486.
Chen, J .,Hoek, G .,2020.Long-termexposuretoPMandall-causeandcause-specific
mortality:asystematicreviewandmeta-analysis.Environ.Int.143,105974.
31
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Christensen, E . M .,etal.,2008.Climaticfactorsandbipolaraffectivedisorder.NordicJ.
Psychiatry62(1),55
58.
Cornali, C .,etal.,2004.Effectofhighclimatetemperatureonthebehavioraland
psychologicalsymptomsofdementia.J.Am.Med.Dir.Assoc.5(3),161
166.
Crane, J . D .,etal.,2015.Inhibitingperipheralserotoninsynthesisreducesobesityand
metabolicdysfunctionbypromotingbrownadiposetissuethermogenesis.Nat.Med.
21(2),166
172.
Cruz, J .,etal.,2020.Effectofextremeweathereventsonmentalhealth:anarrative
synthesisandmeta-analysisfortheUK.Int.J.Environ.Res.PublicHealth17(22),
8581.
Denissen, J . J .,etal.,2008.Theeffectsofweatherondailymood:amultilevelapproach.
Emotion8(5),662
667.
Ding, N .,Berry, H . L .,Bennett, C . M .,2016.Theimportanceofhumidityintherelationship
betweenheatandpopulationmentalhealth:evidencefromAustralia.PLoSOne11
(10),15.
DSM-IV-TR,2000.DiagnosticandStatisticalManualofMentalDisorders.American
PsychiatricAssociation.
Eun-hye, Y .,etal.,2021.Effectofextremetemperaturesondailyemergencyroomvisits
formentaldisorders.Environ.Sci.Pollut.Res.28(29),39243
39256.
Gál, C . V .,Kántor, N .,2020.Modelingmeanradianttemperatureinoutdoorspaces,A
comparativenumericalsimulationandvalidationstudy.UrbanClim.32,100571.
Gasparrini, A .,2011.Distributedlaglinearandnon-linearmodelsinR:thepackagedlnm.
J.Stat.Softw.43(8),1.
Gasparrini, A .,Armstrong, B .,2010.Timeseriesanalysisonthehealtheffectsof
temperature:advancementsandlimitations.Environ.Res.110(6),633
638.
Gasparrini, A .,Armstrong, B .,2013.Reducingandmeta-analysingestimatesfrom
distributedlagnon-linearmodels.BMCMed.Res.Methodol.13(1),1
10.
Gasparrini, A .,etal.,2012.Theeffectofhightemperaturesoncause-specificmortalityin
EnglandandWales.Occup.Environ.Med.69(1),56
61.
George, A . D .,Thompson,III, F . R .,Faaborg, J .,2015.UsingLiDARandremote
microclimateloggerstodownscalenear-surfaceairtemperaturesforsite-levelstudies.
RemoteSens.Lett.6(12),924
932.
Goldstein, K . M .,1972.Weather,mood,andinternal-externalcontrol.Percept.Mot.Skills
35(3),786.
Gong, J .,Part, C .,Hajat, S .,2022.Currentandfutureburdensofheat-relateddementia
hospitaladmissionsinEngland.Environ.Int.159,7.
Gu, S . H .,etal.,2019.Exposure-lag-responseassociationbetweensunlightand
schizophreniainNingbo,China.Environ.Pollut.247,285
292.
Guo, Y .,etal.,2018.Quantifyingexcessdeathsrelatedtoheatwavesunderclimatechange
scenarios:Amulticountrytimeseriesmodellingstudy.PLoSMed.15(7).
Guyatt, G . H .,etal.,2008.Whatis
qualityofevidence
andwhyisitimportantto
clinicians?Bmj336(7651),995
998.
Hansen, A .,etal.,2008.Theeffectofheatwavesonmentalhealthinatemperate
Australiancity.Environ.HealthPerspect.116(10),1369
1375.
Harrer, M .,etal.,2021.DoingMeta-analysisWithR:AHands-onGuide.CRCPress.
Hartig, T .,Catalano, R .,Ong, M .,2007.Coldsummerweather,constrainedrestoration,
andtheuseofantidepressantsinSweden.J.Environ.Psychol.27(2),107
116.
Haskell, E .,etal.,1981.Metabolismandthermoregulationduringstagesofsleepin
humansexposedtoheatandcold.J.Appl.Physiol.51(4),948
954.
Hayes, K .,etal.,2018.Climatechangeandmentalhealth:Risks,impactsandpriority
actions.Int.J.Ment.Heal.Syst.12(1),1
12.
Henriquez-Sanchez, P .,etal.,2014.Geographicalandclimaticfactorsanddepressionrisk
intheSUNproject.Eur.J.Pub.Health24(4),626
631.
Higgins, J . P .,Thompson, S . G .,2002.Quantifyingheterogeneityinameta-analysis.Stat.
Med.21(11),1539
1558.
Ho, H . C .,Wong, M . S .,2019.Urbanenvironmentalinfluencesonthe
temperature
mortalityrelationshipassociatedmentaldisordersand
cardiorespiratorydiseasesduringnormalsummerdaysinasubtropicalcity.Environ.
Sci.Pollut.Res.26(23),24272
24285.
Höppe, P .,1999a.Thephysiologicalequivalenttemperature
auniversalindexforthe
biometeorologicalassessmentofthethermalenvironment.Int.J.Biometeorol.43,
71
75.
Höppe, P .,1999b.Thephysiologicalequivalenttemperature
auniversalindexforthe
biometeorologicalassessmentofthethermalenvironment.Int.J.Biometeorol.43(2),
71
75.
Howarth, E .,Hoffman, M . S .,1984.Amultidimensionalapproachtotherelationship
betweenmoodandweather.Br.J.Psychol.75(FEB),15
23.
Huibers, M . J . H .,etal.,2010.Doestheweathermakeussad?Meteorologicaldeterminants
ofmoodanddepressioninthegeneralpopulation.PsychiatryRes.180(2
3),
143
146.
Jahan, S .,Wraith, D .,2021.Immediateanddelayedeffectsofclimaticfactorsonhospital
admissionsforschizophreniainQueenslandAustralia:atimeseriesanalysis.Environ.
Res.197,10.
Ji, Y .,Song, J .,Shen, P .,2022.Areviewofstudiesandmodellingofsolarradiationon
humanthermalcomfortinoutdoorenvironment.Build.Environ.214,108891.
