BookPDF Available

Mer et Littoral : un bien commun ?

Authors:

Abstract and Figures

Le littoral et la mer sont des ressources naturelles environnementales. C’est-à-dire des ressources qui, sans être un produit de l’activité humaine, influent ou pourraient influer sur l’économie des pays ou le bien-être de leurs habitants. Partout dans le monde, ces zones concentrent des populations croissantes et des activités multiples. Les impacts et conflits d’usage engendrés sont considérables. Pour les surmonter, il apparaît nécessaire de repenser ces espaces et les ressources qu’ils représentent comme un bien commun. Cet ouvrage collectif regroupe des articles rédigés suite au colloque international intitulé : « Mer et littoral : un bien commun ? » organisé à l’Université Bretagne Sud (France) du 17 au 19 juin 2019. Dans une volonté de sortir de l’étau disciplinaire et territorial sur un sujet aussi vaste, il propose des regards de chercheurs de différentes disciplines et de différentes nationalités, abordant ainsi la question sous l’angle du droit, de la bio-surveillance du milieu marin, du rôle des ports, des ressources, et du tourisme. En complément, la dernière partie présente des exemples de travaux de recherche conduits à l’Université Bretagne Sud pour améliorer nos connaissances sur le milieu littoral et marin, et réduire les impacts sur l’environnement.
Extraction illégale et pillage de sable en zone côtière (Maroc) Les facteurs naturels et anthropiques sont à l'origine de l'exacerbation des phénomènes d'ensablement le long du littoral marocain. Le littoral atlantique du Gharb (région de Kénitra) constitue une juste illustration de l'interaction entre facteurs naturels, surexploitation et vulnérabilité. Au cours des dernières décennies, ce milieu est devenu très convoité et sollicité en raison de l'accroissement de la population, accroissement accompagné de mutations et d'un développe-ment socio-économique qui ont contribué à la fragilisation de plusieurs zones. Pourtant, la région recèle de potentialités économiques et culturelles importantes et diversifiées, pouvant être mobilisées pour un développement conséquent, harmonieux et durable. Le contexte climatique humide à subhumide favorise en effet l'installation de plusieurs sites d'intérêt biologique et écologique (SIBE), de réserves naturelles avec un potentiel hydrique important (eau de surface et nappes phréatiques), un couvert végétal dense et une agriculture diversifiée. Par ailleurs, la région littorale du Gharb se positionne parmi les trois premières zones industrielles du Maroc. Elle s'est, de ce fait, dotée d'importantes infrastructures de transport (routières, portuaires et ferroviaires) et d'une vaste plateforme industrielle où se sont installées diverses multinationales. Il en résulte une intense urbanisation et par conséquent une forte demande en matériaux de construction, dont les granulats de sables. Cette forte urbanisation que connaît la région s'accompagne donc de la surexploitation non seulement des sables du cordon dunaire, mais égale-ment de terrains très convoités de la frange littorale (Allouza et al. 2014). Les observations de terrain ont démontré l'état de fragilité et de vulnérabilité du site ; elles révèlent l'installation d'un déséquilibre généralisé et irréversible induit par des phénomènes d'ensablement souvent étendus. Ce déséquilibre se trouve aggravé par la mauvaise gestion de l'exploitation des sables, exploitation qui se fait généralement de façon anarchique, souvent dans des carrières clandestines, sans le moindre respect des composantes du milieu naturel et au mépris total des lois qui régissent le cadre environnemental. L'extraction des sables se fait parfois à une telle profondeur qu'elle affleure la nappe d'eau souterraine. Malgré les prédispositions prises, cette exploitation, souvent mal contrôlée, entraîne des modifications temporaires ou permanentes du milieu qui conduisent à une évolution localement irréversible.
… 
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In this article we explore the quantitative challenges posed by the intended circular biobased economy. To do this, we present the relative sizes, in terms of mass and energy, of the agro‐food and fossil production system, and the interrelations in the system of transformation to food, feed, materials, and energy. We deduce that the flows in the fossil system are of a comparable magnitude to the agricultural / biomass production in terms of mass and energy. This implies that replacing a significant fraction of fossil‐derived products by biobased products will be a huge challenge. Solving this challenge will require both efficiency improvements and circular innovations. The analysis reveals major inefficiencies in the current system. In terms of mass, the pathways from agricultural production to food seem quite inefficient, on average less than 10%. This suggests space for efficiency improvement. The relatively low efficiency of livestock production confirms the relevance of diet change. Likewise, enhanced utilization of side streams appears significant. However, we show that in the current system of linear chains, such solutions are insufficient to provide an alternative to the current volume of fossil use. We argue that, next to biobased solutions, multifunctional use and recycling will be essential if we want to maintain current living standards and reduce dependence on fossil feedstock. We reflect on this consideration, and define four different cycles in the combined biomass / fossil system. These circles may be optimized and extended to improve the circularity of our carbon‐based production systems and to fight climate change. © The Authors. Biofuels, Bioproducts and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd.
Article
Full-text available
The use of composite materials reinforced by flax fibres has been increasing steadily over the last 20 years. These fibres show attractive mechanical properties but also some particularities (naturally limited length, presence of a lumen, fibres grouped in bundles in the plant, complex surface properties and composition). An analysis of the available literature indicates that the quality of the composite materials studied is not always optimal (high porosity, incomplete impregnation, heterogeneous microstructure, variable fibre orientation). This paper reviews published data on the specific nature of flax fibres with respect to manufacturing of biocomposites (defined here as polymers reinforced by natural fibres). All the important steps in the process which influence final properties are analyzed, including the plant development, retting, fibre extraction, fibre treatment, preform preparation, available manufacturing processes, the impregnation step, fibre cell wall changes during processing and fibre/matrix adhesion.
