ArticlePDF Available

Oligodendrocyte-Encoded HIF Function Couples Postnatal Myelination and White Matter Angiogenesis

Authors:

Abstract and Figures

Myelin sheaths provide critical functional and trophic support for axons in white matter tracts of the brain. Oligodendrocyte precursor cells (OPCs) have extraordinary metabolic requirements during development as they differentiate to produce multiple myelin segments, implying that they must first secure adequate access to blood supply. However, mechanisms that coordinate myelination and angiogenesis are unclear. Here, we show that oxygen tension, mediated by OPC-encoded hypoxia-inducible factor (HIF) function, is an essential regulator of postnatal myelination. Constitutive HIF1/2α stabilization resulted in OPC maturation arrest through autocrine activation of canonical Wnt7a/7b. Surprisingly, such OPCs also show paracrine activity that induces excessive postnatal white matter angiogenesis in vivo and directly stimulates endothelial cell proliferation in vitro. Conversely, OPC-specific HIF1/2α loss of function leads to insufficient angiogenesis in corpus callosum and catastrophic axon loss. These findings indicate that OPC-intrinsic HIF signaling couples postnatal white matter angiogenesis, axon integrity, and the onset of myelination in mammalian forebrain.
Content may be subject to copyright.
Oligodendrocyte-encoded HIF function couples postnatal
myelination and white matter angiogenesis
Tracy J. Yuen1,6, John C. Silbereis1,2,6, Amelie Griveau1, Sandra M. Chang1, Richard
Daneman3, Stephen P. J. Fancy1, Hengameh Zahed1,4, Emin Maltepe5, and David H.
Rowitch1,5
1Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and
Regeneration Medicine and Howard Hughes Medical Institute, University of California San
Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
2Department of Neuroscience, University of California San Francisco, 513 Parnassus Avenue,
San Francisco, CA, 94143, USA
3Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, San
Francisco, CA, 94143, USA
4Department of Medical Science Training Program, University of California San Francisco, 513
Parnassus Avenue, San Francisco, CA, 94143, USA
5Division of Neonatology, University of California San Francisco, 513 Parnassus Avenue, San
Francisco, CA, 94143, USA
Summary
Myelin sheaths provide critical functional and trophic support for axons in white matter tracts of
the brain. Oligodendrocyte precursor cells (OPCs) have extraordinary metabolic requirements
during development as they differentiate to produce multiple myelin segments, implying they must
first secure adequate access to blood supply. However, mechanisms that coordinate myelination
and angiogenesis are unclear. Here, we show that oxygen tension, mediated by OPC-encoded
hypoxia-inducible factor (HIF) function, is an essential regulator of postnatal myelination.
Constitutive HIF1/2α stabilization resulted in OPC maturation arrest through autocrine activation
of canonical Wnt7a/7b. Surprisingly, such OPCs also show paracrine activity that induces
excessive postnatal white matter angiogenesis in vivo, and directly stimulates endothelial cell
proliferation in vitro. Conversely, OPC-specific HIF1/2α loss-of-function leads to insufficient
© 2014 Elsevier Inc. All rights reserved.
Author for correspondence: David H. Rowitch, MD, PhD, University of California San Francisco, 513 Parnassus Avenue, San
Francisco, CA, 94143, USA, Tele: (415) 476-7242, rowitchd@peds.ucsf.edu.
6Co-first authors
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Author Contributions
T.J.Y. and J.C.S. performed all experiments and data analysis except the following. A.G. and S.M.C. assisted with immunostaining
and genotyping. R.D., S.P.J.F., and E.M. provided advice on experimental design and reagents. H.Z. designed and optimized primers.
T.J.Y., J.C.S., and D.H.R. designed all experiments and wrote the manuscript.
NIH Public Access
Author Manuscript
Cell. Author manuscript; available in PMC 2015 July 17.
Published in final edited form as:
Cell. 2014 July 17; 158(2): 383–396. doi:10.1016/j.cell.2014.04.052.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
angiogenesis in corpus callosum and catastrophic axon loss. These findings indicate that OPC-
intrinsic HIF signaling couples postnatal white matter angiogenesis, axon integrity and the onset
of myelination in mammalian forebrain.
Keywords
oligodendrocyte; myelin; Olig2; angiogenesis; hypoxia-inducible factor; Wnt signaling; CNS
development; axonopathy
Introduction
Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS).
Myelination enables rapid transmission of action potentials through saltatory conduction
(Bradl and Lassmann, 2010), and OLs provide trophic support and maintain axon integrity
(Funfschilling et al., 2012; Harris and Attwell, 2012; Lee et al., 2012; Rinholm et al., 2011).
Developing oligodendrocyte precursor cells (OPCs) undergo as much as a 6500-fold
increase in membrane area to provide myelin segments to multiple axons (Baron and
Hoekstra, 2010; Chong et al., 2012), a process which entails extraordinary metabolic
demands (Chrast et al., 2011; Harris and Attwell, 2012; Nave, 2010). Thus, OLs and OPCs
require access to a rich vascular supply for nutritive and oxidative substrates. However, OLs
are not known to regulate angiogenesis, and molecular mechanisms that might couple the
timing of myelination to adequate blood supply during postnatal brain development are
unknown.
Hypoxia-inducible factors (HIFs) are transcriptional mediators of the cellular response to
hypoxia (Majmundar et al., 2010; Semenza, 2012), comprising a heterodimeric complex of
an oxygen-sensitive subunit (HIF1α or HIF2a) with a constitutive subunit (HIF1β or HIF2β)
(Hirose et al., 1996; Wang et al., 1995). In normoxic conditions, prolyl hydroxylase (PHD1–
3) and von Hippel Lindau (VHL) target HIF1/2α for proteosomal degradation (Ivan et al.,
2001; Jaakkola et al., 2001). Conversely, during hypoxia, stabilized HIF1/2α proteins bind
HIF1β and translocate to the nucleus to activate gene targets by binding cis-acting motifs
called hypoxia response elements (HREs) (Mazumdar et al., 2010; Patel and Simon, 2008).
Previous studies show that Wnt7a/7b function in embryonic neural precursors is essential for
embryonic CNS angiogenesis (Daneman et al., 2009; Stenman et al., 2008). During
development, the Wnt pathway is required for maturation of CNS blood vessels and the
blood brain barrier (Liebner et al., 2008; Wang et al., 2012; Ye et al., 2009b), a process that
involves vascular investment by pericytes and astrocytic end-feet (Daneman et al., 2010;
Janzer and Raff, 1987). Robust CNS angiogenesis persists until postnatal day (P) 10 in mice,
which coincides with myelination onset in the corpus callosum (Harb et al., 2013). The most
active period of myelination in the postnatal human brain occurs during the first year of life,
which correlates with increasing levels of blood flow and O2 (Franceschini et al., 2007;
Kinney et al., 1988; Miller et al., 2012). Conversely, postnatal hypoxia results in delayed
myelination (Ment et al., 1998; Silbereis et al., 2010; Tan et al., 2005; Weiss et al., 2004), in
part, through activation of Wnt signaling, an inhibitor of OL differentiation (Fancy et al.,
2011a; Fancy et al., 2011b; Ye et al., 2009a).
Yuen et al. Page 2
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
To better define molecular pathways that could integrate myelination and vascular supply,
we hypothesized that oxygen levels directly regulate the differentiation of OLs. Here we
show that OPC HIF1/2α activity inhibits myelination by inducing autocrine Wnt7a/7b
signaling, which also has a novel paracrine role to promote Wnt-dependent vessel growth
into developing postnatal white matter tracts. While constitutive HIF activation in OPCs
caused striking hypervascularization throughout the brain, loss of OPC-encoded HIF1/2α
function resulted in catastrophic loss of corpus callosum axons commencing at P4, when
robust angiogenesis is taking place. Our findings establish a HIF—and by extension, oxygen
— -dependent mechanism that is critical to precisely time the onset of myelination to
environmental conditions that can adequately support the associated metabolic demands.
Moreover, we show an unexpected role for OPCs as critical regulators of angiogenesis in the
postnatal brain.
Results
Oxygen levels and cell-intrinsic VHL function regulate OPC differentiation and myelination
In mice, postnatal myelination in the corpus callosum and cerebellar white matter is initiated
at about P7–9 and peaks at P15–21 (Tessitore and Brunjes, 1988). As shown (Figure 1A–B,
Figure S1A–C), chronic exposure of neonatal mice to mild hypoxia (10% FiO2) from P3–11
resulted in hypomyelination and delayed OPC differentiation, without altering total OL
lineage numbers (Olig2+). This was indicated by reduced expression of myelin basic protein
(MBP) and cells expressing the mature lineage-specific marker CC1 (a.k.a., adenomatous
polyposis coli, APC), consistent with previous findings (Weiss et al, 2004). Under such
hypoxic conditions, we observed stabilized HIF1α proteins in white matter lysates and
Olig2+ OPCs (Figure 1B, Figure S1D)
We next examined effects of cell-intrinsic HIF stabilization in OPCs. We targeted
conditional knockout of a floxed VHL allele (Rankin et al, 2005) through intercrosses with
Sox10-cre (Stolt et al., 2006), Olig1-cre (Lu et al., 2002) or tamoxifen-inducible PLP-
creERT2 (Doerflinger et al., 2003) transgenic mice. As shown (Figure 1B), OPC-specific
VHL conditional knockout by Sox10-cre resulted in HIF1α stabilization and severe OPC
maturation arrest. We observed hypomyelination throughout the brain of Sox10-cre,
VHL(fl/fl) mice (Figure 1B, Figure S1C), which displayed tremor, ataxia and failure to
survive past weaning age (P21). It is possible that lethality resulted from VHL loss-of-
function in the peripheral nervous system, which is also targeted by Sox10-cre (Stolt et al.,
2006). However, Olig1-cre, VHL(fl/fl) mice showed a similar phenotype of hypomyelination
and reduced viability past P10 (Figure S1E, data not shown). Together, these findings
indicate that cell-intrinsic VHL function phenocopies the effects of hypoxia and is required
for OPC maturation and myelination.