Jia, P .,etal.,2020.Spatiallifecourseepidemiologyreportingstandards(ISLE-ReSt)
statement.HealthPlace61,102243.
Keller, M . C .,etal.,2005.Awarmheartandaclearhead-Thecontingenteffectsof
weatheronmoodandcognition.Psychol.Sci.16(9),724
731.
Khalaj, B .,etal.,2010.ThehealthimpactsofheatwavesinfiveregionsofNewSouth
Wales,Australia:acase-onlyanalysis.Int.Arch.Occup.Environ.Health83(7),
833
842.
Khreis, H .,etal.,2017.Exposuretotraffic-relatedairpollutionandriskofdevelopmentof
childhoodasthma:asystematicreviewandmeta-analysis.Environ.Int.100,1
31.
Kim, C . T .,etal.,2015.Heat-attributabledeathsbetween1992and2009inSeoul,South
Korea.PLoSOne10(2),e0118577.
Kim, S . Y .,etal.,2021.Short-andlong-termexposuretoairpollutionandlackofsunlight
areassociatedwithanincreasedriskofdepression:Anestedcase-controlstudyusing
meteorologicaldataandnationalsamplecohortdata.Sci.TotalEnviron.757,9.
Klimstra, T . A .,etal.,2011.Comerainorcomeshine:individualdifferencesinhow
weatheraffectsmood.Emotion11(6),1495
1499.
Kourtis, N .,Nikoletopoulou, V .,Tavernarakis, N .,2012.Smallheat-shockproteinsprotect
fromheat-stroke-associatedneurodegeneration.Nature490(7419),213
218.
Kwan, M .- P .,2012.Theuncertaingeographiccontextproblem.Ann.Assoc.Am.Geogr.
102(5),958
968.
Lee, H .- C .,Tsai, S .- Y .,Lin, H .- C .,2007.Seasonalvariationsinbipolardisorderadmissions
andtheassociationwithclimate:apopulation-basedstudy.J.Affect.Disord.97
(1
3),61
69.
Lee, H . J .,etal.,2002.Effectsofseasonandclimateonthefirstmanicepisodeofbipolar
affectivedisorderinKorea.PsychiatryRes.113(1
2),151
159.
Lee, M .,etal.,2018a.Weatherandhealthsymptoms.Int.J.Environ.Res.PublicHealth
15(8),15.
Lee, S .,etal.,2018b.Mentaldisease-relatedemergencyadmissionsattributabletohot
temperatures.Sci.TotalEnviron.616,688
694.
Li, B .,etal.,2018.Amodifiedmethodofevaluatingtheimpactofairhumidityonhuman
acceptableairtemperaturesinhot-humidenvironments.EnergyBuild.158,393
405.
Li, D .,etal.,2019.Subtypesofparkuseandself-reportedpsychologicalbenefitsamong
olderadults:Amultilevellatentclassanalysisapproach.Landsc.UrbanPlan.190,
103605.
Li, D .,etal.,2022a.Modelingtherelationshipsbetweenhistoricalredlining,urbanheat,
andheat-relatedemergencydepartmentvisits:anexaminationof11Texascities.
Environ.Plann.B.Plann.Des.49(3),933
952.
Li, M .,Ferreira, S .,Smith, T . A .,2020.Temperatureandself-reportedmentalhealthinthe
UnitedStates.PLoSOne15(3),e0230316.
Li, X .,etal.,2022b.Amelioratingcoldstressinahotclimate:EffectofWinterStormUri
onresidentsofsubsidizedhousingneighborhoods.Build.Environ.209,108646.
Libert, J .- P .,Bach, V .,2005.Thermoregulationandsleepinthehuman.In:The
PhysiologicNatureofSleep.ImperialCollegePress,London,UK,pp.407
431.
Liew, S . C .,Aung, T .,2021.Sleepdeprivationanditsassociationwithdiseases-areview.
SleepMed.77,192
204.
Lin, S .- H .,Lee, L .- T .,Yang, Y . K .,2014.Serotoninandmentaldisorders:aconcisereview
onmolecularneuroimagingevidence.Clin.Psychopharmacol.Neurosci.12(3),196.
Linares, C .,etal.,2017.Short-termassociationbetweenenvironmentalfactorsand
hospitaladmissionsduetodementiainMadrid.Environ.Res.152,214
220.
Liu, J .,etal.,2020.Cause-specificmortalityattributabletocoldandhotambient
temperaturesinHongKong:atime-seriesstudy,2006
2016.Sustain.CitiesSoc.57,
102131.
Liu, J .,etal.,2021.Isthereanassociationbetweenhotweatherandpoormentalhealth
outcomes?Asystematicreviewandmeta-analysis.Environ.Int.153,106533.
Liu, W .,Zhang, Y .,Deng, Q .,2016.Theeffectsofurbanmicroclimateonoutdoorthermal
sensationandneutraltemperatureinhot-summerandcold-winterclimate.Energy
Build.128,190
197.
Liu, X .,etal.,2019.Influenceofheatwavesondailyhospitalvisitsformentalillnessin
Jinan,China-acase-crossoverstudy.Int.J.Environ.Res.PublicHealth16(1),87.
Masson-Delmotte, V .,etal.,2021.Climatechange2021:thephysicalsciencebasis.In:
ContributionofWorkingGroupItotheSixthAssessmentReportofthe
IntergovernmentalPanelonClimateChange.p.2.
Mawson, D .,Smith, A .,1981.RelativehumidityandmanicadmissionsintheLondonarea.
Br.J.Psychiatry138,134
138.
McWilliams, S .,Kinsella, A .,O
Callaghan, E .,2013.Theeffectsofdailyweathervariables
onpsychosisadmissionstopsychiatrichospitals.Int.J.Biometeorol.57(4),497
508.
McWilliams, S .,Kinsella, A .,O
Callaghan, E .,2014.Dailyweathervariablesandaffective
disorderadmissionstopsychiatrichospitals.Int.J.Biometeorol.58(10),2045
2057.
Medina-Ramón, M .,etal.,2006.Extremetemperaturesandmortality:assessingeffect
modificationbypersonalcharacteristicsandspecificcauseofdeathinamulti-city
case-onlyanalysis.Environ.HealthPerspect.114(9),1331
1336.
