Cláudio M. Gomes

Cláudio M. Gomes
University of Lisbon | UL · Faculty of Science

PhD Biochemistry, Msc Chem, Habilitation
Associate Professor and coordinator of the Protein Misfolding and Amyloids in Biomedicine laboratory

About

188
Publications
42,742
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,802
Citations
Introduction
I am a Biochemist specialised in protein folding, structural biochemistry and biophysics, investigating protein folding diseases and biochemistry of neurodegeneration. My laboratory at ULisboa aims to decipher molecular mechanisms underlying protein misfolding and aggregation in human disease, with a focus on amyloid formation in neurodegenerative diseases.
Additional affiliations
January 2015 - present
University of Lisbon
Position
  • Professor (Associate)
Description
  • Coordinator, Masters in Biochemistry / Medical Biochemistry Member, Pedagogical Council Vice-Coordinator, Biomedicine thematic line
December 2003 - December 2014
Universidade NOVA de Lisboa
Position
  • Researcher
Description
  • Group leader of the Protein Biochemistry Folding and Stability Laboratory
Education
September 2013 - September 2013
Universidade NOVA de Lisboa
Field of study
  • Biochemistry | Structural Biochemistry
September 1995 - June 1999
Instituto Tecnologia Quimica e Biologica
Field of study
September 1994
Instituto Gulbenkian de Ciencia
Field of study
  • Gulbenkian PhD Program in Biology and Medicine

Publications

Publications (188)
Article
Full-text available
Amyloid-β (Aβ) aggregation and neuroinflammation are consistent features in Alzheimer’s disease (AD) and strong candidates for the initiation of neurodegeneration. S100B is one of the most abundant proinflammatory proteins that is chronically up-regulated in AD and is found associated with senile plaques. This recognized biomarker for brain distres...
Article
Full-text available
Increasing evidence links proteins of the S100 family to the pathogenesis of Alzheimer’s disease (AD). S100 proteins are EF-hand calcium-binding proteins with intra- and extracellular functions related to regulation of proliferation, differentiation, apoptosis, and trace metal homeostasis, and are important modulators of inflammatory responses. For...
Article
Full-text available
S100 proteins are calcium-binding proteins that regulate several processes associated with Alzheimer’s disease (AD) but whose contribution and direct involvement in disease pathophysiology remains to be fully established. Due to neuroinflammation in AD patients, the levels of several S100 proteins are increased in the brain and some S100s play role...
Article
S100B is an extracellular protein implicated in Alzheimer’s Disease and a supressor of amyloid-β aggregation. Herein we report a mechanism tying Cu ²⁺ binding to a change in assembly state yielding...
Article
Protein misfolding and conformational changes are a cornerstone of neurodegenerative diseases involving formation and deposition of toxic protein oligomers. Although mutations favor protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a role. Metal ions such as calcium, zinc and cop...
Article
The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties...
Article
Full-text available
Proteinaceous aggregates accumulate in neurodegenerative diseases such as Alzheimer’s Disease (AD), inducing cellular defense mechanisms and altering the redox status. S100 pro-inflammatory cytokines, particularly S100B, are activated during AD, but recent findings reveal an unconventional molecular chaperone role for S100B in hindering Aβ aggregat...
Article
Full-text available
Oligomeric clusters of amyloid-β (Aβ) are one of the major biomarkers for Alzheimer’s disease (AD). However, proficient methods to detect Aβ-oligomers in brain tissue are lacking. Here we show that synthetic M13 bacteriophages displaying Aβ-derived peptides on their surface preferentially interact with Aβ-oligomers. When exposed to brain tissue iso...
Article
Full-text available
Extracellular aggregation of the amyloid-β 1–42 (Aβ42) peptide is a major hallmark of Alzheimer’s disease (AD), with recent data suggesting that Aβ intermediate oligomers (AβO) are more cytotoxic than mature amyloid fibrils. Understanding how chaperones harness such amyloid oligomers is critical toward establishing the mechanisms underlying regulat...