To further verify that effects of hypoxia on the OL lineage were direct, we purified OPCs by
immunopanning from the neonatal brain for in vitro studies (Emery and Dugas, 2013). As
shown (Figure 1C, Figure S1F–J), exposure to 2% oxygen or treatment with the HIF-
stabilizing agent dimethyloxaloylglycine (DMOG) inhibited OPC maturation and myelin
gene expression (MAG, MBP, CNPase). We found similar results in OPCs isolated from
Plp-creERT2, VHL(fl/fl) mice following treatment with tamoxifen (Figure 1C). These
Yuen et al. Page 3
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
findings show direct effects of oxygen levels on OPCs, and indicate that cell-autonomous
HIF signaling causes maturation arrest.
Hypoxic effects on OPCs are mediated by HIF1/2α function
We next determined whether HIF1/2α function is required for hypoxia-induced
hypomyelination. We crossed conditional HIF1
α
(fl/fl) and HIF2
α
(fl/fl) mutants to
compound homozygosity (hereafter called HIF1/2
α
(fl/fl)) with PLP-creERT2 (Doerflinger
et al., 2003). Given dramatic hypomyelination observed in the cerebellar white matter of
Sox10-cre, VHL(fl/fl) mice (Figure S1C), we utilized a cerebellar explant culture assay
suitable to quantify changes in postnatal myelination and compact myelin paranode
formation (Fancy et al., 2011b; Yuen et al., 2013). We generated cerebellar explants from
P0-P1 transgenic mice and added tamoxifen (which did not affect survival) to induce acute
Cre-mediated excision of HIF1/2α in OLs (Figure 2A, Figure S2A). Although the Plp-
creERT2 allele has been shown to have variable activity in vivo (Doerflinger et al., 2003),
we observed about 85% of Olig2+ cells expressed a conditional (floxed) GFP reporter
(Figure S2B). Subsequently, cultures were exposed to hypoxia (2% FiO2) for 24h and
maintained for 12 days prior to analysis. As shown (Figure 2B–D, Figure S2C), hypoxia,
and subsequent HIF activation, inhibited myelination and OPC differentiation in wild type
cerebella, as shown by MBP staining as well as the ratio of Caspr paranode staining to NFH
+ axons, and the increased ratio of Nkx2.2 (immature OPCs)/Olig2 (total OLs) double-
positive cells (Fancy et al., 2011b). However, as shown (Figure 2B–F, Figure S2C–E), the
degree of hypomyelination and OPC differentiation block was significantly reduced by
deletion of HIF1/2α. Thus, hypoxia-induced hypomyelination and maturation arrest requires
intact HIF function within OPCs (Figure 2G). Our findings do not rule out a role of other
pathways (e.g., apoptosis inducing factor and AMP-activated protein kinase (Hardie et al.,
2012; Joza et al., 2009)) in hypoxic regulation of OPCs.
HIF stabilization in OPCs activates canonical Wnt signaling
In OPCs, canonical Wnt signaling functions as a potent inhibitor of maturation (Fancy et al.,
2009). We have further reported that hypoxia-induced hypomyelination in vitro can be
normalized by treatment with XAV939 (Fancy et al., 2011b; Huang et al., 2009) (Figure
3A).
To determine if HIF signaling activates the Wnt pathway in white matter in vivo, we
performed Western blot analysis of P11 corpus callosum lysates from wild type mice
exposed to chronic hypoxia and normoxic Sox10-cre, VHL(fl/fl) conditional knockouts. As
shown (Figure 3B, Figure S3A), we observed upregulation of the activated form of β-
catenin, and the Wnt transcriptional targets Axin2, Notum and Naked1 compared to
controls. Similar findings were obtained in DMOG-treated immunopurified OPC cultures
(Figure S3B), indicating HIF stabilization activates canonical Wnt signaling in OPCs. As we
used purified OPC cultures, these results also suggested that Wnt ligands produced by OPCs
act in an autocrine fashion. To test this, we used IWP2, which inhibits Wnt ligand secretion
by blocking porcupine function (Figure 3A, (Chen et al., 2009)). As shown (Figure 3C–D,
Figure S3C), IWP2 was sufficient to reduce both hypomyelination and maturation arrest
after hypoxia or OPC VHL loss-of-function. As a control for canonical Wnt pathway activity
Yuen et al. Page 4
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
inhibition, we confirmed these effects with XAV939 (Figure 3A, C–D, Figure S3C–F).
Thus, OPC HIF activation promotes the secretion of canonical Wnt ligand(s) that act in an
autocrine manner to inhibit differentiation/myelination.
Evidence that Wnt7a and Wnt7b are direct HIF-inducible targets
Analysis of a database of genes expressed during OL development (Cahoy et al., 2008)
revealed that Wnt4, Wnt7a and Wnt7b are expressed at high levels in OPCs and become
down-regulated in mature OLs (Figure S3G). To further identify HIF targets, we performed
qRT-PCR with primers for each of the 19 mammalian Wnt genes (Table S1) against mRNA
from hypoxic or DMOG-treated OPCs. As shown (Figure 3E, Table S1), we observed
upregulation of Wnt7a and Wnt7b but not other Wnt genes.
To determine if Wnt7a and/or Wnt7b are direct targets of HIF, we tested HRE (A/GTCTG)
motifs proximal to the core promoters of these loci (see Extended Experimental Procedures)
with chromatin immunoprecipitation (ChIP) in the presence/absence of DMOG to regulate
HIF protein stability. Known HREs for Epo served as a positive control (Figure 3F), and
HRE-negative upstream regions served as negative controls (Figure S3H). As shown (Figure
3G), anti-HIF1α antibody-mediated precipitation resulted in significant signal from putative
Wnt7a or Wnt7b HREs and the Epo HRE in WT MEFs treated with DMOG, but not
HIF1/2α double KO MEFs. These findings indicate HIF1α proteins bind to Wnt7a and
Wnt7b HREs. Finally, we found that Wnt7a exposure resulted in OPC maturation arrest
(increase in ratio of immature Nkx2.2/Olig2 cells) and hypomyelination that was rescued by
XAV939 (Figure 3H; Figure S3I–J), consistent with roles as a HIF target downstream
effector of canonical Wnt signaling in OPCs.
OPC HIF signaling promotes CNS angiogenesis and endothelial cell proliferation
Canonical Wnt signaling is essential for the formation of CNS vasculature in the embryo
(Daneman et al., 2009; Stenman et al., 2008), and CNS angiogenesis persists postnatally
through the sprouting and elongation of embryonically derived vessels during the first 10
days of murine life (Harb et al., 2013). Although angiogenic roles for OPCs are
unprecedented, findings above raised the possibility that Wnt7a/7b also had paracrine roles
in white matter.
We first investigated whether OPC HIF stabilization affected postnatal vascular
development in vivo. As shown (Figure 4A–D, Figure S4A), vascular density of Sox10-cre,
VHL(fl/fl) mice was significantly increased, as indicated by endothelial markers CD31,
isolectin and Glut1. Similar findings were observed in Olig1-cre, VHL(fl/fl) mice (Figure
S4B). Fate mapping for Sox10-cre and Olig1-cre drivers failed to show any contributions to
endothelial or smooth muscle vascular cells (Table S3, Figure S4C–D). We did observe that
9% of white matter pericytes were fate mapped by Sox10-cre and Olig1-cre (Table S3
Figure S4C), so we cannot rule out a small contribution of these cells. Despite increased
vessel density, we found normal investment by pericytes and astrocyte end-feet, and no
evidence for blood-brain barrier leakage as assessed by lectin perfusion, fibrinogen staining
outside of the vasculature, and absence of hemorrhage (Figure 4D, Figure S4E and data not
shown).
Yuen et al. Page 5
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
We next analyzed activation of endothelial Wnt signaling by expression of the
transcriptional target, Lef1 (Eastman and Grosschedl, 1999; Huber et al., 1996; Porfiri et al.,
1997). As shown (Figure 4E), we found robust induction of Lef1 in CD31+ endothelial cells
of Sox10-cre, VHL(fl/fl) mutants; moreover, the majority of these co-stained with the
proliferation marker Ki67 (Figure 4E–F), suggesting that Wnt signaling promoted vessel
growth. Although members of the vascular endothelial growth factor (VEGF) family are
HIF target genes expressed within the OL lineage during development (Figure S4F) (Cahoy
et al., 2008), we found no evidence for increased VEGF-A expression in OPCs of Sox10-
cre, VHL(fl/fl) mice in vivo (Figure S4G). Thus, HIF stabilization in normoxic OPCs
promotes angiogenesis, Wnt signaling and endothelial proliferation in vivo.
OPCs directly promote angiogenesis in a Wnt-dependent manner
The results above do not address whether angiogenic effects of OPCs were direct and/or
contact-mediated. As shown (Figure 5A–C, Figure S5A), addition of Wnt7a proteins to
cultures of brain endothelial cell line bEnd.3 (ATCC) induced Lef1 expression and
proliferation. To demonstrate direct effects of OPCs, we performed a transwell assay with
bEnd.3 cells (Figure 5A), which allows exchange of diffusible factors but prevents cell-cell
contact. Addition of soluble Wnt7a and/or VEGF proteins resulted in proliferation of bEnd.3
cells (Figure 5A–C, Figure S5A). We also observed these effects with tamoxifen-induced
PLP-creERT2, VHL(fl/fl) OPCs (Figure 5A–C), which was inhibited by XAV939 (Figure
5A–C, Figure S5A–B). In contrast, VEGF inhibitor SU5416 did not inhibit OPC-induced
endothelial proliferation (Figure S5C).
We next assessed endothelial tube formation of bEnd.3 cells in matrigel. As shown (Figure
5D), tamoxifen-induced PLP-creERT2, VHL(fl/fl) OPCs (or treatment with conditioned
medium) promoted endothelial tube formation in a Wnt-dependent manner. Finally, we
investigated direct effects of OPCs to promote endothelial tip sprouting of blood vessels in
explants of neonatal mouse retina (Sawamiphak et al., 2010). We found that conditioned
medium from VHL-deficient OPCs promoted retinal endothelial tip sprouting, and that such
effects were inhibited by the addition of XAV939 (Figure 5E). Taken together, these results
indicate OPCs directly induce angiogenesis in a non-contacted dependent, Wnt-mediated
manner.
