ArticlePDF Available

Systematics of the family Ocypodidae Rafinesque, 1815 (Crustacea: Brachyura), Based on phylogenetic relationships, With a reorganization of subfamily rankings and a review of the taxonomic status of Uca Leach, 1814, Sensu lato and its subgenera

Authors:

Abstract and Figures

The family Ocypodidae is a group of intertidal brachyuran crabs found in tropical to temperate seas worldwide. While the family has historically included many subfamilies, most of these have now been given separate family status within the superfamily Ocypodoidea. The most recent classification recognises only two subfamilies, the ghost crabs: Ocypodinae Rafinesque, 1815; and the fiddler crabs: Ucinae
Content may be subject to copyright.
139
RAFFLES BULLETIN OF ZOOLOGY 2016
Systematics of the family Ocypodidae Ranesque, 1815 (Crustacea:
Brachyura), based on phylogenetic relationships, with a reorganization
of subfamily rankings and a review of the taxonomic status of Uca
Leach, 1814, sensu lato and its subgenera
Hsi-Te Shih1, Peter K. L. Ng2, Peter J. F. Davie3, Christoph D. Schubart4, Michael Türkay5, Reza
Naderloo6, Diana Jones7 & Min-Yun Liu8*
Abstract. The family Ocypodidae is a group of intertidal brachyuran crabs found in tropical to temperate seas
worldwide. While the family has historically included many subfamilies, most of these have now been given
separate family status within the superfamily Ocypodoidea. The most recent classication recognises only two
subfamilies, the ghost crabs: Ocypodinae Ranesque, 1815; and the ddler crabs: Ucinae Dana, 1851. The ghost
crabs comprise 21 species in two genera, Ocypode Weber, 1795, and Hoplocypode Sakai & Türkay, 2013. The
ddler crabs are the most species-rich group of this family with 104 species, all belonging to the single genus Uca
Leach, 1814, with 12 recognised subgenera. The present study supports 13 groups (= genera) belonging to three
revised subfamilies. This result is based on molecular evidence from the nuclear 28S rDNA, and the mitochondrial
16S rDNA and cytochrome oxidase subunit I (COI). The family now also includes the monogeneric Ucididae
Števčić, 2005, recently recognised as a separate family for Ucides Rathbun, 1897, herein relegated to a subfamily
of the Ocypodidae. Uca (and thus Ucinae) is shown to be paraphyletic, belonging to two widely divergent clades.
Uca (Uca) s. str. from the Americas and Afruca Crane, 1975, from the East Atlantic cluster with Ocypode and
Hoplocypode, and thus constitute a revised Ocypodinae. The American broad-fronted group with the Indo-West
Pacic subgenera, forming a distinct clade, for which the subfamily name Gelasiminae Miers, 1886, is available.
Australuca Crane, 1975, and Hoplocypode Sakai & Türkay, 2013, are not supported, and are treated as synonyms
of Tubuca Bott, 1973, and Ocypode, respectively. All other subgenera of Uca are here recognised as full genera.
The three constituent subfamilies of the Ocypodidae are thus as follow: Ocypodinae (Afruca; Ocypode; Uca s.
str.); Gelasiminae (Austruca Bott, 1973; Cranuca Beinlich & von Hagen, 2006; Gelasimus Latreille, 1817; Leptuca
Bott, 1973; Minuca Bott, 1954; Paraleptuca Bott, 1973; Petruca Shih, Ng & Christy, 2015; Tubuca; Xeruca Shih,
2015); and Ucidinae Števčić, 2005 (Ucides).
Key words. ddler crabs, ghost crabs, mangrove crabs, Uca, Ocypode, Ucides, Ocypodinae, Gelasiminae, Ucidinae,
systematics, phylogeny, genera, 28S rDNA, 16S rDNA, COI
RAFFLES BULLETIN OF ZOOLOGY 64: 139–175
Date of publication: 21 July 2016
http://zoobank.org/urn:lsid:zoobank.org:pub:80EBB258-0F6A-4FD6-9886-8AFE317C25F6
© National University of Singapore
ISSN 2345-7600 (electronic) | ISSN 0217-2445 (print)
1Department of Life Science, National Chung Hsing University, 250, Kuo Kuang
Road, Taichung 402, Taiwan; Email: htshih@dragon.nchu.edu.tw
2Lee Kong Chian Natural History Museum, National University of Singapore, 6
Science Drive 2, Singapore 117546, Republic of Singapore; Email: dbsngkl@nus.edu.sg
3Queensland Museum, P.O. Box 3300, South Brisbane, Queensland, 4101, Australia;
Email: Peter.Davie@qm.qld.gov.au
4Biologie: Zoologie und Evolution, Universität Regensburg, D-93040 Regensburg,
Germany; Email: christoph.schubart@biologie.uni-regensburg.de
5Senckenberg Forschungsinstitut, Senckenberganlage 25, D-60325 Frankfurt am
Main, Germany (deceased)
6School of Biology, College of Science, University of Tehran, 14155-6455 Tehran,
Iran; Email: rnaderloo@ut.ac.ir
7Western Australian Museum, Perth Museums & Collections, Locked Bag 49, Welshpool
DC Western Australia 6986, Australia; Email: Diana.Jones@museum.wa.gov.au
8Taiwan Ocean Research Institute, National Applied Research Laboratories, Qieding,
Kaohsiung City 85243, Taiwan; Email: mylalex@tori.narl.org.tw (*corresponding
author)
INTRODUCTION
The Ocypodidae is a group of intertidal burrowing crabs
found in tropical to temperate seas worldwide. They are
sometimes categorised as “land crabs” (Hartnoll, 1988),
although only a few have completely escaped the need
for regular tidal inundation. At present, the Ocypodidae is
composed of two subfamilies, the Ocypodinae Ranesque
1815, for ghost crabs, and the Ucinae Dana, 1851, for ddler
crabs (Ng et al., 2008; Davie et al., 2015).
The ghost crab genus Ocypode, after which the family is
named, was recently revised by Sakai & Türkay (2013)
who recognised 21 species, and established a new genus,
Hoplocypode Sakai & Türkay, 2013, for O. occidentalis
Stimpson, 1860, from western America.
Crane (1975) revised the fiddler crabs of the world,
recognising 92 taxa (species or subspecies) and nine
subgenera, all under a single genus, Uca Leach, 1814. The
number of species of ddler crab has been steadily increasing.
Taxonomy & Systematics
140
Shih et al.: Systematics of the Ocypodidae
Beinlich & von Hagen (2006) recognised 94 species, with
96 species being listed in Ng et al. (2008) (including U.
australiae Crane, 1975, and U. tomentosa Crane, 1941). Since
2008, seven more species were recognised, viz. U. boninensis
Shih, Komai & Liu, 2013; U. cryptica Naderloo, Türkay &
Chen, 2010; U. iranica Pretzmann, 1971; U. jocelynae Shih,
Naruse & Ng, 2010; U. occidentalis Naderloo, Schubart &
Shih, 2016; U. osa Landstorfer & Schubart, 2010; and U.
splendida (Stimpson, 1858) (Shih et al., 2009, 2010, 2012,
2013a; Landstorfer & Schubart, 2010; Naderloo et al., 2010).
Most recently Rosenberg (2014) validated U. virens Salmon
& Atsaides, 1968, but did not include the questionable U.
australiae. Thus, 102 species are currently listed on the
website “Fiddler Crabs” (http://www.ddlercrab.info/index.
html) (Rosenberg, 2014). Despite several discussions on the
possible paraphyly of the genus (Salmon, 1983; Levinton
et al., 1996, Beinlich & von Hagen, 2006), workers have
continued to use only one genus name for all ddler crab
species. Uca species, however, have commonly been broadly
split into two categories, those in which the frontal margin
is markedly constricted between the eyestalks (narrow-
fronted, or NF), and those with a more broadly triangular
front (broad-fronted, or BF) (see Crane, 1975; Rosenberg,
2001; Beinlich & von Hagen, 2006; Material and methods
in this study).
In the Indo-West Pacic (IWP), there are three narrow-
fronted subgenera, Australuca Crane, 1975, Deltuca Crane,
1975, and Thalassuca Crane, 1975; and two broad-fronted
ones, Amphiuca Crane, 1975, and Celuca Crane, 1975. In
the Atlantic-East Pacic (AEP) region, only Uca (Uca) is
narrow-fronted, with Afruca Crane, 1975, Celuca and Minuca
Bott, 1954, being broad-fronted. Crane’s (1975) classication
system was comprehensive and used a multi-evidence
approach. However, Bott (1973b) had earlier published a short
paper that established 10 genera (including two subgenera),
and thus his names have nomenclatural priority. Von Hagen
(1976), Rosenberg (2001), Beinlich & von Hagen (2006),
and Ng et al. (2008) treated all ddler crabs at the specic
level, and continued to follow Crane in recognising a single
genus Uca, but have replaced her subgeneric names, where
necessary, with those by Bott (1973b). Based on larval
morphology, Spivak & Cuesta (2009) suggested U. tangeri
(Eydoux, 1835) should be attributed to the subgenus Afruca.
The recent revision of the IWP BF subgenera based on
molecular evidence (Shih et al., 2013b) supports Cranuca
Beinlich & von Hagen, 2006, along with the placement
of U. sindensis (Alcock, 1900) into Austruca Bott, 1973.
Recently, two additional subgenera, Xeruca Shih, 2015, for
U. formosensis Rathbun, 1921, and Petruca Shih, Ng &
Christy, 2015, for U. panamensis (Stimpson, 1859), have
also been established (Shih, 2015; Shih et al., 2015).
There has also been considerable discussion regarding the
relationships of another uncertain genus of ocypodid-like
mangrove crabs, Ucides Rathbun, 1897, with two species,
U. cordatus (Linnaeus, 1763), and U. occidentalis (Ortmann,
1897) (Ng et al., 2008; Davie et al., 2015). Ucides was
originally placed under the Gecarcinidae (Rathbun, 1918),
but later authors referred it to the Ocypodidae or at least
the Ocypodoidea. It has been suggested it could be placed
in the Heloeciidae H. Milne Edwards, 1852, or as an
ocypodid subfamily Ucidinae Števčić, 2005, or even in a
separate family, Ucididae (Chace & Hobbs, 1969; Türkay,
1970; Ng et al., 2008). Schubart & Cuesta (2010) showed
a close relationship between Ucides and Ocypode based on
16S rDNA data.
Molecular sequences provide strong evidence to support
the phylogeny and systematics of crabs (reviewed by Tsang
et al., 2014; Chu et al., 2015). With regard to 16S rDNA
studies of Uca, Levinton et al. (1996) and Sturmbauer et al.
(1996) have shown inconsistent support for the traditional
morphological subgeneric groupings, although all support a
close relationship with Ocypode. There have also been recent
molecular studies on both ddler and ghost crabs (Shih et
al., 2009, 2010, 2012, 2013a, b, 2015; Shih, 2015; Wong
et al., 2012), but these have been conned to only solving
species-group or subgeneric issues. As such, a large-scale
multigene study, such as the one reported here, has been
lacking to derive a comprehensive overview of ocypodid
relationships.
We here use nuclear 28S rDNA, mitochondrial 16S rDNA
and cytochrome oxidase subunit I (COI) genetic markers
from 92 of the 129 known Ocypodidae species. Based on
the results, we propose three subfamilies of the Ocypodidae,
a rearrangement of some genera and species, and the
recognition of full generic status for the currently recognised
subgenera of ddler crabs (Uca).
MATERIAL AND METHODS
Specimens examined representing the majority of species
of fiddler and ghost crabs worldwide, and Ucides, are
included for phylogenetic analysis. Dotilla, Heloecius,
Macrophthalmus, Scopimera, and Tmethypocoelis of the
superfamily Ocypodoidea (Ng et al., 2008) are used as
outgroups (Appendix 1). The abbreviation G1 is used for the
male rst gonopods. Measurement is of the carapace width.
The front width of the Ocypodidae is relatively narrower
compared with other groups of crabs with very wide front,
e.g., Grapsoidea and Xanthoidea. In this study, the taxa of
the Ocypodidae are dened as narrow-fronted (or NF) and
broad-fronted (or BF), with front width about < 1/10 and >
1/5 of the fronto-orbital width (the maximum width between
outer orbital angles), respectively (Rathbun, 1918; Chace &
Hobbs, 1969; Crane, 1975).
Genomic DNA was isolated from the muscle tissue of
legs by using the GeneMark tissue and cell genomic DNA
purification kit (Taichung, Taiwan). A region of ~550
basepairs (= bp) of the 5’-end of the 16S gene was selected
for amplication with polymerase chain reaction (PCR) using
the primers 1471, 1472 (Crandall & Fitzpatrick, 1996), 16Sar
and 16Sbr (Palumbi et al., 1991). A portion of the COI
gene was amplied with PCR using the primers LCO1490,
HCO2198 and COL14 (Folmer et al., 1994; Roman &
Palumbi, 2004). The PCR conditions for the above primers
were denaturation for 50 s at 94°C, annealing for 70 s at
141
RAFFLES BULLETIN OF ZOOLOGY 2016
45–47°C, and extension for 60 s at 72°C (40 cycles), followed
by extension for 10 min at 72°C. The primers for 28S were
28L4, 28H4 (Ragionieri et al., 2009), 28L4F, 28H4F (Shih et
al., 2013b), as well as the new designed with the annealing
temperature 47–50°C in PCR condition. Sequences were
obtained by automated sequencing (Applied Biosystems
3730) and aligned with the aid of MUSCLE function of
MEGA (v. 5.2.2, Tamura et al., 2011), after verication
with the complimentary strand. Sequences of the different
sequences have been deposited in the DNA Data Bank of
Japan (DDBJ), along with other sequences published in
earlier papers of the authors (Appendix 1).
Several 28S sequences were found to be ambiguous so their
PCR products were cloned. The products were purified
by using the QIAquick Gel Extraction kit (Qiagen) rst
and were cloned using the pGEM-T Easy Vector System
(Promega). Three colonies from each sample were selected,
and used for insert verication. Veried colonies were used
for additional PCR amplication using the original 28S
primers. All products were visualised under ultraviolet light
stained with ethidium bromide, with a comigrating 100-
bp ladder molecular-weight marker to conrm the correct
amplication. Amplication products were cycle-sequenced
and the sequences were obtained by automated sequencing
(see above). One or two sequences were randomly selected
from each sample for the analyses (see Shih et al., 2013b).
For the combined dataset, the best-fitting models for
sequence evolution of individual datasets were determined
by MrModeltest (v. 2.2, Nylander, 2005), selected by the
Akaike information criterion (AIC). The obtained best models
for the three individual datasets were all GTR + G + I, and
were subsequently used for the partitioned Bayesian inference
(BI) and maximum likelihood (ML) analyses. The Bayesian
inference analysis was performed with MrBayes (v. 3.2.3,
Ronquist et al., 2012). The search was run with 4 chains for
10 million generations and 4 independent runs, with trees
sampled every 1000 generations. The convergence of chains
was determined by the effective sample size (ESS) (>200 as
recommended) in Tracer (v. 1.5, Rambaut & Drummond,
2009) and the rst 1200 trees were discarded as the burnin
(determined by the average standard deviation of split
frequency values below the recommended 0.01; Ronquist et
al., 2005). The maximum likelihood analysis was conducted
in GARLI (v. 2.0, Zwickl, 2006), with 10 replicate searches
(searchreps = 10) and 50 bootstraps (bootstrapreps = 50).
The consensus tree from GARLI output was computed using
PAUP* program (v. 4.0b10, Swofford, 2003) to assess node
supports.
RESULTS AND DISCUSSION
A 589 bp segment of the 16S, 658 bp segment of COI, and
689 bp segment of 28S from 98 species of crabs (including
outgroups) were amplied and aligned, with 178 different
sequences (Appendix 1). The phylogenetic tree of the
combined markers was reconstructed from the BI analysis,
with the support values from ML analysis (Figs. 1, 2). The
ddler crabs, ghost crabs and Ucides form a large highly
supported clade, with three main subclades also having high
support values. These three main clades (Figs. 1, 2) are here
treated as subfamilies. A simplied tree of the genera and
subfamilies is shown in Figure 3. In addition, the distribution
of the genera of ddler crabs are shown in Fig. 4. With
regard to the species included within each genus, we follow
Ng et al. (2008) and recent studies (see Introduction), with
the addition of U. virens (see Remarks under Minuca) as
valid in the updated website (http://www.ddlercrab.info/
index.html; Rosenberg, 2014). Although the identity of U.
australiae remains uncertain, the name is retained until its
status can be ascertained in the future. In total, there are 104
species of ddler crabs included in this study.
The ddler crabs clearly include two widely divergent groups:
one group (including the AEP Uca and Afruca) are closely
related to Ocypode rather than to the other ddler crabs; and
the second group composed of the remaining ddler crabs
(the AEP Minuca, Leptuca and Petruca, as well as all the
IWP taxa). Thus, the original genus Uca is paraphyletic,
and in order to maximise uniformity across the family, and
to recognise the monophyly of each group, we treat all the
previously accepted subgenera of ddler crabs as full genera,
which are divided between the Ocypodinae and the newly
recognised Gelasiminae.
Based on 16S evidence and sampling a limited number of
species, Levinton et al. (1996) and Sturmbauer et al. (1996)
considered the relationship between ghost crabs and ddler
crabs to be unresolved. They treated Ocypode as an outgroup,
and suggested three clades for ddler crabs, viz. the Ancestral
American Clade, the Derived American Clade, and the Indo-
West Pacic Clade. The main patterns they found agree well
with our more comprehensive results based on nuclear and
mitochondrial markers, including the latter two clades, as
well as the unresolved relationship between Tubuca and
Fig. 1. A Bayesian inference (BI) tree of the family Ocypodidae and
outgroups, based on the combined 28S rRNA, 16S rRNA and COI
markers, showing the three clades (three subfamilies), indicated in
different colours. The subfamily Gelasiminae is composed of two
groups, one is for all Indo-West Pacic ddler crabs, the other for
the American broad-fronted ddler crabs.
142
Shih et al.: Systematics of the Ocypodidae
Fig. 2. A Bayesian inference (BI) tree of the family Ocypodidae and outgroups, based on the combined 28S, 16S and COI markers. The
solid circle at the node means it is strongly supported by both BI (≥ 90) and ML (≥ 70); and the open circle means only one method is
strongly supported. Name of species or genus quoted means it is suggested as a synonym in this study.
143
RAFFLES BULLETIN OF ZOOLOGY 2016
Fig. 2. cont'd above.
144
Shih et al.: Systematics of the Ocypodidae
Fig. 4. The distribution of 11 genera of ddler crabs, mainly based on Crane (1975) and the website (http://www.ddlercrab.info/index.
html; Rosenberg, 2014).
Fig. 3. The simplied phylogenetic tree modied from Figs. 1 &
2, with number of species beside or below the taxa/group. The
gray boxes mean the genera are not ddler crabs.
Australuca. However, using more markers and species, our
study conrms the close relationship among Ocypode, Afruca
and Uca s. str.; and supports the relationship between the
two American BF groups, Minuca and Leptuca.
The early literature of crab systematics commonly used
subgenera for what were believed to be closely related
groups. Today, many authors have raised these subgenera to
genera, e.g., in the Dorippidae, Potamidae, Potamonautidae,
Pseudothelphusidae, Gecarcinuciodae, Sesarmidae and
Varunidae (see Ng et al., 2008), Macrophthalmidae (McLay
et al., 2010; Davie, 2012), and Portunidae (e.g., Chertoprud et
al., 2012; Koch et al., 2015). However, these morphological
decisions are not always fully supported by molecular results
(e.g., the disparities in the analysis of the Dorippidae by Sin
et al., 2009; and the Helice/Chasmagnathus complex by Shih
& Suzuki, 2008); suggesting that either some genera remain
heterogeneous or the morphological characters used may be
suspect. In the present study, all recognised genera have
good genetic support, and most are highly-supported by BI
and ML methods (see below); and in most cases, there is
also a morphological basis for their recognition.
The subfamily Ocypodinae as recognised here includes three
highly-supported genera, Ocypode Weber, 1795, Uca Leach,
1814, and Afruca Crane, 1975. The genus Hoplocypode
Sakai & Türkay, 2013, is not supported, as it is nested in a
subclade with O. gaudichaudii and O. quadrata, also from
the Americas (see Remarks under Ocypode).
