ArticlePDF Available

Animal Models of Aging Research: Implications for Human Aging and Age-Related Diseases*

Authors:

Abstract and Figures

Aging is characterized by an increasing morbidity and functional decline that eventually results in the death of an organism. Aging is the largest risk factor for numerous human diseases, and understanding the aging process may thereby facilitate the development of new treatments for age-associated diseases. The use of humans in aging research is complicated by many factors, including ethical issues; environmental and social factors; and perhaps most importantly, their long natural life span. Although cellular models of human disease provide valuable mechanistic information, they are limited in that they may not replicate the in vivo biology. Almost all organisms age, and thus animal models can be useful for studying aging. Herein, we review some of the major models currently used in aging research and discuss their benefits and pitfalls, including interventions known to extend life span and health span. Finally, we conclude by discussing the future of animal models in aging research.
Content may be subject to copyright.
Animal Models of Aging
Research: Implications
for Human Aging and
Age-Related Diseases
Sarah J. Mitchell,
1,
Morten Scheibye-Knudsen,
2,
Dan L. Longo,
3
and Rafael de Cabo
1
1
Translational Gerontology Branch,
2
Laboratory of Molecular Gerontology, and
3
Laboratory of Genetics, National Institute on Aging, National Institutes of Health,
Baltimore, Maryland 21224; email: sarah.mitchell@nih.gov; scheibyem@mail.nih.gov;
longod@grc.nia.nih.gov; decabora@grc.nia.nih.gov
Annu. Rev. Anim. Biosci. 2015. 3:283303
The Annual Review of Animal Biosciences is online
at animal.annualreviews.org
This articles doi:
10.1146/annurev-animal-022114-110829
This is a work of the U.S. Government and is not
subject to copyright protection in the United States.
Authors contributed equally to this work.
Keywords
aging, animal models, rodents, nonhuman primates
Abstract
Aging is characterized by an increasing morbidity and functional de-
cline that eventually results in the death of an organism. Aging is the
largest risk factor for numerous human diseases, and understanding
the aging process may thereby facilitate the development of new treat-
ments for age-associated diseases. The use of humans in aging re-
search is complicated by many factors, including ethical issues;
environmental and social factors; and perhaps most importantly, their
long natural life span. Although cellular models of human disease pro-
vide valuable mechanistic information, they are limited in that they
may not replicate the in vivo biology. Almost all organisms age, and
thus animal models can be useful for studying aging. Herein, we re-
view some of the major models currently used in aging research and
discuss their benefits and pitfalls, including interventions known to
extend life span and health span. Finally, we conclude by discussing
the future of animal models in aging research.
283
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
Click here for quick links to
Annual Reviews content online,
including:
• Other articles in this volume
Top cited articles
Top downloaded articles
• Our comprehensive search
Further
ANNUAL
REVIEWS
INTRODUCTION
The aging process is associated with a time-dependent progressive increase in disease suscepti-
bility. Almost all known organisms age, and although the maximum life span differs between
organisms, the shape of the curve, often considered representative of the health of the organism, is
remarkably consistent across species (Figure 1). In the human context, aging is becoming an
increasing socioeconomic problem for countries around the world. By the end of the twenty-first
century, the percentage of the population aged above 65 is projected to increase from approx-
imately 7% to more than 20% worldwide (http://esa.un.org/wpp/). Further adding to this aging
epidemic, the older population, and indeed the population in general, is becoming increasingly
unhealthy independent of a slight increase in life span over the past decades (1). Further, at least
80% of health care costs are accrued after a person turns 45 years of age (2). It is thus clear that
society is facing an enormous economic challenge in the decades to come, and investigating
interventions that ensure healthy aging is becoming increasingly important.
In the past decades, research into the underlying causes of aging has led to remarkable
breakthroughs, not only in the understanding of mechanisms of aging but also in interventions
that may increase life span and, more importantly, health span. Model organisms have been at the
forefront of this research and have yielded a wealth of information, allowing us to find conserved
pathways that may also regulate human aging.
One of the most successful examples was the initial discovery that inhibition of the target of
rapamycin (mTOR) pathway increases life span in yeast, nematodes, and flies, with later work
demonstrating these life-extending properties appear to be conserved in vertebrates (37). This led
to the discovery that rapamycin (named for its discovery on Easter Island, Rapa Nui), an inhibitor
of mTOR, may be able to ameliorate aspects of the accelerated aging diseases Hutchinson-Gilford
progeria and Cockayne syndrome (8, 9), as well as extending life span in mice (3, 10). Another
0
Age (days)
0
0
20
40
60
80
100
0
20
40
60
80
100
510152025
Age (days)
Survival (%)
Survival (%)
Age (days)
0
Age (days)
Caenorhabditis
elegans
Mus musculus
Macaca mullata
7,060 10,5603,520
30 0 200 400 600 800 1,000 1,200
31,68021,12010,560
Homo sapiens
Figure 1
The universality of aging. Theoretical life-span curves depicting the similarity in the aging process across model
organisms relative to humans. Despite the differences in life span, the shape of the curve, often considered
a measure of the health (or health span) of the organism, is similar.
284 Mitchell et al.
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
famous, but controversial, discovery underscoring the use of model organisms was the finding that
overexpressionof the sirtuinSir2 in yeast, nematodes, and flies leads to life-span extension (1113).
The implication of Sir2 in aging across several species led to the identification of the small molecule
resveratrol, which was able to activate Sir2 as well as the mammalian homolog SIRT1 (14). Later,
resveratrol was found to extend the life span of mice fed a high-fat diet, as well as having beneficial
effects in nonhuman primates (NHPs) fed a high-sugar, high-fat diet (1518). Compounds with
higher specificity and potency as SIRT1 activators were later synthesized, and two of these,
SRT1720 and SRT2104, have been shown to extend the life span of mice fed a standard diet (19,
20). These animal studies have led to the initiation of several clinical trials using SIRT1 activators in
humans (http://www.clinicaltrials.gov/ct2/results?term5resveratrol&Search5Search).
Model organisms continue to form the basis of aging research, as ethical issues, long natural life
span, environmental influences, genetic heterogeneity, and various other limiting factors com-
plicate use of human subjects in aging research (http://www.afar.org). But how do we assess the
ability of an intervention to improve both the health and longevity of an organism? Great strides
have been made since the pivotal reports of McCay describing the life-span extension of rats on
caloric restriction (CR) in the early twentieth century (21). A host of more sophisticated
assessments of health span and life span are now available (Figure 2). Nevertheless, we must still
consider the limitations of these models to accurately reflect human aging. In this review, we
attempt to describe vertebrate animal models that have been used to study aging and age-related
diseases, as well as suggest future directions for this research.
Interventions
Genetic Nutritional
Food intake
Body
temperature
Body
composition
Serum/
urine
analysis
PK data,
metabolomics
Glucose
Homeostasis
Glucose and
insulin levels
Glucose, insulin,
and pyruvate
tolerance tests
Behavior
Learning,
memory, and
cognition
Open eld,
rotarod,
MWM, fear
conditioning
Physical
performance
Treadmill,
strength test,
wirehang
Tissue
analysis
Microarray,
metabolomics,
proteomics
Immune
stress test
LPS, tumor
injection,
cold stress
Metabolic
assessment
Home cage
activity,
clams
Necropsy and
histology
Environmental
Figure 2
Testing interventions for longitudinal studies. Longitudinal assessments every three to six months on at least n ¼ 10 animals per
intervention are performed on animals across their life span to assess health span. Abbreviations: LPS, lipopolysaccharide; MWM, Morris
water maze; PK, pharmacokinetic.
285www.annualreviews.org
Animal Models of Aging Research
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
RODENT MODELS OF AGING
The laboratory mouse and rat are common models for the study of aging and age-related diseases.
The wealth of background knowledge, convenience of use, capacity to regulate environmental
factors, genetic manipulability, and expense have led to an explosion of aging-related research
focused on these models. Furthermore, their short life span relative to humans makes them easier
to study than long-lived animals. Indeed, rodents paved the way for both dietary and genetic
interventions in aging, as best illustrated by the discovery that CR extends rodent life span, as well
as the finding that mutations in certain genes are associated with longevity. In the following
sections, we discuss these common aging models, including their possible limitations.
Mouse Models
Inbred mice. Inbred mice have been the most extensively used strains for the study of aging and
age-related diseases to date. This method of breeding between relatives (usually a brother and
sister) increases the genetic similarity between the offspring; thus, differences between animals of
the same genetic strain can be attributed to environmental or treatment effects. The idea is to
minimize other factors that may affect an outcome or complicate interpretation of a study. Al-
though inbred strains have had considerable use in the study of aging, the major concern sur-
rounding their use is that some commonly used strains show only a limited range of pathology. For
example, C57BL/6 mice, upon which 70% of published animal studies have relied, show high
prevalence of lymphoma and increased susceptibility to metabolic dysregulation (22). But whether
one strain is more appropriate than another remains contentious. In particular, the assessment of
health span in inbred mice can be confounded owing to premature vision or hearing loss compared
with other inbred strains (23). Furthermore, differences in reported mean life span can vary up to
20% depending on the strain and sex of the mouse, despite the same genetic background and
environment (24, 25). The power of inbreeding is remarkable given its capacity to minimize genetic
variability; however, conclusions must be interpreted with caution, as data from a single inbred
strain may not be representative of the species as a whole. Further, the resulting genetic uniformity
of inbred strains is not representative of the human population.
With this in mind, the body of information surrounding the development, reproduction,
physiology, behavior, and genetics ofthese mice is vast. The Mouse Phenome Project conducted by
the Jackson Laboratories is an in-depth study of the physiology and life span of 31 genetically
diverse inbred mouse strains (http://phenome.jax.org/). Launched in 2001, the Mouse Phenome
Database (MPD) is the data coordination center for the international Mouse Phenome Project. The
MPD integrates quantitative phenotype, gene expression, and genotype data into a common
annotated framework to facilitate query and analysis (26). With more than 3,500 phenotype
measurements or traits relevant to human health, including cancer, aging, cardiovascular dis-
orders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug
addiction, and toxicity, the MPD represents an important resource for the study of aging biology
and its relevance to human disease.
Outbred and F1 mice. Outbred and F1 mice are generally used for the same reason: hybrid vigor,
with long life spans, high disease resistance, early fertility, large and frequent litters, rapid growth,
and large size. However, unlike F1 hybrids, outbred mice are genetically undefined. This brings an
advantage, as they can be considered to be more representative of the human population; however,
it represents an obstacle when assessing the benefits of an intervention (Figure 2). These outbred
stocks should not be used in situations where smaller numbers of mice from a range of inbred
286 Mitchell et al.
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
strains would give optimal results, such as determining sensitivities to substances or examining
physiological parameters (27). Caloric and methionine restriction are two of the most frequently
used interventions to extend life span in mice. In (BALB/cJ x C57BL/6 J)F1 mice, methionine
restriction has been shown to increase maximal life span as well as lower levels of serum insulin-like
growth factor 1 (IGF-1), insulin, glucose, and thyroid hormone (28). Forty percent CR extends
maximal life span in male B6D2F1 mice by 20% relative to ad libitumfed controls (29); however,
whether this effect also extends to females and to other F1 and outbred strains remains to be seen.