Mendoza, J .,2019.Circadianinsightsintothebiologyofdepression:Symptoms,
treatmentsandanimalmodels.Behav.BrainRes.376,112186.
Middleton, J .,etal.,2021.TemperatureandplaceassociationswithInuitmentalhealthin
thecontextofclimatechange.Environ.Res.198,11.
Min, M .,etal.,2019.Effectofapparenttemperatureondailyemergencyadmissionsfor
mentalandbehavioraldisordersinYancheng,China:atime-seriesstudy.Environ.
Health18(1),1
12.
Moher, D .,etal.,2009.Reprint
preferredreportingitemsforsystematicreviewsand
meta-analyses:thePRISMAstatement.Phys.Ther.89(9),873
880.
Molin, J .,etal.,1996.Theinfluenceofclimateondevelopmentofwinterdepression.J.
Affect.Disord.37(2
3),151
155.
Montes, J .,Serrano, C .,Pascual-Sanchez, A .,2021.Theinfluenceofweatheronthecourse
ofbipolardisorder:asystematicreview.Eur.J.Psychiatry35(4),261
273.
Moola, S .,etal.,2017.JoannaBriggsInstituteReviewer
sManual.TheJoannaBriggs
Institute,p.5.
Mullins, J . T .,White, C .,2019.Temperatureandmentalhealth:Evidencefromthe
spectrumofmentalhealthoutcomes.J.HealthEcon.68,102240.
NationalHeart,Lung,andBloodInstitute,2014a.QualityAssessmentofCase-Control
Studies.
NationalHeart,Lung,andBloodInstitute,2014b.QualityAssessmentToolfor
ObservationalCohortandCross-sectionalStudies.
NationalWeatherService.Glossary.Availablefrom:https://w1.weather.gov/glossary/
index.php?letter=o.
Niu, Y .,etal.,2020.Short-termeffectofapparenttemperatureondailyemergencyvisits
formentalandbehavioraldisordersinBeijing,China:atime-seriesstudy.Sci.Total
Environ.733,139040.
32
CORRECTED PROOF
D. Li et al. Science of the Total Environment xxx (xxxx) 164435
Noelke, C .,etal.,2016.Increasingambienttemperaturereducesemotionalwell-being.
Environ.Res.151,124
129.
Obradovich, N .,etal.,2018a.Empiricalevidenceofmentalhealthrisksposedbyclimate
change.Proc.Natl.Acad.Sci.115(43),10953
10958.
Obradovich, N .,etal.,2018b.Empiricalevidenceofmentalhealthrisksposedbyclimate
change.Proc.Natl.Acad.Sci.U.S.A.115(43),10953
10958.
Obrien, L . V .,etal.,2014.Droughtasamentalhealthexposure.Environ.Res.131,
181
187.
Oh, S .,etal.,2020.Emergencydepartmentvisitsforpanicattacksandambient
temperature:atime-stratifiedcase-crossoveranalysis.Depress.Anxiety37(11),
1099
1107.
O
Hare, C .,etal.,2016.Seasonalandmeteorologicalassociationswithdepressive
symptomsinolderadults:Ageo-epidemiologicalstudy.J.Affect.Disord.191,
172
179.
OudinÅström, D .,etal.,2015.Theeffectofheatwavesonmortalityinsusceptiblegroups:
acohortstudyofamediterraneanandanorthernEuropeanCity.Environ.Health14
(1),30.
Palinkas, L . A .,Wong, M .,2020.Globalclimatechangeandmentalhealth.Curr.Opin.
Psychol.32,12
16.
Pan, R . B .,etal.,2019.Impactsofheatandcoldonhospitalizationsforschizophreniain
Hefei,China:anassessmentofdiseaseburden.Sci.TotalEnviron.694,8.
Peng, Z . X .,etal.,2017.Effectsofambienttemperatureondailyhospitaladmissionsfor
mentaldisordersinShanghai,China:atime-seriesanalysis.Sci.TotalEnviron.590,
281
286.
Persinger, M . A .,1975.Lagresponsesinmoodreportstochangesintheweathermatrix.
Int.J.Biometeorol.19(2),108
114.
Petkova, E . P .,etal.,2013.Projectedheat-relatedmortalityintheUSurbannortheast.Int.
J.Environ.Res.PublicHealth10(12),6734
6747.
Quach, T . T .,etal.,2016.Neuronalnetworksinmentaldiseasesandneuropathicpain:
beyondbrainderivedneurotrophicfactorandcollapsinresponsemediatorproteins.
WorldJ.Psychiatry6(1),18.
Radua, J .,Pertusa, A .,Cardoner, N .,2010.Climaticrelationshipswithspecificclinical
subtypesofdepression.PsychiatryRes.175(3),217
220.
Rataj, E .,Kunzweiler, K .,Garthus-Niegel, S .,2016.Extremeweathereventsindeveloping
countriesandrelatedinjuriesandmentalhealthdisorders-asystematicreview.BMC
PublicHealth16(1),1
12.
Rigby, A . S .,Vail, A .,1998.Statisticalmethodsinepidemiology.II:Acommonsense
approachtosamplesizeestimation.Disabil.Rehabil.20(11),405
410.
Rocklöv, J .,etal.,2014.Susceptibilitytomortalityrelatedtotemperatureandheatand
coldwavedurationinthepopulationofStockholmCounty,Sweden.Glob.Health
Action7(1),22737.
Rother, H .- A .,etal.,2021.ImpactofextremeweathereventsonSub-SaharanAfrican
childandadolescentmentalhealth:theimplicationsofasystematicreviewofsparse
researchfindings.J.Clim.Chang.Health,5,100087.
Salib, E .,Sharp, N .,1999.Doestheweatherinfluencedementiaadmissions?Int.J.
Geriatr.Psychiatry14(11),925
935.
Salib, E .,Sharp, N .,2002.Relativehumidityandaffectivedisorders.Int.J.Psychiatry
Clin.Pract.6(3),147
153.
Sarran, C .,etal.,2017.Meteorologicalanalysisofsymptomdataforpeoplewithseasonal
affectivedisorder.PsychiatryRes.257,501
505.
Schünemann, H . J .,etal.,2019a.Completing
Summaryoffindings
tablesandgradingthe
certaintyoftheevidence.In:CochraneHandbookforSystematicReviewsof
Interventions.pp.375
402.