Article
Full-text available
Aggregation of the microtubule‐associated protein tau is implicated in several neurodegenerative tauopathies including Alzheimer's disease (AD). Recent studies evidenced tau liquid–liquid phase separation (LLPS) into droplets as an early event in tau pathogenesis with the potential to enhance aggregation. Tauopathies like AD are accompanied by sust...
Article
Medullary Thyroid Carcinoma (MTC) is a tumor of the neuroendocrine system. In recent years, the need to assess the MTC diagnostic-related parameters has emerged with the aim to elucidate the mechanisms involved in this pathology. The objective of this study was to evaluate the role of Matrix Metalloproteinases (MMPs) 2 and 9, their tissue inhibitor...
Article
Full-text available
Medullary Thyroid Carcinoma (MTC) constitutes around 5% of all thyroid cancers. Trace elements assessment has emerged as a useful strategy in the diagnostics of MTC combined with Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Matrix Metalloproteinases (TIMPs) analysis. The aim of this study was to compare the presence and content of trac...
Article
Alzheimer’s disease (AD) hallmarks include the aggregation of amyloid-β (Aβ), tau and neuroinflammation promoted by several alarmins. Among these is S100B, a small astrocytic homodimeric protein, upregulated in AD, whose multiple biological activities depend on localization, concentration, and assembly state. S100B was reported to inhibit the aggre...
Article
Pseudomonas aeruginosa is known to exhibit considerable resistance to the antimicrobial activity of the metal-sequestering protein Calprotectin (CP). In this study we demonstrate that, although CP induces zinc deficiency in P. aeruginosa, a strain unable to import zinc through the two most important metal acquisition systems, namely ZnuABC and ZrmA...
Article
Full-text available
A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be non-enzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only pro...
Article
Full-text available
Autism Spectrum Disorders (ASD) are caused by a combination of genetic predisposition and nongenetic factors. Among the nongenetic factors, maternal immune system activation and zinc deficiency have been proposed. Intriguingly, as a genetic factor, copy-number variations in S100B, a pro-inflammatory damage-associated molecular pattern (DAMP), have...
Article
Full-text available
The microtubule-associated protein tau is implicated in the formation of oligomers and fibrillar aggregates that evade proteostasis control and spread from cell-to-cell. Tau pathology is accompanied by sustained neuroinflammation and, while the release of alarmin mediators aggravates disease at late stages, early inflammatory responses encompass pr...
Article
The interpretation of salt´s effects on protein stability discriminates between low concentration regimes, dominated by ion specific-binding or Debye-Hückel screening, and high concentration regimes, generally described by Hofmeister effects. However,...
Article
Full-text available
Alterations in cholesterol metabolism in the brain have a major role in the physiology of Alzheimer’s disease (AD). Oxysterols are cholesterol metabolites with multiple implications in memory functions and in neurodegeneration. Previous studies have shown detrimental effects of cholesterol metabolites in neurons, but its effect in glial cells is un...
Article
Full-text available
S100B is an astrocytic extracellular Ca2+-binding protein implicated in Alzheimer’s disease, whose role as a holdase-type chaperone delaying Aβ42 aggregation and toxicity was recently uncovered. Here, we employ computational biology approaches to dissect the structural details and dynamics of the interaction between S100B and Aβ42. Driven by previo...
Article
Full-text available
S100 proteins assume a diversity of oligomeric states including large order self-assemblies, with an impact on protein structure and function. Previous work has uncovered that S100 proteins, including S100B, are prone to undergo β-aggregation under destabilizing conditions. This propensity is encoded in aggregation-prone regions (APR) mainly locate...
Article
Electron transfer flavoprotein (ETF) is an enzyme with orthologs from bacteria to humans. Human ETF is nuclear encoded by two separate genes, ETFA and ETFB, respectively. After translation, the two subunits are imported to the mitochondrial matrix space and assemble into a heterodimer containing one FAD and one AMP as cofactors. ETF functions as a...
Article
Full-text available
Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategie...
Article
Full-text available
Riboflavin is the biological precursor of two important flavin cofactors—flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)—that are critical prosthetic groups in several redox enzymes. While dietary supplementation with riboflavin is a recognized support therapy in several inborn errors of metabolism, it has yet unproven benefits in...