Wild-derived mice. But what about the wild-derived mice? It has been suggested that laboratory
mice eat roughly 20% more than wild mice under ad libitum laboratory conditions on a weight-
adjusted basis, indicating that they are metabolically obese (30). Thus, the life-span extension in
these fat CR mice may simply be due to the reduction of food intake to what they should normally
be eating if they were in the wild (31). Nevertheless, CR does extend life span in wild mice, but
whether there is a beneficial effect on health span remains to be determined (31). These results do
agree with some aspects of the CR literature in that the incidence of tumors was remarkably
reduced in wild mice on CR (31). Few studies since Harper et al. (31) in 2006 have used wild-
derived mice, most likely owing to the tedious nature of catching wild mice. However, one should
consider genetically heterogeneous models of mice and their utility in aging research, in particular
the four- or eight-way cross (see next section).
Genetically heterogeneous mouse models. Genetically heterogeneous mouse models provide
many advantages for research on aging but have been used infrequently. These mice are the off-
spring of four or eight different grandparent lines. In this cross, each mouse is genetically unique,
but replicate populations of essentially similar genetic structure can be generated quickly, at low
cost, and of arbitrary size from commercially available, genetically stable hybrid parents (32). A
recent study of genetically heterogeneous mice created from four inbred strains (BALB/c, C57BL/6,
C3H, and DBA2), referred to as HET3 mice, found that more than 90% died of cancer (33).
Although this homogeneity in the cause of death could be considered beneficial under some
circumstances, it highlights the importance of natural variation in causes of death for mouse
models to parallel the human situation. We do know that CR extends life span in HET3 mice (34).
Accelerated Aging
An important step in our understanding of aging was the description of several inherited human
diseases that show accelerated aging (35). Notably, all of these diseases appear to be caused by
mutations in genes that are involved in maintaining genome integrity, supporting the idea that the
accumulation of DNA damage may be involved in aging. Each of the diseases displays only
a few features of normal aging phenotype, and the disorders are therefore also called segmental
progerias. The diseases include Werner syndrome (36), Hutchinson-Gilford progeria (37),
Rothmund-Thomson syndrome (38), Bloom syndrome (39), Nestor-Guillermo progeria (40),
dyskeratosis congenita (41), ataxia telangiectasia (42), xeroderma pigmentosum (43), and
Cockayne syndrome (44). The genetic mutations underlying all of these disorders have been
characterized, and knockout mouse models have been created for most of them (45). Interestingly,
many of these knockout mice show much milder phenotypes, and premature aging often occurs
only when multiple genes are knocked out. Thus, it appears that backup systems exist for some of
these key pathways in mice that likely involve genes not yet defined. We describe some of the mouse
models in greater detail below.
287www.annualreviews.org
Animal Models of Aging Research
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
Human Werner syndrome is the accelerated aging disorder that most closely reflects human
aging and is caused by mutations in the RecQ-like DNA helicase Wrn. Patients develop normally
until they reach early adulthood. At this time, premature aging, such as cerebral atrophy, hair loss,
cataracts, osteoporosis, diabetes, and cardiovascular disease, becomes apparent, and the patients
generally die of heart disease at approximately 4050 years of age (46, 47). In the late nineties,
a mouse model was generated that showed little phenotype (48). However, crossing the Wrn
/
mice with mice lacking the tumor suppressor P53 led to a modest decrease in life span, whereas
knockout of the telomerase complex in a Wrn
/
background replicated many features of human
aging, such as osteoporosis and diabetes, possibly owing to defects in cellular replicative potential
(49, 50).
Hutchinson-Gilford progeria is caused by mutations in the LMNA gene, which encodes the
nuclear filament proteins lamin A and C. The LMNA mutation creates an alternative splice site
leading to the formation of a shortened mRNA transcript encoding a protein dubbed progerin that
accumulates in cells from Hutchinson-Gilford progeria patients. Accumulation of progerin dis-
rupts normal nuclear architecture, leading to DNA damage and replication problems (51). Patients
suffering from Hutchinson-Gilford progeria display aging-associated pathology, such as car-
diovascular disease, osteoporosis, hair loss, and loss of adipose tissue, and have a mean life span of
approximately 12 years (52). Hutchinson-Gilford patients in general do not display neurological
aging to any significant extent. Several mouse models have been created that recapitulate aspects of
the disorder, such as cardiovascular disease and osteoporosis (5355). More recently, an inducible
transgenic mouse that overexpresses progerin was created that showed premature skin aging and
hair loss (56). Notably, the skin aging was reversed when progerin expression was inhibited.
Possible cardiovascular changes in this mouse model were, however, not reported.
Dyskeratosis congenita is caused by mutations in genes believed to be involved in maintenance
of telomeres, the specialized structures that form the ends of the chromosomes. These include the
RNA component of telomerase, TERC, and protein components of telomerase, such as TERT and
DKC1 (57). Dyskeratosis congenita is characterized by the triad of nail dystrophy, reticular
hypopigmentation, and leukoplakia. In addition, bone marrow failure, idiopathic lung fibrosis,
graying of hair, and hair loss occur with varying penetrance. The disease thus shows only relatively
minor features of normal aging. Telomeres have, however, been implicated in aging, particularly at
the cellular level. This correlation originally stemmed from the observation that primary cells in
culture divide only a limited number of times. This phenomenon, termed the Hayflick limit, is
believed to be caused by telomere shortening that occurs with each division owing to problems in
replicating the very ends of the telomeres (58). Telomerase helps to maintain the telomere length,
and deficiencies in this enzyme lead to defects in proliferating cells, such as stem cells in the skin.
Interestingly, mice have very long telomeres, and knockout of TERC or TERT does not lead to any
immediate phenotype. However, inbreeding of telomerase-deficient mice leads to progressive loss
of telomere length with each generation. Thus, third-generation telomerase null mice show ac-
celerated aging (5860). As in humans, proliferative tissues are particularly prone to telomere
shortening, and TERC or TERT knockout mice may therefore represent good models for
interventions that aim at maintaining stem cell pools. It remains largely unexplained why telo-
merase deficiency affects the largely nonreplicating lung and has no phenotype in the vigorously
replicating intestinal mucosa. Furthermore, it is not well explained why mice that have long
telomeres have short life spans, while humans have short telomeres and live substantially longer. In
addition, although telomere shortening has been shown in circulating leukocytes with age in
several studies, it is unknown whether this correlates with increased mortality (6163). It is most
certain that telomeres play a role in cellular senescence in vitro; however, the effect on aging in vivo
is still being questioned.
288 Mitchell et al.
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
Xeroderma pigmentosum, particularly complementation group A, as well as ataxia telan-
giectasia and Cockayne syndrome are the only accelerated aging disorders in which severe
neurodegeneration is highly prevalent (646 6). Xeroderma p igmentosum is caused by muta-
tions in several genes (XPA, XPB, XPC, XPD, XPE, XPF, XPG, and XPV) involved in a DNA
repair pathway called nucleotide excision repair (43). Cockayne syndrome is most commonly
caused by mutations in CSA or CSB, two proteins involved in transcription-coupled nucleotide
excision repair. Ataxia telangiectasia is caused by mutations in the ATM kinase, an e nzyme
primarily involved in the signaling cascade after double-stranded DNA b reaks (64). Although
they work in different DNA repair pathways, the neurodegenerative phenotypes are r elatively
similar, with cerebellar degeneration, ataxia, and neuropathy. All of these diseases manifest in
early childhood, and patients have an average life span of 12 years (Cockayne syndrome) to 30
40 years (ataxia telangiectasia and xeroderma pigmentosum group A). Several mouse models
have been created to describe these diseases. None of them capture the severity of the disease in
humans, and only very minor degeneration of the cerebellum has been reported in one model of
ataxia telangiectasia (38).
The Cockayne syndrome mice mirror some aspects of human diseases, such as wasting and loss
of cells in the inner ear, and show a 10% reduction in brain size (9). XPA mice, however, appear
completely normal, although they show higher propensity for UV-induced skin cancer (65).
Crossing the XPA mice with the Cockayne syndrome mice produces a profound neurodegen-
erative phenotype with greatly shortened life span and global neurological deterioration (67, 68).
ATM null mice display only minor neurodegenerative phenotypes, although they do recapitulate
aspects of ataxia telangiectasia, such as immunodeficiency (69, 70). ATM
/
mice may thereby
represent an interesting model for the study of immune senescence. More recently, mice harboring
catalytically dead ATM show early embryonic lethality, perhaps indicating that nonfunctional
ATM may interfere with a general DNA damage response and that other kinases may compensate
if the ATM protein is completely absent (71).
Because of the idea that deficient DNA repair may contribute to aging, several mouse models
have been created with disruption of various enzymes in this pathway. One interesting model is the
ERCC1 and XPF knockout mice. ERCC1, in complex with the endonuclease XPF, participates in
nucleotide excision repair as well as interstrand crosslink DNA repair. Interestingly, ERCC1 and
XPF knockout mice show a strong multisystemic degeneration and die of liver failure upon
weaning (72, 73). The hepatic phenotype and early death of ERCC1 mice can be rescued by
overexpression of liver-specific ERCC1, which leads to survival after weaning and death from
kidney failure at two to three months of age (74). Notably, transcriptional profiling in the liver of
ERCC1-deficient mice at postnatal day 15 shows attenuation of the IGF-1 axis (75). As we touch
on below, loss of IGF-1 signaling is known to extend life span in mice and nematodes, indicating
that loss of this pathway in the ERCC1-deficient mice may be a compensatory response to DNA
damage accumulation. Indeed, the same transcriptional changes are observed in Xpa
/
/Csa
/
double-knockout mice (76).
Accumulation of mitochondrial damage has been proposed to be the underlying cause of
aging (77). Considerable research has supported a role for mitochondria in the aging process,
and a large number of animal models have been generated that support the mitochondrial theory
of aging. The most famous example of this may be the mutator mouse. This mouse model
harbors a mutation in the proofreading domain of the murine mitochondrial DNA po lymerase
gamma (POLG) (78). This leads to the accumulation of mutations in mitochondrial DNA but
interestingly does not lead to increased reactive oxygen species (ROS) production. The phe-
notype of the mice is characterized by weight loss, alopecia, osteoporosis, cardiomyopathy, and
hypogonadism and thereby shows significant overlap with many features of human aging.
289www.annualreviews.org
Animal Models of Aging Research
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
Notably, the mice show stem cell renewal defects but no overt neurodegenerative phenotype
(79). This is in contrast to humans with mitochondrial diseases, in whom neurodegeneration is
prominent but osteoporosis, hair loss, and anemia are rare (80). Even though no increase in
ROS production is observed in the mutatormouse, other mouse models have supported the role
of free radicals in aging. Particularly strong support came from the observation that over-
expression of catalase, a ROS scavenging enzyme, targeted to mitochondria leads to life-span
extension in mice ( 81). However, other models with decreased capacity to scavenge ROS have
not demonstrated shortened l ongevity (82).