Oligodendrocyte HIF1/2 α function is essential for angiogenesis and integrity of corpus
callosum
To explore OPC HIF functions in vivo, we intercrossed HIF1/2
α
(fl/fl) mice with Sox10-cre
and Olig1-cre lines. Sox10-cre, HIF1/2
α
(fl/fl) only survived until P4–7. In contrast, Olig1-
cre, HIF1/2
α
(fl/fl) mice were viable into adulthood as late as P90 (n=5), but exhibited foot
clasping behavior (Figure S6A). The reasons for early lethality of Sox10-cre, HIF1/2
α
(fl/fl)
mice compared to Olig1-cre, HIF1/2
α
(fl/fl) mice are unclear, but likely reflect differential
targeting patterns to precursor cells of the CNS and PNS.
As shown (Figure 6A), histological analysis demonstrated dramatic loss of forebrain white
matter tracts and presence of cysts in the corpus callosum at P4-P7. To resolve distinct
and/or overlapping contributions of HIF1α versus HIF2α in this white matter phenotype, we
Yuen et al. Page 6
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
analyzed single, compound and double mutant animals. As shown (Figure 6A,C, Table S2),
in P4 double knockout Sox10-cre, HIF1/2
α
(fl/fl) and Olig1-cre, HIF1/2
α
(fl/fl) mice, we
observed macroscopic and microscopic acellular cysts in the corpus callosum typically
located at the boundary with adjacent grey matter structures (neocortex, striatum). In
contrast, single HIF1 α or HIF2α mutants showed minimal effects, and compound mutants
that were HIF1
α
(fl/fl);HIF2
α
(fl/+) or HIF1
α
(fl/+);HIF2
α
(fl/fl) showed only corpus
callosum microcysts. Thus, OPC intrinsic HIF1α and HIF2α show partially overlapping yet
essential functions in white matter development.
In order to determine the basis for white matter loss, we assessed the ontogeny of OLs and
the brain vasculature at E18, P4, and P7. While the brain of E18 Olig1-cre, HIF1/2
α
(fl/fl)
mice had a grossly normal appearance and density of CD31+ endothelia (Figure 6A–B),
dysgenesis of the forebrain white matter suggested abnormalities in OPC-induced
angiogenesis with onset between P0-P7. Indeed, we observed that the density of CD31+
endothelia in corpus callosum showed a significant decrease at P4 in Olig1-cre,
HIF1/2
α
(fl/fl) mice (Figure 6B). The P4 timepoint also showed high levels of cleaved
Caspase3 (Casp3)+ apoptotic cells in the mutant white matter (Figure 6C), including
activated CD68+ microglia/macrophages, Olig2+ and PDGFRα+ OPCs and GFAP+
astrocytes (Figure S6B). Despite this, numbers of Olig2+ cells in the white matter of Olig1-
cre, HIF1/2
α
(fl/fl) mice were only about 15% diminished at P4 compared to WT, whereas
we observed a 40% reduction at E18 (Figure 6B). Strikingly, the P4 mutant corpus callosum
showed evidence of severe axonal damage as assessed by SMI32 and Casp3 expression
(Figure 6D–E). Together, these findings indicate a sequence of deficient angiogenesis at P4,
which leads to a general deterioration of white matter, resulting in acellular cysts by P7
(Figure 6A). Thus, combined HIF1/2α function in OPCs is necessary to promote postnatal
white matter angiogenesis and maintain structural integrity of the corpus callosum.
HIF loss-of-function in OPCs is permissive for cortical vessel and projection neuron
development
We next investigated the impact of OPC HIF deletion on cortical plate development. The
mammalian neocortex is divided into six layers (Dugas-Ford et al., 2012). As shown in
Figure 7A, although the cortical plate is thinner in Olig1-cre, HIF1/2
α
(fl/fl) mice at P7, its
component layers are intact. In contrast to findings in white matter (Figure 6B), vessel
density in the P4 cortex of Olig1-cre, HIF1/2
α
(fl/fl) mice was not significantly different
than controls (Figure 7B). In addition, layer 2/3 neurons, marked by expression of SATB2
(Alcamo et al., 2008), as well as layer 5/6 neuron populations appeared to be preserved
(Figure 7C).
We next used the HIF target BNIP3 (Bruick, 2000; Lee and Paik, 2006) as a physiologic
readout of HIF pathway activity in WT and Olig1-cre, HIF1/2
α
(fl/fl) mutant animals. As
shown (Figure 7D), BNIP3 is normally expressed at low levels in a subset of Olig2+ cells in
the white matter of WT P4 mice. This indicates that a state of “physiological” hypoxia/HIF
activation in normal white matter development, whereas cells in the cortex are mostly
BNIP3-negative (Figure 7E). In contrast, we observed elevated numbers of BNIP3+ cells in
the white matter and layers 5/6 of Olig1-cre, HIF1/2a(fl/fl) mice, indicating an abnormal
Yuen et al. Page 7
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
state of hypoxia in these structures (Figure 7D–E); layer 2/3 neurons did not show increased
BNIP3. As expected, we did not observe Olig2+/BNIP3+ cells in Olig1-cre, HIF1/2
α
(fl/fl)
mice (Figure 7D). In summary, these findings suggest that deterioration of forebrain white
matter tracts in Olig1-cre, HIF1/2
α
(fl/fl) is a primary—rather than a consequent—effect of
deficient OPC-encoded HIF signaling on cortical plate projection neurons.
Discussion
Developing appropriate white matter blood flow is essential given the high metabolic
demands of myelinating OLs and the axons they invest. Though classic papers have noted
the anatomical relationship of OLs to blood vessels (Cammermeyer, 1960; Del Rio-Hortega,
2012), our results demonstrate OLs are critical regulators of postnatal CNS angiogenesis.
We find that OPC-encoded HIF signaling coordinates the onset of postnatal myelination
with establishment of adequate vasculature in the white matter through autocrine and
paracrine Wnt activities, respectively (Figure S7).
Oxygen tension is a developmental regulator of postnatal myelination
Activity-dependent neuronal signals are thought to induce myelination (Demerens et al.,
1996; Ishibashi et al., 2006; Stevens et al., 2002), and such coordination is important, in
part, because myelin constrains axon outgrowth and synaptogenesis (Chong et al., 2012; Hu
and Strittmatter, 2004). Our results suggest another level of regulation to ensure the presence
of adequate blood supply and oxygen levels as a prerequisite for myelination to commence
under appropriate physiological conditions. We propose an integrated HIF-regulated
developmental mechanism (Figure S7) wherein OPCs that initially invest hypovascularized
white matter are exposed to hypoxia, activate HIF signaling and produce Wnt ligands, which
in turn trigger angiogenesis. With increased oxygen delivery, HIF signaling becomes
downregulated, thus allowing for OPC maturation and myelination to take place. This dual
mechanism helps ensure myelination will only proceed when blood supply is sufficient to
meet attendant metabolic demands. In culture we could uncouple this relationship (by
providing substrates and oxygen) and confirm HIF loss-of-function rescued hypoxia-
induced hypomyelination. Thus, HIF function is necessary and sufficient for effects of
oxygen levels on OPC maturation. Future studies are needed to determine whether HIF
signaling also regulates OL development antenatally in the hypoxic intrauterine
environment. We did observe that OPC numbers were deficient in Olig1-cre, HIF1/2
α
(fl/f)
animals at E18 consistent with this possibility.
Autocrine Wnt signaling functions downstream of hypoxia/HIF in OPCs
Canonical Wnt signaling inhibits OPC maturation during development and in disease (Fancy
et al., 2009; Fancy et al., 2011b; Ye et al., 2009a), and our studies show that HIF
stabilization activates cell-autonomous Wnt production. HIF1α directly binds conserved
HREs at the Wnt7a and Wnt7b loci, and stabilization of HIF in OPCs resulted in
upregulation of Wnt7a/7b. Further studies are required to establish Wnt7a/7b as the specific
downstream effectors of HIF signaling in OPCs, as other candidates (e.g. Wnt4, Wnt5a) are
expressed in the OL lineage (Cahoy et al., 2008; Fancy et al., 2009). Although HIF
stabilization in OPCs prevented postnatal maturation, we did not observe precocious
Yuen et al. Page 8
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
myelination (e.g., with prenatal onset) in Olig1-cre, HIF1/2
α
(fl/fl) animals. This might
suggest that downregulation of HIF signaling must also integrate with positive cues (e.g.,
axonal activity-dependent signals) for myelination to commence. Alternatively, it is possible
that loss of HIF function results in the rapid death and removal of precociously maturing
OLs.
OPCs regulate white matter angiogenesis through paracrine Wnt signaling
Postnatal forebrain angiogenesis is characterized by sprouting/ingrowth of blood vessels
towards white matter regions from P0-P14 in mice (Harb et al., 2013; Sapieha, 2012).
Conditional OPC knockout of HIF1/2α resulted in deficient angiogenesis at P4 and ensuing
deterioration of large white matter tracts, such as corpus callosum by P7. Conversely, OPC
HIF stabilization resulted in increased expression of the pro-angiogenic genes Wnt7a/7b and
overproduction of blood vessels characterized by robust populations of Lef1+ endothelia.
Although VEGF is expressed by neurons, astrocytes and microglia in response to hypoxia
(Rosenstein et al., 2010), we did not observe VEGF induction by OPC-specific HIF
stabilization. Our findings suggest dual functions for HIF-mediated Wnt signaling that
couple OPC maturation and white matter vascular development. Although Wnt7a/7b are
required for angiogenesis, their functions are dispensable after mature blood vessel structure
is achieved (Daneman et al., 2009; Stenman et al., 2008); moreover, depletion of OLs in the
adult brain (e.g. cuprizone-induced demyelination model) does not result in vascular
abnormalities. These findings indicate roles of OPC and Wnt signaling in angiogenesis but
not maintenance of mature vascular structure.
