ArticlePDF Available

Antiulcer activity of proanthocyanidins is mediated via suppression of oxidative, inflammatory, and apoptotic machineries

Wiley
Journal of Food Biochemistry
Authors:
  • Faculty of Pharmacy Modern University for Technology and Information

Abstract and Figures

Gastric ulcer (GU) is a lesion in the gastric mucosa associated with excessive oxidative damage, inflammatory response, apoptotic events, and irritation which may develop into cancer. However, medications commonly used in GU treatment cannot normalize gastric mucosa, while causing several adverse effects. Proanthocyanidins (PAs) are dietary flavonoids with numerous biological and pharmacological activities. In the current investigation, we studied the potential anti‐ulcerative activity of PAs against acidified ethanol (HCl/ethanol)‐caused gastric ulceration. Fifty male albino Wistar rats were allocated into five equal groups: control, HCl/ethanol (3 mL/kg), lansoprazole (LPZ, 30 mg/kg) + HCl/ethanol, and PAs (100 and 250 mg/kg) + HCl/ethanol. LPZ and PAs were applied one week before gastric ulcer induction. PAs pretreatment notably reduced gastric mucosal macroscopic and microscopic pathological changes in a dose‐dependent manner. Additionally, PAs activated the innate antioxidant molecules including glutathione and its derived antioxidants (glutathione peroxidase and glutathione reductase), along with superoxide dismutase and catalase, while attenuating pro‐oxidant formation, including malondialdehyde and nitric oxide. Interestingly, PAs supplementation at a higher dose suppressed gastric inflammatory and apoptotic responses, as demonstrated by the reduced levels of interleukin‐1β, interleukin‐6, tumor necrosis factor alpha, high‐mobility group box 1, cyclooxygenase 2, prostaglandin E2, nuclear factor kappa‐B, Bcl‐2‐associated X protein, and caspase‐3, while B cell lymphoma 2 was elevated. Hence, PAs could exhibit antiulcer activity by protecting gastric tissue from the development of oxidative damage, inflammatory responses, and apoptosis events associated with ulceration. Practical implications Gastric ulcer is a lesion in the gastric mucosal layer associated with excessive inflammatory response, apoptotic events, oxidative damage, and irritation, and may develop into cancer with about 5%–10% morbidity rate. However, medications commonly used in GU treatment cannot normalize gastric mucosa, while causing several adverse effects. Therefore, new therapeutic approaches are needed to treat or prevent gastric ulceration. Proanthocyanidins (PAs, condensed tannins) are dietary flavonoids found in abundance in different plant species, including their fruits, bark, and seeds. Due to their potent antioxidative activity, PAs have been applied to prevent or treat oxidative stress‐related diseases, including cancer, as well as metabolic, neurodegenerative, cardiovascular, and inflammatory disorders. Here, we examine the potential therapeutic role of proanthocyanidins (PAs) against acidified ethanol‐induced gastric ulcer in rats through evaluating oxidative challenge, inflammatory response, apoptotic events, and histopathological changes in the gastric tissue.
This content is subject to copyright. Terms and conditions apply.
J Food Biochem. 2022;00:e14070. wileyonlinelibrary.com/journal/jfbc  
|
1 of 13
https://doi.org/10.1111/jc.14070
© 2022 Wiley Periodicals LLC.
Received:18September2021 
|
Revised:8D ecemb er2021 
|
Accepted :9Decemb er2021
DOI:10.1111/jfbc.14070
ORIGINAL ARTICLE
Antiulcer activity of proanthocyanidins is mediated via
suppression of oxidative, inflammatory, and apoptotic
machineries
Maha S. Lokman1,2 | Dalia Zaafar3| Hussam A. Althagafi4| Mohamed M. Abdel Daim5|
Abdulrahman Theyab6| Ahmad Hasan Mufti7| Mohammad Algahtani8| Ola A. Habotta9|
Abdullah A. A. Alghamdi10| Khalaf F. Alsharif11| Ashraf Albrakati12 |
Atif Abdulwahab A. Oyouni13,14 | Amira A. Bauomy15| Roua S. Baty16|
Ahmed S. Zhery17| Khalid E. Hassan18| Ahmed E. Abdel Moneim2| Rami B. Kassab2,4
1Biolog yDepartment,CollegeofScienceandHumanities,PrinceSat tambinAbdulA zizUniversit y,Alkhar j,SaudiArabia
2Depar tmentofZoolog yandEntomolog y,FacultyofS cience,HelwanUniversity,Cairo,Egy pt
3Depar tmentofPharma colog yandToxicology,Facult yofPharmacy,ModernUniversityforTechnolo gyandInformat ion,Cairo,Eg ypt
4Depar tmentofBiolog y,FacultyofSciencea ndArts,Al-BahaUniversit y,Almakhwah,SaudiArabia
5Depar tmentofPharma colog y,FacultyofVeterinar yMedicine,SuezCanalUniver sity,Ismailia,Egypt
6Depar tmentofLabor atoryMedici ne,SecurityForcesHospital,Mecca,SaudiArabia
7MedicalGeneticsDe part ment,FacultyofMedicine,UmmAl-QuraUniversity,SaudiArabia
8Depar tmentofClinic alLaboratoriesScie nces,CollegeofA ppliedMedicalScien ces,TaifUniversit y,Taif,SaudiArabia
9Depar tmentofForensicMedicineandToxicology,Facult yofVeterinaryMe dicine,Mansou raUnive rsit y,Mansoura,Egypt
10Depa rtme ntofBiology,Facult yofScience,Al-BahaUnive rsity,SaudiArabia
11Depar tmentofClinic alLab orator yScie nces,CollegeofA ppliedMedicalScien ces,TaifUniversit y,Taif,SaudiArabia
12Depar tmentofHumanAn atomy,CollegeofMedicine,TaifUnive rsit y,Taif,SaudiArabia
13Depar tmentofBiology,Facult yofSciences,Uni versit yofTabuk,Tabuk,SaudiArabia
14GenomeandBiotechnologyU nit,FacultyofSciences,UniversityofTabuk,Tabuk,SaudiAra bia
15Depar tmentofScienceLabor atorie s,Coll egeofScienceandArts,QassimUniversity,SaudiArabia
16Depar tmentofBiotechnolog y,CollegeofScience,TaifUniversity,Taif,SaudiArabia
17KasrAl-EiniSch oolofMed icine,C airoUniversity,Cairo,Egypt
18Depar tmentofPathology,CollegeofMedicine,TaifUniversit y,Taif,SaudiAra bia
Correspondence
AshrafAlbra kati,DepartmentofHuman
Anatomy,CollegeofMedicine,Taif
University,P.O.Box11099,Taif21944,
SaudiArabia.
Email:a.albrakati@tu.edu.sa
Funding information
Thisworkw assupportedbyTaif
UniversityResearchersSup port ing
Program(projectnumb er:
TURSP-2020/153),TaifUniversit y,Saudi
Arabia.
Abstract
Gastriculcer(GU)isalesioninthegastricmucosaassociatedwithexcessiveoxidative
damage,inflammatoryresponse,apoptoticevents, and irritationwhichmaydevelop
intocancer.However,medicationscommonly usedin GU treatmentcannot normal-
ize gastric mu cosa, while causin g several adverse ef fects. Proa nthocyanidins (PAs)
aredietaryflavonoidswithnumerousbiologicalandpharmacologicalactivities.Inthe
currentinvestigation,westudiedthepotentialanti-ulcerativeactivityofPAsagainst
acidified ethanol (HCl/ethanol)-caused gastr ic ulceration. Fift y male albino Wistar
ratswereallocatedintofiveequalgroups: control,HCl/ethanol(3mL/kg),lansopra-
zole(LPZ, 30 mg/kg) + HCl/ethanol, and PAs(100and 250 mg/kg) +HCl/ethanol.
LPZandPAswereappliedoneweekbeforegastriculcerinduction.PAspretreatment
2 of 13 
|
   LOKMAN et AL.
1 | INTRODUCTION
Gastriculcer(GU)isalesion inthegastric mucosallayer associated
with excessive inflammator y response, apoptotic events, oxidative
damage, and irritation, and may develop into cancer with about
5%–10% morbidity rate (Lanas & Chan, 2017). Findings yielded
by emerging studies suggest that GU pathogenesis is linked to
modern d ietary habi ts, as well as long-term consu mption of anti-
inflammatory drugs and Helicobacter pyloriinfection.Thesecaus-
ative factors activate neutrophils in the gastric tissue to produce
excessive am ounts of reac tive oxygen s pecies (ROS) and n itrogen
reactive species (RNS) resulting in the depletion of endogenous
antioxidantsystemand development of mucosal oxidative damage
(Al-Quraishy et al., 2017; Lanas & Chan, 2017). ROS initiates an
inflamma tory resp onse throu gh activat ion of redox-sensitive t ran-
scriptionfactors,includingnuclear factor kappa-B,that upregulate
thevarietyofpro-inflammatorycytokines,adhesionmolecules,and
othermediators,therebyenhancinggastriculceration.However,the
exactmechanismsimplicatedinthepathogenesisofGUremainun-
clear(Zhouetal.,2020).
Hydrochloric acid and ethanol (acidified ethanol) model has
been wid ely used to ulce rate gast ric mucosal e xperime ntally, as it
is known to over produce c ytotoxic fre e radical s which trig ger the
development of oxidative stress and inflammation (Abdelfattah
et al., 2019). This mo del is associat ed with morp hological a nd ne-
crotic alte rations in th e gastric m ucosa, alon g with distur bance of
gastricsecretion,neutrophilactivation,hemorrhagiclesions,edema,
and epithelial exfoliation, which mimic GU pathogenesis in human
(Aziz et al., 2019;Shinetal.,2020).Thecurrent interventionssuch
asprotonpumpinhibitors,H2blockers,andantacidsareassociated
withadversereactions,includinghypoacidity,gynecomastia,impo-
tence,osteoporosis,bonefracture,andcardiovascularimpairments
(Kulikova et al., 2020; Zhang et al., 2019). Therefore, alternative
drugsthatdonotinducesuchharmfulsideeffects,whilehavinghigh
therapeutic efficiency are required.
notably reduced gastric mucosal macroscopic and microscopic pathological changes
inadose-dependentmanner.Additionally,PAsactivatedtheinnateantioxidantmol-
eculesincludingglutathioneanditsderivedantioxidants(glutathioneperoxidaseand
glutat hi onereductase),alongwit hsup eroxidedismut aseandcat alase,whileat tenuat-
ingpro-oxidantformation,includingmalondialdehydeandnitricoxide.Interestingly,
PAssupplementationatahigherdosesuppressedgastricinflammatoryandapoptotic
responses, as demons trated by the reduced levels of interleukin-1β, interleukin-6,
tumornecrosisfactoralpha,high-mobilitygroupbox1,cyclooxygenase2,prostaglan-
dinE2,nuclearfactorkappa-B,Bcl-2-associatedXprotein,andcaspase-3,whileBcell
lymphoma2 was elevated.Hence,PAscouldexhibitantiulceractivitybyprotecting
gastric t issue from the devel opment of oxidative dam age, inflammator y responses ,
and apoptosis events associated with ulceration.
Practical implications: Gastriculcerisalesioninthegastricmucosallayerassociated
with excessive inf lammatory resp onse, apoptotic event s, oxidative damage, an d ir-
ritation,andmaydevelopintocancer withabout5%–10%morbidityrate.However,
medicationscommonlyusedinGUtreatmentcannotnormalizegastricmucosa,while
causingseveral adverseeffects.Therefore, newtherapeuticapproachesareneeded
to treat or prevent g astric ulceration . Proanthocyanid ins (PAs, conde nsed tannins)
aredietaryflavonoids foundinabundanceindifferentplant species,includingtheir
fruits,bark,andseeds.Duetotheir potentantioxidativeactivity,PAshavebeenap-
plied to prevent ortreat oxidative stress-related diseases, including cancer, as well
asmetabolic, neurodegenerative,cardiovascular,and inflammatorydisorders.Here,
weexamine the potential therapeuticroleofproanthocyanidins(PAs)against acidi-
fiedethanol-inducedgastric ulcer in ratsthrough evaluatingoxidative challenge, in-
flammatoryresponse,apoptoticevents,andhistopathologicalchangesinthegastric
tissue.