Article
Despite the rapidly increasing number of patients suffering from type 2 diabetes, Alzheimer's disease, and diabetes-induced dementia, there are no disease-modifying therapies able to prevent or block disease progress. In this work, we investigate the potential of nature-inspired glucosylpolyphenols against relevant targets, including islet amyloid...
Article
Amyloid beta (Aβ) aggregation and imbalance of metal ions are major hallmarks of Alzheimer’s Disease (AD). Indeed, amyloid plaques of AD patients are enriched in zinc and Aβ42 and AD related-cognitive decline is dependent on extracellular zinc concentration. In vitro, zinc induces the formation of polymorphic Aβ42 oligomers that delay the formation...
Preprint
Full-text available
A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be non-enzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only pro...
Chapter
Protein aggregation is a cornerstone in amyloid-forming neurodegenerative diseases that is largely due to al- tered conditions in the biochemistry of key components of the neuronal environment, including metal ions. Indeed, trace neurometals such as calcium, zinc, and copper are vital players in brain neurobiology, whose homeostasis is altered in m...
Article
Multiple-CoA dehydrogenase deficiency (MADD) is an inborn disorder of fatty acid and amino acid metabolism caused by mutations in the genes encoding for human electron transfer flavoprotein (ETF) and its partner electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). Albeit a rare disease, extensive newborn screening programs contributed...
Article
Glutaric Aciduria Type I (GA-I), is an autosomal recessive neurometabolic disease caused by mutations in the GCDH gene that encodes for glutaryl-CoA dehydrogenase (GCDH), a flavoprotein involved in the metabolism of tryptophan, lysine and hydroxylysine. Although over 200 disease mutations have been reported a clear correlation between genotype and...
Article
Background Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a congenital rare metabolic disease with broad clinical phenotypes and variable evolution. This inborn error of metabolism is caused by mutations in the ETFA, ETFB or ETFDH genes, which encode for the mitochondrial ETF and ETF:QO proteins. A considerable group of patients has been desc...
Book
We have come a long way since coining of the term protein and the early findings that proteins are charged macromolecules composed of strings of amino acids linked by peptide bonds. Today, structural biologists have technologies that allow in many cases to achieve an atomic-level understanding of protein structure, dynamics and folding; protein phy...
Chapter
Systematic identification of buffer formulations and small molecule chaperones that improve the expression, stability, and storage of proteins with therapeutic interest has gained enormous importance in biochemical research as well as in biotechnology and biomedical applications. In particular, the biochemical characterization of disease-related pr...
Chapter
Proteins exhibit a remarkable structural plasticity and may undergo conformational changes resulting in protein misfolding both in a biological context and upon perturbing physiopathological conditions. Such nonfunctional protein conformers, including misfolded states and aggregates, are often associated to protein folding diseases. Understanding t...
Book
This snapshot volume is designed to provide a smooth entry into the field of protein folding. Presented in a concise manner, each section introduces key concepts while providing a brief overview of the relevant literature. Outlook subsections will pinpoint specific aspects related to emerging methodologies, concepts and trends.
Article
The RNase II family of ribonucleases is ubiquitous and critical for RNA metabolism. The rnb500 allele has been widely used for over 30 years; however, the underlying genetic changes which result in RNase II thermolabile activity remain unknown. Here, we combine molecular and biophysical studies to carry out an in vivo and in vitro investigation of...
Chapter
Proteins containing EF-hand helix-loop-helix-binding motifs play essential roles in calcium homeostasis and signaling pathways. These proteins have considerable structural and functional diversity by virtue of their cation-binding properties, and occur as either Ca²⁺-bound or Ca²⁺-free states with distinct aggregation propensities. That is the case...
Conference Paper
Glutaric Aciduria Type I (GA-I), is an autosomal recessive neurometabolic disease caused by mutations in the GCDH gene that encodes for Glutaryl-CoA Dehydrogenase, a flavoprotein involved in tryptophan, lysine and hydroxylysine metabolism. Even though the clinical features for the disorder are broadly described, studies regarding the impact of the...
