Article

Genomic Strategy Identifies a Missense Mutation in WD-Repeat Domain 65 (WDR65) in an Individual With Van der Woude Syndrome

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Genetic variation in the transcription factor interferon regulatory factor 6 (IRF6) causes and contributes risk for oral clefting disorders. We hypothesized that genes regulated by IRF6 are also involved in oral clefting disorders. We used five criteria to identify potential IRF6 target genes; differential gene expression in skin taken from wild-type and Irf6-deficient murine embryos, localization to the Van der Woude syndrome 2 (VWS2) locus at 1p36-1p32, overlapping expression with Irf6, presence of a conserved predicted-binding site in the promoter region, and a mutant murine phenotype that was similar to the Irf6 mutant mouse. Previously, we observed altered expression for 573 genes; 13 were located in the murine region syntenic to the VWS2 locus. Two of these genes, Wdr65 and Stratifin, met 4 of 5 criteria. Wdr65 was a novel gene that encoded a predicted protein of 1,250 amino acids with two WD domains. As potential targets for Irf6 regulation, we hypothesized that disease-causing mutations will be found in WDR65 and Stratifin in individuals with VWS or VWS-like syndromes. We identified a potentially etiologic missense mutation in WDR65 in a person with VWS who does not have an exonic mutation in IRF6. The expression and mutation data were consistent with the hypothesis that WDR65 was a novel gene involved in oral clefting.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Transcript profiling in human airway epithelia indicated that a member of the bactericidal/permeability-inducing fold containing family A (BPIFA1, also known as PLUNC) is highly expressed in human airway epithelia (13). The in situ hybridization of murine nasal sections revealed that the expression of tryptophan, aspartic acid repeat protein 65 (Wdr65) is restricted to the respiratory epithelium (14). Based on the expression profile of BPIFA1 and Wdr65, we selected putative gene-regulatory elements from these genes to investigate. ...
... BPIFA1 mRNA is highly expressed in human airway epithelia, as shown by transcript profiling using a microarray (13). In situ hybridization showed that Wdr65 expression was restricted to the respiratory epithelia in murine nasal passages (14). However, the upstream regions of these genes are not characterized. ...
Article
Full-text available
The delivery of cystic fibrosis transmembrane conductance regulator (CFTR) to airway epithelia is a goal of many gene therapy strategies to treat cystic fibrosis. Because the native regulatory elements of the CFTR are not well characterized, the development of vectors with heterologous promoters of varying strengths and specificity would aid in our selection of optimal reagents for the appropriate expression of the vector-delivered CFTR gene. Here we contrasted the performance of several novel gene-regulatory elements. Based on airway expression analysis, we selected putative regulatory elements from BPIFA1 and WDR65 to investigate. In addition, we selected a human CFTR promoter region (∼ 2 kb upstream of the human CFTR transcription start site) to study. Using feline immunodeficiency virus vectors containing the candidate elements driving firefly luciferase, we transduced murine nasal epithelia in vivo. Luciferase expression persisted for 30 weeks, which was the duration of the experiment. Furthermore, when the nasal epithelium was ablated using the detergent polidocanol, the mice showed a transient loss of luciferase expression that returned 2 weeks after administration, suggesting that our vectors transduced a progenitor cell population. Importantly, the hWDR65 element drove sufficient CFTR expression to correct the anion transport defect in CFTR-null epithelia. These results will guide the development of optimal vectors for sufficient, sustained CFTR expression in airway epithelia.
... More specifically, CFAP57 is localized in the axoneme of cilia in human nasal epithelial cells and mutations in the green alga Chlamydomonas cause ciliary dyskinesia (128). Interestingly, an involvement of CFAP57 (previously known as WDR65) in tissue remodeling (craniofacial development) was also implicated (129). Thus, CFAP57 is predicted to be involved in changes in hemocyte morphology, such as elongations, that are reminiscent of the function of lamellocytes to engulf large foreign bodies such as parasitoid eggs in Drosophila (130). ...
Article
Full-text available
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
... Although several studies have identified FAP57/WDR65 as a conserved component of motile cilia and flagella (Broadhead et al., 2006;McClintock et al., 2008;Arnaiz et al., 2010;Sigg et al., 2017;Blackburn et al., 2017), functional studies on fap57/wdr65 mutations are very limited. One report identified a missense mutation in WDR65 in a patient with Van der Woude syndrome, a cleft palate disorder, but this work did not establish a clear connection between the mutation and the cleft palate defects, and it is unknown whether this patient was tested for potential defects in ciliary motility or assembly (Rorick et al., 2011). The Drosophila orthologue of FAP57/WDR65, CG4329, is expressed in the chordotonal neurons, which contain 9+0 cilia critical for the auditory response, and mutations in CG4329 lead to moderate hearing impairment (Senthilan et al., 2012). ...
Article
Full-text available
Ciliary motility depends on both the precise spatial organization of multiple dynein motors within the 96 nm axonemal repeat, and highly coordinated interactions between different dyneins and regulatory complexes located at the base of the radial spokes. Mutations in genes encoding cytoplasmic assembly factors, intraflagellar transport factors, docking proteins, dynein subunits, and associated regulatory proteins can all lead to defects in dynein assembly and ciliary motility. Significant progress has been made in the identification of dynein subunits and extrinsic factors required for pre-assembly of dynein complexes in the cytoplasm, but less is known about the docking factors that specify the unique binding sites for the different dynein isoforms on the surface of the doublet microtubules. We have used insertional mutagenesis to identify a new locus, IDA8/BOP2, required for targeting the assembly of a subset of inner dynein arms to a specific location in the 96 nm repeat. IDA8 encodes FAP57/WDR65, a highly conserved WD repeat, coiled coil domain protein. Using high resolution proteomic and structural approaches, we find that FAP57 forms a discrete complex. Cryo-electron tomography coupled with epitope tagging and gold labeling reveal that FAP57 forms an extended structure that interconnects multiple inner dynein arms and regulatory complexes. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]
... Although several studies have identified FAP57/WDR65 as a conserved component of motile cilia and flagella (Broadhead et al., 2006;McClintock et al., 2008;Arnaiz et al., 2010;Sigg et al., 2017;Blackburn et al., 2017), functional studies on fap57/wdr65 mutations are very limited. One report identified a missense mutation in WDR65 in a patient with Van der Woude syndrome, a cleft palate disorder, but this work did not establish a clear connection between the mutation and the cleft palate defects (Rorick et al., 2011). The Drosophila orthologue of FAP57/WDR65, CG4329, is expressed in the chordotonal neurons, which contain 9+0 cilia critical for the auditory response, and mutations in CG4329 lead to moderate hearing impairment (Senthilan et al., 2012). ...