The Gelasiminae Miers, 1886, can be subdivided into two
groups. An American group is composed of three genera,
Leptuca Bott, 1973, Minuca Bott, 1954, and Petruca Shih,
Ng & Christy, 2015. The IWP group includes six genera,
Austruca Bott, 1973, Cranuca Beinlich & von Hagen, 2006,
Gelasimus Latreille, 1817, Paraleptuca Bott, 1973, Tubuca
Bott, 1973, and Xeruca Shih, 2015. Most genera are highly-
supported by BI and ML, except Minuca that has a lower ML
support value (Fig. 2). Although species of Australuca form
a distinct subclade, to recognise it as a separate genus would
make Tubuca paraphyletic. As a result, we treat Australuca
Crane, 1975, as a junior subjective synonym of Tubuca.
145
RAFFLES BULLETIN OF ZOOLOGY 2016
The recognition of Ucidinae in the Ocypodidae for Ucides,
is conrmed in this study (Fig. 2) and supports the nding
of Schubart & Cuesta (2010) based on 16S. Ucides has been
recently considered as a separate family Ucididae because
the morphology is very different from ddler and ghost crabs
(Ng et al., 2008; Davie et al., 2015). The phylogenetic tree
(Fig. 2), however, shows no signicant support (less than
50% for both BI and ML methods) for recognising two
families. It instead suggests a close relationship with the
other two subfamilies. As such, despite its suite of diagnostic
morphological features, Ucides is placed in a third subfamily,
Ucidinae, in the family Ocypodidae.
Members of the genus Heloecius (family Heloeciidae)
supercially resemble Uca (see Beinlich & von Hagen, 2006),
and it has also been considered to have some morphological
similarities to Ucides (e.g., Türkay, 1983). Ng et al. (2008)
and Davie et al. (2015), however, considered both Ucidinae
Števčić (2005) and the Heloeciinae to be separate families
within the Ocypodoidea. Their decision was in part based on
studies such as Levinton et al. (1996: g. 2) that showed no
direct relationship between Heloecius and the Ocypodidae
based on 16S. The 12S and 16S results of Schubart et al.
(2006) also revealed that Heloecius is not closely related
to the Ocypodidae, and this is corroborated by the present
results (Fig. 2).
SYSTEMATIC ACCOUNT
Family Ocypodidae Ranesque, 1815
Ocypodidae Rafinesque, 1815: 96 [as Ocypodia, corrected to
Ocypodidae by MacLeay, 1838: 63. Name No. 375 on Ofcial
List of Family-group Names in Zoology, see International
Commission on Zoological Nomenclature (ICZN, 1964: Opinion
712]. Type genus: Ocypode Weber, 1795.
Ucainae Dana, 1851: 289. Type genus: Uca Leach, 1814.
Gelasimiden Nauck, 1880: 8, 17, 23, 64, 66 [not Latinised, invalid
for nomenclatural purposes].
Gelasimidae Miers, 1886: viii. Type genus: Gelasimus Latreille,
1817.
Diagnosis. Carapace deep, subquadrilateral to subovate;
dorsal regions indistinct to prominently demarcated;
anterolateral margins straight, slightly arched or strongly
convex; fronto-orbital distance more than half maximum
carapace width; front broad to relatively narrow, deexed,
usually forming lobe between eyestalks; antennules folding
obliquely or almost vertically; antennular agellum small or
rudimentary; proepistome broad; third maxillipeds completely
or almost completely closing buccal cavern; exopod visible
in part or completely, with or without agellum; chelipeds
unequal in adult males, sometimes remarkably so; most
species with brush of long setae lining pouch leading
into branchial cavity between bases of second and third
ambulatory legs; thoracic sternum broad posteriorly; male
thoracic sternum narrowed posteriorly, only small part of
sternite 8 visible when pleon closed; male gonopore sternal,
adjacent to suture between sternites 7 and 8; adult male pleon
relatively wide, subrectangular, long, telson reaching or near
buccal cavity; somites 4–6 or 5 and 6 partly or completely
fused; pleonal locking mechanism usually absent; G1 stout,
strongly chitinised, with short pectinate tip fringed with stiff
setae which obscuring surface.
Subfamily Ocypodinae Ranesque, 1815
Ocypodidae Ranesque, 1815: 96. Type genus: Ocypode Weber,
1795.
Ucainae Dana, 1851: 289. Type genus: Uca Leach, 1814.
Diagnosis. Carapace deep, subquadrilateral to pentagonal,
never cordiform, not swollen; fronto-orbital distance more
than 9/10 of maximum carapace width, front narrow to
relatively narrow; regions typically indistinct, grooves
between regions shallow or indistinct; anterolateral margins
straight or slightly arched; orbital oor with distinct tubercle
at inner corner adjacent to antennule; eyestalks relatively
short to very long, cornea terminal, may have distinct
distal ornament (e.g., stylus or long setae); buccal cavern
quadrate, not much longer than wide, third maxillipeds
completely covering it when closed; ischium and merus of
third maxilliped quadrate, fringed with scattered short setae
on inner surface; exopod of third maxilliped not concealed
by endopod, with or without agellum; chelipeds unequal
in adult males (Ocypode), sometimes remarkably so (e.g.,
Afruca, Uca), equal or slightly unequal in females, surfaces
of male merus, carpus and palm smooth or armed with
short spines or tubercles; rst to fourth ambulatory legs
with scattered long and/or short setae on ventral surface
of merus, propodus and dactylus, never dense or obscuring
margins; brush of long setae present between bases of coxae
of second and third ambulatory legs, leading into branchial
cavity; male pleon with all somites free; pleonal locking
mechanism absent.
Remarks. The subfamily Ocypodinae is now composed
of two BF genera Ocypode and Afruca, and one NF genus
Uca. Since the type genus of the subfamily Ucinae Dana,
1851, is Uca s. str., this subfamily has to be treated as a
junior subjective synonym of Ocypodinae. Our results agree
with previous studies (Levinton et al., 1996; Sturmbauer et
al., 1996) that the three genera are closely related, although
their morphology appears remarkably different, at least
supercially. Further studies are necessary to elucidate the
key morphological characters of the subfamily.
Ocypode Weber, 1795
(Fig. 5)
Ocypode Weber, 1795: 92. Type species: Cancer ceratophthalmus
Pallas, 1772, by subsequent designation, see Latreille (1810:
95, 422). Gender feminine.
Ocypode Fabricius, 1798: 312, 347. Type species: Cancer
ceratophthalmus Pallas, 1772, by subsequent designation, see
Latreille (1810). Junior objective homonym of Ocypode Weber,
1795. Gender feminine.
Ocypoda Lamarck, 1801: 149 (incorrect subsequent spelling for
Ocypode Weber, 1795).
Monolepis Say, 1817: 155. Type species: Monolepis inermis Say,
1817 (= Cancer quadratus Fabricius, 1787) by subsequent
designation, see Fowler (1912). Gender feminine.
146
Shih et al.: Systematics of the Ocypodidae
Fig. 5. Photographs of some species of the genus Ocypode. A, O. ceratophthalmus (Taiwan); B, O. cordimana (Dongsha, Taiwan); C,
O. fabricii (Northern Territory, Australia); D, O. kuhlii (Christmas Island); E, O. occidentalis (Panama); F, O. rotundata (Iran); G. O.
sinensis (Dongsha, Taiwan); H, O. stimpsoni (Taiwan).
147
RAFFLES BULLETIN OF ZOOLOGY 2016
Ceratophthalma MacLeay, 1838: 64. Type species Cancer cursor
Linnaeus, 1758, by monotypy.
Parocypoda Neumann, 1878: 26. Type species Cancer
ceratophthalmus Pallas, 1772, by monotypy. Junior objective
synonym of Ocypode Weber, 1795. Gender feminine.
Hoplocypode Sakai & Türkay, 2013: 675. Type species Ocypoda
occidentalis Stimpson, 1860, by original designation. Gender
feminine.
Diagnosis. Body deep; carapace subquadrangular, regions
poorly dened; front wide, prominently deexed; eyestalks
large, cornea occupying most of ventral surface of stalk,
tip cornea sometimes with stylus, horn or prominent setal
brush; antenna relatively long; inner antennal septum broad;
chelipeds unequal in both sexes, palm of larger chela usually
with stridulating ridge of tubercles and/or striae; rst to fourth
ambulatory legs relatively short, stout, dactylus uted; pleonal
locking mechanism absent; G1 typically simple distally, but
may be complex in shape distally, may appear hoof-shaped
in mesial view. Atlantic and Indo-Pacic.
Species included:
1. Ocypode africana De Man, 1881
= Ocypoda hexagonura Hilgendorf, 1882
= Ocypoda edwardsi Osorio, 1890
2. Ocypode brevicornis H. Milne Edwards, 1837
3. Ocypode ceratophthalmus (Pallas, 1772)
= Cancer arenarius Toreen, in Osbeck, 1765
= Cancer caninus Herbst, 1782
= Ocipode urvillei Guérin, 1829
= Ocypoda brevicornis var. longicornuta Dana, 1852
= Ocypoda macleayana Hess, 1865
= Cancer francisci Curtiss, 1938
4. Ocypode convexa Quoy & Gaimard, 1824
5. Ocypode cordimana Latreille, 1818
= Cancer roberti Curtiss, 1938
6. Ocypode cursor (Linnaeus, 1758)
= Cancer eques Aubert de la Chesnaye des Bois,
1759
= Ocypoda ippeus Olivier, 1804
7. Ocypode fabricii H. Milne Edwards, 1837
8. Ocypode gaudichaudii H. Milne Edwards & Lucas, 1843
9. Ocypode jousseaumei (Nobili, 1905)
10. Ocypode kuhlii De Haan, 1835
11. Ocypode macrocera H. Milne Edwards, 1852
= Ocypode portonovoensis Prem Kumar & Tiwari,
1964
12. Ocypode madagascariensis Crosnier, 1965
13. Ocypode mortoni George, 1982
14. Ocypode nobilii De Man, 1902
15. Ocypode occidentalis Stimpson, 1860
16. Ocypode pallidula Hombron & Jacquinot, 1846
= Ocypoda laevis Dana, 1852
17. Ocypode pauliani Crosnier, 1965
18. Ocypode platytarsis H. Milne Edwards, 1852
19. Ocypode pygoides Ortmann, 1894
20. Ocypode quadrata (Fabricius, 1787)
= Cancer arenarius Catesby, 1771 (not available
name)
= ?Ocypode rhombea Fabricius, 1798
= Ocypode albicans Bosc, 1801
= Monolepis inermis Say, 1817
21. Ocypode rotundata Miers, 1882
= Ocypode rotundata var. arabica Nobili, 1906
22. Ocypode ryderi Kingsley, 1880
23. Ocypode saratan (Forskål, 1775)
= Ocypode aegyptica Gerstaecker, 1856
24. Ocypode sinensis Dai, Song & Yang, 1985
25. Ocypode stimpsoni Ortmann, 1897
Two species are nomina dubia: Ocypode laevis Fabricius,
1798; and Ocypode minuta Fabricius, 1798 (see Ng et al.,
2008).
Remarks. The ghost crabs have been revised in detail
by Sakai & Türkay (2013) with the recognition of 21
valid species, although Ng et al. (2008) listed 26 species.
Hoplocypode Sakai & Türkay, 2013, was recently established
for O. occidentalis (central east Pacic coast of the Americas)
based on the morphology of G1 (Sakai & Türkay, 2013); but
this taxon is not supported in our study (Fig. 2). Interestingly,
our tree does support two subclades of ghost crabs: O.
gaudichaudii, O. occidentalis, and O. quadrata belong to a
highly-supported American subclade; while all remaining
species form the other, although with a lower ML support
value. The three members of the American subclade share
similar rst gonopodal characters and may prove to be a
distinct genus. However, even if they need to be placed
in their own genus, Hoplocypode Sakai & Türkay, 2013,
will still be a junior subjective synonym of Monolepis Say,
1817, whose type species is Monolepis inermis Say, 1817 (=
Cancer quadratus Fabricius, 1787). Sakai & Türkay (2013)
synonymised a number of species, notably O. sinensis Dai,
Song & Yang, 1985, with O. cordimana Latreille, 1818.
However, Huang et al. (1998) already showed they differ
in a number of adult morphological characters (although
juveniles are very close and hard to separate) and there are
also genetic differences (Fig. 1; Wong et al., 2012: g. 9).
Further evidence showing morphological and molecular
differences between these two species is being prepared
(Shih et al., in prep.). Further studies with more species of
Ocypode than included herein will be necessary to clarify
the relationships within this genus.
Afruca Crane, 1975, status nov.
(Fig. 6A, B)
Uca (Afruca) Crane, 1975: 116. Type species: Gelasimus tangeri
Eydoux, 1835, by original designation. Gender feminine.
Diagnosis. Large-sized (carapace width about 35 mm
in adults); dorsal surface carapace mostly covered with
prominent tubercles, without posterolateral striae; front
broad; cornea round; eyestalks slender; orbital oor with
a spinous tubercle near inner corner; spoon-tipped setae
of second maxilliped with proximal spine opposing these
setae; adult male major cheliped extremely large; individuals
right- or left-handed, with deep ngers, pollex with ventral
carina, outer surface of major manus with large tubercles;
both chelipeds small in female; pleonal locking mechanism
absent. Conned to East Atlantic coasts.
148
Shih et al.: Systematics of the Ocypodidae
Fig. 6. Photographs of some species of the genera Afruca and Uca s. str. A, B, A. tangeri (Spain); C, U. heteropleura (Panama); D, U.
insignis (El Salvador); E, U. major (Bahamas); F, U. maracoani (Brazil); G, U. princeps (Peru); H, U. stylifera (Panama).
149
RAFFLES BULLETIN OF ZOOLOGY 2016
Species included:
Afruca tangeri (Eydoux, 1835).
= Gelasimus perlatus Herklots, 1851
= Gelasimus cimatodus Rochebrune, 1883
= Uca tangeri var. platydactylus Monod, 1927
(pre-occupied name)
= +Uca tangeri var. matandensis Monod, 1928
Remarks. Crane (1975) established the subgenus Afruca
for the BF Uca tangeri, from the eastern Atlantic Ocean
(Fig. 4), but later several authors treated this species and the
American NF taxa under the subgenus Uca (Levinton et al.,
1996; Sturmbauer et al., 1996; Rosenberg, 2001; Beinlich
& von Hagen, 2006; Ng et al., 2008). Spivak & Cuesta
(2009) suggested Afruca is valid based on larval data and
should be considered as a distinct genus. The validity of
the genus Afruca is supported in this study (Fig. 2), with a
close relationship to Uca and Ocypode.
Uca Leach, 1814
(Fig. 6C–H)
Uca Leach, 1814: 430. Type species: Uca una Leach, 1814 (=
Cancer vocans major Herbst, 1782) by monotypy. Gender
feminine.
Heteruca Bott, 1973b: 323. Type species: Gelasimus heteropleurus
Smith, 1870, by original designation. Gender feminine.
Acanthoplax H. Milne Edwards, 1852: 151. Type species:
Acanthoplax insignis H. Milne Edwards, 1852, by monotypy.
Eurycheles Rathbun, 1914: 126. Type species: Uca monilifera
Rathbun, 1914, by monotypy. Gender masculine.
Diagnosis. Medium- to large-sized species (carapace width
about 25–40 mm in adults); dorsal carapace surface without
posterolateral striae; front relatively narrow; cornea round;
eyestalks slender; eye on major side sometimes with distal
style; orbital oor with spinous tubercle near inner corner;
spoon-tipped setae of second maxilliped with proximal
spine opposing spoon; adult male major cheliped extremely
large; right- or left-handed, with deep nger (straight cutting
margins <1/2 length of ngers, or with conspicuously deep
dactylus and pollex), pollex with ventral carina, outer surface
of major manus with large tubercles; both chelipeds small
in female; pleonal locking mechanism absent. Conned to
Atlantic and East Pacic coasts of Americas.
Species included:
1. Uca heteropleura (Smith, 1870)
2. Uca insignis (H. Milne Edwards, 1852)
= Gelasimus (Acanthoplax) excellens Gerstaecker,
1856
= Gelasimus armatus Smith, 1870
3. Uca intermedia von Prahl & Toro, 1985
4. Uca major (Herbst, 1782)
= Ocypoda heterochelos Lamarck, 1801
= Cancer uka Shaw & Nodder, 1803
= Uca una Leach, 1814
= Gelasimus platydactylus H. Milne Edwards, 1837
= Gelasimus grangeri Desbonne, in Desbonne &
Schram, 1867
5. Uca maracoani (Latreille, 1803)
6. Uca monilifera Rathbun, 1914
7. Uca ornata (Smith, 1870)
= Uca pizarri von Hagen, 1968
8. Uca princeps (Smith, 1870)
9. Uca stylifera (H. Milne Edwards, 1852)
= Gelasimus heterophthalmus Smith, 1870
Remarks. The description of the genus Uca by Seba (1758)
was based on a picture of the type species, “Cancer uka
una, Brasiliensibus”, which later authors considered to be
Cancer vocans major Herbst, 1782. However, Bott (1973a)
realised that the species in the picture was not the American
Uca major, but instead the East Atlantic “U. major” (= U.
tangeri). To avoid nomenclatural problems, the International
Commission on Zoological Nomenclature (ICZN) ofcially
ruled that the holotype of Gelasimus platydactylus would
henceforth also be the neotype of Cancer vocans major
(Holthuis, 1979; ICZN, 1983). This maintained the name
Uca major for the American species and Afruca tangeri for
the East Atlantic species (see Rosenberg, 2001 for details).
Uca s. str. now includes nine NF species from both sides
of the Americas (Fig. 4). The major cheliped of several
species has a conspicuously deep dactylus and pollex, e.g.,
U. insignis (Fig. 6C), U. maracoani (Fig. 6D), U. monilifera
(Crane, 1975: pl. 18E–H), and U. ornata (Crane, 1975: pl.
21E–H), and the waving displays have been consequently
modied as a result of the heavier chelae (Crane, 1975).
Subfamily Gelasiminae Miers, 1886
Gelasimiden Nauck, 1880: 8, 17, 23, 64, 66 [not Latinised, invalid
for nomenclatural purposes].
Gelasimidae Miers, 1886: viii. Type genus: Gelasimus Latreille,
1817.
Diagnosis. Carapace distinctly transverse, trapezoidal, widest
between exorbital angles; fronto-orbital distance more than
9/10 of maximum carapace width, front wide to relatively
narrow; regions typically indistinct, grooves between regions
shallow or indistinct; anterolateral margins slightly arched;
orbital floor without or with vestigial tubercle at inner
corner adjacent to antennule; eyestalks slender, very long,
cornea terminal without any distal ornament; buccal cavern
quadrate, not much longer than wide, third maxillipeds
completely covering it when closed; ischium and merus of
third maxilliped quadrate, fringed with scattered short setae
on inner surface; exopod of third maxilliped not concealed
by endopod, with agellum; chelipeds strongly unequal in
adult males, both chelipeds small in females, surfaces of
male merus, carpus and palm smooth or armed with short
spines or low tubercles; rst to fourth ambulatory legs with
scattered long and/or short setae on ventral surface of merus,
propodus and dactylus, never obscuring margins; brush of
long setae present between bases of coxae of second and third
ambulatory legs, leading into branchial cavity; male pleon
with all somites free or somites 4–6 partly or completely
fused; pleonal locking mechanism sometimes present.
150
Shih et al.: Systematics of the Ocypodidae
Fig. 7. Photographs of some species of the genus Gelasimus. A, G. borealis (Taiwan); B, G. dampieri (Northern Territory, Australia); C,
G. hesperiae (Zanzibar, holotype); D, G. jocelynae (Penghu, Taiwan); E, G. neocultrimana (Fiji); F, G. tetragonon (Penghu, Taiwan); G,
G. vocans (Labuan, Malaysia); H, G. vomeris (Queensland, Australia).
151
RAFFLES BULLETIN OF ZOOLOGY 2016
Remarks. This subfamily contains all the ddler crabs not
otherwise transferred to the revised Ocypodinae. Miers (1886:
viii) introduced the family Gelasimidae Miers, 1886, but this
has been long considered to be a junior synonym of Ucinae
Dana, 1851. However, because of the current diagnoses of the
genera and present reappraisal, Gelasiminae can now be used;
since Uca s. str. is here transferred to the Ocypodinae. As a
result, Gelasiminae is now the largest ocypodid subfamily,
with nine genera and 94 species, belonging to two groups:
1) the American BF genera Leptuca, Minuca and Petruca;
and 2) the Indo-West Pacic NF genera Gelasimus, Tubuca
and Xeruca, and the BF genera Austruca, Cranuca and
Paraleptuca (Figs. 1–3).