Article
Post Translational Modifications (PTMs), such as acylations, can occur non-enzymatically and are known to modulate protein function. Recent studies have shown that fatty acid oxidation is regulated by these acylations; however, the functional and structural consequences of these PTMs remain unknown [1]. Aiming to fill this gap, here we report our s...
Article
Full-text available
Neuronal metal ions such as zinc are essential for brain function. In particular synaptic processes are tightly related to metal and protein homeostasis, for example through extracellular metal-binding proteins. One such protein is neuronal S100B, a calcium and zinc binding damage-associated molecular pattern (DAMP), whose chronic upregulation is a...
Article
High levels of the inflammatory molecule S100B protein have been identified in sera from several perinatal inflammatory conditions involving myelin damage and associated with an adverse prognosis or the emergence of sequelea. S100B is essential for oligodendrocyte (OL) differentiation and maturation, but it remains to be established if excessive le...
Article
Full-text available
Extracellular hemoglobin (Hb), a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro-oxidant manner and reg...
Article
Full-text available
Dietary flavonoids and synthetic derivatives have a well-known potential for biomedical applications. In this perspective, we report herein new methodologies to access chrysin and 5,7-dihydroxychromone, and these structures were combined with those of naturally occurring quercetin, luteolin, (+)-dihydroquercetin and apigenin to assemble a set of po...
Article
Riboflavin, or vitamin B2, plays an important role in the cell as biological precursor of FAD and FMN, two important flavin cofactors which are essential for the structure and function of flavoproteins. Riboflavin has been used in therapeutic approaches of various inborn errors of metabolism, notably metabolic disorders resulting either from defect...
Book
The role of metal ions in protein folding and structure is a critical topic to a range of scientists in numerous fields, particularly those working in structural biology and bioinorganic chemistry, those studying protein folding and disease, and those involved in the molecular and cellular aspects of metals in biological systems. Protein Folding an...
Article
Full-text available
Oxidative stress is implicated in the pathophysiology of a wide variety of neurodegenerative and neurologic disorders. This special issue includes 11 articles that cover different aspects of the importance of oxidative stress in neurotoxicity, neurodegeneration, and potential therapies. Neurotoxicity can occur after exposure to natural or artifici...
Article
Transthyretin (TTR) has a neuroprotective role in the central nervous system (CNS) in Alzheimer's disease (AD) and cerebral ischemia. Increased levels of TTR and activated insulin-like growth factor I receptor (IGF-IR) are associated with reduced neurodegeneration in an AD mouse model. In the present study, we found that TTR and IGF-I have a synerg...
Article
Full-text available
Alzheimer’s disease (AD) is the most prevalent age-related dementia affecting millions of people worldwide. Its main pathological hallmark feature is the formation of insoluble protein deposits of amyloid- β and hyperphosphorylated tau protein into extracellular plaques and intracellular neurofibrillary tangles, respectively. Many of the mechanisti...
Article
Oxidative stress is considered as an important factor and an early event in the etiology of Alzheimer's disease (AD). Cu bound to the peptide amyloid-β (Aβ) is found in AD brains, and Cu-Aβ could contribute to this oxidative stress, as it is able to produce in vitro H2 O2 and HO(.) in the presence of oxygen and biological reducing agents such as as...
Article
Full-text available
More than 20 distinct gene loci have so far been implicated in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder characterized by progressive neurodegeneration of motor neurons (MN) and death. Most of this distinct set of ALS-related proteins undergoes toxic deposition specifically in MN for reasons which remain unclear. Here...
Article
Full-text available
Superoxide dismutase 1 (SOD1) is a Cu/Zn metalloenzyme that aggregates in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Correct metal insertion during SOD1 biosynthesis is critical to prevent misfolding; however Zn2+ can bind to the copper-site leading to an aberrantly metallated protein. These effects of Zn2+ misligation...
Article
Full-text available
One of the challenges in the field of biocatalysis is the search for efficient reaction media avoiding enzyme deactivation. This work shows for the first time that water + hydrophilic ionic liquids mixtures enhance (up to 50%) the enzymatic activity of lipases, opening new opportunities for enzyme extraction and biocatalysis.