Preprint
Ciliary motility depends on both the precise spatial organization of multiple dynein motors within the 96 nm axonemal repeat, and highly coordinated interactions between different dyneins and regulatory complexes located at the base of the radial spokes. Mutations in genes encoding cytoplasmic assembly factors, intraflagellar transport factors, docking proteins, dynein subunits, and associated regulatory proteins can all lead to defects in dynein assembly and ciliary motility. Significant progress has been made in the identification of dynein subunits and extrinsic factors required for pre-assembly of dynein complexes in the cytoplasm, but less is known about the docking factors that specify the unique binding sites for the different dynein isoforms on the surface of the doublet microtubules. We have used insertional mutagenesis to identify a new locus, IDA8/BOP2, required for targeting the assembly of a subset of inner dynein arms to a specific location in the 96 nm repeat. IDA8 encodes FAP57/WDR65, a highly conserved WD repeat, coiled coil domain protein. Using high resolution proteomic and structural approaches, we find that FAP57 forms a discrete complex. Cryo-electron tomography coupled with epitope tagging and gold labeling reveal that FAP57 forms an extended structure that interconnects multiple inner dynein arms and regulatory complexes.
... Other ciliome constituents may also indicate ciliary etiologies for syndromes not previously recognized as ciliopathies. For example, WD repeat domain 65 (WDR65, also known as CFAP57), was identified in all three ciliomes and is associated with van der Woude syndrome, a craniofacial malformation with features similar to that of orofaciodigital syndrome, a recognized ciliopathy (Rorick et al., 2011). ...
Article
Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.
... Moreover, we detected potentially etiologic IRF6 variants in nine out of the 13 (about 69%) patients with VWS. The lack of etiologic IRF6 variants in all VWS patients buttresses the point that other upstream or downstream IRF6 target genes or genes in the same regulatory network as IRF6 may also contribute to clefting in VWS and PPS patients, as etiologic IRF6 variants are observed in only about 70% of VWS patients (Rorick et al. 2011;Wu-Chou et al. 2013;Fakhouri et al. 2014;Peyrard-Janvid et al. 2014;Kwa et al. 2015). Our analyses also showed that 18 out of the 184 patients with NSOFCs had potentially etiologic IRF6 variants, suggesting etiologic IRF6 variants occurred in about 9% of our study cohort. ...
Article
Full-text available
Background Orofacial clefts are congenital malformations of the orofacial region, with a global incidence of one per 700 live births. Interferon Regulatory Factor 6 (IRF6) (OMIM:607199) gene has been associated with the etiology of both syndromic and nonsyndromic orofacial clefts. The aim of this study was to show evidence of potentially pathogenic variants in IRF6 in orofacial clefts cohorts from Africa. Methods We carried out Sanger Sequencing on DNA from 184 patients with nonsyndromic orofacial clefts and 80 individuals with multiple congenital anomalies that presented with orofacial clefts. We sequenced all the nine exons of IRF6 as well as the 5? and 3? untranslated regions. In our analyses pipeline, we used various bioinformatics tools to detect and describe the potentially etiologic variants. Results We observed that potentially etiologic exonic and splice site variants were nonrandomly distributed among the nine exons of IRF6, with 92% of these variants occurring in exons 4 and 7. Novel variants were also observed in both nonsyndromic orofacial clefts (p.Glu69Lys, p.Asn185Thr, c.175?2A>C and c.1060+26C>T) and multiple congenital anomalies (p.Gly65Val, p.Lys320Asn and c.379+1G>T) patients. Our data also show evidence of compound heterozygotes that may modify phenotypes that emanate from IRF6 variants. Conclusions This study demonstrates that exons 4 and 7 of IRF6 are mutational ?hotspots? in our cohort and that IRF6 mutants?induced orofacial clefts may be prevalent in the Africa population, however, with variable penetrance and expressivity. These observations are relevant for detection of high?risk families as well as genetic counseling. In conclusion, we have shown that there may be a need to combine both molecular and clinical evidence in the grouping of orofacial clefts into syndromic and nonsyndromic forms.
... C>T:p.(Arg477*)). CFAP57 was previously correlated with a Van der Woode syndrome (VDW) variant [29] but was later reclassified as variant of unknown clinical significance (VUS). Scarce data is known for DPH2 gene. ...
Article
Full-text available
Background: The recent availability of whole-exome sequencing has opened new possibilities for the evaluation of individuals with genetically undiagnosed intellectual disability. Results: We report two affected siblings, offspring of first-cousin parents, with intellectual disability, hypotonia, short stature, growth hormone deficiency, and delayed bone age. All members of the nuclear family were genotyped, and exome sequencing was performed in one of the affected individuals. We used an in-house algorithm (CATCH v1.1) that combines homozygosity mapping with exome sequencing results and provides a list of candidate variants. One identified novel homozygous missense variant in KALRN (NM_003947.4:c.3644C>A: p.(Thr1215Lys)) was predicted to be pathogenic by all pathogenicity prediction software used (SIFT, PolyPhen, Mutation Taster). KALRN encodes the protein kalirin, which is a GTP-exchange factor protein with a reported role in cytoskeletal remodeling and dendritic spine formation in neurons. It is known that mice with ablation of Kalrn exhibit age-dependent functional deficits and behavioral phenotypes. Conclusion: Exome sequencing provided initial evidence linking KALRN to monogenic intellectual disability in man, and we propose that KALRN is the causative gene for the autosomal recessive phenotype in this family.