Schünemann, H . J .,etal.,2019b.GRADEguidelines:18.HowROBINS-Iandothertoolsto
assessriskofbiasinnonrandomizedstudiesshouldbeusedtoratethecertaintyofa
bodyofevidence.J.Clin.Epidemiol.111,105
114.
Schwingshackl, L .,etal.,2021.Evaluatingagreementbetweenbodiesofevidencefrom
randomisedcontrolledtrialsandcohortstudiesinnutritionresearch:meta-
epidemiologicalstudy.BMJ374.
Sharpe, I .,Davison, C . M .,2021.Climatechange,climate-relateddisastersandmental
disorderinlow-andmiddle-incomecountries:ascopingreview.BMJOpen11(10),
e051908.
Shaw, M . R .,etal.,2011.TheimpactofclimatechangeonCalifornia
secosystemservices.
Clim.Chang.109(1),465
484.
Sherbakov, T .,etal.,2018.Ambienttemperatureandaddedheatwaveeffectson
hospitalizationsinCaliforniafrom1999to2009.Environ.Res.160,83
90.
Shiloh, R .,etal.,2005.Effectsofclimateonadmissionratesofschizophreniapatientsto
psychiatrichospitals.Eur.Psychiatry20(1),61
64.
Shiue, I .,Perkins, D . R .,Bearman, N .,2016.Physicallyequivalenttemperatureandmental
andbehaviouraldisordersinGermanyin2009
2011.J.Ment.Health25(2),
148
153.
daSilva, I .,etal.,2020.Riskassessmentoftemperatureandairpollutantson
hospitalizationsformentalandbehavioraldisordersinCuritiba,Brazil.Environ.
Health19(1),1
11.
Simons, K . S .,etal.,2014.Effectofpreadmissionsunlightexposureonintensivecareunit-
acquireddelirium:Amulticenterstudy.J.Crit.Care29(2),283
286.
Son, J .,Shin, J .,2021.Bimodaleffectsofsunlightonmajordepressivedisorder.Compr.
Psychiatry108,6.
Steadman, R . G .,1984.Auniversalscaleofapparenttemperature.J.Appl.Meteorol.
Climatol.23(12),1674
1687.
Sterne, J . A .,etal.,2019.RoB2:arevisedtoolforassessingriskofbiasinrandomised
trials.Bmj366.
Sung, T . I .,etal.,2011.Relationshipbetweenmeandailyambienttemperaturerangeand
hospitaladmissionsforschizophrenia:Resultsfromanationalcohortofpsychiatric
inpatients.Sci.TotalEnviron.410,41
46.
Sung, T . I .,Chen, M . J .,Su, H . J .,2013.Apositiverelationshipbetweenambient
temperatureandbipolardisorderidentifiedusinganationalcohortofpsychiatric
inpatients.Soc.PsychiatryPsychiatr.Epidemiol.48(2),295
302.
Tang, C .,etal.,2021.Effectsofdifferentheatexposurepatterns(accumulatedand
transient)andschizophreniahospitalizations:atime-seriesanalysisonhourly
temperaturebasis.Environ.Sci.Pollut.Res.11.
Tapak, L .,etal.,2018.Investigatingtheeffectofclimaticparametersonmentaldisorder
admissions.Int.J.Biometeorol.62(12),2109
2118.
Thompson, R .,etal.,2018.Associationsbetweenhighambienttemperaturesandheat
waveswithmentalhealthoutcomes:asystematicreview.PublicHealth161,
171
191.
Trang, P . M .,etal.,2016a.Heatwavesandhospitaladmissionsformentaldisordersin
northernVietnam.PLoSOne11(5),e0155609.
Trang, P . M .,etal.,2016b.Seasonalityofhospitaladmissionsformentaldisordersin
Hanoi,Vietnam.Glob.HealthAct.9(1),32116.
Trenberth, K . E .,Fasullo, J . T .,Shepherd, T . G .,2015.Attributionofclimateextremeevents.
Nat.Clim.Chang.5(8),725
730.
Tsutsui, Y .,2013.WeatherandIndividualHappiness.WeatherClim.Soc.5(1),70
82.
Vaneckova, P .,Bambrick, H .,2013.Cause-SpecificHospitalAdmissionsonHotDaysin
Sydney,Australia.PLoSOne8(2),e55459.
Vergouwe, Y .,etal.,2005.Substantialeffectivesamplesizeswererequiredforexternal
validationstudiesofpredictivelogisticregressionmodels.J.Clin.Epidemiol.58(5),
475
483.
Vida, S .,etal.,2012.Relationshipbetweenambienttemperatureandhumidityandvisits
tomentalhealthemergencydepartmentsinQuebec.Psychiatr.Serv.63(11),
1150
1153.
Viechtbauer, W .,2010.Conductingmeta-analysesin{R}withthe{metafor}package.J.
Stat.Softw.36(3),1
48.
Voelkel, J .,etal.,2018.Assessingvulnerabilitytourbanheat:astudyofdisproportionate
heatexposureandaccesstorefugebysocio-demographicstatusinPortland,Oregon.
Int.J.Environ.Res.PublicHealth15(4),640.
Wang, S .,etal.,2018.Effectofincreasingtemperatureondailyhospitaladmissionsfor
schizophreniainHefei,China:atime-seriesanalysis.PublicHealth159,70
77.
Wang, X .,etal.,2014.Acuteimpactsofextremetemperatureexposureonemergency
roomadmissionsrelatedtomentalandbehaviordisordersinToronto,Canada.J.
Affect.Disord.155,154
161.
Weilnhammer, V .,etal.,2021.Extremeweathereventsineuropeandtheirhealth
consequences
Asystematicreview.Int.J.Hyg.Environ.Health233,113688.
Williams, S .,etal.,2012.HeatandhealthinAdelaide,SouthAustralia:assessmentofheat
thresholdsandtemperaturerelationships.Sci.TotalEnviron.414,126
133.
Wilson, L . A .,etal.,2013.TheimpactofheatonmortalityandmorbidityintheGreater
MetropolitanSydneyRegion:acasecrossoveranalysis.Environ.Health12(1),1
14.
WorldHealthOrganization,2002.PreventionandPromotioninMentalHealth.World
HealthOrganization.
WorldHealthOrganization,2020.RiskofBiasAssessmentInstrumentforSystematic
ReviewsInformingWHOGlobalAirQualityGuidelines.WorldHealthOrganization.