KEYWORDS
apoptosis,gastriculcer,inflammation,oxidativedamage,proanthocyanidins
   
|
3 of 13
LOKMAN e t AL.
Naturaldietaryantioxidantshavebeenproveneffectiveindis-
eas eprevent ionan dtreatment(Lieta l.,20 21),andare,t he refor e,
thenatural choice in this domain. Proanthocyanidins (PAs, con-
densedtannins)aredietaryflavonoidsfoundinabundanceindif-
ferentplantspecies,includingtheirfruits,bark,andseeds(Wang
etal.,2020).Dueto theirpotentantioxidativeactivit y,PAshave
beenappliedtopreventortreatoxidativestress-relateddiseases,
including cancer, as well as metabolic, neurodegenerative, car-
diovascular, and inflammatory disorders (Beecher, 2004; Wang
etal.,2020).
Hence, theaimofthecurrentstudy wasto investigatethepo-
tentialantiulcerroleofPAsadministeredintwodosesagainstacid-
ified ethanol-induced gastric ulcerationinrats by evaluating redox
homeostasis,andinflammatoryandapoptoticchallenges,as wellas
conducting microscopic and macroscopic analyses.
2 | MATERIALS AND METHODS
2.1  | Chemicals and reagents
Purifiedgrapeseedsoligomericproanthocyanidinsandlansoprazole
wereobtainedfrom Sigma ChemicalCompany,St.Louis,MO,USA .
Ethanolwas purchasedfromAl-GomhoriaCompanyfor medicines
andmedicalsupplies,Cairo,Egypt.Allotherusedchemicalswereof
high analytical grade.
2.2  | Animal grouping and study design
FiftymalealbinoWistarrats,10-week-oldweighing170–180gwere
purchasedfromVACSERA(Cairo,Egypt).Priortostar tingtheexperi-
mental protocol, rats were acclimatized to thecontrolledlaboratory
conditions for seven days by housing them in polypropylene cages
(at25°Cunder normal light/darkcycle) and werefedastandard ro-
dent diet with freeaccess towater. The experimental protocol was
approved by t he Instituti onal Animal Ethi cs Committ ee and was in
accordan ce with the guide lines for animal c are and use at Helw an
University (approval no: HU2020/Z/RKA1020-01). After the 7-day
acclimatization period,ratswereallocatedrandomlyintothe follow-
ingfivegroups(n =10):
Controlgroup:receiveddailyoraladministrationofnormalsaline
solution(3mL/kg)foroneweek.
Acidifiedethanol(HCl/ethanol)group:receiveddailyoraladmin-
istrationof normalsalinesolution(3mL/kg)dailyforoneweekbe-
fore induction of gastritis.
Lansoprazole+HCl/ethanol (LPZ+HCl/ethanol) group: received
dailyoraladministrationofLPZ(30mg/kg)foroneweekbeforein-
ducinggastritisbyapplyingacidifiedethanol(Zhouetal.,2020).
Proanthocyanidins+HCl/ethanol(PAs-100+HCl/ethanol)group:
receiveddailyoraladministrationofPAsatadoseof100mg/kgfor
oneweekbeforeinducinggastritisbyapplyingacidifiedethanol.
Proanthocyanidins+HCl/ethanol(PAs-250+HCl/ethanol)group:
receiveddailyor ala dministrationofPAsatadoseof2 50mg/kgfor
oneweekbeforeinducinggastritisbyapplyingacidifiedethanol.
TheexperimentedPAsdoseswereselectedbasedonaprelimi-
narystudyusingdifferentPAsdoses(50,100, and250mg/kg)and
the highest doses showed potent antiulcer effec ts than the lower
dose.
2.3  | Gastric ulcer induction
Priortoulcerinduction,foodwaswithheldfor 24hrwithoutrestrict-
ingwater intake.Gastriculcerwas inducedinallgroups except con-
trol(whichreceivedonlythevehicle)byoraladministrationof0.15M
HCland ethanol(60% inwater) solution (Sigma,St.Louis, MO, USA)
at3mL/kgdoseviaanorogastrictubeaccordingtoSonetal.(2015).
2.4  | Gastric ulcer lesion
Ratsweresacrificedbycervicaldecapitation,afterwhichthestom-
achtissueswereseparatedandfixedin4%formalinsolutionforone
hour.The collected tissues werethen opened by an incision along
the greater curvature and were photographed using a Samsung cam-
era(WB30F,Samsung,Japan).Thetotalerosivemucosallesionarea
(mm2) was determined by a ImageJ sof twareversion1.5 (National
InstitutesofHealth,USA).
The followingexpression was usedtocalculatethe percentage
oflesioninhibitionbyPAspretreatment:
where%Larearepresentsthepercentageofulceratedareasorhemor-
rhages in the gastric mucosa.
2.5  | Gastric ulcer index (GUI) determination
Thed egr eeofinjuryint hegastricmucosawase stimateda ccordingtoa
0–5sco rin gm e tho df org ros sp ath o log yde ve l ope dbyAr a be tal .( 2015) ,
as following: 0 = no lesions; 1 = small hemorrhagic lesions; 2 = lesions
smaller than 2 mm; 3 = lesions 2– 3 mm; 4 = lesions 3– 4 mm; 5 = lesion
greaterthan4mm.Themeanscorewasdetermined ,calculateda ndt he
GUIwasexpressedbyatechnicianblindedtothestudyprotocol.
2.6  | Gastric mucus adherence measurement
Alcianblue(Sigma,USA),whichisanacidmucopolysaccharidestain-
ingdye,wasused to estimatethe adherence ofgastricmucosa ac-
cordingtotheprotocolproposedbySonetal.(2015).Theamountof
Percent of lesioninhibition (%)=
%
Larea untreated lesion rats −%Larea PAs treated lesion rats
%Larea untreated lesion rats ,
4 of 13 
|
   LOKMAN et AL.
thealcian blue (µg/gtissue)reflectedthedegree ofgastricmucosa
adherence.
2.7  | Histopathological and immunohistochemical
examinations
Collectedtissue samples werefixed in 10% formalin, embedded in
paraffin, and sectioned into 4-mm-thick specimens. Sections were
then stained with H&E st ain and alcian bluestainand were inves-
tigatedunderaNikon EclipseE200-LED(Tokyo,Japan)microscope
(400×magnification).
2.8  | Estimation of reactive oxygen species (ROS)
Intracellular generation of ROSingastrictissue was measured using
greenfluorescencestain(2,7-dichlorofluoresceindiacetate,DCF-DA)
according t o the method desc ribed by Wang & Roper (2014) with
some mod ification. In b rief, gastric tis sue homogenate s were incu-
bated in DCF-DAdissolvedin the medium at 37°C for 30 min. The
meanfluorescence intensity ofDCF-DAwas evaluatedbya fluores-
cenceplatereader(excit ationʎ4 85nmandemissionʎ525nm).
2.9 | Examination of oxidative stress indices in the
gastric tissue
Glandularpartsofthegastrictissuewereweighedandthenho-
mogenized i n a PH 7.4 , 50 mM Tris–HCl ice -col d medium. The
gastric homogenate was centrifuged for 10 min at 1000 g and
4°Cbeforebeingstoredat−80°C.Thedeterminationofthesu-
pe rna tan tpr ot ein co nte nt was per f or m eda cc ord ingto theLo wry
method (L owry et al. , 1951). Li pid peroxida tion levels were e x-
amined in t he form of malon dialdehyde amo unt (MDA) via the
thiobarbituricacidreactionmethod(Ohkawaetal.,1979).Inad-
dition,nitricoxide(NO)levelwasdeterminedbytheGriesssolu-
tion method(Green et al.,1982)andglutathione (GSH) content
wasassayed basedontheSedlakandLindsay method(Sedlak &
Lindsay,1968).
2.10 | Examination of antioxidative enzymes in the
gastric tissue
SOD act ivity was teste d colorimetric ally at λ = 560 nm in the
gastric supernatants by applying the Nishikimi et al. method
(Nishikimi et al., 1972). CAT activity was determined using the
methoddescribedbyAebi(1984),whichisbasedontheH2O2 de-
composition rate at λ =240nm.Glutathionereductase(GR)and
glutathione peroxidase(GPx)were estimated based on the pro-
cedures describedbyPaglia & Valentine(1967)and Factor et al.
(1998),respectively.
2.11  | Examination of pro- inflammatory mediators
in the gastric tissue
For the determination of the pro-inflammatory cytokines in the
gastric tissue, commercial ELISA kits were used for IL-1β (cata-
log no. RAB0278), IL-6 (catalog no. EZRIL6), and TNF-α (catalog
no. EZRTNFA) obtained from Merck Millipore (Toronto, Ontario,
Canada)andSigma-Aldrich(St.Louis,MO,USA),respectively.
2.12 | Real- time PCR (molecular assay)
Toextracttotal RNA from gastrictissue,RNeasyPlus Minikit was
used(Qiagen,Valencia,CA).Forfirst-strandcDNAsynthesis,oneµg
of RNAa n dhe x a m ersw e rep r o ces s e dus i n gth e S cri p tTM c DNAs y n-
thesiskit(Bio-Rad,CA).TheDNAsamplesforreal-timePCRanalysis
wererun in triplicate.PowerSYBR1 Green (Life Technologies, CA)
was used to am plify cDNA in an A pplied Biosys tems Instrum ent.
ThePCRreac tionwasperformedforfourminutesat95°C,followed
by4 0cycles of 94°C for60s,55°Cfor60 s, and a finalextension
for10minat72°C.The∆Ct wasc alculatedafterPCRamplification
by subtracting the GapdhCt from eachsample Ct. AllPCRprimers
used for Hmgb1, Nos2, Ptgs2, Nrf2I2, and Hmox1were plotted using
theNCBIPrimer-Blast(JenaBioscienceGmbH,Jena,Germany).The
examinedgeneprimersequencesandaccessionnumbersaregiven
inTable1.
2.13 | Statistical analyses
All results were expressedas mean ± SD. One-wayANOVAwas
carried out, and Tukey's test was conducted for comparisons
between groups. All analyses were conducted using st atistical
TAB LE 1  Primersequencesofgenesanalyzedinrealtime
polymerase chain reaction
Name Forward primer (5′−3′) Reverse primer (5′−3′)
Gapdh AGTGCCAGCCTCG
TCTCATA
GATGGTGATGGG
TTTCCCGT
Nfe2l2 TTGTAGATGACCAT
GAGTCGC
ACTTCCAGGGGCA
CTGTC TA
Hmox1 TTAAGC TGGTG ATG
GCCTCC
GTGGGGCATAGA
CTGGGTTC
Nos2 GT TCCTC AGGC TTG
GGTCTT
TGGGGGAACACA
GTAATGGC
Hm gb1 G TGCCTCGCGGAG
GAAAATC
AGTTG ACAGA AGC
ATCCGGG
Ptgs2 CTCAGCCATGCAGC
AAATCC
GGGTGGGCTTCAG
CA GTA AT
Abbreviations:Gapdh,Glyceraldehyde-3-phosphatedehydrogenase;
Hm gb1 ,Highmobilitygroupprotein1;Hmox1,Hemeoxygenase1;
Nfe2l2,Nuclearfac torer ythroid2-relatedfactor2;Nos2,Inducible
nitricoxidesynthase;Ptgs2,prostaglandin-endoperoxidesynthase2.