Article
Flax fibres are a promising reinforcement in the development of biocomposites and are finding new applications in transport structures. However, there is a perceived problem with plant fibres related to the variability of the properties of these natural materials. This paper describes the factors which affect variability, from plant growth conditions to fibre sampling and testing. A large number of test results are presented (characterization of elementary fibres, bundles, assemblies of bundles, and unidirectional composites), and it is shown that provided fibre supply is carefully controlled, characterization procedures are appropriate, and manufacturing processes are optimal then excellent composite properties can be achieved with low variability.
Article
Flax (Linum usitatissimum L.) is a plant of industrial interest. Its fibres have traditionally been used for textile applications and more recently, for composite reinforcement. To increase fibre yields, varietal selection has been used to develop varieties having high fibre content while retaining good resistance to lodging. This selection process has led to impressively slender structures of flax compared to other herbaceous plants. The present study focuses on the mechanical stability of flax related to its specific architecture. An anatomical study of transverse sections provides information about the architecture of flax stems, including the repartition of the internal reinforcing tissues being phloem fibres and xylem. Then, by using three-point bending tests, flexural modulus is evaluated along the stem. The safety factor (SF) against buckling for the plant was estimated based on Greenhill's model, taking into account gradients in diameter, load, and elastic modulus. Although flax plants have an unusually slender structure, they are mechanically stable. The stability of the plant is ensured by a high stem flexural modulus. This originates from an external ring composed of high-performance fibres, while an inner thick porous xylem provides the plant with a high resistance to local buckling. This is useful information for breeders, demonstrating that it is possible to keep increasing fibre yield without jeopardising plant stability.
Article
Flax (Linum usitatissimum L.) fibres are commonly used as reinforcement of composite materials. Nevertheless, literature shows that the compressive strength of flax-based composites is rather modest compared with materials reinforced by synthetic fibres. The present article investigates the compressive strength of flax fibre bundles both within the stems and in unidirectional (UD) composites. In this way, an optimised arrangement of fibre bundles inside the plant is assumed. Damage mechanisms are found to be similar in the stem and within flax-based UD materials, namely by buckling of fibre bundles, a typical failure mechanism of UD composites. Inside the stems, this phenomenon is highlighted by nanotomography, which underlines the key role of the woody core in the buckling resistance of the plant. For UD, failure can also be studied by scanning electron microscopy (SEM). The same ranges of average compressive strength values are estimated for flax fibre bundles, being 206 MPa within the stem and 242 MPa within UD composites. Finally, this study highlights that, if a flax stem is an optimised natural structure, the compressive strength of flax fibre bundles seems to be a limiting factor for structural applications of flax-based composite materials.
Article
Flax fibers (Linum Usitatissimum L.) are currently used for textile applications and composite reinforcement. Due to its industrial importance, flax is the subject of a varietal selection work in view of obtaining varieties with higher fiber yields, but also exhibiting a greater lodging resistance. Indeed, lodging sometimes happens within flax fields, complicating plant harvest and compromising yields. Interestingly, it sometimes occurs that flax stems restore from lodging through a gravitropic reaction. Depending on the time of lodging, variations in elementary fiber mechanical performances, monitored by tensile tests appeared to be more or less pronounced, being greater in the earliest stage of the experiment, and also depend on the studied side of the stem curvature. Namely, the pulling of the stems provides fibers with the most emphasized changes, in terms of strength at break, filling rate (presence of a fiber lumen) as well as cell wall tangent modulus. Finally, differences between tilted and control fibers diminish as the plant maturity progresses, with only slight remaining dissimilarities at plant maturity. Thus, flax fibers are involved in the plant gravitropic reaction and maintain their efficient mechanical characteristic despite lodging, through the adjustability of their cell wall performances over fiber thickening, which is a major result for fiber suppliers and composite manufacturers.
Article
Size-dependent variations in the critical buckling height Hcrit and actual height H of plants were determined for a total of 111 species with self-supporting stems ranging in diameter between 0.03 cm ≤ D ≤ 3.0m. For each species, experimentally determined values for the physical properties of stems (Young's elastic modulus and bulk tissue density) were used to compute Hcrit. For small species (D < 3 cm), empirically determined critical buckling loads were used to compute Hcrit by means of the Elastica equation and the more traditionally employed Greenhill formula; for larger species (D ≖ 3 cm), Greenhill's formula was used exclusively to estimate Hcrit. Within most of the size-range examined, the predicted values of Hcrit from the Elastica equation and Greenhill's formula were statistically indistinguishable. Regression analyses showed that the interspecific allometry of Hcrit parallels that of H such that the safety factor against the elastic mechanical failure of stems (i.e., Hcrit/H) under their own biomass was roughly constant. Since the safety factor against elastic buckling is independent of plant size, a general allometric “rule,” Hcrit/H ≈ 4, appears to govern the evolution of plant size.