RegionalOfficeforEurope.
Wu, X .,etal.,2016.Impactofclimatechangeonhumaninfectiousdiseases:Empirical
evidenceandhumanadaptation.Environ.Int.86,14
23.
Xu, Y .,Wheeler, S . A .,Zuo, A .,2018.Willboys
mentalhealthfareworseunderahotter
climateinAustralia?Popul.Environ.40(2),158
181.
Xu, Z .,etal.,2019.Assessingheatwaveimpactsoncause-specificemergencydepartment
visitsinurbanandruralcommunitiesofQueensland,Australia.Environ.Res.168,
414
419.
Yackerson, N . S .,etal.,2011.Theinfluenceofseveralchangesinatmosphericstatesover
semi-aridareasontheincidenceofmentalhealthdisorders.Int.J.Biometeorol.55
(3),403
410.
Yi, W .,etal.,2019.Examiningtheassociationbetweenapparenttemperatureand
admissionsforschizophreniainHefei,China,2005
2014:atime-seriesanalysis.Sci.
TotalEnviron.672,1
6.
Yi-Fan, P .,etal.,2016.Analyzingpersonalhappinessfromglobalsurveyandweather
data:ageospatialapproach.PLoSOne11(4),e0153638.
Yoo, E . H .,etal.,2021.Associationbetweenextremetemperaturesandemergencyroom
visitsrelatedtomentaldisorders:Amulti-regiontime-seriesstudyinNewYork,USA.
Sci.TotalEnviron.792,11.
Zammit, C .,etal.,2021.Neurologicaldisordersvis-à-visclimatechange.EarlyHum.Dev.
155,105217.
Zapata, O .,2021.Happinessinthetropics:climatevariablesandsubjectivewellbeing.
Environ.Dev.Econ.22.
Zhang, S . Y .,etal.,2020.Theeffectoftemperatureoncause-specificmentaldisordersin
threesubtropicalcities:acase-crossoverstudyinChina.Environ.Int.143,7.
Zhao, Q .,Lian, Z .,Lai, D .,2021.Thermalcomfortmodelsandtheirdevelopments:A
review.EnergyBuiltEnviron.2(1),21
33.
33
... Encouraging walking as a mode of transportation for short-distance trips not only improves individual health outcomes and enhances the quality of life for residents [3,4] but also reduces carbon emissions and promotes sustainable urban development [5]. However, with global warming, the outdoor climate in cities is becoming increasingly hot [6], and pedestrians are facing greater thermal stress during walking in high-temperature weather [7][8][9]. On sunny summer days, non-uniform thermal radiation is the main thermal characteristic experienced by pedestrians during walking, especially when exposed to direct solar radiation, the changes in the direction and intensity of solar radiation can significantly affect the thermal perception of pedestrians [10,11]. ...
... This corresponds to the situation where moderate to high-intensity solar radiation acts on the human body for a period of time. Taking the partial derivative of TSV o concerning dT sk,m /dτ in Eq. (5) yields Eq. (6). Over a short period of time, this result can be approximately equivalent to the ratio of TSV o 's short-term change (ΔTSV o ) to dT sk,m /dτ′s short-term change (ΔdT sk,m /dτ). ...
Article
Walking promotes human health and well-being. However, increasing temperatures due to global climate change and urban heat islands challenge urban walkability. While people navigate urban settings, they encounter asymmetrical environmental conditions not captured by most thermal comfort models. Critically, these models predominantly factor in the Mean Radiant Temperature (MRT) but tend to neglect the effects of non-uniform solar radiation on human comfort. This study delves into the thermal impacts of solar radiation on walking individuals, utilizing a controlled environment with solar simulators. 28 subjects walked on a treadmill, simulating the walking state of pedestrians, under asymmetrical radiation conditions with the source being overhead, in front, behind, and to the side. Participants responded to queries concerning their overall thermal comfort, thermal sensation, and thermal acceptability. In addition, they provided feedback on directional and segmental thermal sensations across various body parts. Our findings revealed that the thermal sensation varied depending on the direction of radiation, and their responses regarding their forearms were most closely related to their whole body. These results provide information that can be valuable in the design of outdoor environments that will be thermally comfortable and will encourage people to walk during hot weather.
... Of the systematic reviews with meta-analysis, 25 focused on the mental health impact of air pollution 5,13,31,[33][34][35][36][37][38][39][40][41][44][45][46][48][49][50][51][52][53][54][55][56] ; six on the impact of climate change hazards 6,29,30,32,43,47 ; and one on both 42 . ...
Article
Full-text available
The impact of air pollution and climate change on mental health has recently raised strong concerns. However, a comprehensive overview analyzing the existing evidence while addressing relevant biases is lacking. This umbrella review systematically searched the PubMed/Medline, Scopus and PsycINFO databases (up to June 26, 2023) for any systematic review with meta‐analysis investigating the association of air pollution or climate change with mental health outcomes. We used the R metaumbrella package to calculate and stratify the credibility of the evidence according to criteria (i.e., convincing, highly suggestive, suggestive, or weak) that address several biases, complemented by sensitivity analyses. We included 32 systematic reviews with meta‐analysis that examined 284 individual studies and 237 associations of exposures to air pollution or climate change hazards and mental health outcomes. Most associations (n=195, 82.3%) involved air pollution, while the rest (n=42, 17.7%) regarded climate change hazards (mostly focusing on temperature: n=35, 14.8%). Mental health outcomes in most associations (n=185, 78.1%) involved mental disorders, followed by suicidal behavior (n=29, 12.4%), access to mental health care services (n=9, 3.7%), mental disorders‐related symptomatology (n=8, 3.3%), and multiple categories together (n=6, 2.5%). Twelve associations (5.0%) achieved convincing (class I) or highly suggestive (class II) evidence. Regarding exposures to air pollution, there was convincing (class I) evidence for the association between long‐term exposure to solvents and a higher incidence of dementia or cognitive impairment (odds ratio, OR=1.139), and highly suggestive (class II) evidence for the association between long‐term exposure to some pollutants and higher risk for cognitive disorders (higher incidence of dementia with high vs. low levels of carbon monoxide, CO: OR=1.587; higher incidence of vascular dementia per 1 μg/m ³ increase of nitrogen oxides, NO x : hazard ratio, HR=1.004). There was also highly suggestive (class II) evidence for the association between exposure to airborne particulate matter with diameter ≤10 μm (PM 10 ) during the second trimester of pregnancy and the incidence of post‐partum depression (OR=1.023 per 1 μg/m ³ increase); and for the association between short‐term exposure to sulfur dioxide (SO 2 ) and schizophrenia relapse (risk ratio, RR=1.005 and 1.004 per 1 μg/m ³ increase, respectively 5 and 7 days after exposure). Regarding climate change hazards, there was highly suggestive (class II) evidence for the association between short‐term exposure to increased temperature and suicide‐ or mental disorders‐related mortality (RR=1.024), suicidal behavior (RR=1.012), and hospital access (i.e., hospitalization or emergency department visits) due to suicidal behavior or mental disorders (RR=1.011) or mental disorders only (RR=1.009) (RR values per 1°C increase). There was also highly suggestive (class II) evidence for the association between short‐term exposure to increased apparent temperature (i.e., the temperature equivalent perceived by humans) and suicidal behavior (RR=1.01 per 1°C increase). Finally, there was highly suggestive (class II) evidence for the association between the temporal proximity of cyclone exposure and severity of symptoms of post‐traumatic stress disorder (r=0.275). Although most of the above associations were small in magnitude, they extend to the entire world population, and are therefore likely to have a substantial impact. This umbrella review classifies and quantifies for the first time the global negative impacts that air pollution and climate change can exert on mental health, identifying evidence‐based targets that can inform future research and population health actions.