   
|
5 of 13
LOKMAN e t AL.
package S PSS version 23 .0 and p < .05 was considered statisti-
cally significant.
3 | RESULTS
3.1  | Antiulcer effect of proanthocyanidins
MacroscopicobservationsinHCL/ethanol-injectedratsshowedob-
vioustransmuralinflammationwithhyperemia,mucosaledema,and
severeulcerations.However,administrationofPAsatlow(100mg/
kg)andhigh(250mg/kg)dosesdecreasedmarkedlytheulcerations
anditsassociatedinflammatorysignsascomparedtoHCL/ethanol-
injected group. Additionally, PAs decreased the development of
ulcerareaandthegastriculcerindexaswellincomparisonwiththe
experimentalgastritisgroup(Figure1a–c).
Additionally,gastric mucosal adherence was assessedusing alcian
blue staining, the results revealed that the binding capacity of alcian
blue to the g astric mucus w as markedly redu ced in the HCl/ethanol
injectedgroup,whereasfindingsofLPZ-orPAs-pretreatedgroupswere
similartocontrols,indicatingthattheysuccessfullypreservedthebind-
ingabilit yofalcianbluetothegastricmucosallayer(Figure1d).
3.2  | Proanthocyanidins administration protects
gastric tissue following HCl/ethanol administration
Histological analyses revealedthat, while healthy controlsandPAs
administered groups had intact stomach wall architecture and com-
pletemucosal layer,ratstreatedwithHCl/ethanolexhibitedsevere
gastricdamage,with extensively swollen submucosal layer,gastric
mucos ad esquamation,thin ni ng ,p al eness,ande ro si on ,aswellasse-
verely disruptedgastricglands. Theselesionswereassociatedwith
infiltration of inflammatorycells to all stomach layers.However,in
rats pr etreated with PAs, g astric lesion s were alleviated an d gas-
tric mucosal injur y was lessened and was associated with low des-
quamation of the gastric epithelial lining and low inflammatory cell
infiltration.
FIGURE 1 EffectsofPAson(a)themorphologyofgastriculceration,(b)gastriculcerarea(mm2),(c)gastriculcerindex,and(d)alcianblue
bindingtogastricmucusinratsexposedtoacidifiedethanol.Dataareexpressedasmean± SDandwereanalyzedusingone-wayANOVA,
followedbyTukey'sposthoctestatp <.05.Barsthatdonotsharethesameletters(superscripts)aresignificantlydifferentfromeach
other.EtOH/HCL:acidifiedethanol,LPZ:lansoprazole(30mg/kg),PAs-100:proanthocyanidines(100mg/kg),PAs-250:proanthocyanidines
(250mg/k g),n = 10
(a)
(b) (c) (d)
6 of 13 
|
   LOKMAN et AL.
Additionally, the gastroprotective activity of PAs administra-
tion was also confirmed via PAS-alcian blue staining, which was
pronounced in control and PAs-pretreated groups, but was of low
intensityinthe HCl/ethanolgroup. Conversely, PAsadministration
likeLPZwasfoundtoincreasestain intensity,reflectingtheabilit y
ofPA stoincr easeglyco pr ot ei nc ontentinthega str ic mu cosaand re -
ducegastricerosionfollowingHCl/ethanoladministration(Figure2).
3.3  | Effect of proanthocyanidins on redox status
following HCl/ethanol administration
Comparedtothecontrolgroup,ratsintheHCl/ethanol-administered
groupexhibitedsignificantlyhigherROS(Figure3a),MDA(Figure3b),
andNOlevels(Figure3c),alongwith lower GSH levels(Figure 3d),
andasignificantdecreaseintheantioxidantenzymesactivity[(SOD,
Figure 4a), (C AT, Figure 4b), (GR , Figure 4 c), and (GPx , Figure 4a)]
activ ity. Notably, PAs supp lementatio n (in both 100 and 2 50 mg/
kg dose) re stored the bal ance betwee n oxidants and an tioxidants
in the gas tric tissu e following HC l/ethanol injec tion by decre asing
ROS, MDA,and NO productionand enhancing theexaminedanti-
oxidantproteins.Atthemolecular level, HCl/ethanol-treatedgroup
showedasignificantdownregulationinmRNAexpressionofHmox1
(Figure 5a) an d Nfe2I2 (Figure 5b). Similar to LPZ, PAs administra-
tion at both doses significantly upregulated the transcriptional level
oftheseantioxidantpromoters,thusexhibitingitsantioxidativepo-
tencyagainstoxidativeinjuryassociatedwithgastriculceration.
3.4  | Effect of proanthocyanidins on inflammatory
markers following HCl/ethanol administration
HCl/ethanoladministration induced gastric tissue inflammation, as
reflectedinasignificantelevation(p <.05)inthepro-inflammatory
cy t oki n el e ve ls[(TN F-α, Fig u re6 a) ,( I L-1β,Figure6b),(IL-6,Figure6c),
and(Hmgb1,Figure6d)].Thisinflammatorycascadeextendedtothe
upregulation of Nos2(Fig ure7a)andNF-κBlevel(Figure7b),inaddi-
tion to Pt gs2(Fi gur e7c )a nditsp ro duc t ,PG E2(Fi gur e7d )wh encom -
pared to th e control group. How ever,th is inflammator y response
was signif icantly supp ressed follow ing PAs administ ration at both
doses(100and250mg/k g),reflectingtheprotectiveimpact ofPAs
against inflammatory events that are triggered during the develop-
ment of gastric ulceration.
3.5  | Effect of proanthocyanidins on apoptotic
alterations following HCl/ethanol administration
Toinvestigate theapoptoticevents associated with gastric ulcera-
tion, Bax, caspase-3, and Bcl2 levels inthe gastric tissue homoge-
nate were assessed. Our findings revealed that rats that were
adminis tered acidif ied ethanol s howed higher B ax (Figure 8b) an d
caspase-3levels(Figure8c),whereasBcl2(Figure8a)wasdecreased
significantly (p < .05) co mpared to the cont rols. On the con trary,
bothPAs(100and250mg)andLPZ(30mg/kg)administrationwere
foundtoprotectgastriccelllossbyinhibitingpro-apoptoticproteins,
Baxandcaspase-3,andincreasinganti-apoptoticproteinBcl2.
4 | DISCUSSION
Antioxid ants regulate red ox homeostasis in t he biological sys tem
and provid e protection aga inst oxidative infl ammatory and ap op-
totic challenges that are associated with gastrointestinal disorders
(Akandaet al., 2018; Linetal., 2016). Findings yielded by thepre-
sent study demonstrated the gastroprotective effect of proantho-
cyanidinsagainstacidifiedethanol-inducedgastritisinrats.Acidified
ethanolinjectionisassociatedwithinflammation,oxidativedamage,
andhistopathologicalalteration,which resultsin gastric ulceration
(Abdelfattahetal.,2019;Al-Quraishyetal.,2017).Interestingly,the
macroandmicroscopicobservationsshowedthatPAspretreatment
waseffec tiveinalleviatinggastriculcersinrats,asdemonstratedby
adose-dependentreductionof gastric lesions, gastric ulcerindex,
andgastricwallmucouslevels.Previousstudieshavedemonstrated
thegastroprotectiveroleofantioxidants,thussuppor ting our find-
ings(Abdelfattahetal.,2019;Zhouetal.,2020).
Thecorrelationbetweeninflammationandtheacidifiedethanol-
induced gastriculcer model is well established (Raish et al.,2021).
Determination ofthelevelsofpro-inflammatorymediators reflects
thegastricvisceralinjury.Ourinvestigationshowedmarkedelevation
ofpro-inflammatorymarkersincludingTNF-α, I L - 1 β,IL-6,andNF-κB
p65 accompa nied by upreg ulation of mRN A expressi on of Hm gb1 ,
Nos2, and P tgs2following HCl/ethanol injection, which was coun-
teracted following the administration of PAs.Duringinflammatory
conditions, theinflamed gastric cells and the activated leukocytes
and macrophages produce excess amount s of pro-inflammatory
cytokines and enzymes, thus help to initiate the innate immune
respons e (Abdelf attah et al ., 2019).T NF-α, I L - 1 β, and I L-6are pro-
inflammatorycytokinesthathaveintenseimpactsoninflammation
andimmunityandhavebeenfoundtobeincreasedfollowingH.py-
loriinfection-inducedgastriculcerandcancer(Azadegan-Dehkordi
etal.,2015;El-Omaretal.,2001;Tuetal.,2008).Meanwhile,Cox 2
isknownasinflammatorymediatorthatplayaroleasanimmediate-
early response in inflammation and has been found to be activated
indif ferentexperimentalgastritismodels (Abdelfattahet al., 2019;
Santosetal., 2018).Cox2is therate-limitingenzymeinprostaglan-
dins(PGE2)productionfromthearachidonicacid.Theupregulated
mRNAexpressionofCox2mayexplaintheincreasedPGE2levelfol-
lowingHCl/ethanolinjec tionexpression.
High-mobilit y group box 1 (Hmgb1) is a pro-inflammatory cy-
tokine th at can create a s tate of chroni c inflammati on and could in-
crease th e risk of epithelial ma lignancies develo pment. Hmgb1 is a
nuclear protein that could initiate several sequences of inflammatory
reactions strongly involved in gastriculcer pathogenesis. It isone of
the knowninjury markers that could depend on the NF-κB pathway
(Ghweiletal.,2020),whichinturnmayelevatetheexpressionofIL-1β
   
|
7 of 13
LOKMAN e t AL.
and TNF- α(Kangetal.,2014)andthusdelayulcerhealing.Ourre-
sults are suppor ted by the findings yielded by several recent studies
whichdemonstratedthatHMGB1levelsareincreasedingastriculcers
or even gast ric cancer s, and may inhibit r ecovery (Al zokaky, A. A.m,
etal.,2020).GastriculcerisassociatedwithROSoverproductionthat
triggers the accumulation of innate immune cells at the site of injury
resultingintranslocationandactivationofNF-κB which enhances the
secretionandexpressionofpro-inflammatorymediators,asconfirmed
byourfindings(Chenetal.,2017;Kangetal.,2014).
Interestingly, PAs administration inhibited the developed
inflammatory reactions following HCl/ethanol injection in a
dose-dependent manner, as evidenced by the decreased pro-
inflammatorycytokinesandNos2,P tgs2,Hm gb1mRNAexpressions
alon gw it hPG E2 an dN F- κBlevels.Downregulationofinflammatory
mediatorswasshowntoprotectgastrictissue(Akandaetal.,2018).
PAswas foundto exertanti-inflammatory ac tivit y through deacti-
vationofNF-κB,modulatingarachidonicacidpathway,suppressing
eicosanoidproducingenzymes, downregulating mRNA expression,
andreleaseof pro-inflammatorycytokines, and deactivating Cox-2
aswellasregulatingmitogen-activatedproteinkinasesignaling(Chu
et al., 2016;Limtrakul et al., 2016; Martinez-Micaelo et al., 2012).
Inparallelwith previousrepor ts, ourresultsindicate thatPAsmay
FIGURE 2 EffectsofPAsonhistopathologicalchangesfollowingHCl/ethanol-inducedgastriculcerinrats.Scalebar= 80 µm
FIGURE 3 EffectsofPAsonlevelsofoxidativestressmarkers:(a)ROS,(b)MDA(nmol/mgprotein),(c)NO(µmol/mgprotein)and(d)GSH
(mmol/mgprotein)inratsexposedtoEtOH/HCl.Dataareexpressedasmean± SDandwereanalyzedusingone-wayANOVAfollowedby
Tukey'sposthoctestatp <.05.Barsthatdonotsharethesamelet ters(superscripts)aresignificantlydifferentfromeachother.EtOH/HCL,
acidifiedethanol;GSH,glutathione;LPZ,lansoprazole(30mg/kg);MDA,malondialdehyde;NO,nitricoxide;PAs-100,proanthocyanidines
(100mg/kg);PAs-250,proanthocyanidines(250mg/kg);ROS,reactiveoxygenspecies,n = 10
(a) (b)
(c) (d)
8 of 13 
|
   LOKMAN et AL.
suppress early steps of inflammation and are able to modulate the
production of pro-inflammatory mediators through inhibition of
iNOS,Cox2,PGE-2,andNF-κB activity.