... WD40 proteins are characterized by the presence of multiple tandem repeats generally varying from 4 to 8 [2]. However, proteins with minimum 2 and maximum 16 WDRs have also been reported [3,10,20]. In our analysis, a total of 354 WDR motifs were recognized by SMART among 80 PfWDRs which range from 1-10 repeats/protein ( Fig 1D). ...
Article
Full-text available
Despite a significant drop in malaria deaths during the past decade, malaria continues to be one of the biggest health problems around the globe. WD40 repeats (WDRs) containing proteins comprise one of the largest and functionally diverse protein superfamily in eukary-otes, acting as scaffolds for assembling large protein complexes. In the present study, we report an extensive in silico analysis of the WDR gene family in human malaria parasite Plasmodium falciparum. Our genome-wide identification has revealed 80 putative WDR genes in P. falciparum (PfWDRs). Five distinct domain compositions were discovered in Plasmodium as compared to the human host. Notably, 31 PfWDRs were annotated/re-annotated on the basis of their orthologs in other species. Interestingly, most PfWDRs were larger as compared to their human homologs highlighting the presence of parasite-specific insertions. Fifteen PfWDRs appeared specific to the Plasmodium with no assigned ortho-logs. Expression profiling of PfWDRs revealed a mixture of linear and nonlinear relationships between transcriptome and proteome, and only nine PfWDRs were found to be stage-specific. Homology modeling identified conservation of major binding sites in PfCAF-1 and PfRACK. Protein-protein interaction network analyses suggested that PfWDRs are highly connected proteins with ~1928 potential interactions, supporting their role as hubs in cellular networks. The present study highlights the roles and relevance of the WDR family in P. falciparum, and identifies unique features that lay a foundation for further experimental dis-section of PfWDRs.
... Other associated features are hypodontia, missing maxillary or mandibular second premolar, absent maxillary lateral incisor, ankyloglossia and in some cases, congenital heart defects, and popliteal web have been described [Rizos and Spyropoulos, 2004]. IRF6 is located on chromosome 1q32-q41 and a recently study reported that mutations in WDR65 located in the same region (1p34) have been associated with VWS [Rorick et al., 2011]. A recent study has also identified GRHL3 mutations in a cohort of IRF6-negative VWS patients. ...
... The causal mutations in the IRF6-mutation-negative families may lie in these undiscovered regulatory elements. A second locus for VWS has been reported on 1p34 by linkage [Koillinen et al., 2001], and a mutation has been described in WDR65, although not in the linkage family [Rorick et al., 2011]. Locus heterogeneity could explain the phenotypic differences in the mutation-negative families. ...
Article
Van der Woude syndrome is the most common form of syndromic orofacial clefting, accounting for 1-2% of all patients with cleft lip and/or cleft palate. Van der Woude and popliteal pterygium syndromes are caused by mutations in IRF6, but phenotypic variability within and among families with either syndrome suggests that other genetic factors contribute to the phenotypes. The aim of this study was to identify common variants acting as genetic modifiers of IRF6 as well as genotype-phenotype correlations based on mutation type and location. We identified an association between mutations in the DNA-binding domain of IRF6 and limb defects (including pterygia). Although we did not detect formally significant associations with the genes tested, borderline associations suggest several genes that could modify the VWS phenotype, including FOXE1, TGFB3, and TFAP2A. Some of these genes are hypothesized to be part of the IRF6 gene regulatory network and may suggest additional genes for future study when larger sample sizes are also available. We also show that families with the Van de Woude phenotype but in whom no mutations have been identified have a lower frequency of cleft lip, suggesting there may be locus and/or mutation class differences in Van de Woude syndrome. © 2013 Wiley Periodicals, Inc.
Article
Full-text available
Irf6 and Esrp1 are important for palate development across vertebrates. In zebrafish, we found that irf6 regulates the expression of esrp1 . We detailed overlapping Irf6 and Esrp1/2 expression in mouse orofacial epithelium. In zebrafish, irf6 and esrp1/2 share expression in periderm, frontonasal ectoderm, and oral epithelium. Genetic disruption of irf6 and esrp1/2 in zebrafish resulted in cleft of the anterior neurocranium. The esrp1/2 mutant also developed cleft of the mouth opening. Lineage tracing of cranial neural crest cells revealed that cleft resulted not from migration defect, but from impaired chondrogenesis. Analysis of aberrant cells within the cleft revealed expression of sox10, col1a1 and irf6 and were adjacent to cells krt4 and krt5 positive. Breeding of mouse Irf6;Esrp1;Esrp2 compound mutants suggested genetic interaction, as the triple homozygote and the Irf6 ; Esrp1 double homozygote was not observed. Further, Irf6 heterozygosity reduced Esrp1/2 cleft severity. These studies highlight the complementary analysis of Irf6 and Esrp1/2 in mouse and zebrafish and captured a unique aberrant cell population expressing sox10, col1a1 and irf6 . Future work characterizing this cell population will yield additional insight into cleft pathogenesis.