In Shih et al. (2013b), Leptuca and Minuca were found to
form an unresolved clade, but this was to be most likely the
result of analysing too few species. However, Shih et al.
(2015) and the results of the present study, show both genera
have high and medium support, respectively; especially with
the removal of the newly recognised Petruca, and generic
reassignment of some other species (see below). Australuca,
on the other hand, is nested within Tubuca and must therefore
be regarded as a junior subjective synonym of that genus
(see Remarks under Tubuca).
A number of species are regarded as nomina dubia by Ng
et al. (2008): Gelasimus huttoni Filhol, 1886; Gelasimus
leptostyla Nutting, 1919; Goneplax nitida Desmarest, 1817
(= Gelasima nitida Desmarest, 1822); Gelasimus minor
Owen, 1839; Gelasimus rectilatus Lockington, 1877; and
Gelasimus rubripes Hombron & Jacquinot, 1846.
Gelasimus Latreille, 1817
(Fig. 7)
Gelasimus Latreille, 1817: 517. Type species: Cancer vocans
Linnaeus, 1758 by subsequent designation, see H. Milne
Edwards (1841: pl. 18, g. 1). Gender masculine.
Latuca Bott, 1973b: 317. Type species: Mesuca (Latuca)
neocultrimana Bott, 1973 by original designation. Gender
feminine.
Mesuca Bott, 1973b: 316. Type species: Cancer tetragonon Herbst,
1790 by original designation. Gender feminine.
Thalassuca Crane, 1975: 75. Type species: Cancer tetragonon
Herbst, 1790 by original designation. Gender feminine.
Diagnosis. Medium- to large-sized (carapace width about
20–30 mm in adults); dorsal carapace surface without
posterolateral striae; front narrow; cornea round; eyestalks
slender; adult male chelipeds very large, always right-handed,
pollex without ventral carina, outer surface of major manus
with moderate to large tubercles; male pleonites free; pleonal
locking mechanism absent; setae present on lateral margins
of posterior stem region of urocardiac ossicles in gastric
mill. Indo-West Pacic.
Species included:
1. Gelasimus borealis (Crane, 1975)
2. Gelasimus dampieri (Crane, 1975)
3. Gelasimus hesperiae (Crane, 1975) (nomen protectum)
= Gelasimus tetragonon var. spinicarpa Kossmann,
1877 (nomen oblitum)
4. Gelasimus jocelynae (Shih, Naruse & Ng, 2010)
5. Gelasimus neocultrimanus (Bott, 1973)
= Uca (Thalassuca) vocans pacicensis Crane, 1975
6. Gelasimus tetragonon (Herbst, 1790)
= Gelasimus afnis Guérin, 1829
= Gelasimus duperreyi Guérin, 1829
= Gelasimus variatus Hess, 1865
7. Gelasimus vocans (Linnaeus, 1758)
= Gelasimus marionis Desmarest, 1823
= Gelasimus nitidus Dana, 1851
= Gelasimus cultrimanus White, 1847
= Uca marionis forma excisa Nobili, 1906
8. Gelasimus vomeris (McNeill, 1920)
Remarks. Gelasimus is widely-distributed in the Indo-
West Pacic (Fig. 4). Bott (1973b) established Mesuca as
a genus including two subgenera, Mesuca (Mesuca) for
Uca tetragonon and four other species now reassigned
elsewhere, and Mesuca (Latuca) for U. neocultrimana and
three other species also here reassigned to other genera.
The current morphological and genetic data suggests this
is one monophyletic group. If future studies indicate that
Gelasimus is polyphyletic, then Mesuca and Latuca would
be available names for use as possible subgenera or genera.
Interestingly, Shih et al. (2010) found that the 16S and
COI markers do not show differences between the species
within the complex of U. borealis, U. dampieri, U. vocans
and U. vomeris, despite good morphological characters to
separate them. However, some species can be successfully
separated genetically using the nuclear internal transcribed
spacers (ITS-1) (Shih unpublished; Chu et al., 2015), which
suggests that speciation has been very recent.
While Gelasimus is the only genus with right-handed
cheliped for most males, the remaining species are right-
or left-handed with nearly the same ratio (Barnwell, 1982;
Yamaguchi, 1994). Juvenile males possess two large
chelipeds, and the asymmetry will be attained by losing of
either one cheliped that regenerates into a small cheliped
(Morgan, 1923; Yamaguchi & Henmi, 2001). However, the
mechanism of losing the left cheliped by juvenile Gelasimus
species is still unknown.
Austruca Bott, 1973, status nov.
(Fig. 8)
Austruca Bott, 1973b: 322. Type species: Gelasimus annulipes H.
Milne Edwards, 1837 by original designation.
Diagnosis. Small- to medium-sized species (carapace width
about 15 mm in adults); dorsal carapace surface smooth,
with or without posterolateral striae; front broad; cornea
round; eyestalks slender; adult male cheliped very large,
right- or left-handed, pollex sometimes with ventral carina,
outer surface of major manus smooth, without depression
near base of pollex, carpal cavity with distal extension; male
pleonites free; with pleonal clasping apparatus; gastric mill
without large brownish setae at base of posterior tooth plate.
Indo-West Pacic.
152
Shih et al.: Systematics of the Ocypodidae
Fig. 8. Photographs of some species of the genus Austruca. A, A. annulipes (Tioman, Malaysia); B, A. bengali (Selangor, Malaysia); C,
A. iranica (Iran); D, A. lactea (Taiwan); E, A. mjoebergi (New Territory, Australia); F, A. perplexa (Dongsha, Taiwan); G, A. sindensis
(Iran); H, A. triangularis (Cebu, Philippines). E, courtesy of P. Backwell.
153
RAFFLES BULLETIN OF ZOOLOGY 2016
Species included:
1. Austruca albimana (Kossmann, 1877)
2. Austruca annulipes (H. Milne Edwards, 1837)
= Gelasimus porcellanus White, 1847
= Uca consobrinus Verwey, 1930
3. Austruca bengali (Crane, 1975)
4. Austruca cryptica (Naderloo, Türkay & Chen, 2010)
5. Austruca iranica (Pretzmann, 1971)
6. Austruca lactea (De Haan, 1835)
= Gelasimus forceps H. Milne Edwards, 1837
7. Austruca occidentalis (Naderloo, Schubart & Shih, 2016)
8. Austruca mjoebergi (Rathbun, 1924)
9. Austruca perplexa (H. Milne Edwards, 1852)
= Uca annulipes var. orientalis Nobili, 1901
10. Austruca sindensis (Alcock, 1900)
11. Austruca triangularis (A. Milne-Edwards, 1873)
Remarks. Most species of Austruca agree well with Crane’s
(1975) denition of the IWP Celuca, with the exception
of U. sindensis (cf. Shih et al., 2013b; Fig. 2) which was
previously placed under Paraleptuca (= Amphiuca Crane
1975). One main character of Paraleptuca is the outer major
manus with a small round depression near pollex base which
does not appear in Austruca, including A. sindensis. Austruca
is widely-distributed in the IWP (Fig. 4), with four species
added since Crane (1975), viz., A. albimana, A. cryptica, A.
iranica and A. occidentalis (Shih et al., 2009; Naderloo et al.,
2010, 2016). The genus contains three species-complexes:
1) the U. lactea complex with seven species, including an
unnamed species from East Africa, twice as many as listed in
Crane (1975); 2) U. triangularis and U. bengali as revealed
in this study; 3) U. sindensis (Fig. 2).
Cranuca Beinlich & von Hagen, 2006, status nov.
(Fig. 9A)
Cranuca Beinlich & von Hagen, 2006: 25. Type species Gelasimus
inversa Hoffmann, 1874, by original designation. Gender
feminine.
Diagnosis. Medium-sized species (carapace width about 20
mm in adults); dorsal carapace surface without posterolateral
striae; front broad; cornea round; eyestalks slender; adult
male cheliped very large, right- or left-handed, pollex without
ventral carina, major dactylus with large subdistal tooth, outer
surface of major manus with moderate-sized tubercles; male
pleonites free; without pleonal clasping apparatus; gastric
mill without large brownish setae at base of posterior tooth
plate. Indo-West Pacic.
Species included:
Cranuca inversa (Hoffmann, 1874).
Remarks. Cranuca is monotypic, containing only a single
species, the BF C. inversa, which occurs only in East
Africa (Fig. 4). This species was placed under Amphiuca
(= Paraleptuca) as a subspecies (of U. inversa) together
with U. sindensis by Crane (1975). However, some unique
morphological characters led Beinlich & von Hagen (2006)
to established Cranuca for this species. This decision was
later supported by molecular evidence that showed a close
relationship with the NF Gelasimus species (Shih et al.,
2013b; Fig. 2).
Leptuca Bott, 1973, status nov.
(Fig. 9B–F)
Leptuca Bott, 1973b: 324. Type species: Gelasimus stenodactylus
H. Milne Edwards & Lucas, 1843, by original designation.
Gender feminine.
Celuca Crane, 1975: 211. Type species: Uca deichmani Rathbun,
1935, by original designation. Gender feminine.
Planuca Bott, 1973b: 324. Type species: Uca thayeri Rathbun,
1900, by original designation. Gender feminine.
Boboruca Crane, 1975: 109. Type species: Uca thayeri Rathbun,
1900, by original designation. Gender feminine.
Diagnosis. Small- to large-sized species (carapace width
about 5–25 mm in adults); anterolateral margins short; 0–2
posterolateral striae on dorsal carapace surface; front broad;
cornea round; eyestalks slender; adult male major cheliped
very large, right- or left-handed, pollex sometimes with
ventral carina, outer surface of major manus smooth; male
pleonites free or somites 4–6 partly or fully fused; pleonal
locking mechanism absent; gastric mill with 2 large brownish
setae at base of posterior tooth plate. Conned to the Atlantic
and East Pacic coasts of the Americas.
Species included:
1. Leptuca batuenta (Crane, 1941)
2. Leptuca beebei (Crane, 1941)
3. Leptuca coloradensis (Rathbun, 1893)
4. Leptuca crenulata (Lockington, 1877)
= Gelasimus gracilis Rathbun, 1893
5. Leptuca cumulanta (Crane, 1943)
6. Leptuca deichmanni (Rathbun, 1935)
7. Leptuca dorotheae (von Hagen, 1968)
8. Leptuca festae (Nobili, 1902)
= Uca guayaquilensis Rathbun, 1935
= Uca orthomana Bott, 1954
= Uca leptochela Bott, 1954
= Uca leptochela eibli Bott, 1958
9. Leptuca helleri (Rathbun, 1902)
10. Leptuca inaequalis (Rathbun, 1935)
11. Leptuca latimanus (Rathbun, 1893)
12. Leptuca leptodactyla (Rathbun, in Rankin, 1898)*
13. Leptuca limicola (Crane, 1941)
14. Leptuca musica (Rathbun, 1914)
15. Leptuca oerstedi (Rathbun, 1904)
16. Leptuca panacea (Novak & Salmon, 1974)
17. Leptuca pugilator (Bosc, 1802)
= Ocypode citharoedicus Say, 1817 (unavailable
name)
18. Leptuca pygmaea (Crane, 1941)
19. Leptuca saltitanta (Crane, 1941)
20. Leptuca speciosa (Ives, 1891)
21. Leptuca spinicarpa (Rathbun, 1900)
22. Leptuca stenodactylus (H. Milne Edwards & Lucas,
1843)
= Gelasimus gibbosus Smith, 1870
23. Leptuca subcylindrica (Stimpson, 1859)
154
Shih et al.: Systematics of the Ocypodidae
24. Leptuca tallanica (von Hagen, 1968)
25. Leptuca tenuipedis (Crane, 1941)
26. Leptuca terpsichores (Crane, 1941)
27. Leptuca thayeri (Rathbun, 1900)
28. Leptuca tomentosa (Crane, 1941)
= Uca mertensi Bott, 1954
29. Leptuca umbratila (Crane, 1941)
= Uca thayeri zilchi Bott, 1954
30. Leptuca uruguayensis (Nobili, 1901)
= Uca olympioi Oliveira, 1939
* This name has been sometimes spelt as ‘leptodactylus
following the original unpublished manuscript name of
Guérin (see Ng et al., 2008). Rathbun’s original spelling,
however, was “leptodactyla”, and this should be followed
(see Chace & Hobbs, 1969: 212; Crane, 1975: 306; ICZN,
1999: Article 31.2.2).
Remarks. The results of the present genetic analyses show
two distinct clades for the American BF genera Leptuca and
Minuca, thus supporting their validity. These two genera
(including U. thayeri and U. umbratila, see below) can,
for the most part, be separated morphologically with the
characters stated in the diagnosis. However, the placement
of some species has proven problematic (see examples in
Beinlich & von Hagen, 2006). The species constitution of
Leptuca has been partially discussed by Shih et al. (2015),
and noteworthy is the transfer from Minuca to Leptuca of
L. subcylindrica, L. thayeri and L. umbratila; the close
relationships between L. panacea and L. pugilator, and
between L. thayeri, L. umbratila and L. spinicarpa; as well
as the establishment of Petruca for Gelasimus panamensis
(see Remarks under Petruca).
Several authors have tried to separate Leptuca and Minuca by
characters such as the shape of the anterolateral margins and
number of posterolateral striae on the carapace, the degree
of fusion of pleonites 4–6, the presence of a ventral carina
on the major pollex, and the shapes of the G1 (Crane, 1975;
Rosenberg, 2001; Beinlich & von Hagen, 2006; Bezerra,
2012). Despite this, there are still no consistently useful
characters to reliably dene the genera. Similarly, earlier 16S
genetic analyses were unable to resolve their relationships
(Levinton et al., 1996; Sturmbauer et al., 1996). Minuca has
been considered a smaller “homogeneous” group, compared
to the more speciose “heterogeneous” Leptuca (Barnwell
& Thurman, 1984; Beinlich & von Hagen, 2006; Ng et
al., 2008).
There are presently 30 species within Leptuca which makes
it the most diverse genus within the family. Leptuca species
are more widely distributed in the Americas than those of
Minuca and Uca (Fig. 4). Because fewer than half (14)
species of Leptuca were analysed for this study, it is vital
that more species are examined and sequenced in the future
to conrm their generic position, and to further clarify their
relationships within the genus. This is an aspect which will
need further study.
Minuca Bott, 1954, status nov.
(Figs. 9G, H, 10A, B)
Minuca Bott, 1954: 155, 160. Type species: Gelasimus mordax
Smith, 1870, by original designation. Gender feminine.
Diagnosis. Small- to medium-sized species (carapace width
about 10–30 mm in adults); anterolateral margins long,
curving into dorsolaterals; 2 posterolateral striae on dorsal
carapace surface; front broad; cornea round; eyestalks slender;
adult male major cheliped very large, right- or left-handed,
pollex without ventral carina, outer surface of major manus
smooth or with small to moderate-sized tubercles; male
pleonites free; pleonal locking mechanism absent; gastric
mill with 2 large brownish setae at base of posterior tooth
plate. Conned to the Atlantic and East Pacic coasts of
the Americas.
Species included:
1. Minuca argillicola (Crane, 1941)
2. Minuca brevifrons (Stimpson, 1860)
3. Minuca burgersi (Holthuis, 1967)
= Uca panema Coelho, 1972
4. Minuca ecuadoriensis (Maccagno, 1928)
= Uca schmitti Crane, 1943
5. Minuca galapagensis (Rathbun, 1902)
= Gelasimus macrodactylus H. Milne Edwards &
Lucas, 1843 (suppressed by ICZN)
6. Minuca herradurensis (Bott, 1954)
7. Minuca longisignalis (Salmon & Atsaides, 1968)
8. Minuca marguerita (Thurman, 1981)
9. Minuca minax (LeConte, 1855)
10. Minuca mordax (Smith, 1870)
11. Minuca osa (Landstorfer & Schubart, 2010)
12. Minuca pugnax (Smith, 1870)
= Ocypoda pusilla Rafinesque, 1817 (named
suppressed for priority)
13. Minuca rapax (Smith, 1870)
= ?Gelasimus palustris H. Milne Edwards, 1852
= ?Uca pugnax var. brasiliensis de Oliveira, 1939
14. Minuca virens (Salmon & Atsaides, 1968)
15. Minuca victoriana (von Hagen, 1987)
16. Minuca vocator (Herbst, 1804)
= Uca salsisitus Oliveira, 1939
= Uca murifecenta Crane, 1943
= Uca lanigera von Hagen, 1968
17. Minuca zacae (Crane, 1941)
= Uca macrodactyla glabromana Bott, 1954
Remarks. The present genetic analysis supports the
reassignment by earlier authors of a number of species that
were previously placed in Minuca, viz., Leptuca pygmaea
and L. subcylindrica (see Beinlich & von Hagen, 2006),
Petruca panamensis, L. thayeri and L. umbratila (see Shih
et al., 2015; also see present Remarks under Petruca and
Leptuca). Similarly, the transfer of Minuca argillicola from
Leptuca by Beinlich & von Hagen (2006) is also supported
(Fig. 2).
155
RAFFLES BULLETIN OF ZOOLOGY 2016
Fig. 9. Photographs of some species of the genera Cranuca, Leptuca and Minuca. A, C. inversa (East Africa); B, L. deichmanni (Panama);
C, L. speciosa (Bahamas); D, L. terpsichores (Panama); E, L. thayeri (Brazil); F, L. umbratila (Panama); G, M. brevifrons (Costa Rica);
H, M. burgersi (Bahamas). A, courtesy of S. Cannicci.
156
Shih et al.: Systematics of the Ocypodidae
Compared with Leptuca, we have molecular data for all
the Minuca species except M. marguerita. Some species
of Minuca have been discussed in earlier studies, e.g., the
transisthmian species-pairs of M. vocator / M. ecuadoriensis,
and M. herradurensis/M. galapagensis (Landstorfer &
Schubart, 2010); the early split of M. brevifrons from other
species (Shih et al., 2015); the close relationships between
M. burgersi and M. mordax (Shih et al., 2015) and between
M. osa, M. vocator and M. ecuadoriensis (Landstorfer &
Schubart, 2010); and the taxonomic uncertainty regarding M.
virens and M. longisignalis (the former may be valid, while
the latter is likely to be a junior synonym of M. minax).
Shih et al. (2015) used U. cf. virens and “U. longisignalis
to refer to these taxa, and this terminology is retained in
Figure 2 and Appendix 1. This matter will need further
attention and is currently being studied by one of the authors
(CDS). Overall, Minuca has a more limited distribution in
the Americas than Uca and Leptuca (Fig. 4).
Paraleptuca Bott, 1973, status nov.
(Fig. 10C, D)
Paraleptuca Bott, 1973b: 322. Type species: Gelasimus
chlorophthalmus H. Milne Edwards, 1837, by original
designation. Gender feminine.
Amphiuca Crane, 1975: 96. Type species: Gelasimus chlorophthalmus
H. Milne Edwards, 1837, by original designation. Gender
feminine.
Diagnosis. Medium-sized species (carapace width about 20
mm in adults); dorsal carapace with posterolateral striae; front
broad; cornea round; eyestalks slender; adult male chelipeds
extremely large, right- or left-handed, pollex without ventral
carina, outer surface of major manus smooth, with small
round depression near base of pollex, carpal cavity not
continued distally; male pleonites free; with pleonal clasping
apparatus; gastric mill without large brownish setae at base
of posterior tooth plate. Indo-west Pacic.