Oxidativestressplaysafundamentalroleinthepathophysiology
ofinflammatory disorders includinggastriculceration(Abdelfattah
etal., 2019). Our findingsindicatethe developmentofgastric oxi-
dativedamage, ascharacterizedby theupregulation ofROS,MDA,
andNO,aswellasbydepletionof antioxidant molecules andtheir
regulators,Nrf2andHO-1.Anamplebodyofevidenceindicatesthat
ROS produc ed in gastri c mucosa by neu trophils pl ays an essenti al
FIGURE 4 EffectsofPAsontheactivityofenzymaticantioxidativemarkers:(a)SOD(U/mgprotein),(b)CAT(U/mgprotein),(c)GR(µmol/
mgprotein),and(d)GPx(U/mgprotein)inratsexposedtoEtOH/HCl.Dataareexpressedasmean± SDandwereanalyzedusingone-way
ANOVAfollowedbyTukey'sposthoctestatp <.05.Barsthatdonotsharethesameletters(superscripts)aresignificantlydifferentfrom
eachother.CAT,catalase;EtOH/HCL,acidifiedethanol;GPx,glutathioneperoxidase;GR,glutathionereductase;LPZ,lansoprazole(30mg/
kg);PAs-100,proanthocyanidines(100mg/kg);PAs-250,proanthocyanidines(250mg/kg);SOD,superoxidedismutase,n = 10
(a) (b)
(c) (d)
FIGURE 5 EffectsofPAsonmRNAexpressionof(a)Hmox1and(b)Nfe2l2inratsexposedtoEtOH/HCl.PCRfindingsareexpressedas
the mean ± SD of triplicate assays referenced to Gapdhandexpressedasfoldchanges(log2scale)comparedtothemRNAexpressionin
thecontrolsandEtOH/HCLinjectedgroup.Datawereanalyzedusingone-wayANOVAfollowedbyTukey'sposthoctestatp < .05. Bars
thatdonotsharethesameletters(superscripts)aresignificantlydifferentfromeachother.EtOH/HCL,acidifiedethanol;LPZ,lansoprazole
(30mg/kg);PAs-100,proanthocyanidines(100mg/k g);PAs-250,proanthocyanidines(250mg/kg);Hmox1,hemeoxygenase-1;Nfe2l2,
nuclearfactorerythroid2-relatedfactor2,alsoknownasnuclearfactorerythroid-derived2-like2,n = 10
(a) (b)
   
|
9 of 13
LOKMAN e t AL.
role in the d amage cause d to the gastr ic mucosal ep ithelium. T he
imbalancebetweenincreased ROS levels anddepletedantioxidant
levels is one of the pathophysiological mechanisms of gastric ulcer
progression(Yeoetal.,2021).RecentstudiesfurtherrevealthatHCl
and/orethanolcauseshypoxiabydisturbingthemicrocirculationin
gastricmucosa,generatingROS,andinitiatinglipidperoxidation(Suo
etal.,2016).TheincreasedMDAisassociatedwithROSproduction
andusedasanindicator for lipidperoxidationandconfirms the in-
cidenceofoxidativedamage.Additionally,upregulationofiNOSex-
pressionincreasesNOproduction,whereby excess NOreact swith
O2toproduceperoxynitriteresultinginseverecellularimpairments
(Sunet al., 2021).Indeed,the depletedcellular antioxidativecapac-
ityduringthedevelopmentof gastriculcerationislinkedwith ROS
overproduction and the downregulation of Nrf2/HO-1 signaling
(Yeoetal.,2018),asobtainedinthecurrentstudy.
The curr ent study reveale d that PAs administr ation reduced
ROS generation, gastric lipid peroxidation, and NO formation,
while inc reased antioxidat ion markers, inc luding GSH, GP x, GR,
SOD, and CAT, and upregulated mRN A expression of Nrf2 and
HO -1, dem o nst r ati ngt hatit s ant i- ulc ero gen icp rop e r tie sar ep a r tly
dependentonitsantioxidant function. The antioxidativecapacity
of PAs has been at tribute d to their abil ity to scaven ge free rad-
icals through donating an electron to free radicals - OH groups
connectedtothephenolicring,resultingintheterminationofthe
oxidative c hain reactions ( Yang et al., 2018. 2018.). In ad dition,
PAsinhibitedROSgenerationandlipoperoxidationinerythrocy tes
and lymphocytes following cadmium exposure in rat s (Nazima
etal.,2016).Moreover,Rajput et al.(2019)reported thatPAs in-
hibited oxidative indults mediated by AflatoxinB1inthe bursaof
Fabriciusofbroilersbydecreasinglipoperoxidationandenhancing
thelevelandexpressionofcellularantioxidants.Baket al. (2016)
showedthatPAsinhibitedROSgenerationandincreasedthelevel
andexpressionofantioxidantenzymesinbothHepG2cellsandrat
liver.InadditiontoitsabilitytoinhibitROSproductionassociated
withgastriculceration,PAswasfoundtoenhancetheexpression
ofNrf 2andH O-1.N rf2isat ra nscriptio nalfactorth atcontrols and
regulate s the activit y and expressi on of antioxidant en zymes. It
was also found to maintain the integrity of the mucosal membrane
inresponsetoethanolexposure(Badretal., 2019).HO-1isanin-
ducible enzymethatcatalyzeshemeintoFe2+,CO,andbiliverdin.
HO-1 wasfound to protect thecellthroughits antioxidant,anti-
inflammatory,andanti-apoptoticproperties.TheupregulatedNrf2
FIGURE 6 EffectsofPAsonlevelsofpro-inflammator ycytokines(a)TNF-αlevels(pg/mgprotein),(b)IL-1β(pg/mgprotein),(c)IL-6
levels(pg/mgprotein),and(d)H m gb1 mRNAexpressioninratsexposedtoEtOH/HCl.PCRfindingsareexpressedfromtriplicateassays
referenced to Gapdhandexpressedasfoldchanges(log2scale)comparedtothemRNAexpressioninthecontrolsandEtOH/HCLinjected
group.Alldataareexpressedasmean± SDandwereanaly zedusingone-wayANOVAfollowedbyTukey'sposthoctestatp < .05. Bars that
donotsharethesameletters(superscripts)aresignificantlydifferentfromeachother.EtOH/HCL ,acidifiedethanol;H mgb1,Highmobility
groupbox1;IL-1β,interleukin1β;IL-6,interleukin6;LPZ,lansoprazole(30mg /kg);PAs-100,proanthocyanidines(100mg/kg);PAs-250,
proanthocyanidines(250mg/kg);TNF-α,tumornecrosisfactorα,n = 10
(a) (b)
(c) (d)
10 of 13 
|
   LOKMAN et AL.
andHO-1followingPAsadministrationprovideagastroprotective
effect against HCl/ethanol-induced oxidative insults. Previous
studiesdemonstrated thatPAsinhibitedthedevelopmentofhe-
patic oxidative injur y in response to lead intoxication through
activ ating Nrf2 /AREsi gnaling (Lon g et al., 2016). In the diab etic
model,PAsexhibitedantioxidativecapacitythroughinducingNrf2
andHO-1expression(Dingetal.,2020).
Accumulative studies link between oxidative stress, inflamma-
tion,andthedevelopmentofapoptosisduringgastriculceration.In
thecurrentstudy,apoptoticcascadewasobservedingastrictissue
FIGURE 7 EffectsofPAsonmRNAexpressionandlevelof(a)Nos2,(b)NF-κB,(c)Ptgs2,and(d)PGE2(ng/mgprotein)inratsexposedto
EtOH/HCl.PCRfindingsareexpressedfromtriplicateassaysreferencedtoGapdhandexpressedasfoldchanges(log2scale)comparedto
themRNAexpressioninthecontrolsandEtOH/HCLinjectedgroup.Alldataareexpressedasmean± SDandwereanalyzedusingone-way
ANOVAfollowedbyTukey'sposthoctestatp <.05.Barsthatdonotsharethesameletters(superscripts)aresignificantlydifferentfrom
eachother.EtOH/HCL,acidifiedethanol;LPZ,lansoprazole(30mg/kg);NF-κB,nuclearfactorkappa-light-chain-enhancer;Nos2,inducible
nitricoxidesynthase;PAs-100,proanthocyanidines(100mg/kg);PAs-250,proanthocyanidines(250mg/kg);PGE2,prostaglandinE2;Ptgs2,
prostaglandin-endoperoxidesynthase2(cyclooxygenase-2,Cox2),n = 10
(a) (b)
(c) (d)
FIGURE 8 EffectsofPAsonlevelsofapoptoticmarkers:(a)Bcl-2(ng/mgprotein),(b)Bax(ng/mgprotein)and(c)caspase-3(µmolpNA/
min/mgprotein)inratsexposedtoEtOH/HCl.Dataareexpressedasmean± SDandwereanalyzedusingone-wayANOVAfollowedby
Tukey'sposthoctestatp <.05.Barsthatdonotsharethesamelet ters(superscripts)aresignificantlydifferentfromeachother.Bax,Bcl-
2-associatedXprotein;Bcl2,B-celllymphoma2;EtOH/HCL,acidifiedethanol;LPZ,lansoprazole(30mg/kg);PAs-100,proanthocyanidines
(100mg/kg);PAs-250,proanthocyanidines(250mg/kg),n = 10
(a) (b) (c)
   
|
11 of 13
LOKMAN e t AL.
upon HCl/ethan ol injecti on as demons trated by the el evated pro-
apoptoticmarkers, Bax andcaspase3,andthe decreased Bcl2,the
anti-apoptoticmarker.Abdelfattahetal.(2019)reportedthatgastric
epithelium loss was pronounced following HCl/ethanol injection.
Theauthors recordeda significantincreaseinthepro-apoptogenic
proteins anda decrease in theanti-apoptotic protein. Theseapop-
totic eventsingastriculceration have beenexplained by the over-
produc tion of ROS. Interestingly, PAs administration blocked the
apoptoti c machinery a ssociated with g astric erosi ons. It has been
suggestedthatPAsfromdifferentnaturalresourcesisabletoinhibit
cell death via an intrinsic pathway through enhancing Bcl2 proteins
and inhibiting mitochondrial dysfunction (Puiggròs et al., 2014).
Additionally,theanti-apoptoticactivity of PAshas been attributed
toscavengetheaccumulatedfreeradicals(Bouazizetal.,20 07).
5 | CONCLUSION
Theresults reportedinthisworkindicate that PAs administration
iscapable of protecting gastric tissuefollowingHCL/ethanol injec-
tion, as evidenced by the improved macroscopic and microscopic
struc tures, the decr eased gastric le sions, and gastr ic ulcer index.
PAs were also sh own to restore the b alance betwe en the gastric
pro-oxidants and antioxidants while inhibiting inflammatory reac-
tions and suppressing apoptotic events. All these findings indicate
thatPAsarepromisinggastroprotectiveagentsandcouldbeusedto
treatorpreventgastriculcerationanditsassociatedoxidativedam-
age,inflammation,apoptosis,andhistologicalchanges.
CONFLICT OF INTEREST
Theauthordeclaresthatthereisnoconflictofinterest.
AUTHOR CONTRIBUTIONS
Maha Lokman: Conceptualization. Dalia Zaafar: Conceptualization.
Mohamed M. Abdel- Daim: Formal analysis . Abdulrahman Theyab:
Investigation. Hasan Mufti:Formal analysis. Mohammad Algahtani:
Investigation. Ola Habotta: Project administration. Abdullah A.