Preprint
Cilia are organelles specialized for movement and signaling. To infer when during animal evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from three organisms: sea urchins, sea anemones and choanoflagellates. From these ciliomes, we identified 437 high confidence ciliary candidate proteins conserved in mammals, including known regulators of Hh, GPCR and TRP channel signaling. The phylogenetic profiles of their ciliary association indicate that the Hh and GPCR pathways were linked to cilia before the origin of bilateria and TRP channels before the origin of animals. We demonstrated that some of the candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein that we identified in the cilia of all three organisms. In animals, ENKUR is expressed by cells with motile cilia, ENKUR localizes to cilia in diverse organisms and, in both Xenopus laevis and mice, ENKUR is required for patterning the left/right axis. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to Hh, GPCR and TRP channel signaling, and uncovers a novel ciliary protein that controls vertebrate development and human disease.
Preprint
Orofacial clefts are among the most common congenital structural anomalies. From genome-wide association studies over a decade ago to more recent whole-genome sequencing projects of orofacial cleft cohorts, human geneticists have identified several cleft-associated genetic loci, where the transcription factor Interferon regulatory factor 6 (IRF6) continues to be one of the most commonly associated genes. Irf6 has been found to regulate epithelial/periderm differentiation and in mice, adhesion defects are thought to prevent elevation of the palatal shelves, leading to cleft in the secondary palate. Epithelial splicing regulatory factors 1 and 2 (Esrp1, Esrp2) are also important in embryonic epithelial differentiation and palate development. Esrp2 and its homolog Esrp1 are regulators of RNA splicing that are specifically expressed in the epithelium. Esrp1/2 knockout mice exhibit bilateral cleft of the lip and primary palate, as well as a secondary palate cleft. Here, we analyze the Irf6 and Esrp1/2 mutant mouse models together to elucidate the gene expression details of Irf6 and Esrp1/2 during embryogenesis, comparative morphologies and genetic epistasis between these genes. Further, we generated zebrafish orofacial cleft models of irf6 and esrp1/2 and delineated developmental similarities and differences between mouse and zebrafish craniofacial biology. This work highlights the relative strengths of the mouse and zebrafish models for investigating the morphogenetic mechanisms of orofacial clefts and contributes new insights into the function of Irf6 and Esrp1/2 during palatogenesis.
Chapter
Full-text available
The etiology of clefting of the labiopalatal ensemble that constitutes the central complex of the entrance to the oral cavity is best understood from the developmental phenomena creating the human face. Among the possible causes of clefts are single gene disorders, chromosome aberrations, teratogen exposure, and many as yet unknown sporadic events illustrating the complexity of facial patterning. Midface morphogenesis is a small component of the entire embryogenetic process but is critically important in determining cheiloschisis (cleft lip) and palatoschisis (cleft palate). Understanding the embryology of lip and palate development will provide insights into the multifactorial causes of clefting and possible prognostic, preventive, and treatment regimens.
Book
Dental defects may be the physical expression of genetic defects, and so they can often be seen in a variety of syndromes associated with malformations of organs. However, dental defects are often not recognized, identified, nor characterised despite representing a possible diagnostic sign for an undiagnosed condition. This book addresses this gap by providing an understanding of dental genetics and its developmental biology counterpart. With approximately seventy well-illustrated examples, the authors present the clinical oro-facial manifestations accompanying various syndromes, providing the necessary knowledge for diagnostic purposes, as well as giving insight into recent development for each specific condition. The clarity and format of this book make it an ideal support guide both in the clinic and while conducting research.
Article
Full-text available
Cleft lip and cleft palate (CLP) are common disorders that occur either as part of a syndrome, where structures other than the lip and palate are affected, or in the absence of other anomalies. Van der Woude syndrome (VWS) and popliteal pterygium syndrome (PPS) are autosomal dominant disorders characterized by combinations of cleft lip, CLP, lip pits, skin-folds, syndactyly and oral adhesions which arise as the result of mutations in interferon regulatory factor 6 (IRF6). IRF6 belongs to a family of transcription factors that share a highly conserved N-terminal, DNA-binding domain and a less well-conserved protein-binding domain. To date, mutation analyses have suggested a broad genotype-phenotype correlation in which missense and nonsense mutations occurring throughout IRF6 may cause VWS; in contrast, PPS-causing mutations are highly associated with the DNA-binding domain, and appear to preferentially affect residues that are predicted to interact directly with the DNA. Nevertheless, this genotype-phenotype correlation is based on the analysis of structural models rather than on the investigation of the DNA-binding properties of IRF6. Moreover, the effects of mutations in the protein interaction domain have not been analysed. In the current investigation, we have determined the sequence to which IRF6 binds and used this sequence to analyse the effect of VWS- and PPS-associated mutations in the DNA-binding domain of IRF6. In addition, we have demonstrated that IRF6 functions as a co-operative transcriptional activator and that mutations in the protein interaction domain of IRF6 disrupt this activity.
Article
Full-text available
We conducted a genome-wide association study involving 224 cases and 383 controls of Central European origin to identify susceptibility loci for nonsyndromic cleft lip with or without cleft palate (NSCL/P). A 640-kb region at chromosome 8q24.21 was found to contain multiple markers with highly significant evidence for association with the cleft phenotype, including three markers that reached genome-wide significance. The 640-kb cleft-associated region was saturated with 146 SNP markers and then analyzed in our entire NSCL/P sample of 462 unrelated cases and 954 controls. In the entire sample, the most significant SNP (rs987525) had a P value of 3.34 x 10(-24). The odds ratio was 2.57 (95% CI = 2.02-3.26) for the heterozygous genotype and 6.05 (95% CI = 3.88-9.43) for the homozygous genotype. The calculated population attributable risk for this marker is 0.41, suggesting that this study has identified a major susceptibility locus for NSCL/P.
