DataPDF Available

d3ee02695g1.pdf

Authors:
  • Curtin University
Supporting Information
Hydrogen society: from present to future
Daqin Guan,†a Bowen Wang,†abc Jiguang Zhang,†de Rui Shi,de Kui Jiao,*bc Lincai Li,b
Yang Wang,b Biao Xie,b Qingwen Zhang,f Jie Yu,ag Yunfeng Zhu,de Zongping Shao*h
and Meng Ni*a
Corresponding Authors
E-mail: kjiao@tju.edu.cn; shaozp@njtech.edu.cn; meng.ni@polyu.edu.hk
These authors contributed equally to this work.
Electronic Supplementary Material (ESI) for Energy & Environmental Science.
This journal is © The Royal Society of Chemistry 2023
Supplementary Note #1
Calculation model:
The supply chain of hydrogen is divided into four stages: production, transmission
& storage, distribution and refueling. The total cost of hydrogen ( ) is shown in
2
H
C
equation (S1).
(S1)
2
H p t d r
C C C C C
where Cp is hydrogen production cost, Ct is the transmission & storage cost, Cd is the
distribution cost (from the transportation terminal to the refueling station), and Cr is the
refueling cost.
In the four stages of hydrogen production, transmission & storage, distribution and
refueling (in the case of sea routine, there are more stages, including production,
conditioning, loading, transmission, unloading, reconditioning, distribution and
refueling), hydrogen cost at each stage includes initial investment cost and operation
and maintenance cost. The initial investment cost is mainly composed of related
equipment and infrastructure (hydrogen production plant, hydrogen transport pipeline,
etc.). The operation and maintenance cost mainly includes the operation and
maintenance cost of the equipment as well as the salary of labors. Specially, for the
hydrogen production, it also includes the cost of raw materials (the cost of purchasing
electricity, coal, or natural gas) and replacement costs (mainly considering that the life
of the electrolytic equipment is shorter than the project life, so the electrolytic equipment
will be replaced during the project life cycle). Refueling station is mainly composed of
storage system, filling system and control system. The main equipment includes
compressor, hydrogen storage tank, hydrogen filling machine, cooler and sequential
control valve group. In our calculations, the scale of refueling station is uniformly set
as 700 kg per day, and the capacity of high-pressure hydrogen storage tank is set as one
day’s reserve to reduce the construction cost of refueling station.
In order to estimate the cost of hydrogen more accurately and rationally, the
levelized cost of hydrogen (LCOH) is calculated as follows (S2):
(S2)
capital feedstock OM replacement
(1 )
(1 ) 1
y
y
i i
C C C C
i
LCOH P
where Ccapital is the initial investment cost of hydrogen at each stage (USD, $). For
example, the Ccapital of hydrogen production includes the cost of hydrogen production
equipment, plant, and the infrastructure construction; Cfeedstock is the raw-material cost
of hydrogen production (electricity, coal, or natural gas, $ per year); COM and Creplacement
are the operation & maintenance cost and replacement cost, respectively; P is the
hydrogen flow rate (kg per year); i is the discount rate, and y is the project life (year).
Considering that the life of electrolytic equipment is shorter than that of the project,
there will be an additional replacement cost in the process of water electrolysis, which
can be calculated by the equation (S3):
(S3)
replacem t
1
en
replacement
replacement
(1 ) (1 )
(1 ) (1 ) 1
m A y
m N
m A y
m
Vi i
C D N i i
where Dreplacement ($) is the replacement cost of the hydrogen production plant, N is the
times of replacement during a project’s life cycle, Vreplacement is the annual change rate of
the replacement cost, and A is the replacement years for the hydrogen-production plants.
For water electrolysis, the feedstock cost is calculated following the equation S4:
(S4)
d elec
feedstock elec
1
(1 ) (1 )
(1 ) (1 ) 1
my
m y
m y
m
h V i i
C B d i i
where hd is the operation hours per day of electrolysis equipment; d is the operation days
per year; η is the system efficiency; Belec is the electricity price ($ kWh-1) and Velec is the
annual change rate of Belec.