Article
Full-text available
Numerous human diseases are caused by protein folding defects where the protein may become more susceptible to degradation or aggregation. Aberrant protein folding can affect the kinetic stability of the proteins even if these proteins appear to be soluble in vivo. Experimental discrimination between functional properly folded and misfolded nonfunc...
Article
Full-text available
ETHE1 is an iron-containing protein from the metallo β-lactamase family involved in the mitochondrial sulfide oxidation pathway. Mutations in ETHE1 causing loss of function result in sulfide toxicity and in the rare fatal disease Ethylmalonic Encephalopathy (EE). Frequently mutations resulting in depletion of ETHE1 in patient cells are due to sever...
Article
Full-text available
Using ionic liquids as co-solvents may improve reaction media in enzyme-based biotechnological processes. To establish new conditions, large libraries need to be screened for bio-compatibility and protein stabilisation. Using a lipase model, we herein describe a combination of methods leading to an expedited evaluation of 61 different solvent compo...
Article
Full-text available
During sporulation in Bacillus subtilis, the onset of activity of the late forespore-specific sigma factor sigma(G) coincides with completion of forespore engulfment by the mother cell. At this stage, the forespore becomes a free protoplast, surrounded by the mother cell cytoplasm and separated from it by two membranes that derive from the asymmetr...
Chapter
S100 proteins are small EF-hand Ca2+-binding proteins involved in diverse cellular processes such as cell survival, proliferation and differentiation. Many S100 proteins also bind additional metal ions which modulate their folding and activity. The expression levels of many S100 proteins are significantly increased in cancer, neurodegenerative, inf...
Article
Full-text available
S100 proteins are small dimeric calcium-binding proteins which control cell cycle, growth and differentiation via interactions with different target proteins. Intrinsic disorder is a hallmark among many signaling proteins and S100 proteins have been proposed to contain disorder-prone regions. Interestingly, some S100 proteins also form amyloids: S1...
Article
Full-text available
Superoxide dismutase 1 (SOD1) aggregation is one of the pathological markers of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. The underlying molecular grounds of SOD1 pathologic aggregation remains obscure as mutations alone are not exclusively the cause for the formation of protein inclusions. Thus, other components in t...
Article
Cystic fibrosis is mostly caused by the F508del mutation, which impairs CFTR protein from exiting the endoplasmic reticulum due to misfolding. VX-809 is a small molecule that rescues F508del-CFTR localization, which recently went into clinical trial but with unknown mechanism of action (MoA). Herein, we assessed if VX-809 is additive or synergistic...
Article
Full-text available
Imbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca2+ dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregatio...
Conference Paper
A pharmacophore model of F508del-CFTR was used to virtually screen ∼6 million commercial compounds, resulting in two diverse sets of 250 compounds each: 1. one resulting from pharmacophoric fingerprint of known correctors; 2. another fitting into putative binding sites for F508del-CFTR identified by the model. The 1st set was previously screened...
Article
Full-text available
Protein degradation is essential for maintaining cellular homeostasis. The proteasome is the central enzyme responsible for non-lysosomal protein degradation in eukaryotic cells. Although proteasome assembly is not yet completely understood, a number of cofactors required for proper assembly and maturation have been identified. Ump is a short-lived...
Article
Full-text available
A large number of human disorders are caused by defects in protein folding resulting from genetic mutations or adverse physiological conditions,and these are collectively referred to as protein misfolding diseases. Such disorder simply dysfunction of a cellular process either as a result of a toxic gain of function due to protein aggregation, or lo...
Article
Full-text available
In the past few decades, improved early diagnosis methods, technological developments and an increasing crosstalk between clinicians and researchers has led to the identification of an increasing number of inborn metabolic diseases. In these disorders, missense mutations are the most frequent type of genetic defects, frequently resulting in defecti...
Article
Full-text available
Friedreich's ataxia is the most common inherited autosomal recessive ataxia and is characterized by progressive degeneration of the peripheral and central nervous systems and cardiomyopathy. This disease is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions...