Article
Full-text available
Cleft lip and cleft palate (CLP) are common disorders that occur either as part of a syndrome, where structures other than the lip and palate are affected, or in the absence of other anomalies. Van der Woude syndrome (VWS) and popliteal pterygium syndrome (PPS) are autosomal dominant disorders characterized by combinations of cleft lip, CLP, lip pits, skin-folds, syndactyly and oral adhesions which arise as the result of mutations in interferon regulatory factor 6 (IRF6). IRF6 belongs to a family of transcription factors that share a highly conserved N-terminal, DNA-binding domain and a less well-conserved protein-binding domain. To date, mutation analyses have suggested a broad genotype-phenotype correlation in which missense and nonsense mutations occurring throughout IRF6 may cause VWS; in contrast, PPS-causing mutations are highly associated with the DNA-binding domain, and appear to preferentially affect residues that are predicted to interact directly with the DNA. Nevertheless, this genotype-phenotype correlation is based on the analysis of structural models rather than on the investigation of the DNA-binding properties of IRF6. Moreover, the effects of mutations in the protein interaction domain have not been analysed. In the current investigation, we have determined the sequence to which IRF6 binds and used this sequence to analyse the effect of VWS- and PPS-associated mutations in the DNA-binding domain of IRF6. In addition, we have demonstrated that IRF6 functions as a co-operative transcriptional activator and that mutations in the protein interaction domain of IRF6 disrupt this activity.
Article
Full-text available
Previously we have shown that nonsyndromic cleft lip with or without cleft palate (NSCL/P) is strongly associated with SNPs in IRF6 (interferon regulatory factor 6). Here, we use multispecies sequence comparisons to identify a common SNP (rs642961, G>A) in a newly identified IRF6 enhancer. The A allele is significantly overtransmitted (P = 1 x 10(-11)) in families with NSCL/P, in particular those with cleft lip but not cleft palate. Further, there is a dosage effect of the A allele, with a relative risk for cleft lip of 1.68 for the AG genotype and 2.40 for the AA genotype. EMSA and ChIP assays demonstrate that the risk allele disrupts the binding site of transcription factor AP-2alpha and expression analysis in the mouse localizes the enhancer activity to craniofacial and limb structures. Our findings place IRF6 and AP-2alpha in the same developmental pathway and identify a high-frequency variant in a regulatory element contributing substantially to a common, complex disorder.
Article
Full-text available
The Van der Woude syndrome (VWS) is a dominantly inherited developmental disorder characterized by pits and/or sinuses of the lower lip, cleft lip and/or cleft palate. It is the most common cleft syndrome. VWS has shown remarkable genetic homogeneity in all populations, and so far, all families reported have been linked to 1q32-q41. A large Finnish pedigree with VWS was recently found to be unlinked to 1q32-q41. In order to map the disease locus in this family, a genome wide linkage scan was performed. A maximum lod score of 3.18 was obtained with the marker D1S2797, thus assigning the disease locus to chromosomal region 1p34. By analyses of meiotic recombinants an approximately 30 cM region of shared haplotypes was identified. The results confirm the heterogeneity of the VWS syndrome, and they place the second disease locus in 1p34. This finding has a special interest because the phenotype in VWS closely resembles the phenotype in non-syndromic forms of cleft lip and palate.
Article
Full-text available
Interferon regulatory factor 6 (IRF6) belongs to a family of nine transcription factors that share a highly conserved helix-turn-helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-alpha and -beta after viral infection, but the function of IRF6 is unknown. The gene encoding IRF6 is located in the critical region for the Van der Woude syndrome (VWS; OMIM 119300) locus at chromosome 1q32-q41 (refs 2,3). The disorder is an autosomal dominant form of cleft lip and palate with lip pits, and is the most common syndromic form of cleft lip or palate. Popliteal pterygium syndrome (PPS; OMIM 119500) is a disorder with a similar orofacial phenotype that also includes skin and genital anomalies. Phenotypic overlap and linkage data suggest that these two disorders are allelic. We found a nonsense mutation in IRF6 in the affected twin of a pair of monozygotic twins who were discordant for VWS. Subsequently, we identified mutations in IRF6 in 45 additional unrelated families affected with VWS and distinct mutations in 13 families affected with PPS. Expression analyses showed high levels of Irf6 mRNA along the medial edge of the fusing palate, tooth buds, hair follicles, genitalia and skin. Our observations demonstrate that haploinsufficiency of IRF6 disrupts orofacial development and are consistent with dominant-negative mutations disturbing development of the skin and genitalia.
Article
Full-text available
Cleft lip or palate (or the two in combination) is a common birth defect that results from a mixture of genetic and environmental factors. We searched for a specific genetic factor contributing to this complex trait by examining large numbers of affected patients and families and evaluating a specific candidate gene. We identified the gene that encodes interferon regulatory factor 6 (IRF6) as a candidate gene on the basis of its involvement in an autosomal dominant form of cleft lip and palate, Van der Woude's syndrome. A single-nucleotide polymorphism in this gene results in either a valine or an isoleucine at amino acid position 274 (V274I). We carried out transmission-disequilibrium testing for V274I in 8003 individual subjects in 1968 families derived from 10 populations with ancestry in Asia, Europe, and South America, haplotype and linkage analyses, and case-control analyses, and determined the risk of cleft lip or palate that is associated with genetic variation in IRF6. Strong evidence of overtransmission of the valine (V) allele was found in the entire population data set (P<10(-9)); moreover, the results for some individual populations from South America and Asia were highly significant. Variation at IRF6 was responsible for 12 percent of the genetic contribution to cleft lip or palate and tripled the risk of recurrence in families that had already had one affected child. DNA-sequence variants associated with IRF6 are major contributors to cleft lip, with or without cleft palate. The contribution of variants in single genes to cleft lip or palate is an important consideration in genetic counseling.