Species included:
1. Paraleptuca crassipes (White, 1847)
= Gelasimus gaimardi H. Milne Edwards, 1852
= Gelasimus pulchellus Stimpson, 1858
= Gelasimus latreillei H. Milne Edwards, 1852
= Uca novaeguineae Rathbun, 1913
2. Paraleptuca boninensis (Shih, Komai & Liu, 2013)
3. Paraleptuca chlorophthalmus (H. Milne Edwards, 1837)
= Uca amazonensis Doein, 1899
4. Paraleptuca splendida (Stimpson, 1858)
Remarks. In Crane’s (1975) system, Amphiuca (=
Paraleptuca) contained four taxa, viz., Uca chlorophthalmus,
U. crassipes, U. inversa and U. sindensis. In contrast,
Beinlich & von Hagen (2006) established Cranuca for U.
inversa, and believed that the members of the U. lactea and
U. triangularis species complexes should be included within
their revised concept of Paraleptuca. However, this has not
been supported genetically (Shih et al., 2013b; Fig. 2). Uca
sindensis has since been transferred to Austruca (Shih et al.,
2013b; Fig. 2); while P. boninensis and P. splendida have
now been added to Paraleptuca (Shih et al., 2012, 2013a).
The revised concept of Paraleptuca here shows considerable
variation in morphology and coloration among the four
species (Crane, 1975; Shih et al., 2012, 2013a), perhaps due
in part to their unusual distributions (Fig. 4). Paraleptuca
chlorophthalmus occurs only in East Africa; P. crassipes is
widely distributed across the IWP; P. splendida is restricted
to East Asia and Vietnam; and P. boninensis is endemic to the
Ogasawara Islands (= Bonin Island), Japan. The latter species
is morphologically closest to P. splendida, but genetically
(16S and COI), it is nearly identical to P. crassipes. Only
the sequences from the mitochondrial control region (=
D-loop) can separate the species satisfactorily (Shih et al.,
2013a). This is a strong indication that it is a young species
that evolved very recently.
Petruca Shih, Ng & Christy, 2015, status nov.
(Fig. 10F)
Petruca Shih, Ng & Christy, 2015: 476. Type species: Gelasimus
panamensis Stimpson, 1859, by original designation. Gender
feminine.
Diagnosis. Medium-sized species (carapace width about 15
mm in adults); carapace widest between tips of anterolateral
angles; dorsal carapace surface almost at, smooth, with
posterolateral striae; front broad; cornea round; eyestalks
slender; orbital oor with spinous tubercle near inner corner;
adult male major cheliped very large, right- or left-handed,
pollex without ventral carina, major chela smooth in inner
or outer surfaces, with posterior extension of manus; tips of
minor ngers of both sexes with brush of long setae; male
pleonites free; pleonal locking mechanism absent; gastric
mill with 2 large brownish setae at base of posterior tooth
plate. Conned to the East Pacic coasts of the Americas.
Species included:
Petruca panamensis (Stimpson, 1859).
Remarks. Gelasimus panamensis Stimpson, 1859, has been
placed either in Minuca or Leptuca, but Shih et al. (2015)
established a new subgenus for it based on a number of
unusual characters, e.g., the relatively at dorsal carapace
surface, the posterior extension of the major manus, the
smooth inner and outer surfaces of the major chela, the brush
of long stiff setae on the nger tips of the minor cheliped,
the armature at the inner corner of the orbital oor, and
the characteristic urocardiac ossicles of the gastric mill. In
addition, its ecology and behavior are peculiar for ddler
crabs, e.g. lives on cobble beaches rather than sandy-muddy
substrates, has no deep or permanent burrows, and swallow
food particles directly (see Shih et al., 2015). The distribution
is limited to the Pacic side of Central America and northern
South America (Fig. 4).
Tubuca Bott, 1973, status nov.
(Figs. 10G, H, 11A–H, 12A)
Tubuca Bott, 1973b: 322. Type species: Gelasimus urvillei H.
Milne Edwards, 1852, by original designation. Gender feminine.
Australuca Crane, 1975: 62. Type species: Gelasimus bellator
Adams & White, 1849, by original designation. Gender
feminine.
157
RAFFLES BULLETIN OF ZOOLOGY 2016
Fig. 10. Photographs of some species of the genera Minuca, Paraleptuca, Petruca and Tubuca. A, M. herradurensis (Panama); B, M.
rapax (Brazil); C, Pa. chlorophthalmus (East Africa); D, Pa. crassipes (Donghsa, Taiwan); E, Pa. splendida (Penghu, Taiwan); F, Pe.
panamensis (Costa Rica); G, T. arcuata (Hainan, China); H, T. bellator (Labuan, Malaysia). C, courtesy of S. Cannicci.
158
Shih et al.: Systematics of the Ocypodidae
Fig. 11. Photographs of some species of the genus Tubuca. A, T. coarctata (Taiwan); B, T. dussumieri (Penghu, Taiwan); C, T. elegans
(New Territory, Australia); D, T. forcipata (Sarawak, Malaysia); E, T. polita (Northern Territory, Australia); F, T. rhizophorae (Johor,
Malaysia); G, T. rosea (Selangor, Malaysia); H, T. signata (New Territory, Australia). C, E, H, courtesy of P. Backwell.
159
RAFFLES BULLETIN OF ZOOLOGY 2016
Deltuca Crane, 1975: 21. Type species: Gelasimus forcipatus Adams
& White, 1849, by original designation. Gender feminine.
Diagnosis. Medium- to large-sized species (carapace width
about 15–35 mm in adults); dorsal carapace surface always
with posterolateral striae in female, absent in males; front
narrow; cornea round; eyestalks slender; adult male major
cheliped very large, right- or left-handed, pollex sometimes
with ventral carina, outer surface of major manus with small
to large tubercles, carpus with antero-dorsal area attened
to facilitate chela exion, setae on merus of minor cheliped
short, stiff; male pleonites free; pleonal locking mechanism
absent; no setae on lateral margins of posterior stem region
of urocardiac ossicles in gastric. Indo-west Pacic.
Species included:
1. Tubuca acuta (Stimpson, 1858)
2. Tubuca australiae (Crane, 1975)
3. Tubuca arcuata (De Haan, 1835)
= Uca brevipes H. Milne Edwards, 1852
4. Tubuca bellator (White, 1847)
5. Tubuca capricornis (Crane, 1975)
= Uca pavo George & Jones, 1982
6. Tubuca coarctata (H. Milne Edwards, 1852)
= Uca rathbunae Pearse, 1912
= Uca ischnodactylus Nemec, 1939
= ?Uca mearnsi Rathbun, 1913
= ?Gelasimus thomsoni Kirk, 1881
7. Tubuca demani (Ortmann, 1897)
= Uca zamboangana Rathbun, 1913
8. Tubuca dussumieri (H. Milne Edwards, 1852) (nomen
protectum)
= Gelasimus caerulens Adams, in Belcher, 1848
(nomen oblitum)
= Gelasimus dubius Stimpson, 1858
9. Tubuca elegans (George & Jones, 1982)
10. Tubuca ammula (Crane, 1975)
11. Tubuca forcipata (Adams & White, 1849)
= Uca rubripes Estampador, 1937
= Uca manii Rathbun, 1909
11. Tubuca hirsutimanus (George & Jones, 1982)
12. Tubuca longidigitum (Kingsley, 1880)
13. Tubuca paradussumieri (Bott, 1973)
= Uca (Deltuca) dussumieri spinata Crane, 1975
14. Tubuca polita (Crane, 1975)
15. Tubuca rhizophorae (Tweedie, 1950)
16. Tubuca rosea (Tweedie, 1937)
17. Tubuca seismella (Crane, 1975)
18. Tubuca signata (Hess, 1865)
19. Tubuca typhoni (Crane, 1975)
20. Tubuca urvillei (H. Milne Edwards, 1852)
Remarks. The molecular analyses (Fig. 2) reveal one major
clade containing all the Tubuca and Australuca species.
Although the Australuca species do form a distinct subclade,
their inclusion causes Tubuca, as presently conceived, to
become paraphyletic. Thus, in order to maintain Australuca
as a separate genus, we would have to further split Tubuca
and this seems unjustied at this time. We therefore treat
Australuca Crane, 1975, as a junior synonym of Tubuca
Bott, 1973, as the latter has nomenclatural priority. This
revised concept of Tubuca makes it the most speciose
genus in the IWP, with 21 species. Although the genus is
widely-distributed in the IWP, it does not extend as far as
the eastern margin of Polynesia, where only Paraleptuca and
Gelasimus species occur (Poupin & Juncker, 2010; Fig. 4).
Xeruca Shih, 2015, status nov.
(Fig. 12B)
Xeruca Shih, 2015: 154. Type species: Uca formosensis Rathbun,
1921, by original designation. Gender feminine.
Diagnosis. Large-sized species (carapace width about 30
mm in adults); dorsal carapace surface without posterolateral
striae; front narrow; cornea round; eyestalks slender; adult
male major cheliped very large; right- or left-handed, deep
ngers (with straight cutting margins >1/2 length of ngers),
pollex without ventral carina, outer surface of major manus
with moderate-szied to large tubercles, carpus with antero-
dorsal area attened to facilitate chela exion, setae on merus
of minor cheliped long, thin; male pleonites free; pleonal
locking mechanism absent; no setae on lateral margins of
posterior stem region of urocardiac ossicles in gastric mill.
Taiwan endemic.
Species included:
Xeruca formosensis (Rathbun, 1921).
Remarks. Although Rathbun described this large endemic
Taiwanese species in Rathbun (1921), it was not well known
until the work of Shih et al. (1999). Crane (1975) placed it
with U. tetragonon and the U. vocans species-complex, in
Thalassuca (= Gelasimus), although she had examined only
a few specimens. Shih et al. (1999) suggested that it was
closely related to Tubuca, but cautioned that more study was
needed to conrm its status. Shih (2015) recently established a
separate taxon Xeruca for this species based on morphological
(see Rosenberg, 2001) and molecular evidence. The present
work (Fig. 2) and Shih (2015) show Xeruca to be basal to
the main Tubuca clade which conrms earlier relationship
speculation (Crane, 1975; Shih et al., 1999; Rosenberg,
2001). The monotypic Xeruca is conned to Taiwan Island
and the adjacent Penghu Islands, and thus has the smallest
distribution of any genus in the Ocypodidae (Fig. 4).
Subfamily Ucidinae Števčić, 2005
Diagnosis. Carapace subovate, cordiform, very thick,
swollen; regions distinct, grooves deep; fronto-orbital
distance 1/2–2/3 of maximum carapace width, front broad;
anterolateral margins strongly convex; orbital oor with
tubercle at inner corner adjacent to antennule; eyestalks
relatively short, cornea terminal without any distal ornament;
buccal cavern elongated anteriorly, appearing longer than
broad, third maxillipeds not completely covering it when
closed; ischium and merus of third maxilliped elongate,
fringed with long setae on inner surface; exopod of third
maxilliped mostly concealed by endopod, with agellum;
chelipeds prominently unequal in adult males, less so in
160
Shih et al.: Systematics of the Ocypodidae
Fig. 12. Photographs of some species of the genera Tubuca, Xeruca and Ucides. A, T. urvillei (Ranong, Thailand); B, X. formosensis
(Taiwan); C, D, U. cordatus (Brazil).
females, surfaces of male merus, carpus and palm armed
with strong spines; first to fourth ambulatory legs with
dense, long setae on ventral surface of merus, propodus and
dactylus which obscure margins; no distinct brush of setae
between bases of coxae of second and third ambulatory
legs; male pleon with somites 5 and 6 fused; pleonal locking
mechanism usually absent.
Ucides Rathbun, 1897
(Fig. 12C, D)
Uca Latreille, 1819: 96. Type species Cancer uca Linnaeus, 1767;
junior homonym of Uca Leach, 1814. Gender feminine.
Ucea Guérin-Méneville, 1844: 8, pl. 5(3) (incorrect spelling).
Ucides Rathbun, 1897: 154. Type species Cancer cordatus Linnaeus,
1763, by original designation. Gender masculine.
Oedipleura Ortmann, 1897: 334 (replacement name for Uca
Latreille, 1819).
Diagnosis. See Diagnosis for subfamily. Conned to the
Atlantic and East Pacic coasts of the Americas.
Species included:
1. Ucides cordatus (Linnaeus, 1763)
= Cancer uca Linnaeus, 1767
= Ocypode fossor Latreille, 1803
= Uca pilosipes Gill, 1859
2. Ucides occidentalis (Ortmann, 1897)
= Uca laevis H. Milne Edwards, 1837 (pre-occupied
name)
Remarks. The morphology of Ucides is supercially similar
to that of the gecarcinids, but Chace & Hobbs (1969) provided
a suite of characters (especially relating to the maxillipeds
and ambulatory legs) that show Ucides to be closer to
ocypodids. Schubart & Cuesta (2010), using 16S, found that
Ucides cordatus and Ocypode quadrata formed a separate
clade, and concluded that both genera are closely related.
The present study, nevertheless, supports the recognition
of a separate subfamily Ucidinae, typically placed basally
within the Ocypodidae (Figs. 1–3).
Key to the subfamilies and genera of Ocypodidae
1. Fronto-orbital distance 1/2–2/3 of maximum carapace width,
front relatively broad; no brush of long setae between bases of
second and third ambulatory legs leading to branchial cavity.
..................................................................... Ucides (Ucidinae)
Fronto-orbital distance > 9/10 of maximum carapace width,
front relatively narrow; prominent brush of long setae between
bases of second and third ambulatory legs leading to branchial
cavity. ......................................................................................2
2. Orbital oor with tubercle at inner corner adjacent to antennule.
Males of some species with distal end of cornea of eyestalks
possessing ornament (horn, stylus or setal brush). Gastric mill
with 1 protrusion or 2 pairs of transverse ridges of median teeth
on posterior tooth plate, gaps shallow, prominently separated
from central ridge. ........................................ 3 (Ocypodinae)
Orbital floor without tubercle at inner corner adjacent to
antennule (vestigial in Petruca). Males never with ornament at
distal end of cornea of eyestalks. Gastric mill with 2 or more
161
RAFFLES BULLETIN OF ZOOLOGY 2016
pairs of transverse ridges of median teeth on posterior tooth
plate, gaps deep, reaching or near central ridge. .....................
.........................................................................5 (Gelasiminae)
3. Eyestalks short, cornea large, ovate. Chelipeds unequal in both
sexes but major one never prominently enlarged. .....Ocypode
Eyestalks slender, cornea round. Male with major cheliped
prominently enlarged; minor male and female chelipeds
small .........................................................................................4
4. Front narrow, carapace not covered with tubercles. ......... Uca
Front wide, carapace covered with prominent tubercles. .......
........................................................................................Afruca
5. Front narrow. ..........................................................................6
Front wide. ............................................................................. 8
6. Carpus of major cheliped with anterodorsal area not attened;
>90% ratio of males with right major chela. Floor of orbit
without any elevations. Gastric mill with setal structure on
lateral margins of stem region of urocardiac ossicles..............
..................................................................................Gelasimus
Carpus of major cheliped with anterodorsal area attened; ratio
of males with right or left major chela ca. 50%. Floor of orbit
often with tubercles, ridge or mound. Gastric mill without setal
structure on stem region of urocardiac ossicles. ...................7
7. Major cheliped with forceps-shaped ngers or with straight
cutting margins <1/2 length of ngers. Minor cheliped merus
with short, stiff setae. ....................................................Tubuca
Major cheliped with deep ngers, with straight cutting margins
>1/2 length of ngers. Minor cheliped merus with long, thin
setae. .............................................................................. Xeruca
8. Dorsal edge of orbit distinctly broad. Gastric mill with 2 large
brownish setae at base of posterior tooth plate. .....................9
Dorsal edge of orbit narrow. Gastric mill without large brownish
setae at base of posterior tooth plate. ...................................11
9. Manus of major cheliped with posterior extension. Tips of
minor ngers with brush of long setae. Orbital oor with small
spinous tubercle near inner corner. ..............................Petruca
Manus of major cheliped without posterior extension. Tips of
minor ngers without brush of long setae. Orbital oor without
spinous tubercle near inner corner. .......................................10
10. Anterolateral margin short; carapace with 0–2 posterolateral
striae. All pleonites free, or somites 4–6 partly or completely
fused. Major pollex without ventral carina. ................Leptuca
Anterolateral margin long, curving into dorsolateral surface;
carapace with 2 posterolateral striae. All pleonites free. Major
pollex may possess ventral carina. ...............................Minuca
11. Dactylus of major cheliped with large subdistal tooth; major
manus with some tubercles on outer surface. Without pleonal
clasping apparatus. ......................................................Cranuca
Dactylus of major cheliped without large subdistal tooth;
major manus with outer surface smooth. With pleonal clasping
apparatus. ...............................................................................12
12. Outer manus of major cheliped with small round depression
near base of pollex; carpal cavity not continued distally. .......
............................................................................... Paraleptuca
Outer manus of major cheliped without small round depression
near base of pollex; carpal cavity with distal extension. .........
.................................................................................... Austruca
ACKNOWLEDGEMENTS
This study was supported by grants from the National Science
Council (NSC 101-2621-B-005-001-MY3) and the Ministry
of Science and Technology (MOST 103-2621-B-005-
001), Executive Yuan, Taiwan, to HTS; and by Australian
Biological Resources Study Grants no. 208-72, and 207-50
to PJFD. The authors wish to express thanks to the members
of the laboratory of HTS for some molecular work; to John
Christy, Carl Thurman, Marcos Tavares, Zeehan Jaafar,
Shirley Lim, Adeline Yong, Patricia Backwell, Benny K.
K. Chan, and Pablo D. Ribeiro for providing specimen used
in this study; and to Stefano Cannicci and P. Backwell for
providing photographs of ddler crabs. We acknowledge the
helpful comments on the manuscript from Shane Ahyong
and Tohru Naruse.
LITERATURE CITED
Adams A (1848) [Adams A, in Belcher E (1848)] Narrative of
the voyage of H.M.S. Samarang, during the years 1843–46;
Employed surveying the islands of the Eastern Archipelago;
Accompanied by a brief vocabulary of the principal languages.
Published under the authority of the Lords of the Admiralty.
With notes on the natural history of the islands, by Arthur
Adams. Reeve, Benham, and Reeve, London. Volume I: i–xl
+ 1–358 pp., 29 unnumbered plates, frontispiece; Volume II:
1–574 + [1 unnumbered page: Appendix] + [1 unnumbered
page: Errata] pp., 4 unnumbered plates, frontispiece.
Adams A & White A (1848–1849) Crustacea. In: Adams A (ed.)
The zoology of the voyage of H.M.S. Samarang, under the
command of Captain Sir Edward Belcher, C.B., F.R.A.S.,
F.G.S. during the years 1843–1846. Reeve, Benham, and Reeve,
London, i–viii [= Front Matter and Preface by Adams, A.] +
i–xv [= Introduction by Adams, A., and References to Plates]
+ 1–66 pp., pls. I–VI. [i–viii + i–xv + 1–32 pp., pls. I–VI:
Jul.1848; 33–66 pp., pls. VII–XIII: Aug.1849]
Alcock A (1900) Materials for a carcinological fauna of India. No.
6. The Brachyura Catometopa or Grapsoidea. Journal of the
Asiatic Society of Bengal, 69(3): 279–456.
Aubert de la Chesnaye des Bois FA (1759) Dictionnaire raisonné
et universel des animaux, ou le regne animal, consistant en
quadrupedes, cétacées, oiseaux, reptiles, poisson, insectes, vers,
zoophytes; ou plantes animales; leurs propriétés en médicine; la
classe, la familie, ou l’odre, le genre, l’espece avec ses variétés,
où chaque animal est rangé, suivant les différentes méthodes ou
nouveaux systêmes de Messieurs Linnaeus, Klein & Brisson.
Claude-Jean-Baptiste Bauche 1: i–xxiv, 1–816. (Paris).
Barnwell FH & Thurman CL (1984) Taxonomy and biogeography
of the ddler crabs (Ocypodidae: genus Uca) of the Atlantic
and Gulf coasts of eastern North America. Zoological Journal
of the Linnean Society, 81: 23–87.
Barnwell FH (1982) The prevalence of male right-handedness in
the Indo-West Pacic ddler crab Uca vocans (Linnaeus) and
U. tetragonon (Herbst) (Decapoda: Ocypodidae). Journal of
Crustacean Biology, 2, 70–83.
Beinlich B & von Hagen H-O (2006) Materials for a more stable
subdivision of the genus Uca Leach. Zoologische Mededelingen,
80: 9–32.
Bezerra LEA (2012) The ddler crabs (Crustacea: Brachyura:
Ocypodidae: genus Uca) of the South Atlantic Ocean. Nauplius,
20: 203–246.