Delayed Aging
Caloric (83) and methionine (84) restriction remain the only non-genetic, non-pharmacological
interventions to increase life span in mice. In fact, it has been nearly a century since the potential
life-extending effects of CR were first reported, and we are still searching for the elusive mech-
anism. CR extends life span in most species tested (as reviewed in 85). But recent evidence suggests
that the subtleties of CR may be more complex than initially thought. Indeed, the effect of 40% CR
on 41 recombinant inbred strains (ILSXISS) of mice, both males and females, found a huge
variation in the response to CR, with CR being detrimental to some strains (86). There are clear
examples of the differential response to CR in the literature. For example, reports of CR on the
DBA2 strain show anywhere from a detrimental effect on life span of approximately 6% to
a beneficial effect on life span of 2050% depending on the sex of the animals (8789). Fur-
thermore, diet composition plays a major role. Most recently, it has been shown that longevity can
be manipulated through altering macronutrient content, with mice fed a low-protein, high-
carbohydrate diet having maximal life span (90). And this is before we even consider the ef-
fect (if any) of CR. However, the translational potential for humans is low given the proven
difficulty of altering diet to manage diseases in people and the aversion to consuming 40% less
calories for years. Thus, alternative strategies are in demand. Perhaps if one understood how CR
works, an alternative approach could be developed.
In 2000, the Interventions Testing Program was developed to systematically study the effects of
diets, drugs, or other interventions on life span in mice. Unfortunately, this program is reserved
specifically for mice, as the number of rats required to obtain statistical significance for a particular
intervention far outweighs the space and financial availability to conduct these studies. One of the
first compounds tested, rapamycin, was found to extend median and maximal life span of both
male and female genetically heterogeneous mice when fed beginning at 600 days of age. Based on
age at 90% mortality, rapamycin led to an increase of 14% for females and 9% for males (3).
Rapamycin administered in the food from 9 months of age to genetically heterogeneous mice
resulted in significant increases in life span, including maximum life span, with an associated
increase in median survival of approximately 10% in males and 18% in females (33). Other
pharmacological interventions, such as resveratrol, metformin, and sirtuin activators, have been
demonstrated to increase life span in mice (15, 19, 91), through modulation of the nutrient sensing
pathways controlled by AMP-activated protein kinase and sirtuin 1 (92, 93). However, the efficacy
of these interventions might be sex and strain specific, and this warrants further investigation. It is
important to consider both males and females when determining the success of an intervention,
genetic, pharmacological, or otherwise (Figure 1). Indeed, male, but not female, transgenic mice
overexpressing Sirt6 (94) exhibit increased life span. Similarly, nordihydroguaiaretic acid and
aspirin significantly increased life span in heterogeneous male, but not female, mice (95). And more
recently, it has been shown that life-span extension of HET3 mice on rapamycin is independent of
insulin sensitivity (96).
290 Mitchell et al.
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
Genetic Models of Delayed Aging
In looking for the fountain of youth, several models have been identified through which genes are
shown to play a major role in the extension of life span. The Ames dwarf, Snell dwarf, and growth
hormone (GH) receptor knockout (GHRKO) mice are the classical mouse models of delayed
aging. These strains display exceptional longevity through alteration in the GH pathway resulting
in low-circulating IGF-1 (97, 98).
The Ames and Snell dwarf mice have loss-of-function mutations in their Prop-1 and Pit-1 genes,
respectively, resulting in deficiencies in circulating levels of thyrotropin, prolactin, and GH, which
lead to life-span extension (99). Interestingly, there is a sex-specific difference in maximal life span
of Ames dwarf mice, with an observed increase of 20% in males and 50% in females. Snell mice,
however, live up to 50% longer than their wild-type littermates (97, 99). These mice show some of
the characteristics of CR, including lower core body temperature (100, 101), improved insulin
sensitivity (98), enhanced antioxidant defenses (102), and delayed onset of neoplasia (103, 104),
which may play roles in their increased longevity. A defect in the Klotho gene leads to a premature
aging phenotype characterized by arteriosclerosis, osteoporosis, age-related skin changes, and
ectopic calcifications, together with short life span and infertility (105). Conversely, the transgenic
mice that overexpress Klotho exhibit significant resistance to oxidative stress associated with
moderate resistance to insulin/IGF-1, which may partly explain why these mice live longer than
wild-type mice (106). The GHRKO mouse was generated through the targeted disruption of the
GH receptor and GH-binding protein (97). These mice are long-lived and have a reduction in
glucose, insulin, thyroid hormones, and core body temperature that is in agreement with
observations reported for the Ames dwarf mouse (100). The GHRKO mice show a similar increase
in life span between males and females of 23% and 25%, respectively (97). Reductions in these
parameters may be important to the underlying mechanisms of delayed aging in these animals.
Interestingly, the GHRKO mice are obese but insulin sensitive (97), which is paradoxically op-
posite to what is observed in CR. A recent study that examined the role of the visceral fat in
adiposity and insulin sensitivity found that removal of visceral fat resulted in an improvement in
insulin sensitivity in wild-type mice but made the GHRKO mice more insulin resistant (107). When
GHRKO mice are put on CR, there is no life-span extension (108, 109), perhaps because CR
reduces adiposity, which may not be beneficial to these animals (107). Consistent with this idea of
altered fat signaling, removal of visceral fat at five months of age (110) leads to increased medial
and maximal life span in rats. The GHRKO mice achieve life-span extension by a mechanism that
appears to overlap the effects of CR given that CR cannot augment the effect. Thus, the available
tools to examine the mechanisms behind aging and potential interventions are vast.
Rats
Rats have been extensively used in the laboratory for research into many areas, including car-
diovascular disease, neurological disorders, neurobehavioral studies, cancer susceptibility, and
renal disease, as well as for behavioral studies of cognition. Such research has relied on the
widespread use of inbred Fischer 344 (F344) rats as well as other genetically defined (F1 hybrids)
and outbred rat populations. The National Institute on Aging (NIA) aging animal colony has
provided F344 rats since inception, possibly accounting for the relatively widespread use of this
model in aging research even today. Three options for aging rats, all genetically defined, are now
available under the NIA program: the F344, Brown-Norway (BN), and F1 hybrid of F344 3 BN
strains. Interestingly, F344 3 BN rats are used as models for progressive aortic vasculopathy, as
changes in the thoracic aorta have been shown to display age-related pathology similar to what
291www.annualreviews.org
Animal Models of Aging Research
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
occurs in humans (111). In cognitive studies, it is important to understand the phenotype of the
model that you are using to identify any pathologies or disabilities, which may affect the outcome.
For example, age-associated blindness can negatively impact and confound cognitive assessments.
Another issue is the occurrence of a single severe disease in inbred animals that can confound the
interpretation of an aging study; for instance, nephropathy in F344 rats is the major cause of
mortality (112).
Transgenic models. Althoughthe use of transgenic mice in research has steadily increased over the
past years, this has not been the case for transgenic rats. There have been hurdles to the de-
velopment of transgenic rats, such as sensitivity of rats fertilized eggs under in vitro conditions.
Nevertheless, recent advances in the development of transgenic rats have meant they are gaining
importance in cognitive research. In Alzheimers disease, it has been suggested that rats are a more
appropriate model for the human disease given that rats are closer to humans and have a pre-
dictable and multifaceted behavioral display (113). However, rat Alzheimers disease models do
not display the human-like neurofibrillary tangles that some mouse models do (113). Transgenic
rat models have been used for the study of retinal degeneration, including the P23H transgenic
albino rat for the study of the retinitis pigmentosa mutation (114) and the Royal College of
Surgeons transgenic rat used for the study of human retinitis pigmentosa (115).
Interventions for life span extension. McCay et al. (21) presented the very first report of extended
life span in his white rats upon dietary restriction. Since this pivotal report, many labs have
confirmed this finding in rats (116118). Notably, removal of the pituitary gland in male Wistar
rats at 70 days of age produced similar life spanextension effects as CR begun at the same time
point (119). Further supporting the role of GH-IGF-1 in longevity, heterogeneous GH knockout
rats had life-span extension of approximately 10% relative to control rats, although the ho-
mozygous GH knockout rats are actually shorter lived (120). However, not all interventions are
successful; take, for instance, metformin, which is successful in mice (91) but not in F344 rats (121),
and 2-deoxyglucose, which does not extend life span in F344 rats (122) but does in Caenorhabditis
elegans (123). Moving forward, integrated approaches of both mouse and rat models will together
advance our understanding of aging and age-related diseases.
NAKED MOLE RATS
The naked mo le rat (NMR; Heterocephalus glaber), also known as the sand puppy or desert
mole rat, is the longest-living rodent known to man, with a maximum life span of approximately
30 years (124). These mouse-sized rodents live up t o five times longer than expected based on
their small body size, but they are highly socialized rodents that a re commonly used in be-
havioral, neurological, and physiological research (124, 125). NMRs are common to the
subterranean burrows in the arid and semiarid regions of the h orn of Africa. They are the first
mammals discovered to exhibit eusociality, with the presence of a female queen and one to three
reproducing males, with the rest of the members of the colony functioning as workers for
gathering food and protection (124). But it is their biology that makes them so attractive to
gerontologists. Indeed, NMRs aged >24 years do exhibit signs of aging consistent with humans,
such as retinal degeneration and osteoarthritis (125), but display negligible senescence, no age-
related increase in mortality, and high fecundity until death. The possibilities for translation to
human health are undoubtedly significant if we discover the mechanism behind their well-
preserved health.
292 Mitchell et al.
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
Potential Mechanisms for Longevity in NMRs
Initially, enhanced antioxidant defense was thought to be one of the major mechanisms through
which NMRs had enhanced longevity (126) and extreme resistance to experimentally induced
tumorigenesis (127). The activity levels of the antioxidants, such as superoxide dismutases
(SOD12), do not change with age in NMRs, although they do decline with age in mice (128).
Thus, maintenance of the activity of SOD1 and -2 rather than an enhanced activity may contribute
to the extended life span of NMRs. Indeed, CR maintains the levels of these enzymes into old age in
mice (129).
The insulin/IGF signaling pathway is another important modulator of life span. In CR,
maintenance of this pathway is proposed to be one of the major factors influencing longevity
(130). Interestingly, NMRs display an abnormal response to a bolus of glucose as measured using
the glucose tolerance test with prolonged hyperglycemia (131). Their pancreata show an unusual
distribution of endocrine cells relative to most other rodents, which may explain their unusual
hyperglycemic condition. These animals show lower insulin levels (126), which further highlights
the complexity of the IGF pathway in longevity. These lower insulin levels and reduced levels of
IGF-1 are consistent with changes reported in CR (130, 132).
NMR cells produce fewer aberrant proteins, supporting the hypothesis that the more stable
proteome of the NMR contributes to its longevity (133, 134). Recently, it was shown that NMRs
have high levels of basal autophagy (135). Increased translational fidelity may play a role in the
NMRs longevity, and differences in translational fidelity may be important in determining life
span (133). A whole genome sequencing analysis of the NMR genome found that genes related to
the degradation of macromolecules, mitochondrial encoded genes, were not altered with age in
NMRs (136). Furthermore, telomerase reverse transcriptase showed stable expression regardless of
age (136). Taken together, these results highlight differentially expressed patterns of expression
ofNMRgenes,whichmayunderlielongevitymechanismsinthisanimal.Furthermore,itwouldbeof
significant interest to compare the gene expression profile of mice or rats on CR and on ad libitum
feeding to that of NMRs. Given the tenfold difference in life expectancy of mice and NMRs and the
likely high degree of genetic homology between the species, any differences detected are likely to be
importantinexplainingthedifferencesinlongevity. WouldCRfurtherextendthelifespanofNMRs,
or would it be detrimental?
PRIMATES
NHPs are perhaps the most appropriate model for the study of aging and age-related diseases.