For coal and natural gas, the feedstock cost is calculated by equation S5:
(S5)
elec
feedstock coal,gas year
1
(1 ) (1 )
(1 ) (1 ) 1
my
m y
m y
m
Vi i
C B m i i
where Bcoal,gas is the price of coal ($ per ton) or natural gas ($ per m3), myear is the raw
material demand per year (coal: ton per year, natural gas: m3 per year).
In this study, we mainly consider two transportation routes, namely land
transmission and sea transmission routines. The land transmission routine is designed
from Gansu, China to Shanghai, China, in which Gansu and Shanghai are selected as
the place of hydrogen production and hydrogen consuming, respectively. The sea
transmission is designed from Australia to Japan, where Australia and Japan serve as
the place of hydrogen production and hydrogen consuming, respectively. We calculated
the levelized cost of hydrogen from production to consuming.
Table S1. Detailed parameters of AWE, PEME and SOEC technologies at 2020 and
2050.1
Alkaline water electrolyzer
Proton exchange membrane electrolyzer
Solid oxide electrolysis cell
Table S2. Input parameters of water electrolysis.2-4
AWE
PEME
SOEC
SOEC (waste heat)
Plant lifetime (year)
20
20
20
20
Scale (MW)
1
1
1
1
Discount rate
8%
8%
8%
8%
Efficiency (%)
65
70
61.4
87.6
Stack lifetime (h)
80000
40000
20000
20000
System degradation (%/10000 hour)
1.30
2.70
5.90
5.9
Electricity cost ($ kWh-1)
0.05
0.05
0.05
0.05
Deionized water ($ kg-1)
0.01
0.01
0.01
0.01
Replacement times
1
2
4
4
Capital cost:
Stock cost ($ MW-1)
340000
420000
520000
520000
Electric heater
--
--
15000
--
Balance of plant (BOP) cost:
Power supply ($ MW-1)
27556
27556
27556
27556
Separator tank of water ($ MW-1)
10000
10000
10000
10000
Circulation pump ($ MW-1)
5500
5500
5500
5500
Piping ($ MW-1)
7600
7600
7600
7600
Valves (control of water, $ MW-1)
7700
7700
7700
7700
Hydrogen dryer ($ MW-1)
13900
13900
13900
13900
Hydrogen separator ($ MW-1)
5300
5300
5300
5300
Tubing ($ MW-1)
3800
3800
3800
3800
Electric heater:
Valves (control of hydrogen)
5200
5200
5200
5200
Heat exchanger
9000
9000
9000
9000
Cooling pump
15000
15000
15000
15000
Dry cooler
4000
4000
4000
4000
Valves control
3000
3000
3000
3000
Electric resistance heater
7500
7500
7500
7500
Other BOPs
6000
6000
6000
6000
Operation and maintenance cost:
Operation and maintenance (%capital)
2
2
2
2
Other operation cost (%capital)
1
1
1
1
Table S3. Parameters of natural gas steam reforming.5
Parameters
Values
Life
20 years
Discount rate
8%
Annual load (h per year)
7884
Overall efficiency (%)
70-80
Feedstock input (m3 (stp) h-1)
65000
Natural gas costs ($ GJ-1)
5.40
Electricity cost ($ kWh-1)
0.05
Auxiliary electricity input (MW)
5
Net by-products (MW)
140
Capital cost:
Total capital investment (million $)
150
Specific total capital investment (million $ MW-1)a
0.333
Operation and maintenance cost:
Operation & maintenance costs (O&M) (million $ per year)
7.93
Specific O&M (million $ MW-1)
0.018
aBased on the annual hydrogen output of 450 MW for large scale and 3 MW for small scale.
Table S4. Parameters of coal gasification.5
Parameters
Values
Life
20 years
Discount rate
8%
Annual load (h per year)
7008
Overall efficiency (%)
53
Feedstock input (unit/h)
120 t
Auxiliary electricity input (MW)
36
Net by-products (MW)
43
Feedstock costs ($ GJ-1)
2.10
Electricity cost ($ kWh-1)
0.05
Capital cost:
Total capital investment (million $)
375.500
Specific total capital investment (million $ MW-1)a.