Bosc LAG (1801–1802) Histoire naturelle des Crustacés, contenant
leur description et leurs moeurs: avec gures dessinées d’après
nature. De Guilleminet, Paris. Volume 1: 1–258, pls. 172 1–8,
162
Shih et al.: Systematics of the Ocypodidae
volume 2: 1–296, pls. 9–18. [pp. 1–258, pls. 1–8: 1801; pp.
1–296, pls. 9–18: 1802]
Bott R (1954) Dekapoden (Crustacea) aus El Salvador. 1.
Winkerkrabben (Uca). Senckenbergiana Biologica, 35(3/4):
155–180.
Bott R (1958) Decapoden von den Galapagos-inseln. Senckenbergiana
Biologica, 39(3/4): 209–211.
Bott R (1973a) Die Typus-Art der Gattung Uca Leach 1814
(Decapoda: Ocypodidae). Senckenbergiana Biologica, 54:
311–314.
Bott R (1973b) Die verwandtschaftlichen Beziehungen der Uca
Arten. Senckenbergiana Biologica, 54: 315–325.
Catesby M (1771) The Natural History of Carolina, Florida and the
Bahama Islands: Containing the Figures of Birds, Beasts, Fishes,
Serpents, Insects and Plants: Particularly, Those not Hitherto
Described, or Incorrectly Figured by Former Authors, With
Their Descriptions in English and French. To Which is Prexed,
a New and Correct Map of the Countries; With Observations
on Their Natural State, Inhabitants, and Productions. Revised
by Mr. Edwards, of Royal College of Physicians, London. To
the Whole is Now Added a Linnaean Index of the Animals
and Plants. Volume the Second. [4] + 100 + xliv + [vi] + 2
pp., pls. 1-100.
Chace FAJ & Hobbs HHJ (1969) The freshwater and terrestrial
decapod crustaceans of the West Indies with special reference
to Dominica. Bulletin of the United States National Museum,
292: 1–258.
Chertoprud ES, Spiridonov VA, Ponomarev SA & Mokievsky VO
(2012) Commercial crabs (Crustacea Decapoda Brachyura) from
Nhatrang Bay (Vietnam). In: Britayev TA & Pavlov DS (eds.),
Benthic fauna of the Bay of Nhatrang, Southern Vietnam. KMK
Scientic Press Ltd., Moscow, 2: 296–344.
Chu KH, Schubart CD, Shih HT & Tsang LM (2015) Genetic
diversity and evolution of Brachyura. In: Castro P, Davie PJF,
Guinot D, Schram FR & von Vaupel Klein JC (eds.), Treatise
on Zoology–Anatomy, Taxonomy, Biology–The Crustacea,
complementary to the volumes translated from the French of
the Traité de Zoologie 9(C)(I), Decapoda: Brachyura (Part 1),
Brill, Leiden: 775–820.
Coelho PA (1972) Descrição preliminar de uma espécie nova de Uca
de Pernambuco e Paraíba. Pp. 42 in Resumos do V Congresso
Brasileiro de Zoologia. São Paulo, Brasil.
Crandall KA & Fitzpatrick JFJ (1996) Crayfish molecular
systematics: using a combination of procedures to estimate
phylogeny. Systematic Biology, 45: 1–26.
Crane J (1941) Crabs of the genus Uca from the west coast of
Central America. Eastern Pacic Expeditions of the New York
Zoological Society. XXVI. Zoologica, 26: 145–208.
Crane, J. (1943) Crabs of the genus Uca from Venezuela. Zoologica,
28: 33-44.
Crane J (1975) Fiddler Crabs of the World (Ocypodidae: Genus
Uca). Princeton University Press, Princeton, New Jersey, xxiii
+ 736 pp.
Crosnier A (1965) Crustacés décapodes. Grapsidae et Ocypodidae.
Faune de Madagascar, 18:1–143.
Curtiss A (1938) A short zoology of Tahiti in the Society Islands.
New York, i–xvi + 1–193 pp.
Dai A-Y, Song Y-Z & Yang S-L (1985) A study on Ocypode from
China (Crustacea: Decapoda). Acta Zootaxonimica Sinica,
10(4): 370-378. [In Chinese]
Dana JD (1851) On the classication of the Crustacea Grapsoidea.
American Journal of Science and Arts, (2)12: 283–290.
Dana JD (1852) Crustacea, part I. In: United States Exploring
Expedition during the years 1838, 1839, 1840, 1841, 1842,
under the command of Charles Wilkes, U.S.N. C. Sherman,
Philadelphia, 13: i–viii, 1-685; Atlas (1855), pp. 1–27, pls. 1–96.
Davie PJF (2012) A review of Macrophthalmus sensu lato
(Crustacea: Decapoda: Macrophthalmidae) from Australia,
including two new species and new records. Memoirs of the
Queensland Museum, Nature, 56, 149–219.
Davie PJF, Guinot D & Ng PKL (2015) Systematics and
classication of Brachyura. In: Castro P, Davie PJF, Guinot
D, Schram FR & von Vaupel Klein JC (eds.), Treatise on
Zoology–Anatomy, Taxonomy, Biology–The Crustacea,
complementary to the volumes translated from the French of
the Traité de Zoologie 9(C)(I), Decapoda: Brachyura (Part 1),
Brill, Leiden: 1049–1130.
De Haan W (1833–1850) Crustacea. In: Fauna Japonica sive
Descriptio animalium, quae in itinere per Japoniam, jussu et
auspiciis superiorum, qui summum in India Batava Imperium
tenent, suscepto, annis 1823-1830 collegit, notis, observationibus
et adumbrationibus illustravit, P.F. von Siebold, ed. Amsterdam:
Lugduni Batavorum. Pp. 1–243
Desbonne I & Schramm A (1867) Brachyures. In: Crustacés de la
Guadeloupe, d’après un manuscrit du Docteur Isis Desbonne
comparé avec les échantillons de Crustacés de sa collection et
les dernières publications de MM. Henri de Saussure et William
Stimpson. Premiere partie. Imprimerie du Gouvernment, Basse-
Terre. i– ii + 1–60 pp., pls. I–VIII.
Desmarest AG (1817) Crustacés fossiles. On a désigné sous ce
nom et sous ceux de crustacite, carcinite, astacite, astacolithe,
ganmarolithe, astacopodium, bacillus, entomolithe, cancer aut
pagurus lapideus, cancer petrefactus, etc., les dépouilles ou les
empreintes de crustacés que l’on trouve dans les couches de
la terre. Nouveau Dictionnaire d’Histoire naturelle, appliquée
aux arts, à l’Économie rurale et domestique, à la Médicine,
etc., VIII: Paris. Pp. 495–519.
Desmarest AG (1822) Des Crustacés Fossiles. In: Brongniart A &
Desmarest A-G (eds.) Histoire Naturelle des Crustacés Fossiles
sous les Rapports Zoologiques et Géologiques. Savoir: Les
Trilobites. F.-G. Levrault, Paris, pp. 67–154, pls. V–XI.
Desmarest A-G (1823) Malacostracés, Malacostraca. (Crust.).
In: Dictionnaire des Sciences Naturelles, dans lequel on
trait Méthodiquement des Différens étres de la Nature,
considérés soit en eux-mêmes, d’après l’état actuel de nos
connoissances, soit relativement a l’utilité qu’en peuvent retirer
la Médecine, l’Agriculture, le Commerce et les Arts. Suivi d’une
biographie des plus Célèbres Naturalistes. Ouvrage destiné
aux médecins, aux agriculteurs, aux commerçans, aux artistes,
aux manufacturiers, et à tous ceux qui ont intérêt à connoître
les productions de la nature, leurs caractères génériques et
spéciques, leur lieu natal, leurs propiétés et leurs usages, F.
Cuvier, ed., Volume 28. Strasbourg et Paris: F.G. Levrault et
Le Normant. Pp. 138–425 [Malacostracés 211–285].
Doein, F. (1899) Amerikanische Dekapoden der k. bayerischen
Staatssammlungen. Sitzungsberichte der Königlichen
Bayerischen Akademie der Wissenschaften zu München,
29:177–195.
Estampador EP (1937) A check list of Philippine crustacean
decapods. Philippine Journal of Science, 62:465–559.
Eydoux F (1835) Gélasime. Gelasimus Latr. G. de Tanger. G.
Tangeri. F. Eydoux. Magasin de Zoologie 5 (Cl. VII): 4
unnumbered pages, plate 17.
Fabricius JC (1787) Mantissa Insectorum sistens eorum species
nuper detectas adiectis Characteribus genericis, Differentiis
specicis, Emendationibus, Observationibus, I: i–xx, 1–348.
Hafniae.
Fabricius JC (1798) Supplementum Entomologiae systematicae.
Proft et Storch, Hafniae, 573 pp.
Filhol H (1886) Considérations relatives à la faune des crustacés
de la Nouvelle-Zélande. Bibliothèque de l’École des Hautes
Études. Section des Sciences Naturelles, 30(2): 1–60.
163
RAFFLES BULLETIN OF ZOOLOGY 2016
Folmer O, Black M, Hoeh W, Lutz R & Vrijenhoek R (1994) DNA
primers for amplication of mitochondrial cytochrome c oxidase
subunit I from diverse metazoan invertebrates. Molecular Marine
Biology and Biotechnology, 3: 294–299.
Forskål P (1775) Descriptiones Animalium, Avium, Amphibiorum,
Piscium, Insectorum, Vermium; quae in Itinere Orientali
Observavit Petrus Forskål. Post Mortem Auctoris editit Carsten
Niebuhr. Adjuncta est materia Medica Kahirina. Mölleri,
Hafniae [= Copenhagen]. 1–19 + I–XXXIV + 1–164 pp., 1 map.
Fowler HW (1912) The Crustacea of New Jersey. Annual Report
of the New Jersey State Museum, (2): 31–650.
George RW (1982) The distribution and evolution of the ghost
crabs (Ocypode spp.) of Hong Kong with a description of a
new species. The Marine Flora and Fauna of Hong Kong and
Southern China. Hong Kong, 18 April-10 May 1980, 1: 185–194.
George RW & Jones DS (1982) A revision of the ddler crabs of
Australia (Ocypodinae: Uca). Records of the Western Australian
Museum, Supplement 14: 5–99.
Gerstacker A (1856) Carcinologische Beiträge. Archiv für
Naturgeschichte, 22(1):101–162.
Gill T (1859) Description of two new species of terrestrial grapsoid
crustaceans from the West Indies. Annals of the Lyceum of
Natural History of New York, 7:42–44.
Guérin-Méneville, F.-E. (1829–1845) Iconographie du Règne
Animal de G. Couvier, Représentation d’après nature de l’une
des espèces les plus remarquables et souvent non encore gurées,
de chaque genre d’animaux. Avec un texte descriptif mis au
courant de la science. Ouvrage pouvant servir d’atlas a tous
les traités de zoologie Paris: J. B. Baillière. Vol. II, Planches;
vol. III, Texte explicatif.
Hagen HO von (1976) Review of Jocelyn Crane: Fiddler Crabs of
the World. Ocypodidae: Genus Uca. Crustaceana, 31: 221–224.
Hartnoll RG (1988) Evolution, systematics, and geographical
distribution. In: Burggren WW & McMahon BR (eds.) Biology
of the Land Crabs. Cambridge Unviersity Press, Cambridge.
Pp. 6–54.
Herbst JFW (1782) Versuch einer Naturgeschichte der Krabben
und Krebse. Nebst einer systematischen Beschreibung ihrer
verschiedenen Arten, Volume 1, no. 1 Zurich: J. C. Fuessly.
Herbst JFW (1790) Versuch einer Naturgeschichte der Krabben
und Krebse, nebst einer systematischen Beschreibung ihrer
verschiedenen Arten, 1(8): 239–274, pls. 18–21.
Herbst JFW (1804) Versuch einer Naturgeschichte der Krabben
und Krebse nebst einer systematischen Beschreibung ihrer
vershiedenen Arten. Vol. 3(4). 49 pp.
Herklots JA (1851) Additamenta ad Faunam Carcinologicam
Africae Occidentalis, sive descriptiones specierum novarum e
crustaceorum ordine, quas in Guinea collegit vir strenuus H. S.
Pel, praefectus residentiis in littore guineae. Lugduni-Batavorum
[= Leiden]. 1–28 pp., 2 unnumbered plates.
Hess W (1865) Beiträge zur Kenntnis der Decapoden-Krebse
Ost-Australiens. Archiv für Naturgeschichte, 31: 127–173,
pls. VI, VII.
Hilgendorf F (1882) Einige carcinologische mittheilungen. Sitzungs-
Berichte der Gesellschaft Naturforschender Freunde zu Berlin,
1882(2): 22–25.
Hoffmann CK (1874) Crustacés et Echinodermes de Madagascar
et de l’ile de la Réunion. In: Pollen FPL & van Dam DC (eds.)
Recherches sur la Faune de Madagascar et de ses dépendances
d’après les découvertes de François P. L. Pollen et D. C. van
Dam. E. J. Brill, Leiden. 5me Partie [= 5]: 1–58, pls. I–X.
Holthuis LB (1967) On a new species of Uca from the West
Indian region (Crustacea, Brachyura, Ocypodidae). Zoologische
Mededelingen, 42(6):51–54.
Holthuis LB (1979) Cancer vocans major Herbst, 1782 (Crustacea,
Decapoda): request for the use of the plenary powers to validate
a neotype. Z.N.(S). 2235. Bulletin of Zoological Nomenclature,
35: 248–252.
Hombron JB & Jacquinot H (1842–1854) Crustacés. Atlas d’Histoire
Naturelle. Zoologie. Voyage au Pôle Sud et dans l’Océanie sur
les corvettes l’Astrolabe et la Zélée pendant les années 1837-
1838-1839-1840, Crustacés. Pls. 1–9.
Huang JF, Yang SL & Ng PKL (1998) Notes on the taxonomy
and distribution of two closely related species of ghost crabs,
Ocypode sinensis and O. cordimanus (Decapoda, Brachyura,
Ocypodidae). Crustaceana, 71: 942–954.
ICZN, International Commission on Zoological Nomenclature
(1964) Opinion 712. Forty-seven genera of decapod Crustacea:
placed on the ofcial list. Bulletin of Zoological Nomenclature,
21: 336–351.
ICZN, International Commission on Zoological Nomenclature
(1983) Cancer vocans major Herbst, 1782 (Crustacea,
Decapoda): neotype designated under the plenary powers.
Bulletin of Zoological Nomenclature, 40: 200–201.
ICZN, International Commission on Zoological Nomenclature
(1999) International Code of Zoological Nomenclature.
International Commission of Zoological Nomenclature.
Fourth Edition. Adopted by the XXI General Assembly of the
International Union of Biological Sciences. International Trust
for Zoological Nomenclature, in association with the British
Museum (Natural History), London, 338 pp.
Ives JE (1891) Crustacea from the northern coast of Yucatan, the
harbor of Vera Cruz, the west coast of Florida and the Bermuda
Islands. Proceedings of the Academy of Natural Sciences of
Philadelphia, 43:176–207.
Kingsley JS (1880a) Revision of the Gelasimi. Carcinological
Notes. No. II. Proceedings of the Academy of Natural Sciences
of Philadelphia, 1880: 135–155, pls. IX, X.
Kingsley JS (1880b) Revision of the genus Ocypoda. Carcinological
Notes. No. III. Proceedings of the Academy of Natural Sciences
of Philadelphia, 1880: 179–186.
Kirk TW (1881) Notice of new crustaceans. Transactions and
Proceedings of the New Zealand Institute, 13: 236–237.
Koch M, Nguyen TS & Ďuriš Z (2015) Monomia calla, a new species
of swimming crab (Decapoda, Portunidae) from Madagascar
and the Philippines. Zootaxa, 3981: 405–412.
Kossmann R (1877) Erste Hälfte, III, Malacostraca (1: Theil
Brachyura). In: Kossmann R (ed.) Zoologische Ergebnisse einer
Reise in die Küstengebiete des Roten Meeres. Königlichen
Akademie der Wissenschaften zu Berlin, Leipzig. Pp. 1–66,
pls. I–III.
Kumar VK & KK Tiwari (1964) A new species of sandcrab of
the genus Ocypode Fabricius, 1798 [Crustacea: Decapoda:
Brachyura], from the Coromandel Coast, India. Proceedings of
the Zoological Society of Calcutta, 17: 153–157, Fig. 1, Pl. 4.
Lamarck JBPA de (1801) Systême des animaux sans vertèbres,
ou tableau général des classes, des orders et des genres de
ces animaux; présentant leurs caractères essentiels et leur
distribution, d’apres la considération de leurs rapports naturels
et de leur organisation, et suivant l’arrangement établi dans les
galleries du Muséum d’Hist. Naturelle, parmi leurs dépouilles
conservées; précéde du discours d’ouverture du cours de
zoologie, donné dans le Muséum national d’Histoire naturelle
l’an 8 de la République. Deterville, Paris. viii+432 pp.
Landstorfer RB & Schubart CD (2010) A phylogeny of Pacic
ddler crabs of the subgenus Minuca (Crustacea, Brachyura,
Ocypodidae: Uca) with the description of a new species from
a tropical gulf in Pacic Costa Rica. Journal of Zoological
Systematics and Evolutionary Research, 48: 213–218.
Latreille PA (1803) Histoire naturelle, générale et particu lière,
des Crustacés et des Insectes. Vol. 6: 1–392, pls. 1–51. (Paris)
Latreille PA (1810) Considerations generales sur l’Ordre naturel des
Animaux composant les Classes des Crustaces, des Arachnides
et des Insectes; avec un tableau Methodique de leurs genres,
disposes en familles. Paris, 444 pp.
164
Shih et al.: Systematics of the Ocypodidae
Latreille PA (1817) Gelasime, Gelasimus (Buffon). Nouveau
dictionnaire d’histoire naturelle, appliquée aux arts, à
l’agriculture, à l’économie rurale et domestique, à la médecine,
etc. Par une Societe de Naturalistes et d’Agriculteurs. Deterville,
Paris. editiion 2, 12: 517–520.
Latreille PA (1818) Nouveau dictionnaire d’histoire naturelle
appliquée aux arts, à l’agriculture, à l’économie rurale et
domestique, à la médicine, etc. Par une société de naturalistes
et d’agriculteurs. Nouvelle édition. Presqu’entièrement refondue
et considérablement augmentée; avec des gures tirées des trois
règnes de la nature 23: 1–612. (Paris).
Latreille PA (1819) Uca. Nouveau Dictionnaire d’Histoire Naturelle,
2nd edition, 35: 96.
Leach WE (1814) Crustaceology. In: Brewster D (ed.) The
Edinburgh Encyclopaedia, 7: 383–437, pl. 221.
LeConte J (1855) On a new species of Gelasimus. Proceedings of
the Academy of Natural Sciences of Philadelphia, 7:402-403.
Levinton JS, Sturmbauer C & Christy J (1996) Molecular data and
biogeography: resolution of a controversy over evolutionary
history of a pan-tropical group of invertebrates. Journal of
Experimental Marine Biology and Ecology, 203: 117–131.
Linnaeus C (1758) Systema Naturae per Regna Tria Naturae,
Secundum Classes, Ordines, Genera, Species, cum Characteribus,
Differentiis, Synonymis, Locis. Edition 10, 1: i–iii, 1–824.
Linnaeus C (1763) Centuria Insectorum, quam, praeside D. D.
Car. von Linne, proposuit Boas, Calmariensis. In: C. Linnaeus,
Amoenitates Academicae; seu dissertationes variae, physicae,
medicae, botanicae, Antehac seorsim editae, nunc collectae &
auctae, 6: 384–415.
Linnaeus C (1767) Systema Naturae per Regna Tria Naturae,
Secundum Classes, Ordines, Genera, Species, cum Characteribus,
Differentiis, Synonymis, Locis. (edit. 12). Vol. 1. Vindoboniae.
Pp. 533–1327 + [1–37] pp.
Lockington WN (1877) Remarks on the Crustacea of the west
coast of North America, with a catalogue of the species in the
museum of the California Academy of Sciences. Proceedings
of the California Academy of Sciences, 7(1):145–156.
Maccagno T (1928) Crostacei Decapodi. Le specie del genere
Uca Leach conservate nel Regio Museo Zoologico di Torino.