Traditionally,rhesus macques (Macaca mulatta) have been the prime focus of aging research. Two
programs, one at the NIA of the National Institutes of Health and the other by the University of
WisconsinMadison, have studied this species in ongoing longevity studies for more than 30 years.
Rhesus monkeys are commonly used in biomedical research owing to their similarity to humans
across a wide range of variables, including genetics, endocrinology, physiology, neuroanatomy,
and cognitive function. However, there are drawbacks to the use of these monkeys in research.
Their weight and strength pose difficulties in husbandry, and sophisticated equipment is needed to
navigate daily life in these facilities. Furthermore, the strict social hierarchies and potential for
aggressive behavior mean that these incredibly intelligent animals need special consideration and
substantial environmental enrichment to keep them appropriately cared for. Monkeys can carry
and transmit many dangerous pathogens, making it expensive to study them in the context of
aging. Furthermore, the costs and ethical concerns of supply alone limit the contribution of NHPs
to research.
293www.annualreviews.org
Animal Models of Aging Research
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
Interventions for Longevity and Health
In recent years, two studies have highlighted the importance of the study environment for calorie
restriction and its application to humans. Most notably, the University of WisconsinMadison, and
the NIA NHP CR studies have highlighted the subtle differences in response to CR (137, 138).
Although we can all agree that CR delays the onset of age-associated diseases, the data on whether
thisis also associated with life-span extension are conflicting. Indeed, further studies and analysis are
needed to definitively address this question. Interestingly, we have recently shown that two years of
resveratroltreatmentimprovedthemetabolicsyndromeassociatedwitha high-fat, high-sugardiet in
rhesusmonkeys (1618).Clearly, the translationpotentialforcompoundslikeresveratrol is great,as
resveratrol now is in clinical trials for use in humans, with at least 80 different trials ongoing or
completed as of the publication of this article (http://www.clinicaltrials.gov).
ALTERNATE AGING MODELS
Although primates and rodents have supplied a wealth of information regarding the aging process,
alternative models are useful to test ongoing hypotheses of aging. This is particularly pertinent
because species-specific changes may influence results and data interpretation. The rate-of-living
hypothesis of aging is an example of a theory that initially explained many observations in aging
but was later questioned based on data from other species. This theory was based on observations
more than a century ago by the physiologist Max Rubner, who found that longer-lived species
generally have a lower resting metabolism per gram body weight than shorter-lived species do
(139). Although this relationship has been found across several species, there are several
exceptions. Birds, for example, appear to defy this relationship by living considerably longer than
expected for their metabolic rate (140, 141). To understand aging, it is therefore clear that in-
formation from multiple species across the phylogeny of life is of value. We now discuss a few of the
alternative vertebrate aging models that have been reported in the literature. Although these
models may appear rather extraordinary, each has its own strengths and weaknesses.
Fish
Fish have been surprisingly robustly present in the aging field throughout the years. This may
partially stem from some rather controversial claims in the early twentieth century that fish do not
age (142), a statement that was later repudiated (143). Nevertheless, fish have emerged as an
interesting model system in general biology and aging research. The zebrafish (Danio rerio)
remains the most common fish in the lab setting. It has a life span of approximately two to three
years and may therefore not be particularly advantageous for life-span studies as compared with
rodents. However, zebrafish have remarkable regenerative capabilities that could be of interest for
tissue repair and thus for longevity (144).
Another species that shows promise as a model for longevity is the turquoise killifish
(Nothobranchius furzeri). N. furzeri have several advantages compared with other vertebrate
aging models. First, the fish has one of the shortest life spans ( 13 weeks) of any vertebrate species
(145). Second, the fish can be kept at relatively high population densities, allowing for larger and
cheaper population studies than usual for rodent life-span studies. Third, the eggs are resistant to
desiccation and can be kept at room temperature for months. Storage of strains of fish is therefore
much easier than for rodents. Fourth, each female produces several hundred eggs, allowing for
rapid expansion of a colony (146). In addition, these fish respond with an increase in life span in
response to CR and show life-span extension after resveratrol treatment under standard diet
294 Mitchell et al.
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
conditions (147). Based on these observations, N. furzeri represents an interesting and inexpensive
model system for interventions in aging and could thus represent an ideal model system for higher
throughput screening of putative life span extending compounds. Indeed, several labs are cur-
rently pursuing research with this model (see http://www.nothobranchius.info/).
Dogs and Cats
Domesticated species, such as dogs and cats, represent interesting model systems for aging. Even
though the average canine life span of 1012 years discourages longevity studies, dogs sponta-
neously develop many age-related phenotypes, such as muscular and neurological decline, as well
as cardiovascular disease (148151). Rodents, however, do not develop significant neuro-
degeneration with age unless severely genetically manipulated (152). Dogs may therefore be
particularly interesting in the study of cognitive deterioration and age-associated neurodegen-
erative disorders (153). In addition, the physiology and pathology of dogs have been extremely
well characterized. Similarly, cats represent another physiologically well-characterized domes-
ticated animal that has been used in aging studies (149, 154156). As in dogs, several pathological
age-associated processes occur in felines, including kidney disease, arthritis, sarcopenia, and
neurological decline (149, 154156). Cats live an average of 1214 years, and life-span studies in
this species are therefore also problematic (157); however, their aging phenotype may make them
attractive models.
Birds
When looking across the life span of multiple species, longevity tends to scale according to the size
of the animal, in agreement with the rate-of-living hypothesis of aging. Birds, however, live a re-
markably long time when considering their relatively small body size (158). Interestingly, birds
maintain blood glucose levels one- to threefold higher than most mammals but with low insulin
and high glucagon levels (159). This could indicate that the insulin/IGF-1 pathway might be
involved in the longevity of birds. Indeed, although birds retain very high GH and IGF-1 levels
during development, the levels of these hormones decrease in adulthood (158). Other possible
explanations for the apparent longevity of birds have been related to decreased susceptibility to
oxidative stress and increased telomere length (158). In addition, fertility appears to be well
preserved with age in birds (160). Several bird species can be kept in a lab setting, and their high
reproductive capacity makes them easy models to work with. Life-span studies are, however,
difficult owing to their inherent longevity. The Japanese quail is a common lab bird that lives for
a maximum of six years and interestingly responds similarly to CR as mammals (161). Birds
represent an interesting animal for comparative cross-species studies of the interplay of metab-
olism and aging.
FUTURE DIRECTIONS
Animal models form the basis for preclinical biomedical research and will undoubtedly continue
to do so, as their life span, although shorter, essentially mimics that of humans, highlighting the
universality of the aging process (Figure 1). Transgenic mice have contributed greatly to our
knowledge of a multitude of different biological processes; however, this animal model also has its
drawbacks. In particular, inbred mouse strains are prone to numerous diseases, perhaps masking
true physiological responses to various interventions. This is widely acknowledged, and many
large-scale investigations, such as the Aging Interventions Testing Program, now use the four-way
295www.annualreviews.org
Animal Models of Aging Research
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
cross. Nevertheless, even outbred strains of mice are still significantly limited in the aging phe-
notype. For example, normally aged mice do not develop neurodegeneration and have very low
prevalence of cardiovascular disease (162, 163). It is perhaps not surprising that some organisms,
such as mice, age differently than humans; however, this is important to remember when
attempting to extrapolate from murine data to human physiology. It is thus possible that with
expanding physiological knowledge of species not conventionally used in aging research, many
nonmurine animal models may contribute to our understanding of aging. In particular, transgenic
primate models have now been generated, and useful primate models for studying genetic
pathways involved in aging could therefore be created (164). However, rodent models still
represent one of the best tools in our toolbox, and much translational knowledge can still be
gathered from these models. In conclusion, a multifaceted approach using different model
organisms is the key to further understanding human aging and age-related diseases.
DISCLOSURE STATEMENT
The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.
ACKNOWLEDGMENTS
The preparation of this manuscript was supported entirely by the Intramural Research Program of
the National Institute of Aging, National Institutes of Health.
LITERATURE CITED
1. Freid VM, Bernstein AB, Bush MA. 2012. Multiple chronic conditions among adults aged 45 and over:
trends over the past 10 years. NCHS Data Brief 100:18
2. AlemayehuB, Warner KE. 2004. Thelifetimedistributionof health care costs. Health Serv. Res. 39:62742
3. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, et al. 2009. Rapamycin fed late in life extends
lifespan in genetically heterogeneous mice. Nature 460:39295
4. Jia K, Chen D, Riddle DL. 2004. The TOR pathway interacts with the insulin signaling pathway to
regulate C. elegans larval development, metabolism and life span. Development 131:3897906
5. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, et al. 2005. Regulation of yeast
replicative life span by TOR and Sch9 in response to nutrients. Science 310:119396
6. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. 2004. Regulation of lifespan in Drosophila
by modulation of genes in the TOR signaling pathway. Curr. Biol. 14:88590
7. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, et al. 2012. Rapamycin-induced insulin
resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:163843
8. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, et al. 2011. Rapamycin reverses cellular
phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci.
Transl. Med. 3:89ra58
9. Scheibye-Knudsen M, Ramamoorthy M, Sykora P, Maynard S, Lin P-C, et al. 2012. Cockayne syndrome
group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial
autophagy. J. Exp. Med. 209:85569
10. Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schröder S, et al. 2013. Rapamycin extends murine
lifespan but has limited effects on aging. J. Clin. Investig. 123:327291
11. Rogina B, Helfand SL. 2004. Sir2 mediates longevity in the fly through a pathway related to calorie
restriction. PNAS 101:159986003
12. Kaeberlein M, McVey M, Guarente L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in
Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13:257080
296 Mitchell et al.
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
13. Tissenbaum HA, Guarente L. 2001. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis
elegans. Nature 410:22730
14. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, et al. 2003. Small molecule activators of
sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:19196
15. Baur J, Pearson K, Price N, Jamieson H, Lerin C, et al. 2006. Resveratrol improves health and survival of
mice on a high-calorie diet. Nature 444:33742
16. Fiori JL, Shin YK, Kim W, Krzysik-Walker SM, González-Mariscal I, et al. 2013. Resveratrol prevents
b-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes 62:350013
17. Jimenez-Gomez Y, Mattison JA, Pearson KJ, Martin-Montalvo A, Palacios HH, et al. 2013. Resveratrol
improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus
monkeys on high-fat, high-sugar diet. Cell Metab. 18:53345
18. Mattison J A, Wang M, Bernier M, Zhang J, Park S-S, et al. 2014. Resveratrol prevents high fat/sucrose
diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab.
20:18390
19. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, et al. 2014. The SIRT1 ac-
tivator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6:83643
20. Mercken EM, Mitchell SJ, Martin-Montalvo A, Minor RK, Almeida M, et al. 2014. SRT2104 extends
survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13:78796
21. McCay CM, Maynard LA, Sperling G, Barnes LL. 1975. The Journal of Nutrition: retarded growth, life
span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories. Nutr.