Oligodendrocyte HIF signaling is essential for developing white matter integrity
Mature OLs provide metabolic support for axons by supplying ATP, glycolytic substrates
and nutrients (Funfschilling et al., 2012; Harris and Attwell, 2012; Lee et al., 2012; Rinholm
et al., 2011). Here, we demonstrate that loss of HIF function in OPCs results in cell death,
axon damage and the appearance of cysts in white matter at P4 followed by a catastrophic
loss of axons at P7 in the corpus callosum. Preliminary analysis indicates this is also the case
in white matter tracts throughout the forebrain, including internal capsule and striatum,
whereas white matter tracts of the cerebellum and brainstem are preserved. These
differences might reflect region-restricted roles for OPCs in white matter angiogenesis or,
alternatively, regional variations in metabolic requirements of OPCs and/or the axons they
invest. While our findings indicate that white matter deterioration from P4–7 results from
inadequate vascular investment, HIF signaling within OLs might also produce trophic
factors for axons. While such lesions may result from a failure of myelination, we think this
is unlikely because the phenotype is observed in P7 corpus callosum before axons are
normally myelinated.
Potential roles for oligodendrocytes in CNS injury
OLs are early responders to a broad spectrum of brain pathologies including demyelinating
disorders (e.g., Multiple Sclerosis, MS), stroke and penetrating trauma (Chang et al., 2002;
Hampton et al., 2004; Kuhlmann et al., 2008; Tanaka et al., 2001). The notion that OPCs
might produce angiogenic factors to encourage revascularization of injured CNS tissue is
Yuen et al. Page 9
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
consistent with recent studies (Cayre et al., 2013; Jiang et al., 2011; Pham et al., 2012). Our
finding of cystic changes in the white matter of OPC HIF-null mice is reminiscent of
periventricular leukomalacia, a condition observed in the brain of pre-term infants. White
matter injury induced by experimental autoimmune encephalomyelitis results in local tissue
hypoxia (Davies et al., 2013) and OL HIF1α expression has been reported in MS lesions
(Aboul-Enein et al., 2003). Further studies are needed to determine roles for OPCs as
mediators of vascular remodeling after white matter injury. In summary, our findings
demonstrate that cell intrinsic HIF pathway function in OPCs couples postnatal myelination
and angiogenesis during a critical window of early postnatal development.
Experimental Procedures
Animals
All experimental procedures were approved by the Institutional Animal Care and Use
Committee and Laboratory Animal Resource Center at UCSF. Mouse colonies were
maintained in accordance with NIH and UCSF guidelines. Sox10-cre (Stolt et al., 2006),
Olig1-cre (Lu et al., 2002), Plp-CreERT2 (Doerflinger et al., 2003), VHL floxed (Rankin et
al., 2005), HIF1
α
floxed (Ryan et al., 2000) and HIF2
α
floxed (Gruber et al., 2007) mice
have been previously described.
Cerebellar Slice Cultures
Mouse explant cerebellar slice cultures were generated from P0-P1 mouse pups and cultured
for 12 days in vitro (DIV). Tamoxifen (Sigma) was added to transgenic cultures at 1DIV and
3DIV. Hypoxic and DMOG cultures were exposed to hypoxia (2% FiO2) or DMOG (Sigma)
between 2–3DIV. Factors were added after hypoxia or DMOG treatment, and replenished
every other day. See Extended Experimental Procedures for more details.
qRT-PCR
RNA was isolated (Trizol extraction followed by RNeasy; Qiagen) from immunopurified
OPC cultures and assayed for gene expression by SYBR-Green on a Lightcycler 480
(Roche).
Western blots
Protein was extracted using standard protocols (Kenney et al., 2003) and then detected by
either an Amersham ECL luminescence kit (GE Healthcare) or by immunofluorescence
using the Licor detection system (Licor, Inc.).
Chromatin Immunoprecipitation DNA binding assays
Chromatin IP for HIF1α was conducted using the Human/Mouse HIF-1α ExactaChIP
Chromatin IP kit (R&D Systems) followed by qRT-PCR with primers flanking HREs in
genomically conserved domains proximal to Wnt7a and Wnt7b core promoter regions. See
Extended Experimental Procedures for more details.
Yuen et al. Page 10
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
OPC-endothelial cell transwell assays
Mouse immunopurified OPCs were plated on transwell inserts (Corning) and mouse brain
endothelial cells (bEnd.3 cell line, ATCC CRL-2299) were plated on PDL-coated glass
coverslips below. Proliferation was assessed with EdU labeling at 24h and 48h.
Endothelial tube formation assay
bEnd.3 cells were plated on a matrigel matrix (BD) and factors or transwell inserts with
OPCs were added. Following incubation for 18 hours, endothelial cell tube formation was
imaged under phase contrast.
Retinal explants
Retina from P4–5 CD1 mice were dissected and flat-mounted on Millicell inserts and
allowed to recover for 2–4h after which factors or OPC conditioned medium were added.
After 4–6h, explants were fixed and stained with Isolectin GS-IB4.
Statistical analyses
For all quantified data, mean + SEM values are presented. Statistical significance was
determined using unpaired, 2-tailed Student’s T-tests, as well as one-way ANOVA with
Dunnett’s multiple comparison test (GraphPad Prism).
Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
Acknowledgments
We are grateful to Emily Harrington and April Tenney for expert technical help, Matt Rasband, Nenad Sestan and
Klaus Nave for discussions. We thank Andrew McMahon (USC, Los Angeles, CA) for genomic sequence
information for Wnt7a and 7b loci, William Kaelin (Dana-Farber Cancer Institute, Boston, MA) for floxed VHL
transgenic mice, and William Richardson (UCL, London, UK) for Sox10-cre transgenic mice. We also thank Nina
Bauer, who drew all illustrations. T.J.Y. acknowledges a postdoctoral fellowship from the National Multiple
Sclerosis Society (NMSS). J.C.S. acknowledges support from training grant T32 GM007449-36 from NIGMS and
the Ruth Kirschstein NRSA fellowship F31 NS076254-03 from NINDS. This work was made possible by grants
from NICHD (HD072544 to E.M.), NMSS (to D.H.R.) and NINDS (NS040511 to D.H.R.). D.H.R. is a HHMI
Investigator.
References
Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Bruck W, Lucchinetti C,
Schmidbauer M, Jellinger K, Lassmann H. Preferential loss of myelin-associated glycoprotein
reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol
Exp Neurol. 2003; 62:25–33. [PubMed: 12528815]
Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Farinas I, Grosschedl R, McConnell SK. Satb2
regulates callosal projection neuron identity in the developing cerebral cortex. Neuron. 2008;
57:364–377. [PubMed: 18255030]
Baron W, Hoekstra D. On the biogenesis of myelin membranes: sorting, trafficking and cell polarity.
FEBS Lett. 2010; 584:1760–1770. [PubMed: 19896485]
Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010; 119:37–53.
[PubMed: 19847447]
Yuen et al. Page 11
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia.
Proc Natl Acad Sci U S A. 2000; 97:9082–9087. [PubMed: 10922063]
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL,
Krieg PA, Krupenko SA, et al. A transcriptome database for astrocytes, neurons, and
oligodendrocytes: a new resource for understanding brain development and function. J Neurosci.
2008; 28:264–278. [PubMed: 18171944]
Cammermeyer J. Reappraisal of the perivascular distribution of oligodendrocytes. Am J Anat. 1960;
106:197–231. [PubMed: 13690151]
Cayre M, Courtes S, Martineau F, Giordano M, Arnaud K, Zamaron A, Durbec P. Netrin 1 contributes
to vascular remodeling in the subventricular zone and promotes progenitor emigration after
demyelination. Development. 2013; 140:3107–3117. [PubMed: 23824572]
Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions
of multiple sclerosis. N Engl J Med. 2002; 346:165–173. [PubMed: 11796850]
Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, et al.
Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer.
Nat Chem Biol. 2009; 5:100–107. [PubMed: 19125156]
Chong SY, Rosenberg SS, Fancy SP, Zhao C, Shen YA, Hahn AT, McGee AW, Xu X, Zheng B,
Zhang LI, et al. Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of
oligodendrocyte myelination. Proc Natl Acad Sci U S A. 2012; 109:1299–1304. [PubMed:
22160722]
Chrast R, Saher G, Nave KA, Verheijen MH. Lipid metabolism in myelinating glial cells: lessons from
human inherited disorders and mouse models. J Lipid Res. 2011; 52:419–434. [PubMed:
21062955]
Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. Wnt/beta-catenin signaling is
required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A. 2009; 106:641–646.
[PubMed: 19129494]
Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity
during embryogenesis. Nature. 2010; 468:562–566. [PubMed: 20944625]
Davies AL, Desai RA, Bloomfield PS, McIntosh PR, Chapple KJ, Linington C, Fairless R, Diem R,
Kasti M, Murphy MP, et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory
disease. Ann Neurol. 2013
Del Rio-Hortega P. Are the glia with very few processes homologous with Schwann cells? by Pio del
Rio-Hortega. 1922. Clin Neuropathol. 2012; 31:460–462. [PubMed: 23083464]
Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, Lubetzki C.
Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci U
S A. 1996; 93:9887–9892. [PubMed: 8790426]
Doerflinger NH, Macklin WB, Popko B. Inducible site-specific recombination in myelinating cells.
Genesis. 2003; 35:63–72. [PubMed: 12481300]
Dugas-Ford J, Rowell JJ, Ragsdale CW. Cell-type homologies and the origins of the neocortex. Proc
Natl Acad Sci U S A. 2012; 109:16974–16979. [PubMed: 23027930]
Eastman Q, Grosschedl R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals.
Curr Opin Cell Biol. 1999; 11:233–240. [PubMed: 10209158]
Emery B, Dugas JC. Purification of oligodendrocyte lineage cells from mouse cortices by
immunopanning. Cold Spring Harb Protoc. 2013; 2013:854–868. [PubMed: 24003195]
Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH.
Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the
mammalian CNS. Genes Dev. 2009; 23:1571–1585. [PubMed: 19515974]
Fancy SP, Chan JR, Baranzini SE, Franklin RJ, Rowitch DH. Myelin regeneration: a recapitulation of
development? Annu Rev Neurosci. 2011a; 34:21–43. [PubMed: 21692657]
Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang
EJ, Nusse R, et al. Axin2 as regulatory and therapeutic target in newborn brain injury and
remyelination. Nat Neurosci. 2011b; 14:1009–1016. [PubMed: 21706018]
Yuen et al. Page 12
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Franceschini MA, Thaker S, Themelis G, Krishnamoorthy KK, Bortfeld H, Diamond SG, Boas DA,
Arvin K, Grant PE. Assessment of infant brain development with frequency-domain near-infrared
spectroscopy. Pediatr Res. 2007; 61:546–551. [PubMed: 17413855]
Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann
CM, Tzvetanova ID, Mobius W, et al. Glycolytic oligodendrocytes maintain myelin and long-term
axonal integrity. Nature. 2012; 485:517–521. [PubMed: 22622581]
Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC. Acute postnatal ablation of Hif-2alpha
results in anemia. Proc Natl Acad Sci U S A. 2007; 104:2301–2306. [PubMed: 17284606]
Hampton DW, Rhodes KE, Zhao C, Franklin RJ, Fawcett JW. The responses of oligodendrocyte
precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience. 2004;
127:813–820. [PubMed: 15312894]
Harb R, Whiteus C, Freitas C, Grutzendler J. In vivo imaging of cerebral microvascular plasticity from
birth to death. J Cereb Blood Flow Metab. 2013; 33:146–156. [PubMed: 23093067]
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy
homeostasis. Nature reviews Molecular cell biology. 2012; 13:251–262.
Harris JJ, Attwell D. The energetics of CNS white matter. J Neurosci. 2012; 32:356–371. [PubMed:
22219296]
Hirose K, Morita M, Ema M, Mimura J, Hamada H, Fujii H, Saijo Y, Gotoh O, Sogawa K, Fujii-
Kuriyama Y. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS
factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator
(Arnt). Mol Cell Biol. 1996; 16:1706–1713. [PubMed: 8657146]
Hu F, Strittmatter SM. Regulating axon growth within the postnatal central nervous system. Semin
Perinatol. 2004; 28:371–378. [PubMed: 15693393]
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang
Y, Wiessner S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature.
2009; 461:614–620. [PubMed: 19759537]
Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-
catenin by interaction with transcription factor LEF-1. Mech Dev. 1996; 59:3–10. [PubMed:
8892228]
Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD. Astrocytes promote
myelination in response to electrical impulses. Neuron. 2006; 49:823–832. [PubMed: 16543131]
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr.
HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2
sensing. Science. 2001; 292:464–468. [PubMed: 11292862]
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF,
Mukherji M, Schofield CJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation
complex by O2-regulated prolyl hydroxylation. Science. 2001; 292:468–472. [PubMed:
11292861]
Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature.
1987; 325:253–257. [PubMed: 3543687]
Jiang L, Shen F, Degos V, Schonemann M, Pleasure SJ, Mellon SH, Young WL, Su H. Oligogenesis
and Oligodendrocyte Progenitor Maturation Vary in Different Brain Regions and Partially
Correlate with Local Angiogenesis after Ischemic Stroke. Transl Stroke Res. 2011; 2:366–375.
[PubMed: 22022343]
Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G. AIF: not just
an apoptosis-inducing factor. Annals of the New York Academy of Sciences. 2009; 1171:2–11.
[PubMed: 19723031]
Kenney AM, Cole MD, Rowitch DH. Nmyc upregulation by sonic hedgehog signaling promotes
proliferation in developing cerebellar granule neuron precursors. Development. 2003; 130:15–28.
[PubMed: 12441288]
Kinney HC, Brody BA, Kloman AS, Gilles FH. Sequence of central nervous system myelination in
human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol. 1988;
47:217–234. [PubMed: 3367155]
Yuen et al. Page 13
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W. Differentiation block of oligodendroglial
progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain. 2008;
131:1749–1758. [PubMed: 18515322]
Lee H, Paik SG. Regulation of BNIP3 in normal and cancer cells. Molecules and cells. 2006; 21:1–6.
[PubMed: 16511341]
Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang
PW, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration.
Nature. 2012; 487:443–448. [PubMed: 22801498]
Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H,
Fruttiger M, et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J
Cell Biol. 2008; 183:409–417. [PubMed: 18955553]
Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH. Common developmental requirement
for Olig function indicates a motor neuron/oligodendrocyte connection. Cell. 2002; 109:75–86.
[PubMed: 11955448]
Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress.
Mol Cell. 2010; 40:294–309. [PubMed: 20965423]
Mazumdar J, O'Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC. O2 regulates
stem cells through Wnt/beta-catenin signalling. Nat Cell Biol. 2010; 12:1007–1013. [PubMed:
20852629]
Ment LR, Schwartz M, Makuch RW, Stewart WB. Association of chronic sublethal hypoxia with
ventriculomegaly in the developing rat brain. Brain Res Dev Brain Res. 1998; 111:197–203.
Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, Fobbs AJ, Sousa AM, Sestan
N, Wildman DE, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci
U S A. 2012; 109:16480–16485. [PubMed: 23012402]
Nave KA. Myelination and support of axonal integrity by glia. Nature. 2010; 468:244–252. [PubMed:
21068833]
Patel SA, Simon MC. Biology of hypoxia-inducible factor-2alpha in development and disease. Cell
Death Differ. 2008; 15:628–634. [PubMed: 18259197]
Pham LD, Hayakawa K, Seo JH, Nguyen MN, Som AT, Lee BJ, Guo S, Kim KW, Lo EH, Arai K.
Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling
after white matter injury. Glia. 2012; 60:875–881. [PubMed: 22392631]
Porfiri E, Rubinfeld B, Albert I, Hovanes K, Waterman M, Polakis P. Induction of a beta-catenin-
LEF-1 complex by wnt-1 and transforming mutants of beta-catenin. Oncogene. 1997; 15:2833–
2839. [PubMed: 9419974]
Rankin EB, Higgins DF, Walisser JA, Johnson RS, Bradfield CA, Haase VH. Inactivation of the
arylhydrocarbon receptor nuclear translocator (Arnt) suppresses von Hippel-Lindau disease-
associated vascular tumors in mice. Mol Cell Biol. 2005; 25:3163–3172. [PubMed: 15798202]
Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D. Regulation of
oligodendrocyte development and myelination by glucose and lactate. J Neurosci. 2011; 31:538–
548. [PubMed: 21228163]
Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis. 2010; 6:107–
114. [PubMed: 20885857]
Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, Johnson RS. Hypoxia-inducible
factor-1alpha is a positive factor in solid tumor growth. Cancer Res. 2000; 60:4010–4015.
[PubMed: 10945599]
Sapieha P. Eyeing central neurons in vascular growth and reparative angiogenesis. Blood. 2012;
120:2182–2194. [PubMed: 22705597]
Sawamiphak S, Ritter M, Acker-Palmer A. Preparation of retinal explant cultures to study ex vivo tip
endothelial cell responses. Nature protocols. 2010; 5:1659–1665.
Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012; 148:399–408.
[PubMed: 22304911]
Silbereis JC, Huang EJ, Back SA, Rowitch DH. Towards improved animal models of neonatal white
matter injury associated with cerebral palsy. Dis Model Mech. 2010; 3:678–688. [PubMed:
21030421]
Yuen et al. Page 14
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP. Canonical Wnt
signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 2008;
322:1247–1250. [PubMed: 19023080]
Stevens B, Porta S, Haak LL, Gallo V, Fields RD. Adenosine: a neuron-glial transmitter promoting
myelination in the CNS in response to action potentials. Neuron. 2002; 36:855–868. [PubMed:
12467589]
Stolt CC, Schlierf A, Lommes P, Hillgartner S, Werner T, Kosian T, Sock E, Kessaris N, Richardson
WD, Lefebvre V, et al. SoxD proteins influence multiple stages of oligodendrocyte development
and modulate SoxE protein function. Dev Cell. 2006; 11:697–709. [PubMed: 17084361]
Tan S, Drobyshevsky A, Jilling T, Ji X, Ullman LM, Englof I, Derrick M. Model of cerebral palsy in
the perinatal rabbit. J Child Neurol. 2005; 20:972–979. [PubMed: 16417845]
Tanaka K, Nogawa S, Ito D, Suzuki S, Dembo T, Kosakai A, Fukuuchi Y. Activation of NG2-positive
oligodendrocyte progenitor cells during post-ischemic reperfusion in the rat brain. Neuroreport.
2001; 12:2169–2174. [PubMed: 11447328]
Tessitore C, Brunjes PC. A comparative study of myelination in precocial and altricial murid rodents.
Brain Res. 1988; 471:139–147. [PubMed: 3219591]
Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-
PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995; 92:5510–
5514. [PubMed: 7539918]
Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J. Norrin/Frizzled4 signaling in
retinal vascular development and blood brain barrier plasticity. Cell. 2012; 151:1332–1344.
[PubMed: 23217714]
Weiss J, Takizawa B, McGee A, Stewart WB, Zhang H, Ment L, Schwartz M, Strittmatter S. Neonatal
hypoxia suppresses oligodendrocyte Nogo-A and increases axonal sprouting in a rodent model for
human prematurity. Exp Neurol. 2004; 189:141–149. [PubMed: 15296844]
Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM, van Es JH, Clevers H,
et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-
TCF interaction. Nat Neurosci. 2009a; 12:829–838. [PubMed: 19503085]
Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS, Nathans J. Norrin,
frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal
vascularization. Cell. 2009b; 139:285–298. [PubMed: 19837032]
Yuen TJ, Johnson KR, Miron VE, Zhao C, Quandt J, Harrisingh MC, Swire M, Williams A,
McFarland HF, Franklin RJ, et al. Identification of endothelin 2 as an inflammatory factor that
promotes central nervous system remyelination. Brain. 2013; 136:1035–1047. [PubMed:
23518706]
Yuen et al. Page 15
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Research Highlights
Oxygen tension directly regulates oligodendrocyte maturation through HIF
signaling.
Oligodendrocyte-encoded HIF activates Wnt signaling and angiogenesis in the
brain.
Oligodendrocyte-driven angiogenesis is critical for axon/white matter integrity.
Yuen et al. Page 16
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Figure 1. Oligodendrocyte-specific VHL deletion inhibits differentiation and myelination
(A) Schematic of anatomical regions of corpus callosum (CC), cerebral cortex (CTX), and
ventricle (V) presented in (B) and experimental timeline for chronic hypoxic rearing.