Article
Full-text available
Stratifin (Sfn, also called 14-3-3sigma) is highly expressed in differentiating epidermis and mediates cell cycle arrest. Sfn is repressed in cancer, but its function during development is uncharacterized. We identified an insertion mutation in the gene Sfn in repeated epilation (Er) mutant mice by positional cloning. Er/+ mice expressed a truncated Sfn protein, which probably contributes to the defects in Er/Er and Er/+ epidermis and to cancer development in Er/+ mice.
Article
Full-text available
Transcription factor paralogs may share a common role in staged or overlapping expression in specific tissues, as in the Hox family. In other cases, family members have distinct roles in a range of embryologic, differentiation or response pathways (as in the Tbx and Pax families). For the interferon regulatory factor (IRF) family of transcription factors, mice deficient in Irf1, Irf2, Irf3, Irf4, Irf5, Irf7, Irf8 or Irf9 have defects in the immune response but show no embryologic abnormalities. Mice deficient for Irf6 have not been reported, but in humans, mutations in IRF6 cause two mendelian orofacial clefting syndromes, and genetic variation in IRF6 confers risk for isolated cleft lip and palate. Here we report that mice deficient for Irf6 have abnormal skin, limb and craniofacial development. Histological and gene expression analyses indicate that the primary defect is in keratinocyte differentiation and proliferation. This study describes a new role for an IRF family member in epidermal development.
Article
Full-text available
In mammals, cilia are critical for development, sensation, cell signaling, sperm motility, and fluid movement. Defects in cilia are causes of several congenital syndromes, providing additional reasons to identify cilia-related genes. We hypothesized that mRNAs selectively abundant in tissues rich in highly ciliated cells encode cilia proteins. Selective abundance in olfactory epithelium, testes, vomeronasal organ, trachea, and lung proved to be an expression pattern uniquely effective in identifying documented cilia-related genes. Known and suspected cilia-related genes were statistically overrepresented among the 99 genes identified, but the majority encoded proteins of unknown function, thereby predicting new cilia-related proteins. Evidence of expression in a highly ciliated cell, the olfactory sensory neuron, exists for 73 of the genes. In situ hybridization for 17 mRNAs confirmed expression of all 17 in olfactory sensory neurons. Most were also detected in vomeronasal sensory neurons and in neighboring tissues rich in ciliated cells such as respiratory epithelium. Immunoreactivity for one of the proteins identified, Spa17, colocalized with acetylated tubulin in the cilia layer of the olfactory epithelium. In contrast, the ciliary rootlet protein, Crocc, was located in discrete structures whose position was consistent with the dendritic knobs of the olfactory sensory neurons. A compilation of >2,000 mouse genes predicted to encode cilia-related proteins revealed a strong correlation (R = 0.99) between the number of studies predicting a gene's involvement in cilia and documented evidence of such involvement, a fact that simplifies the selection of genes for further study of the physiology of cilia.
Article
The transcription factor TBX1 is a key mediator of developmental abnormalities associated with DiGeorge/Velocardiofacial Syndrome. Studies in mice have demonstrated that decreased dosage of Tbx1 results in defects in pharyngeal arch, cardiovascular, and craniofacial development. The role of Tbx1 in cardiac development has been intensely studied; however, its role in palatal development is poorly understood. By studying the Tbx1-/- mice we found defects during the critical points of palate elongation and elevation. The intrinsic palate defects in the Tbx1-/- mice were determined by measuring changes in palate shelf length, proliferation, apoptosis, expression of relevant growth factors, and in palate fusion assays. Tbx1-/- embryos exhibit cleft palate with failed palate elevation in 100% and abnormal palatal-oral fusions in 50%. In the Tbx1-/- mice the palate shelf length was reduced and tongue height was greater, demonstrating a physical impediment to palate elevation and apposition. In vitro palate fusion assays demonstrate that Tbx1-/- palate shelves are capable of fusion but a roller culture assay showed that the null palatal shelves were unable to elongate. Diminished hyaluronic acid production in the Tbx1-/- palate shelves may explain failed palate shelf elevation. In addition, cell proliferation and apoptosis were perturbed in Tbx1-/- palates. A sharp decrease of Fgf8 expression was detected in the Tbx1-/- palate shelves, suggesting that Fgf8 is dependent on Tbx1 in the palate. Fgf10 is also up-regulated in the Tbx1-/- palate shelves and tongue. These data demonstrate that Tbx1 is a critical transcription factor that guides palatal elongation and elevation and that Fgf8 expression in the palate is Tbx1-dependent.
Article
Orofacial clefts are the most common craniofacial birth defects and one of the most common congenital malformations in humans. They require complex multidisciplinary treatment and are associated with elevated infant mortality and significant lifelong morbidity. The development of craniofacial structures is an exquisitely orchestrated process involving the coordinated growth of multiple, independently derived primordia. Perturbations impacting on the genesis or growth of these primordia may interfere with the proper morphogenesis of facial structures, resulting in clefting of the lip, the primary or secondary palate, or a combination of these sites. A variety of genetic approaches involving both human populations and animal models have greatly facilitated the search for genes involved in human clefting. In this article, we review the most prominent genes for orofacial clefts in the context of developmental pathways that shape the craniofacial complex. We highlight several Mendelian clefting syndromes that have provided valuable clues in identifying genes for the more common, isolated forms of clefting. Finally, we elaborate on a number of potential subclinical features (subphenotypes) associated with what have previously been diagnosed as 'isolated' clefts that may serve as additional markers for identifying individuals or families in whom there may be a greater risk of inheriting a cleft.