Bollettino dei Musei di Zoologia ed Anatomia comparata della
R. Università di Torino, 41(11):1–52.
MacLeay WS (1838) On the Brachyurous Decapod Crustacea.
Brought from the Cape by Dr. Smith. In Smith, A., Illustrations
of the Zoology of South Africa; consisting chiey of gures
and descriptions of the objects of natural history collected
during an expedition into the interior of South Africa, in the
years 1834, 1835, and 1836; tted out by ‘The Cape of Good
Hope Association for Exploring Central Africa’: together
with a summary of African Zoology, and an inquiry into the
geographical ranges of species in that quarter of the globe,
published under the Authority of the Lords Commissioners of
Her Majesty’s Treasury, Invertebratae. IV [1849]. pp. 53–71,
pls. 2–3. Smith, Elder & Co., London.
Man JG De (1881) Carcinological Studies in the Leyden Museum
2. Notes from the Leyden Museum, 3(38): 245–256.
Man JG De (1902) Die von Herrn Professor Kükenthal im indischen
Archipel gesammelten Dekapoden und Stomatopoden. In, W.
Kükenthal, Ergebnisse einer zoologischen Forschungsreise in den
Molukken und Borneo. Abhandlungen der Senckenbergischen
Naturforschenden Gesellschaft, 25(3): 465–929, pls. 19–27.
McLay CL, Kitaura J & Wada K (2010) Behavioural and molecular
evidence for the systematic position of Macrophthalmus
(Hemiplax) hirtipes Hombron & Jacquinot, 1846, with
comments on macrophthalmine subgenera (Decapoda,
Brachyura, Macrophthalmidae). Crustaceana Monographs,
14: 483–503.
McNeill FA (1920) Studies in Australian carcinology. No. 1.
Records of the Australian Museum, 13: 105–109.
Miers EJ (1882) On the species of Ocypoda in the collections of
the British Museum. Annals and Magazine of Natural History,
Series 5, X(LIX): 376–388, pl. XVII.
Miers EJ (1886) Report on the Brachyura collected by H. M. S.
Challenger during the years 1873–1876. Report on the Scientic
Results of the Voyage of H. M. S. Challenger during the Years
1873–76, Zoology, 17: i–xli + 1–362, pls. 1–29.
Milne Edwards H (1836–1844) Les Crustaces. In: Cuvier G (ed.),
Le Regne Animal distribue d’apres son organisation, pour servir
de base a l’histoire naturelle des animaux et d’introduction
a l’anatomie comparee. Edition accompagnee de planches
gravees, representant les types de tous les genres, les caracteres
distinctifs des divers groupes et les modications de structure
sur lesquelles repose cette classication. 4e edition, 17: 1–278;
Atlas, pls. 1–80.
Milne Edwards H & Lucas H (1843) Crustacés. In: Voyage dans
l’Amerique Meridionale (Le Brésil, la République crientale de
l’Urugauy, la République Argentine, la Patagonie, la République
du Chili, la République de Bolivia, la République du Pérou),
exécuté pendant les années 1826, 1827, 1828, 1829, 1830,
1831, 1832 et 1833, A.D. d’Orbigny, ed., Volume VI, Part I
+ Atlas. Paris: Bertranad. Pp. 1–39
Milne Edwards H (1852) Observations sur les afnités zoologiques
et la classication naturelle des Crustacés. Annales des Sciences
Naturelles, Zoology, 3(18): 109–166.
Milne-Edwards A (1873) Recherches sur la faune carcinologique
de la Nouvelle-Caledonie. Nouvelles Archives de Muséum
d’Historie Naturelle de Paris, 9(2): 156–332.
Monod T (1927) Crustacea IV. Decapoda (excl. Palaemonidae,
Atyidae et Potamonidae). In: Contribution à l’étude de la faune
du Cameroun. Faune des Colonies Françaises, I: 593–624,
Figs. 1–3.
Monod T (1928)Additions à ma liste des Décapodes marins du
Cameroun. Bulletin du Muséum national d’Histoire naturelle,
34(4): 252.
Morgan TH (1923) The development of asymmetry in the ddler
crab. American Naturalist, 57: 269–273.
Naderloo R, Schubart CD & Shih HT (2016) Genetic and
morphological separation of Uca occidentalis, a new East
African ddler crab species, from Uca annulipes (H. Milne
Edward, 1837) (Crustacea: Decapoda: Brachyura: Ocypodidae).
Zoologischer Anzeiger, 262: 10–19.
Naderloo R, Türkay M & Chen HL (2010) Taxonomic revision of
the wide front ddler crabs of the Uca lactea group (Crustacea:
Decapoda: Brachyura: Ocypodidae) in the Indo West-Pacic.
Zootaxa, 2500: 1–38.
Nauck E (1880) Das Kaugerüst der Brachyura. Zeitschrift für
Wissenschaftliche Zoologie, 34: 1–69.
Nemec C (1939) Carcinological Notes. Zoological Series of Field
Museum of Natural History, Chicago, 24(9): 105–108, gs.
1–12.
Neumann R (1878) Systematische Übersicht der Gattungen der
Oxyrhynchen: Catalog der podophthalmen Crustaceen des
Heidelberger Museums. Beschreibung einiger neuer Arten,
Leipzig: 3–27.
Ng PKL, Guinot D & Davie PJF (2008) Systema Brachyurorum:
Part I. An annotated checklist of extant brachyuran crabs of the
world. Rafes Bulletin of Zoology, Supplement: 17, 1–296 pp.
Nobili G (1902) Viaggio del Dr. Enrico Festa nella Repubblica
dell'Ecuador e regioni vicine. XXIII. Decapodi e Stomatopodi.
Bollettino dei Musei di Zoologia ed Anatomia comparata della
R. Università di Torino 16(415): 1–58.
Nobili MG (1905) Note sur Ocypoda fabricii Milne-Edwards.
Bulletin du Musee d’Histoire Naturelle de Paris 11(4): 229–235.
165
RAFFLES BULLETIN OF ZOOLOGY 2016
Nobili MG (1906) Mission J. Bonnier et Ch. Pérez (Golfe Persique
1901). Crustacés Décapodes et Stomatopodes. Bulletin
Scientique De La France Et De La Belgique, 40: 13–159,
gs. 1–3, pls. 2–7.
Novak A & Salmon M (1974) Uca panacea, a new species of ddler
crab from the Gulf coast of the United States. Proceedings of
the Biological Society of Washington, 87(28): 313–326.
Nutting CC (1919) Barbados-Antigua Expedition. Narrative
and preliminary report of a zoological expedition from the
University of Iowa to the Lesser Antilles under the auspices
of the Graduate College. University of Iowa Studies in Natural
History, 8(3):1–274.
Nylander JAA (2005) MrModeltest version 2.2. Evolutionary
Biology Centre, Uppsala University, Uppsala, Sweden.
Oliveira LPH de (1939) Contribuição ao conhecimento dos
crustaceos do Rio de Janeiro. Genero Uca (Decapoda:
Ocypodidae). Memórias do Instituto Oswaldo Cruz, 34(1):115–
148.
Olivier GA (1804) Voyage dans l’Empire Othoman, l’Égypte et la
Perse, fait par ordre du Gouvernement, pendant les six premières
années de la République, Agasse, H.: Paris 2: i–ii, 1–466 pp.
Ortmann AE (1894) Die Decapoden-Krebse des Strassburger
Museums mit besonderer Berücksichtigung der von Herrn Dr.
Döderlein bei Japan und bei den Liu-Kiu-Inseln gesammelten
und zur Zeit im Strassburger Museum aufbewahrten Formen.
Theil VIII. Abtheilung: Brachyura (Brachyura genuina Boas),
III. Unterabtheilung: Cancroidea. 2. Section: Cancrinea, 2.
Gruppe: Catametopa. Zoologische Jahrbücher, Abteilung für
Systematik, Ökologie und Geographie der Tiere, 7: 683/761–
772, pl. 23.
Ortmann AE (1897) Carcinologische Studien. Zoologische
Jahrbücher, Abtheilung für Systematik, Geographie und Biologie
der Thiere, 10(3): 258–371.
Osbeck P (1765) Reise nach Ostindien und China. Nebst O. Toreens
Reise nach Suratte und C. G. Ekebergs Nachright von der
Landwirthschaft der Chineser. Aus dem Schwedishen bersetzt
von J. G. George. [3] + xxiv + 1+ 552 + [26] pp., pls. 1–13.
(Johann Christian Koppe: Rostock).
Osorio B (1890) Note sur quelques espèces de crustacés des iles
S. Thomé, du Prince et Ihleo das Rolas. Jornal Sciencias
Mathematicas, Physicas e Naturaes, Publicado sob os auspicios
da Academia Real das Sciencias de Lisboa, Lisbon, Portugal
(2) 2(5): 45-49.
Owen R (1839) Crustaces. In: The zoology of Captain Beechey’s
voyage; compiled from the collections and notes made by
Captain Beechey, the ofcers and naturalist of the expedition
during a voyage to the Pacic and Behrin’s Straits performed
in his Majesty’s ship ‘Blossom,’ under the command of Capt.
E. W. Beechey, R.N., F.R.Sl, &c. in the years 1825, 26, 27
and 28. London. Pp. 77–92
Pallas SP (1772) Spicilegia zoologica quibus novae imprimis et
obscurae animalium species iconibus descriptionibus atque
commentariis illustrantur, Berlin, 1(10): 81–84; (9): pl. 5,
gs. 7, 8.
Palumbi SR, Martin A, Romano S, Mcmillan WO, Stice L &
Grabowski G (1991) The simple fool’s guide to PCR. A
collection of PCR protocols, version 2. University of Hawaii,
Honolulu, Hawaii.
Pearse AS (1912) A new Philippine ddler-crab. Philippine Journal
of Science, 7D: 91–95.
Poupin J & Juncker M (2010) Guide des crustacés décapodes du
Pacic sud. A Guide to the Decapod Crustaceans of the South
Pacic. Edition CRISP [Coral Reef Initiatives for the Pacic]
et CPS [Secrétariat général de la Communauté du Pacique],
Nouméa, La, Nouvelle-Calédonie, 320 pp.
Prahl H v & Toro N (1985) Uca (Uca) intermedia (Crustacea:
Brachyura: Ocypodidae) a new fiddler crab of the Pacific
coast of Columbia. Zoologischer Anzeiger, 215(5/6): 274–278.
Pretzmann G (1971) Ergebnisse einiger Sammelreisen nach
Vorderasien 2. Teil: Marine Brachyura. Annalen des
Naturhistorischen Museums in Wien, 75: 477–487.
Quoy JRC & Gaimard JP (1824) Zoologie. In: Freycinet LCD de
(Ed.) Voyage autour du monde, entrepis par ordre du Roi, sous
le Ministère et conformément aux instructions de S. Exc. M.
Le Vicompte du Bocage, Secrétaire d’état au Départment de
la Marine, Exécuté sur les Corvettes de S. M. l’Uranie et al
Physicienne, pendant les Années 1817, 1818, 1819 et 1820:
i– iv + 1–712, pl. 77. (Paris).
Ranesque CS (1815) Analyse de la Nature, ou Tableau de l’Univers
et des Corps Organisés. L’Imprimerie de Jean Barravecchia,
Palermo, 224 pp.
Ranesque CS (1817) Synopsis of four new genera and ten new
species of Crustacea, found in the United States. The American
Monthly Magazine and Critical Review, 2:40–43.
Ragionieri L, Fratini S, Vannini M & Schubart CD (2009)
Phylogenetic and morphometric differentiation reveal geographic
radiation and pseudo-cryptic speciation in a mangrove crab from
the Indo-West Pacic. Molecular Phylogenetics and Evolution,
52: 825–834.
Rambaut A & Drummond AJ (2009) Tracer v1.5. [http://beast.
bio.ed.ac.uk/Tracer].
Rankin WM (1898) The Northrop collection of Crustacea from
the Bahamas. Annals of the New York Academy of Sciences,
11(12): 225–258.
Rathbun MJ (1893) Descriptions of new genera and species of
crabs from the west coast of North America and the Sandwich
Islands. Proceedings of the United States National Museum,
16: 223–260.
Rathbun MJ (1897) A revision of the nomenclature of the Brachyura.
Proceedings of the Biological Society of Washington, 11:
153–167.
Rathbun MJ (1900) Results of the Branner-Agassiz expedition to
Brazil. I. The decapod and stomatopod Crustacea. Proceedings
of the Washington Academy of Sciences, 2: 133–156.
Rathbun MJ (1902) Papers from the Hopkins Stanford Galapagos
expedition 1898-1899. VIII. Brachyura and Macrura.
Proceedings of the Washington Academy of Sciences, 4:
275–292.
Rathbun MJ (1904) Descriptions of three new species of American
crabs. Proceedings of the Biological Society of Washington
17: 161–162.
Rathbun MJ (1913) Descriptions of new species of crabs of the
family Ocypodidæ. Proceedings of the United States National
Museum, 44(1971): 615–620.
Rathbun MJ (1914) New genera and species of American
brachyrhynchous crabs. Proceedings of the United States
National Museum, 47: 117–129, gs. 1–5, pls. 1–10.
Rathbun MJ (1918) The grapsoid crabs of America. Bulletin of
the United States National Museum, 97: 1–461.
Rathbun MJ (1921) New species of crabs from Formosa. Proceedings
of the Biological Society of Washington, 34: 155–156.
Rathbun MJ (1924) Results of Dr. E. Mjöberg’s Swedish scientic
expeditions to Australia 1910–1913. 37. Brachyura, Albuneidae
and Porcellanidae. Arkiv för Zoologi, 16(23): 1–33.
Rathbun MJ (1935) Preliminary description of six new species of
crabs from the Pacic coast of America. Proceedings of the
Biological Society of Washington, 48: 49–52.
Rochebrune ATd (1883) Diagnoses d’Arthropodes nouveaux
propres à la Sénégambie. Bulletin de la Société Philomathique
de Paris 7(7): 167–181.
166
Shih et al.: Systematics of the Ocypodidae
Roman J & Palumbi SR (2004) A global invader at home:
population structure of the green crab, Carcinus maenas, in
Europe. Molecular Ecology, 13: 2891–2898.
Ronquist F, Huelsenbeck JP & Mark P van der (2005) MrBayes
3.1 Manual. [http://mrbayes.csit.fsu.edu/manual.php].
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling
A, Höhna S, Larget B, Liu L, Suchard MA & Huelsenbeck
JP (2012) MRBAYES 3.2: efcient Bayesian phylogenetic
inference and model choice across a large model space.
Systematic Biology, 61: 539–542.
Rosenberg MS (2001) The systematics and taxonomy of ddler
crabs: a phylogeny of the genus Uca. Journal of Crustacean
Biology, 21: 839–869.
Rosenberg MS (2014) Contextual cross-referencing of species
names for ddler crabs (genus Uca): An experiment in cyber-
taxonomy. PLoS ONE, 9(7): e101704.
Sakai K & Türkay M (2013) Revision of the genus Ocypode with
the description of a new genus, Hoplocypode (Crustacea:
Decapoda: Brachyura). Memoirs of the Queensland Museum—
Nature, 56: 665–793.
Salmon M (1983) Acoustic “calling” by ddler and ghost crabs.
Records of the Australian Museum, 18: 63–76.
Salmon M & Atsaides SP (1968) Behavioral, morphological and
ecological evidence for two new species of ddler crabs (genus
Uca) from the Gulf coast of the United States. Proceedings of
the Biological Society of Washington, 81: 275–290.
Say T (1817–1818) An account of the Crustacea of the United States.
Journal of the Academy of Natural Sciences of Philadelphia, 1(1)
(1817): 57–63, 65–80, 97–101, 155–169; (2)(1818): 235–253,
313–319, 374–401, 423–444, 445–458, pl. 4.
Seba A (1758) Locupletissimi rerum naturalium thesauri accurata
descriptio, et iconibus articiosissimis expressio, per universam
physiees historiam. Opus, cui, in hoc rerum genere, nullum par
exstitit. Vol. 3. Amsterdam.
Schubart CD, Cannicci S, Vannini M & Fratini S (2006) Molecular
phylogeny of grapsoid crabs (Decapoda, Brachyura) and allies
based on two mitochondrial genes and a proposal for refraining
from current superfamily classication. Journal of Zoological
Systematics and Evolutionary Research, 44: 193–199.
Schubart CD & Cuesta JA (2010) Phylogenetic relationships of
the Plagusiidae Dana, 1851, (Brachyura) with description of a
new genus and recognition of Percnidae Števčić, 2005, as an
independent family. Crustaceana Monographs, 11: 279–299.
Shaw G & Nodder FP (1803) Crustacea. Vivarium Naturae, sive
rerum naturalium, variae et vividae icones, ad ipsam naturam
depictae et descriptae. In: The Naturalist’s Miscellany, or
Coloured Figures of Natural Objects, Drawn and Described
Immediately from Nature. London. Vol. 14: 1 unnumbered
page, pl. 588.
Shih HT (2015) Uca (Xeruca), a new subgenus for the Taiwanese
fiddler crab Uca formosensis Rathbun, 1921 (Crustacea:
Decapoda: Ocypodidae), based on morphological and molecular
evidence. Zootaxa, 3974: 151–169.
Shih HT, Kamrani E, Davie PJF & Liu MY (2009) Genetic
evidence for the recognition of two ddler crabs, Uca iranica
and U. albimana (Crustacea: Brachyura: Ocypodidae), from
the northwestern Indian Ocean, with notes on the U. lactea
species-complex. Hydrobiologia, 635: 373–382.
Shih HT, Komai T & Liu MY (2013a) A new species of ddler
crab from the Ogasawara (Bonin) Islands, Japan, separated
from the widely-distributed sister species Uca (Paraleptuca)
crassipes (White, 1847) (Crustacea: Decapoda: Brachyura:
Ocypodidae). Zootaxa, 3746: 175–193.
Shih HT, Mok HK, Chang HW & Lee SC (1999) Morphology
of Uca formosensis Rathbun, 1921 (Crustacea: Decapoda:
Ocypodidae), an endemic ddler crab from Taiwan, with notes
on its ecology. Zoological Studies, 38: 164–177.
Shih HT, Naruse T & Ng PKL (2010) Uca jocelynae sp. nov., a
new species of ddler crab (Crustacea: Brachyura: Ocypodidae)
from the Western Pacic. Zootaxa, 2337: 47–62.
Shih HT, Ng PKL & Christy J (2015) Uca (Petruca), a new subgenus
for the rock ddler crab Uca panamensis (Stimpson, 1859)
from Central America, with comments on some species of the
American broad-fronted subgenera. Zootaxa, 4034: 471–494.
Shih HT, Ng PKL & Liu MY (2013b) Systematics of the Indo-West
Pacic broad-fronted ddler crabs (Crustacea: Ocypodidae:
genus Uca). Rafes Bulletin of Zoology, 61: 641–649.
Shih HT, Ng PKL, Wong KJH & Chan BKK (2012) Gelasimus
splendidus Stimpson, 1858 (Crustacea: Brachyura: Ocypodidae),
a valid species of ddler crab from the northern South China
Sea and Taiwan Strait. Zootaxa, 3490: 30–47.
Shih HT & Suzuki H (2008) Taxonomy, phylogeny, and biogeography
of the endemic mudat crab Helice/Chasmagnathus complex
(Crustacea: Brachyura: Varunidae) from East Asia. Zoological
Studies, 47: 114–125.
Sin YW, Lai JCY, Ng PKL & Chu KH (2009) Phylogeny of
Dorippoidea (Crustacea: Decapoda: Brachyura) inferred from
three mitochondrial genes. Invertebrate Systematics, 23:
223–230.
Smith SI (1870) Notes on American Crustacea. No. 1. Ocypodoidea.
Transactions of the Connecticut Academy of Arts and Science,
2: 113–176.
Spivak ED & Cuesta JA (2009) The effect of salinity on larval
development of Uca tangeri (Eydoux, 1835) (Brachyura:
Ocypodidae) and new ndings of the zoeal morphology. Scientia
Marina, 73: 297–305.
Števčić Z (2005) The reclassication of brachyuran crabs (Crustacea:
Decapoda: Brachyura). Natura Croatica, 14 (supplement 1):
1–159.