Rev. 33:24143
22. Ward JM. 2006. Lymphomas and leukemias in mice. Exp. Toxicol. Pathol. 57:37781
23. Tremblay ME, Zettel ML, Ison JR, Allen PD, Majewska AK. 2012. Effects of aging and sensory loss on
glial cells in mouse visual and auditory cortices. Glia 60:54158
24. Yuan R, Tsaih S-W, Petkova SB, De Evsikova CM, Xing S, et al. 2009. Aging in inbred strains of mice:
study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 8:27787
25. Festing MF, Blackmore DK. 1971. Life span of specified-pathogen-free (MRC category 4) mice and rats.
Lab. Anim. 5:17992
26. Grubb SC, Bult CJ, Bogue MA. 2014. Mouse Phenome Database. Nucleic Acids Res. 42:D82534
27. Chia R, Achilli F, Festing MFW, Fisher EMC. 2005. The origins and uses of mouse outbred stocks. Nat.
Genet. 37:118186
28. Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. 2005. Methionine-deficient
diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and
increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119
25
29. Wolf NS, Penn PE, Jiang D, Fei RG, Pendergrass WR. 1995. Caloric restriction: conservation of in vivo
cellular replicative capacity accompanies life-span extension in mice. Exp. Cell Res. 217:31723
30. Martin B, Ji S, Maudsley S, Mattson MP. 2010. Control laboratory rodents are metabolically morbid:
why it matters. PNAS 107:612733
31. Harper JM, Leathers CW, Austad SN. 2006. Does caloric restriction extend life in wild mice? Aging Cell
5:44149
32. Chrisp CE, Turke P, Luciano A, Swalwell S, Peterson J, Miller RA. 1996. Lifespan and lesions in ge-
netically heterogeneous (four-way cross) mice: a new model for aging research. Vet. Pathol. 33:73543
33. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, et al. 2011. Rapamycin, but not resveratrol or
simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci.
66:191201
34. Flurkey K, Astle CM, Harrison DE. 2010. Life extension by diet restriction and N-acetyl-l-cysteine in
genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 65A:127584
35. Kipling D, Davis T, Ostler EL, Faragher RG. 2004. What can progeroid syndromes tell us about human
aging? Science 305:142631
36. Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, et al. 2006. The spectrum of WRN mutations in
Werner syndrome patients. Hum. Mutat. 27:55867
297www.annualreviews.org
Animal Models of Aging Research
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
37. Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, et al. 2008. Phenotype and course of
Hutchinson-Gilford progeria syndrome. N. Engl. J. Med. 358:592604
38. Wang LL, Levy ML, Lewis RA, Chintagumpala MM, Lev D, et al. 2001. Clinical manifestations in
a cohort of 41 Rothmund-Thomson syndrome patients. Am. J. Med. Genet. 102:1117
39. Kaneko H, Kondo N. 2004. Clinical features of Bloom syndrome and function of the causative gene,
BLM helicase. Expert Rev. Mol. Diagn. 4:393401
40. Cabanillas R, Cadiñanos J, Villameytide JA, Pérez M, Longo J, et al. 2011. Nestor-Guillermo progeria
syndrome: a novel premature aging condition with early onset and chronic development caused by
BANF1 mutations. Am. J. Med. Genet. A 155A:261725
41. Dokal I. 2000. Dyskeratosis congenita in all its forms. Br. J. Haematol. 110:76879
42. Verhagen MM, Martin JJ, van Deuren M, Ceuterick-de Groote C, Weemaes CM, et al. 2012. Neu-
ropathology in classical and variant ataxia-telangiectasia. Neuropathology 32:23444
43. DiGiovanna JJ, Kraemer KH. 2012. Shining a light on xeroderma pigmentosum. J. Investig. Dermatol.
132:78596
44. Nance MA, Berry SA. 1992. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42:6884
45. Friedberg EC, Meira LB. 2006. Database of mouse strains carrying targeted mutations in genes affecting
biological responses to DNA damage. DNA Repair 5:189209
46. Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, et al. 2006. The spectrum of WRN mutations in
Werner syndrome patients. Hum. Mutat. 27:55867
47. Okabe E, Takemoto M, Onishi S, Ishikawa T, Ishibashi R, et al. 2012. Incidence and characteristics of
metabolic disorders and vascular complications in individuals with Werner syndrome in Japan. J. Am.
Geriatr. Soc. 60:99798
48. Lebel M, Leder P. 1998. A deletion within the murine Werner syndrome helicase induces sensitivity to
inhibitors of topoisomerase and loss of cellular proliferative capacity. PNAS 95:13097102
49. Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J, et al. 2000. Mutations in the WRN gene in
mice accelerate mortality in a p53-null background. Mol. Cell. Biol. 20:328691
50. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, et al. 2004. Essential role of limiting telomeres in
the pathogenesis of Werner syndrome. Nat. Genet. 36:87782
51. Musich PR, Zou Y. 2011. DNA-damage accumulation and replicative arrest in Hutchinson-Gilford
progeria syndrome. Biochem. Soc. Trans. 39:176469
52. Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, et al. 2008. Phenotype and course of
Hutchinson-Gilford progeria syndrome. N. Engl. J. Med. 358:592604
53. Fong LG, Frost D, Meta M, Qiao X, Yang SH, et al. 2006. A protein farnesyltransferase inhibitor
ameliorates disease in a mouse model of progeria. Science 311:1621
23
54. Varga R, Eriksson M, Erdos MR, Olive M, Harten I, et al. 2006. Progressive vascular smooth muscle cell
defects in a mouse model of Hutchinson-Gilford progeria syndrome. PNAS 103:325055
55. Yang SH, Meta M, Qiao X, Frost D, Bauch J, et al. 2006. A farnesyltransferase inhibitor improves
disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J. Clin. Investig.
116:211521
56. Sagelius H, RosengardtenY,SchmidtE,SonnabendC,RozellB,ErikssonM.2008.Reversible phenotype
in a mouse model of Hutchinson-Gilford progeria syndrome. J. Med. Genet. 45:794801
57. Calado RT, Young NS. 2009. Telomere diseases. N. Engl. J. Med. 361:235365
58. Blasco MA. 2007. Telomere length, stem cells and aging. Nat. Chem. Biol. 3:64049
59. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, et al. 1997. Telomere shortening and tumor
formation by mouse cells lacking telomerase RNA. Cell 91:2534
60. Liu Y, Snow BE, Hande MP, Yeung D, Erdmann NJ, et al. 2000. The telomerase reverse transcriptase is
limiting and necessary for telomerase function in vivo. Curr. Biol. 10:145962
61. Srettabunjong S, Satitsri S, Thongnoppakhun W, Tirawanchai N. 2014. The study on telomere length for
age estimation in a Thai population. Am. J. Forensic Med. Pathol. 35:14853
62. Svensson J, Karlsson MK, Ljunggren Ö, Tivesten Å, Mellström D, Movérare-Skrtic S. 2014. Leukocyte
telomere length is not associated with mortality in older men. Exp. Gerontol. 57:612
298 Mitchell et al.
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
63. Tedone E, Arosio B, Gussago C, Casati M, Ferri E, et al. 2014. Leukocyte telomere length and prevalence
of age-related diseases in semisupercentenarians, centenarians and centenarians offspring. Exp. Ger-
ontol. 58:9095
64. Anttinen A, Koulu L, Nikoskelainen E, Portin R, Kurki T, et al. 2008. Neurological symptoms and
natural course of xeroderma pigmentosum. Brain 131:197989
65. Nakane H, Takeuchi S, Yuba S, Saijo M, Nakatsu Y, et al. 1995. High incidence of ultraviolet-B-or
chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene.
Nature 377:16568
66. Woods CG, Taylor AM. 1992. Ataxia telangiectasia in the British Isles: the clinical and laboratory
features of 70 affected individuals. Q. J. Med. 82:16979
67. Murai M, Enokido Y, Inamura N, Yoshino M, Nakatsu Y, et al. 2001. Early postnatal ataxia and
abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne
syndrome Group B DNA repair genes. PNAS 98:1337984
68. Brace LE, Vose SC, Vargas DF, Zhao S, Wang XP, Mitchell JR. 2013. Lifespan extension by dietary
intervention in a mouse model of Cockayne syndrome uncouples early postnatal development from
segmental progeria. Aging Cell 12:114447
69. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, et al. 1996. Atm-deficient mice: a paradigm of
ataxia telangiectasia. Cell 86:15971
70. Xu Y, Baltimore D. 1996. Dual roles of ATM in the cellular response to radiation and in cell growth
control. Genes Dev. 10:240110
71. Yamamoto K, Wang Y, Jiang W, Liu X, Dubois RL, et al. 2012. Kinase-dead ATM protein causes
genomic instability and early embryonic lethality in mice. J. Cell Biol. 198:30513
72. Tian M, Shinkura R, Shinkura N, Alt FW. 2004. Growth retardation, early death, and DNA repair
defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol. Cell. Biol. 24:12005
73. McWhir J, Selfridge J, Harrison DJ, Squires S, Melton DW. 1993. Mice with DNA repair gene (ERCC-1)
deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat. Genet.
5:21724
74. Selfridge J, Hsia KT, Redhead NJ, Melton DW. 2001. Correction of liver dysfunction in DNA repair-
deficient mice with an ERCC1 transgene. Nucleic Acids Res. 29:454150
75. Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, et al. 2006. A new progeroid syndrome
reveals that genotoxic stress suppresses the somatotroph axis. Nature 444:103843
76. Van Der Pluijm I, Garinis GA, Brandt RMC, Gorgels TGMF, Wijnhoven SW, et al. 2007. Impaired
genome maintenance suppresses the growth hormone-insulin-like growth factor 1 axis in mice with
Cockayne syndrome. PLOS Biol. 5:2338
77. Balaban RS, Nemoto S, Finkel T. 2005. Mitochondria, oxidants, and aging. Cell 120:48395
78. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, et al. 2004. Premature aging in
mice expressing defective mitochondrial DNA polymerase. Nature
429:41723
79. Ahlqvist KJ, Hamalainen RH, Yatsuga S, Uutela M, Terzioglu M, et al. 2012. Somatic progenitor cell
vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice.
Cell Metab. 15:1009
80. Scheibye-Knudsen M, Scheibye-Alsing K, Canugovi C, Croteau DL, Bohr VA. 2013. A novel diagnostic
tool reveals mitochondrial pathology in human diseases and aging. Aging 5:192208
81. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, et al. 2005. Extension of murine life span
by overexpression of catalase targeted to mitochondria. Science 308:190911
82. Zhang Y, Ikeno Y, Qi W, Chaudhuri A, Li Y, et al. 2009. Mice deficient in both Mn superoxide dismutase
and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but
no reduction in longevity. J. Gerontol. A Biol. Sci. Med. Sci. 64:121220
83. McCay CM, Crowell MF, Maynard LA. 1935. The effect of retarded growth upon the length of life span
and upon the ultimate body size. J. Nutr. 10:6379
84. Orentreich N, Matias JR, DeFelice A, Zimmerman JA. 1993. Low methionine ingestion by rats extends
life span. J. Nutr. 123:26974
299www.annualreviews.org
Animal Models of Aging Research
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
85. Swindell WR. 2012. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for
genotype-dependent effects on lifespan. Ageing Res. Rev. 11:25470
86. Liao C-Y, Rikke BA, Johnson TE, Diaz V, Nelson JF. 2010. Genetic variation in the murine lifespan
response to dietary restriction: from life extension to life shortening. Aging Cell 9:9295
87. Turturro A, Witt WW, Lewis S, Hass BS, Lipman RD, Hart RW. 1999. Growth curves and survival
characteristics of the animals used in the Biomarkers of Aging Program. J. Gerontol. A Biol. Sci. Med. Sci.