0.834
Operation & maintenance:
Operation & maintenance costs (O&M) (million $ per year-1)
17.310
Specific O&M (million $ MW-1)
0.038
aBased on the annual hydrogen output of 450 MW for large scale and 3 MW for small scale.
Table S5. Calculated regional hydrogen production cost (USD kg-1 H2) for AWE,
PEME and SOEC in representative areas worldwide based on the latest electricity
prices.6
Region
Electricity price
(USD kWh-1)
AWE
(USD kg-1 H2)
PEME
(USD kg-1 H2)
SOEC
(USD kg-1 H2)
China
0.095
5.979
7.215
9.770
India
0.104
6.423
7.698
10.258
Japan
0.17
9.682
11.240
13.841
South Korea
0.095
5.979
7.215
9.770
Thailand
0.105
6.472
7.752
10.313
Saudi Arabia
0.068
4.645
5.766
8.304
Russia
0.132
7.805
9.201
11.778
France
0.132
7.805
9.201
11.778
Germany
0.334
17.780
20.042
22.743
United Kingdom
0.263
14.274
16.232
18.889
Italy
0.231
12.694
14.514
17.152
USA
0.115
6.966
8.288
10.855
Canada
0.098
6.127
7.376
9.933
Brazil
0.155
8.941
10.435
13.027
Argentina
0.035
3.016
3.995
6.513
Australia
0.144
8.398
9.845
12.430
Egypt
0.061
4.300
5.390
7.924
DR Congo
0.097
6.077
7.322
9.878
South Africa
0.075
4.991
6.141
8.684
Libya
0.006
1.584
2.438
4.938
Ethiopia
0.02
2.275
3.190
5.698
Table S6. Summary of hydrogen storage methods or materials mentioned in Fig. 4.
Name
Gravimetric
capacity
(wt.%)
Volumetric
capacity
(g H2 L-1)
Operation
temperature (oC)
Type
Liq. H (Liquid hydrogen)7
10
40
-253
Physical
method
Comp. H (Compressed
hydrogen)8
6
30
25
Physical
method
CA (Carbon Aerogel)9
5.3
10.6
-196
Physical
adsorption
AC (Activated Carbon)10
3.7
26
-196
Physical
adsorption
CNT (Carbon Nanotubes)11
0.5
18
-196
Physical
adsorption
MOF-7412
2.8
/
-196
Physical
adsorption
IRMOF-113
4.3
/
-196
Physical
adsorption
LaNi5H614
1.5
125.9
150
Interstitial
hydride
TiFeH1.915
1.8
123.6
30
Interstitial
hydride
PdH0.716
0.7
78.1
120
Interstitial
hydride
ZrMn2H3.617
1.7
130
60
Interstitial
hydride
Ti-Cr-Mn18
2
/
-10
Interstitial
hydride
NaH19
4.2
58
440
Metal
hydride
BeH219
18.1
118
260
Metal
hydride
LiH19
12.6
103
740
Metal
hydride
CaH219
4.8
82
600
Metal
hydride
AlH320
10.1
150
160
Metal
hydride
MgH221
7.6
100
290
Metal
hydride
Mg2NiH422
3.6
100
240
Metal
hydride
Mg(BH4)223
14.8
77
320
Complex
hydride
LiBH424
18.4
120
380
Complex
hydride
NaBH424
10.7
118
400
Complex
hydride
NaAlH425
7.5
96
180
Complex
hydride
NH3BH326
19.5
152
500
Chemical
hydride
C10H18 (Decalin)27
7.2
65
210
Chemical
hydride
NH328
17.6
105
700
Chemical
hydride
C6H12 (Cyclohexane)29
7.1
55
300
Chemical
hydride
C7H14 (Cycloheptane)30
6.1
47
350
Chemical
hydride
Table S7. Parameters of pipeline transmission.31-33
Parameters
Values
Life
30 years
Pipeline length
2000 km
Discount rate
8%
Electricity price
0.015 $ kWh-1
Mass flow rate
151893 kg H2 per day
Capital recovery period
15 years
Hydrogen loss rate
486.25 kg per km per year
Capital cost:
Material cost
74649 $ km-1
Miscellaneous
264245 $
Reconstruction of natural gas pipeline
12% of new pipeline
Operation and maintenance:
Labor cost
240015 $ km-1
Labor hours
9019 hours per year
Salary
33.54 $ per hour
Operation and maintenance cost
5% of capital investment cost
Table S8. Parameters of pipeline distribution a.31