... The observational evidence for psychological effects of exposure to cold ambient temperatures is relatively sparse and concentrated on mental health. The most comprehensive meta-analysis to date has found that extreme cold, that is, daily temperatures in the 1st and 2.5th percentile, do not constitute a risk factor for the development or exacerbation of mental disorders (Li et al., 2023). Notably, the studies included in the meta-analysis varied to a great extent in whether they used concurrent or time-lagged correlations between temperature and mental health. ...
... With the increasingly significant impact of global climate change on the human living environment [5], climate-adaptive design has become a crucial topic in the fields of architecture and landscape design [6]. Courtyards are an essential component of the residential environment, and creating a comfortable microclimate in these spaces is vital for safeguarding the physical [7] and mental [8] well-being of the residents. However, courtyard spaces are often characterized by sophisticated designs, including complex geometrical elements and diverse landscape features such as vegetation, water bodies, and rocks. ...
Article
Rising temperatures can increase the risk of mental disorders. As climate change intensifies, the future disease burden due to mental disorders may be underestimated. Using data on the number of daily emergency department visits for mental disorders at 30 hospitals in Beijing, China during 2016–2018, the relationship between daily mean temperature and such visits was assessed using a quasi-Poisson model integrated with a distributed lag nonlinear model. Emergency department visits for mental disorders attributed to temperature changes were projected using 26 general circulation models under four climate change scenarios. Stratification analyses were then conducted by disease subtype, sex, and age. The results indicate that the temperature-related health burden from mental disorders was projected to increase consistently throughout the 21st century, mainly driven by high temperatures. The future temperature-related health burden was higher for patients with mental disorders due to the use of psychoactive substances and schizophrenia as well as for women and those aged <65 years. These findings enhance our knowledge of how climate change could affect mental well-being and can be used to advance and refine targeted approaches to mitigating and adapting to climate change with a view on addressing mental disorders.
Article
The global burden of diseases and injuries poses complex and pressing challenges. This study analyzed 369 diseases and injuries attributed to 84 risk factors globally from 1990 to 2019, projecting trends to 2040. In 2019, global risks caused 35 million deaths. Non-communicable diseases were responsible for 8.2 million deaths, primarily from air pollution (5.5 million). Cardiovascular disease from air pollution had a high age-standardized disability-adjusted life year rate (1,073.40). Communicable, maternal, neonatal, and nutritional diseases caused 1.4 million deaths, mainly due to unsafe water and sanitation. Occupational risks resulted in 184,269 transport-related deaths. Behavioral risks caused 21.6 million deaths, with dietary factors causing 6.9 million cardiovascular deaths. Diabetes linked to sugar-sweetened beverages showed significant growth (1990–2019). Metabolic risks led to 18.6 million deaths. Projections to 2040 indicated persistent challenges, emphasizing the urgent need for targeted interventions and policies to alleviate the global burden of diseases and injuries.
Article
Full-text available
Objectives Quantify the risk of mental health (MH)-related emergency department visits (EDVs) due to heat, in the city of Curitiba, Brazil. Design Daily time series analysis, using quasi-Poisson combined with distributed lag non-linear model on EDV for MH disorders, from 2017 to 2021. Setting All nine emergency centres from the public health system, in Curitiba. Participants 101 452 EDVs for MH disorders and suicide attempts over 5 years, from patients residing inside the territory of Curitiba. Main outcome measure Relative risk of EDV (RR EDV ) due to extreme mean temperature (24.5°C, 99th percentile) relative to the median (18.02°C), controlling for long-term trends, air pollution and humidity, and measuring effects delayed up to 10 days. Results Extreme heat was associated with higher single-lag EDV risk of RR EDV 1.03(95% CI 1.01 to 1.05—single-lag 2), and cumulatively of RR EDV 1.15 (95% CI 1.05 to 1.26—lag-cumulative 0–6). Strong risk was observed for patients with suicide attempts (RR EDV 1.85, 95% CI 1.08 to 3.16) and neurotic disorders (RR EDV 1.18, 95% CI 1.06 to 1.31). As to demographic subgroups, females (RR EDV 1.20, 95% CI 1.08 to 1.34) and patients aged 18–64 (RR EDV 1.18, 95% CI 1.07 to 1.30) were significantly endangered. Extreme heat resulted in lower risks of EDV for patients with organic disorders (RR EDV 0.60, 95% CI 0.40 to 0.89), personality disorders (RR EDV 0.48, 95% CI 0.26 to 0.91) and MH in general in the elderly ≥65 (RR EDV 0.77, 95% CI 0.60 to 0.98). We found no significant RR EDV among males and patients aged 0–17. Conclusion The risk of MH-related EDV due to heat is elevated for the entire study population, but very differentiated by subgroups. This opens avenue for adaptation policies in healthcare: such as monitoring populations at risk and establishing an early warning systems to prevent exacerbation of MH episodes and to reduce suicide attempts. Further studies are welcome, why the reported risk differences occur and what, if any, role healthcare seeking barriers might play.