54:B492501
88. Forster MJ, Morris P, Sohal RS. 2003. Genotype and age influencetheeffect of caloric intakeonmortality
in mice. FASEB J. 17:69092
89. Bronson RT, Lipman RD. 1991. Reduction in rate of occurrence of age related lesions in dietary restricted
laboratory mice. Growth Dev. Aging 55:16984
90. Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, et al. 2014. The ratio of macro-
nutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice.
Cell Metab. 19:41830
91. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, et al. 2013. Metformin improves
healthspan and lifespan in mice. Nat. Commun. 4:2192
92. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. 2013. Biguanides suppress hepatic glucagon
signalling by decreasing production of cyclic AMP. Nature 494:25660
93. Hubbard BP, Gomes AP, Dai H, Li J, Case AW, et al. 2013. Evidence for a common mechanism of SIRT1
regulation by allosteric activators. Science 339:121619
94. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, et al. 2012. The sirtuin SIRT6 regulates lifespan in male
mice. Nature 483:21821
95. Strong R, Miller Richard A, Astle Clinton M, Floyd Robert A, Flurkey K, et al. 2008. Nordihy-
droguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell
7:64150
96. Lamming DW, Ye L, Astle CM, Baur JA, Sabatini DM, Harrison DE. 2013. Young and old genetically
heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell
12:71218
97. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. 2001. Lifespan extension and delayed immune
and collagen aging in mutant mice with defects in growth hormone production. PNAS 98:673641
98. Hsieh C-C, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J. 2002. Effects of the Pit1 mutation
on the insulin signaling pathway: implications on the longevity of the long-lived Snell dwarf mouse.
Mech. Ageing Dev. 123:124555
99. Bartke A, Brown-Borg H. 2004. Life extension in the dwarf mouse. Curr. Top. Dev. Biol. 63:189225
100. Hauck SJ, Hunter WS, Danilovich N, Kopchick JJ, Bartke A. 2001. Reduced levels of thyroid hormones,
insulin, and glucose, and lower body core temperature in the growth hormone receptor/binding protein
knockout mouse. Exp. Biol. Med. 226:55258
101. Hunter WS, Croson WB, Bartke A, Gentry MV, Meliska CJ. 1999. Low body temperature in long-lived
Ames dwarf mice at rest and during stress. Physiol. Behav. 67:43337
102. Romanick MA, Rakoczy SG, Brown-Borg HM. 2004. Long-lived Ames dwarf mouse exhibits increased
antioxidant defense in skeletal muscle. Mech. Ageing Dev. 125:269
81
103. Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A. 2003. Delayed occurrence of fatal neoplastic
diseases in Ames dwarf mice: correlation to extended longevity. J. Gerontol. A Biol. Sci. Med. Sci.
58:29196
104. Bartke A, Masternak MM, Al-Regaiey KA, Bonkowski MS. 2007. Effects of dietary restriction on the
expression of insulin-signaling-related genes in long-lived mutant mice. Interdiscip. Top. Gerontol.
35:6982
105. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, et al. 1997. Mutation of the mouse klotho
gene leads to a syndrome resembling ageing. Nature 390:4551
106. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, et al. 2005. Suppression of aging in mice by the
hormone Klotho. Science 309:182933
300 Mitchell et al.
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
107. Masternak MM, Bartke A, Wang F, Spong A, Gesing A, et al. 2012. Metabolic effects of intra-abdominal
fat in GHRKO mice. Aging Cell 11:7381
108. Bonkowski MS, Dominici FP, Arum O, Rocha JS, Al Regaiey KA, et al. 2009. Disruption of growth
hormone receptor prevents calorie restriction from improving insulin action and longevity. PLOS ONE
4:e4567
109. Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A. 2006. Targeted disruption of
growth hormone receptor interferes with the beneficial actions of calorie restriction. PNAS 103:79015
110. Muzumdar R, Allison DB, Huffman DM, Ma X, Atzmon G, et al. 2008. Visceral adipose tissue
modulates mammalian longevity. Aging Cell 7:43840
111. Miller SJ, Watson WC, Kerr KA, Labarrere CA, Chen NX, et al. 2007. Development of progressive aortic
vasculopathy in a rat model of aging. Am. J. Physiol. Heart Circ. Physiol. 293:H263443
112. Shimokawa I, Higami Y, Hubbard GB, McMahan CA, Masoro EJ, Yu BP. 1993. Diet and the suitability
of the male Fischer 344 rat as a model for aging research. J. Gerontol. 48:B2732
113. Do Carmo S, Cuello AC. 2013. Modeling Alzheimers disease in transgenic rats. Mol. Neurodegener.
8:37
114. Cuenca N, Pinilla I, Sauve Y, Lu B, Wang S, Lund RD. 2004. Regressive and reactive changes in the
connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Neuroscience 127:30117
115. Villegas-Perez MP, Lawrence JM, Vidal-Sanz M, Lavail MM, Lund RD. 1998. Ganglion cell loss in RCS
rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment
epithelium. J. Comp. Neurol. 392:5877
116. Masoro E. 2006. Dietary restriction-induced life extension: a broadly based biological phenomenon.
Biogerontology 7:15355
117. Weindruch R. 1996. The retardation of aging by caloric restriction: studies in rodents and primates.
Toxicol. Pathol. 24:74245
118. Yu BP, Masoro EJ, Murata I, Bertrand HA, Lynd FT. 1982. Life span study of SPF Fischer 344 male rats
fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. J. Gerontol. 37:13041
119. Everitt AV, Seedsman NJ, Jones F. 1980. The effects of hypophysectomy and continuous food restriction,
begunat ages70and400 days, on collagen aging, proteinuria, incidenceofpathologyand longevity in the
male rat. Mech. Ageing Dev. 12:16172
120. Shimokawa I, Higami Y, Utsuyama M, Tuchiya T, Komatsu T, et al. 2002. Life span extension by
reduction in growth hormone-insulin-like growth factor-1 axis in a transgenic rat model. Am. J. Pathol.
160:225965
121. Smith DL, Elam CF, Mattison JA, Lane MA, Roth GS, et al. 2010. Metformin supplementation and life
span in Fischer-344 rats. J. Gerontol. A Biol. Sci. Med. Sci. 65:46874
122. Minor RK, Smith DL Jr, Sossong AM, Kaushik S, Poosala S, et al. 2010. Chronic ingestion of 2-deoxy-d-
glucose induces cardiac vacuolization and increases mortality in rats. Toxicol. Appl. Pharmacol.
243:33239
123. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. 2007. Glucose restriction extends
Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress.
Cell Metab. 6:28093
124. Jarvis JU. 1981. Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science
212:57173
125. Edrey YH, Hanes M, Pinto M, Mele J, Buffenstein R. 2011. Successful aging and sustained good health in
the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J.
52:4153
126. Buffenstein R. 2008. Negligible senescence in the longest living rodent, the naked mole rat: insights from
a successfully aging species. J. Comp. Physiol. B 178:43945
127. Liang S, Mele J, Wu Y, Buffenstein R, Hornsby PJ. 2010. Resistance to experimental tumorigenesis in
cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell 9:62635
128. Csiszar A, Labinskyy N, Zhao X, Hu F, Serpillon S, et al. 2007. Vascular superoxide and hydrogen
peroxide production and oxidative stress resistance in two closely related rodent species with disparate
longevity. Aging Cell 6:78397
301www.annualreviews.org
Animal Models of Aging Research
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
129. Rao G, Xia E, Nadakavukaren MJ, Richardson A. 1990. Effect of dietary restriction on the age-
dependent changes in the expression of antioxidant enzymes in rat liver. J. Nutr. 120:6029
130. Bartke A. 2008. Insulin and aging. Cell Cycle 7:333843
131. Kramer B, Buffenstein R. 2004. The pancreas of the naked mole-rat (Heterocephalus glaber): an ul-
trastructural and immunocytochemical study of the endocrine component of thermoneutral and cold
acclimated animals. Gen. Comp. Endocrinol. 139:20614
132. Barzilai N, Banerjee S, Hawkins M, Chen W, Rossetti L. 1998. Caloric restriction reverses hepatic insulin
resistance in aging rats by decreasing visceral fat. J. Clin. Investig. 101:135361
133. Azpurua J, Ke Z, Chen IX, Zhang Q, Ermolenko DN, et al. 2013. Naked mole-rat has increased
translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. PNAS
110:1735055
134. Rodriguez KA, Edrey YH, Osmulski P, Gaczynska M, Buffenstein R. 2012. Altered composition of liver
proteasomeassemblies contributestoenhancedproteasome activity in the exceptionally long-lived naked
mole-rat. PLOS ONE 7:e35890
135. Zhao S, Lin L, Kan G, Xu C, Tang Q, et al. 2014. High autophagy in the naked mole rat may play
a significant role in maintaining good health. Cell. Physiol. Biochem. 33:32132
136. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, et al. 2011. Genome sequencing reveals insights
into physiology and longevity of the naked mole rat. Nature 479:22327
137. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, et al. 2009. Caloric restriction
delays disease onset and mortality in rhesus monkeys. Science 325:2014
138. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, et al. 2012. Impact of caloric restriction on
health and survival in rhesus monkeys from the NIA study. Nature 489:31821
139. Hulbert AJ. 2008. Explaining longevity of different animals: Is membrane fatty acid composition the
missing link? Age 30:8997
140. Barja G, Cadenas S, Rojas C, Pérez-Campo R, López-Torres M. 1994. Low mitochondrial free radical
production per unit O2 consumption can explain the simultaneous presence of high longevity and high
aerobic metabolic rate in birds. Free Radic. Res. 21:31727
141. Furness LJ, Speakman JR. 2008. Energetics and longevity in birds. Age 30:7587
142. Bidder GP. 1932. Senescence. Br. Med. J. 2:58385
143. Comfort A. 1963. Effect of delayed and resumed growth on the longevity of a fish (Lebistes reticulatus,
Peters) in captivity. Gerontologia 49:15055
144. Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, et al. 2006. A dynamic epicardial injury
response supports progenitor cell activity during zebrafish heart regeneration. Cell 127:60719
145. Gerhard GS. 2007. Small laboratory fish as models for aging research. Ageing Res. Rev. 6:6472
146. Graf M, Cellerino A, Englert C. 2010. Gender separation increases somatic growth in females but does
not affect lifespan in Nothobranchius furzeri. PLOS ONE 5:e11958
147. Terzibasi E, Valenzano DR, Cellerino A. 2007. The short-lived fish Nothobranchius furzeri as a new
model system for aging studies. Exp. Gerontol. 42:8189
148. Fast R, Schutt T, Toft N, Moller A, Berendt M. 2013. An observational study with long-term follow-up of
canine cognitive dysfunction: clinical characteristics, survival, and risk factors. J. Vet. Intern . Med. 27:82229
149. Freeman LM. 2012. Cachexia and sarcopenia: emerging syndromes of importance in cats and dogs. J.
Vet. Intern. Med. 26:317
150. Kim SA, Lee KH, Won HY, Park S, Chung JH, et al. 2013. Quantitative assessment of aortic elasticity
with aging using velocity-vector imaging and its histologic correlation. Arterioscler. Thromb. Vasc. Biol.