(B) Images showing hypomyelination, OL-lineage HIF1α expression, and OPC maturation
arrest in CC of hypoxic WT mice or normoxic Sox10-cre, VHL(fl/fl) mice at P11.
Arrowheads denote double-positive cells. Scale bar: 100µm (MBP), 50µm (Olig2).
(C) Immunopurified OPCs exposed to hypoxia or isolated from Plp-creERT2, VHL(fl/fl)
mice show differentiation block. Scale bar: 100µm.
Yuen et al. Page 17
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
(For quantifications, mean+SEM; n≥3 experiments/genotype; **p<0.01, ***p<0.001; one-
way ANOVA with Dunnett’s multiple comparison test)
See also Figure S1.
Yuen et al. Page 18
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Figure 2. OPC-encoded HIF1/2α function mediates hypoxia-induced hypomyelination
(A) Schematic and timeline for cerebellar slice cultures (CSC) exposed to hypoxia.
(B) Removing HIF1/2α function in OLs significantly reduces hypoxia-induced
hypomyelination in CSC. Scale bars: 25µm (Caspr), 50µm (MBP/NFH). n≥6 experiments/
condition.
(C) Quantification of myelination in CSC.
(D) Additional quantification of myelination in CSC.
Yuen et al. Page 19
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
(E) Removing OPC HIF1/2α function significantly reduces hypoxia differentiation block in
CSC. Scale bar: 100µm.
(F) Quantification of OL differentiation showing Nkx2.2/Olig2 (OPCs) numbers decreased
and CC1/Olig2 (mature OLs) numbers increased. Data were analyzed by t-test and
significant differences (**p<0.01) are shown.
(G) Model for HIF-induced OPC differentiation block.
(For quantifications in C and D, mean+SEM; **p<0.01, ***p<0.001; one-way ANOVA
with Dunnett’s multiple comparison test)
See also Figure S2.
Yuen et al. Page 20
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Figure 3. HIF stabilization in OPCs activates canonical Wnt signaling
(A) Scheme showing Wnt signaling and inhibition of ligand secretion and canonical activity
by porcupine inhibitor IWP2 and XAV939, which stabilizes Axin2 to promote β-catenin
degradation.
(B) Western blots of P11 white matter demonstrating upregulation of activated β-catenin and
Axin2 levels in WT mice reared in hypoxia and normoxic Sox10-cre, VHL(fl/fl) mice (n=3
animals/genotype).
(C) IWP2 prevents hypomyelination in CSC exposed to hypoxia or from Plp-creERT2,
VHL(fl/fl) mice. Scale bars: 25µm (Caspr), 50µm (MBP/NFH).
(D) OPC maturation arrest in Plp-creERT2, VHL(fl/fl) OPCs is attenuated by IWP2 or
XAV939. Scale bar: 100µm.
(E) Immunopurified OPCs cultured in hypoxic conditions or exposed to DMOG specifically
upregulate Wnt7a and Wnt7b as shown by qRT-PCR (n=3).
(F) Positive control for ChIP analysis at Epo locus.
(G) Mouse HIF1/2α knockout and control embryonic fibroblasts cultured with/without
DMOG (16h) assayed by ChIP. Following immunoprecipitation with antibodies against
HIF1α or control (mouse IgG), DNA extracts were assessed by qRT-PCR. HIF1α bound to
the Wnt7a locus at one HRE, and Wnt7b locus via two HREs. Binding was not observed in
DMOG-treated HIF1/2α mutant cells, or non-DMOG-treated controls.
(H) Wnt7a proteins cause hypomyelination and OPC maturation arrest in CSC, which is
reversed with XAV939. Scale bars: 25µm (Caspr), 50µm (MBP/NFH).
Yuen et al. Page 21
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
(For quantification in C, D, and H mean+SEM; n≥3 experiments; *p<0.05, **p<0.01,
***p<0.001; one-way ANOVA with Dunnett’s multiple comparison test)
See also Figure S3.
Yuen et al. Page 22
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Figure 4. HIF stabilization in OPCs promotes angiogenesis in vivo
(A) Increased angiogenesis in Sox10-cre, VHL(fl/fl) mice as shown by expression of
endothelial marker, CD31. Dense regions of Olig2 staining indicate white matter tracts in
the corpus callosum. Scale bar: 100µm. n≥3 animals/genotype.
(B) Quantification of endothelial/vessel area (CD31+) demonstrates significant increases in
hypoxic WT and normoxic Sox10-cre, VHL(fl/fl) mice. Data were analyzed by one-way
ANOVA with Dunnett’s multiple comparison test, and significant differences (*p<0.05,
**p<0.05, ***p<0.001) are shown.
(C) Endothelial marker Isolectin demonstrating increased angiogenesis in Sox10-cre,
VHL(fl/fl) mice. Scale bar: 100µm.
(D) Isolectin perfusion in WT and Sox10-cre, VHL(fl/fl) mice indicating perfusion of blood
vessels. Scale bar: 100µm.
(E) Increased Lef1 expression in endothelia of Sox10-cre, VHL(fl/fl) mice. Of these, the
majority co-labeled with the proliferation marker, Ki67. Scale bar: 50µm. n≥3 animals/
genotype.
(F) Quantification of Ki67+/Lef1+ endothelial cells in corpus callosum and cortex. Data
were analyzed by t-test and significant differences (***p<0.001) are shown.
See also Figure S4, Table S1 and S3.
Yuen et al. Page 23
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Figure 5. OPCs directly promote angiogenesis in a Wnt-dependent manner
(A) Scheme showing transwell co-culture assay for OPCs and bEND.3 cells. OPCs from
Plp-creERT2, VHL(fl/fl) mice induce endothelial cell proliferation in a Wnt-dependent
manner. Scale bar: 100µm.
(B) Quantification of endothelial cell proliferation in transwell assay at 24h and 48h.
(C) Wnt7a treatment of bEND.3 cells induces Lef1 expression (arrowheads). Scale bar:
30µm.
(D) Transwell co-cultures of Plp-creERT2, VHL(fl/fl) OPCs and bEND.3 cells promotes
endothelial cell tube formation in a Wnt-dependent manner. Scale bar: 500µm.
(E) Schematic showing retina endothelial tip sprouting assay. Conditioned medium from
Plp-creERT2, VHL(fl/fl) OPCs promoted endothelial tip sprouting and filopodia extension in
a Wnt-dependent manner. Scale bar: 25µm.
(For all quantifications mean+SEM; n≥3 experiments (A,B), n≥2 (D,E); **p<0.01,
***p<0.001; one-way ANOVA with Dunnett’s multiple comparison test)
See also Figure S5.
Yuen et al. Page 24
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Figure 6. Oligodendrocyte HIF1/2α function is required for postnatal angiogenesis and
maintenance of white matter integrity
(A) DAPI stained sections at E18, P4, and P7 of mutant and control brains show white
matter cysts (white asterisk) and dysgenesis by P7 in Olig1-cre, HIF1/2
α
(fl/fl) mice. n≥3
animals/genotype. Scale bar: 100µm.
(B) Olig2+ cells are reduced by ~40% compared to WT at E18 and ~15% at P4. Vessel
density in SVZ at E18 is similar in WT and mutant mice, whereas Olig1-cre, HIF1/2
α
(fl/fl)
mice show significantly decreased vessel density at P4 in corpus callosum. Data were
Yuen et al. Page 25
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
analyzed by t-test and significant differences (*p<0.05, **p<0.01) are shown. Scale bar:
100µm.
(C) White matter cysts and increased apoptotic cells (Casp3+) in P4 in Olig1-cre,
HIF1/2
α
(fl/fl) mice. Data were analyzed by t-test and the significant difference (*p<0.05) is
shown. Scale bar: 100µm (merged), 50µm (Casp3)
(D) Widespread axonal damage, indicated by SMI32+ staining, observed at P4 throughout
the corpus callosum of Olig1-cre, HIF1/2
α
(fl/fl) mice. Scale bar: 100µm.
(E) Robust Casp3 staining in axons of P4 Olig1-cre, HIF1/2
α
(fl/fl) corpus callosum. Note
relative paucity of staining in cortex. Scale bar: 100µm.
See also Figure S6, Table S2 and S3.
Yuen et al. Page 26
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Figure 7. Loss of OPC HIF1/2 α function is permissive for cortical development and
angiogenesis
(A) DAPI stain of primary motor cortex in WT versus Olig1-cre, HIF1/2
α
(fl/fl) mice at P7
showing a thinner cortex in Olig1-cre, HIF1/2
α
(fl/fl) with the cortical layers and overall
structure intact. Cortical layers are labeled to the left, and the asterisk denotes white matter
cyst. n=3 animals/genotype. Scale bar: 200µm.
(B) OL numbers are reduced by approximately 23% in Olig1-cre, HIF1/2
α
(fl/fl) cortex, but
vessel density (%CD31) is not statistically different. Data were analyzed by a two-tailed
Student’s t-test and the significant difference (*p<0.05) is shown. n=3 animals/genotype.
Scale bar: 100µm.
(C) Images of NeuN (green, pan-neuron marker), SatB2 (red, layer 2/3 callosal projection
neurons), and DAPI providing further evidence that the cortex is grossly intact with ample
numbers of callosal projection neurons. Note in higher magnification panels (C’ and C”) that
cell density is grossly normal in Olig1-cre, HIF1/2
α
(fl/fl) cortex. Scale bars: 200µm; 100µm
(insets).
(D) Images of the corpus callosum stained for BNIP3 (red) and Olig2 (green). In WT,
BNIP3 is expressed in a subset of Olig2+ cells (arrows, D’ insets). In Olig1-cre,
Yuen et al. Page 27
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
HIF1/2
α
(fl/fl) mice, while BNIP3 is not expressed in Olig2+ cells, aberrant expression of
BNIP3 in non-Olig2+ cells (arrowheads, D” insets) is indicative of the general hypoxic
microenvironment. Scale bars: 100µm; 20µm (insets).
(E) Images of BNIP3 staining in dorsal cortex (top row) and ventral cortex (bottom row).