Parameters
Values
Life
30 years
Pipeline length
830.4 km
Discount rate
8%
Capital recovery period
15 years
Hydrogen loss rate
97.5 kg per km per year
Mass flow rate
151893 kg per day
Capital cost:
Material cost
119380 $ km-1
Miscellaneous
149315 $
Operation and maintenance:
Labor cost
88805 $ km-1
Electricity price
0.05 $ kWh-1
Labor hours
9019 hours per year
Salary
33.54 $ hour-1
Operation and maintenance cost
5% of capital cost
aIn the sea-transmission scenario, pipeline distribution methods are used for all routes. The
transmission cost from port to receiving station is included in the receiving cost.
Table S9. Parameters of compressor.31,34
Parameter
Value
Z (Compress factor)
1.28216
m (Mass flow rate, kg/s)
700/ (12 3600)a
R (Universal gas constant)
8.3144 kJ (kg.mole.K)-1
T (Inlet temperature)
300 K
n (Compressor stage)
2
K (k is the ratio of specific heats)
1.4
(The isentropic efficiency)
0.75
Poutlet
20 MPa (Trailer)
45 MPa (High-pressure tank)
Pinlet
2 MPa (Trailer)
10.3 MPa (Operation pressure of
pipeline)
aWork 12 hours per day.
Table S10. Parameters of refueling station.31,34
Parameters
Values
Scale
700 kg per day
Life year
20
Discount rate
8%
Inlet pressure
20 MPa (Tank trailer), 10 MPa (Pipeline)
Output pressure
45 MPa
Capacity of hydrogen tank (45 MPa)
700 1.5
Capital cost:
Compressor cost
7500*Pcompressor (power of compressor)
Filling machine cost
100000 2 $
Tank cost
1495 $ per kg hydrogen
Operation and maintenance:
Operation and maintenance cost of
compressor
5% of compressor cost
Operation and maintenance cost of tank
3.5% of tank cost
Worker
2
Salary
1500 ($/month) 2 (worker) 12 (month) 20 (year)
Table S11. Input parameters of methanol synthesis.35
Parameters
Values
Project life (year)
20
Discount rate
8%
Electricity ($ kWh-1)
0.05
Scale (ton methanol per year)
10000
Operation hours
8400
Exchange rate of RMB to $
6.8
Exchange rate of RMB to €
7.73
Methanol purity
99.92 wt.%
CO2 usage (ton per ton methanol)
1.59
H2 usage (ton per ton methanol)
0.22
H2 compressor power (kW)
77.2
Recycle compressor power (kW)
115.17
Electricity usage (kWh per ton-MeOH)
161.75
Steam usage (ton/ton-MeOH)
0.43
Colling water usage (ton per ton methanol)
618.77
Heat duty of reboiler1 (kW)
281.22
Heat duty of reboiler2 (kW)
204.3
Capital cost:
Methanol reactor ($)
1.6 107((Mass in kg h-1)/54000)0.65
Compressor ($)
4.0 104P(kW)0.6038
Boiler ($)
4.6397 106((Heat duty MW)/55.6)0.6
CO2 ($ ton-1)
58.1618
Fresh water ($ ton-1)
0.22
Cooling water ($ ton-1)
0.05
Steam ($ ton-1)
14.71
Cooler (million $)
0.028
Heat exchanger (million $)
0.038
Recycle pump (million $)
0.703
Compressor (million $)
0.553
Reactor (million $)
4.385
Heat duty of reboiler (million $)
0.393
Separator (million $)
0.046
Boiler (million $)
0.276
Indirect capital cost:
General facilities (% capital cost)
10%
Engineering permitting and start up
10%
Contingencies (% capital cost)
5%
Working capital, land, and miscellaneous (% capital
cost)
3%
Operation and maintenance cost:
Water (million $ per year)
1.856
CO2 (million $ per year)
6.29
Electricity (million $ per year)
0.57
Others (million $ per year)