Alghamdi: Resources. Khalaf F. Alsharif: Software. Ashraf Albrakati:
Writing—review&editing.Atif A. Oyouni:Validation.Amira Bauomy:
Writing—original draft. Roua S. Bat y: Writing—review & editing.
Ahmed Zehry: Funding acquisition. Rami Kassab: Methodology.
Hussam A. Althagafi: Supervision. Khalid E. Hassan: Formal
analysis. Ahmed E. Abdel Moneim:Fundingacquisition;Supervision;
Validation;Visualization.
ETHICAL APPROVAL
TheexperimentalprotocolwasapprovedbytheInstitutionalAnimal
Ethics Committe e and was in accordance w ith the guideline s for
animalcareanduseatHelwanUniversity(approvalno:HU2020/Z/
RKA1020-01).
DATA AVAIL AB ILI T Y STAT EME N T
Thedataareavailableuponrequestfromthecorrespondingauthor.
ORCID
Maha S. Lokman https://orcid.org/0000-0003-2830-3479
Dalia Zaafar https://orcid.org/0000-0002-7201-3658
Hussam A. Althagafi https://orcid.org/0000-0003-0311-2975
Ashraf Albrakati https://orcid.org/0000-0002-4116-7865
Atif Abdulwahab A. Oyouni https://orcid.org/0000-0001-8762-4999
REFERENCES
Abdelfattah,M.S.,Elmallah,M.I.,Ebrahim,H.Y.,Alme er,R.S.,Eltanany,
R. M., & A bdel Mon eim, A. E . (2019). Prodigio sins from a ma rine
sponge-associated actinomycete attenuate HCl/ethanol-induced
gastr ic lesion via an tioxidant and a nti-inflammator y mechani sms.
PLoS One,14 (6),e0216737.
Aebi,H.(1984).Catalaseinvitro.Methods in Enzymology,105,121–126.
Akand a, M. R., Ki m, I.-S., Ahn, D., Tae, H.-J., Nam, H.-H., Cho o, B.-K.,
Kim, K., & Park, B.-Y. (2018). Anti-inflammator y and gastropro-
tecti ve roles of Rab dosia infle xa through d ownregula tion of pro-
inflammatory cytokines and MAPK/NF-κB signaling pathways.
International Journal of Molecular Sciences,19(2),584.
Al-Quraishy,S., Othman,M.S.,Dkhil,M.A.,& Moneim,A .E. A. (2017).
Olive (Olea europaea) leaf methanolic extract prevents HCl/
ethanol-induced gastritis in rats by attenuating inflammation
and augmenting antioxidant enzyme activities. Biomedicine &
Pharmacotherapy,91,338–349.
Alzokak y, A.-M., Abde lkader, E. M., El- Dessouki, A . M., Khal eel, S. A .,
& Raslan , N. A. (2020). C-phyco cyanin protec ts agains t ethanol-
indu cedg ast riculce rsinrat s:Ro leofHMGB1/NLRP3/N F-κB path-
way. Basic & Clinical Pharmacology & Toxicology,127(4),265–277.
Arab,H.H.,Salama,S.A.,Omar,H.A.,Arafa,E.-S.-A .,&Maghrabi,I.A.
(2015). Diosminprotects agains tethanol-induced gas tric injury in
rats:novelanti-ulceractions.PLoS One,10(3),e0122417.
Azadegan-Dehkordi, F., Bagheri, N., Shirzad, M., Sanei, M. H .,
Hashemzadeh-Chaleshtori,M.,Rafieian-Kopaei,M.,Tabatabaiefar,
M. A., & Shirzad, H. (2015). Correlation between mucosal IL-6
mRNAexpressionlevelandvirulencefactor sofHelicobacterpylori
inIr anian adultpatientswithchronic gastritis.Jundishapur Journal
of Microbiology,8(8),e21701.
Aziz,R .S.,Siddiqua,A.,Shahzad,M.,Shabbir,A.,&Naseem,N.(2019).
Oxyresveratrol ameliorates ethanol-induced gastric ulcer via
downregulationofIL-6,TNF-α,NF-ĸB,andCOX-2levels,andup-
regulat ion of TFF-2lev els. Biomedicine & Pharmacotherapy,110 ,
554– 560.
Badr, A. M. , El-Orabi, N . F.,& Al i, R. A. ( 2019).T he implic ation of the
crosstalk of Nrf2 with NOXs, and HMGB1 in ethanol-induced
gastriculcer: Potential protectiveeffec tisafforded by Raspberry
Ketone. PLoS One,14(8),e0220548.
Bak,M.J.,Truong,V.-L.,Ko,S.-Y.,Nguyen,X.N.G.,Ingkasupart,P.,Jun,
M.,Shin,J.Y. ,&Je on g, W.-S .( 20 16) .A nt ioxi da ntan dh ep at op ro te c-
tiveeffectsofprocyanidinsfromwildgrape(Vitisamurensis)seeds
inethanol-inducedcellsandrats. International Journal of Molecular
Sciences,17(5),758.
Beecher,G.R.(2004).Proanthocyanidins:Biologicalactivitiesassociated
with human health. Pharmaceutical Biology,42(sup1),2–20.
Bouaziz, A., Romera-Castillo, C., Salido, S., Linares-Palomino, P. J.,
Altarejos, J., Bartegi, A., Rosado, J. A ., & Salido, G. M. (2007).
Cinnamt annin B-1frombaywoodexhibitsantiapoptoticeffects in
human platelets. Apoptosis,12(3),489–498.
Chen,S.,Zhao,X.,Sun,P.,Qian,J.,Shi,Y.,&Wang,R.(2017).Preventive
effec tof Gardenia jasminoides onHCl/ethanolinduced gastricin-
jury in mice. Journal of Pharmacological Sciences,133(1),1–8.
Chu, H., Tang, Q. , Huang, H., Ha o, W.,& Wei , X. (2016). Grape- se ed
proanthocyanidins inhibit the lipopolysaccharide-induced in-
flammatory mediator expression in RAW264. 7 macrophages
12 of 13 
|
   LOKMAN et AL.
bysuppressing MAPK and NF-κb signal pathways. Environmental
Toxicology and Pharmacology,41,159–166.
Ding,Y.,Li,H., Li,Y.,Liu,D.,Zhang,L.,Wang,T.,Liu,T.,&Ma,L.(2020).
Protectiveeffectsofgrapeseedproanthocyanidinsonthekidneys
of diabetic rats through the Nrf2 signalling pathway. Evidence-
Based Complementary and Alternative Medicine,2020.
El-Omar,E.M.,Carring ton, M., Chow,W.-H.,McColl,K.E.L .,Bream, J.
H., Young, H. A., Herrera, J., Lissowska , J., Yuan, C.-C., Rothman,
N.,Lanyon,G.,Martin,M.,FraumeniJr,J.F.,&Rabkin,C.S.(2001).
Correc tion: The role of interleukin-1polymorphisms inthepatho-
genesis of gastric cancer. Nature,412 (6842),99–99.
Factor, V. M., Kiss, A ., Woitach, J. T., Wir th, P. J., & Thorgeirs son, S.
S. (1998). Disruption of redox homeos tasis in the transforming
growth factor-alpha/c-myc transgenic mouse model of acceler-
ated hepatocarcinogenesis. Journal of Biological Chemistry,273(25),
15846– 15853.
Ghweil,A .A.,Osman,H.A.,Hassan,M.H.,Sabry,A.M.,Mahdy,R.E.,
Ahmed,A.R.,Okasha, A.,Khodear y,A.,& Ameen,H .H.(2020).
Validity ofserumamy loidA andHMGB1as biomarkersforearly
diagnosis of gastric cancer. Cancer Management and Research,12,
117.
Green,L.C .,Wagner,D. A.,Glogowski,J., Skipper,P.L.,Wishnok,J.S.,
&Tannenbaum, S.R .(1982).Analysis of nitrate, nitrite, and [15N]
nitrate in biological fluids. Analytical Biochemistry,126(1),131–13 8.
Kang,J.-W.,Yun,N.,Han,H.-J.,Kim,J.-Y.,Kim,J.-Y.,&Lee,S.-M.(2014).
Protectiveeffec tof flosloniceraeagainst experiment algastricul-
cers in rats:mechanisms of antioxidant and anti-inflammatory ac-
tion. Evidence- Based Complementary and Alternative Medicine,2014 ,
596920.
Kulikova, O.I., Stvolinsky, S.L., Migulin, V.A.,Andreeva ,L .A., Nagaev,
I. Y., Lopacheva, O. M., Kulichenkova, K. N., Lopachev, A. V.,
Trubitsina, I. E., & Fedorova, T. N. (2020). A new derivative of
acetylsalicylic acid and carnosine: synthesis, physical and chemi-
calproperties,biologicalactivity.DARU Journal of Pharmaceutical
Sciences,28(1),119–130.
Lanas, A., & Chan, F. K. (2017). Peptic ulcer disease. The Lancet,
390(10094),613–624.
Li, Z., Li u, Y.,Wa ng, F.,G ao, Z., Elhef ny,M . A., Habot ta, O. A., A bdel
Moneim,A .E.,&Kassab, R. B. (2021).Neuroprotective ef fect sof
protocatechuicacid on sodium arsenate induced toxicity inmice:
Role of oxidative stress, inflammation, and apoptosis. Chemico-
biological Interactions,337,109392.
Limtra kul, P., Yodkeeree, S ., Pitchakarn, P., & Punfa , W. (2016). Anti-
inflammatory effectsofproanthocyanidin-richred rice extractvia
suppression ofMAPK, AP-1 and NF-κB pathways in Raw 26 4.7
macrophages. Nutrition Research and Practice,10(3),251.
Lin,D.,Xiao,M.,Zhao,J.,Li,Z.,Xing,B.,Li,X.,Kong,M.,Li,L.,Zhang,Q.,
Liu,Y.,Chen,H.,Qin,W.,Wu,H.,&Chen,S.(2016).Anoverviewof
plant phenolic compounds and their importance in human nutrition
and management of t ype 2 diabetes. Molecules,21(10),1374.
Long, M., Liu, Y., Cao, Y., Wang, N., Dang, M., & He, J. (2016).
Proanthocyanidinsattenuationofchroniclead-inducedliveroxida-
tivedamageinkunmingmiceviatheNrf2/AREpathway.Nutrients,
8(10),656.
Lowry,O.H.,Rosebrough,N.J.,Farr,A.L.,&Randall,R.J.(1951).Protein
measurementwith the Folin phenol reagent.Journal of Biological
Chemistry,193(1),265–275.
Martinez-Micaelo, N., González-Abuín, N., Ardèvol, A., Pinent, M., &
Blay,M. T.(2012).Procyanidinsandinflammation:Moleculartar-
gets and health implications. BioFactors,38(4),257–265.
Nazima, B ., Manohar an, V., & Miltonpr abu, S. (2016). Oxi dative stre ss
induced bycadmiumintheplasma,ery throcytesandlymphocyte s
ofrats:Attenuation bygrape seedproanthocyanidins.Human and
Experimental Toxicology,35(4),428–447.
Nishikimi,M.,Rao,N.A.,&Yagi,K.(1972).Theoccurrenceofsuperoxide
an i o n i n t h er e a c t i o n o f reduce d p h e n a z i n em e t h o s u l f a t eandm o l e c-
ularoxygen.Biochemical and Biophysical Research Communications,
46(2),849–854.
Ohkawa,H.,Ohishi,N.,&Yagi,K.(1979).Assayforlipidperoxidesinan-
imal tissues by thiobarbituric acid reaction. Analytical Biochemistry,
95(2),351–358.
Paglia, D.E.,&Valentine, W.N.(1967).Studies onthequantitative and
qualitativecharacterizationofery throcyteglutathioneperoxidase.