BNIP3 is enriched in ventral, but not dorsal cortex, suggesting selective hypoxia in grey
matter regions adjacent to the corpus callosum, but not more dorsal areas. n=3 animals/
genotype. Scale bar: 100µm.
See also Figure S7 and Table S7.
Yuen et al. Page 28
Cell. Author manuscript; available in PMC 2015 July 17.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
... Yuen et al. found that constitutive Hif-1/2α stabilization led to OPC maturation arrest, induced excessive postnatal angiogenesis in vivo, and directly stimulated (in a paracrine mechanism) endothelial cell proliferation in vitro. Conversely, OPC-specific Hif-1/2α loss of function led to insufficient angiogenesis in the corpus callosum and extensive axonal loss [31]. These findings point to critical interactions between OPCs, angiogenesis, and axonal integrity, with Hif signaling being a master regulator. ...
... Neurons and their precursors are highly sensitive to changes in oxygenation and their density is affected in ischemic conditions [39][40][41] . Similarly, mature oligodendrocyte formation from premyelinating OPCs is a critical process for myelination to occur and is known to be affected by prenatal hypoxia 42,43 . Our findings are similar to those reported in the study by Van der Veeken et al., where the brain of fetal rabbits with CDH had similar reduction in neuron density in the hippocampus and decreased OPCs 27 . ...
Article
Full-text available
Congenital diaphragmatic hernia (CDH) is a birth defect characterized by incomplete closure of the diaphragm, herniation of abdominal organs into the chest, and compression of the lungs and the heart. Besides complications related to pulmonary hypoplasia, 1 in 4 survivors develop neurodevelopmental impairment, whose etiology remains unclear. Using a fetal rat model of CDH, we demonstrated that the compression exerted by herniated organs on the mediastinal structures results in decreased brain perfusion on ultrafast ultrasound, cerebral hypoxia with compensatory angiogenesis, mature neuron and oligodendrocyte loss, and activated microglia. In CDH fetuses, apoptosis was prominent in the subventricular and subgranular zones, areas that are key for neurogenesis. We validated these findings in the autopsy samples of four human fetuses with CDH compared to age- and sex-matched controls. This study reveals the molecular mechanisms and cellular changes that occur in the brain of fetuses with CDH and creates opportunities for therapeutic targets.
... HIFs are transcription factors that bind to hypoxiaresponsive elements to modulate the expression of innumerable genes. [3][4][5][6][7] We note that the same transcription program in brain, also HIF-controlled, is induced by intensive motor-cognitive tasks, which provoke a relative reduction in oxygen availability in relation to the acutely increased requirement. ...
Article
Full-text available
Hypoxia is more and more perceived as pivotal physiological driving force, allowing cells in the brain and elsewhere to acclimate to lowered oxygen (O2), and abridged metabolism. The mediating transcription program is induced by inspiratory hypoxia but also by intensive motor‐cognitive tasks, provoking a relative decrease in O2 in relation to the acutely augmented requirement. We termed this fundamental, demand‐dependent drop in O2 availability “functional hypoxia.” Major players in the hypoxia response are hypoxia‐inducible factors (HIFs) and associated prolyl‐hydroxylases. HIFs are transcription factors, stabilized by low O2 accessibility, and control expression of a multitude of genes. Changes in oxygen, however, can also be sensed via other pathways, among them the thiol‐oxidase (2‐aminoethanethiol) dioxygenase. Considering the far‐reaching biological response to hypoxia, hitherto mostly observed in rodents, we initiated a translational project, combining mild to moderate inspiratory with functional hypoxia. We had identified this combination earlier to benefit motor‐cognitive attainment in mice. A total of 20 subjects were included: 13 healthy individuals and 7 patients with depression and/or autism spectrum disorder. Here, we show that motor‐cognitive training under inspiratory hypoxia (12% O2) for 3.5 h daily over 3 weeks is optimally tolerated. We present first signals of beneficial effects on general well‐being, cognitive performance, physical fitness and psychopathology. Erythropoietin in serum increases under hypoxia and flow cytometry analysis of blood reveals several immune cell types to be mildly modulated by hypoxia. To obtain reliable information regarding the “add‐on” value of inspiratory on top of functional hypoxia, induced by motor‐cognitive training, a single‐blind study—with versus without inspiratory hypoxia—is essential and outlined here.
... To date, crosstalk between LDHA and ANG2 remains unclear. Studies implicate that HIF-1α may interact with LDHA and ANG2 in neuropathic pain [38,84]. Previous reports [41] and our results (Fig. 7) indicate that CCI-induced neuropathic pain can upregulate HIF-1α expression in the CNS. ...
Article
Full-text available
Nociceptive sensitization is accompanied by the upregulation of glycolysis in the central nervous system in neuropathic pain. Growing evidence has demonstrated glycolysis and angiogenesis to be related to the inflammatory processes. This study investigated whether fumagillin inhibits neuropathic pain by regulating glycolysis and angiogenesis. Fumagillin was administered through an intrathecal catheter implanted in rats with chronic constriction injury (CCI) of the sciatic nerve. Nociceptive, behavioral, and immunohistochemical analyses were performed to evaluate the effects of the inhibition of spinal glycolysis-related enzymes and angiogenic factors on CCI-induced neuropathic pain. Fumagillin reduced CCI-induced thermal hyperalgesia and mechanical allodynia from postoperative days (POD) 7 to 14. The expression of angiogenic factors, vascular endothelial growth factor (VEGF) and angiopoietin 2 (ANG2), increased in the ipsilateral lumbar spinal cord dorsal horn (SCDH) following CCI. The glycolysis-related enzymes, pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) significantly increased in the ipsilateral lumbar SCDH following CCI on POD 7 and 14 compared to those in the control rats. Double immunofluorescence staining indicated that VEGF and PKM2 were predominantly expressed in the astrocytes, whereas ANG2 and LDHA were predominantly expressed in the neurons. Intrathecal infusion of fumagillin significantly reduced the expression of angiogenic factors and glycolytic enzymes upregulated by CCI. The expression of hypoxia-inducible factor-1α (HIF-1α), a crucial transcription factor that regulates angiogenesis and glycolysis, was also upregulated after CCI and inhibited by fumagillin. We concluded that intrathecal fumagillin may reduce the expression of ANG2 and LDHA in neurons and VEGF and PKM2 in the astrocytes of the SCDH, further attenuating spinal angiogenesis in neuropathy-induced nociceptive sensitization. Hence, fumagillin may play a role in the inhibition of peripheral neuropathy-induced neuropathic pain by modulating glycolysis and angiogenesis.
... Oligodendrocytes can provide trophic support to long axons and also insulate them (Nave, 2010). Additionally, Olig 2 promotes the bloodbrain barrier by tightening it (Seo et al., 2014) and sends signals that promote white matter angiogenesis (Yuen et al., 2014). S-100 protein is mostly found in non-neuronal cells in the zebrafish central nervous system. ...
Article
Teleost fish exhibit the most pronounced and widespread adult neurogenesis. Recently, functional development and the fate of newborn neurons have been reported in the optic tectum (OT) of fish. To determine the role of neurogenesis in the OT, this study used histological, immunohistochemical, and electron microscopic investigations on 18 adult Molly fish specimens ( Poecilia sphenops ). The OT of the Molly fish was a bilateral lobed structure located in the dorsal part of the mesencephalon. It exhibited a laminated structure made up of alternating fiber and cellular layers, which were organized into six main layers. The stratum opticum (SO) was supplied by optic nerve fibers, in which the neuropil was the main component. Radial bipolar neurons that possessed bundles of microtubules were observed in the stratum fibrosum et griseum superficiale (SFGS). Furthermore, oligodendrocytes with their processes wrapped around the nerve fibers could be observed. The stratum album centrale (SAC) consisted mainly of the axons of the stratum griseum centrale (SGC) and the large tectal, pyriform, and horizontal neurons. The neuronal cells of the SO and large tectal cells of the SAC expressed autophagy‐related protein‐5 (APG5). Interleukin‐1β (IL‐1β) was expressed in both neurons and glia cells of SGC. Additionally, inducible nitric oxide synthase (iNOS) was expressed in the neuropil of the SAC synaptic layer and granule cells of the stratum periventriculare (SPV). Also, transforming growth factor beta (TGF‐β), SRY‐box transcription factor 9 (SOX9), and myostatin were clearly expressed in the proliferative neurons. In all strata, S100 protein and Oligodendrocyte Lineage Transcription Factor 2 (Olig2) were expressed by microglia, oligodendrocytes, and astrocytes. In conclusion, it was possible to identify different varieties of neurons in the optic tectum, each with a distinct role. The existence of astrocytes, proliferative neurons, and stem cells highlights the regenerative capacity of OT. Research Highlights The OT of the Molly fish exhibited a laminated structure made up of alternating fiber and cellular layers, which were organized into six main layers. Radial bipolar neurons that possessed bundles of microtubules were observed in the stratum fibrosum et griseum superficiale (SFGS). The stratum album central (SAC) consisted mainly of the axons of the stratum griseum centrale (SGC) and the large tectal, pyriform, and horizontal neurons. Inducible nitric oxide synthase (iNOS) was expressed in the neuropil of the SAC synaptic layer and granule cells of the stratum periventricular (SPV). Also, transforming growth factor beta (TGF‐β), SRY‐box transcription factor 9 (SOX9), and myostatin were clearly expressed in the proliferative neurons. The existence of astrocytes, proliferative neurons, and stem cells highlights the regenerative capacity of OT.
... The preferential localization of OPC-like tumors in the perivascular niche and in areas closer to the tumor vasculature was especially notable. Non-tumor OPCs are dependent on access to blood supply to avoid hypoxia [28]; in non-tumor OPCs, hypoxia can induce premature maturation [1]. It is likely that the localization of OPC-like tumor cells near blood vessels may reflect the cellular requirements for elevated oxygen levels for the maintenance of an OPC-like state. ...