4% of capital cost
Table S12. Input parameters of methanol cracking.36
Parameters
Values
Scale
532 kg H2 per day
Project life (year)
20
Electricity ($ kWh-1)
0.05
Discount rate
8%
Capital cost:
Methanol storage (million $)
0.004
Methanol reformer (million $)
0.455
Hydrogen compressor (million $)
0.09
Hydrogen storage (million $)
0.115
Hydrogen dispenser (million $)
0.021
Total process unit (million $)
0.685
Indirect capital cost:
General facilities (million $)
0.137
Engineering permitting and start up (million $)
0.069
Contingencies (million $)
0.069
Working capital, land and miscellaneous (million $)
0.034
Operation and maintenance:
Variable non-fuel O&M ($ per kg H2)
0.028
Labor ($ per kg H2)
0.069
Electricity ($ per kg H2)
0.142
Variable operating cost ($ per kg H2)
0.239
Fixed operating cost ($ per kg H2)
0.171
Table S13. Capital Cost parameters of ammonia synthesis.36
Parameters
Values
Scale
300 tons ammonia per day
Project life (year)
20
Electricity ($ kWh-1)
0.05
Discount rate
8%
Natural gas costs ($ GJ-1)
5.40
Water Electrolysis +Haber-Bosch
12000 (kWh per ton NH3)
Capital Cost of installing cryogenic air distillation:
Heat exchangers (million $)
2.63
Compressors (million $)
8.21
Columns (million $)
6.04
Pump (million $)
0.02
Indirect capital Cost:
Contingency and fees (%capital cost)
18%
Auxiliary facility, land, infrastructure (%capital cost)
27%
Capital cost Haber Bosch Process:
Heat exchangers (million $)
11.31
Compressors (million $)
21.06
Reactors (million $)
2.46
Separator (million $)
2.55
Furnace (million $)
2.39
Indirect capital Cost:
Contingency and fees (%capital cost)
18%
Auxiliary facility, land, infrastructure (%capital cost)
18.70%
Capital cost of Electric Haber Bosch Process:
Heat exchangers (million $)
11.31
Compressors (million $)
21.06
Reactors (million $)
2.46
Separator (million $)
2.55
Indirect capital Cost:
Contingency and fees (%capital cost)
18%
auxiliary facility, land, infrastructure (%capital cost)
21.40%
Capital cost of installing ammonia storage system:
Heat exchanger (million $)
0.16
Compressors (million $)
0.09
Tank (Inner and Outer) (million $)
5.33
Separator (million $)
0.07
Indirect capital Cost:
Contingency and fees (%module cost) (million $)
18%
Others (million $)
31%
Table S14. Operation and maintenance cost parameters of ammonia synthesis.36
Operation and maintenance cost
Haber Bosch
Process
Storage
system
Air separation
unit
Water Consumption (m3 per year)
1371018
6669
185157
Cost of Water (million $ per year)
3.06
0.01
0.41
Electric Consumption (MWh per year)
71655
185
25829
Natural Gas Consumption (tons per
year)
1860
Total number of operators
16
12
14
Labor cost (million $ year-1)
0.87
0.65
0.76
Salvage value (million $ year-1)
5.58
0.84
2.45
Depreciation (million $ year-1)
2.51
0.38
1
Miscellaneous cost (million $ year-1)
9.2
2.02
4.5
Manufacture cost
31.55
3.06
6.77
Table S15. Input parameters of Ammonia cracking.36
Parameters
Values
Life
30 years
Scale
100 tons H2 per day
Electricity ($ kWh-1)
0.05
Discount rate
8%
Capital cost:
Equipment purchase ($)
77417838.39
Installation ($)
36386383.66
Piping ($)
52644129.81