Article
Interferon regulatory factor 6 encodes a member of the IRF family of transcription factors. Mutations in interferon regulatory factor 6 cause Van der Woude and popliteal pterygium syndrome, two related orofacial clefting disorders. Here, we compared and contrasted the frequency and distribution of exonic mutations in interferon regulatory factor 6 between two large geographically distinct collections of families with Van der Woude and between one collection of families with popliteal pterygium syndrome. We performed direct sequence analysis of interferon regulatory factor 6 exons on samples from three collections, two with Van der Woude and one with popliteal pterygium syndrome. We identified mutations in interferon regulatory factor 6 exons in 68% of families in both Van der Woude collections and in 97% of families with popliteal pterygium syndrome. In sum, 106 novel disease-causing variants were found. The distribution of mutations in the interferon regulatory factor 6 exons in each collection was not random; exons 3, 4, 7, and 9 accounted for 80%. In the Van der Woude collections, the mutations were evenly divided between protein truncation and missense, whereas most mutations identified in the popliteal pterygium syndrome collection were missense. Further, the missense mutations associated with popliteal pterygium syndrome were localized significantly to exon 4, at residues that are predicted to bind directly to DNA. The nonrandom distribution of mutations in the interferon regulatory factor 6 exons suggests a two-tier approach for efficient mutation screens for interferon regulatory factor 6. The type and distribution of mutations are consistent with the hypothesis that Van der Woude is caused by haploinsufficiency of interferon regulatory factor 6. On the other hand, the distribution of popliteal pterygium syndrome-associated mutations suggests a different, though not mutually exclusive, effect on interferon regulatory factor 6 function.
Article
Epithelial cells of the C57B1/6J mouse embryo participate in a temporal sequence of events associated with the approximation, fusion and consolidation of components of the facial primordia into a definitive structure. These cells lose their surface microvilli, and after a brief period of quiescence they begin to fill the grooves separating facial constituents by producing a series of surface projections that increase in size and complexity as the process of fusion nears termination. Cessation of surface activity and the restoration of epithelial microville indicate the end of the temporal sequence. Significantly, the epithelial cells of primary palates of embryos with genetically-and phenytoin-induced cleft lip remain unchanged and do not participate in fusion. This epithelial sequence has not been described previously and we suggest that all of its steps may be critical to the normal development of the mammalian face.
Article
In most cells, the ubiquitously expressed Na+/H+ exchanger isoform 1 (NHE1) is thought to be a primary regulator of pH homeostasis, cell volume regulation, and the proliferative response to growth factor stimulation. To study the function of NHE1 during embryogenesis when these cellular processes are very active, we targeted the Nhe1 gene by replacing the sequence encoding transmembrane domains 6 and 7 with the neomycin resistance gene. NHE activity assays on isolated acinar cells indicated that the targeted allele is functionally null. Although the absence of NHE1 is compatible with embryogenesis, Nhe1 homozygous mutants (-/-) exhibit a decreased rate of postnatal growth that is first evident at 2 wk of age. At this time, Nhe1 -/- animals also begin to exhibit ataxia and epileptic-like seizures. Approximately 67% of the -/- mutants die before weaning. Postmortem examinations frequently revealed an accumulation of a waxy particulate material inside the ears, around the eyes and chin, and on the ventral surface of the paws. Histological analysis of adult tissues revealed a thickening of the lamina propria and a slightly atrophic glandular mucosa in the stomach.
Article
Our knowledge of the large family of proteins that contain the WD repeat continues to accumulate. The WD-repeat proteins are found in all eukaryotes and are implicated in a wide variety of crucial functions. The solution of the three-dimensional structure of one WD-repeat protein and the assumption that the structure will be common to all members of this family has allowed subfamilies of WD-repeat proteins to be defined on the basis of probable surface similarity. Proteins that have very similar surfaces are likely to have common binding partners and similar functions.
Article
1. Mice homozygous for a targeted mutation of the Hoxa-2 gene are born with a bilateral cleft of the secondary palate associated with multiple head and cranial anomalies and these animals die within 24 hr of birth (Gendron-Maguire et al., 1993; Rijli et al., 1993; Mallo and Gridley, 1996). We have determined the spatial and temporal expression of the Hoxa-2 homeobox protein in the developing mouse palate at embryonic stages E12, E13, E13.5, E14, E14.5, and E15. 3. By the E13.5 stage of development, Hoxa-2 protein was found to be expressed throughout the palatal shelf. These observations correlate with palatal shelf orientation and Hoxa-2 protein may play a direct or indirect role in guiding the palatal shelves vertically along side the tongue, starting with the tips of the palatal shelves at E13, followed by the entire palatal shelf at E13.5. 4. As development progresses to E14, the stage at which shelf elevation occurs, Hoxa-2 protein is downregulated in the palatal mesenchyme but remains in the medial edge epithelium. Expression of Hoxa-2 continues in the medial edge epithelium until the fusion of opposing palatal shelves. 5. By the E15 stage of development, Hoxa-2 is downregulated in the palate and expression is localized in the nasal and oral epithelia. 6. In an animal model of phenytoin-induced cleft palate, we report that Hoxa-2 mRNA and protein expression were significantly decreased, implicating a possible functional role of the Hoxa-2 gene in the development of phenytoin-induced cleft palate.
Article
Defined by the presence of four or more repeating units containing a conserved core of approximately 40 amino acids that usually ending with tryptophan-aspartic acid (WD), WD-repeat proteins belong to a large and fast-expanding conservative protein family. As demonstrated by the crystal structure of the G protein beta subunit, all WD-repeat proteins are speculated to form a circularized beta propeller structure. The importance of these proteins is not only demonstrated by their critical roles in many essential biological functions ranging from signal transduction, transcription regulation, to apoptosis, but is also recognized by their association with several human diseases. Defining the function of a WD-repeat protein is the current challenge. It is, however, paramount to uncover the function of individual WD-repeat proteins, explore the protein interaction mechanism through WD-repeat domains and, ultimately, understand the complex biological processes and organisms themselves.