Journal of Laboratory and Clinical Medicine,70(1),158–169.
Puiggròs, F., Salvad ó, M.-J., Bladé, C. , & Arola, L. (2014). Dif ferential
modulation of apoptotic processes by proanthocyanidins as a di-
etary strategy for delaying chronic pathologies. Critical Reviews in
Food Scien ce and Nutrition,54(3),277–291.
Raish, M., Shahid, M., Bin Jardan, Y. A., Ansari, M.A., Alkhar fy, K. M.,
Ahad, A., Abdelrahman,I .A.,Ahmad,A., &Al-Jenoobi,F.I.(2021).
Gastroprotec tive effectofsinapicacidonet hanol-inducedgastric
ulcers inrats: InvolvementofNr f2/HO-1 and NF-κB signaling and
antiapoptotic role. Frontiers in Pharmacology,12,101.
Rajput ,S., Zhang,C., Feng,Y., Wei, X.,Khalil, M.,Rajput ,I., Baloch, D.,
Shauka t, A., Rajpu t, N., Qamar, H., Has san, M., & Qi, D. (2019).
Proanthocyanidinsalleviates AflatoxinB1-induced oxidativestress
and apoptosis through mitochondrial pathway in the bursa of fabri-
cius of broilers. To xin s,11 (3),157.
Santos,A.M.,Lopes,T.,Oleastro,M.,Pereira,T.,Alves,C.C.,Seixas,E.,
Chaves,P.,Machado,J.,& Guerreiro,A.S.(2018). Cycloox ygenase
inhibition with curcumin inHelicobac terpylor iinfec tion. Nutrire,
43(1),1–7.
Sedlak , J., & Lindsay, R. H . (1968). Est imation of tota l, protein-boun d,
and nonprotein sulfhydr yl groups in tissue with Ellman's reagent.
Analytical Biochemistry,25,192–205.
Shin,J.-K.,Park,J.H.,Kim,K.S.,Kang,T.H.,&Kim,H.S.(2020).Antiulcer
activity of steamed ginger extract against ethanol/HCl-induced
gastric mucosal injur y in rats. Molecules,25(20),4 663.
Son, D. J., Le e, G. R., Oh, S., Lee, S. E., & Choi, W. S. (2015).
Gastroprotective efficacy and safety evaluation of scoparone
derivatives onexperimentally induced gastric lesions inrodents.
Nutrients,7(3),1945–1964.
Sun,D.,Sun,C.,Qiu,G.,Yao,L.,Yu,J.,AlSberi,H.,Fouda,M.S.,Othman,
M.S.,Lok man, M.S .,Kassab, R. B.,&AbdelMoneim,A.E. (2021).
Allicin mitigates hepatic injury following cyclophosphamide ad-
ministration via ac tivationofNrf2/ARE pathways and throughin-
hibition of inflammatory and apoptotic machinery. Environmental
Science and Pollution Research,1–12.
Suo, H., Zhao, X., Qian, Y., Sun, P., Zhu, K., Li, J., & Sun, B. (2016).
LactobacillusfermentumSuoattenuatesHCl/ethanolinducedgas-
tric inju ry in mice t hrough its a ntioxidant e ffect s. Nutrients, 8(3),
155.
Tu,S . ,B ha gat ,G . ,C ui ,G . ,Taka is hi,S. ,K ur t-J on es, E. A ., Ric km an, B. ,B etz ,
K.S.,Penz-Oesterreicher,M.,Bjorkdahl,O.,Fox,J.G.,&Wang,T.C .
(2008).Overexpressionofinterleukin-1β induces gastric inflamma-
tion and cancerandmobilizesmyeloid-derived suppressor cellsin
mice. Cancer Cell,14(5),408–419.
Wang,T.K.,Xu,S.,Li,S.,&Zhang,Y.(2020).Proanthocyanidinsshouldbe
acandidateinthetreatmentofc ancer,cardiovasculardiseasesand
lipid metabolic disorder. Molecules,25(24),5971.
Wang,X.,&Roper,M.G.(2014).MeasurementofDCFfluorescenceasa
measureofreactiveoxygenspeciesinmurineisletsofLangerhans.
Analytical Methods, 6(9), 3019–3024. https://doi.org/10.1039/
C4AY00288A
Yang, L., Xian, D., Xiong, X., Lai, R ., Song , J., & Zhong, J. (2018).
Proanthocyanidinsagainstoxidativestress:frommolecularmech-
anisms to clinical applications. BioMed Research International,
2018.
   
|
13 of 13
LOKMAN e t AL.
Yeo, D., Hwang, S .-J., So ng, Y.-S ., & Lee, H .-J.( 2021). Humule ne inhib-
its acute gastric mucosal injur y by enhancing mucosal integrity.
Antioxidants,10 (5),761.
Yeo, D., Hwang, S . J., Kim, W. J., Youn, H.-J., & Lee, H.-J. (2018). The
aqueous extract from Artemisia capillaris inhibits acute gastric
mucosal injury by inhibition of ROS and NF-kB. Biomedicine &
Pharmacotherapy,99,681687.
Zhang, K.,Liu, Y.,Wang, C., Li,J.,X iong, L .,Wang, Z., Liu,J.,&Li, P.(2019).
Evaluationoft hegastroprote ctiveeffect sof20(S)-ginsenosideR g3on
gastr ic ulcer models i n mice. Journal of G inseng Resea rch,43( 4 ) , 5 5 0 5 6 1 .
Zh ou ,D.,Yang ,Q .,T ia n,T.,C ha ng, Y., Li ,Y. ,D u an ,L. -R. ,L i,H ., &Wan g,S .-W.
(2020).Gastroprotec tiveeffectofgallicacidagainstethanol-induced
gastriculcerinrats:InvolvementoftheNrf2/HO-1signalingandanti-
apoptosis role. Biomedicine & Pharmacotherapy,126,110 075.
How to cite this article:Lokman,M.S.,Zaafar,D.,Althagafi,
H.A.,AbdelDaim,M.M.,Theyab,A .,HasanMufti,A.,
Algahtani,M.,Habotta,O.A.,Alghamdi,A.A .A.,Alsharif,K.
F.,Albrakati,A.,Oyouni,A.A.A.,Bauomy,A.A.,Baty,R.S.,
Zhery,A.S.,Hassan,K.E.,AbdelMoneim,A.E.,&Kassab,R .
B.(2022).Antiulceractivityofproanthocyanidinsismediated
viasuppressionofoxidative,inflammator y,andapoptotic
machineries. Journal of Food Biochemistry,00,e14070.
https://doi.org/10.1111/jfbc.14070
... The stomach samples were weighed and buffer washed (phosphatebuffered saline (PBS)) and glandular tissues of the stomach were prepared on clean slides for the microscopic examination. The gastric mucus amount was determined using an electrical balance (Lokman et al., 2022). ...
... The amount of gastric epithelial mucus secretion and modulation of either acidic or basic glycoprotein was found by staining gastric glandular tissues with PAS stain according to the previously mentioned protocols via Sigma (PAS) Kit (Merck, Germany). The slides were imaged by Image J software (Lokman et al., 2022). ...
Article
Full-text available
Peptic ulcer disease is the greatest digestive disorder that has increased incidence and recurrence rates across all nations. Prangos pabularia (L.) has been well documented as a folkloric medicinal herb utilized for multiple disease conditions including gastric ulcers. Hence, the target study was investigation the gastro-protection effects of root extracts of Prangos pabularia (REPP) on ethanol-mediated stomach injury in rats. Sprague Dawley rats were clustered in 5 cages: A and B, normal and ulcer control rats pre-ingested with 1 % carboxymethyl cellulose (CMC)); C, reference rats had 20 mg/kg omeprazole; D and E, rats pre-supplemented with 250 and 500 mg/kg of REPP, respectively. After one hour, group A was given orally 1 % CMC, and groups B-E were given 100 % ethanol. The ulcer area, gastric acidity, and gastric wall mucus of all stomachs were determined. The gastric tissue homogenates were examined for antioxidant and MDA contents. Moreover, the gastric tissues were analyzed by histopathological and immunohistochemically assays. Acute toxicity results showed lack of any toxic effects or histological changes in rats exposed to 2 and 5 g/kg of REPP ingestion. The ulcer controls had extensive gastric mucosal damage with lower gastric juice and a reduced gastric pH. REPP treatment caused a significant reduction of the ethanol-induced gastric lacerations represented by an upsurge in gastric mucus and gastric wall glycoproteins (increased PAS), a decrease in the gastric acidity, leukocyte infiltration, positively modulated Bax and HSP 70 proteins, consequently lowered ulcer areas. REPP supplementation positively modulated oxidative stress (increased SOD, CAT, PGE2, and reduced MDA) and inflammatory cytokines (decreased serum TNF-α, IL-6, and increased IL-10) levels. The outcomes could be scientific evidence to back-up the folkloric use of A. Judaica as a medicinal remedy for oxidative stress-related disorders (gastric ulcer).
... Under the condition of oxidative stress, ROS alter the cysteine residues of Keap-1 that induce the release of cytoplasmic Nrf2. Next, Nrf2 enters the nucleus where it regulates the expression of downstream genes encoding antioxidant and detoxifying enzymes [51,52]. ...
Article
Background: Doxorubicin (DOX) is an antitumor anthracycline used to treat a variety of malignancies; however, its clinical use is associated with noticeable hepatotoxicity. Therefore, the current study was designed to delineate if biosynthesized SeNPs with turmeric extract (Tur-SeNPs) could alleviate DOX-induced hepatic adverse effects. Methods: Mice were orally post-treated with Tur extract, Tur-SeNPs, or N-acetyl cysteine after the intraperitoneal injection of DOX. Objective Therefore, the current study was designed to delineate if biosynthesized SeNPs with turmeric extract (Tur-SeNPs) could alleviate DOX-induced hepatic adverse effects. Results: Our findings have unveiled a remarkable liver attenuating effect in DOX-injected mice post-treated with Tur-SeNPs. High serum levels of ALT, AST, ALP, and total bilirubin induced by DOX were significantly decreased by Tur-SeNPs therapy. Furthermore, Tur-SeNPs counteracted DOX-caused hepatic oxidative stress, indicated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and mRNA expression levels of Nrf-2. Noteworthily, decreased hepatic IL-1β, TNF-α, and NF-κB p65 levels in addition to downregulated iNOS gene expression in Tur-SeNPs-treated mice have indicated their potent antiinflammatory impact. Post-treatment with Tur-SeNPs also mitigated the hepatic apoptosis evoked by DOX injection. A liver histological examination confirmed the biochemical and molecular findings. Method Methods: Mice were orally post-treated with Tur extract, Tur-SeNPs, or N-acetyl cysteine after the intraperitoneal injection of DOX. Conclusions: In brief, the outcomes have demonstrated Tur loaded with nanoselenium to successfully mitigate the liver damage induced by DOX via blocking oxidative stress, and inflammatory and apoptotic signaling.
... This is in harmony with former reports (Abd-Ellatif et al. 2019;Al-Brakati et al. 2021). Bcl-2 and Bax are two apoptosisregulating proteins with opposite apoptotic actions (Lokman et al. 2022;Othman et al. 2021b). The balance between proapoptotic and antiapoptotic molecules has a critical role in cell survival and apoptosis (Al-Megrin et al. 2020;Albarakati et al. 2020). ...