Electrical System ($)
8515962.423
Instrumentation & controls ($)
27870421.23
Buildings ($)
13935211.14
Yard improvement ($)
7741783.734
Service facilities ($)
54192487.19
Indirect cost:
Engineering & supervision ($)
25547886.22
Construction expenses ($)
31741313.63
Legal expenses ($)
3096713.704
Contractor’s fee ($)
17031924.85
Contingency ($)
34063848.64
Working capital ($)
58527885.96
Operation and maintenance (O & M) cost:
O & M fixed cost:
Operating labor ($)
467821.0685
Supervision labor ($)
116955.2671
Direct salary overhead ($)
233910.5343
Maintenance cost ($)
19509294.97
Insurance cost ($)
7803717.987
General plant overhead ($)
12196789.1
O & M variable cost:
Water ($)
48723.00
Heating utilities ($)
3953070.00
Colling Utilities ($)
3922179.00
Cracker catalyst ($)
4320953.00
Electricity ($)
18986406.00
Table S16. Parameters of methanol shipment.37
Parameters
Values
Transport distance
7500 km (Japan-Australia)
Load of ship
110000 tons
Discount rate
8%
Average speed
32 km h-1
Fuel consumption
99 ton per day
Material loss rate
0.01% per day
Loading period
2 days
Life of ship
15 years
Capital cost:
Capital investment of ship
76000000 $
Indirect capital cost
45% of capital cost
Operation and maintenance (O & M) cost:
Diesel cost
358.3 $ ton-1
Operation cost of ship
5550 $ per day
Labor cost
a
20 15 100000
Load cost
37.5 $ per ton methanol
Receiving cost
37.5 $ per ton methanol
a20 crews of one ship and the salary each crew is 10000 $ per year.
Table S17. Parameters of ammonia shipment.37
Parameters
Values
Transport distance
7500 km (Japan-Australia)
Load of ship
53000 ton
Discount rate
8%
Average speed
32 km h-1
Fuel consumption
61tons per day
Material loss rate
0.04% per day
Loading period
2 days
Life of ship
15 years
Capital cost:
Capital investment of ship
85000000 $
Indirect capital cost
45% of capital cost
Operation and maintenance (O & M) cost:
Operation cost of ship
5550 $ day-1
Diesel cost
358.3 $ ton-1
Labor cost
20 15 100000
Load cost
33.5 $ per ton methanol
Receiving cost
35.3 $ per ton methanol
References
1 Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5 °C climate
goal, International Renewable Energy Agency, 2020.
2 D. Jang, J. Kim, D. Kim, W.-B. Han and S. Kang, Energy Convers. Manag., 2022,
258, 115499.
3 M. D. Rashid, M. K. Al Mesfer, H. Naseem and M. Danish, Int. J. Eng. Adv. Tech.,
2015, 4, 80-93.
4 F. M. Sapountzi, J. M. Gracia, C. J. Weststrate, H. O. A. Fredriksson and J. W.
Niemantsverdriet, Prog. Energy Combust. Sci., 2017, 58, 1-35.
5 F. Mueller-Langer, E. Tzimas, M. Kaltschmitt and S. Peteves, Int. J. Hydrogen
Energy, 2007, 32, 3797-3810.
6 Electricity market report, International Energy Agency, 2022.
7 E. Rivard, M. Trudeau and K. Zaghib, Materials, 2019, 12, 1973.
8 H. Barthelemy, M. Weber and F. Barbier, Int. J. Hydrogen Energy, 2017, 42,
7254-7262.
9 H. Kabbour, T. F. Baumann, J. H. Satcher, A. Saulnier and C. C. Ahn, Chem.
Mater., 2006, 18, 6085-6087.
10 R. J. Anderson, T. P. McNicholas, A. Kleinhammes, A. Wang, J. Liu and Y. Wu,
J. Am. Chem. Soc., 2010, 132, 8618-8626.
11 Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A.