Stimpson W (1858) Crustacea Ocypodoidea. Prodromus
descriptionis animalium evertebratorum, quae in Expeditione
ad Oceanum Pacicum Septentrionalem a Republica Federata
missa, Cadwaladaro Ringgold et Johanne Rodgers ducibus,
observavit et descripsit, Pars V. Proceedings of the Academy
of Natural Science, Philadelphia, 10: 93–110.
Stimpson W (1859) Notes on North American Crustacea, No. 1.
Annals of the Lyceum of Natural History of New York, 7
(4–5): 49–93, pl. I.
Stimpson W (1860) Notes on North American Crustacea. No. II.
Annals of the Lyceum of Natural History of New-York, 7:
176–246, pls. 2, 5.
Sturmbauer C, Levinton JS & Christy J (1996) Molecular phylogeny
analysis of ddler crabs: test of the hypothesis of increasing
behavioral complexity in evolution. Proceedings of the National
Academy of Sciences of the United States of America, 93:
10855–10857.
Swofford DL (2003) PAUP*: Phylogenetic Analysis Using
Parsimony (*and Other Methods), Version 4. Sinauer Associates,
Sunderland, Massachusetts.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar
S (2011) MEGA5: Molecular Evolutionary Genetics Analysis
using Maximum Likelihood, Evolutionary Distance, and
Maximum Parsimony Methods. Molecular Biology and
Evolution, 28: 2731–2739.
Thurman CL (1981) Uca marguerita, a new species of ddler crab
(Brachyura: Ocypodidae) from eastern Mexico. Proceedings of
the Biological Society of Washington, 94: 169–180.
Tsang LM, Schubart CD, Ahyong ST, Lai JCY, Au EYC, Chan TY,
Ng PKL & Chu KH (2014) Evolutionary history of true crabs
(Crustacea: Decapoda: Brachyura) and the origin of freshwater
crabs. Molecular Biology and Evolution, 31: 1173–1187.
Türkay M (1970) Die Gecarcinidae Amerikas. Mit einem Anhang
über Ucides Rathbun (Crustacea: Decapoda). Senckenbergiana
Biologica, 51: 333–354.
167
RAFFLES BULLETIN OF ZOOLOGY 2016
Türkay M (1983) The systematic position of an Australian mangrove
crab Heloecius cordiformis (Crustacea: Decapoda: Brachyura).
Australian Museum Memoir, 18: 107–111.
Tweedie MWF (1937) On the crabs of the family Ocypodidae in
the collection of the Rafes Museum. Bulletin of the Rafes
Museum, 13: 140–170.
Tweedie MWF (1950) Grapsoid crabs from Labuan and Sarawak.
Sarawak Museum Journal, 5: 338–369.
Verwey J (1930) Einges über die Biologie Ost-Indischer
Mangrovekrabben. Treubia 12: 167–261.
von Hagen H-O (1968) Studien an peruanischen Winkerkrabben
(Uca). Zoologische Jahrbücher. Abteilung für Systematik,
Ökologie und Geographie der Tiere, 95(2): 395–468.
von Hagen H-O (1987) Morphologie und Winkbalz einer neuen
Uca-Art (Crustacea, Brachyura) aus dem Staat Espirito Santo
(Brasilien). Mitteilungen aus dem hamburgischen zoologischen
Museum und Institut, 84: 81–94.
Weber F (1795) Nomenclator entomologicus secundum
entomologiam systematicum ill. Fabricii adjectis speciebus
recens detectis et varietatibus. Chilonii and Hamburgi, pp.
i–viii, 1–172.
White A (1847) List of specimens of Crustacea in the collection of
the British Museum. British Museum, London, viii + 143 pp.
Wong KJH, Shih HT & Chan BKK (2012) The ghost crab Ocypode
mortoni George, 1982 (Crustacea: Decapoda: Ocypodidae):
redescription, distribution at its type locality, and the phylogeny
of East Asian Ocypode species. Zootaxa, 3550: 71–87.
Yamaguchi T (1994) Fiddler crabs of the genus Uca in the
collections of three natural history museums in Europe. 1. The
specimens held by the Nationaal Natuurhistorisch Museum,
Leiden and the Natural History Museum, London. Calanus,
11: 151–189.
Yamaguchi T & Henmi Y (2001) Studies on the differentiation
of handedness in the ddler crab, Uca arcuata. Crustaceana,
74: 735–747.
Zwickl DJ (2006) Genetic Algorithm Approaches for the
Phylogenetic Analysis of Large Biological Sequence Datasets
under the Maximum Likelihood Criterion. Ph.D. Dissertation.
University of Texas at Austin, Austin, Texas.
168
Shih et al.: Systematics of the Ocypodidae
Appendix 1. Specimens examined and the different sequences of 16S rDNA, COI and 28S rDNA for the species of ddler
crabs, ghost crabs (genus Ocypode), mangrove crabs (genus Ucides) and outgroups used in this study. ASIZ, Institute of
Zoology, Academia Sinica, Taipei, Taiwan; NMNS, National Museum of Natural Science, Taichung, Taiwan; MZUF, Museo
Zoologico dell’Università di Firenze, Italy; NCHUZOOL, the Zoological Collections of the Department of Life Science,
National Chung Hsing University, Taichung, Taiwan; NTOU, Department of Environmental Biology and Fisheries Science,
National Taiwan Ocean University, Keelung, Taiwan; QM, Queensland Museum, Brisbane, Australia; SMF, Senckenberg
Museum, Frankfurt am Main, Germany; TAU, Steinhardt National Collections of Natural History, Tel Aviv University,
Israel; TMCD, National Taiwan Museum, Taipei, Taiwan; UCR, Museo Zoológico de la Universidad de Costa Rica, San
José; USNM, U.S. National Museum for Natural History, Smithsonian Institution, Washington D.C., USA; ZRC, Zoological
Reference Collection of the Lee Kong Chian Natural History Museum (formerly Rafes Museum of Biodiversity Research),
National University of Singapore, Singapore. *, see Remarks under Minuca.
Genus Species Locality Catalogue No. DDBJ Access.
No. of 16S
DDBJ Access.
No. of COI
DDBJ Access.
No. of 28S
Afruca Af. tangeri (#1, #2) Spain:
Puerto de Santa
María, Cádiz
NCHUZOOL
13585 AB813666 AB813682 AB813711,
LC150456
(#3, #4) Spain:
Puerto de Santa
María, Cádiz
NCHUZOOL
14911 AB813666 LC150399 LC150457,
LC150458
(#1, #2) Ghana:
Elmina NCHUZOOL
13654 LC053362 LC053380 LC053399,
LC150459
Austruca Au. albimana Egypt: Nabq,
Sinai NCHUZOOL
13242 AB471893 AB471906 AB813689
Au. annulipes Thailand:
Phuket NCHUZOOL
13258 AB471894 AB491161 AB813686
Au. occidentalis southern
Madagascar ZRC THH04-30 AB813648 AB813669 AB813687
Au. bengali Malaysia:
Selangor NCHUZOOL
13575 AB813651 AB813672 AB813695
Au. iranica Iran: Gavbandi NCHUZOOL
13245 AB471896 AB471908 AB813688
Au. lactea Hong Kong NCHUZOOL
13250 AB471898 AB471912 AB813693
Au. mjoebergi Australia:
Bedford I.,
West Australia
QM W20253 AB471900 AB471914 AB813690
Au. perplexa Taiwan:
Dulanwan,
Taitung
NTOU AB471901 AB471915 AB813691
New Caledonia:
Ouano Bay NCHUZOOL
13573 AB813649 AB813670 AB813692
Wallis and
Futuna:Pointe
Utu
NCHUZOOL
14912 LC150339 LC150400 LC150460
Au. sindensis Iran: Qeshm NCHUZOOL
13576 AB813652 AB813673 AB813696
Iraq: Khur Al-
Zubair ZRC 2010.0103 LC015059 LC015060 LC150461
Au. triangularis Philippines:
Cebu NCHUZOOL
13574 AB813650 AB813671 AB813694
169
RAFFLES BULLETIN OF ZOOLOGY 2016
Genus Species Locality Catalogue No. DDBJ Access.
No. of 16S
DDBJ Access.
No. of COI
DDBJ Access.
No. of 28S
Cranuca C. inversa Kenya: Gazi MZUF 1024 AB813658 AB813674 AB813703
Egypt: Sinai TAU SLR 1475 AB813658 LC087973 LC088004
Tanzania: Dar
es Salaam NCHUZOOL
13255 AB471904 AB471917 AB813703
Gelasimus G. borealis Hong Kong NCHUZOOL
13207 LC053359 LC053376 LC053394
Taiwan:
Kinmen TMCD
CHCD853 AB535403 AB535428 LC150462
G. dampieri Australia:
Darwin, New
Territory
QM W19180 AB535399 AB535430 LC150463
G. hesperiae Thailand:
Phuket ZRC 2000.1056 AB535398 AB535422 LC150464
Kenya: Mida
Creek NCHUZOOL
13172 LC150340 LC150401 LC150465
Madagascar ZRC THH04-30 LC150341 LC150402 LC150465
Mauritius ZRC THH04-30 LC150342 LC150403 LC150466
G. jocelynae Taiwan:
Dulanwan,
Taitung
NTOU AB535392 AB535411 LC054955
Philippines:
Panglao ZRC 2009.0925
[M9] AB535392 AB535414 LC150467
Papua New
Guinea QM W26812 AB535394 AB535417 LC150468
Vanuatu: Santo ZRC 2009.0930
[VM53] AB535396 AB535418 LC150468
G. neocultrimana Wallis I.: Pointe
Utu
NCHUZOOL
13303 AB535397 AB535420 LC150469
G. tetragonon Taiwan:
Kenting,
Pingtung
TMCD CHCD
526 AB535405 AB535431 LC053395
Madagascar:
Sarodrano ZRC THH04-17 AB535405 LC053377 LC053396
Moorea I. MNHN LC150343 LC150404 LC150470
G. vocans Philippines:
Bohol NCHUZOOL
13667 AB535399 AB813683 AB813712
China: Hainan NCHUZOOL
13182 AB535399 AB535424 LC150471
G. vomeris Australia:
Boggy Creek,
Queensland
QM W23884 AB535399 AB491163 LC150472
Leptuca L. cumulanta Brazil: Rio de
Janeiro NCHUZOOL
13949 LC087932 LC087960 LC087988
L. deichmanni Panama:
Culebra I. NCHUZOOL
13583 AB813660 AB813676 AB813705
L. dorotheae Costa Rica:
Tempisque R. ZRC LC087933 LC087961 LC087989
170
Shih et al.: Systematics of the Ocypodidae
Genus Species Locality Catalogue No. DDBJ Access.
No. of 16S
DDBJ Access.
No. of COI
DDBJ Access.
No. of 28S
L. leptodactyla (#1) Bahamas:
Pigeon Creek,
San Salvador
ZRC LC087934 LC087962 LC087990
(#2) Bahamas:
Pigeon Creek ZRC LC087934 LC087962 LC087991
(#1) Brazil: Sao
Paulo NCHUZOOL
14914 LC150344 LC150405 LC150473
(#2) Brazil:
Enseada do
Mucuripe
NCHUZOOL
14915 LC150345 LC150406 LC150474
L. panacea Texas, USA:
South Padre I.,
Cameron
NCHUZOOL
13950 LC087935 LC087963 LC087992
L. pugilator South
Carolina, USA:
Georgetown
NCHUZOOL
13586 AB813662 AB813678 AB813707
Florida, USA:
Seahorse Key ASIZ AB813662 AB813678 LC087993
L. speciosa Florida, USA:
Alligator Point NCHUZOOL
13951 LC087936 LC087964 LC087994
Bahamas: N.of
Pigeon Creek,
San Salvador
ZRC LC087936 LC087965 LC087995
L. spinicarpa Florida, USA:
Money Bayou,
Gulf County
NCHUZOOL
13947 LC087937 LC087966 LC087996
Texas, USA:
Boliver I. ZRC 2009.0295 LC087937 LC087967 LC087997
L. stenodactylus El Salvador SMF 2357 LC150748 LC150749 LC150750
L. subcylindrica (#1) Texas,
USA: Kingsville
NCHUZOOL
13952 LC087938 LC087968 LC087998
(#2) Texas,
USA: Kingsville
NCHUZOOL
13952 LC087938 LC087968 LC087999
L. terpsichores Panama:
Culebra I. NCHUZOOL
13582 AB813661 AB813677 AB813706
L. thayeri (#1, #2)
Florida, USA:
Hutchinson I.,
Fort Pierce
NCHUZOOL
13953 LC087939 LC087969 LC088000,
LC150475
Brazil:
Anchieta,
Espírito Santo
NCHUZOOL
13954 LC087940 LC087970 LC088001
L. umbratila (#1) Panama:
Diablo Heights
mangroves
NCHUZOOL
13579 AB813663 AB813679 AB813708
(#2) Panama:
Diablo Heights
mangroves
NCHUZOOL
13579 LC087941 LC087971 LC088002
171
RAFFLES BULLETIN OF ZOOLOGY 2016
Genus Species Locality Catalogue No. DDBJ Access.
No. of 16S
DDBJ Access.
No. of COI
DDBJ Access.
No. of 28S
L. uruguayensis Argentina:
Samborombón NCHUZOOL
13577 AB813659 AB813675 AB813704
Minuca M. argillicola Ecuador: Puerto
Morro SMF 34737 LC150346 FN430701 FN430713
M. brevifrons Costa Rica:
Playa San
Juanillo
ZRC 2012.0126 LC087919 LC087949 LC087976
M. burgersi Bahamas:
Salt Pan San
Salvador
ZRC LC087920 LC087950 LC087977
Brazil NCHUZOOL
13956 LC150347 LC150407 LC150476
M. ecuadoriensis Ecuador: Puerto
Morro SMF 34740 LC150348 FN430704 FN430716
M. galapagensis Ecuador: Puerto
Morro SMF 34741 LC150349 FN430705 FN430717
M. herradurensis Panama:
Diablo Heights
mangroves
NCHUZOOL
13580 AB813664 AB813680 AB813709
M. minax Virginia, USA:
Chesapeake Bay NCHUZOOL
13939 LC087921 LC087951 LC087978
M. minax Florida, USA NCHUZOOL
13957 LC150350 LC150408 LC150477
M.
longisignalis”* Texas, USA:
Ingleside Cove,
Corpus Christi
NCHUZOOL
13938 LC087922 LC087952 LC087979
M. mordax Brazil: São
Paulo NCHUZOOL
13940 LC087923 LC087953 LC087980
M. osa Costa Rica:
Golfo Dulce
UCR 2620-01 LC150351 FN430711 FN430722
M. pugnax (#1) Maryland,
USA:
Assateague I.
NCHUZOOL
13941 LC087924 LC087954 LC087981
(#2) Maryland,
USA:
Assateague I.
NCHUZOOL
13941 LC087925 LC087955 LC087982
M. rapax Jamaica:
Trelawny NCHUZOOL
13942 LC087926 LC087956 LC087983
British Virgin:
Paraquita Bay
NCHUZOOL
13943 LC087927 LC087956 LC087984
Panama: Bocas
del Toro NCHUZOOL
13944 LC087928 LC087957 LC087984
M. victoriana Brazil: Bahia NCHUZOOL
13945 LC087929 LC087958 LC087985
M. cf. virens
(identied as M.
rapax)*
(#1) Texas,
USA: Ingleside
Cove, Corpus
Christi Bay
NCHOZUUL
13584 AB813665 AB813681 AB813710
172
Shih et al.: Systematics of the Ocypodidae
Genus Species Locality Catalogue No. DDBJ Access.
No. of 16S
DDBJ Access.
No. of COI
DDBJ Access.
No. of 28S
(#2) Texas,
USA: Ingleside
Cove, Corpus
Christi Bay
NCHOZUUL
13584 LC087930 AB813681 LC087986
Florida, USA:
Money Bayou,
Gulf County
NCHUZOOL
13946 AB813665 AB813681 LC087984
M. vocator Brazil: Ceara NCHUZOOL
13948 LC087931 LC087959 LC087987
Trinidad SMF 34745 LC150352 FN430709 FN430720
M. zacae El Salvador SMF 2104a LC150353 FN430710 FN430721
Ocypode O. africana Liberia SMF 9823 LC150354 LC150409 LC150478
O.
ceratophthalmus Taiwan: Tainan NCHUZOOL
14916 LC150355 LC150410 LC150479
(#1) Christmas
I. ZRC 2010 0008 LC150356 LC150411 LC150480
(#2) Christmas
I. ZRC 2010 0007 LC150357 LC150412 LC150481
O. cordimana Guam NCHUZOOL
14917 LC150358 LC150413 LC150482
O. gaudichaudii Panama:
Culebra ZRC LC150359 LC150414 LC150483
O. kuhlii Christmas I. ZRC LC150360 LC150415 LC150484
O. cf. macrocera India: Tamil
Nadi ZRC LC150361 LC150416 LC150485
O. cf. nobilii (#1) Malaysia:
Kuching NCHUZOOL
14918 LC150362 LC150417 LC150486
(#2) Malaysia:
Kuching NCHUZOOL
14919 LC150363 LC150418 LC150487
O. occidentalis (#1) Costa Rica ZRC LC150364 LC150419 LC150488
(#2) Costa Rica ZRC 2012.0125 LC150365 LC150420 LC150488
(#1) Panama:
Culebra ZRC LC150366 LC150421 LC150488
(#2) Panama:
Playa Venado ZRC LC150367 LC150422 LC150488
O. quadrata Brazil NCHUZOOL
14920 LC150368 LC150423 LC150489
O. rotundata Iran SMF 40586 LC150369 LC150424 LC150490
O. ryderii (#1)
Mozambique:
Inharrime
ZRC LC150370 LC150425 LC150491
(#2)
Mozambique:
Inharrime
ZRC LC150371 LC150426 LC150491
O. sinensis Taiwan:
Pingtung NCHUZOOL
14806 LC150372 LC150427 LC150492
O. stimpsoni Taiwan:
Hsinchu NCHUZOOL
14921 LC150373 LC150428 LC150493
173
RAFFLES BULLETIN OF ZOOLOGY 2016
Genus Species Locality Catalogue No. DDBJ Access.
No. of 16S
DDBJ Access.
No. of COI
DDBJ Access.
No. of 28S
Paraleptuca Pa. crassipes Ryukyus, Japan:
Okinawa NCHUZOOL
13467 AB813656 AB734656 AB813700
Moorea,
Polynesia:
Haapiti
NCHUZOOL
13478 AB813656 AB734656 AB813701
Pa. splendida Hong Konng:
Tai Tam NCHUZOOL
13368 AB813655 AB734648 AB813699
(#1, #2)
Taiwan:
Cingluo, Penghu
NCHUZOOL
13457 AB813653 AB734641 AB813697,
LC150494
Vietnam: Nha
Trang NCHUZOOL
13448 AB813654 AB734654 AB813698
Pa.
chlorophthalmus (#1) Mayotte:
mangrove de
Malamani
MNHN-
IU-2011-5599 AB813657 JX050999
(MDECA791-12) AB813702
(#2) Mayotte:
mangrove de
Malamani
MNHN-
IU-2011-5600 AB813657 JX050997
(MDECA793-12) AB813702
Tanzania: Dar
es Salaam NCHUZOOL
13561 AB813657 LC087972 LC088003
Petruca Pe. panamensis (#1) Panama:
Culebra I. USNM 1294205
(neotype) LC087917 LC087943 LC087975
(#2) Panama:
Culebra I. NCHOZOOL
13581 LC087918 LC087944 LC087975
(#1) Costa Rica:
San Juanillo
rocky shore,
Ostional
NCHUZOOL
14753 LC087918 LC087945 LC087975
(#2) Costa
Rica: Playa San
Juanillo
ZRC 2012.0126 LC087918 LC087948 LC087975
Tubuca T. acuta China: Hainan NCHUZOOL
13351 LC150374 LC150429 LC150495
Taiwan:
Kinmen NCHUZOOL
13650 LC053352 LC053369 LC053387
T. arcuata China:
Dongzhai,
Hainan
NCHUZOOL
13363 AB813667 AB813684 AB813713
Korea: Incheon NCHUZOOL
13651 LC053353 LC053370 LC053388
T. capricornis Australia:
Bedford I. QM W. 20267 LC150375 LC150430 LC150496
T. coarctata Taiwan: Penghu NCHUZOOL
13231 LC053354 LC053371 LC053389
Australia: Turtle
Bay QM W. 21032 LC150376 LC150431 LC150497
(#1) Australia:
Queensland QM W19920 LC150377 LC150432 LC150498
174
Shih et al.: Systematics of the Ocypodidae
Genus Species Locality Catalogue No. DDBJ Access.