Article
Full-text available
Acute kidney injury (AKI) is a life-threatening complication that accompanies rhabdomyolysis. Daidzein is a dietary isoflavone that has various biological activities. This study examined the therapeutic potential of daidzein and the underlying mechanisms against AKI induced by glycerol in male rats. Animals were injected once with glycerol (50%, 10 ml/kg, intramuscular) for induction of AKI and pre-treated orally with daidzein (25, 50, and 100 mg/kg) for 2 weeks. Biochemical, histopathological, immunohistopathological, and molecular parameters were assessed to evaluate the effect of daidzein. The results revealed that the model group displayed remarkable functional, molecular, and structural changes in the kidney. However, pre-administration of daidzein markedly decreased the kidney relative weight as well as the levels of urea, creatinine, K, P, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and cystatin C. Further, daidzein lessened the rhabdomyolysis-related markers [lactate dehydrogenase (LDH) and creatine kinase (CK)]. Notably, the enhancement of the antioxidant biomarkers [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and reduced glutathione (GSH) is accompanied by a decrease in malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, upregulated gene expression levels of nuclear factor erythroid 2-related factor 2 (Nfe212) and hemeoxygenase-1 (Hmox1) were exerted by daidzein administration. Rats who received daidzein displayed markedly lower interleukin-1β (IL-1β), tumor nuclear factor-α (TNF-α), myleoperoxidase (MPO), and nuclear factor kappa B (NF-κB) levels together with higher interleukin-10 (IL-10) related to the model group. Remarkably, significant declines were noticed in the pro-apoptotic (Bax and caspase-3) and rises in antiapoptotic (Bcl-2) levels in the group that received daidzein. The renal histological screening validated the aforementioned biochemical and molecular alterations. Our findings support daidzein as a potential therapeutic approach against AKI-induced renal injury via suppression of muscle degradation, oxidative damage, cytokine release, and apoptosis.
... The biological potentials of proanthocyanidins and its crude extracts have been founded prior to this, for example, 500 milligrams of grape-seed proanthocyanidin extract (GSPE) added per kilogram of diet, which can alleviate metabolic disorders caused by obesity in aged female rats [18]. Moreover, proanthocyanidin can ameliorate inflammation, which improved symptoms of gastritis by activating antioxidant enzymes (superoxide dismutase, SOD) [19], reduced the side effects of antineoplastic drugs during cancer treatment [20], protected blood vessels in patients with cardiovascular disease (CVD) [21], and improved tooth by enhancing dental biostability [22]. Although some proanthocyanidins including OPCs, PPCs, and their derivatives displayed similar biological potentials, such as antioxidant, anti-inflammatory, anti-aging, anti-bacterial, and antineoplastic activities [1], OPCs tend to have stronger antioxidant enzyme activity than PPCs, and can also pass through cell membranes more easily, as well as showing higher bio-accessibility rates compared with those of PPCs [23]. ...
Article
Full-text available
Oligomeric Proanthocyanidins (OPCs), as a class of compounds widely found in plants, are particularly abundant in grapes and blueberries. It is a polymer comprising many different monomers, such as catechins and epicatechins. The monomers are usually linked to each other by two types of links, A-linkages (C-O-C) and B-linkages (C-C), to form the polymers. Numerous studies have shown that compared to high polymeric procyanidins, OPCs exhibit antioxidant properties due to the presence of multiple hydroxyl groups. This review describes the molecular structure and natural source of OPCs, their general synthesis pathway in plants, their antioxidant capacity, and potential applications, especially the anti-inflammatory, anti-aging, cardiovascular disease prevention, and antineoplastic functions. Currently, OPCs have attracted much attention, being non-toxic and natural antioxidants of plant origin that scavenge free radicals from the human body. This review would provide some references for further research on the biological functions of OPCs and their application in various fields.
... Zollinger-Ellison syndrome pylori and are the main causes of peptic ulcer (Le ., 2022;Lokman ., et al et al 2022). These causative factors activate neutrophils in the gastric tissue resulting in the production of excessive amounts of reactive oxygen species (ROS) and nitrogen reactive species (RNS) leading to the depletion of endogenous antioxidant system and the development of mucosal oxidative damage (Al-Quraishy ., 2017; et al Lanas & Chan, 2017). ...
Article
Full-text available
Objective: used traditionally by the Ibibio people of Southern Nigeria for theHeterotis rotundifolia (Sm.) Jacq. Fel treatment of pain, stomach ulcer, malaria and other inflammatory diseases .was evaluated for antiulcer activity Materials and Methods: In this study, the effects of the extract (300-900 mg/kg) and different fractions [n-hexane (HEX), ethyl acetate (EAC), methanol (MET) and aqueous (AQU), 600 mg/kg) on experimentally induced ulcer were studied in rats using ethanol, indomethacin and histamine –induced ulcer models. : 300-900Results The extract ( mg/kg) inhibited ethanol, indomethacin and histamine –induced ulcer models in a dose dependent fashion. The various degrees of inhibitions were statistically significant (p<0.05, 0.01, 0.001). The effect of the extract and the different fractions were comparable to that of the standard drugs the MET fraction having the highest activityused, . GC-MS analysis of the MET extract revealed the ofpresence polyunsaturated fatty acids such as tridecanoic acid-12- methyl ester, -5,8,11,14,17-Eicosapentaenoic acid, octadecanoic acid methyl ester, tetracosanoic acid, 9,12-cis Octadecadienoic acid (Z,Z)-, and hexadecanoic acid ethyl ester. :Conclusion Thus, demonstrated aH. rotundifolia good antiulcer activity which supports the use of this plant among the Ibibio people of Southern Nigeria ethnopharmacology for ulcer treatment.
Article
Peptic ulcer, affecting 10% of the global population, results from imbalances in gastric juice pH and diminished mucosal defences. Key underlying factors are non-steroidal anti-inflammatory drugs (NSAIDs) and Helicobacter pylori infection, undermining mucosal resistance. Traditional treatments like proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists exhibit drawbacks such as adverse effects, relapses, and drug interactions. This review extensively explores the ethnomedicinal, synthetic and pharmacological facets of various potential peptic ulcer treatments. Rigorous methodologies involving electronic databases, and chemical structure verification via ‘PubChem’ and ‘SciFinder’ enhance the review's credibility. The provided information, spanning medicinal insights to intricate pharmacological mechanisms, establishes a robust groundwork for future research and the development of plant-derived or synthetic molecules for peptic ulcers, offering a promising alternative to conventional therapies.
Article
Gastric ulceration is a prevalent worldwide clinical presentation due to altered gastric defense mechanisms. Nonsteroidal anti‐inflammatory drugs are one of the common causes of gastric ulcers mediated by the release of inflammatory mediators. The study aimed to investigate the potential protective effect of soyasaponin I (soya) against diclofenac (DIC)‐induced gastric ulcer in rats and to highlight the underlying mechanisms. The experiment was conducted on 40 male Wistar albino rats, equally distributed into five groups: control, DIC‐induced ulcer (9 mg/kg/d, orally, twice daily for 3 days), ulcer/soya‐, ulcer/ranitidine‐, and ulcer/soya/selective nuclear factor kappa B inhibitor (JSH‐23)‐treated groups. The doses of soya, ranitidine, and JSH were 20, 25, and 5 mg/kg/d, respectively, given orally. Gastric specimens were prepared for gene and histological study and for biochemical analysis of gastric prostaglandin E2 (PGE2), oxidative markers, and inflammatory cytokines. The gastric samples were formalin‐fixed, paraffin‐embedded, and subjected to hematoxylin and eosin (H&E), PAS staining, and immunohistochemical assay for identification of nuclear factor kappa B (NF‐κB), cyclooxygenase‐2 (COX‐2), and proliferation marker (Ki67) expressions. The findings revealed decreased gastric PGE2 and altered inflammatory and oxidative markers in the ulcer model group. The H&E staining showed mucosal injury characterized by mucosal surface defects and inflammatory cell infiltrations. The polymerase chain reaction (PCR) and immunohistochemistry demonstrated an upregulation of NF‐κB and COX‐2 expression at gene/protein levels; meanwhile, Ki67 downregulation. The soya‐treated group showed maintained biochemical, histological, and PCR findings comparable to the ranitidine‐treated group. The JSH‐23‐treated group still showed partial gastric protection with biochemical and immunohistochemical changes. Soyasaponin I ameliorated DIC‐induced gastric ulcers by targeting the COX‐2 activity through modulation of NF‐κB signaling.
Article
Full-text available
This study was designed to determine whether α-humulene, a major constituent in many plants used in fragrances, has a protective role against gastric injury in vivo and in vitro. A rat model of hydrochloric acid (HCl)/ethanol-induced gastritis and human mast cells (HMC-1) were used to investigate the mucosal protective effect of α-humulene. α-Humulene significantly inhibited gastric lesions in HCl/ethanol-induced acute gastritis and decreased gastric acid secretion pyloric ligation-induced gastric ulcers in vivo. In addition, α-humulene reduced the amount of reactive oxygen species and malondialdehyde through upregulation of prostaglandin E2 (PGE2) and superoxide dismutase (SOD). In HMC-1 cells, α-humulene decreased intracellular calcium and increased intracellular cyclic adenosine monophosphate (cAMP) levels, resulting in low histamine levels. α-Humulene also reduced the expression levels of cytokine genes such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF) by downregulating nuclear factor-κB (NF-κB) nuclear translocation. Finally, α-humulene upregulated the expression levels of mucin 5AC (Muc5ac), Muc6, trefoil factor 1 (Tff1), trefoil factor 2 (Tff2), and polymeric immunoglobulin receptor (pigr). α-Humulene may attenuate HCl/ethanol-induced gastritis by inhibiting histamine release and NF-κB activation and stimulating antioxidants and mucosal protective factors, particularly Muc5ac and Muc6. Therefore, these data suggest that α-humulene is a potential drug candidate for the treatment of stress-induced or alcoholic gastritis.
Article
Full-text available
Treatment with anti-neoplastic agents, including cyclophosphamide (CP), is associated with several adverse reactions. Here, we distinguished the potential protective effect of allicin against CP-mediated hepatotoxicity in rats. To assess the effect of allicin, four experimental groups were used, with 7 rats per group, including control, allicin (10 mg/kg), CP (200 mg/kg), and allicin + CP-treated groups. All groups were treated for 10 days. Blood and liver samples were collected for biochemical, molecular, and histological analyses. Treatment with CP led to deformations in the liver tissue that were associated with higher liver function markers (alanine transaminase, aspartate transaminase, and alkaline phosphatase). Additionally, a disturbance in the redox balance was observed after CP exposure, as indicated by increased levels of oxidants, including malondialdehyde and nitric oxide, and the decreased levels of endogenous antioxidants, including glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase. At the molecular level, CP treatment resulted in reduced expression of the Nrf2/ARE pathway and other genes related to this pathway, including NAD(P)H quinone dehydrogenase 1 and glutamate-cysteine ligase catalytic subunit. CP also led to a hyper-inflammatory response in hepatic tissue, with increased production of pro-inflammatory cytokines, including tumor necrosis factor-alpha and interlukin-1beta, and upregulation of nitric oxide synthase 2. CP also enhanced the immunoreactivity of the profibrogenic cytokine, transforming growth factor-beta, in liver tissue. Upregulation of caspase 3 and Bcl-2-associated X protein and downregulation of B-cell lymphoma 2 were also observed in response to CP treatment. Treatment with allicin reversed the molecular, biochemical, and histological changes that occurred with CP exposure. These results suggest that allicin can be used in combination with CP to avoid hepatotoxicity.