Article
Green space exposure can bring various psychological restorative benefits, including attention restoration, stress recovery, and mood improvement. However, most research on restorative environments has focused on visual and acoustic experiences. The role of thermal perception in psychological restoration has been largely overlooked. Based on a pre-test-post-test design intervention experiment in an urban park in Guangzhou, China, this study investigated the relationship between thermal perception and the psychological restorative benefits of three types of green space in hot-humid areas. Thirty-eight university students participated in this experiment, each engaging in three environmental stimuli. The results showed that: 1) short-term exposure to urban park grassland and forest in hot and humid areas significantly increased the Perceived restorativeness scale (PRS) score and decreased negative emotions, for example, Anger. 2) Thermal Comfort Vote (TCV) significantly predicted the PRS score. 3) The type of green space greatly influenced the effect of TCV on PRS. These findings prove the relationship between thermal perception and the restorative benefits of green space exposure. The study further integrates the research areas of urban climate, green exposure, and psychological restoration. Incorporating thermal perception and psychological restoration concepts in urban green spaces' design and management helps enhance comfort and psychological well-being.
Article
Full-text available
Introduction The impacts of a changing climate on current and future dementia burdens have not been widely explored. Methods Time-series negative binomial regression analysis was used to assess acute associations between daily ambient temperature and counts of emergency admissions for dementia in each Government region of England, adjusting for season and day-of-week. Using the latest climate and dementia projections data, we then estimate future heat-related dementia burdens under a high emission scenario (Representative Concentration Pathway (RCP8.5), where global greenhouse gas (GHG) emissions continue to rise, and a low emissions scenario (RCP2.6), where GHG emissions are sizeably reduced under a strong global mitigation policy. Results A raised risk associated with high temperatures was observed in all regions. Nationally, a 4.5% (95% Confidence interval (CI) 2.9%–6.1%) increase in risk of dementia admission was observed for every 1 °C increase in temperature above 17 °C associated with current climate. Under a high emissions scenario, heat-related admissions are projected to increase by almost 300% by 2040 compared to baseline levels. Conclusions People living with dementia should be considered a high-risk group during hot weather. Our results support arguments for more stringent climate change mitigation policies.
Article
Full-text available
Introduction Over the past 10-15 years there has been increasing attention to the potential impact of extreme weather events (EWE) on children's mental health. Because sub-Saharan Africa (SSA) is experiencing an increase in the frequency and severity of these events, we decided it was necessary to conduct a systematic review. The focus was to examine research findings on the direct and indirect impacts of EWE on the mental health of children and adolescents living in SSA to inform protective adaptation strategies and promote resilience. Materials and Methods In 2020 we conducted a systematic review in line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and a review of the grey literature. The systematic review and grey literature search identified 1342 studies. Results The titles and abstracts of 858 articles and grey literature were assessed for eligibility (e.g., mental health outcomes for children and adolescents linked to exposure to an EWE in SSA) with 21 articles identified for full-text review. Of these, only two were eligible for full review. Both articles focused on extreme flooding events and associated psychological distress. Several protective factors were identified (e.g., age, sex, encouragement, and shared hardship) that ameliorated the psychological distress. Discussion There is an alarming lack of research focusing specifically on the mental health of youth exposed to EWE in SSA, where EWE, especially extreme heat, flooding and droughts, continue to increase. The indication is that children and adolescents living in SSA are at risk of mental health impacts such as depression and post-traumatic stress disorder. With the severe shortage of SSA-specific research, SSA decision-makers, planners and adaptation strategy developers are not guided by local and regional evidence and may be missing areas of concern and opportunities for prevention.
Article
Full-text available
Background: Psychiatric disorders constitute a major public health concern that are associated with substantial health and socioeconomic burden. Psychiatric patients may be more vulnerable to high temperatures, which under current climate change projections will most likely increase the burden of this public health concern. Objective: This study investigated the short-term association between ambient temperature and mental health hospitalizations in Bern, Switzerland. Methods: Daily hospitalizations for mental disorders between 1973 and 2017 were collected from the University Hospital of Psychiatry and Psychotherapy in Bern. Population-weighted daily mean ambient temperatures were derived for the catchment area of the hospital from 2.3-km gridded weather maps. Conditional quasi-Poisson regression with distributed lag linear models were applied to assess the association up to three days after the exposure. Stratified analyses were conducted by age, sex, and subdiagnosis, and by subperiods (1973-1989 and 1990-2017). Additional subanalyses were performed to assess whether larger risks were found during the warm season or were due to heatwaves. Results: The study included a total number of 88,996 hospitalizations. Overall, the hospitalization risk increased linearly by 4.0% (95% CI 2.0%, 7.0%) for every 10°C increase in mean daily temperature. No evidence of a nonlinear association or larger risks during the warm season or heatwaves was found. Similar estimates were found across for all sex and age categories, and larger risks were found for hospitalizations related to developmental disorders (29.0%; 95% CI 9.0%, 54.0%), schizophrenia (10.0%; 95% CI 4.0%, 15.0%), and for the later rather than the earlier period (5.0%; 95% CI 2.0%, 8.0% vs. 2.0%; 95% CI -3.0%, 8.0%). Conclusions: Our findings suggest that increasing temperatures could negatively affect mental status in psychiatric patients. Specific public health policies are urgently needed to protect this vulnerable population from the effects of climate change.