Smith and R. E. Smalley, Appl. Phys. Lett., 1999, 74, 2307-2309.
12 Y. Liu, C. M. Brown, D. A. Neumann, H. Kabbour and C. C. Ahn, Mater. Res.
Soc. Symp. Proc., 2007, 1041.
13 A. Dailly, J. J. Vajo and C. C. Ahn, J. Phys. Chem. B, 2006, 110, 1099-1101.
14 P. D. Goodell and P. S. Rudman, J. Less-common Met., 1983, 89, 117-125.
15 J. J. Reilly and R. H. Wiswall, Inorg. Chem., 1974, 13, 218-222.
16 F. D. Manchester, A. San-Martin and J. M. Pitre, J. Phase Equilibria, 1994, 15,
62-83.
17 J. M. Park and J. Y. Lee, J. Alloys Comp., 1992, 182, 43-54.
18 Y. Komazaki, M. Uchida, S. Suda, A. Suzuki, S. Ono and N. Nishimiya, J. Less-
common Met., 1983, 89, 269-274.
19 Q. Lai, Y. Sun, T. Wang, P. Modi, C. Cazorla, U. B. Demirci, J. R. Ares
Fernandez, F. Leardini and K. F. AgueyZinsou, Adv. Sustainable Syst., 2019,
3, 1900043.
20 J. Graetz and J. J. Reilly, J. Phys. Chem. B, 2005, 109, 22181-22185.
21 L. Schlapbach and A. Züttel, Nature, 2002, 414, 353-358.
22 L. Li, T. Akiyama and J. Yagi, J. Alloys Comp., 2000, 308, 98-103.
23 I. Saldan, Int. J. Hydrogen Energy, 2016, 41, 11201-11224.
24 H. I. Schlesinger, H. C. Brown, H. R. Hoekstra and L. R. Rapp, J. Am. Chem. Soc.,
1953, 75, 199-204.
25 B. Bogdanović and M. Schwickardi, J. Alloys Comp., 1997, 253, 1-9.
26 R. P. Shrestha, H. V. K. Diyabalanage, T. A. Semelsberger, K. C. Ott and A. K.
Burrell, Int. J. Hydrogen Energy, 2009, 34, 2616-2621.
27 A. N. Kalenchuk and L. M. Kustov, Molecules, 2022, 27, 2236.
28 S. Mukherjee, S. V. Devaguptapu, A. Sviripa, C. R. F. Lund and G. Wu, Appl.
Catal. B Environ., 2018, 226, 162-181.
29 G. Cacciola, N. Giordano and G. Restuccia, Int. J. Hydrogen Energy, 1984, 9,
411-419.
30 F. Alhumaidan, D. Cresswell and A. Garforth, Energy Fuels, 2011, 25, 4217-
4234.
31 DOE H2: a delivery analysis,
https://www.hydrogen.energy.gov/h2a_delivery.html.
32 B. Miao, L. Giordano and S. H. Chan, Int. J. Hydrogen Energy, 2021, 46, 18699-
18718.
33 Transporting pure hydrogen by repurposing existing gas infrastructure: overview
of existing studies and reflections on the conditions for repurposing, European
Union Agency for the Cooperation of Energy Regulators, 2021.
34 Y. Gu, Q. Chen, J. Xue, Z. Tang, Y. Sun and Q. Wu, Energy Convers. Manag.,
2020, 223, 113240.
35 Y. Gu, D. Wang, Q. Chen and Z. Tang, Int. J. Hydrogen Energy, 2022, 47, 5085-
5100.
36 S. A. Nosherwani and R. C. Neto, J. Energy Storage, 2021, 34, 102201.
37 J.-S. Lee, A. Cherif, H.-J. Yoon, S.-K. Seo, J.-E. Bae, H.-J. Shin, C. Lee, H. Kwon
and C.-J. Lee, Renew. Sust. Energy Rev., 2022, 165, 112556.

File (1)

Content uploaded by Daqin Guan
Author content
ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.