No. of 16S
DDBJ Access.
No. of COI
DDBJ Access.
No. of 28S
(#2) Australia:
Queensland QM W19245 LC150377 LC150433 LC150498
New Caledonia QM W29055 LC150377 LC150434 LC150499
T. demani Philippines:
Cebu NCHUZOOL
13372 LC150378 LC150435 LC150500
T. dussumieri Taiwan: Penghu NCHUZOOL
14717 LC150379 LC150436 LC150501
Philippines:
Mindanao NCHUZOOL
14922 LC150380 LC150437 LC150502
New Caledonia QM W29054 LC150381 LC150438 LC150503
T. amula (#1) Australia:
Kimberly coast,
West Australia
QM W20214 LC150382 LC150439 LC150504
(#2) Australia:
Dampiei, West
Australia
ZRC Aus
010800/13 LC150383 LC150440 LC150505
T. forcipata (#1) Malaysia:
Johor NTOU LC150384 LC150441 LC150506
(#2) Malaysia:
Johor NTOU LC053355 LC053372 LC053390
T. paradussumieri China: Hainan NCHUZOOL
13381 LC053356 LC053373 LC053391
T. rhizophorae Malaysia:
Mersing NCHUZOOL
14923 LC150385 LC150442 LC150507
Malaysia:
Madang NCHUZOOL
14924 LC150386 LC150443 LC150508
T. rosea Malaysia: Johor NTOU LC053357 LC053374 LC053392
T. typhoni China: Hainan NCHUZOOL
13371 LC150387 LC150444 LC150509
T. urvillei Mayotte:
Poroani ZRC 1999.1107 LC053358 LC053375 LC053393
India: Mumbai NCHUZOOL
14925 LC150388 LC150445 LC150510
(“Australuca”) T. bellator Borneo: Labuan,
Malaysia NCHUZOOL
13649 LC053348 LC053365 LC053383
T. elegans Australia:
Lacrosse I.,
West Australia
QM W21038 LC053349 LC053366 LC053384
T. longidigitum (#1) Australia:
Redland Bay,
Brisbane,
Queensland
NCHUZOOL
13656 LC150389 LC150446 LC150511
(#2) Australia:
Hervey Bay,
Queensland
QM W19274 LC053350 LC053367 LC053385
(#3) Australia:
Boggy Creek,
Myrtletown,
Queensland
QM W23884 LC150390 LC150447 LC150512
175
RAFFLES BULLETIN OF ZOOLOGY 2016
Genus Species Locality Catalogue No. DDBJ Access.
No. of 16S
DDBJ Access.
No. of COI
DDBJ Access.
No. of 28S
T. seismella Indonesia: Irian
Jaya ZRC 2000.2059 AB813668 AB813685 AB813714
T. signata Australia:
Hucks Landing,
Queensland
QM W19211 LC053351 LC053368 LC053386
Uca U. major Bahamas:
Pigeon Creek ZRC LC053360 LC053378 LC053397
U. maracoani Brazil:
Itapissuma,
Pernambuco
NCHUZOOL
13955 LC087942 LC087974 LC088005
U. princeps Peru SMF 13164 LC150391 LC150448 LC150513
U. stylifera Panama:
Rodman NCHUZOOL
13578 LC053361 LC053379 LC053398
Xeruca X. formosensis Taiwan: estuary
of Bajhang R.,
Chiayi
NCHUZOOL
13742 LC053346 LC053363 LC053381
Taiwan: Cinglo,
Penghu NCHUZOOL
13770 LC053347 LC053364 LC053382
(#1, #2)
Taiwan: Cigu,
Tainan
NCHUZOOL
13691 LC150392 LC150449 LC150514,
LC150515
Ucides Ucides cordatus (#1) Brazil:
Estuario do Rio
Camaragibe
NCHUZOOL
14926 LC150393 LC150450 LC150516
(#2) Brazil:
Estuario do Rio
Camaragibe
NCHUZOOL
14926 LC150394 LC150451 LC150517
outgroups Dotilla
myctiroides Singapore NCHUZOOL
14927 LC150395 LC150452 LC150518
Heloecius
cordiformis Australia:
Fitzroy R.,
Queensland
QM W20824 LC097114 LC097138 LC150523
Macrophthalmus
pacicus
China: Hainan NCHUZOOL
14929 LC150397 LC150454 LC150521
M. tomentosus Taiwan:
Kinmen NCHUZOOL
14930 LC150398 LC150455 LC150522
Scopimera
intermedia Taiwan: Penghu NCHUZOOL
13225 LC097113 AB515326 LC150519
Tmethypocoelis
ceratophora Taiwan: Yilan NCHUZOOL
14928 LC150396 LC150453 LC150520
... Fiddler crabs comprise a group of more than 100 species (Shih et al. 2016), which offer an interesting opportunity to address these topics for several reasons. First, fiddler crabs have indeterminate growth (Crane 1975), so they continue to grow after sexual maturity, resulting in body size being correlated with age (Yamaguchi 2002). ...
... In the present work, we inspected the morphological variation of males' major claws in the species Leptuca uruguayensis (Nobili 1901) (formerly Uca uruguayensis, see Shih et al. 2016) and its relationship with mating tactics. The study had three goals. ...
Article
Male fiddler crabs own an enlarged claw which is a weapon and an ornament. The enlargement of this claw begins from the juvenile stage and continues throughout life. Males may voluntarily lose (i.e., autotomize) this claw. After several molts males may regenerate a new claw, called leptochelous, which acquires a similar length but a lower muscle mass area than the original one, called brachychelous. In some species, regenerated claws develop permanently as leptochelous, the population having 2 discrete claw morphologies. Other species present morphological variations with leptochelous and brachychelous being 2 ends of a continuum. In the species Leptuca uruguayensis, we studied the morphological variation of this enlarged claw, whether it may be caused by its regeneration at different male sizes, and its consequences on mating success. We found that claws could not be discriminated as discrete morphs, suggesting a morphological continuum from brachychelous to leptochelous. Regenerated claws in the laboratory were initially small and proportional to body size, although a field experiment confirmed that claw size is recovered after several molts. Morphological variation may be caused by energetic limitations where males of different sizes must differently trade-off between restitution of claw length (ornament function) or claw muscle area (weapon function). Fiddler crabs use 2 mating tactics with different levels of female choice. However, regardless of the mating tactic, leptochelous males were at a disadvantage at high densities, although not at low densities, suggesting that the consequences of autotomy and regeneration on mating success may depend on the social context
... It is evident that food hoarding is well documented across diverse taxonomic groups in vertebrates as well as terrestrial invertebrates, but not so for aquatic invertebrates (see Vander Wall 1990). There are currently only a few studies that suggest the possibility of food storage in mangrove crabs, e.g., Dotillopsis brevitarsis, and two species of fiddler crabs, Austruca lactea and Gelasimus vocans-previously Uca lactea and U. vocans, respectively (see Salmon 1984;Wada 1985;Kim 2010;Shih et al. 2016). In a manipulative field experiment at an intertidal sandy mudflat in Japan, A. lactea carried nutrient-enriched sediment and carrion into their burrows and most probably stored the food for later consumption (Kim 2010). ...
Conference Paper
The feeding ecology of juvenile and adult Ocypode gaudichaudii at two Panamanian sandy beaches with marked differences in the level of food resources was studied. Ocypode gaudichaudii at both sites showed ontogenetic variations in the distribution, diet, foraging habits and activity budgets. The flexibility of feeding habits suggest behavioural plasticity in response to the different levels of food and predation risk. Experiments were conducted to determine the effects of food densities on the feeding modes of O. gaudichaudii, the plasticity of feeding behaviour in O. gaudichaudii, and the occurrence of food hoarding. Both the juveniles and adults exhibited functional responses to the increasing densities of food (i.e., diatoms and rove beetles). Food hoarding only occurred at the beach with low food availability and could be a strategy that O. gaudichaudii used to overcome food scarcity. Ocypode gaudichaudii also demonstrated behavioural plasticity in response to the levels of food in the environment. Results of the stable isotopes analyses of the crabs showed an ontogenetic isotopic niche shift in both populations and indicated the varying ecological roles of the two life stages. These findings suggest that O. gaudichaudii is an opportunistic omnivore with short-term and long-term feeding strategies to cope with spatial and temporal variations in food availability to maximise energy gained during foraging. These strategies could account for the persistence of the two populations with differing food resources in their habitats.
... Distribuição Global Distribuição Nacional Estados -Uca pugnax rapax Rathbun, 1900-Uca salsisitus Oliveira, 1939-Uca virens Salmon & Atsaides, 1968 pugnax virens Crane, 1975-Gelasimus rapax Smith, 1870-Uca pugnax brasiliensis Oliveira, 1939-Minuca rapax Bott, 1973-Uca rapax (Smith, 1870 A partir de evidências moleculares, Shih et al. (2016) agrupou as espécies de Uca em dois gêneros diferentes (Minuca e Leptuca). No Brasil, com essa alteração da nomenclatura das espécies de ocipodídeos contamos com três espécies do gênero Leptuca, com Uca uruguayensis passando a ser denominada Leptuca uruguayensis (Nobili, 1901); Uca thayeri, alterada para Leptuca thayeri (Rathbun, 1900); e Uca cumulanta para Leptuca cumulanta (Crane, 1943). ...
Technical Report
Full-text available
Minuca rapa - Ficha de Avaliação do Risco de Extinção - por Pinheiro, M.A.A.; Dias-neto, J.; Santana, W.R.A.; Mantelatto, F.L.M.; Freire, A.S.; Rodrigues, A.M.T.; Oliveira, D.B.; Keunecke, K.A.; Rodrigues, L.F.; Repinaldo, M.; Torres, R.A.; Scofield, V.; Santos, R.A.; Boos, H. 2024. Minuca rapax. Sistema de Avaliação do Risco de Extinção da Biodiversidade - SALVE. Disponível em: https://salve.icmbio.gov.br Digital Object Identifier (DOI): https://doi.org/10.37002/salve.ficha.15084.2 - Acesso em: 31 de maio de 2024.
... A partir de evidências moleculares, Shih et al. (2016) agrupou as espécies de Uca em dois gêneros diferentes (Minuca e Leptuca). No Brasil, com essa alteração da nomenclatura das espécies de ocipodídeos contamos com três espécies do gênero Leptuca, com Uca uruguayensis passando a ser denominada Leptuca uruguayensis (Nobili, 1901); Uca thayeri, alterada para Leptuca thayeri (Rathbun, 1900); e Uca cumulanta para Leptuca cumulanta (Crane, 1943). ...
Technical Report
Full-text available
Minuca burgersi - Ficha de Avaliação do Risco de Extinção - por Pinheiro, M.A.A.; Dias-neto, J.; Santana, W.R.A.; Mantelatto, F.L.M.; Freire, A.S.; Rodrigues, A.M.T.; Oliveira, D.B.; Keunecke, K.A.; Santos, L.C.M.; Rodrigues, L.F.; Repinaldo, M.; Torres, R.A.; Scofield, V.; Santos, R.A.; Boos, H. 2024. Minuca burgersi. Sistema de Avaliação do Risco de Extinção da Biodiversidade - SALVE. Disponível em: https://salve.icmbio.gov.br Digital Object Identifier (DOI): https://doi.org/10.37002/salve.ficha.15082.2 - Acesso em: 29 de abr. de 2024.
... A partir de evidências moleculares, Shih et al. (2016) agrupou as espécies de Uca em dois gêneros diferentes (Minuca e Leptuca). No Brasil, com essa alteração da nomenclatura das espécies de ocipodídeos contamos com três espécies do gênero Leptuca, com Uca uruguayensis passando a ser denominada Leptuca uruguayensis (Nobili, 1901); Uca thayeri, alterada para Leptuca thayeri (Rathbun, 1900); e Uca cumulanta para Leptuca cumulanta (Crane, 1943). ...
Technical Report
Full-text available
Leptuca thayeri - Ficha de Avaliação do Risco de Extinção - por Pinheiro, M.A.A.; Dias-neto, J.; Santana, W.R.A.; Mantelatto, F.L.M.; Freire, A.S.; Rodrigues, A.M.T.; Oliveira, D.B.; Keunecke, K.A.; Santos, L.C.M.; Rodrigues, L.F.; Repinaldo, M.; Torres, R.A.; Scofield, V.; Santos, R.A.; Boos, H. 2024. Leptuca thayeri. Sistema de Avaliação do Risco de Extinção da Biodiversidade - SALVE. Disponível em: https://salve.icmbio.gov.br Digital Object Identifier (DOI): https://doi.org/10.37002/salve.ficha.14778.2 - Acesso em: 01 de jun. de 2024.
... A partir de evidências moleculares, Shih et al. (2016) agrupou as espécies de Uca em dois gêneros diferentes (Minuca e Leptuca). No Brasil, com essa alteração da nomenclatura das espécies de ocipodídeos contamos com três espécies do gênero Leptuca, com Uca uruguayensis passando a ser denominada Leptuca uruguayensis (Nobili, 1901); Uca thayeri, alterada para Leptuca thayeri (Rathbun, 1900); e Uca cumulanta para Leptuca cumulanta (Crane, 1943). ...
Technical Report
Full-text available
Leptuca leptodactyla - Ficha de Avaliação do Risco de Extinção - por Pinheiro, M.A.A.; Dias-neto, J.; Santana, W.R.A.; Mantelatto, F.L.M.; Freire, A.S.; Rodrigues, A.M.T.; Oliveira, D.B.; Keunecke, K.A.; Santos, L.C.M.; Rodrigues, L.F.; Repinaldo, M.; Torres, R.A.; Scofield, V.; Santos, R.A.; Boos, H. 2024. Leptuca leptodactyla. Sistema de Avaliação do Risco de Extinção da Biodiversidade - SALVE. Disponível em: https://salve.icmbio.gov.br Digital Object Identifier (DOI): https://doi.org/10.37002/salve.ficha.14777.2 - Acesso em: 01 de jun. de 2024.
... A partir de evidências moleculares, Shih et al. (2016) agrupou as espécies de Uca em dois gêneros diferentes (Minuca e Leptuca). No Brasil, com essa alteração da nomenclatura das espécies de ocipodídeos contamos com três espécies do gênero Leptuca, com Uca uruguayensis passando a ser denominada Leptuca uruguayensis (Nobili, 1901); Uca thayeri, alterada para Leptuca thayeri (Rathbun, 1900); e Uca cumulanta para Leptuca cumulanta (Crane, 1943). ...
Technical Report
Full-text available
Minuca mordax - Ficha de Avaliação do Risco de Extinção - por Pinheiro, M.A.A.; Dias-neto, J.; Santana, W.R.A.; Mantelatto, F.L.M.; Freire, A.S.; Rodrigues, A.M.T.; Oliveira, D.B.; Keunecke, K.A.; Rodrigues, L.F.; Repinaldo, M.; Torres, R.A.; Scofield, V.; Santos, R.A.; Boos, H. 2024. Minuca mordax. Sistema de Avaliação do Risco de Extinção da Biodiversidade - SALVE. Disponível em: https://salve.icmbio.gov.br Digital Object Identifier (DOI): https://doi.org/10.37002/salve.ficha.15083.2 - Acesso em: 31 de maio de 2024.
... Portanto, Leptuca cumulanta foi categorizada como Menos Preocupante (LC). , 1959-Uca speciosa Rathbun, 1918 cumulanta Crane, 1943-Uca cumulanta Crane, 1943 A partir de evidências moleculares, Shih et al. (2016) agrupou as espécies de Uca em dois gêneros diferentes (Minuca e Leptuca). No Brasil, com essa alteração da nomenclatura das espécies de ocipodídeos contamos com três espécies do gênero Leptuca, com Uca uruguayensis passando a ser denominada Leptuca uruguayensis (Nobili, 1901); Uca thayeri, alterada para Leptuca thayeri (Rathbun, 1900); e Uca cumulanta para Leptuca cumulanta (Crane, 1943). ...
Technical Report
Full-text available
Leptuca cumulanta - Ficha de Avaliação do Risco de Extinção - por Pinheiro, M.A.A.; Dias-neto, J.; Santana, W.R.A.; Mantelatto, F.L.M.; Freire, A.S.; Rodrigues, A.M.T.; Oliveira, D.B.; Keunecke, K.A.; Santos, L.C.M.; Rodrigues, L.F.; Repinaldo, M.; Torres, R.A.; Scofield, V.; Santos, R.A.; Boos, H. 2024. Leptuca cumulanta. Sistema de Avaliação do Risco de Extinção da Biodiversidade - SALVE. Disponível em: https://salve.icmbio.gov.br Digital Object Identifier (DOI): https://doi.org/10.37002/salve.ficha.14776.2 - Acesso em: 01 de jun. de 2024.
Article
Full-text available
Increasing habitat modification and species loss demand consistent efforts to describe and understand biodiversity patterns. The BIOTA/FAPESP Program was created in this context and it has been a successful initiative to promote studies on biodiversity and conservation in Brazil. The BIOTA/Araçá is an interdisciplinary project that provided a detailed evaluation of the biodiversity of Araçá Bay, a coastal seascape located on the North coast of the state of São Paulo, Southeast Brazil. The bay encompasses multiple habitats, such as beaches, mangroves, rocky shores, and a tidal flat, and provides important ecosystem services. Unfortunately, the bay is the subject of complex social-environmental conflicts that oppose economic, social, and environmental demands (i.e., the expansion of neighboring harbor activities vs. small-scale artisanal fisheries and protection of biodiversity). The present study presents a survey of the benthic species occurring in the different habitats of Araçá Bay, including data obtained during the BIOTA/Araçá project and previous assessments of the area. The benthic species play an important role in marine environments and studying the diversity of these organisms that live associated with the bottom is indispensable for comprehending the environment’s functioning. The macrofauna, meiofauna, and microorganisms associated with soft and hard bottom were listed, and additional information, such as the habitat and geographical distribution, were provided for each species. The checklist includes 826 species, almost 70% recorded during the BIOTA/Araçá project. The most speciose taxa were the annelids (225 spp.), mollusks (194 spp.), and crustaceans (177 spp.). Seven benthic species are endemic to Araçá Bay, 14 are considered threatened, and seven are economically exploited. Furthermore, the bay is the type locality of many taxa, and 11 new benthic species were described based on specimens sampled during the project. This project shows the importance of Araçá Bay as a unique biologically rich environment and highlights the need for conservation efforts in light of the current threats.
Article
Full-text available
The pedunculate barnacle Octolasmis unguisiformis is a rare epibiotic barnacle attached to a macrophthalmid crab, Macrophthalmus (Macrophthalmus) milloti Crosnier, 1965, on tidal flats in the Ryukyu Archipelago. It has a rare sexual system called androdioecy, a coexistence of hermaphrodites and males in the population. In June 2020, we found two hermaphrodites and one dwarf male of O. unguisiformis attached to a female M. (M.) convexus at Kise Bay, Amami Oshima Island. Here we describe the symbiotic conditions between the pedunculate barnacle and the new host crab species.
Article
The Indo-West Pacific broad-front fiddler crabs, formerly attributed to the "lactea species-group" are revised. The subgenus Uca (Austruca) Bott, 1973, is here revived for accommodating the informal "lactea species-group". Uca (Austruca) presently covers 7 species, partly with a restricted regional distribution, of which one (Uca cryptica sp. nov. from Indonesia) is new to science.
Article
A new species of fiddler crab, Uca jocelynae sp. nov., belonging to the U. vocans complex, is described from the islands in Western Pacific on the basis of morphological and molecular data. The new species was previously identified with U. neocultrimana (Bott, 1973) (= U. vocans pacificensis Crane, 1975). The two species can be readily distinguished by characters of the male major chelae, carapace features, and the form of the vulvae. The molecular data of parts of the mitochondrial 16S rRNA and cytochrome oxidase I (COI) genes support that both are sister taxa but nevertheless distinct enough to be regarded as separate species. Uca jocelynae is widely distributed from the islands in the Western Pacific, while U. neocultrimana occurs in Fiji and eastwards.