Article
Full-text available
Introduction Climate change and climate-related disasters adversely affect mental health. Low- and middle-income countries (LMICs) are particularly vulnerable to the impacts of climate change and climate-related disasters and often lack adequate mental healthcare infrastructure. We used the scoping review methodology to determine how exposure to climate change and climate-related disasters influences the presence of mental disorders among those living in LMICs. We also aimed to recognise existing gaps in this area of literature. Methods This review followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews checklist. To identify relevant studies, we searched five electronic databases (MEDLINE, EMBASE, Global Health, APA PsycInfo and Sociological Abstracts) from 1 January 2007 to 31 December 2019. We also searched the grey literature. Included studies had an adult-focused LMIC population, a climate change or climate-related disaster exposure and a mental disorder outcome. Relevant study information was extracted and synthesised. Results Fifty-eight studies were identified, most of which (n=48) employed a cross-sectional design. The most commonly studied exposure–outcome combinations were flood-related post-traumatic stress disorder (PTSD) (n=28), flood-related depression (n=15) and storm-related PTSD (n=13). The majority of studies identified a positive exposure–outcome association. However, few studies included a baseline or comparator (ie, unexposed) group, thereby limiting our understanding of the magnitude or nature of this association. There was also great heterogeneity in this literature, making studies difficult to pool or compare. Several research gaps were identified including the lack of longitudinal studies and non-uniformity of geographic coverage. Conclusion To our knowledge, this was the first scoping review to investigate the relationship between climate change and climate-related disaster exposures and mental disorder outcomes in LMICs. Our findings support the need for further research, but also highlight that mental health should be a priority within LMIC climate change policy considerations.
Article
Full-text available
Objective To evaluate the agreement between diet-disease effect estimates of bodies of evidence from randomised controlled trials and those from cohort studies in nutrition research, and to investigate potential factors for disagreement. Design Meta-epidemiological study. Data sources Cochrane Database of Systematic Reviews, and Medline. Review methods Population, intervention or exposure, comparator, outcome (PI/ECO) elements from a body of evidence from cohort studies (BoE(CS)) were matched with corresponding elements of a body of evidence from randomised controlled trials (BoE(RCT)). Pooled ratio of risk ratios or difference of mean differences across all diet-disease outcome pairs were calculated. Subgroup analyses were conducted to explore factors for disagreement. Heterogeneity was assessed through I ² and τ ² . Prediction intervals were calculated to assess the range of possible values for the difference in the results between evidence from randomised controlled trials and evidence from cohort studies in future comparisons. Results 97 diet-disease outcome pairs (that is, matched BoE(RCT) and BoE(CS)) were identified overall. For binary outcomes, the pooled ratio of risk ratios comparing estimates from BoE(RCT) with BoE(CS) was 1.09 (95% confidence interval 1.04 to 1.14; I ² =68%; τ ² =0.021; 95% prediction interval 0.81 to 1.46). The prediction interval indicated that the difference could be much more substantial, in either direction. We further explored heterogeneity and found that PI/ECO dissimilarities, especially for the comparisons of dietary supplements in randomised controlled trials and nutrient status in cohort studies, explained most of the differences. When the type of intake or exposure between both types of evidence was identical, the estimates were similar. For continuous outcomes, small differences were observed between randomised controlled trials and cohort studies. Conclusion On average, the difference in pooled results between estimates from BoE(RCT) and BoE(CS) was small. But wide prediction intervals and some substantial statistical heterogeneity in cohort studies indicate that important differences or potential bias in individual comparisons or studies cannot be excluded. Observed differences were mainly driven by dissimilarities in population, intervention or exposure, comparator, and outcome. These findings could help researchers further understand the integration of such evidence into prospective nutrition evidence syntheses and improve evidence based dietary guidelines.
Article
Thermal environment influences human thermal comfort significantly when people have outdoor activities. Four environmental parameters determine outdoor thermal comfort, which are air temperature, relative humidity, wind speed, and solar radiation. It is noteworthy that, different from the indoor environment, solar radiation significantly affects outdoor thermal comfort, which needs to be comprehensively understood and analyzed. In this paper, we focused on thermophysiological models and thermal comfort models with consideration of solar radiation, applications of these models, and discussed existing problems and future potential works. Here, those key points are summarized: (1) Many comprehensive thermophysiological models for simple and complex body models have been put forward. For solar load on the human body, Fanger's model showed a good fitting degree in predicting absorbed solar radiation. (2) Existing thermal indexes may not be suited to dynamic conditions of solar radiation while the DTS model may be a good example for thermal comfort evaluation under dynamic solar radiation. (3) For temporary conditions, non-Fourier models, such as the dual phase-lag model, may be applied in thermophysiological models due to the non-uniform internal structure of biological tissues. (4) A scheme of establishing dynamic thermal comfort models is put forward, considering dynamic features of environment parameters, thermophysiological parameters, and thermal adaptation.
Article
Global climate change has increased the risks of extreme weather-related disasters, leading to severe public health burdens. In February 2021, Winter Storm Uri brought severe cold to southern United States and caused unprecedented health and safety concerns. Residents in subsidized rental housing were among the most vulnerable to cold stress during such a cold storm. However, existing research on the assessment and mitigation of cold stress in underserved neighborhoods in warmer climate zones is limited, which results in the negligence of cold event preparedness and mitigation policies. Therefore, this study aims to assess the micrometeorological conditions and human cold stress in subsidized housing neighborhoods during the 2021 Winter Storm and determine the extent to which cold mitigation windbreak designs are effective in reducing cold stress. Field measurements, ENVI-met simulations, and biometeorological calculations were conducted to reconstruct the microclimate conditions and cold stress during the storm, and three cold-mitigation windbreak designs with varying foliage densities were evaluated. Results showed that the conditions were categorized as “extreme cold stress” for the majority of the day, but especially during nighttime. Areas close to the buildings were generally warmer, and the wind-blocking effects of a building decreased as the distance to the building increased. A moderately dense-foliage windbreak was the most effective in reducing wind speed and improving thermal comfort. Intentional environmental modifications to alter wind velocity and disaster relief programs that provide emergency clothing supplies during power outage may be beneficial to these underserved communities.
Article
Background and objectives Several studies have addressed the relationship between bipolar disorder and meteorological variables, but no previous review focusing on the influence of a wide range of meteorological variables on bipolar disorder has been published. The aim of this study is to conduct a systematic review about the influence of weather on the clinical course of bipolar disorder patients. Methods Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, the main electronic medical databases were searched in February 2020, and studies were screened based on the eligibility criteria. 24 studies were selected for qualitative synthesis. Most of them were observational retrospective studies based in medical records. Results The most studied meteorological variables were temperature and sunlight, and the most studied clinical outcomes were hospital admissions. Significant correlations were found between temperature and sunlight and clinical outcomes, although the findings were heterogeneous. Higher temperatures may trigger bipolar disorder relapses that require hospital admission, and higher expositions to sunlight may increase the risk of manic episodes. Conclusion Meteorological variables seem to have an influence in the course of bipolar disorder, especially temperature and sunlight, although further studies are needed to clarify this possible relationship.