Article
Full-text available
Glioblastoma (GBM) remains an untreatable malignant tumor with poor patient outcomes, characterized by palisading necrosis and microvascular proliferation. While single-cell technology made it possible to characterize different lineage of glioma cells into neural progenitor-like (NPC-like), oligodendrocyte-progenitor-like (OPC-like), astrocyte-like (AC-like) and mesenchymal like (MES-like) states, it does not capture the spatial localization of these tumor cell states. Spatial transcriptomics empowers the study of the spatial organization of different cell types and tumor cell states and allows for the selection of regions of interest to investigate region-specific and cell-type-specific pathways. Here, we obtained paired 10x Chromium single-nuclei RNA-sequencing (snRNA-seq) and 10x Visium spatial transcriptomics data from three GBM patients to interrogate the GBM microenvironment. Integration of the snRNA-seq and spatial transcriptomics data reveals patterns of segregation of tumor cell states. For instance, OPC-like tumor and NPC-like tumor significantly segregate in two of the three samples. Our differentially expressed gene and pathway analyses uncovered significant pathways in functionally relevant niches. Specifically, perinecrotic regions were more immunosuppressive than the endogenous GBM microenvironment, and perivascular regions were more pro-inflammatory. Our gradient analysis suggests that OPC-like tumor cells tend to reside in areas closer to the tumor vasculature compared to tumor necrosis, which may reflect increased oxygen requirements for OPC-like cells. In summary, we characterized the localization of cell types and tumor cell states, the gene expression patterns, and pathways in different niches within the GBM microenvironment. Our results provide further evidence of the segregation of tumor cell states and highlight the immunosuppressive nature of the necrotic and perinecrotic niches in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s40478-024-01769-0.
Article
Full-text available
Recent advancements in stem cell biology and tissue engineering have revolutionized the field of neurodegeneration research by enabling the development of sophisticated in vitro human brain models. These models, including 2D monolayer cultures, 3D organoids, organ-on-chips, and bioengineered 3D tissue models, aim to recapitulate the cellular diversity, structural organization, and functional properties of the native human brain. This review highlights how these in vitro brain models have been used to investigate the effects of various pathogens, including viruses, bacteria, fungi, and parasites infection, particularly in the human brain cand their subsequent impacts on neurodegenerative diseases. Traditional studies have demonstrated the susceptibility of different 2D brain cell types to infection, elucidated the mechanisms underlying pathogen-induced neuroinflammation, and identified potential therapeutic targets. Therefore, current methodological improvement brought the technology of 3D models to overcome the challenges of 2D cells, such as the limited cellular diversity, incomplete microenvironment, and lack of morphological structures by highlighting the need for further technological advancements. This review underscored the significance of in vitro human brain cell from 2D monolayer to bioengineered 3D tissue model for elucidating the intricate dynamics for pathogen infection modeling. These in vitro human brain cell enabled researchers to unravel human specific mechanisms underlying various pathogen infections such as SARS-CoV-2 to alter blood-brain-barrier function and Toxoplasma gondii impacting neural cell morphology and its function. Ultimately, these in vitro human brain models hold promise as personalized platforms for development of drug compound, gene therapy, and vaccine. Overall, we discussed the recent progress in in vitro human brain models, their applications in studying pathogen infection-related neurodegeneration, and future directions.
Article
Full-text available
White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, amodel of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.
Article
Full-text available
The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universally responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in several Cre-driver lines, including new Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation.
Article
Full-text available
Since its discovery nearly a decade ago, apoptosis-inducing factor (AIF) has had anything but a staid and uneventful existence. AIF was originally described as a mito-chondrial intermembrane protein that, after apoptosis induction, can translocate to the nucleus and trigger chromatin condensation and DNA fragmentation. Over the years, an AIF-mediated caspase-independent cell death pathway has been defined. Rather than functioning as a general component of the cell death machinery, AIF is required for specific cell death pathways, including lethal responses to excitotoxins such as N-methyl-D-aspartate and glutamate, the DNA-alkylating agent N-methyl-N'-nitro-N-nitroso-guanidine, hypoxia–ischemia, or growth factor deprivation. Also, important roles of AIF in mitochondrial metabolism and redox control, and more recently in obesity and diabetes, have been discovered. Much of our knowledge has come from studies of AIF orthologs in model organisms, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mice, which have also highlighted the importance of AIF in animal physiology and human pathology. Here, we discuss the manifold nature of AIF in cell life and death, with particular emphasis of its roles in vivo.
Article
Full-text available
Neural stem cells are maintained in the adult brain, sustaining structural and functional plasticity and to some extent participating in brain repair. A thorough understanding of the mechanisms and factors involved in endogenous stem/progenitor cell mobilization is a major challenge in the promotion of spontaneous brain repair. The main neural stem cell niche in the adult brain is the subventricular zone (SVZ). Following demyelination insults, SVZ-derived progenitors act in concert with oligodendrocyte precursors to repopulate the lesion and replace lost oligodendrocytes. Here, we showed robust vascular reactivity within the SVZ after focal demyelination of the corpus callosum in adult mice, together with a remarkable physical association between these vessels and neural progenitors exiting from their niche. Endogenous progenitor cell recruitment towards the lesion was significantly reduced by inhibiting post-lesional angiogenesis in the SVZ using anti-VEGF blocking antibody injections, suggesting a facilitating role of blood vessels for progenitor cell migration towards the lesion. We identified netrin 1 (NTN1) as a key factor upregulated within the SVZ after demyelination and involved in local angiogenesis and progenitor cell migration. Blocking NTN1 expression using a neutralizing antibody inhibited both lesion-induced vascular reactivity and progenitor cell recruitment at the lesion site. We propose a model in which SVZ progenitors respond to a demyelination lesion by NTN1 secretion that both directly promotes cell emigration and contributes to local angiogenesis, which in turn indirectly facilitates progenitor cell emigration from the niche.
Article
Full-text available
The development of new regenerative therapies for multiple sclerosis is hindered by the lack of potential targets for enhancing remyelination. The study of naturally regenerative processes such as the innate immune response represents a powerful approach for target discovery to solve this problem. By 'mining' these processes using transcriptional profiling we can identify candidate factors that can then be tested individually in clinically-relevant models of demyelination and remyelination. Here, therefore, we have examined a previously described in vivo model of the innate immune response in which zymosan-induced macrophage activation in the retina promotes myelin sheath formation by oligodendrocytes generated from transplanted precursor cells. While this model is not itself clinically relevant, it does provide a logical starting point for this study as factors that promote myelination must be present. Microarray analysis of zymosan-treated retinae identified several cytokines (CXCL13, endothelin 2, CCL20 and CXCL2) to be significantly upregulated. When tested in a cerebellar slice culture model, CXCL13 and endothelin 2 promoted myelination and endothelin 2 also promoted remyelination. In studies to identify the receptor responsible for this regenerative effect of endothelin 2, analysis of both remyelination following experimental demyelination and of different stages of multiple sclerosis lesions in human post-mortem tissue revealed high levels of endothelin receptor type B in oligodendrocyte lineage cells. Confirming a role for this receptor in remyelination, small molecule agonists and antagonists of endothelin receptor type B administered in slice cultures promoted and inhibited remyelination, respectively. Antagonists of endothelin receptor type B also inhibited remyelination of experimentally-generated demyelination in vivo. Our work therefore identifies endothelin 2 and the endothelin receptor type B as a regenerative pathway and suggests that endothelin receptor type B agonists represent a promising therapeutic approach to promote myelin regeneration.
Article
Neuronal activity influences myelination of the brain, but the molecular mechanisms involved are largely unknown. Here, we report that oligodendrocyte progenitor cells (OPCs) express functional adenosine receptors, which are activated in response to action potential firing. Adenosine acts as a potent neuron-glial transmitter to inhibit OPC proliferation, stimulate differentiation, and promote the formation of myelin. This neuron-glial signal provides a molecular mechanism for promoting oligodendrocyte development and myelination in response to impulse activity and may help resolve controversy on the opposite effects of impulse activity on myelination in the central and peripheral nervous systems.
Article
To explore the presence and consequences of tissue hypoxia in experimental autoimmune encephalomyelitis ((EAE), an animal model of multiple sclerosis (MS)). EAE was induced in Dark Agouti (DA) rats by immunization with recombinant myelin oligodendrocyte glycoprotein (rMOG) and adjuvant. Tissue hypoxia was assessed in vivo using two independent methods: an immunohistochemical probe administered intravenously, and insertion of a physical, oxygen-sensitive probe into the spinal cord. Indirect markers of tissue hypoxia (e.g. expression of hypoxia-inducible factor-1α (HIF-1α), vessel diameter and number) were also assessed. The effects of brief (one hour) and continued (7 days) normobaric oxygen treatment on function were evaluated in conjunction with other treatments, namely administration of a mitochondrially-targeted antioxidant (MitoQ) and inhibition of inducible nitric oxide synthase (1400W). Observed neurological deficits were quantitatively, temporally and spatially correlated with spinal white and grey matter hypoxia. The tissue expression of HIF-1α also correlated with loss of function. Spinal microvessels became enlarged during the hypoxic period, and their number increased at relapse. Notably, oxygen administration significantly restored function within one hour, with improvement persisting at least one week with continuous oxygen treatment. MitoQ and 1400W also caused a small but significant improvement. We present chemical, physical, immunohistochemical and therapeutic evidence that functional deficits caused by neuroinflammation can arise from tissue hypoxia, consistent with an energy crisis in inflamed CNS tissue. The neurological deficit was closely correlated with spinal white and grey matter hypoxia. This realization may indicate new avenues for therapy of neuroinflammatory diseases such as MS. ANN NEUROL 2013. © 2013 American Neurological Association.
Article
Oligodendrocytes are the myelinating cells of the vertebrate central nervous system, responsible for generating the myelin sheath necessary for saltatory conduction. The use of increasingly sophisticated genetic tools, particularly in mice, has vastly increased our understanding of the molecular mechanisms that regulate development of the oligodendrocyte lineage. This increased reliance on the mouse as a genetic model has led to a need for the development of culture methods to allow the use of mouse cells in vitro as well as in vivo. Here, we present a protocol for the isolation of different stages of the oligodendrocyte lineage, oligodendrocyte precursor cells (OPCs) and/or postmitotic oligodendrocytes, from the postnatal mouse cortex using immunopanning. This protocol allows for the subsequent culture or biochemical analysis of these cells.