Article
Full-text available
S100A6 is a small EF-hand calcium- and zinc- binding protein involved in the regulation of cell proliferation and cytoskeletal dynamics. It is overexpressed in neurodegenerative disorders and a proposed marker for Amyotrophic Lateral Sclerosis (ALS). Following on recent reports of amyloid formation by S100 proteins, we investigated the aggregation...
Chapter
Full-text available
Riboflavin, commonly known as vitamin B2, is metabolized inside cells to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two very important enzyme cofactors. These molecules possess rather unique and versatile chemical properties, which confer on them the ability to be among the most important redox cofactors found in a broad ran...
Article
Full-text available
The periplasmic sensor domains GSU0582 and GSU0935 are part of methyl accepting chemotaxis proteins in the bacterium Geobacter sulfurreducens. Both contain one c-type heme group and their crystal structures revealed that these domains form swapped dimers with a PAS fold formed from the two protein chains. The swapped dimerization of these sensors i...
Article
Following a screening on EMS-induced Drosophila mutants defective for formation and morphogenesis of epithelial cells, we have identified three lethal mutants defective for the production of embryonic cuticle. The mutants are allelic to the CG12140 gene, the fly homologue of electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). In huma...
Article
Reactive oxygen species production by mitochondrial enzymes plays a fundamental role both in cellular signaling and in the progression of dysfunctional states. However, sources of reactive oxygen species and the mechanisms by which enzymes produce these reactive species still remain elusive. We characterized the generation of reactive oxygen specie...
Article
Full-text available
The S100 proteins are a large family of 10-12 kDa EF-hand signaling proteins that bind calcium, and in some cases zinc and copper, functioning as central regulators in a diversity of cellular processes. These proteins have tissue, cell, and subcellular-specific expression patterns, and many have an extracellular function. Altogether, these properti...
Article
Full-text available
A biochemical, biophysical, and phylogenetic study of the sulfur oxygenase reductase (SOR) from the mesophilic gammaproteobacterium Halothiobacillus neapolitanus (HnSOR) was performed in order to determine the structural and biochemical properties of the enzyme. SOR proteins from 14 predominantly chemolithoautotrophic bacterial and archaeal species...
Article
Protein misfolding is a hallmark of a number of metabolic diseases, in which fatty acid oxidation defects are included. The latter result from genetic deficiencies in transport proteins and enzymes of the mitochondrial β-oxidation, and milder disease conditions frequently result from conformational destabilization and decreased enzymatic function o...
Article
Full-text available
The enhanced stability of a mesophilic metalloprotein was assessed using biophysical spectroscopies. Significant local structural interconversions during thermal insult account for a reorganization of the protein scaffold, without disturbing the active metal site. This cushioning mechanism is proposed to be a generic property of metalloproteins con...
Article
Full-text available
Protein stability is a major bottleneck in the biotechnological application of ionic liquid-containing solvents, either in the frame of biocatalysis or protein storage. Herein, differential scanning fluorimetry was successfully implemented as a high throughput method to fast scan the impact of a number of cholinium-based ionic liquids on the stabil...
Article
Full-text available
The electron transfer flavoprotein (ETF) is a hub interacting with at least 11 mitochondrial flavoenzymes and linking them to the respiratory chain. Here we report the effect of the ETFα-T/I171 polymorphism on protein conformation and kinetic stability under thermal stress. Although variants have comparable thermodynamic stabilities, kinetically th...
Article
Full-text available
Riboflavin, commonly known as vitamin B2, is the precursor of flavin cofactors. It is present in our typical diet, and inside the cells it is metabolized to FMN and FAD. As a result of their rather unique and flexible chemical properties these flavins are among the most important redox cofactors present in a large series of different enzymes. A pro...
Article
We have carried out an extensive in silico analysis on 18 disease associated missense mutations found in electron transfer flavoprotein (ETF), and found that mutations fall essentially in two groups, one in which mutations affect protein folding and assembly, and another one in which mutations impair catalytic activity and disrupt interactions with...

Network

Cited By