33:130612
151. Selman C, Nussey DH, Monaghan P. 2013. Aging: Its a dogs life. Curr. Biol. 23:R45153
152. Jucker M. 2010. The benefits and limitations of animal models for translational research in neurode-
generative diseases. Nat. Med. 16:121014
153. Borras D, Ferrer I, Pumarola M. 1999. Age-related changes in the brain of the dog. Vet. Pathol. 36:20211
154. Gowan RA, Baral RM, Lingard AE, Catt MJ, Stansen W, et al. 2012. A retrospective analysis of the
effects of meloxicam on the longevity of aged cats with and without overt chronic kidney disease. J. Feline
Med. Surg. 14:87681
302 Mitchell et al.
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
155. Reynolds BS, Chetboul V, Nguyen P, Testault I, Concordet DV, et al. 2013. Effects of dietary salt intake
on renal function: a 2-year study in healthy aged cats. J. Vet. Intern. Med. 27:50715
156. Ryan JM, Lascelles BD, Benito J, Hash J, Smith SH, et al. 2013. Histological and molecular charac-
terisation of feline humeral condylar osteoarthritis. BMC Vet. Res. 9:110
157. Taylor EJ, Adams C, Neville R. 1995. Some nutritional aspects of ageing in dogs and cats. Proc. Nutr.
Soc. 54:64556
158. Hickey AJ, Jullig M, Aitken J, Loomes K, Hauber ME, Phillips AR. 2012. Birds and longevity: Does flight
driven aerobicity provide an oxidative sink? Ageing Res. Rev. 11:24253
159. Braun EJ, Sweazea KL. 2008. Glucose regulation in birds. Comp. Biochem. Physiol. B Biochem. Mol.
Biol. 151:19
160. Holmes DJ, Thomson SL, Wu J, Ottinger MA. 2003. Reproductive aging in female birds. Exp. Gerontol.
38:75156
161. Ottinger MA, Mobarak M, Abdelnabi M, Roth G, Proudman J, Ingram DK. 2005. Effects of calorie
restriction on reproductive and adrenal systems in Japanese quail: Are responses similar to mammals,
particularly primates? Mech. Ageing Dev. 126:96775
162. Breslow JL. 1996. Mouse models of atherosclerosis. Science 272:68588
163. Gomes AC, Falcao-Pires I, Pires AL, Bras-Silva C, Leite-Moreira AF. 2013. Rodent models of heart
failure: an updated review. Heart Fail. Rev. 18:21949
164. Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, et al. 2008. Towards a transgenic model
of Huntingtons disease in a non-human primate. Nature 453:92124
303www.annualreviews.org
Animal Models of Aging Research
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
Annual Review of
Animal Biosciences
Volume 3, 2015
Contents
If a Bull Were a Cow, How Much Milk Would He Give?
Morris Soller ...............................................1
One Hundred Years of Statistical Developments in Animal Breeding
Daniel Gianola and Guilherme J.M. Rosa .........................19
The Genome 10K Project: A Way Forward
Klaus-Peter Koepfli, Benedict Paten, the Genome 10K Communit y
of Scientists, and Stephen J. OBrien .............................57
Conservation Genetics and Genomics of Amphibians and Reptiles
H. Bradley Shaffer, Müge Gidis
¸
, Evan McCartney-Melstad, Kevin M. Neal,
Hilton M. Oyamaguchi, Marisa Tellez, and Erin M. Toffelmier .......113
Elephant Natural History: A Genomic Perspective
Alfred L. Roca, Yasuko Ishida, Adam L. Brandt, Neal R. Benjamin,
Kai Zhao, and Nicholas J. Georgiadis ...........................139
Development, Regenerati on, and Evolution of Feathers
Chih-Feng Chen, John Foley, Pin-Chi Tang, Ang Li, Ting Xin Jiang,
Ping Wu, Randall B. Widelitz, and Cheng Ming Chuong .............169
The Genetics of Skeletal Muscle Disorders in Hors es
James R. Mickelson and Stephanie J. Valberg .....................197
Unraveling the Swine Genome: Implications for Human Health
Lawrence B. Schook, Tiago V. Collares, Kwame A. Darfour-Oduro,
Arun Kumar De, Laurie A. Rund, Kyle M. Schachtschneider,
and Fabiana K. Seixas ......................................219
The Domestic Piglet: An Important Model for Investigating the
Neurodevelopmental Consequences of Early Life Insults
Matthew S. Conrad and Rodney W. Johnson .....................245
vii
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
A New Medical Research Model: Ethically and Responsibly Advancing
Health for Humans and Animal s
Patricia N. Olson and Robi n R. Ganzert .........................265
Animal Models of Aging Research: Implications for Human Aging and
Age-Related Diseases
Sarah J. Mitchell, Morten Scheibye-Knudsen, Dan L. Longo,
and Rafael de Cabo ........................................283
Chronic Wasting Disease of Cervids: Current Knowledge and
Future Perspectives
Nicholas J. Haley and Edward A. Hoover ........................305
Comparative Immunology of Allergic Responses
Laurel J. Gershwin .........................................327
Environmental Role in Influenza Virus Outbreaks
Harini Sooryanarain and Subbiah Elankumaran ...................347
Strategies for Design and Application of Enteric Viral Vaccines
Kuldeep S. Chattha, James A. Roth, and Linda J. Saif ...............375
Understanding the Basis of Parasite Strain-Restricted Immunity
to Theileria parva
W. Ivan Morrison, Timothy Connelley, Johanneke D. Hemmink,
and Niall D. MacHugh ......................................397
The Impact of the Milk Glycobiome on the Neonate Gut Microbiota
Alline R. Pacheco, Daniela Baril e, Mark A. Underwood,
and David A. Mills .........................................419
The Early Impact of Genomics and Metagenomics on Ruminal Microbiology
Stuart E. Denman and Christopher S. McSweeney ..................447
Lessons from Reproductive Technology Research
George E. Seidel, Jr. ........................................467
Uterine Responses to the Preattachment Embryo in Domestic Ungulates:
Recognition of Pregnancy and Preparation for Implantation
Stefan Bauersachs and Eckhard Wolf ...........................489
Thermal Biology of Domestic Animals
Robert J. Collier and Kifle G. Gebremedhin ......................513
Comparative Dendritic Cell Biology of Veterinary Mammals
Artur Summerfield, Gael Auray, and Meret Ricklin .................533
Genetically Engineered Livestock: Ethical Use for Food and Medical Models
Lydia C. Garas, James D. Murray, and Elizabeth A. Maga ...........559
viii Contents
Annu. Rev. Anim. Biosci. 2015.3:283-303. Downloaded from www.annualreviews.org
Access provided by National Library Of Medicine on 03/10/15. For personal use only.
... Normal animal strains typically result in restricted genetic diversity, which may not consistently apply to clinical applications in the considerably more heterogeneous human population (de Magalhães, 2014). As an illustration, C57BL/6 mice, which have been utilized in 70% of published animal studies, exhibit a higher incidence of lymphoma and increased vulnerability to metabolic dysregulation (Ward, 2006;Mitchell et al., 2015). Information derived from a solitary inbred strain might lack generalizability to the entire species. ...
... Information derived from a solitary inbred strain might lack generalizability to the entire species. Moreover, the genetic uniformity that ensues from the breeding of strains is not indicative of the human population (Mitchell et al., 2015). As a result, genetically modified animals can occasionally serve to advance our understanding of genetic diversity. ...
Article
Full-text available
With the increase in life expectancy, aging has emerged as a significant health concern. Due to its various mechanisms of action, cardiometabolic drugs are often repurposed for other indications, including aging. This systematic review analyzed and highlighted the repositioning potential of cardiometabolic drugs to increase lifespan as an aging parameter in animal studies and supplemented by information from current clinical trial registries. Systematic searching in animal studies was performed based on PICO: “animal,” “cardiometabolic drug,” and “lifespan.” All clinical trial registries were also searched from the WHO International Clinical Trial Registry Platform (ICTRP). Analysis of 49 animal trials and 10 clinical trial registries show that various cardiovascular and metabolic drugs have the potential to target lifespan. Metformin, acarbose, and aspirin are the three most studied drugs in animal trials. Aspirin and acarbose are the promising ones, whereas metformin exhibits various results. In clinical trial registries, metformin, omega-3 fatty acid, acarbose, and atorvastatin are currently cardiometabolic drugs that are repurposed to target aging. Published clinical trial results show great potential for omega-3 and metformin in healthspan. Systematic Review Registration: crd.york.ac.uk/prospero/display_record.php?RecordID=457358 , identifier: CRD42023457358.
... Levels of CD4 and CD8 memory T cells and naïve T cells have been used to give good estimates of life expectancy of middle-aged mice. Differences between these two subtypes are examined to understand the genetic factors underlying the aging process and the mechanisms of aging-related pathologies (36,37). ...
Article
Full-text available
The theoretical equivalence of expressing that a cell is aging to its inability to perform the assumed function is not exactly accurate, it involves a gradual decrease in cell aging mechanisms. Factors such as genetics, lifestyle, and environmental effects maintain the biological change of the cell. The concept of cellular senescence was initially introduced by Hayflick and his collaborators in 1961 when they noticed that human diploid fibroblasts cultured in vitro could undergo only a limited number of cell divisions before their ability to proliferate was permanently halted. This phenomenon, known as the 'Hayflick limit', was subsequently linked to the gradual shortening of telomeres with each successive round of cell division. Throughout the aging process, senescent cells collect in different tissues. Their involvement in age-related health issues such as neurodegenerative disorders, heart problems, cancer, kidney-related changes, chronic lung diseases, and osteoarthritis suggests that targeting senescent cells therapeutically could be promising across various health conditions. This review will discuss the available data on which cell types may undergo aging based on biological aging and how these processes may impact age-associated tissue-specific pathologies. Additionally, the markers used to characterize the physiological transition of aging cells from in vitro to in vivo settings will be evaluated. The discussed data may serve as a significant starting point for an expanded definition of the molecular and functional characteristics of aging cells in different organs, thus supporting the development and enhancement of targeting strategies in vivo.
... An explosion of aging-related research has centered on these models due to their abundance of background knowledge, ease of use, ability to control environmental conditions, genetic manipulability, and cost. Furthermore, compared to long-lived animals, they are easier to research due to their shorter life duration than humans [32] ...
Article
Biomedical research, a subfield of science examines life processes, the causes, symptoms, prevention, and treatment of diseases, as well as the genetic and environmental components of health and illness. Biomedical research requires, animal experimentation research which attempts to solve issues in clinical practice and provide novel techniques and strategies for the prevention and treatment of illness and incapacity. Preclinical research using animals has improved medicine over the past century and is still improving it now by increasing our understanding of a wide range of diseases and providing doctors with new, secure, preventative tools. In this review, we have focused on the use of rodents in the field of biomedical science, including genetic engineering, humanization, and immunology. We have also discussed the current state of the art of animal models and their applications in the fields of biomedicine.
... An explosion of aging-related research has centered on these models due to their abundance of background knowledge, ease of use, ability to control environmental conditions, genetic manipulability, and cost. Furthermore, compared to long-lived animals, they are easier to research due to their shorter life duration than humans [32] ...
... An explosion of aging-related research has centered on these models due to their abundance of background knowledge, ease of use, ability to control environmental conditions, genetic manipulability, and cost. Furthermore, compared to long-lived animals, they are easier to research due to their shorter life duration than humans [32] ...
Article
Full-text available
Biomedical research, a subfield of science examines life processes, the causes, symptoms, prevention, and treatment of diseases, as well as the genetic and environmental components of health and illness. Biomedical research requires, animal experimentation research which attempts to solve issues in clinical practice and provide novel techniques and strategies for the prevention and treatment of illness and incapacity. Preclinical research using animals has improved medicine over the past century and is still improving it now by increasing our understanding of a wide range of diseases and providing doctors with new, secure, preventative tools. In this review, we have focused on the use of rodents in the field of biomedical science, including genetic engineering, humanization, and immunology. We have also discussed the current state of the art of animal models and their applications in the fields of biomedicine.