Article
Full-text available
Background: In the current study, we evaluated the therapeutic potential of sinapic acid (SA) in terms of the mechanism underlying its gastroprotective action against ethanol-induced gastric ulcers in rats. Methods: These effects were examined through gross macroscopic evaluation of the stomach cavity [gastric ulcer index (GUI)], alteration in pH, gastric juice volume, free acidity, total acidity, total gastric wall mucus, and changes in PGE2. In addition, we evaluated lipid peroxidation (malondialdehyde), antioxidant systems (catalase and glutathione), inflammatory markers [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and myeloperoxidase (MPO)], apoptotic markers (caspase-3, Bax, and Bcl-2), nuclear factor-κB [NF-κB (p65)], NO levels, and histopathological staining (H and E and PAS). Results: In rats with ethanol-induced ulcers, pre-treatment with SA (40 mg/kg p. o.) decreased the sternness of ethanol-induced gastric mucosal injuries by decreasing the GUI, gastric juice volume, free acidity, and total acidity. In addition, the pH and total gastric mucosa were increased, together with histopathological alteration, neutrophil incursion, and increases in PGE2 and NO2. These effects were similar to those observed for omeprazole, a standard anti-ulcer drug. SA was shown to suppress gastric inflammation through decreasing TNF-α, IL-6, and MPO, as well as curbing gastric oxidative stress through the inhibition of lipid peroxidation (MDA) and restoration of depleted glutathione and catalase activity. SA inhibited Bcl-2-associated X (Bax) and caspase-3 activity, and restored the antiapoptotic protein Bcl-2; these findings indicate the antiapoptotic potential of SA, leading to enhanced cell survival. SA also repressed NF-κB signaling and increased IκBα. Moreover, SA upregulated the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), thereby restoring depleted antioxidant defense enzymes and implicating the NRF2/HO-1 signaling pathways. Conclusion: These results suggest that the prophylactic administration of SA (40 mg/kg) can ameliorate ethanol-induced gastric ulcers in rats primarily via the modulation of Nrf2/HO-1 and NF-κB signaling and subsequent enhancement of cell viability.
Article
Full-text available
Arsenic is a toxic metalloid abundantly found in nature and used in many industries. Consumption of contaminated water mainly results in human exposure to arsenic. Toxicity (arsenicosis) resulting from arsenic exposure causes cerebral neurodegeneration. Protocatechuic acid (PCA), a phenol derived from edible plants, has antioxidant properties. The present study investigated the neuroprotective potential of PCA against arsenic-induced neurotoxicity in mice. Male Swiss albino mice were divided into four groups: (i) orally administered physiological saline, (ii) orally administered 100 mg/kg PCA, (iii) orally administered 5 mg/kg NaAsO2, and (iv) orally administered 100 mg/kg PCA 120 min prior to oral administration of 5 mg/kg NaAsO2. Each group received its respective treatment for 1 week, after which cortical tissues from each group were analyzed for various parameters of oxidative stress, proinflammatory cytokines, apoptosis-related proteins, and changes in histopathology. NaAsO2-treatment resulted in a significant increase in lipid peroxidation (LPO), inducible nitric oxide synthetase (iNOs), and NO levels, with a decrease in the levels of both enzymatic (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and non-enzymatic (glutathione) antioxidant markers. Arsenic increased proinflammatory cytokine (tumor necrosis factor-α and interleukin-1β) levels, enhanced caspase-3 and Bax expression, and reduced Bcl-2 expression. Furthermore, arsenic-exposure in mice decreased significantly acetylcholinesterase activity and brain-derived neurotrophic factor level in the cerebral cortex. Histopathological examination revealed changes in nerve cell cyto-architecture and distribution in arsenic-exposed brain tissue sections. PCA treatment before arsenic administration resulted in a positive shift in the oxidative stress and cytokine levels with decreased levels of LPO, iNOS, and NO. PCA pre-treatment considerably attenuated arsenic-associated histopathological changes in murine brain tissue. This study suggested that the presence of PCA may be responsible for the prevention of arsenic-induced neurotoxicity.
Article
Full-text available
The conventional view of using medicines as routine treatment of an intractable disease is being challenged in the face of extensive and growing evidence that flavonoids in foods, especially proanthocyanidins (PAs), can participate in tackling fatal diseases like cancer, cardiovascular and lipid metabolic diseases, both as a precautionary measure or as a dietary treatment. Although medical treatment with medicines will remain necessary in some cases, at least in the short term, PAs’ function as antioxidant, anti-inflammatory drugs, signal pathway regulators remain critical in many diseases. This review article demonstrates the physical and biological properties of PAs, summarizes the health benefits of PAs found by researchers previously, and shows the possibility and importance of being a dietary treatment substance.
Article
Full-text available
Ginger (Zingiber officianale), the most widely consumed species, is traditionally used as a folk medicine to treat some inflammatory diseases in China and Korea. However, the functional activity of steamed ginger extract on gastric ulcers has not been previously explored. The present study aimed to investigate antiulcer activity of steamed ginger extract (GGE03) against ethanol (EtOH)/HCl-induced gastric ulcers in a rat model. GGE03 (100 mg/kg) was orally administered for 14 days to rats before oral intubation of an EtOH/HCl mixture to induce gastric damage. Pretreatment with GGE03 markedly protected the formation of microscopic pathological damage in the gastric mucosa. Further, administration of GGE03 significantly increased mucosal total nitrate/nitrite production in gastric tissues, and elevated total GSH content, catalase activity and superoxide dismutase (SOD) expression as well as decreasing lipid peroxidation and myeloperoxidase (MPO) activity. Underlying protective mechanisms were examined by assessing inflammation-related genes, including nuclear factor-κB (NF-κB), prostaglandin E2 (PGE2), and pro-inflammatory cytokines levels. GGE03 administration significantly reduced the expression of NF-κB and pro-inflammatory cytokines. Our findings suggest that GGE03 possesses antiulcer activity by attenuating oxidative stress and inflammatory responses.
Article
Full-text available
Background: Diabetic nephropathy (DN) is the most common cause of end-stage renal failure. Grape seed proanthocyanidin extract (GSPE) is a powerful antioxidant that is believed to protect the kidney through antioxidant action. However, the underlying mechanism of GSPE protection against DN remains unclear. Objective: To explore if GSPE can improve DN by activating nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response element signalling and to clarify its possible mechanism. Materials and methods. Ten healthy Sprague-Dawley rats were randomly selected as controls. Rats with streptozotocin-induced diabetes were randomly divided into three groups (10 animals/group): type 2 diabetes mellitus (T2DM) group (untreated), L-GSPE group (treated with 125-mg/kg/day GSPE for 8 weeks), and H-GSPE group (treated with 250 mg/kg/day GSPE for 8 weeks). Results: Renal histopathological results indicated limited pathological damage in GSPE-treated groups. Compared with the T2DM group, the H-GSPE group had significantly reduced kidney weight and renal index. Similarly, the levels of fasting blood glucose, serum creatinine, blood urea nitrogen, uric acid, urinary albumin, and renal malondialdehyde (p < 0.05) were also significantly decreased. In addition, GSPE significantly increased the levels of superoxide dismutase, total antioxidative capability, and glutathione (p < 0.05) as well as the protein levels of Nrf2, HO-1, glutathione S-transferase, and NAD (P)H quinone oxidoreductase 1 (p < 0.05). Conclusion: The results indicate that GSPE reduced renal damage in rats with diabetes by activating the Nrf2 signalling pathway, which consequently increased the antioxidant capacity of the tissue. Therefore, GSPE is a potential natural agent for the treatment of diabetic nephropathy.
Article
Full-text available
Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a phenolic compound found in many medicinal plants traditionally used in China or patent medicine such as Feiyangchangweiyan capsule (FY capsule) for the treatment of gastrointestinal diseases for decades. However, the evidence for the gastroprotective effect of GA is deficient and the pharmacological mechanisms remain limited. The present investigation was initiated to demonstrate the gastroprotective effect and to understand potential underlying mechanism of GA on ethanol-induced gastric ulcer in rats. Gastric ulcers were induced by absolute ethanol (5 mL/kg, i.g.) in male Sprague-Dawley rats, GA (10, 30, and 50 mg/kg), FY capsule (0.4 g/kg) and 30 mg/kg Lansoprazole was administered orally. Physiological saline and lansoprazole were used as negative and positive control, respectively. Induction of rats with ethanol resulted in a significant rise in ulcer index, serum levels of inflammatory cytokines markers (IL-1β, IL-6 and TNF-α), TBARS, protein expression of Bax and Caspase-3 and a significant reduction in the activities or levels of endogenous antioxidants (SOD, CAT and GSH), gastric mucosal protective factors (PGE2 and NO) and protein expression of Bcl-2. Pretreatment with GA showed a remarkable decrease in ulcer index, inflammatory cytokines markers, TBARS, protein expression of Bax and Caspase-3 and a significant increase in the activities of endogenous antioxidants, levels of PGE2 and NO, and protein expression of Bcl-2, Nrf2 and HO-1 when compared with ethanol treated groups. This study demonstrated the gastroprotective effect of Gallic acid and FY capsule on ethanol-induced gastric ulcer in rats. The underlying mechanism of GA and FY capsule against gastric ulcer in rats caused by ethanol might be involved in Nrf2/HO-1 anti-oxidative pathway and ultimately played an anti-apoptotic role through regulating Bax, Bcl-2 and Caspase-3.
Article
Full-text available
Background and aim Gastric carcinomais a frequent neoplasm with poor outcome, and its early detection would improve prognosis. This study was designed to evaluate the possible use of new biomarkers, namely SAA and HMGB1, for early diagnosis of gastric cancer. Methods A total of 100 patients presenting with gastric symptoms were included. All patients underwent upper endoscopic evaluation, histopathological diagnosis and serum CEA, SAA, and HMGB1 measurements. Results Patients were classed endoscopically with neoplastic, inflammatory, and normal-appearing gastric mucosa: 50, 25, and 25 patients, respectively. Histologically, half the patients had chronic gastritis and the remaining cases gastric carcinoma of diffuse (n=28) or intestinal (n=22) type. SAA at cutoff of 18.5 mg/L had the best validity to differentiate gastritis from gastric carcinoma, with AUC, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of 0.99, 98%, 100%, 100%, and 98%, respectively, followed by HMGB1 at cutoff of 14.5 pg/μL, with AUC, sensitivity, specificity, PPV, and NPV of 0.91, 70%, 96%, 94.6%, and 76.2%, respectively. Sensitivity, specificity, PPV, and NPV of serum CEA at cutoff of 2.9 ng/mL to differentiate gastritis from gastric carcinoma were 42%, 72%, 60%, and 55.4%, respectively, with AUC of 0.53. Nonetheless, higher serum levels of both SAA and HMGB1 reflected higher tumor grade (P=0.027 and P=0.016, respectively) and advanced tumor stage (P-OBrk-0.001 for both). Conclusion Serum levels of both SAA and HMGB1 could be of great value for early diagnosis of gastric carcinoma, comparable to the diagnostic role of serum CEA, which is not valid for early diagnosis of gastric cancer.
Article
Gastric ulcer is a widespread inflammatory disease with high socio‐economic burden. C‐phycocyanin is one of the active constituents of Spirulina microalgae and although it is well‐known for its antioxidant and anti‐inflammatory properties, its protective effects against gastric ulcer have not yet been identified. High mobility group box 1 (HMGB1) is a nuclear protein that, once secreted extracellularly, initiates several inflammatory reactions and it is involved in the pathogenesis of gastric ulcer. The aim of the present study was to investigate the anti‐inflammatory and anti‐ulcerogenic effects of C‐phycocyanin against ethanol‐induced gastric ulcer targeting HMGB1/NLRP3/NF‐κB pathway. Ulcer induction showed increase in HMGB1 expression through activation of nucleotide‐binding domain and leucine‐rich repeat containing protein 3 (NLRP3) inflammasome and nuclear factor kappa p65 (NF‐κB p65). Moreover, oxidative stress and inflammatory markers were elevated in ulcer‐treated group compared to normal control group. However, pretreatment with C‐phycocyanin significantly reduced HMGB1 expression via suppression of NLRP3/NF‐κB, oxidative markers, IL‐1β, tumour necrosis factor‐α (TNF‐α) and ulcer index value. These results were consistent with histopathological and immunohistochemistry examination. Thus, C‐phycocyanin is a potential therapeutic strategy with anti‐inflammatory and anti‐ulcerogenic effects against ethanol‐induced gastric ulcer.