Article
Cleft palate is one of the most common birth defects in humans, in which both genetic and environmental factors are involved. In mice, loss of the GABA(A) receptor beta3 subunit gene (Gabrb3) or the targeted mutagenesis of the GABA synthetic enzyme (Gad1) leads to cleft palate. These observations indicate that a GABAergic system is important in normal palate development. To determine what cell types, neuronal or nonneuronal, are critical for GABA signaling in palate development, we used the neuron-specific enolase promoter to express the beta3 subunit in Gabrb3 mutant mice. Expression of this construct was able to rescue the neurological phenotype, but not the cleft palate phenotype. Combined with the previous observation demonstrating that ubiquitous expression of the beta3 subunit rescued the cleft palate phenotype, a nonneuronal GABAergic system is implicated in palate development. Using immunohistochemistry, we detected GABA in the developing palate, initially in the nasal aspect of palatal epithelium of the vertical shelves; later in the medial edge epithelium of the horizontally oriented palatal shelves and in the epithelial seam during fusion. Based on these observations, we propose that GABA, synthesized by the palatal epithelium, acts as a signaling molecule during orientation and fusion of the palate shelves.
Article
The availability of the complete sequence of the human genome has dramatically facilitated the search for disease-causing sequence variations. In fact, the rate-limiting step has shifted from the discovery and characterization of candidate genes to the actual screening of human populations and the subsequent interpretation of observed variations. In this study we tested the hypothesis that some segments of candidate genes are more likely than others to contain disease-causing variations and that these segments can be predicted bioinformatically. A bioinformatic technique, prioritization of annotated regions (PAR), was developed to predict the likelihood that a specific coding region of a gene will harbor a disease-causing mutation based on conserved protein functional domains and protein secondary structures. This method was evaluated by using it to analyze 710 genes that collectively harbor 4,498 previously identified mutations. Nearly 50% of the genes were recognized as disease-associated after screening only 9% of the complete coding sequence. The PAR technique identified 90% of the genes as containing at least one mutation, with less than 40% of the screening resources that traditional approaches would require. These results suggest that prioritization strategies such as PAR can accelerate disease-gene identification through more efficient use of screening resources.
Article
The epidermis is a highly organized structure, the integrity of which is central to the protection of an organism. Development and subsequent maintenance of this tissue depends critically on the intricate balance between proliferation and differentiation of a resident stem cell population; however, the signals controlling the proliferation-differentiation switch in vivo remain elusive. Here, we show that mice carrying a homozygous missense mutation in interferon regulatory factor 6 (Irf6), the homolog of the gene mutated in the human congenital disorders Van der Woude syndrome and popliteal pterygium syndrome, have a hyperproliferative epidermis that fails to undergo terminal differentiation, resulting in soft tissue fusions. We further demonstrate that mice that are compound heterozygotes for mutations in Irf6 and the gene encoding the cell cycle regulator protein stratifin (Sfn; also known as 14-3-3sigma) show similar defects of keratinizing epithelia. Our results indicate that Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch and that Irf6 and Sfn interact genetically in this process.
The WD repeat: A common architecture for diverse functions
  • Tf Smith
  • C Gaitatzes
  • K Saxena
  • Ej Neer
Smith TF, Gaitatzes C, Saxena K, Neer EJ. 1999. The WD repeat: A common architecture for diverse functions. Trends Biochem Sci 24:181–185.
  • S Kondo
  • Bc Schutte
  • Rj Richardson
  • Bc Bjork
  • As Knight
  • Y Watanabe
  • E Howard
  • Ferreira De Limarl
  • S Daack-Hirsch
  • A Sander
  • Dm Mcdonald-Mcginn
  • Eh Zackai
  • Ej Lammer
  • As Aylsworth
  • Hh Ardinger
  • Ac Lidral
  • Br Pober
  • L Moreno
  • M Arcos-Burgos
  • C Valencia
  • C Houdayer
  • M Bahuau
  • D Moretti-Ferreira
  • A Richieri-Costa
  • Mj Dixon
  • Jc Murray
Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, Howard E, Ferreira De LimaRL, Daack-Hirsch S, Sander A, McDonald- McGinn DM, Zackai EH, Lammer EJ, Aylsworth AS, Ardinger HH, Lidral AC, Pober BR, Moreno L, Arcos-Burgos M, Valencia C, Houdayer C, Bahuau M, Moretti-Ferreira D, Richieri-Costa A, Dixon MJ, Murray JC. 2002. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet 32:285–289.
  • S Birnbaum
  • Ku Ludwig
  • H Reutter
  • S Herms
  • M Steffens
  • M Rubini
  • C Baluardo
  • M Ferrian
  • Almeida De Assis
  • N Alblas
  • Ma Barth
  • S Freudenberg
  • J Lauster
  • C Schmidt
  • G Scheer
  • M Braumann
  • B Berge
  • Sj Reich
  • Rh Schiefke
  • F Hemprich
  • A Potzsch
  • S Steegers-Theunissen
  • Rp Potzsch
  • B Moebus
  • S Horsthemke
  • B Kramer
  • Fj Wienker
  • Tf Mossey
  • Pa Propping
  • P Cichon
  • S Hoffmann
  • P Knapp
  • M Nothen
  • Mm Mangold
Birnbaum S, Ludwig KU, Reutter H, Herms S, Steffens M, Rubini M, Baluardo C, Ferrian M, Almeida de Assis N, Alblas MA, Barth S, Freudenberg J, Lauster C, Schmidt G, Scheer M, Braumann B, Berge SJ, Reich RH, Schiefke F, Hemprich A, Potzsch S, Steegers-Theunissen RP, Potzsch B, Moebus S, Horsthemke B, Kramer FJ, Wienker TF, Mossey PA, Propping P, Cichon S, Hoffmann P, Knapp M, Nothen MM, Mangold E. 2009. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24. Nat Genet 41:473–477.
The WD repeat: A common architecture for diverse functions
  • Smith