... Animal models have greatly aided our understanding of the regulation of developmental and longevity processes [18,19]. The murine leukemia viruses (MLVs), which are retroviruses belonging to the gammaretroviral genus, lead to leukemia in these mice. ...
Article
Full-text available
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J mice (long-lived) in comparison to B6.Cg-Cav1tm1Mls/J (congenic, short-lived) and AKR/J (inbred, short-lived) mice on day(d) 12, 15, and 17 of gestation. The analysis showed a contrasting gene expression pattern during fetal brain development in these mice. Genes related to brain development, aging, and the regulation of alternative splicing were significantly differentially regulated in the fetal brain of the short-lived compared to long-lived mice during development from d15 and d17. A significantly reduced number of splice variants was observed on d15 compared to d12 or d17 in a strain-dependent manner. An epigenetic clock analysis of d15 fetal brain identified DNA methylations that were significantly associated with single-nucleotide polymorphic sites between AKR/J and C57BL/6J strains. These methylations were associated with genes that show epigenetic changes in an age-correlated manner in mice. Together, the finding of this study suggest that fetal brain development and longevity are epigenetically linked, supporting the emerging concept of the early-life origin of longevity.
... To identify the general principles behind the naked mole-rat longevity, we compared the orthologous proteome shared between naked mole-rat and mouse. The mouse has a well-curated and annotated genome and has also been extensively studied in the field of aging (Mitchell et al., 2015). Our comparative analysis between naked mole-rat and mouse focuses on 13,806 ortholog pairs collected from the orthologous mapping database Inparanoid (see Methods). ...
Thesis
Full-text available
Among the different actors involved in the dogma of molecular biology, proteins are functional biological units contributing to many biological processes. In the understanding of the genotype-phenotype relationship, it is important to study the influence of genes, or genetic variants, on specific molecular mechanisms, allowing to explain the phenotypic variance of so-called complex traits. In this thesis we will demonstrate the interest of proposing different proteome-centric bioinformatics strategies for the study of complex phenotypes. In a first study, we highlight how the use of comparative genomics, coupled with the analysis of the aggregation propensity of proteins, allows to identify some groups of proteins with significant differences between species in their intrinsic properties contributing to cellular proteostasis. This mechanism is proposed in this thesis as a working hypothesis to study differences in life expectancy in rodents: this work is performed on two phylogenetically related species, the mole rat and the mouse, but with phenotypic differences in the context of aging. In a second study, we propose a new methodology based on the quantitative study of protein-protein interaction networks in order to identify the genetic determinants that would be responsible for the variation of these interactions, following a drug stimulation in a genetically diversified yeast population. This research studies the proteome and its interactions and proposes an original abstraction of complex phenotypes.
Article
Full-text available
Despite the different perspectives by diverse research sectors spanning several decades, aging research remains uncharted territory for human beings. Therefore, we investigated the transcriptomic characteristics of eight male healthy cynomolgus macaques, and the annual sampling was designed with two individuals in four age groups. As a laboratory animal, the macaques were meticulously shielded from all environmental factors except aging. The results showed recent findings of certain immune response and the age-associated network of primate immunity. Three important aging patterns were identified and each gene clusters represented a different immune response. The increased expression pattern was predominantly associated with innate immune cells, such as Neutrophils and NK cells, causing chronic inflammation with aging whereas the other two decreased patterns were associated with adaptive immunity, especially “B cell activation” affecting antibody diversity of aging. Furthermore, the hub gene network of the patterns reflected transcriptomic age and correlated with human illness status, aiding in future human disease prediction. Our macaque transcriptome profiling results offer systematic insights into the age-related immunological features of primates.
Article
The average age of the population is increasing worldwide, which has a profound impact on our society. This leads to an increasing demand for medicines and requires the development of new strategies to promote health during the additional years. In the search for resources and therapeutics for improved health during an extended life span, attention has to be paid to environmental exposure and ecosystem burdens that inevitably emerge with the extended consumption of medicines and drug development, even in the preclinical stage. The hereby introduced sustainable strategy for drug discovery is built on 3Rs, “Robustness, Reliability, and saving Resources”, inspired by both the 3Rs used in animal experiments and environmental protection, and centers on the usefulness and the variety of the small model organism Caenorhabditis elegans for detecting health-promoting natural products. A workflow encompassing a multilevel screening approach is presented to maximize the amount of information on health-promoting samples, while considering the 3Rs. A detailed, methodology- and praxis-oriented compilation and discussion of proposed C. elegans health span assays and more disease-specific assays are presented to offer guidance for scientists intending to work with C. elegans, thus facilitating the initial steps towards the integration of C. elegans assays in their laboratories.
Article
Inflammaging, the chronic, progressive proinflammatory state associated with aging, has been associated with multiple negative health outcomes in humans. The pathophysiology of inflammaging is complex; however, it is often characterized by high serum concentrations of inflammatory mediators such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and C-reactive protein (CRP). Few studies have evaluated the effects of age on inflammatory cytokines in companion dogs, and most of these studies included dogs of a single breed. In this cross-sectional study, we measured multiple circulating inflammatory markers and hematological parameters in banked serum samples from 47 healthy companion dogs of various breeds enrolled in the Dog Aging Project. Using univariate linear models, we investigated the association of each of these markers with age, sex, body weight, and body condition score (BCS), a measure of obesity in the dog. Serum IL-6, IL-8, and TNF-α concentrations were all positively associated with age. Lymphocyte count was negatively associated with age. Platelet count had a negative association with body weight. IL-2, albumin, cholesterol, triglyceride, bilirubin, S100A12, and NMH concentrations were not associated with age, weight, BCS, or sex after adjustment for multiple comparisons. Our findings replicate previous findings in humans, including increases in IL-6 and TNF-α with age, giving more evidence to the strength of the companion dog as a model for human aging.
Article
Full-text available
The thermal environment is the most important ecological factor determining the growth, development, and productivity of domestic animals. Routes of energy exchange (sensible heat and latent heat) between animals and their environment are greatly influenced by body weight, fat deposition, hair-coat properties, functional activity, and number of sweat glands, as well as the presence or absence of anatomical respiratory countercurrent heat exchange capability. Differences in these anatomical features across species have led to specialization of heat exchange. Thermal plasticity and degree of acclimation are critical factors determining the ability of animals to respond to environmental change. Increases in productive capability of domestic animals can compromise thermal acclimation and plasticity, requiring greater investments in housing systems that reduce variability of the thermal environment. The combination of steadily increasing metabolic heat production as domestic animal productivity increases and a rising world temperature poses ongoing and future challenges to maintaining health and well-being of domestic animals. Expected final online publication date for the Annual Review of Animal Biosciences Volume 3 is February 15, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Article
I became enamored of genetics at an early age. The desire to participate in the rebuilding of my people in our ancient homeland led to dairy science at Rutgers University, to Animal Breeding Plans by J.L. Lush, and to the realization that I could combine genetics and dairy science in animal breeding. It is to my mother-in-law that I owe the felicitous phrasing of the titular scientific question that has occupied my professional life: If a bull were a cow, how much milk would he give? Following my PhD (in 1956), I joined theVolcani Institute in Israel and, later (in 1972), the Applied Genetics group at the Hebrew University. The Applied Genetics group had an active marker lab, and this and a paper by Spickett & Thoday led me to explore genetic markers for quantitative trait loci mapping and marker-assisted selection. A chance encounter with Jacques Beckmann in 1980 opened my eyes to the potential of DNA-level markers for these purposes, and the rest followed. Expected final online publication date for the Annual Review of Animal Biosciences Volume 3 is February 15, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Article
Infection with Theileria parva is asymptomatic in African buffalo but results in severe disease in cattle. Currently, vaccination relies on infection and treatment, using a mixture of three parasite isolates to overcome the strain specificity of immunity. Genotypic analyses of field populations of T. parva indicate a panmictic population structure, reflecting frequent sexual recombination. Profound immunodominance of protective CD8 T cell responses, together with polymorphism of the target antigens and frequent genetic recombination, contribute to the strain-restricted immunity. The dominant CD8 target antigens are highly polymorphic, but the live vaccine appears to contain limited diversity. A model to explain the ability of the vaccine to confer immunity against highly diverse field parasite challenge is discussed. Parasites in cattle exhibit much more limited antigenic diversity than parasites in buffalo, consistent with other evidence that the cattle-maintained population represents a subset of T. parva recently adapted to cattle. Expected final online publication date for the Annual Review of Animal Biosciences Volume 3 is February 15, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Article
Horses are remarkable athletes and a fascinating species in which to study the genetic bases of athletic performance, skeletal muscle biology, and neuromuscular disease. Genetic selection in horses has resulted inmany breeds that possess anatomical, physiological, and metabolic variations linked to speed, power, and endurance that are beginning to be defined at the molecular level. Along with the concentration of positive traits, equine breeding programs have also inadvertently concentrated heritable muscle diseases for which mutations impacting electrical conduction, muscle contraction, and energy metabolism within and across breeds have been characterized. The study of heritable muscle diseases in horses has provided exciting insights into the normal structure and function of muscle and important diagnostic tools for veterinarians. Results empower breeders and breed associations to make difficult decisions about how to use this information to improve the overall health and well-being of horses. Expected final online publication date for the Annual Review of Animal Biosciences Volume 3 is February 15, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Article
A naturally occurring transmissible spongiform encephalopathy (TSE) of mule deer was first reported in Colorado and Wyoming in 1967 and has since spread to other members of the cervid family in 22 states, 2 Canadian provinces, and the Republic of Korea. Chronic wasting disease (CWD), caused by exposure to an abnormally folded isoform of the cellular prion protein, is characterized by progressive neurological disease in susceptible natural and experimental hosts and is ultimately fatal.CWDis thought to be transmitted horizontally in excreta and through contaminated environments, features common to scrapie of sheep, though rare among TSEs. Evolving detection methods have revealed multiple strains of CWD and with continued development may lead to an effective antemortem test. Managing the spread of CWD, through the development of a vaccine or environmental cleanup strategies, is an active area of interest. As such, CWD represents a unique challenge in the study of prion diseases. Expected final online publication date for the Annual Review of Animal Biosciences Volume 3 is February 15, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Article
Insults in the prenatal and early postnatal period increase the risk for behavioral problems later in life.One hypothesis is that pre- and postnatal stressors influence structural and functional brain plasticity. Understanding the mechanisms is important, but progress has lagged because certain studies in human infants are impossible, while others are extremely difficult. Furthermore, results from popular rodent models are difficult to translate to human infants owing to the substantial differences in brain development and morphology. Because it overcomes some of these obstacles, the domestic piglet has emerged as an important model. Piglets have a gyrencephalic brain that develops similar to the human brain and that can be assessed in vivo by using clinical-grade neuroimaging instruments. Furthermore, owing to their precocial nature, piglets can be weaned at birth and used in behavioral testing paradigms to assess cognitive behavior at an early age. Thus, the domestic piglet represents an important translational model for investigating the neurodevelopmental consequences of early life insults. Expected final online publication date for the Annual Review of Animal Biosciences Volume 3 is February 15, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.